Correlations of the upper branch of 1D harmonically trapped two-component fermi gases.
Gharashi, Seyed Ebrahim; Blume, D
2013-07-26
We present highly accurate energy spectra and eigenfunctions of small 1D harmonically trapped two-component Fermi gases with interspecies δ-function interactions, and analyze the correlations of the so-called upper branch (i.e., the branch that describes a repulsive Fermi gas consisting of atoms but no molecules) for positive and negative coupling constants. Changes of the two-body correlations as a function of the interspecies coupling strength reflect the competition of the interspecies interaction and the effective repulsion due to the Pauli exclusion principle, and are interpreted as a few-body analog of a transition from a nonmagnetic to a magnetic phase. Moreover, we show that the eigenstate ψadia of the infinitely strongly interacting system with |n1+n2|>2 and |n1-n2|Fermi-Fermi mapping function to the eigenfunction of the noninteracting single-component Fermi gas.
Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.
Yurovsky, Vladimir A
2017-05-19
Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.
Phase transitions in definite total spin states of two-component Fermi gases
Yurovsky, Vladimir A
2016-01-01
Symmetry under permutations of indistinguishable particles, contained in each medium, is one of the fundamental symmetries. Generally, a change in symmetry affects the medium's thermodynamic properties, leading to phase transitions. Permutation symmetry can be changed since, in addition to the conventional symmetric and anti-symmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. However, the thermodynamic effects of non-Abelian symmetry are unknown. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, saturated and unsaturated phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respe...
Two-component Fermi gas in a Harmonic Trap
Yi, X X; Cui, H T; Zhang, C M
2002-01-01
We consider a mixture of two-component Fermi gases at low temperature. The density profile of this degenerate Fermi gas is calculated under the semiclassical approximation. The results show that the fermion-fermion interactions make a large correction to the density profile at low temperature. The phase separation of such a mixture is also discussed for both attractive and repulsive interatomic interactions, and the numerical calculations demonstrate the exist of a stable temperature region $T_{c1}
Imbalanced Fermi gases at unitarity
Gubbels, K.B.; Stoof, H.T.C.
2013-01-01
We consider imbalanced Fermi gases with strong attractive interactions, for which Cooper-pair formation plays an important role. The two-component mixtures consist either of identical fermionic atoms in two different hyperfine states, or of two different atomic species both occupying only a single
Strongly interacting Fermi gases
Directory of Open Access Journals (Sweden)
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
Itinerant Ferromagnetism in a Polarized Two-Component Fermi Gas
DEFF Research Database (Denmark)
Massignan, Pietro; Yu, Zhenhua; Bruun, Georg
2013-01-01
We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repul......We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles...
Itinerant Ferromagnetism in Ultracold Fermi Gases
DEFF Research Database (Denmark)
Heiselberg, Henning
2012-01-01
Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...
Itinerant ferromagnetism in a polarized two-component Fermi gas.
Massignan, Pietro; Yu, Zhenhua; Bruun, Georg M
2013-06-07
We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repulsive polarons. Phase diagrams as a function of polarization, temperature, mass imbalance, and repulsive polaron energy, as well as scattering length and range parameter, are provided. We show that the lifetime of the repulsive polaron increases significantly with the interaction range and the mass of the minority atoms, raising the prospects of detecting the transition to the elusive itinerant ferromagnetic state with ultracold atoms.
DEFF Research Database (Denmark)
Bruun, Georg
2011-01-01
We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures......, strong correlation effects are included through the Landau parameters which we extract from Monte Carlo results. We show that the spin diffusion coefficient has a minimum for a temperature somewhat below the Fermi temperature with a value that approaches the quantum limit ~/m in the unitarity regime...
Bragg spectroscopy of strongly interacting Fermi gases
Lingham, M. G.; Fenech, K.; Peppler, T.; Hoinka, S.; Dyke, P.; Hannaford, P.; Vale, C. J.
2016-10-01
This article provides an overview of recent developments and emerging topics in the study of two-component Fermi gases using Bragg spectroscopy. Bragg scattering is achieved by exposing a gas to two intersecting laser beams with a slight frequency difference and measuring the momentum transferred to the atoms. By varying the Bragg laser detuning, it is possible to measure either the density or spin response functions which characterize the basic excitations present in the gas. Specifically, one can measure properties such as the dynamic and static structure factors, Tan's universal contact parameter and observe signatures for the onset of pair condensation locally within a gas.
Dark lump excitations in superfluid Fermi gases
Institute of Scientific and Technical Information of China (English)
Xu Yan-Xia; Duan Wen-Shan
2012-01-01
We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases.A Kadomtsev Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen-Cooper-Schrieffer (BCS) regime,Bose-Einstein condensate (BEC) regime,and unitarity regime.Onelump solution as well as one-line soliton solutions for the KPI equation are obtained,and two-line soliton solutions with the same amplitude are also studied in the limited cases.The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.
Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen
Oliva, J.; Ashcroft, N. W.
1981-01-01
It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.
Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen
Oliva, J.; Ashcroft, N. W.
1981-01-01
It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
DEFF Research Database (Denmark)
Özen, C.; Zinner, Nikolaj Thomas
2014-01-01
The physics of a two-component cold fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1-100 particles) in very tight traps where the shell structure...... of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two...
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
DEFF Research Database (Denmark)
Özen, C.; Zinner, Nikolaj Thomas
2014-01-01
of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...
Universal properties of a trapped two-component fermi gas at unitarity.
Blume, D; von Stecher, J; Greene, Chris H
2007-12-01
We treat the trapped two-component Fermi system, in which unlike fermions interact through a two-body short-range potential having no bound state but an infinite scattering length. By accurately solving the Schrödinger equation for up to N=6 fermions, we show that no many-body bound states exist other than those bound by the trapping potential, and we demonstrate unique universal properties of the system: Certain excitation frequencies are separated by 2variant Planck's over 2piomega, the wave functions agree with analytical predictions and a virial theorem is fulfilled. Further calculations up to N=30 determine the excitation gap, an experimentally accessible universal quantity, and it agrees with recent predictions based on a density functional approach.
Detecting Friedel oscillations in ultracold Fermi gases
Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning
2017-09-01
Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.
Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population
Darsheshdar, E.; Yavari, H.; Zangeneh, Z.
2016-07-01
By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.
Anisotropic pair superfluidity of trapped two-component Bose gases in an optical lattice
Li, Yongqiang; He, Liang; Hofstetter, Walter
2013-09-01
We theoretically investigate the pair-superfluid phase of two-component ultracold gases with attractive inter-species interactions in an optical lattice. We establish the phase diagram for filling n = 1 at zero and finite temperatures, by applying bosonic dynamical mean-field theory, and observe stable pair-superfluid and charge-density wave quantum phases for asymmetric hopping of the two species. While the pair superfluid is found to be robust in the presence of a harmonic trap, we observe that it is destroyed already by a small population imbalance of the two species.
Dimensional BCS-BEC crossover in ultracold Fermi gases
Energy Technology Data Exchange (ETDEWEB)
Boettcher, Igor
2014-12-10
We investigate thermodynamics and phase structure of ultracold Fermi gases, which can be realized and measured in the laboratory with modern trapping techniques. We approach the subject from a both theoretical and experimental perspective. Central to the analysis is the systematic comparison of the BCS-BEC crossover of two-component fermions in both three and two dimensions. A dimensional reduction can be achieved in experiments by means of highly anisotropic traps. The Functional Renormalization Group (FRG) allows for a description of both cases in a unified theoretical framework. In three dimensions we discuss with the FRG the influence of high momentum particles onto the density, extend previous approaches to the Unitary Fermi Gas to reach quantitative precision, and study the breakdown of superfluidity due to an asymmetry in the population of the two fermion components. In this context we also investigate the stability of the Sarma phase. For the two-dimensional system scattering theory in reduced dimension plays an important role. We present both the theoretically as well as experimentally relevant aspects thereof. After a qualitative analysis of the phase diagram and the equation of state in two dimensions with the FRG we describe the experimental determination of the phase diagram of the two-dimensional BCS-BEC crossover in collaboration with the group of S. Jochim at PI Heidelberg.
Physics of ultracold Fermi gases revealed by spectroscopies
Törmä, Päivi
2016-04-01
This article provides a brief review of how various spectroscopies have been used to investitage many-body quantum phenomena in the context of ultracold Fermi gases. In particular, work done with RF spectroscopy, Bragg spectroscopy and lattice modulation spectroscopy is considered. The theoretical basis of these spectroscopies, namely linear response theory in the many-body quantum physics context is briefly presented. Experiments related to the BCS-BEC crossover, imbalanced Fermi gases, polarons, possible pseudogap and Fermi liquid behaviour and measuring the contact are discussed. Remaining open problems and goals in the field are sketched from the perspective how spectroscopies could contribute.
Rotational properties of two-component Bose gases in the lowest Landau level
Meyer, Marius; Sreejith, Ganesh Jaya; Viefers, Susanne
2015-03-01
We study the rotational (yrast) spectra of dilute two-component atomic Bose gases in the low angular momentum regime, assuming equal interspecies and intraspecies interaction. Our analysis employs the composite fermion (CF) approach including a pseudospin degree of freedom. While the CF approach is not a priori expected to work well in this angular momentum regime, we show that composite fermion diagonalization gives remarkably accurate approximations to low energy states in the spectra. For angular momenta 0 = N), we find that the CF states span the full Hilbert space and provide a convenient set of basis states which, by construction, are eigenstates of the symmetries of the Hamiltonian. Within this CF basis, we identify a subset of the basis states with the lowest Λ-level kinetic energy. Diagonalization within this significally smaller subspace constitutes a major computational simplification and provides very close approximations to ground states and a number of low-lying states within each pseudospin and angular momentum channel. This work was financially supported by the Research Council of Norway and by NORDITA.
Strongly Interacting Fermi Gases in Two Dimensions
2012-07-17
Svistunov, M. Ku, A. Sommer, L. W. Cheuk, A. Schirotzek, M. W. Zwierlein Feynman diagrams versus Fermi-gas Feynman emulator Nature Physics 8... Feynman emulator. Nature Physics 8, 366 (2012) 4. Jee Woo Park, Cheng-Hsun Wu, Ibon Santiago, Tobias G. Tiecke, Peyman Ahmadi, Martin W. Zwierlein...chapters 7. M. Randeria, W. Zwerger, and M. Zwierlein. The BEC-BCS Crossover and the Unitary Fermi Gas. Lecture Notes in Physics , Volume 836, edited by
Vortex line in spin-orbit coupled atomic Fermi gases
2012-01-01
PHYSICAL REVIEW A 85, 013622 (2012) Vortex line in spin-orbit coupled atomic Fermi gases M. Iskin Department of Physics, Koc¸ University, Rumelifeneri Yolu, TR-34450 Sariyer, Istanbul, Turkey (Received 1 December 2011; published 17 January 2012) It has recently been shown that the spin-orbit coupling gives rise to topologically nontrivial and thermodynamically stable gapless superfluid phases when the pseudospin populations of an atomic Fermi gas are imbalanced, with the ...
Superfluid Thomas—Fermi approximation for trapped fermi gases
Hernández, E. S.; Capuzzi, P.; Szybisz, L.
2009-02-01
We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios.
Superfluid Thomas-Fermi approximation for trapped fermi gases
Energy Technology Data Exchange (ETDEWEB)
Hernandez, E S; Capuzzi, P; Szybisz, L [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)], E-mail: shernand@df.uba.ar, E-mail: capuzzi@df.uba.ar, E-mail: szybisz@tandar.cnea.gov.ar
2009-02-01
We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios.
Universal properties of Fermi gases in arbitrary dimensions
DEFF Research Database (Denmark)
Valiente, Manuel; T. Zinner, Nikolaj; Molmer, Klaus
2012-01-01
We consider spin-1/2 Fermi gases in arbitrary, integer or non-integer spatial dimensions, interacting via a Dirac delta potential. We first generalize the method of Tan's distributions and implement short-range boundary conditions to arbitrary dimension and we obtain a set of universal relations...... for the Fermi gas. Three-dimensional scattering under very general conditions of transversal confinement is described by an effectively reduced-dimensional scattering length, which we show depends on the three-dimensional scattering length in a universal way. Our formula for non-integer dimensions interpolates...
Wang, Jibiao; Che, Yanming; Zhang, Leifeng; Chen, Qijin
2017-01-01
Ultracold two-component Fermi gases with a tunable population imbalance have provided an excellent opportunity for studying the exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, which have been of great interest in condensed matter physics. However, the FFLO states have not been observed experimentally in Fermi gases in three dimensions (3D), possibly due to their small phase space volume and extremely low temperature required for an equal-mass Fermi gas. Here we explore possible effects of mass imbalance, mainly in a 6Li–40K mixture, on the one-plane-wave FFLO phases for a 3D homogeneous case at the mean-field level. We present various phase diagrams related to the FFLO states at both zero and finite temperatures, throughout the BCS-BEC crossover, and show that a large mass ratio may enhance substantially FFLO type of pairing.
Wang, Jibiao; Che, Yanming; Zhang, Leifeng; Chen, Qijin
2017-01-01
Ultracold two-component Fermi gases with a tunable population imbalance have provided an excellent opportunity for studying the exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, which have been of great interest in condensed matter physics. However, the FFLO states have not been observed experimentally in Fermi gases in three dimensions (3D), possibly due to their small phase space volume and extremely low temperature required for an equal-mass Fermi gas. Here we explore possible effects of mass imbalance, mainly in a 6Li–40K mixture, on the one-plane-wave FFLO phases for a 3D homogeneous case at the mean-field level. We present various phase diagrams related to the FFLO states at both zero and finite temperatures, throughout the BCS-BEC crossover, and show that a large mass ratio may enhance substantially FFLO type of pairing. PMID:28051145
Review of pseudogaps in strongly interacting Fermi gases
Mueller, Erich J.
2017-10-01
A central challenge in modern condensed matter physics is developing the tools for understanding nontrivial yet unordered states of matter. One important idea to emerge in this context is that of a ‘pseudogap’: the fact that under appropriate circumstances the normal state displays a suppression of the single particle spectral density near the Fermi level, reminiscent of the gaps seen in ordered states of matter. While these concepts arose in a solid state context, they are now being explored in cold gases. This article reviews the current experimental and theoretical understanding of the normal state of strongly interacting Fermi gases, with particular focus on the phenomonology which is traditionally associated with the pseudogap.
Metastability of Bose and Fermi gases on the upper branch
LeClair, André; Roditi, Itzhak; Squires, Joshua
2016-12-01
We study three-dimensional Bose and Fermi gases in the upper branch, a phase defined by the absence of bound states in the repulsive interaction regime, within an approximation that considers only two-body interactions. Employing a formalism based on the S matrix, we derive useful analytic expressions that hold on the upper branch in the weak coupling limit. We determine upper branch phase diagrams for both bosons and fermions with techniques valid for arbitrary positive scattering length.
George E. Valley, Jr. Prize Talk: Exact relations for Fermi gases with large scattering length
Tan, Shina
2011-05-01
Ultracold two-component atomic Fermi gases near broad Feshbach resonances have both strong interactions and relatively long life times, and the strong attractions between fermions lead to remarkable properties such as superfluidity at large percentages of the Fermi temperature. The interactions can often be described by a single parameter, the two-body s-wave scattering length, which determines how the many-body wave function behaves as two atoms get much closer than the average interparticle spacing. This short-range structure of the wave function leads to a number of exact relations among energy, momentum distribution, pressure, and various high-frequency and short-wave properties. All the relations involve a quantity called contact. The exact relations point to a number of independent determinations of the contact, which have been beautifully demonstrated experimentally as well as numerically. This work was supported, in part, by DOE Grant No. DE-FG02-00ER41132.
Indian Academy of Sciences (India)
Debasish Majumdar; Kamakshya Prasad Modak; Subhendu Rakshit
2016-02-01
We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments. The -ray flux is computed from DM annihilation in this framework and is then compared with the Fermi-LAT observations from galactic centre region and Fermi bubble.
Polaronic atom-trimer continuity in three-component Fermi gases.
Nishida, Yusuke
2015-03-20
Recently it has been proposed that three-component Fermi gases may exhibit a new type of crossover physics in which an unpaired Fermi sea of atoms smoothly evolves into that of trimers in addition to the ordinary BCS-BEC crossover of condensed pairs. Here we study its corresponding polaron problem in which a single impurity atom of one component interacts with condensed pairs of the other two components with equal populations. By developing a variational approach in the vicinity of a narrow Feshbach resonance, we show that the impurity atom smoothly changes its character from atom to trimer with increasing the attraction and eventually there is a sharp transition to dimer. The emergent polaronic atom-trimer continuity can be probed in ultracold atoms experiments by measuring the impurity spectral function. Our novel crossover wave function properly incorporating the polaronic atom-trimer continuity will provide a useful basis to further investigate the phase diagram of three-component Fermi gases in more general situations.
Universal properties of Fermi gases in arbitrary dimensions
Valiente, Manuel; Molmer, Klaus
2012-01-01
We consider spin-1/2 Fermi gases in arbitrary, integer or non-integer spatial dimensions, interacting via a Dirac delta potential. We first generalize the method of Tan's distributions and implement short-range boundary conditions to arbitrary dimension and we obtain a set of universal relations for the Fermi gas, which serve as dimensional interpolation/extrapolation formulae in between integer dimensions. We show that, under very general conditions, effective reduced-dimensional scattering lengths due to transversal confinement depend on the original three-dimensional scattering length in a universal way. As a direct consequence, we find that confinement-induced resonances occur in all dimensions different from D=2, without any need to solve the associated multichannel scattering problem. Finally, we show that reduced-dimensional contacts --- related to the tails of the momentum distributions --- are connected to the actual three-dimensional contact through a correction factor of purely geometric origin.
Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions
Zhang, Leifeng; Chen, Qijin
Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.
Finite-size Energy of Non-interacting Fermi Gases
Energy Technology Data Exchange (ETDEWEB)
Gebert, Martin, E-mail: gebert@math.lmu.de [ETH Zürich , Theoretische Physik (Switzerland)
2015-12-15
We study the asymptotics of the difference of the ground-state energies of two non-interacting N-particle Fermi gases in a finite volume of length L in the thermodynamic limit up to order 1/L. We are particularly interested in subdominant terms proportional to 1/L, called finite-size energy. In the nineties (Affleck, Nuc. Phys. B 58, 35–41 1997; Zagoskin and Affleck, J. Phys. A 30, 5743–5765 1997) claimed that the finite-size energy is related to the decay exponent occurring in Anderson’s orthogonality. We prove that the finite-size energy depends on the details of the thermodynamic limit and is therefore non-universal. Typically, it includes an additional linear term in the scattering phase shift.
Finite-size Energy of Non-interacting Fermi Gases
Gebert, Martin
2015-12-01
We study the asymptotics of the difference of the ground-state energies of two non-interacting N-particle Fermi gases in a finite volume of length L in the thermodynamic limit up to order 1/ L. We are particularly interested in subdominant terms proportional to 1/ L, called finite-size energy. In the nineties (Affleck, Nuc. Phys. B 58, 35-41 1997; Zagoskin and Affleck, J. Phys. A 30, 5743-5765 1997) claimed that the finite-size energy is related to the decay exponent occurring in Anderson's orthogonality. We prove that the finite-size energy depends on the details of the thermodynamic limit and is therefore non-universal. Typically, it includes an additional linear term in the scattering phase shift.
Beyond Gaussian pair fluctuation theory for strongly interacting Fermi gases
Mulkerin, Brendan C.; Liu, Xia-Ji; Hu, Hui
2016-07-01
Interacting Fermi systems in the strongly correlated regime play a fundamental role in many areas of physics and are of particular interest to the condensed matter community. Though weakly interacting fermions are understood, strongly correlated fermions are difficult to describe theoretically as there is no small interaction parameter to expand about. Existing strong-coupling theories rely heavily on the so-called many-body T -matrix approximation that sums ladder-type Feynman diagrams. Here, by acknowledging the fact that the effective interparticle interaction (i.e., the vertex function) becomes smaller above three dimensions, we propose an alternative way to reorganize Feynman diagrams and develop a theoretical framework for interacting Fermi gases beyond the ladder approximation. As an application, we solve the equation of state for three- and two-dimensional strongly interacting fermions and find excellent agreement with experimental [M. J. H. Ku et al., Science 335, 563 (2012), 10.1126/science.1214987] and other theoretical results above temperatures of 0.5 TF .
Localization of interacting Fermi gases in quasiperiodic potentials
Pilati, Sebastiano; Varma, Vipin Kerala
2017-01-01
We investigate the zero-temperature metal-insulator transition in a one-dimensional two-component Fermi gas in the presence of a quasiperiodic potential resulting from the superposition of two optical lattices of equal intensity but incommensurate periods. A mobility edge separating (low-energy) Anderson localized and (high-energy) extended single-particle states appears in this continuous-space model beyond a critical intensity of the quasiperiodic potential. To discern the metallic phase from the insulating phase in the interacting many-fermion system, we employ unbiased quantum Monte Carlo (QMC) simulations combined with the many-particle localization length familiar from the modern theory of the insulating state. In the noninteracting limit, the critical optical-lattice intensity for the metal-insulator transition predicted by the QMC simulations coincides with the Anderson localization transition of the single-particle eigenstates. We show that weak repulsive interactions induce a shift of this critical point towards larger intensities, meaning that repulsion favors metallic behavior. This shift appears to be linear in the interaction parameter, suggesting that even infinitesimal interactions can affect the position of the critical point.
Microscopy of 2D Fermi gases. Exploring excitations and thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Morgener, Kai Henning
2014-12-08
This thesis presents experiments on three-dimensional (3D) and two-dimensional (2D) ultracold fermionic {sup 6}Li gases providing local access to microscopic quantum many-body physics. A broad magnetic Feshbach resonance is used to tune the interparticle interaction strength freely to address the entire crossover between the Bose-Einstein-Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) regime. We map out the critical velocity in the crossover from BEC to BCS superfluidity by moving a small attractive potential through the 3D cloud. We compare the results with theoretical predictions and achieve quantitative understanding in the BEC regime by performing numerical simulations. Of particular interest is the regime of strong correlations, where no theoretical predictions exist. In the BEC regime, the critical velocity should be closely related to the speed of sound, according to the Landau criterion and Bogolyubov theory. We measure the sound velocity by exciting a density wave and tracking its propagation. The focus of this thesis is on our first experiments on general properties of quasi-2D Fermi gases. We realize strong vertical confinement by generating a 1D optical lattice by intersecting two blue-detuned laser beams under a steep angle. The large resulting lattice spacing enables us to prepare a single planar quantum gas deeply in the 2D regime. The first measurements of the speed of sound in quasi-2D gases in the BEC-BCS crossover are presented. In addition, we present preliminary results on the pressure equation of state, which is extracted from in-situ density profiles. Since the sound velocity is directly connected to the equation of state, the results provide a crosscheck of the speed of sound. Moreover, we benchmark the derived sound from available equation of state predictions, find very good agreement with recent numerical calculations, and disprove a sophisticated mean field approach. These studies are carried out with a novel apparatus which has
Population and mass imbalance in atomic Fermi gases
Baarsma, J E; Gubbels, K.B.; Stoof, H.T.C.
2010-01-01
We develop an accurate theory of resonantly interacting Fermi mixtures with both spin and mass imbalance. We consider Fermi mixtures with arbitrary mass imbalances but focus, in particular, on the experimentally available Li6-K40 mixture. We determine the phase diagram of the mixture for different i
Physics of our Days: Cooling and thermometry of atomic Fermi gases
Onofrio, R.
2017-02-01
We review the status of cooling techniques aimed at achieving the deepest quantum degeneracy for atomic Fermi gases. We first discuss some physics motivations, providing a quantitative assessment of the need for deep quantum degeneracy in relevant physics cases, such as the search for unconventional superfluid states. Attention is then focused on the most widespread technique to reach deep quantum degeneracy for Fermi systems, sympathetic cooling of Bose–Fermi mixtures, organizing the discussion according to the specific species involved. Various proposals to circumvent some of the limitations on achieving the deepest Fermi degeneracy, and their experimental realizations, are then reviewed. Finally, we discuss the extension of these techniques to optical lattices and the implementation of precision thermometry crucial to the understanding of the phase diagram of classical and quantum phase transitions in Fermi gases.
Superfluidity and collective modes in Rashba spin–orbit coupled Fermi gases
Energy Technology Data Exchange (ETDEWEB)
He, Lianyi, E-mail: lianyi@th.physik.uni-frankfurt.de [Frankfurt Institute for Advanced Studies and Institute for Theoretical Physics, J. W. Goethe University, 60438 Frankfurt am Main (Germany); Huang, Xu-Guang, E-mail: xhuang@th.physik.uni-frankfurt.de [Center for Exploration of Energy and Matter and Physics Department, Indiana University, Bloomington, IN 47408 (United States)
2013-10-15
We present a theoretical study of the superfluidity and the corresponding collective modes in two-component atomic Fermi gases with s-wave attraction and synthetic Rashba spin–orbit coupling. The general effective action for the collective modes is derived from the functional path integral formalism. By tuning the spin–orbit coupling from weak to strong, the system undergoes a crossover from an ordinary BCS/BEC superfluid to a Bose–Einstein condensate of rashbons. We show that the properties of the superfluid density and the Anderson–Bogoliubov mode manifest this crossover. At large spin–orbit coupling, the superfluid density and the sound velocity become independent of the strength of the s-wave attraction. The two-body interaction among the rashbons is also determined. When a Zeeman field is turned on, the system undergoes quantum phase transitions to some exotic superfluid phases which are topologically nontrivial. For the two-dimensional system, the nonanalyticities of the thermodynamic functions and the sound velocity across the phase transition are related to the bulk gapless fermionic excitation which causes infrared singularities. The superfluid density and the sound velocity behave nonmonotonically: they are suppressed by the Zeeman field in the normal superfluid phase, but get enhanced in the topological superfluid phase. The three-dimensional system is also studied. -- Highlights: •The general effective action for Rashba spin–orbit coupled Fermi superfluids is derived. •The evolution of the collective modes manifests the BCS/BEC-rashbon crossover. •The superfluid properties are universal at large spin–orbit coupling. •The sound velocity behaves nonanalytically across the quantum phase transition.
Density-functional theory of strongly correlated Fermi gases in elongated harmonic traps
Xianlong, Gao; Polini, Marco; Asgari, Reza; Tosi, M. P.
2006-03-01
Two-component Fermi gases with tunable repulsive or attractive interactions inside quasi-one-dimensional (Q1D) harmonic wells may soon become the cleanest laboratory realizations of strongly correlated Luttiger and Luther-Emery liquids under confinement. We present a microscopic Kohn-Sham density-functional theory of these systems, with specific attention to a gas on the approach to a confinement-induced Feshbach resonance. The theory employs the one-dimensional Gaudin-Yang model as the reference system and transfers the appropriate Q1D ground-state correlations to the confined inhomogeneous gas via a suitable local-density approximation to the exchange and correlation energy functional. Quantitative understanding of the role of the interactions in the bulk shell structure of the axial density profile is thereby achieved. While repulsive intercomponent interactions depress the amplitude of the shell structure of the noninteracting gas, attractive interactions stabilize atomic-density waves through spin pairing. These should be clearly observable in atomic clouds containing of the order of up to 100 atoms.
String Theory Based Predictions for Novel Collective Modes in Strongly Interacting Fermi Gases
Bantilan, H; Ishii, T; Lewis, W E; Romatschke, P
2016-01-01
Very different strongly interacting quantum systems such as Fermi gases, quark-gluon plasmas formed in high energy ion collisions and black holes studied theoretically in string theory are known to exhibit quantitatively similar damping of hydrodynamic modes. It is not known if such similarities extend beyond the hydrodynamic limit. Do non-hydrodynamic collective modes in Fermi gases with strong interactions also match those from string theory calculations? In order to answer this question, we use calculations based on string theory to make predictions for novel types of modes outside the hydrodynamic regime in trapped Fermi gases. These predictions are amenable to direct testing with current state-of-the-art cold atom experiments.
Magnetostriction and exchange effects in trapped dipolar Bose and Fermi gases
Baillie, D; Blakie, P. B.
2012-01-01
We examine the magnetostrictive position and momentum space distortions that occur in harmonically confined dipolar Bose and Fermi gases. Direct interactions give rise to position space magnetostriction and exchange interactions give rise to momentum space magnetostriction. While the position space magnetostriction is similar in Bose and Fermi systems, the momentum space magnetostriction is markedly different: the Bose gas momentum distribution distorts in the opposite sense to that of the Fe...
Three-body recombination of two-component cold atomic gases into deep dimers in an optical model
DEFF Research Database (Denmark)
Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.
2015-01-01
We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length...
Metastability in spin polarised Fermi gases and quasiparticle decays
DEFF Research Database (Denmark)
Sadeghzadeh, Kayvan; Bruun, Georg; Lobo, Carlos
2011-01-01
the interaction strength at which a polarised phase of molecules becomes the groundstate, to the one at which the single quasiparticle groundstate changes character from polaronic to molecular. Our argument in terms of a Fermi sea of polarons naturally suggests their use as an experimental probe. We propose...
Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases
DEFF Research Database (Denmark)
Massignan, Pietro; Bruun, Georg
2011-01-01
We analyze the properties of a single impurity immersed in a Fermi sea. At positive energy and scattering lengths, we show that the system possesses a well-defined but metastable excitation, the repulsive polaron, and we calculate its energy, quasiparticle residue and effective mass. From a therm...
DEFF Research Database (Denmark)
Pekker, D; Babadi, M; Sensarma, R
2011-01-01
We study the quench dynamics of a two-component ultracold Fermi gas from the weak into the strong interaction regime, where the short time dynamics are governed by the exponential growth rate of unstable collective modes. We obtain an effective interaction that takes into account both Pauli...
Nonlinear Ramsey Interferometry of Fermi Superfluid Gases in a Double-Well Potential
Institute of Scientific and Technical Information of China (English)
蒙红娟; 苟学强; 王文元; 杨阳; 段文山
2012-01-01
The nonlinear Ramsey interferometry of Fermi superfluid gases in a double-well potential is investigated in this paper. We found that the frequency of the Ramsey fringes exactly reflects the strength of nonlinearity, or the scattering length of the Fermi superfluid gases. The cases of sudden limit, the adiabatic limit and the general case are studied. The analytical result is in good agreement with the numerical ones. The adiabatic condition is proposed. In general situation, the zero-frequency point emerge. Finally the possible applications of the theory axe discussed.
Three-body recombination of two-component cold atomic gases into deep dimers in an optical model
DEFF Research Database (Denmark)
Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.
2015-01-01
. The Efimov scaling between recombination peaks is calculated and shown to depend on both scattering lengths. Recombination is predicted to be largest for heavy-heavy-light systems. Universal properties of the optical parameters are indicated. We compare to available experiments and find in general very......We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length...
Effective-range dependence of two-dimensional Fermi gases
Schonenberg, L. M.; Verpoort, P. C.; Conduit, G. J.
2017-08-01
The Feshbach resonance provides precise control over the scattering length and effective range of interactions between ultracold atoms. We propose the ultratransferable pseudopotential to model effective interaction ranges -1.5 ≤kF2Reff2≤0 , where Reff is the effective range and kF is the Fermi wave vector, describing narrow to broad Feshbach resonances. We develop a mean-field treatment and exploit the pseudopotential to perform a variational and diffusion Monte Carlo study of the ground state of the two-dimensional Fermi gas, reporting on the ground-state energy, contact, condensate fraction, momentum distribution, and pair-correlation functions as a function of the effective interaction range across the BEC-BCS crossover. The limit kF2Reff2→-∞ is a gas of bosons with zero binding energy, whereas ln(kFa )→-∞ corresponds to noninteracting bosons with infinite binding energy.
Thermodynamic characteristics of Fermi gases in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Lipovetskii, S.S.; Olesik, A.A.; Sekerzhitskii, V.S.
1987-11-01
Within the framework of statistical thermodynamics of equilibrium systems, general expressions are obtained for the chemical potential, pressure, and magnetic susceptibility for degenerate ideal nonrelativistic electron, proton, and neutron gases in magnetic fields, which exert no pronounced influence on the anomalous magnetic moments of the fermions.
Korteweg de Vries Description of One-Dimensional Superfluid Fermi Gases
Institute of Scientific and Technical Information of China (English)
徐艳霞; 段文山
2011-01-01
We study one-dimensional matter-wave pulses in cigar-shaped superfluid Fermi gases, including the linear and nonlinear waves of the system. A Korteweg de Vries (KdV) solitary wave is obtained for the superfluid Fermi gases in the limited case of a BEC regime, a BCS regime and unitarity. The dependences of the propagation velocity, amplitude and the width of the solitary wave on the dimensionless interaction parameter y = 1/{kFasc) are given for the limited cases of BEC and unitarity.%We study one-dimensional matter-wave pulses in cigar-shaped superfluid Fermi gases,including the linear and nonlinear waves of the system.A Korteweg de Vries(KdV)solitary wave is obtained for the superfluid Fermi gases in the limited case of a BEC regime,a BCS regime and unitarity.The dependences of the propagation velocity,amplitude and the width of the solitary wave on the dimensionless interaction parameter y =1 /(kFasc)are given for the limited cases of BEC and unitarity.
Transdimensional equivalence of universal constants for Fermi gases at unitarity.
Endres, Michael G
2012-12-21
I present lattice Monte Carlo calculations for a universal four-component Fermi gas confined to a finite box and to a harmonic trap in one spatial dimension. I obtain the values ξ(1D) = 0.370(4) and ξ(1D) = 0.372(1), respectively, for the Bertsch parameter, a nonperturbative universal constant defined as the (square of the) energy of the untrapped (trapped) system measured in units of the free gas energy. The Bertsch parameter obtained for the one-dimensional system is consistent to within ~1% uncertainties with the most recent numerical and experimental estimates of the analogous Bertsch parameter for a three-dimensional spin-1/2 Fermi gas at unitarity. The finding suggests the intriguing possibility that there exists a universality between two conformal theories in different dimensions. To lend support to this study, I also compute ground state energies for four and five fermions confined to a harmonic trap and demonstrate the restoration of a virial theorem in the continuum limit. The continuum few-body energies obtained are consistent with exact analytical calculations to within ~1.0% and ~0.3% statistical uncertainties, respectively.
Transdimensional equivalence of universal constants from universal Fermi gases
Endres, Michael G
2012-01-01
I present lattice Monte Carlo calculations for a universal four-component Fermi gas confined to a finite box and to a harmonic trap in one spatial dimension. I obtain the continuum and thermodynamic limit extrapolated values xi_1d = 0.370(4) and xi_1d = 0.372(1), respectively, for the Bertsch parameter, a nonperturbative universal constant defined as the (square of the) energy of the untrapped (trapped) system measured in units of the free gas energy. The Bertsch parameter for the one-dimensional system is consistent to within ~1% uncertainties with the most recent numerical and experimental estimates of the analogous Bertsch parameter for a three-dimensional spin-1/2 Fermi gas at unitarity. The finding suggests the intriguing possibility that there exists a universality between two conformal theories in different dimensions. To lend support to this study, I also compute continuum extrapolated ground state energies for four and five fermions confined to a harmonic trap and demonstrate the restoration of a Vir...
Energy Technology Data Exchange (ETDEWEB)
Tempere, J., E-mail: jacques.tempere@ua.ac.b [TQC, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 (United States); Klimin, S.N. [TQC, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); Dept. of Theoretical Physics, State University of Moldova, MD-2009 Chisinau (Moldova, Republic of); Devreese, J.T. [TQC, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); COBRA, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)
2010-10-01
The physics of two-dimensional (2D) quantum gases can be revealed in strongly confining optical lattices. Upon cooling, 2D bosonic quantum gases as well as Fermi gases where pairing is present, become superfluid. The superfluid-to-normal transition is no longer governed by the presence or absence of a condensate, but by the Berezinskii-Kosterlitz-Thouless (BKT) mechanism: above a critical temperature, vortices and antivortices proliferate and destroy phase coherence. We investigate the BKT transition for superfluid 2D Fermi gases in the whole range of the BCS-BEC crossover, from weakly bound Cooper pairing (the BCS state), up to strongly bound molecules (the BEC state). Using a path-integral description, we then focus on the case of imbalanced gases: when the number of 'spin-up' and 'spin-down' fermions that form the pair is no longer equal. When an excess of one spin species exists, pairing is frustrated and the vortex energetics is strongly affected, influencing the KT mechanism. In the present work we are concentrated on the effect of both phase and amplitude fluctuations on phase diagrams of the fermion system. The amplitude fluctuations only slightly influence the BKT phase transition temperature. However, they lead to a substantial modification of the complete phase diagram for the Fermi gas in 2D with respect to that obtained taking into account only phase fluctuations.
Composite-boson approach to molecular Bose-Einstein condensates in mixtures of ultracold Fermi gases
Bouvrie, P. Alexander; Tichy, Malte C.; Roditi, Itzhak
2017-02-01
We show that an ansatz based on independent composite bosons [Phys. Rep. 463, 215 (2008), 10.1016/j.physrep.2007.11.003] accurately describes the condensate fraction of molecular Bose-Einstein condensates in ultracold Fermi gases. The entanglement between the fermionic constituents of a single Feshbach molecule then governs the many-particle statistics of the condensate, from the limit of strong interaction to close to unitarity. This result strengthens the role of entanglement as the indispensable driver of composite-boson behavior. The condensate fraction of fermion pairs at zero temperature that we compute matches excellently previous results obtained by means of fixed-node diffusion Monte Carlo methods and the Bogoliubov depletion approximation. This paves the way towards the exploration of the BEC-BCS crossover physics in mixtures of cold Fermi gases with an arbitrary number of fermion pairs as well as the implementation of Hong-Ou-Mandel-like interference experiments proposed within coboson theory.
Thermodynamic equivalence of two-dimensional imperfect attractive Fermi and repulsive Bose gases
Napiórkowski, Marek; Piasecki, Jarosław
2017-06-01
We consider two-dimensional imperfect attractive Fermi and repulsive Bose gases consisting of spinless point particles whose total interparticle interaction energy is represented by a N2/2 V with a =-aF≤0 for fermions and a =aB≥0 for bosons. We show that, in spite of the attraction, the thermodynamics of a d =2 imperfect Fermi gas remains well defined for 0 ≤aF≤a0=h2/2 π m , and is exactly the same as the one of the repulsive imperfect Bose gas with aB=a0-aF . In particular, for aF=a0 one observes the thermodynamic equivalence of the attractive imperfect Fermi gas and the ideal Bose gas.
Institute of Scientific and Technical Information of China (English)
YANGXiao－Xue; WUYing
2002-01-01
We develop a simple approach to obtain explicitly exact analytical expressions of particle and kineticenergy densities for noninteracting Fermi gases in one-dimensional harmonic confinement,and in one-dimensional box confinement as well.
Institute of Scientific and Technical Information of China (English)
YANG XiaoXue; WU Ying
2002-01-01
We develop a simple approach to obtain explicitly exact analytical expressions of particle and kinetic-energy densities for noninteracting Fermi gases in one-dimensional harmonic confinement, and in one-dimensional boxconfinement as well.
Extension of the Ginzburg–Landau approach for ultracold Fermi gases below a critical temperature
Energy Technology Data Exchange (ETDEWEB)
Klimin, S.N., E-mail: sergei.klimin@ua.ac.be [Theorie van Kwantumsystemen en Complexe Systemen (TQC), Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Tempere, J., E-mail: jacques.tempere@uantwerpen.be [Theorie van Kwantumsystemen en Complexe Systemen (TQC), Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 (United States); Devreese, J.T. [Theorie van Kwantumsystemen en Complexe Systemen (TQC), Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)
2014-08-15
Highlights: • Ginzburg–Landau formalism is extended below the critical temperature. • Two different healing lengths in two-band superfluids are captured. • The developed method is focused on strong-coupling superfluid Fermi gases. - Abstract: In the context of superfluid Fermi gases, the Ginzburg–Landau (GL) formalism for the macroscopic wave function has been successfully extended to the whole temperature range where the superfluid state exists. After reviewing the formalism, we first investigate the temperature-dependent correction to the standard GL expansion (which is valid close to T{sub c}). Deviations from the standard GL formalism are particularly important for the kinetic energy contribution to the GL energy functional, which in turn influences the healing length of the macroscopic wave function. We apply the formalism to variationally describe vortices in a strong-coupling Fermi gas in the BEC–BCS crossover regime, in a two-band system. The healing lengths, derived as variational parameters in the vortex wave function, are shown to exhibit hidden criticality well below T{sub c}.
Kvashnin, A Yu; Yushkanov, A A
2012-01-01
The classical Kramers problem of the kinetic theory is solved. The Kramers problem about isothermal sliding for quantum Fermi gases is considered. Quantum gases with the velocity - dependent collision frequency are considered. Specular - diffusive boundary conditions are applied. Dependence of isothermal sliding on the resulted chemical potential is found out.
Ultracold Fermi and Bose gases and Spinless Bose Charged Sound Particles
Directory of Open Access Journals (Sweden)
Minasyan V.
2011-10-01
Full Text Available We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or gas which consists of decoupled electrons and ions in the uppermost hyperfine state. Hence, we use such a concept as the fluctuation motion of “charged fluid particles” or “charged fluid points” representing a charged longitudinal elastic wave. In turn, this elastic wave is quantized by spinless longitudinal Bose charged sound particles with the rest mass m and charge e 0 . The existence of spinless Bose charged sound particles allows us to present a new model for description of Bose or Fermi liquid via a non-ideal Bose gas of charged sound particles . In this respect, we introduce a new postulation for the superfluid component of Bose or Fermi liquid determined by means of charged sound particles in the condensate, which may explain the results of experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6 Li and 40 K, and such a Bose gas as 87 Rb in the uppermost hyperfine state, where the Bose- Einstein condensation of charged sound particles is realized by tuning the magnetic field.
Time-of-flight expansion of trapped dipolar Fermi gases: from collisionless to hydrodynamic regime
Veljic, Vladimir; Pelster, Axel
2016-01-01
A recent time-of-flight (TOF) expansion experiment with polarized fermionic erbium atoms measured a Fermi surface deformation from a sphere to an ellipsoid due to dipole-dipole interaction, thus confirming previous theoretical predictions. Here we perform a systematic study of the ground-state properties and TOF dynamics for trapped dipolar Fermi gases from the collisionless to the hydrodynamic regime at zero temperature. To this end we solve analytically the underlying Boltzmann-Vlasov equation within the relaxation-time approximation in the vicinity of equilibrium by using a suitable rescaling of the equilibrium distribution. The resulting ordinary differential equations for the respective scaling parameters are then solved numerically for experimentally realistic parameters and relaxation times that correspond to the collisionless, collisional, and hydrodynamic regime. The equations for the collisional regime are first solved in the approximation of a fixed relaxation time, and then this approach is extend...
Perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases.
Mohammadzadeh, Hosein; Adli, Fereshteh; Nouri, Sahereh
2016-12-01
We investigate perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases. We show that the intrinsic statistical interaction of nonextensive Bose (Fermi) gas is attractive (repulsive) similar to the extensive case but the value of thermodynamic curvature is changed by a nonextensive parameter. In contrary to the extensive ideal classical gas, the nonextensive one may be divided to two different regimes. According to the deviation parameter of the system to the nonextensive case, one can find a special value of fugacity, z^{*}, where the sign of thermodynamic curvature is changed. Therefore, we argue that the nonextensive parameter induces an attractive (repulsive) statistical interaction for zz^{*}) for an ideal classical gas. Also, according to the singular point of thermodynamic curvature, we consider the condensation of nonextensive Boson gas.
All-optical cooling of Fermi gases via Pauli inhibition of spontaneous emission
Onofrio, Roberto
2016-01-01
A technique is proposed to cool Fermi gases to the regime of quantum degeneracy based on the expected inhibition of spontaneous emission due to the Pauli principle. The reduction of the linewidth for spontaneous emission originates a corresponding reduction of the Doppler temperature, which under specific conditions may give rise to a runaway process through which fermions are progressively cooled. The approach requires a combination of a magneto-optical trap as a cooling system and an optical dipole trap to enhance quantum degeneracy. This results in expected Fermi degeneracy factors $T/T_F$ comparable to the lowest values recently achieved, with potential for a direct implementation in optical lattices. The experimental demonstration of this technique should also indirectly provide a macroscopic manifestation of the Pauli exclusion principle at the atomic physics level.
Statistical Mechanical Approach to the Equation of State of Unitary Fermi Gases
De Silva, Theja N
2016-01-01
We combine a Tan's universal relation with a basic statistical mechanical approach to derive a general equation of state for unitary Fermi gases. The universal equation of state is written as a series solution to a self consistent integral equation where the general solution is a linear combination of Fermi functions. By truncating our series solution to four terms with already known exact theoretical inputs at limiting cases, namely the first three virial coefficients and the Bertsch parameter, we find a good agreement with experimental measurements in the entire temperature region in the normal state. Our analytical equation of state agrees with experimental data up to the fugacity $z = 18$, which is a vast improvement over the other analytical equations of state available where the agreements is \\emph{only} up to $z \\approx 7$.
Yan, Yangqian; Blume, D
2016-06-10
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.
Interacting Bose and Fermi Gases in Low Dimensions and the Riemann Hypothesis
Leclair, André
We apply the S-matrix based finite temperature formalism to nonrelativistic Bose and Fermi gases in 1+1 and 2+1 dimensions. For the (2+1)-dimensional case in the constant scattering length approximation, the free energy is given in terms of Roger's dilogarithm in a way analagous to the thermodynamic Bethe ansatz for the relativistic (1+1)-dimensional case. The 1d fermionic case with a quasiperiodic two-body potential is closely connected with the Riemann hypothesis.
Observation of the Efimovian expansion in scale-invariant Fermi gases
Deng, Shujin; Shi, Zhe-Yu; Diao, Pengpeng; Yu, Qianli; Zhai, Hui; Qi, Ran; Wu, Haibin
2016-07-01
Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on the theoretical prediction and experimental observation of a distinct type of expansion dynamics for scale-invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously as the inverse of time t, the expansion of the cloud size exhibits a sequence of plateaus. The locations of these plateaus obey a discrete geometric scaling law with a controllable scale factor, and the expansion dynamics is governed by a log-periodic function. This marked expansion shares the same scaling law and mathematical description as the Efimov effect.
Transport phenomena in correlated quantum liquids: Ultracold Fermi gases and F/N junctions
Li, Hua
Landau Fermi-liquid theory was first introduced by L. D. Landau in the effort of understanding the normal state of Fermi systems, where the application of the concept of elementary excitations to the Fermi systems has proved very fruitful in clarifying the physics of strongly correlated quantum systems at low temperatures. In this thesis, I use Landau Fermi-liquid theory to study the transport phenomena of two different correlated quantum liquids: the strongly interacting ultracold Fermi gases and the ferromagnet/normal-metal (F/N) junctions. The detailed work is presented in chapter II and chapter III of this thesis, respectively. Chapter I holds the introductory part and the background knowledge of this thesis. In chapter II, I study the transport properties of a Fermi gas with strong attractive interactions close to the unitary limit. In particular, I compute the transport lifetimes of the Fermi gas due to superfluid fluctuations above the BCS transition temperature Tc. To calculate the transport lifetimes I need the scattering amplitudes. The scattering amplitudes are dominated by the superfluid fluctuations at temperatures just above Tc. The normal scattering amplitudes are calculated from the Landau parameters. These Landau parameters are obtained from the local version of the induced interaction model for computing Landau parameters. I also calculate the leading order finite temperature corrections to the various transport lifetimes. A calculation of the spin diffusion coefficient is presented in comparison to the experimental findings. Upon choosing a proper value of F0a, I am able to present a good match between the theoretical result and the experimental measurement, which indicates the presence of the superfluid fluctuations near Tc. Calculations of the viscosity, the viscosity/entropy ratio and the thermal conductivity are also shown in support of the appearance of the superfluid fluctuations. In chapter III, I study the spin transport in the low
Institute of Scientific and Technical Information of China (English)
贺丽; 余增强
2016-01-01
Sum rules for the dynamic structure factors are powerful tools to explore the collective behaviors in many-body systems at zero temperature as well as at finite temperatures. The recent remarkable realization of synthetic spin-orbit (SO) coupling in quantum gases is opening up new perspective to study the intriguing SO effects with ultracold atoms. So far, a specific type of SO coupling, which is generated by a pair of Raman laser beams, has been experimentally achieved in Bose-Einstein condensates of 87Rb and degenerate Fermi gases of 40K and 6Li. In the presence of SO coupling, the dynamic structure factors for the density fluctuation and spin fluctuation satisfy different sum rules. In particular, in the two-component quantum gases with inter-species Raman coupling, the f-sum rule for the spin fluctuation has an additional term proportional to the transverse spin polarization. Due to the coupling between the momentum and spin, the first moment of the dynamic structure factor does not necessarily possess the inversion symmetry, which is in strong contrast to the conventional system without SO coupling. Such an asymmetric behavior could be observed in both Fermi gases and Bose gases with Raman coupling. As a demonstration, we focus on the uniform case at zero temperature in this work. For the non-interacting Fermi gases, the asymmetric first moment appears only when the Raman detuning is finite. The asymmetric amplitude is quite limited, and it vanishes at both zero detuning and infinite detuning. For the weakly interacting Bose gases, the first moment is asymmetric in momentum space even at zero detuning, when the ground state spontaneously breaks the Z2 symmetry in the plane-wave condensation phase. Using the Bogoliubov method, the dynamic structure factor and its first moment are explicitly calculated for various interaction parameters. We find that the asymmetric behavior in the spin channel could be much more significant than in the density channel, and the
Single-particle-excitation spectrum of degenerate Fermi gases in a ring cavity
Feng, Chao; Chen, Yu
2017-09-01
By considering spin-1/2 degenerate Fermi gases in a ring cavity where strong interaction between atoms and light gives rise to superradiance, we find that the cavity dissipation can cause a severe broadening in some special cases, breaking down the quasiparticle picture which has been constantly assumed in mean-field theory studies. This broadening happens when the band gap is resonant with polariton excitation energy. Interestingly enough, this broadening is highly spin selective, depending on how the fermions are filled, and the spectrum becomes asymmetric due to dissipation. Further, a nonmonotonous dependence of the maximal broadening of the spectrum on the cavity decay rate κ is found and the largest broadening emerges at κ , comparable to the recoil energy.
Tan's contact and the phase distribution of repulsive Fermi gases: Insights from QCD noise analyses
Porter, William J
2016-01-01
Path-integral analyses originally pioneered in the study of the complex-phase problem afflicting lattice calculations of finite-density quantum chromodynamics are generalized to non-relativistic Fermi gases with repulsive interactions. Using arguments similar to those previously applied to relativistic theories, we show that the analogous problem in nonrelativistic systems manifests itself naturally in Tan's contact as a nontrivial cancellation between terms with varied dependence on extensive thermodynamic quantities. We analyze that case under the assumption of gaussian phase distribution, which is supported by our Monte Carlo calculations and perturbative considerations. We further generalize these results to observables other than the contact, as well as to polarized systems and systems with fixed particle number. Our results are quite general in that they apply to repulsive multi-component fermions, are independent of dimensionality or trapping potential, and hold in the ground state as well as at finite...
Directory of Open Access Journals (Sweden)
Hao Guo
2015-01-01
Full Text Available Recent experimental progress allows for exploring some important physical quantities of ultracold Fermi gases, such as the compressibility, spin susceptibility, viscosity, optical conductivity, and spin diffusivity. Theoretically, these quantities can be evaluated from suitable linear response theories. For BCS superfluid, it has been found that the gauge invariant linear response theories can be fully consistent with some stringent consistency constraints. When the theory is generalized to stronger than BCS regime, one may meet serious difficulties to satisfy the gauge invariance conditions. In this paper, we try to construct density and spin linear response theories which are formally gauge invariant for a Fermi gas undergoing BCS-Bose-Einstein Condensation (BEC crossover, especially below the superfluid transition temperature Tc. We adapt a particular t-matrix approach which is close to the G0G formalism to incorporate noncondensed pairing in the normal state. We explicitly show that the fundamental constraints imposed by the Ward identities and Q-limit Ward identity are indeed satisfied.
Chang, Soon Yong
2008-04-01
In the recent years, dilute Fermi gases have played the center stage role in the many-body physics. The gas of neutral alkali atoms such as Lithium-6 and Potassium-40 can be trapped at temperatures below the Fermi degeneracy. The most relevant feature of these gases is that the interaction is tunable and strongly interacting superfluid can be artificially created. I will discuss the recent progress in understanding the ground state properties of the dilute Fermi gases at different interaction regimes. First, I will present the case of the spin symmetric systems where the Fermi gas can smoothly crossover from the BCS regime to the BEC regime. Then, I will discuss the case of the spin polarized systems, where different quantum phases can occur as a function of the polarization. In the laboratory, the trapped Fermi gas shows spatial dependence of the different quantum phases. This can be understood in the context of the local variation of the chemical potential. I will present the most accurate quantum ab initio results and the relevant experiments.
National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...
Institute of Scientific and Technical Information of China (English)
Dong Hang; Ma Yong-Li
2009-01-01
Using quantum hydrodynamic approaches, we study the quantum pressure correction to the collective excitation spectrum of the interacting trapped superfluid Fermi gases in the BEC-BCS crossover. Based on a phenomenological equation of state, we derive hydrodynamic equations of the system in the whole BEC-BCS crossover regime. Beyond the Thomas-Fermi approximation, expressions of the frequency corrections of collective modes for both spherical and axial symmetric traps excited in the BEC-BCS crossover are given explicitly. The corrections of the eigenfrequencies due to the quantum pressure and their dependence on the inverse interaction strength. Anisotropic parameter and particle numbers of the condensate are discussed in detail.
Spin-orbit Coupled Fermi Gases and Heavy Solitons in Fermionic Superfluids
Cheuk, Lawrence
2013-05-01
The coupling of the spin of electrons to their motional state lies at the heart of topological phases of matter. We have created and detected spin-orbit coupling in an atomic Fermi gas via spin-injection spectroscopy, which characterizes the energy-momentum dispersion and spin composition of the quantum states. For energies within the spin-orbit gap, the system acts as a spin diode. To fully inhibit transport, we open an additional spin gap with radio-frequency coupling, thereby creating a spin-orbit coupled lattice whose spinful band structure we probe. In the presence of s-wave interactions, spin-orbit coupled fermion systems should display induced p-wave pairing and consequently topological superfluidity. Such systems can be described by a relativistic Dirac theory with a mass term that can be made to vary spatially. Topologically protected edge states are expected to occur whenever the mass term changes sign. A system that similarly supports edges states is the strongly interacting atomic Fermi gas near a Feshbach resonance. Topological excitations, such as vortices - line defects - or solitons - planar defects - have been described theoretically for decades in many different physical contexts. In superconductivity and superfluidity they represent a defect in the order parameter and give rise to localized bound states. We have created and directly observed solitons in a fermionic superfluid by imprinting a phase step into the superfluid wavefunction. These are found to be stable for many seconds, allowing us to track their oscillatory motion in the trapped superfluid. Their trapping period increases dramatically as the interactions are tuned from the BEC to the BCS regime. At the Feshbach resonance, their period is an order of magnitude larger than expectations from mean-field Bogoliubov-de Gennes theory, signaling strong effects of bosonic quantum fluctuations and possible filling of Andreev bound states. Our work opens the study of fermionic edge states in
Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of lithium isotopes
Schreck, F.
2003-03-01
This thesis presents studies of quantum degenerate atomic gases of fermionic ^6Li and bosonic ^7Li. Degeneracy is reached by evaporative cooling of ^7Li in a strongly confining magnetic trap. Since at low temperatures direct evaporative cooling is not possible for a polarized fermionic gas, ^6Li is sympathetically cooled by thermal contact with ^7Li. In a first series of experiments both isotopes are trapped in their low-field seeking higher hyperfine states. A Fermi degeneracy of T/T_F=0.25(5) is achieved for 10^5 fermions. For more than 300 atoms, the ^7Li condensate collapses, due to the attractive interatomic interaction in this state. This limits the degeneracy reached for both species. To overcome this limit, in a second series of experiments ^7Li and ^6Li atoms are transferred to their low field seeking lower hyperfine states, where the boson-boson interaction is repulsive but weak. The inter-isotope collisions are used to thermalize the mixture. A ^7Li Bose-Einstein condensate (BEC) of 10^4 atoms immersed in a Fermi sea is produced. The BEC is quasi-one-dimensional and the thermal fraction can be negligible. The measured degeneracies are T/T_C=T/T_F=0.2(1). The temperature is measured using the bosonic thermal fraction, which vanishes at the lowest temperatures, limiting our measurement sensitivity. In a third series of experiments, the bosons are transferred into an optical trap and their internal state is changed to |F=1,m_F=1rangle, the lowest energy state. A Feshbach resonance is detected and used to produce a BEC with tunable atomic interactions. When the effective interaction between atoms is tuned to be small and attractive, we observe the formation of a matter-wave bright soliton. Propagation of the soliton without spreading over a macroscopic distance of 1.1 mm is observed. Mélanges de gaz ultrafroids: mer de Fermi et condensat de Bose-Einstein des isotopes du lithium Cette thèse décrit l'étude des gaz de fermions ^6Li et de bosons ^7Li dans le
2010-05-13
indicated by the solid red line, the others by dashed red lines. The “RPA Stoner” instability corresponds to the RPA result with bare as opposed to...is the scattering length and kF is the Fermi momentum. In contrast, using bare interac- tions [13] results in an unphysical divergence of the growth...the T-matrix via the Lippmann-Schwinger equation. To cor- rectly renormalize the Cooperon, we compare the Lippmann- Schwinger equations in a Fermi
In-medium bound-state formation and inhomogeneous condensation in Fermi gases in a hard-wall box
Roscher, Dietrich
2016-01-01
The formation of bosonic bound states underlies the formation of a superfluid ground state in the many-body phase diagram of ultracold Fermi gases. We study bound-state formation in a spin- and mass-imbalanced ultracold Fermi gas confined in a box with hard-wall boundary conditions. Because of the presence of finite Fermi spheres, the center-of-mass momentum of the potentially formed bound states can be finite, depending on the parameters controlling mass and spin imbalance as well as the coupling strength. We exploit this observation to estimate the potential location of inhomogeneous phases in the many-body phase diagram as a function of spin- and mass imbalance as well as the box size. Our results suggest that a hard-wall box does not alter substantially the many-body phase diagram calculated in the thermodynamic limit. Therefore, such a box may serve as an ideal trap potential to bring experiment and theory closely together and facilitate the search for exotic inhomogeneous ground states.
A Proposal for measuring Anisotropic Shear Viscosity in Unitary Fermi Gases
Samanta, Rickmoy; Trivedi, Sandip P
2016-01-01
We present a proposal to measure anisotropic shear viscosity in a strongly interacting, ultra-cold, unitary Fermi gas confined in a harmonic trap. We introduce anisotropy in this setup by strongly confining the gas in one of the directions with relatively weak confinement in the remaining directions. This system has a close resemblance to anisotropic strongly coupled field theories studied recently in the context of gauge-gravity duality. Computations in such theories (which have gravity duals) revealed that some of the viscosity components of the anisotropic shear viscosity tensor can be made much smaller than the entropy density, thus parametrically violating the bound proposed by Kovtun, Son and Starinets (KSS): $\\frac {\\eta} {s} \\geq \\frac{1}{4 \\pi}$. A Boltzmann analysis performed in a system of weakly interacting particles in a linear potential also shows that components of the viscosity tensor can be reduced. Motivated by these exciting results, we propose two hydrodynamic modes in the unitary Fermi ga...
Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms
Song, Bo; He, Chengdong; Zhang, Shanchao; Hajiyev, Elnur; Huang, Wei; Liu, Xiong-Jun; Jo, Gyu-Boong
2016-12-01
We demonstrate all-optical implementation of spin-orbit coupling (SOC) in a two-electron Fermi gas of 173Yb atoms by coupling two hyperfine ground states with a narrow optical transition. Due to the SU (N ) symmetry of the S10 ground-state manifold which is insensitive to external magnetic fields, an optical ac Stark effect is applied to split the ground spin states, which exhibits a high stability compared with experiments on alkali-metal and lanthanide atoms, and separate out an effective spin-1/2 subspace from other hyperfine levels for the realization of SOC. The dephasing spin dynamics when a momentum-dependent spin-orbit gap is suddenly opened and the asymmetric momentum distribution of the spin-orbit-coupled Fermi gas are observed as a hallmark of SOC. The realization of all-optical SOC for ytterbium fermions should offer a route to a long-lived spin-orbit-coupled Fermi gas and greatly expand our capability of studying spin-orbit physics with alkaline-earth-metal-like atoms.
Ivanisenko, P V
2012-01-01
The Kramers problem for quantum fermi-gases with specular - diffuse boundary conditions of the kinetic theory is considered. On an example of Kramers problem the new generalised method of a source of the decision of the boundary problems from the kinetic theory is developed. The method allows to receive the decision with any degree of accuracy. At the basis of a method lays the idea of representation of a boundary condition on distribution function in the form of a source in the kinetic equation. By means of integrals Fourier the kinetic equation with a source is reduced to the integral equation of Fredholm type of the second kind. The decision is received in the form of Neumann's series.
The contact in the BCS–BEC crossover for finite range interacting ultracold Fermi gases
Energy Technology Data Exchange (ETDEWEB)
Caballero-Benítez, Santiago F., E-mail: scaballero@fisica.unam.mx; Paredes, Rosario; Romero-Rochín, Víctor
2013-10-15
Using mean-field theory for the Bardeen–Cooper–Schriefer (BCS) to the Bose–Einstein condensate (BEC) crossover we investigate the ground state thermodynamic properties of an interacting homogeneous Fermi gas. The interatomic interactions modelled through a finite range potential allows us to calculate the thermodynamic behaviour as a function of the potential parameters in the whole crossover region. We concentrate in studying the Contact variable, the thermodynamic conjugate of the inverse of the s-wave scattering length. Our analysis leads to predict a quantum phase transition – like in the case of large potential range. This finding is a direct consequence of the k-dependent energy gap.
Spin-orbit coupled two-electron Fermi gases of ytterbium atoms
Song, Bo; Zhang, Shanchao; Zou, Yueyang; Haciyev, Elnur; Huang, Wei; Liu, Xiong-Jun; Jo, Gyu-Boong
2016-01-01
We demonstrate the spin-orbit coupling (SOC) in a two-electron Fermi gas of $^{173}$Yb atoms by coupling two hyperfine ground states via the two-photon Raman transition. Due to the SU($N$) symmetry of the $^1$S$_0$ ground-state manifold which is insensitive to external magnetic field, an optical AC Stark effect is applied to split the ground spin states and separate an effective spin-1/2 subspace out from other hyperfine levels for the realization of SOC. With a momentum-dependent spin-orbit gap being suddenly opened by switching on the Raman transition, the dephasing of spin dynamics is observed, as a consequence of the momentum-dependent Rabi oscillations. Moreover, the momentum asymmetry of the spin-orbit coupled Fermi gas is also examined after projection onto the bare spin state and the corresponding momentum distribution is measured for different two-photon detuning. The realization of SOC for Yb fermions may open a new avenue to the study of novel spin-orbit physics with alkaline-earth-like atoms.
Experimental studies of spin-imbalanced Fermi gases in 2D geometries
Thomas, John
We study the thermodynamics of a quasi-two-dimensional Fermi gas, which is not quite two-dimensional (2D), but far from three dimensional (3D). This system offers opportunities to test predictions that cross interdisciplinary boundaries, such as enhanced superfluid transition temperatures in spin-imbalanced quasi-2D superconductors, and provides important benchmarks for calculations of the phase diagrams. In the experiments, an ultra-cold Fermi gas is confined in an infrared CO2 laser standing-wave, which produces periodic pancake-shaped potential wells, separated by 5.3 μm. To study the thermodynamics, we load an ultra-cold mixture of N1 = 800 spin 1/2 -up and N2 interaction strength and spin imbalance N2/N1. The measured properties are in disagreement with 2D-BCS theory, but can be fit by a 2D-polaron gas model, where each atom is surrounded by a cloud of particle-hole pairs of the opposite spin. However, this model fails to predict a transition to a spin-balanced central region as N2/N1is increased. Supported by the physics divisions of ARO, AFOSR, and NSF and by the Division of Materials Science and Engineering, the Office of Basic Energy Sciences, DOE.
Verification of an analytic fit for the vortex core profile in superfluid Fermi gases
Energy Technology Data Exchange (ETDEWEB)
Verhelst, Nick, E-mail: nick.verhelst@uantwerpen.be [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Klimin, Serghei, E-mail: sergei.klimin@uantwerpen.be [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Department of Theoretical Physics, State University of Moldova, Republic of Moldova (Moldova, Republic of); Tempere, Jacques [TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University (United States)
2017-02-15
Highlights: • The vortex profile in an imbalanced Fermi condensate is investigated. • The analytic fit for the vortex profile is compared with numerical simulations. • The analytic fit excellently agrees with numeric results in the BCS-BEC crossover. - Abstract: A characteristic property of superfluidity and -conductivity is the presence of quantized vortices in rotating systems. To study the BEC-BCS crossover the two most common methods are the Bogoliubov-De Gennes theory and the usage of an effective field theory. In order to simplify the calculations for one vortex, it is often assumed that the hyperbolic tangent yields a good approximation for the vortex structure. The combination of a variational vortex structure, together with cylindrical symmetry yields analytic (or numerically simple) expressions. The focus of this article is to investigate to what extent this analytic fit truly reflects the vortex structure throughout the BEC-BCS crossover at finite temperatures. The vortex structure will be determined using the effective field theory presented in [Eur. Phys. Journal B 88, 122 (2015)] and compared to the variational analytic solution. By doing this it is possible to see where these two structures agree, and where they differ. This comparison results in a range of applicability where the hyperbolic tangent will be a good fit for the vortex structure.
Probing superfluid properties in strongly correlated Fermi gases with high spatial resolution
Energy Technology Data Exchange (ETDEWEB)
Weimer, Wolf
2014-07-01
In this thesis an apparatus to study ultracold fermionic {sup 6}Li with tunable interaction strength and dimensionality is presented. The apparatus is applied to investigate the speed of sound v{sub s} and the superfluid critical velocity v{sub c} across the transition from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluidity. The results set benchmarks for theories describing strongly correlated systems. To measure v{sub c}, an obstacle, that is formed by a tightly focused laser beam, is moved through a superfluid sample with a constant velocity along a line of constant density. For velocities larger than v{sub c} heating of the gas is observed. The critical velocity is mapped out for various different interaction strengths covering the BEC-BCS crossover. According to the Landau criterion and Bogolyubov theory, v{sub c} should be closely related to v{sub s} in a Bose-Einstein condensate. The measurement of v{sub s} is conducted by creating a density modulation in the centre of the cloud and tracking the excited modulation. The velocities v{sub s} and v{sub c} are measured in a similar range of interaction strengths and in similar samples to ensure comparability. The apparatus which provides the ultracold samples is a two chamber design with a magneto-optical trap that is loaded via a Zeeman slower. The subsequent cooling steps are all-optical and finally create an ultracold oblate atom cloud inside a flat vacuum cell. This cell provides optimal optical access and is placed between two high numerical aperture microscope objectives. These objectives are used to probe the samples in-situ on length scales which are comparable to the intrinsic length scales of the gases. Similarly, optical dipole potentials are employed to manipulate the clouds on the same small length scales. The oblate samples are sufficiently flat such that there spatial extent along the microscope axes is smaller than the depth of field of the objectives. With an
Generalized BEC and crossover theories of superconductors and ultracold Fermi gases
Energy Technology Data Exchange (ETDEWEB)
Grether, M. [Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México DF (Mexico); Llano, M. de, E-mail: dellano@servidor.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, 04510 México DF (Mexico)
2013-10-15
Highlights: • A generalized BEC (GBEC) formalism of superconductivity is discussed. • GBEC includes BCS and BEC as special cases, as well as the Friedberg-T.D. Lee model. • It leads to substantial enhancements in critical superconducting temperatures. • In ultracold boson or fermion gases divergent scattering lengths are dealt with. -- Abstract: The generalized Bose–Einstein condensation (GBEC) formalism of superconductivity hinges on three separate new ingredients: (a) treatment of Cooper pairs as real bosons, (b) inclusion of two-hole pairs on an equal footing with two-electron ones, and (c) inclusion in the resulting ternary ideal boson–fermion gas of boson–fermion vertex interactions that drive formation/disin-tegration processes. Besides subsuming both BCS and BEC theories as well as the well-known crossover picture as special cases, GBEC leads to several-order-of-magnitude enhancement in the critical superconducting temperature T{sub c}. The crossover picture is applicable also to ultracold atomic clouds, both bosonic and fermionic. But low-density expansions involving the interatomic scattering length a diverge term-by-term around the so-called unitary zone about the Feshbach resonance. However, expanding a in powers of the attractive part of the interatomic potential renders smooth, divergence-free low-density expansions.
Yu, Yi-Cong; Guan, Xi-Wen
2017-06-01
We present a unified derivation of the pressure equation of states, thermodynamics and scaling functions for the one-dimensional (1D) strongly attractive Fermi gases with SU(w) symmetry. These physical quantities provide a rigorous understanding on a universality class of quantum criticality characterized by the critical exponents z = 2 and correlation length exponent ν = 1/2. Such a universality class of quantum criticality can occur when the Fermi sea of one branch of charge bound states starts to fill or becomes gapped at zero temperature. The quantum critical cone can be determined by the double peaks in specific heat, which serve to mark two crossover temperatures fanning out from the critical point. Our method opens to further study on quantum phases and phase transitions in strongly interacting fermions with large SU(w) and non-SU(w) symmetries in one dimension. Supported by the National Natural Science Foundation of China under Grant No 11374331 and the key NSFC under Grant No 11534014. XWG has been partially supported by the Australian Research Council.
Directory of Open Access Journals (Sweden)
Antonello Sindona
2015-03-01
Full Text Available The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.
Sindona, Antonello; Pisarra, Michele; Gravina, Mario; Vacacela Gomez, Cristian; Riccardi, Pierfrancesco; Falcone, Giovanni; Plastina, Francesco
2015-01-01
The sudden introduction of a local impurity in a Fermi sea leads to an anomalous disturbance of its quantum state that represents a local quench, leaving the system out of equilibrium and giving rise to the Anderson orthogonality catastrophe. The statistics of the work done describe the energy fluctuations produced by the quench, providing an accurate and detailed insight into the fundamental physics of the process. We present here a numerical approach to the non-equilibrium work distribution, supported by applications to phenomena occurring at very diverse energy ranges. One of them is the valence electron shake-up induced by photo-ionization of a core state in a fullerene molecule. The other is the response of an ultra-cold gas of trapped fermions to an embedded two-level atom excited by a fast pulse. Working at low thermal energies, we detect the primary role played by many-particle states of the perturbed system with one or two excited fermions. We validate our approach through the comparison with some photoemission data on fullerene films and previous analytical calculations on harmonically trapped Fermi gases.
Two component theory and electron magnetic moment
Veltman, M.J.G.
1998-01-01
The two-component formulation of quantum electrodynamics is studied. The relation with the usual Dirac formulation is exhibited, and the Feynman rules for the two-component form of the theory are presented in terms of familiar objects. The transformation from the Dirac theory to the two-component th
Two component theory and electron magnetic moment
Veltman, M.J.G.
1998-01-01
The two-component formulation of quantum electrodynamics is studied. The relation with the usual Dirac formulation is exhibited, and the Feynman rules for the two-component form of the theory are presented in terms of familiar objects. The transformation from the Dirac theory to the two-component
2016-02-02
frequencies ) are smaller than the spontaneous emission rate ge. Unfortunately, this method is invalid in the bare basis for broad resonances, where the...classification in accordance with security classification regulations , e.g. U, C, S, etc. If this form contains classified information, stamp classification...show that the EIT method creates narrow features in the scattering phase shift, enabling control by optical frequency rather than intensity, providing
Two-component Duality and Strings
Freund, Peter G O
2007-01-01
A phenomenologically successful two-component hadronic duality picture led to Veneziano's amplitude, the fundamental first step to string theory. This picture is briefly recalled and its two components are identified as the open strings (mesons and baryons) and closed strings (Pomeron).
Exploring the thermodynamics of a universal Fermi gas.
Nascimbène, S; Navon, N; Jiang, K J; Chevy, F; Salomon, C
2010-02-25
One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system, our equation of state at zero temperature has a 2 per cent accuracy and extends work on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons.
Inhibitors targeting two-component signal transduction.
Watanabe, Takafumi; Okada, Ario; Gotoh, Yasuhiro; Utsumi, Ryutaro
2008-01-01
A two-component signal transduction system (TCS) is an attractive target for antibacterial agents. In this chapter, we review the TCS inhibitors developed during the past decade and introduce novel drug discovery systems to isolate the inhibitors of the YycG/YycF system, an essential TCS for bacterial growth, in an effort to develop a new class of antibacterial agents.
Energy Technology Data Exchange (ETDEWEB)
Yan, D; Kevrekidis, P G [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D J, E-mail: kevrekid@math.umass.edu [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)
2011-10-14
In this work, we consider a model of a defocusing nonlinear Schroedinger equation with a variable nonlinearity exponent. This is motivated by the study of a superfluid Fermi gas in the Bose-Einstein condensation (BEC)-Bardeen-Cooper-Schrieffer crossover. In particular, we focus on the relevant mean-field model in the regime from BEC to unitarity and especially consider the modification of the nearly black soliton oscillation frequency due to the variation in the nonlinearity exponent in a harmonic trapping potential. The analytical expressions given as a function of the relevant nonlinearity exponent are corroborated by numerical computations and also extended past the BEC limit. (paper)
Two-component Abelian sandpile models.
Alcaraz, F C; Pyatov, P; Rittenberg, V
2009-04-01
In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.
DEFF Research Database (Denmark)
Bellotti, Filipe Furlan; Salami Dehkharghani, Amin; Zinner, Nikolaj Thomas
2017-01-01
We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous......) and exact diagonalization) and analytically. Since DMRG results do not converge as the interaction strength is increased, analytical solutions are used as a benchmark to identify the point where these calculations become unstable. We use the proposed mapping to set a quantitative limit on the interaction...
Two-component model of solar plages
Institute of Scientific and Technical Information of China (English)
LI; Jianping(李建平); DING; Mingde(丁明德); FANG; Cheng(方成)
2002-01-01
By use of the 2-m Mcmath-Pierce telescope at Kitt Peak, the high-quality spectra of a plage with moderate brightness near the center of solar disk were obtained. The data include seven spectral lines, which are Hα, Hβ, CaII H and K lines and the infrared triplet. With the consideration of fine structures of solar plages, a two-component atmospheric model is constructed by keeping the cool component to be the quiet atmosphere. Three cases of the hot component are given for different filling factors where the temperature and density distribution are adjusted in order to reproduce the seven observed spectral profiles. We also briefly discuss the influence of the column density at the base of the corona, m0, and the macro-turbulent velocity on the required filling factor and computed profiles. The two-component model is compared with precious one-component semi-empirical models. The limitation of the model is pointed out and further improvement is indicated.
Two Component Signal Transduction in Desulfovibrio Species
Energy Technology Data Exchange (ETDEWEB)
Luning, Eric; Rajeev, Lara; Ray, Jayashree; Mukhopadhyay, Aindrila
2010-05-17
The environmentally relevant Desulfovibrio species are sulfate-reducing bacteria that are of interest in the bioremediation of heavy metal contaminated water. Among these, the genome of D. vulgaris Hildenborough encodes a large number of two component systems consisting of 72 putative response regulators (RR) and 64 putative histidinekinases (HK), the majority of which are uncharacterized. We classified the D. vulgaris Hildenborough RRs based on their output domains and compared the distribution of RRs in other sequenced Desulfovibrio species. We have successfully purified most RRs and several HKs as His-tagged proteins. We performed phospho-transfer experiments to verify relationships between cognate pairs of HK and RR, and we have also mapped a few non-cognate HK-RR pairs. Presented here are our discoveries from the Desulfovibrio RR categorization and results from the in vitro studies using purified His tagged D. vulgaris HKs and RRs.
Two-Component Description for Relativistic Fermions
Institute of Scientific and Technical Information of China (English)
CHEN Yu-Qi; SANG Wen-Long; YANG Lan-Fei
2009-01-01
We propose a two-component form to describe massive relativistic fermions in gauge theories. Relations between the Green's functions in this form and those in the conventional four-component form are derived. It is shown that the S-matrix elements in both forms are exactly the same. The description of the fermion in the new form simplifies significantly the γ-matrix algebra in the four-component form. In particular, in perturbative calculations the propagator of the fermion is a scalar function. As examples, we use this form to reproduce the relativistic spectrum of hydrodron atom, the S-matrix of e+ e-→μ+ μ- and QED one-loop vacuum polarization of photon.
Tobacco two-component gene NTHK2
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
By using a previously isolated tobacco two- component gene NTHK1 as a probe, we screened a cDNA library and obtained a homologous gene designated NTHK2. Sequencing analysis revealed that NTHK2 encoded a putative ethylene receptor homolog and contained a histidine kinase domain and a receiver domain. In the histidine kinase domain, the histidine at the phosphorylation site was replaced by an asparagine. Southern analysis indicated that NTHK2 was present at low copies in tobacco genome. The expression of NTHK2 was studied using a competitive RT-PCR method. It was found that, in young flower buds, NTHK2 was expressed abundantly, while in other organs or tissues, it was expressed in a low level. When leaf was subjected to wounding (cutting) treatment, NTHK2 expression was increased. When tobacco seedlings were stressed with PEG and heat shock, NTHK2 transcription was also enhanced. Other treatments showed little effects. These results indicated that NTHK2 might be involved in the developmental processes and in plant responses to some environmental stresses.
Institute of Scientific and Technical Information of China (English)
王俊; 高先龙
2015-01-01
It was investigated the properties of spin-orbit coupled atomic fermi gases under a Zeeman field. By solving the Bogoliubove-de Gennes equation self-consistently, it was found that the system supported the topol-ogical superfluid state and the Fulde-Ferrell-Larkin-Ovchinnikov superfluid state respectively when the system under the different strength of Zeeman field and filling factors. When the system turned into topological super-fluid state, a pair of zero-energy Majorana fermions were found.%研究了具有自旋轨道耦合的冷原子费米气在外磁场作用下的物理性质。通过自洽求解Bogoliubove-de Gennes方程，发现了在不同磁场强度和粒子填充数下，体系分别存在拓扑超流态和 Fulde-Ferrell-Larkin-Ovchinnikov超流态。当体系处于拓扑超流态时，存在零能Majorana费米子。
Strongly interacting ultracold quantum gases
Institute of Scientific and Technical Information of China (English)
Hui ZHAI
2009-01-01
This article reviews recent progresses in ul- tracold quantum gases, and it includes three subjects which are the Fermi gases across a Feshbach resonance, quantum gases in the optical lattices and the fast ro- tating quantum gases. In this article, we discuss many basic physics pictures and concepts in quantum gases, for examples, the resonant interaction, universality and condensation in the lowest Landau level; we introduce fundamental theoretical tools for studying these systems, such as mean-field theory for BEC-BCS crossover and for the boson Hubbard model; also, we emphasize the im- portant unsolved problems in the forefront of this field, for instance, the temperature effect in optical lattices.
Podosek, F. A.
2003-12-01
.g., see Figures 2 and 4). (12K)Figure 2. A three-isotope diagram illustrating compositional variations in lunar samples and meteorites, as observed in stepwise in vacuo etching and pyrolysis. Since the observed isotopic compositions do not lie on a single straight line, at least three isotopically distinct components must contribute in variable proportions. These data are interpreted as superposition of solar wind (SW), solar energetic particles (SEP), and galactic cosmic ray, i.e., spallation (GCR) Ne components (source Wieler, 1998). A common tool for visualization of isotopic variations is the so-called "three-isotope diagram," in which two isotope ratios, each with the same reference (denominator) isotope, are displayed on abscissa and ordinate (e.g., Figure 2). Two isotopically distinct components will plot at distinct points on a three-isotope diagram, and an often-used feature is that mixtures of the two components will plot on the straight line joining those two points. A lever rule applies: the greater the proportion that one component contributes to a mixture, the closer the point representing the mixture will lie to the point representing that end-member component, and there is a linear relationship between fractional distance from one end-member to the other and the fraction that each component contributes to the mixture (specifically to the reference isotope). If observed isotopic data are variable but the variations in two ratios are correlated, so as to be consistent with a straight line on a three-isotope diagram, it can be inferred that at least two components are present and it will often be hypothesized that only two components are present, in which case their compositions can be constrained to lie on the line, one on either side of the data field. If three components are present, not coincidentally collinear on this diagram, mixtures will occupy the triangular field defined by the three compositions, and conversely if observed data are not consistent
Scattering resonances in a degenerate Fermi gas
DEFF Research Database (Denmark)
Challis, Katharine; Nygaard, Nicolai; Mølmer, Klaus
2009-01-01
We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas and a configur......We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas...
Bellotti, Filipe F.; Dehkharghani, Amin S.; Zinner, Nikolaj T.
2017-02-01
We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous Hamiltonian and a discrete lattice Hamiltonian is derived. As an example, we show that this mapping does not depend neither on the state of the system nor on the number of particles. Energies, density profiles and correlation functions are obtained both numerically (density matrix renormalization group (DMRG) and exact diagonalization) and analytically. Since DMRG results do not converge as the interaction strength is increased, analytical solutions are used as a benchmark to identify the point where these calculations become unstable. We use the proposed mapping to set a quantitative limit on the interaction parameter of a discrete lattice Hamiltonian above which DMRG gives unrealistic results.
Two-component Fermions in Optical Lattice with Spatially Alternating Interactions
Hoang, Anh-Tuan; Nguyen, Thi-Hai-Yen; Tran, Thi-Thu-Trang; Le, Duc-Anh
2016-10-01
We investigate two-component mass-imbalanced fermions in an optical lattice with spatially modulated interactions by using two-site dynamical mean field theory. At half-filling and zero temperature, the phase diagram of the system is analytically obtained, in which the metallic region is reduced with increasing the mass imbalance. The ground-state properties of the fermionic system are discussed from the behaviors of both the spin-dependent quasi-particle weight at the Fermi level and the double occupancy for each sublattice as functions of the local interaction strengths for various values of the mass imbalance.
Strongly correlated Bose gases
Chevy, F.; Salomon, C.
2016-10-01
The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.
Institute of Scientific and Technical Information of China (English)
李琳
2006-01-01
Enrico Fermi was born in Rome on 29th September, 1901. He attended a local grammar school, and in 1918, he won a fellowship of the Scuola Normale Superiore of Pisa, where he gained his doctor’s degree in physics in 1922, with Professor Puccianti. In 1923, he was awarded a scholarship from the Italian Government. With a Rockefeller Fellowship, in 1924, he moved to Leyden, and later that same year he returned to Italy to occupy for two
An Introductory Idea for Teaching Two-Component Phase Diagrams
Peckham, Gavin D.; McNaught, Ian J.
2011-01-01
The teaching of two-component phase diagrams has attracted little attention in this "Journal," and it is hoped that this article will make a useful contribution. Current physical chemistry textbooks describe two-component phase diagrams adequately, but do so in a piecemeal fashion one section at a time; first solid-liquid equilibria, then…
Two-component micro injection moulding for hearing aid applications
DEFF Research Database (Denmark)
Islam, Aminul; Hansen, Hans Nørgaard; Marhöfer, David Maximilian
2012-01-01
Two-component (2k) injection moulding is an important process technique at the present state of technology, and it is growing rapidly in the field of precision micro moulding. Besides combining different material properties in the same product, two-component moulding can eliminate many assembly s...
Feedback Control of Two-Component Regulatory Systems.
Groisman, Eduardo A
2016-09-08
Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.
Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap
DEFF Research Database (Denmark)
J. Lindgren, E.; Rotureau, J.; Forssén, C.
2014-01-01
The nature of strongly interacting Fermi gases and magnetism is one of the most important and studied topics in condensed-matter physics. Still, there are many open questions. A central issue is under what circumstances strong short-range repulsive interactions are enough to drive magnetic...... correlations. Recent progress in the field of cold atomic gases allows to address this question in very clean systems where both particle numbers, interactions and dimensionality can be tuned. Here we study fermionic few-body systems in a one dimensional harmonic trap using a new rapidly converging effective......-interaction technique, plus a novel analytical approach. This allows us to calculate the properties of a single spin-down atom interacting with a number of spin-up particles, a case of much recent experimental interest. Our findings indicate that, in the strongly interacting limit, spin-up and spin-down particles want...
Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions
Blas, H.; Pimentel, B. M.; Tomazelli, J. L.
1999-01-01
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
Relativistic quantum thermodynamics of ideal gases in two dimensions.
Blas, H; Pimentel, B M; Tomazelli, J L
1999-11-01
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
Receptor domains of two-component signal transduction systems.
Perry, Julie; Koteva, Kalinka; Wright, Gerard
2011-05-01
Two-component signal transduction systems are found ubiquitously in prokaryotes, and in archaea, fungi, yeast and some plants, where they regulate physiologic and molecular processes at both transcriptional and post-transcriptional levels. Two-component systems sense changes in environmental conditions when a specific ligand binds to the receptor domain of the histidine kinase sensory component. The structures of many histidine kinase receptors are known, including those which sense extracellular and cytoplasmic signals. In this review, we discuss the basic architecture of two-component signalling circuits, including known system ligands, structure and function of both receptor and signalling domains, the chemistry of phosphotransfer, and cross-talk between different two-component pathways. Given the importance of these systems in regulating cellular responses, many biochemical techniques have been developed for their study and analysis. We therefore also review current methods used to study two-component signalling, including a new affinity-based proteomics approach used to study inducible resistance to the antibiotic vancomycin through the VanSR two-component signal transduction system.
Thermodynamics of Quantum Gases for the Entire Range of Temperature
Biswas, Shyamal; Jana, Debnarayan
2012-01-01
We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…
Circulation Condition of Two-component Bose-Einstein Condensate
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In the report we point out that there exists an intrinsic difference in the internal symmetry of the two components spin-1/2 Bose condensates from that of spinor Bose condensates of the atoms with hyperfine states of nonzero integer-spins,which gives rise to a new topological constrain on the circulation for this two-component spin-1/2 Bose condensates.It is shown that the SU(2) symmetry of the spin-1/2 Bose condensate implies a
Two component permeation through thin zeolite MFI membranes
Keizer, K.; Burggraaf, A.J.; Vroon, Z.A.E.P.; Verweij, H.
1998-01-01
Two component permeation measurements have been performed by the Wicke-Kallenbach method on a thin (3 μm) zeolite MFI (Silicalite-1) membrane with molecules of different kinetic diameters, d(k). The membrane was supported by a flat porous α-Al2O3 substrate. The results obtained could be classified i
two component permeation through thin zeolite MFI membranes
Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.; Vroon, Z.A.E.P.; Vroon, Z.A.E.P.; Verweij, H.
1998-01-01
Two component permeation measurements have been performed by the Wicke–Kallenbach method on a thin (3 μm) zeolite MFI (Silicalite-1) membrane with molecules of different kinetic diameters, dk. The membrane was supported by a flat porous -Al2O3 substrate. The results obtained could be classified in s
TWO-COMPONENT JETS AND THE FANAROFF-RILEY DICHOTOMY
Meliani, Z.; Keppens, R.; Sauty, C.
2010-01-01
Transversely stratified jets are observed in many classes of astrophysical objects, ranging from young stellar objects, mu-quasars, to active galactic nuclei and even in gamma-ray bursts. Theoretical arguments support this transverse stratification of jets with two components induced by intrinsic fe
Two component injection moulding: Present and future perspectives
DEFF Research Database (Denmark)
Islam, Aminul; Hansen, Hans Nørgaard
2009-01-01
Two component injection moulding has widespread industrial applications. Still the technology is yet to gain its full potential in highly demanding and technically challenging applications areas. The smart use of this technology can open the doors for cost effective and convergent manufacturing...
Entanglement Properties in Two-Component Bose-Einstein Condensate
Jiang, Di-You
2016-10-01
We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.
Goal-Directed Aiming: Two Components but Multiple Processes
Elliott, Digby; Hansen, Steve; Grierson, Lawrence E. M.; Lyons, James; Bennett, Simon J.; Hayes, Spencer J.
2010-01-01
This article reviews the behavioral literature on the control of goal-directed aiming and presents a multiple-process model of limb control. The model builds on recent variants of Woodworth's (1899) two-component model of speed-accuracy relations in voluntary movement and incorporates ideas about dynamic online limb control based on prior…
Kox, Linda F.F.; Wösten, Marc M. S. M.; Groisman, Eduardo A.
2000-01-01
The PmrA–PmrB two-component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA-activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a process that requires another two-component system, PhoP–PhoQ. Here, we define the genetic basis for the interaction between the PhoP–PhoQ and PmrA–PmrB systems. We have identified pmrD as a PhoP-act...
Creation of ultracold molecules from a Fermi gas of atoms
2003-01-01
Since the realization of Bose-Einstein condensates (BEC) in atomic gases an experimental challenge has been the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, atoms in a BEC have been coupled to electronic ground-state molecules through photoassociation as well as through a magnetic-field Feshbach resonance. The availability of atomic Fermi gases provides the exciting prospect of coup...
Bahauddin, Shah Mohammad; Mehedi Faruk, Mir
2016-09-01
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.
A two-component NZRI metamaterial based rectangular cloak
Islam, Sikder Sunbeam; Faruque, Mohammd Rashed Iqbal; Islam, Mohammad Tariqul
2015-10-01
A new two-component, near zero refractive index (NZRI) metamaterial is presented for electromagnetic rectangular cloaking operation in the microwave range. In the basic design a pi-shaped, metamaterial was developed and its characteristics were investigated for the two major axes (x and z-axis) wave propagation through the material. For the z-axis wave propagation, it shows more than 2 GHz bandwidth and for the x-axis wave propagation; it exhibits more than 1 GHz bandwidth of NZRI property. The metamaterial was then utilized in designing a rectangular cloak where a metal cylinder was cloaked perfectly in the C-band area of microwave regime. The experimental result was provided for the metamaterial and the cloak and these results were compared with the simulated results. This is a novel and promising design for its two-component NZRI characteristics and rectangular cloaking operation in the electromagnetic paradigm.
On a periodic two-component Hunter-Saxton equation
Kohlmann, Martin
2011-01-01
We determine the solution of the geodesic equation associated with a periodic two-component Hunter-Saxton system on a semidirect product obtained from the diffeomorphism group of the circle, modulo rigid rotations, and a space of scalar functions. In particular, we compute the time of breakdown of the geodesic flow. As a further goal, we establish a local well-posedness result for the two-component Hunter-Saxton system in the smooth category. The paper gets in line with some recent results for the generalized Hunter-Saxton equation provided by Escher, Wu and Wunsch in [J. Escher, Preprint 2010] and [H. Wu, M. Wunsch, arXiv:1009.1688v1 [math.AP
Two Component Injection Moulding for Moulded Interconnect Devices
DEFF Research Database (Denmark)
Islam, Aminul
The moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their potential in reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...... component (2k) injection moulding is one of the most industrially adaptive processes. However, the use of two component injection moulding for MID fabrication, with circuit patterns in sub-millimeter range, is still a big challenge. This book searches for the technical difficulties associated...... with the process and makes attempts to overcome those challenges. In search of suitable polymer materials for MID applications, potential materials are characterized in terms of polymer-polymer bond strength, polymer-polymer interface quality and selective metallization. The experimental results find the factors...
Two-component microinjection moulding for MID fabrication
DEFF Research Database (Denmark)
Islam, Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben
2010-01-01
Moulded interconnect devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection moulding, and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently, the medical sector seems more and more interested. In particular, the possibility of miniaturisation of three-dimensional components with electrical infrastructure is attractive. The present paper describes possible manufacturing routes and challenges of miniaturised MIDs based on two......-component injection moulding and subsequent metallisation. This technology promises cost effective and convergent manufacturing approaches for both macro- and microapplications. This paper presents the results of industrial MID production based on two-component injection moulding and discusses the important issues...
Interaction Analysis of a Two-Component System Using Nanodiscs.
Directory of Open Access Journals (Sweden)
Patrick Hörnschemeyer
Full Text Available Two-component systems are the major means by which bacteria couple adaptation to environmental changes. All utilize a phosphorylation cascade from a histidine kinase to a response regulator, and some also employ an accessory protein. The system-wide signaling fidelity of two-component systems is based on preferential binding between the signaling proteins. However, information on the interaction kinetics between membrane embedded histidine kinase and its partner proteins is lacking. Here, we report the first analysis of the interactions between the full-length membrane-bound histidine kinase CpxA, which was reconstituted in nanodiscs, and its cognate response regulator CpxR and accessory protein CpxP. Using surface plasmon resonance spectroscopy in combination with interaction map analysis, the affinity of membrane-embedded CpxA for CpxR was quantified, and found to increase by tenfold in the presence of ATP, suggesting that a considerable portion of phosphorylated CpxR might be stably associated with CpxA in vivo. Using microscale thermophoresis, the affinity between CpxA in nanodiscs and CpxP was determined to be substantially lower than that between CpxA and CpxR. Taken together, the quantitative interaction data extend our understanding of the signal transduction mechanism used by two-component systems.
Rewiring the specificity of two-component signal transduction systems.
Skerker, Jeffrey M; Perchuk, Barrett S; Siryaporn, Albert; Lubin, Emma A; Ashenberg, Orr; Goulian, Mark; Laub, Michael T
2008-06-13
Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.
Phase Separation and Dynamics of two-component Bose-Einstein condensates
Lee, Kean Loon; Liu, I-Kang; Wacker, Lars; Arlt, Jan J; Proukakis, Nick P
2016-01-01
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition between mixed and separated phases is fully characterised by a `miscibility parameter', based on the ratio of intra- to inter-species interaction strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow instability in the miscible reg...
Berman, Oleg L.; Kezerashvili, Roman Ya.
2016-06-01
The high-temperature superfluidity of two-dimensional dipolar excitons in two parallel transition metal dichalcogenide (TMDC) layers is predicted. We study Bose-Einstein condensation in the two-component system of dipolar A and B excitons. The effective mass, energy spectrum of the collective excitations, the sound velocity, and critical temperature are obtained for different TMDC materials. It is shown that in the Bogoliubov approximation, the sound velocity in the two-component dilute exciton Bose gas is always larger than in any one-component exciton system. The difference between the sound velocities for two-component and one-component dilute gases is caused by the fact that the sound velocity for a two-component system depends on the reduced mass of A and B excitons, which is always smaller than the individual mass of A or B exciton. Due to this fact, the critical temperature Tc for superfluidity for the two-component exciton system in a TMDC bilayer is about one order of magnitude higher than Tc in any one-component exciton system. We propose to observe the superfluidity of two-dimensional dipolar excitons in two parallel TMDC layers, which causes two opposite superconducting currents in each TMDC layer.
Two-Component Multi-Parameter Time-Frequency Electromagnetics
Institute of Scientific and Technical Information of China (English)
HuangZhou; DongWeibin; HeTiezhi
2003-01-01
The two-component multi-parameter time-frequency electromagnetic method, used for the development of oilfields,makes use of both the traditional individual conductivity parameters of oil-producing layers and the dispersion information of the conductivity, i.e., the induced polarization parameter. The frequency-domain dispersion data is used to delineate the contacts between oil and water and the time domain dBz/dt component is used to estimate the depths to the un-known reservoirs so as to offer significant data in many aspects for oil exploration and detection.
A polaritonic two-component Bose-Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Hartmann, M J; Brandao, F G S L; Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Exhibition Road, SW7 2PE (United Kingdom)], E-mail: m.hartmann@imperial.ac.uk
2008-03-15
We demonstrate that polaritons in an array of interacting micro-cavities with strong atom-photon coupling can form a two-component Bose-Hubbard model in which both polariton species are protected against spontaneous emission as their atomic part is stored in two ground states of the atoms. The parameters of the effective model can be tuned via the driving strength of external lasers and include attractive and repulsive polariton interactions. We also describe a method to measure the number statistics in one cavity for each polariton species independently.
Two component micro injection moulding for moulded interconnect devices
DEFF Research Database (Denmark)
Islam, Aminul
2008-01-01
Moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their capability of reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...... and a reasonable adhesion between them. • Selective metallization of the two component plastic part (coating one polymer with metal and leaving the other one uncoated) To overcome these two main issues in MID fabrication for micro applications, the current Ph.D. project explores the technical difficulties...
Interaction potentials and thermodynamic properties of two component semiclassical plasma
Energy Technology Data Exchange (ETDEWEB)
Ramazanov, T. S.; Moldabekov, Zh. A.; Ismagambetova, T. N. [Al-Farabi Kazakh National University, IETP, 71 al-Farabi Av., Almaty 050040 (Kazakhstan); Gabdullin, M. T. [Al-Farabi Kazakh National University, NNLOT, 71 al-Farabi Av., Almaty 050040 (Kazakhstan)
2014-01-15
In this paper, the effective interaction potential in two component semiclassical plasma, taking into account the long-range screening and the quantum-mechanical diffraction effects at short distances, is obtained on the basis of dielectric response function method. The structural properties of the semiclassical plasma are considered. The thermodynamic characteristics (the internal energy and the equation of state) are calculated using two methods: the method of effective potentials and the method of micropotentials with screening effect taken into account by the Ornstein-Zernike equation in the HNC approximation.
Two component micro injection molding for MID fabrication
DEFF Research Database (Denmark)
Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben
2009-01-01
Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...
Graphene Oxide: A One- versus Two-Component Material.
Naumov, Anton; Grote, Fabian; Overgaard, Marc; Roth, Alexandra; Halbig, Christian E; Nørgaard, Kasper; Guldi, Dirk M; Eigler, Siegfried
2016-09-14
The structure of graphene oxide (GO) is a matter of discussion. While established GO models are based on functional groups attached to the carbon framework, another frequently used model claims that GO consists of two components, a slightly oxidized graphene core and highly oxidized molecular species, oxidative debris (OD), adsorbed on it. Those adsorbents are claimed to be the origin for optical properties of GO. Here, we examine this model by preparing GO with a low degree of functionalization, combining it with OD and studying the optical properties of both components and their combination in an artificial two-component system. The analyses of absorption and emission spectra as well as lifetime measurements reveal that properties of the combined system are distinctly different from those of GO. That confirms structural models of GO as a separate oxygenated hexagonal carbon framework with optical properties governed by its internal structure rather than the presence of OD. Understanding the structure of GO allows further reliable interpretation of its optical and electronic properties and enables controlled processing of GO.
Evolution of two-component signal transduction systems.
Capra, Emily J; Laub, Michael T
2012-01-01
To exist in a wide range of environmental niches, bacteria must sense and respond to a variety of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically composed of a sensor histidine kinase that receives the input stimuli and then phosphorylates a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights.
The Evolution of Two-Component Signal Transduction Systems
Capra, Emily J.; Laub, Michael T.
2014-01-01
To exist in a wide range of environmental niches, bacteria must sense and respond to a myriad of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically comprised of a histidine kinase that receives the input stimuli and a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights. PMID:22746333
Two-component systems and toxinogenesis regulation in Clostridium botulinum.
Connan, Chloé; Popoff, Michel R
2015-05-01
Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. They are mostly produced by Clostridium botulinum but also by other clostridia. BoNTs associate with non-toxic proteins (ANTPs) to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 recently described two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. Several environmental stimuli have been identified to positively or negatively regulate toxin synthesis; however, the link between environmental stimuli and TCSs is still elusive. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum.
Exact two-component relativistic energy band theory and application
Energy Technology Data Exchange (ETDEWEB)
Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian, E-mail: liuwj@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)
2016-01-28
An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.
Dynamics of two-component membranes surrounded by viscoelastic media.
Komura, Shigeyuki; Yasuda, Kento; Okamoto, Ryuichi
2015-11-01
We discuss the dynamics of two-component fluid membranes which are surrounded by viscoelastic media. We assume that membrane-embedded proteins can diffuse laterally and induce a local membrane curvature. The mean squared displacement of a tagged membrane segment is obtained as a generalized Einstein relation. When the elasticity of the surrounding media obeys a power-law behavior in frequency, an anomalous diffusion of the membrane segment is predicted. We also consider the situation where the proteins generate active non-equilibrium forces. The generalized Einstein relation is further modified by an effective temperature that depends on the force dipole energy. The obtained generalized Einstein relations are useful for membrane microrheology experiments.
Two-component jet simulations: Combining analytical and numerical approaches
Matsakos, T; Trussoni, E; Tsinganos, K; Vlahakis, N; Sauty, C; Mignone, A
2009-01-01
Recent observations as well as theoretical studies of YSO jets suggest the presence of two steady components: a disk wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the observed stellar spin down. In this framework, we construct numerical two-component jet models by properly mixing an analytical disk wind solution with a complementary analytically derived stellar outflow. Their combination is controlled by both spatial and temporal parameters, in order to address different physical conditions and time variable features. We study the temporal evolution and the interaction of the two jet components on both small and large scales. The simulations reach steady state configurations close to the initial solutions. Although time variability is not found to considerably affect the dynamics, flow fluctuations generate condensations, whose large scale structures have a strong resemblance to observed YSO jet knots.
Exact two-component relativistic energy band theory and application.
Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian
2016-01-28
An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.
Recent advances in description of few two-component fermions
Kartavtsev, O I
2012-01-01
Overview of the recent advances in description of the few two-component fermions is presented. The zero-range interaction limit is generally considered to discuss the principal aspects of the few-body dynamics. Significant attention is paid to detailed description of two identical fermions of mass $m$ and a distinct particle of mass $m_1$; two universal $L^P = 1^-$ bound states arise for mass ratio $m/m_1$ increasing up to the critical value $\\mu_c \\approx 13.607$, beyond which the Efimov effect takes place. The topics considered include rigorous treatment of the few-fermion problem in the zero-range interaction limit, low-dimensional results, the four-body energy spectrum, crossover of the energy spectra for $m/m_1$ near the critical value $\\mu_c $, and properties of potential-dependent states. At last, enlisted are the problems, whose solution is in due course.
Molecular Mechanisms of Two-Component Signal Transduction.
Zschiedrich, Christopher P; Keidel, Victoria; Szurmant, Hendrik
2016-09-25
Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies.
Bond strength of two component injection moulded MID
DEFF Research Database (Denmark)
Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben
2006-01-01
Most products of the future will require industrially adapted, cost effective production processes and on this issue two-component (2K) injection moulding is a potential candidate for MID manufacturing. MID based on 2k injection moulded plastic part with selectively metallised circuit tracks allows...... the integration of electrical and mechanical functionalities in a real 3D structure. If 2k injection moulding is applied with two polymers, of which one is plateable and the other is not, it will be possible to make 3D electrical structures directly on the component. To be applicable in the real engineering field...... the two different plastic materials in the MID structure require good bonding between them. This paper finds suitable combinations of materials for MIDs from both bond strength and metallisation view-point. Plastic parts were made by two-shot injection moulding and the effects of some important process...
Efficient two-component relativistic method for large systems
Energy Technology Data Exchange (ETDEWEB)
Nakai, Hiromi [Department of Chemitsry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)
2015-12-31
This paper reviews a series of theoretical studies to develop efficient two-component (2c) relativistic method for large systems by the author’s group. The basic theory is the infinite-order Douglas-Kroll-Hess (IODKH) method for many-electron Dirac-Coulomb Hamiltonian. The local unitary transformation (LUT) scheme can effectively produce the 2c relativistic Hamiltonian, and the divide-and-conquer (DC) method can achieve linear-scaling of Hartree-Fock and electron correlation methods. The frozen core potential (FCP) theoretically connects model potential calculations with the all-electron ones. The accompanying coordinate expansion with a transfer recurrence relation (ACE-TRR) scheme accelerates the computations of electron repulsion integrals with high angular momenta and long contractions.
No electrostatic supersolitons in two-component plasmas
Energy Technology Data Exchange (ETDEWEB)
Verheest, Frank, E-mail: frank.verheest@ugent.be [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lakhina, Gurbax S., E-mail: lakhina@iigm.iigs.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)
2014-06-15
The concept of acoustic supersolitons was introduced for a very specific plasma with five constituents, and discussed only for a single set of plasma parameters. Supersolitons are characterized by having subsidiary extrema on the sides of a typical bipolar electric field signature, or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It was subsequently found that supersolitons could exist in several plasma models having three constituent species, rather than four or five. In the present paper, it is proved that standard two-component plasma models cannot generate supersolitons, by recalling and extending results already in the literature, and by establishing the necessary properties of a more recent model.
Budding Transition of Asymmetric Two-component Lipid Domains
Wolff, Jean; Andelman, David
2016-01-01
We propose a model that accounts for the budding transition of asymmetric two-component lipid domains, where the two monolayers (leaflets) have different average compositions controlled by independent chemical potentials. Assuming a coupling between the local curvature and local lipid composition in each of the leaflets, we discuss the morphology and thermodynamic behavior of asymmetric lipid domains. The membrane free-energy contains three contributions: the bending energy, the line tension, and a Landau free-energy for a lateral phase separation. Within a mean-field treatment, we obtain various phase diagrams containing fully budded, dimpled, and flat states as a function of the two leaflet compositions. The global phase behavior is analyzed, and depending on system parameters, the phase diagrams include one-phase, two-phase and three-phase regions. In particular, we predict various phase coexistence regions between different morphologies of domains, which may be observed in multi-component membranes or ves...
The mechanism of signal transduction by two-component systems.
Casino, Patricia; Rubio, Vicente; Marina, Alberto
2010-12-01
Two-component systems, composed of a homodimeric histidine kinase (HK) and a response regulator (RR), are major signal transduction devices in bacteria. Typically the signal triggers HK autophosphorylation at one His residue, followed by phosphoryl transfer from the phospho-His to an Asp residue in the RR. Signal extinction frequently involves phospho-RR dephosphorylation by a phosphatase activity of the HK. Our understanding of these reactions and of the determinants of partner specificity among HK-RR couples has been greatly increased by recent crystal structures and biochemical experiments on HK-RR complexes. Cis-autophosphorylation (one subunit phosphorylates itself) occurs in some HKs while trans-autophosphorylation takes place in others. We review and integrate this new information, discuss the mechanism of the three reactions and propose a model for transmembrane signaling by these systems. Copyright © 2010 Elsevier Ltd. All rights reserved.
Determinants of specificity in two-component signal transduction.
Podgornaia, Anna I; Laub, Michael T
2013-04-01
Maintaining the faithful flow of information through signal transduction pathways is critical to the survival and proliferation of organisms. This problem is particularly challenging as many signaling proteins are part of large, paralogous families that are highly similar at the sequence and structural levels, increasing the risk of unwanted cross-talk. To detect environmental signals and process information, bacteria rely heavily on two-component signaling systems comprised of sensor histidine kinases and their cognate response regulators. Although most species encode dozens of these signaling pathways, there is relatively little cross-talk, indicating that individual pathways are well insulated and highly specific. Here, we review the molecular mechanisms that enforce this specificity. Further, we highlight recent studies that have revealed how these mechanisms evolve to accommodate the introduction of new pathways by gene duplication. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rewiring two-component signal transduction with small RNAs.
Göpel, Yvonne; Görke, Boris
2012-04-01
Bacterial two-component systems (TCSs) and small regulatory RNAs (sRNAs) form densely interconnected networks that integrate and transduce information from the environment into fine-tuned changes of gene expression. Many TCSs control target genes indirectly through regulation of sRNAs, which in turn regulate gene expression by base-pairing with mRNAs or targeting a protein. Conversely, sRNAs may control TCS synthesis, thereby recruiting the TCS regulon to other regulatory networks. Several TCSs control expression of multiple homologous sRNAs providing the regulatory networks with further flexibility. These sRNAs act redundantly, additively or hierarchically on targets. The regulatory speed of sRNAs and their unique features in gene regulation make them ideal players extending the flexibility, dynamic range or timing of TCS signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Auxiliary phosphatases in two-component signal transduction.
Silversmith, Ruth E
2010-04-01
Signal termination in two-component systems occurs by loss of the phosphoryl group from the response regulator protein. This review explores our current understanding of the structures, catalytic mechanisms and means of regulation of the known families of phosphatases that catalyze response regulator dephosphorylation. The CheZ and CheC/CheX/FliY families, despite different overall structures, employ identical catalytic strategies using an amide side chain to orient a water molecule for in-line attack of the aspartyl phosphate. Spo0E phosphatases contain sequence and structural features that suggest a strategy similar to the chemotaxis phosphatases but the mechanism used by the Rap phosphatases is not yet elucidated. Identification of features shared by phosphatase families may aid in the identification of currently unrecognized classes of response regulator phosphatases. Copyright 2010 Elsevier Ltd. All rights reserved.
How insects overcome two-component plant chemical defence
DEFF Research Database (Denmark)
Pentzold, Stefan; Zagrobelny, Mika; Rook, Frederik;
2014-01-01
Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds...... are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points......-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists...
Parallel TREE code for two-component ultracold plasma analysis
Jeon, Byoungseon; Kress, Joel D.; Collins, Lee A.; Grønbech-Jensen, Niels
2008-02-01
The TREE method has been widely used for long-range interaction N-body problems. We have developed a parallel TREE code for two-component classical plasmas with open boundary conditions and highly non-uniform charge distributions. The program efficiently handles millions of particles evolved over long relaxation times requiring millions of time steps. Appropriate domain decomposition and dynamic data management were employed, and large-scale parallel processing was achieved using an intermediate level of granularity of domain decomposition and ghost TREE communication. Even though the computational load is not fully distributed in fine grains, high parallel efficiency was achieved for ultracold plasma systems of charged particles. As an application, we performed simulations of an ultracold neutral plasma with a half million particles and a half million time steps. For the long temporal trajectories of relaxation between heavy ions and light electrons, large configurations of ultracold plasmas can now be investigated, which was not possible in past studies.
The universal sound velocity formula for the strongly interacting unitary Fermi gas
Institute of Scientific and Technical Information of China (English)
Liu Ke; Chen Ji-Sheng
2011-01-01
Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/ZV is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions.
Spin-Seebeck effect in a strongly interacting Fermi gas
Wong, C.H.; Stoof, H.T.C.; Duine, R.A.
2012-01-01
We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin-up and spin-down atomic clouds in a trap using spin-dependent temperature gradients. We compute the spin-Seebeck coefficient and related
Spin-Seebeck effect in a strongly interacting Fermi gas
Wong, C.H.; Stoof, H.T.C.; Duine, R.A.
2012-01-01
We study the spin-Seebeck effect in a strongly interacting, two-component Fermi gas and propose an experiment to measure this effect by relatively displacing spin-up and spin-down atomic clouds in a trap using spin-dependent temperature gradients. We compute the spin-Seebeck coefficient and related
The third virial coefficient of a two-component unitary Fermi gas across an Efimov-effect threshold
Gao, Chao; Endo, Shimpei; Castin, Yvan
2015-01-01
We consider a mixture of two single-spin-state fermions with an interaction of negligible range and infinite s-wave scattering length. By varying the mass ratio α across α_c≃ 13.6069 one can switch on and off the Efimov effect. We determine analytically the third cluster coefficient of the gas. We show that it is a smooth function of α across αc since, unexpectedly, the three-body parameter characterizing the interaction is relevant even on the non-Efimovian side α<αc .
Quantum phases of Fermi-Fermi mixtures in optical lattices
Iskin, M.; de Melo, C. A. R. Sa
2007-01-01
The ground state phase diagram of Fermi-Fermi mixtures in optical lattices is analyzed as a function of interaction strength, population imbalance, filling fraction and tunneling parameters. It is shown that population imbalanced Fermi-Fermi mixtures reduce to strongly interacting Bose-Fermi mixtures in the molecular limit, in sharp contrast to homogeneous or harmonically trapped systems where the resulting Bose-Fermi mixture is weakly interacting. Furthermore, insulating phases are found in ...
Implementation of Two Component Advective Flow Solution in XSPEC
Debnath, Dipak; Mondal, Santanu
2014-01-01
Spectral and Temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of GSFC/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength etc. for any black hole candidate. We provide some examples of fitting a few cases usin...
Dynamical principles of two-component genetic oscillators.
Directory of Open Access Journals (Sweden)
Raúl Guantes
2006-03-01
Full Text Available Genetic oscillators based on the interaction of a small set of molecular components have been shown to be involved in the regulation of the cell cycle, the circadian rhythms, or the response of several signaling pathways. Uncovering the functional properties of such oscillators then becomes important for the understanding of these cellular processes and for the characterization of fundamental properties of more complex clocks. Here, we show how the dynamics of a minimal two-component oscillator is drastically affected by its genetic implementation. We consider a repressor and activator element combined in a simple logical motif. While activation is always exerted at the transcriptional level, repression is alternatively operating at the transcriptional (Design I or post-translational (Design II level. These designs display differences on basic oscillatory features and on their behavior with respect to molecular noise or entrainment by periodic signals. In particular, Design I induces oscillations with large activator amplitudes and arbitrarily small frequencies, and acts as an "integrator" of external stimuli, while Design II shows emergence of oscillations with finite, and less variable, frequencies and smaller amplitudes, and detects better frequency-encoded signals ("resonator". Similar types of stimulus response are observed in neurons, and thus this work enables us to connect very different biological contexts. These dynamical principles are relevant for the characterization of the physiological roles of simple oscillator motifs, the understanding of core machineries of complex clocks, and the bio-engineering of synthetic oscillatory circuits.
Hamiltonian of a homogeneous two-component plasma.
Essén, Hanno; Nordmark, A
2004-03-01
The Hamiltonian of one- and two-component plasmas is calculated in the negligible radiation Darwin approximation. Since the Hamiltonian is the phase space energy of the system its form indicates, according to statistical mechanics, the nature of the thermal equilibrium that plasmas strive to attain. The main issue is the length scale of the magnetic interaction energy. In the past a screening length lambda=1/square root of r(e)n], with n number density and r(e) classical electron radius, has been derived. We address the question whether the corresponding longer screening range obtained from the classical proton radius is physically relevant and the answer is affirmative. Starting from the Darwin Lagrangian it is nontrivial to find the Darwin Hamiltonian of a macroscopic system. For a homogeneous system we resolve the difficulty by temporarily approximating the particle number density by a smooth constant density. This leads to Yukawa-type screened vector potential. The nontrivial problem of finding the corresponding, divergence free, Coulomb gauge version is solved.
A minimal model for two-component dark matter
Energy Technology Data Exchange (ETDEWEB)
Esch, Sonja; Klasen, Michael; Yaguna, Carlos E. [Institut fuer theoretische Physik, Universitaet Muenster, Wilhelm-Klemm-Strasse 9,D-48149 Muenster (Germany)
2015-07-01
We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z{sub 2} symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.
A minimal model for two-component dark matter
Esch, Sonja; Yaguna, Carlos E
2014-01-01
We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a $Z_2$ symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatibl...
A minimal model for two-component dark matter
Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.
2014-09-01
We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z 2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.
Two-component perfect fluid in FRW universe
,
2012-01-01
We propose the cosmological model which allows to describe on equal footing the evolution of matter in the universe on the time interval from the inflation till the domination of dark energy. The matter is considered as a two-component perfect fluid imitated by homogeneous scalar fields between which there is energy exchange. Dark energy is represented by the cosmological constant, which is supposed invariable during the whole evolution of the universe. The matter changes its equation of state with time, so that the era of radiation domination in the early universe smoothly passes into the era of a pressureless gas, which then passes into the late-time epoch, when the matter is represented by a gas of low-velocity cosmic strings. The inflationary phase is described as an analytic continuation of the energy density in the very early universe into the region of small negative values of the parameter which characterizes typical time of energy transfer from one matter component to another. The Hubble expansion ra...
Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas
DEFF Research Database (Denmark)
Bruun, Georg
2012-01-01
Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...
Two component systems: physiological effect of a third component.
Directory of Open Access Journals (Sweden)
Baldiri Salvado
Full Text Available Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS. These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK and by a response regulator (RR that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component" on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.
Apostol, M
2001-01-01
sup 3 He liquefies at 3.2 K under normal pressure, where its mean inter-particle separation of a few angstroms, is comparable with the range of the interaction potential (and with the mean inter-particle separation in the corresponding ideal gas); its thermal wavelength is about 8 A, so that, under this conditions, sup 3 He is a quantum liquid of fermions, or a Fermi liquid (sometimes called a normal Fermi liquid too). The motion of the sup 3 He atoms in the (repulsive) self-consistent, meanfield potential is affected by inertial effects, i.e. the particles possess an effective mass, and consequently they obey the Fermi distribution, like an ideal Fermi gas. In this paper the Landau's theory of the Fermi liquid is reviewed. (author)
Meulenbelt, J
2016-01-01
Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was i
... life. Governments all around the world ban and control production and use of several industrial gases that destroy atmospheric ozone and create a hole in the ozone layer . At lower elevations of the atmosphere (the troposphere), ozone is harmful to ... for Future Emissions FAQs How much carbon dioxide is produced when ...
Meulenbelt, J
Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was
The Fractional Virial Potential Energy in Two-Component Systems
Directory of Open Access Journals (Sweden)
Caimmi, R.
2008-12-01
Full Text Available Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, $phi=phi(y,m$, characterized (for assigned values of the fractional mass, $m=M_j/ M_i$ by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of $m$ is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the $({sf O}yphi$ plane, where the fractional truncation radius along a selected direction is $y=R_j/R_i$, and the fractional virial potential energy is $phi=(E_{ji}_mathrm{vir}/(E_{ij}_mathrm{vir}$. Further investigation is devoted to mass distributions described by Hernquist (1990 density profiles, for which an additional relation can be used to represent a sample of $N=16$ elliptical galaxies (EGs on the $({sf O}yphi$ plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM haloes, in the light of the model, has been characterized by equal fractional mass, $m$, and equal scaled truncation radius, or concentration, $Xi_u=R_u/r_u^dagger$, $u=i,j$, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, $y$, or fractional scaling radii, $y^dagger=r_j^dagger/r_i^dagger$, deduced from sample objects.
Bosonic models with Fermi-liquid kinematics: realizations and properties
Goldbart, Paul; Gopalakrishnan, Sarang; Lamacraft, Austen
2011-03-01
We consider models of interacting bosons in which the single-particle kinetic energy achieves its minimum on a surface in momentum space. The kinematics of such models resembles that resulting from Pauli blocking in Fermi liquids; therefore, Shankar's renormalization-group treatment of Fermi liquids can be adapted to investigate phase transitions in these bosonic systems. We explore possible experimental realizations of such models in cold atomic gases: e.g., via spin-orbit coupling, multimode-cavity-mediated interactions, and Cooper pairing of Fermi gases in spin-dependent lattices. We address the phase structure and critical behavior of the resulting models within the framework of Ref., focusing in particular on Bose-Einstein condensation and on quantum versions of the Brazovskii transition from a superfluid to a supersolid.
Byers, N
2002-01-01
This talk is about Enrico Fermi and Leo Szilard, their collaboration and involvement in nuclear energy development and decisions to construct and use the atomic bomb in World War II. Fermi and Szilard worked closely together at Columbia in 1939-40 to explore feasibility of a nuclear chain reaction, and then on the physics for construction of the first pile (nuclear reactor). "On matters scientific or technical there was rarely any disagreement between Fermi and myself" Szilard said. But there were sharp differences on other matters.
NASA
2009-01-01
1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)
Venderbos, Jörn W. F.; Kozii, Vladyslav; Fu, Liang
2016-11-01
Motivated by the recent experiment indicating that superconductivity in the doped topological insulator CuxBi2Se3 has an odd-parity pairing symmetry with rotational symmetry breaking, we study the general class of odd-parity superconductors with two-component order parameters in trigonal and hexagonal crystal systems. In the presence of strong spin-orbit interaction, we find two possible superconducting phases below Tc, a time-reversal-breaking (i.e., chiral) phase and an anisotropic (i.e., nematic) phase, and determine their relative energetics from the gap function in momentum space. The nematic superconductor generally has a full quasiparticle gap, whereas the chiral superconductor with a three-dimensional (3D) Fermi surface has point nodes with lifted spin degeneracy, resulting in itinerant Majorana fermions in the bulk and topological Majorana arcs on the surface.
Osmotic Second Virial Coefficients of Aqueous Solutions from Two-Component Equations of State.
Cerdeiriña, Claudio A; Widom, B
2016-12-29
Osmotic second virial coefficients in dilute aqueous solutions of small nonpolar solutes are calculated from three different two-component equations of state. The solutes are five noble gases, four diatomics, and six hydrocarbons in the range C1-C4. The equations of state are modified versions of the van der Waals, Redlich-Kwong, and Peng-Robinson equations, with an added hydrogen-bonding term for the solvent water. The parameters in the resulting equations of state are assigned so as to reproduce the experimental values and temperature dependence of the density, vapor pressure, and compressibility of the solvent, the gas-phase second virial coefficient of the pure solute, the solubility and partial molecular volume of the solute, and earlier estimates of the solutes' molecular radii. For all 15 solutes, the calculations are done for 298.15 K, whereas for CH4, C2H6, and C3H8 in particular, they are also done as functions of temperature over the full range 278.15-348.15 K. The calculated osmotic virial coefficients are compared with earlier calculations of these coefficients for these solutes and also with the results derived from earlier computer simulations of model aqueous solutions of methane. They are also compared with the experimental gas-phase second virial coefficients of the pure gaseous solutes to determine the effect the mediation of the solvent has on the resulting solute-solute interactions in the solution.
National Aeronautics and Space Administration — All analysis results presented here are preliminary and are not intended as an official catalog of Fermi-LAT detected GRBs. Please consult the table's caveat page...
National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...
Energy Technology Data Exchange (ETDEWEB)
Doi, Kensuke; Natsume, Yuhei
2003-05-01
In relation with remarkable time-evolution measurements of JILA reported in Hall et al. (Phys. Rev. Lett. 81 (1998) 1539) where Bose condensates of {sup 87}Rb for different hyperfine states {psi}{sub 1}= vertical bar F=1,m=-1> and {psi}{sub 2}= vertical bar F=2,m=1> can be confined under various conditions in harmonic traps, we calculate the dynamic simulation for wavepackets {psi}{sub 1} and {psi}{sub 2} by the coupled time-dependent Gross-Pitaevskii equations. In fact, we give relative sag to both states in center of the trap following to experimental conditions: As a result of calculation, {psi}{sub 1} and {psi}{sub 2} show the phase-separation indicating the vibrational motions with the out-of-phase behavior. As for variations of centers of masses and interpenetrative motions of wavepackets bouncing back, the agreements between the present numerical results and experiments of JILA are quite well.
Enrico Fermi centenary exhibition seminar
Maximilien Brice
2002-01-01
Photo 01: Dr. Juan Antonio Rubio, Leader of the Education and Technology Transfer Division and CERN Director General, Prof. Luciano Maiani. Photo 03: Luciano Maiani, Welcome and Introduction Photo 09: Antonino Zichichi, The New 'Centro Enrico Fermi' at Via Panisperna Photos 10, 13: Ugo Amaldi, Fermi at Via Panisperna and the birth of Nuclear Medicine Photo 14: Jack Steinberger, Fermi in Chicago Photo 18: Valentin Telegdi, A close-up of Fermi Photo 21: Arnaldo Stefanini, Celebrating Fermi's Centenary in Documents and Pictures.
Temperature dependence of the universal contact parameter in a unitary Fermi gas.
Kuhnle, E D; Hoinka, S; Dyke, P; Hu, H; Hannaford, P; Vale, C J
2011-04-29
The contact I, introduced by Tan, has emerged as a key parameter characterizing universal properties of strongly interacting Fermi gases. For ultracold Fermi gases near a Feshbach resonance, the contact depends upon two quantities: the interaction parameter 1/(k(F)a), where k(F) is the Fermi wave vector and a is the s-wave scattering length, and the temperature T/T(F), where T(F) is the Fermi temperature. We present the first measurements of the temperature dependence of the contact in a unitary Fermi gas using Bragg spectroscopy. The contact is seen to follow the predicted decay with temperature and shows how pair-correlations at high momentum persist well above the superfluid transition temperature.
Phase space methods for degenerate quantum gases
Dalton, Bryan J; Barnett, Stephen M
2015-01-01
Recent experimental progress has enabled cold atomic gases to be studied at nano-kelvin temperatures, creating new states of matter where quantum degeneracy occurs - Bose-Einstein condensates and degenerate Fermi gases. Such quantum states are of macroscopic dimensions. This book presents the phase space theory approach for treating the physics of degenerate quantum gases, an approach already widely used in quantum optics. However, degenerate quantum gases involve massive bosonic and fermionic atoms, not massless photons. The book begins with a review of Fock states for systems of identical atoms, where large numbers of atoms occupy the various single particle states or modes. First, separate modes are considered, and here the quantum density operator is represented by a phase space distribution function of phase space variables which replace mode annihilation, creation operators, the dynamical equation for the density operator determines a Fokker-Planck equation for the distribution function, and measurable...
Enrico Fermi exhibition at CERN
2002-01-01
A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...
2009-01-01
In only 10 months of scientific activity, the Fermi space observatory has already collected an unprecedented wealth of information on some of the most amazing objects in the sky. In a recent talk at CERN, Luca Latronico, a member of the Fermi collaboration, explained some of their findings and emphasized the strong links between High Energy Physics (HEP) and High Energy Astrophysics (HEA). The Fermi gamma-ray telescope was launched by NASA in June 2008. After about two months of commissioning it started sending significant data back to the Earth. Since then, it has made observations that are changing our view of the sky: from discovering a whole new set of pulsars, the greatest total energy gamma-ray burst ever, to detecting an unexplained abundance of high-energy electrons that could be a signature of dark matter, to producing a uniquely rich and high definition sky map in gamma-rays. The high performance of the instrument comes as ...
D'Agostini, G
2005-01-01
It is curious to learn that Enrico Fermi knew how to base probabilistic inference on Bayes theorem, and that some influential notes on statistics for physicists stem from what the author calls elsewhere, but never in these notes, {\\it the Bayes Theorem of Fermi}. The fact is curious because the large majority of living physicists, educated in the second half of last century -- a kind of middle age in the statistical reasoning -- never heard of Bayes theorem during their studies, though they have been constantly using an intuitive reasoning quite Bayesian in spirit. This paper is based on recollections and notes by Jay Orear and on Gauss' ``Theoria motus corporum coelestium'', being the {\\it Princeps mathematicorum} remembered by Orear as source of Fermi's Bayesian reasoning.
O'Hara, K. M.; Hemmer, S. L.; Gehm, M. E.; Thomas, J. E.
2003-05-01
Atomic Fermi gases with magnetically tunable, strong interactions provide a desktop laboratory for exploring new nonperturbative theories in systems ranging from superconductors to neutron stars. We use all-optical methods to produce a highly degenerate, two-component gas of ^6Li atoms in an applied magnetic field (910 G) near a Feshbach resonance where strong interactions are observed [1]. The s-wave scattering length is estimated to be a_S=-10^4 a_0, which is large compared to the interparticle spacing. Exciting new predictions for this regime include unitarity-limited universal interactions [2] and the onset of resonance superfluidity at a very high transition temperature [3-5]. Forced evaporation is accomplished by lowering the trap laser intensity over a period of 3.5 seconds and then recompressing the trap to full depth. Abrupt release of the cloud at 910 G results in a highly anisotropic expansion, where the gas expands rapidly in the transverse directions while remaining nearly stationary in the axial direction [1]. This anisotropic energy release has been predicted recently to be a signature of superfluidity in a Fermi gas [6]. We will discuss interpretations of the data in terms of superfluidity and unitarity-limited collision dynamics. References 1. K. M. O'Hara et al., Science, 298, 2179 (2002). 2. H. Heiselberg, Phys. Rev. A 63, 043606 (2001). 3. M. Holland, et al., Phys. Rev. Lett. 87, 120406 (2001). 4. E. Timmermans, et al., Phys. Lett. A 285, 228 (2001). 5. Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89, 130402 (2002). 6. C. Menotti, et al., Phys. Rev. Lett. 89, 250402 (2002).
Solares, H. A. Ayala; Hui, C. M.; Hüntemeyer, P.; collaboration, for the HAWC
2015-01-01
The Fermi Bubbles, which comprise two large and homogeneous regions of spectrally hard gamma-ray emission extending up to $55^{o}$ above and below the Galactic Center, were first noticed in GeV gamma-ray data from the Fermi Telescope in 2010. The mechanism or mechanisms which produce the observed hard spectrum are not understood. Although both hadronic and lep- tonic models can describe the spectrum of the bubbles, the leptonic model can also explain similar structures observed in microwave d...
Thermoelectricity in a junction between interacting cold atomic Fermi gases
Sekera, Tibor; Bruder, Christoph; Belzig, Wolfgang
2016-09-01
A gas of interacting ultracold fermions can be tuned into a strongly interacting regime using a Feshbach resonance. Here, we theoretically study quasiparticle transport in a system of two reservoirs of interacting ultracold fermions on the BCS side of the BCS-BEC crossover coupled weakly via a tunnel junction. Using the generalized BCS theory, we calculate the time evolution of the system that is assumed to be initially prepared in a nonequilibrium state characterized by a particle number imbalance or a temperature imbalance. A number of characteristic features like sharp peaks in quasiparticle currents or transitions between the normal and superconducting states are found. We discuss signatures of the Seebeck and the Peltier effects and the resulting temperature difference of the two reservoirs as a function of the interaction parameter (kFa ) -1. The Peltier effect may lead to an additional cooling mechanism for ultracold fermionic atoms.
Unconventional phases of attractive Fermi gases in synthetic Hall ribbons
Ghosh, Sudeep Kumar; Greschner, Sebastian; Yadav, Umesh K.; Mishra, Tapan; Rizzi, Matteo; Shenoy, Vijay B.
2017-06-01
An innovative way to produce quantum Hall ribbons in a cold atomic system is to use M hyperfine states of atoms in a one-dimensional optical lattice to mimic an additional "synthetic dimension." A notable aspect here is that the SU(M ) symmetric interaction between atoms manifests as "infinite ranged" along the synthetic dimension. We study the many-body physics of fermions with SU(M ) symmetric attractive interactions in this system using a combination of analytical field theoretic and numerical density-matrix renormalization-group methods. We uncover the rich ground-state phase diagram of the system, including unconventional phases such as squished baryon fluids, shedding light on many-body physics in low dimensions. Remarkably, changing the parameters entails interesting crossovers and transition; e.g., we show that increasing the magnetic field (that produces the Hall effect) converts a "ferrometallic" state at low fields to a "squished baryon superfluid" (with algebraic pairing correlations) at high fields. We also show that this system provides a unique opportunity to study quantum phase separation in a multiflavor ultracold fermionic system.
Strongly-Interacting Fermi Gases in Reduced Dimensions
2015-11-16
scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies to...difference, which appears to oscillate for N2/N1 ≃ 0.34 for the larger pairing energy Eb. To exam - ine the behavior further, we measure the cut-off
A Principle of Corresponding States for Two-Component, Self-Gravitating Fluids
Directory of Open Access Journals (Sweden)
Caimmi, R.
2010-06-01
Full Text Available Macrogases are defined as two-component,large-scale celestial objects where the subsystems interact only via gravitation.The macrogas equation of state is formulated and compared to the van der Waals (VDWequation of state for ordinary gases.By analogy, it is assumed that real macroisothermal curves in macrogases occur as real isothermal curves in ordinary gases, where a phase transition(vapour-liquid observed in ordinary gases and gas-stars assumed in macrogases takesplace along a horizontal linein the macrovolume-macropressure{small $({sf O}sX_mathrm{V}sX_mathrm{p}$} plane.The intersections between real and theoretical(deduced from the equation of state macro isothermalcurves, make two regions of equal surface as for ordinary gases obeying the VDW equation of state.A numerical algorithm is developed for determining the following points of a selected theoretical macroisothermal curve on the {small $({sf O}sX_mathrm{V}sX_mathrm{p}$} plane:the three intersections with the related real macroisothermal curve,and the two extremum points (one maximum and one minimum. Different kinds of macrogases are studied in detail: UU, where U density profiles are flat, to be conceived as a simple guidance case; HH, where H density profiles obey the Hernquist (1990 law, which satisfactorily fits the observed spheroidal components of galaxies; HN/NH, where N density profiles obey the Navarro-Frenk-White (1995,1996, 1997 law, which satisfactorily fits the simulated nonbaryonic dark matter haloes.A different trend is shown by theoretical macroisothermal curves on the{small $({sf O}sX_mathrm{V}sX_mathrm{p}$} plane,according to whether density profiles are sufficiently mild (UU or sufficiently steep (HH, HN/NH.In the former alternative, no critical macroisothermal curve exists, below or above which the trend is monotonous. In the latter alternative, a critical macroisothermal curve exists, as shown by VDW gases, where the critical point may be defined as the horizontal
Solares, H A Ayala; Hüntemeyer, P
2015-01-01
The Fermi Bubbles, which comprise two large and homogeneous regions of spectrally hard gamma-ray emission extending up to $55^{o}$ above and below the Galactic Center, were first noticed in GeV gamma-ray data from the Fermi Telescope in 2010. The mechanism or mechanisms which produce the observed hard spectrum are not understood. Although both hadronic and lep- tonic models can describe the spectrum of the bubbles, the leptonic model can also explain similar structures observed in microwave data from the WMAP and Planck satellites. Recent publications show that the spectrum of the Fermi Bubbles is well described by a power law with an exponential cutoff in the energy range of 100MeV to 500GeV. Observing the Fermi Bubbles at higher gamma-ray energies will help constrain the origin of the bubbles. A steeper cutoff will favor a leptonic model. The High Altitude Water Cherenkov (HAWC) Observatory, located 4100m above sea level in Mexico, is designed to measure high-energy gamma rays between 100GeV to 100TeV. With...
Gor, G Yu
2009-01-01
The paper presents an analytical description of the growth of a two-component bubble in a binary liquid-gas solution. We obtain asymptotic self-similar time dependence of the bubble radius and analytical expressions for the non-steady profiles of dissolved gases around the bubble. We show that the necessary condition for the self-similar regime of bubble growth is the constant, steady-state composition of the bubble. The equation for the steady-state composition is obtained. We reveal the dependence of the steady-state composition on the solubility laws of the bubble components. Besides, the universal, independent from the solubility laws, expressions for the steady-state composition are obtained for the case of strong supersaturations, which are typical for the homogeneous nucleation of a bubble.
Initial data problems for the two-component Camassa-Holm system
Directory of Open Access Journals (Sweden)
Xiaohuan Wang
2014-06-01
Full Text Available This article concerns the study of some properties of the two-component Camassa-Holm system. By constructing two sequences of solutions of the two-component Camassa-Holm system, we prove that the solution map of the Cauchy problem of the two-component Camassa-Holm system is not uniformly continuous in $H^s(\\mathbb{R}$, $s>5/2$.
Analytical method for yrast line states in the interacting two-component Bose-Einstein condensate
Institute of Scientific and Technical Information of China (English)
解炳昊; 景辉
2002-01-01
The yrast spectrum for the harmonically trapped two-component Bose-Einstein condensate (BEC), omitting thedifference between the two components, has been studied using an analytical method. The energy eigenstates andeigenvalues for L＝0,1,2,3 are given. We illustrate that there are different eigenstate behaviours between the even Land odd L cases for the two-component BEC in two dimensions. Except for symmetric states, there are antisymmetricstates for the permutation of the two components, which cannot reduce to those in a single condensate case when thevalue of L is odd.
Composite-fermionization of the mixture composed of Tonks gas and Fermi gas
Institute of Scientific and Technical Information of China (English)
Hao Ya-Jiang
2011-01-01
This paper investigates the ground-state properties of the mixture composed of the strongly interacting TonksGirardeau gas and spin polarized Fermi gas confined in one-dimensional harmonic traps, where the interaction between the Bose atoms and Fermi atoms is tunable. With a generalized Bose-Fermi transformation the mixture is mapped into a two-component Fermi gas. The homogeneous Fermi gas is exactly solvable by the Bethe-ansatz method and the ground state energy density can be obtained. Combining the ground-state energy function of the homogeneous system with local density approximation it obtains the ground-state density distributions of inhomogeneous mixture. It is shown that with the increase in boson-fermion interaction, the system exhibits composite-fermionization crossover.
Virial theorem and universality in a unitary fermi gas.
Thomas, J E; Kinast, J; Turlapov, A
2005-09-16
Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have universal properties, which are independent of the details of the interparticle interactions when the range of the scattering potential is negligible. We prepare an optically trapped, unitary Fermi gas of 6Li, tuned just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we observe that this strongly interacting many-body system obeys the virial theorem for an ideal gas over a wide range of temperatures. Based on this result, we suggest a simple volume thermometry method for unitary gases. We also show that the observed breathing mode frequency, which is close to the unitary hydrodynamic value over a wide range of temperature, is consistent with a universal hydrodynamic gas with nearly isentropic dynamics.
Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry
2015-01-01
A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.
Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System
Jing Yu; Jingwei Han
2014-01-01
Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and $r$ -matrix are also given in this paper.
TASI 2011 lectures notes: two-component fermion notation and supersymmetry
Martin, Stephen P.
2012-01-01
These notes, based on work with Herbi Dreiner and Howie Haber, discuss how to do practical calculations of cross sections and decay rates using two-component fermion notation, as appropriate for supersymmetry and other beyond-the-Standard-Model theories. Included are a list of two-component fermion Feynman rules for the Minimal Supersymmetric Standard Model, and some example calculations.
Relativistic two-component jet evolutions in 2D and 3D
Meliani, Z.; Keppens, R.
2009-01-01
Observations of astrophysical jets and theoretical arguments suggest a transverse stratification with two components induced by intrinsic features of the central engine (accretion disk + black hole). We study two-component jet dynamics for an inner fast low density jet, surrounded by a slower, dense
Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System
Directory of Open Access Journals (Sweden)
Jing Yu
2014-01-01
Full Text Available Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and r-matrix are also given in this paper.
Gradient catastrophe and Fermi-edge resonances in Fermi gas.
Bettelheim, E; Kaplan, Y; Wiegmann, P
2011-04-22
Any smooth spatial disturbance of a degenerate Fermi gas inevitably becomes sharp. This phenomenon, called the gradient catastrophe, causes the breakdown of a Fermi sea to multiconnected components characterized by multiple Fermi points. We argue that the gradient catastrophe can be probed through a Fermi-edge singularity measurement. In the regime of the gradient catastrophe the Fermi-edge singularity problem becomes a nonequilibrium and nonstationary phenomenon. We show that the gradient catastrophe transforms the single-peaked Fermi-edge singularity of the tunneling (or absorption) spectrum to a sequence of multiple asymmetric singular resonances. An extension of the bosonic representation of the electronic operator to nonequilibrium states captures the singular behavior of the resonances.
Thermodynamic properties of noninteracting quantum gases with spin-orbit coupling
Energy Technology Data Exchange (ETDEWEB)
He Li [Jiangsu University of Science and Technology, Zhangjiagang, Jiangsu, 215600 (China); Yu Zengqiang [Institute for Advanced Study, Tsinghua University, Beijing, 100084 (China)
2011-08-15
In this brief report we study thermodynamic properties of noninteracting quantum gases with isotropic spin-orbit coupling. At high temperature, coefficients of virial expansion depend on both temperature T and spin-orbit coupling strength {kappa}. For strong coupling, virial expansion is applicable to the temperature region below the conventional degenerate temperature T{sub F}. At low temperature, specific heat is proportional to {radical}(T) in Bose gases and T in Fermi gases. Temperature dependence of the chemical potential of fermions shows a different behavior when the Fermi surface is above and below the Dirac point.
Belotsky, K; Kouvaris, C; Laletin, M
2015-01-01
We study a two component dark matter candidate inspired by the Minimal Walking Technicolor model. Dark matter consists of a dominant SIMP-like dark atom component made of bound states between primordial helium nuclei and a doubly charged technilepton, and a small WIMP-like component made of another dark atom bound state between a doubly charged technibaryon and a technilepton. This scenario is consistent with direct search experimental findings because the dominant SIMP component interacts too strongly to reach the depths of current detectors with sufficient energy to recoil and the WIMP-like component is too small to cause significant amount of events. In this context a metastable technibaryon that decays to $e^+e^+$, $\\mu^+ \\mu^+$ and $\\tau^+ \\tau^+$ can in principle explain the observed positron excess by AMS-02 and PAMELA, while being consistent with the photon flux observed by FERMI/LAT. We scan the parameters of the model and we find the best possible fit to the latest experimental data. We find that th...
Spin Transport in a Unitarity Fermi Gas Close to the BCS Transition
Mink, M.P.; Jacobs, V. P. J.; Stoof, H.T.C.; Duine, R.A.; Polini, M.; Vignale, G.
2012-01-01
We consider spin transport in a two-component ultracold Fermi gas with attractive interspecies interactions close to the BCS pairing transition. In particular, we consider the spin-transport relaxation rate and the spin-diffusion constant. Upon approaching the transition, the scattering amplitude is
Atom-molecule equilibration in a degenerate Fermi gas with resonant interactions
DEFF Research Database (Denmark)
Williams, J. E.; Nikuni, T.; Nygaard, Nicolai;
2004-01-01
We present a nonequilibrium kinetic theory describing atom-molecule population dynamics in a two-component Fermi gas with a Feshbach resonance. Key collision integrals emerge that govern the relaxation of the atom-molecule mixture to chemical and thermal equilibrium. Our focus is on the pseudogap...
Vortex line in a neutral finite-temperature superfluid Fermi gas
DEFF Research Database (Denmark)
Nygaard, Nicolai; Bruun, G. M.; Schneider, B. I.;
2004-01-01
The structure of an isolated vortex in a dilute two-component neutral superfluid Fermi gas is studied within the context of self-consistent Bogoliubov-de Gennes theory. Various thermodynamic properties are calculated, and the shift in the critical temperature due to the presence of the vortex...
Preparation and frictional investigation of the two-components silanes deposited on alumina surface
Energy Technology Data Exchange (ETDEWEB)
Kośla, K.; Grobelny, J.; Cichomski, M., E-mail: mcichom@uni.lodz.pl
2014-09-30
Highlights: • The two-component silane films on the alumina surface were obtained by a combination of soft lithography and vapor phase deposition method. • The effectiveness of modification procedure was monitored by AFM topography images. • By using gas phase deposition method succeeded in obtaining a good reproduction of pattern. • Silane films with low surface free energy and coefficient of friction values were obtained. • The frictional performance in milli-Newton load range of one- and two-component films was investigated by microtribometry. - Abstract: Functionalization and pattering technique that permits two-component pattern-specific modification of alumina surface with silanes molecules are reported. The method relies on a two-component molecular system that simultaneously decreases coefficient of friction of the alumina surface and provides uniform chemical functionality suitable for further elaboration. Pattern/two-component modification is achieved via gas-phase deposition of the silanes using polydimethylsiloxane stamp. The frictional behaviors of the two-component films of the silane molecules with different chain length covalently absorbed on alumina surfaces, were characterized by the ball-disk (microtribometer) tester. The surfaces of the substrate modified by two-component molecular films were examined by atomic force microscopy (AFM). The measured tribological results showed that the mixing of the fluoroalkylsilane and alkylsilane enhance the lubrication and decrease the friction compared to the one-component thin films.
Sur, Shouvik; Lee, Sung-Sik
2014-07-01
A non-Fermi liquid state without time-reversal and parity symmetries arises when a chiral Fermi surface is coupled with a soft collective mode in two space dimensions. The full Fermi surface is described by a direct sum of chiral patch theories, which are decoupled from each other in the low-energy limit. Each patch includes low-energy excitations near a set of points on the Fermi surface with a common tangent vector. General patch theories are classified by the local shape of the Fermi surface, the dispersion of the critical boson, and the symmetry group, which form the data for distinct universality classes. We prove that a large class of chiral non-Fermi liquid states exists as stable critical states of matter. For this, we use a renormalization group scheme where low-energy excitations of the Fermi surface are interpreted as a collection of (1+1)-dimensional chiral fermions with a continuous flavor labeling the momentum along the Fermi surface. Due to chirality, the Wilsonian effective action is strictly UV finite. This allows one to extract the exact scaling exponents although the theories flow to strongly interacting field theories at low energies. In general, the low-energy effective theory of the full Fermi surface includes patch theories of more than one universality classes. As a result, physical responses include multiple universal components at low temperatures. We also point out that, in quantum field theories with extended Fermi surface, a noncommutative structure naturally emerges between a coordinate and a momentum which are orthogonal to each other. We show that the invalidity of patch description for Fermi liquid states is tied with the presence of UV/IR mixing associated with the emergent noncommutativity. On the other hand, UV/IR mixing is suppressed in non-Fermi liquid states due to UV insensitivity, and the patch description is valid.
Methods of producing epoxides from alkenes using a two-component catalyst system
Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian
2013-07-09
Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.
Two-component generalizations of the periodic Camassa-Holm and Degasperis-Procesi equations
Escher, Joachim; Lenells, Jonatan
2010-01-01
We use geometric methods to study two natural two-component generalizations of the periodic Camassa-Holm and Degasperis-Procesi equations. We show that these generalizations can be regarded as geodesic equations on the semidirect product of the diffeomorphism group of the circle $\\Diff(S^1)$ with some space of sufficiently smooth functions on the circle. Our goals are to understand the geometric properties of these two-component systems and to prove local well-posedness in various function spaces. Furthermore, we perform some explicit curvature calculations for the two-component Camassa-Holm equation, giving explicit examples of large subspaces of positive curvature.
Evolution and phyletic distribution of two-component signal transduction systems.
Wuichet, Kristin; Cantwell, Brian J; Zhulin, Igor B
2010-04-01
Two-component signal transduction systems are abundant in prokaryotes. They enable cells to adjust multiple cellular functions in response to changing environmental conditions. These systems are also found, although in much smaller numbers, in lower eukaryotes and plants, where they appear to control a few very specific functions. Two-component systems have evolved in Bacteria from much simpler one-component systems bringing about the benefit of extracellular versus intracellular sensing. We review reports establishing the origins of two-component systems and documenting their occurrence in major lineages of Life. Copyright 2010 Elsevier Ltd. All rights reserved.
Travelling wave solutions for some two-component shallow water models
Dutykh, Denys; Ionescu-Kruse, Delia
2016-07-01
In the present study we perform a unified analysis of travelling wave solutions to three different two-component systems which appear in shallow water theory. Namely, we analyze the celebrated Green-Naghdi equations, the integrable two-component Camassa-Holm equations and a new two-component system of Green-Naghdi type. In particular, we are interested in solitary and cnoidal-type solutions, as two most important classes of travelling waves that we encounter in applications. We provide a complete phase-plane analysis of all possible travelling wave solutions which may arise in these models. In particular, we show the existence of new type of solutions.
Two-Component Wadati-Konno-Ichikawa Equation and Its Symmetry Reductions
Institute of Scientific and Technical Information of China (English)
QU Chang-Zheng; YAO Ruo-Xia; LI Zhi-Bin
2004-01-01
@@ It is shown that two-component Wadati-Konno-Ichikawa (WKI) equation, i.e. a generalization of the well-known WKI equation, is obtained from the motion of space curves in Euclidean geometry, and it is exactly a system for the graph of the curves when the curve motion is governed by the two-component modified Korteweg-de Vries flow. Group-invariant solutions of the two-component WKI equation which corresponds to an optimal system of its Lie point symmetry groups are obtained, and its similarity reductions to systems of ordinary differential equations are also given.
Liu, Yan; Zhang, Su-Ying
2016-09-01
The ground states of two-component miscible Bose-Einstein condensates (BECs) confined in a rotating annular trap are obtained by using the Thomas-Fermi (TF) approximation method. The ground state density distribution of the condensates experiences a transition from a disc shape to an annulus shape either when the angular frequency increases and the width and the center height of the trap are fixed, or when the width and the center height of the trap increase and the angular frequency is fixed. Meantime the numerical solutions of the ground states of the trapped two-component miscible BECs with the same condition are obtained by using imaginary-time propagation method. They are in good agreement with the solutions obtained by the TF approximation method. The ground states of the trapped two-component immiscible BECs are also given by using the imaginary-time propagation method. Furthermore, by introducing a normalized complex-valued spinor, three kinds of pseudospin textures of the BECs, i.e., giant skyrmion, coaxial double-annulus skyrmion, and coaxial three-annulus skyrmion, are found. Project supported by the National Natural Science Foundation of China (Grant Nos. 91430109 and 11404198), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).
Chen, Jing-Yuan; Son, Dam Thanh
2017-02-01
We develop an extension of the Landau Fermi liquid theory to systems of interacting fermions with non-trivial Berry curvature. We propose a kinetic equation and a constitutive relation for the electromagnetic current that together encode the linear response of such systems to external electromagnetic perturbations, to leading and next-to-leading orders in the expansion over the frequency and wave number of the perturbations. We analyze the Feynman diagrams in a large class of interacting quantum field theories and show that, after summing up all orders in perturbation theory, the current-current correlator exactly matches with the result obtained from the kinetic theory.
Peltier cooling of fermionic quantum gases.
Grenier, Ch; Georges, A; Kollath, C
2014-11-14
We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.
Peltier Cooling of Fermionic Quantum Gases
Grenier, Ch.; Georges, A.; Kollath, C.
2014-11-01
We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.
Scale and Contour: Two Components of a Theory of Memory for Melodies.
Dowling, W. Jay
1978-01-01
The author concentrates on two components of memory which contribute to the reproduction and recognition of melodies, namely, melodic contour and musical scale. A new experiment is reported that shows the interdependence of both components. (Author/RK)
Laser controlling chaotic region of a two-component Bose-Einstein condensate
Institute of Scientific and Technical Information of China (English)
Boli Xia; Wenhua Hai
2005-01-01
@@ For a weakly and periodically driven two-component Bose-Einstein condensate (BEC) the Melnikov chaotic solution and boundedness conditions are derived from a direct perturbation theory that leads to the chaotic regions in the parameter space.
Role of functionality in two-component signal transduction: A stochastic study
Maity, Alok Kumar; Bandyopadhyay, Arnab; Chaudhury, Pinaki; Banik, Suman K.
2014-03-01
We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation.
Two component injection moulding: an interface quality and bond strength dilemma
DEFF Research Database (Denmark)
Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben
2008-01-01
Two component injection moulding is a special branch of injection moulding where two different polymers are combined in to a single part to exploit the different material properties in the final product. Considering the technical and economical importance of the process, this paper investigates...... on quality parameters of the two component parts. Most engineering applications of two component injection moulding calls for high bond strength between the two polymers, on the other hand a sharp and well-defined interface between the two polymers are required for applications like selective metallization...... conditions for a sharp and well-defined interface are exactly the opposite of what is congenial for higher bond strength. So in the production of two component injection moulded parts, there is a compromise to make between the interface quality and the bond strength of the two polymers. Also the injection...
ZHAO, Haiyan; Tang, Liang
2009-01-01
The multidomain cytoplasmic portion of the histidine protein kinase from an essential two-component signal transduction system has been crystallized and X-ray data have been collected to 2.8 Å resolution.
New physics of metals: fermi surfaces without Fermi liquids.
Anderson, P W
1995-01-01
I relate the historic successes, and present difficulties, of the renormalized quasiparticle theory of metals ("AGD" or Fermi liquid theory). I then describe the best-understood example of a non-Fermi liquid, the normal metallic state of the cuprate superconductors.
Cao, Xinhua; Liu, Xue; Chen, Liming; Mao, Yueyuan; Lan, Haichuang; Yi, Tao
2015-11-15
A two-component gel containing long chain alkylated gallic acid (GA) and photochromic phenazopyridine (PAP) was prepared. The gel was thoroughly characterized by UV-visible and IR spectra, SEM and POM images, XRD diffraction and dynamic oscillatory measurements. The structure and transparency of the two-component gel can be reversibly changed by alternative UV light irradiation and warming in the palm of the hand. This kind of soft material has potential application in upscale surface functional materials.
Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent
Usenko, A. S.
2013-01-01
We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...
Evolution and phyletic distribution of two-component signal transduction systems
Wuichet, Kristin; Cantwell, Brian J.; Zhulin, Igor B.
2010-01-01
Two-component signal transduction systems are abundant in prokaryotes. They enable cells to adjust multiple cellular functions in response to changing environmental conditions. These systems are also found, although in much smaller numbers, in lower eukaryotes and plants, where they appear to control a few very specific functions. Two-component systems have evolved in Bacteria from much simpler one-component systems bringing about the benefit of extracellular versus intracellular sensing. We ...
Variational derivation of two-component Camassa-Holm shallow water system
Ionescu-Kruse, Delia
2012-01-01
By a variational approach in the Lagrangian formalism, we derive the nonlinear integrable two-component Camassa-Holm system (1). We show that the two-component Camassa-Holm system (1) with the plus sign arises as an approximation to the Euler equations of hydrodynamics for propagation of irrotational shallow water waves over a flat bed. The Lagrangian used in the variational derivation is not a metric.
Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression
Puthiyaveetil, Sujith; Allen, John F.
2009-01-01
Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles—chloroplasts and mitochondria. Until recently, it was thought that two-component systems i...
Haldane, F. D. M.
2014-01-01
The role of "Fermi arc" surface-quasiparticle states in "topological metals" (where some Fermi surface sheets have non-zero Chern number) is examined. They act as "Fermi-level plumbing" conduits that transfer quasiparticles among groups of apparently-disconnected Fermi sheets with non-zero Chern numbers to maintain equality of their chemical potentials, which is required by gauge invariance. Fermi arcs have a chiral tangential attachment to the surface projections of sheets of the bulk Fermi ...
Two-component mediated peroxide sensing and signal transduction in fission yeast.
Quinn, Janet; Malakasi, Panagiota; Smith, Deborah A; Cheetham, Jill; Buck, Vicky; Millar, Jonathan B A; Morgan, Brian A
2011-07-01
Two-component related proteins play a major role in regulating the oxidative stress response in the fission yeast, Schizosaccharomyces pombe. For example, the peroxide-sensing Mak2 and Mak3 histidine kinases regulate H(2)O(2)-induced activation of the Sty1 stress-activated protein kinase pathway, and the Skn7-related response regulator transcription factor, Prr1, is essential for activation of the core oxidative stress response genes. Here, we investigate the mechanism by which the S. pombe two-component system senses H(2)O(2), and the potential role of two-component signaling in the regulation of Prr1. Significantly, we demonstrate that PAS and GAF domains present in the Mak2 histidine kinase are essential for redox-sensing and activation of Sty1. In addition, we find that Prr1 is required for the transcriptional response to a wide range of H(2)O(2) concentrations and, furthermore, that two-component regulation of Prr1 is specifically required for the response of cells to high levels of H(2)O(2). Significantly, this provides the first demonstration that the conserved two-component phosphorylation site on Skn7-related proteins influences resistance to oxidative stress and oxidative stress-induced gene expression. Collectively, these data provide new insights into the two-component mediated sensing and signaling mechanisms underlying the response of S. pombe to oxidative stress.
Christensen, Steen; Serbus, Laura Renee
2015-03-24
Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus, the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis, and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia, Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia, although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk.
Fermi Communications and Public Outreach
Cominsky, L
2015-01-01
The Sonoma State University (SSU) Education and Public Outreach (E/PO) group participates in the planning and execution of press conferences that feature noteworthy Fermi discoveries, as well as supporting social media and outreach websites. We have also created many scientific illustrations for the media, tools for amateur astronomers for use at star parties, and have given numerous public talks about Fermi discoveries.
This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.
Mechanics of gases; Mechanik der Gase
Energy Technology Data Exchange (ETDEWEB)
Richter, Dieter [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany). BESSY II
2010-07-01
Compact synopsis for natural scientists, engineers and vacuum specialists. Application-oriented presentation with many practical examples and exercises. Ideal for bachelor study programmes. Knowledge on the movement, speed and energy of gas particles are an important prerequisite for an understanding of modern technologies such as vacuum engineering, or, closely related to the former, of vacuum physics or the handling of gases. This book presents the mechanics of gases in a readily understandable manner. The mathematics used is no more complex than necessary. The material is presented in coherent manner and follows a logical progression. The book begins with a description of Maxwell's velocity distribution. This is followed by a derivation of the equations of state for ideal gases as well as a description of the most important equations of state for real gases. Next the author derives relationships for all important gas kinetic parameters and shows how they can be determined experimentally. The presentation ends with explanations of selected calculations and a synopsis of all important formulas. The book contains a number of examples which are oriented towards questions as they arise in engineering or applied physics. The content level is ''Upper Undergraduate''. Keywords: gas dynamics; gas kinetics; ideal and real gas; kinetic gases; textbook of gas dynamics; textbook of gas kinetics; textbook of gas mechanics; Maxwell's law; gas mechanics; fluid mechanics; equations of state for gases. [German] - Kompakte Zusammenfassung fuer Naturwissenschaftler, Ingenieure und Vakuumspezialisten. - Anwendungsorientierte Praesentation mit vielen Praxisbeispielen und Aufgaben. - Ideal fuer das Bachelor-Studium Kenntnisse ueber die Bewegung von Gasteilchen, deren Geschwindigkeit und Energie sind eine wichtige Voraussetzung zum Verstaendnis moderner Technologien, z. B. der Vakuumtechnik, und eng damit verknuepft der Vakuumphysik oder der Handhabung von
Enrico Fermi Symposium at CERN : opening celebration
CERN. Geneva. Audiovisual Unit
2002-01-01
You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani - Welcome and Introduction Antonino Zichichi - The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi - Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger - Fermi in Chicago Valentin Telegdi - A Close-up of Fermi Arnaldo Stefanini - Celebrating Fermi's Centenary in Documents and Pictures and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (English version - c. 30 mins).
Directory of Open Access Journals (Sweden)
Ynduráin, Francisco J.
2002-01-01
Full Text Available Not available
Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.
Phase correlations and quasicondensate in a two-dimensional ultracold Fermi gas
Energy Technology Data Exchange (ETDEWEB)
Tempere, J., E-mail: jacques.tempere@uantwerpen.be [Theory of Quantum and Complex Systems, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 (United States); Klimin, S.N. [Theory of Quantum and Complex Systems, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium)
2015-02-15
The interplay between dimensionality, coherence and interaction in superfluid Fermi gases is analyzed by the phase correlation function of the field of fermionic pairs. We calculate this phase correlation function for a two-dimensional superfluid Fermi gas with s-wave interactions within the Gaussian pair fluctuation formalism. The spatial behavior of the correlation function is shown to exhibit a rapid (exponential) decay at short distances and a characteristic algebraic decay at large distances, with an exponent matching that expected from the Berezinskii–Kosterlitz–Thouless theory of 2D Bose superfluids. We conclude that the Gaussian pair fluctuation approximation is able to capture the physics of quasi-long-range order in two-dimensional Fermi gases. - Highlights: • The phase correlation functions for an ultracold Fermi gas in 2D are calculated. • The decay of the correlation functions is algebraic at long distances. • The Gaussian pair fluctuation approach is shown to capture the quasicondensate physics in 2D Fermi gases.
Problem of nature of inert gases in lunar surface material
Levskiy, L. K.
1974-01-01
The origin of isotopes of inert gases in lunar surface material was investigated from the standpoint of the isotopic two-component status of inert gases in the solar system. Helium and neon represent the solar wind component, while krypton and xenon are planetary gases. Type A gases are trapped by the material of the regolith in the early stages of the existence of the solar system and were brought to the lunar surface together with dust. The material of the regolith therefore cannot be considered as the product of the erosion of the crystalline rocks of the moon and in this sense are extralunar. The regolith material containing type A gases must be identified with the high temperature minerals of the carbonaceous chondrites.
Sur, Shouvik; Lee, Sung-Sik
2016-11-01
We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
DEFF Research Database (Denmark)
Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.;
2016-01-01
beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...
Mapder, Tarunendu; Banik, Suman K
2016-01-01
Studies on the role of fluctuations in signal propagation and on gene regulation in monoclonal bacterial population have been extensively pursued based on the machinery of two-component system. The bacterial two-component system shows noise utilisation through its inherent plasticity. The fluctuations propagation takes place using the phosphotransfer module and the feedback mechanism during gene regulation. To delicately observe the noisy kinetics the generic cascade needs stochastic investigation at the mRNA and protein levels. To this end, we propose a theoretical framework to investigate the noisy signal transduction in a generic two-component system. The model shows reliability in information transmission through quantification of several statistical measures. We further extend our analysis to observe the protein distribution in a population of cells. Through numerical simulation, we identify the regime of the kinetic parameter set that generates a stability switch in the steady state distribution of prot...
Two-Component Signal Transduction Systems in the Cyanobacterium Synechocystis sp. PCC 6803
Institute of Scientific and Technical Information of China (English)
LIU Xingguo; HUANG Wei; WU Qingyu
2006-01-01
Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a model organism for a range of biochemical and molecular biology studies aiming at investigating environmental stress response. The publication of the complete genome sequence of the cyanobacterium Synechocystis sp. PCC 6803 provided a tremendous stimulus for research in this field, and at least 80 open reading frames were identified as members of the two-component signal transduction systems in this single species of cyanobacteria. To date, functional roles have been determined for only a limited number of such proteins. This review summarizes our current knowledge about the two-component signal transduction systems in Synechocystis sp. PCC 6803 and describes recent achievements in elucidating the functional roles of these systems.
Meisner, Aaron M.; Finkbeiner, Douglas P.
2015-01-01
We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.
Metastability and coherence of repulsive polarons in a strongly interacting Fermi mixture
DEFF Research Database (Denmark)
Kohstall, Cristoph; Zaccanti, Mattheo; Jag, Matthias;
2012-01-01
Ultracold Fermi gases with tunable interactions provide a test bed for exploring the many-body physics of strongly interacting quantum systems1, 2, 3, 4. Over the past decade, experiments have investigated many intriguing phenomena, and precise measurements of ground-state properties have provided...... benchmarks for the development of theoretical descriptions. Metastable states in Fermi gases with strong repulsive interactions5, 6, 7, 8, 9, 10, 11 represent an exciting area of development. The realization of such systems is challenging, because a strong repulsive interaction in an atomic quantum gas...... implies the existence of a weakly bound molecular state, which makes the system intrinsically unstable against decay. Here we use radio-frequency spectroscopy to measure the complete excitation spectrum of fermionic 40K impurities resonantly interacting with a Fermi sea of 6Li atoms. In particular, we...
Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model
DEFF Research Database (Denmark)
Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth
2005-01-01
We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...
Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies
Li, Chuanzhong; He, Jingsong
2013-11-01
We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.
Rabi Oscillations in Two-Component Bose-Einstein Condensates with a Coupling Drive
Institute of Scientific and Technical Information of China (English)
LI Wei-Dong; FAN Wen-Bing; ZHOU Xiao-Ji; WANG Yi-Qiu; LIANG Jiu-Qing
2002-01-01
The Rabi oscillations in two-component Bose-Einstein condensates with a coupling drive are studiedby means of a pair of bosonic operators. The coupling drive and initial phase difference will affect the amplitudeand the period of the Rabi oscillations. The Rabi oscillations will vanish in the evolution of the condensate densityfor some special initial phase differences (ψ = 0 or π). Our theory provides not only an analytical framework forquantitative predictions for two-component condensates, but also gives an intuitive understanding of some mysteriousfeatures observed in experiments and numerical. simulations.
Targeting two-component signal transduction: a novel drug discovery system.
Okada, Ario; Gotoh, Yasuhiro; Watanabe, Takafumi; Furuta, Eiji; Yamamoto, Kaneyoshi; Utsumi, Ryutaro
2007-01-01
We have developed two screening systems for isolating inhibitors that target bacterial two-component signal transduction: (1) a differential growth assay using a temperature-sensitive yycF mutant (CNM2000) of Bacillus subtilis, which is supersensitive to histidine kinase inhibitors, and (2) a high-throughput genetic system for targeting the homodimerization of histidine kinases essential for the bacterial two-component signal transduction. By using these methods, we have been able to identify various types of inhibitors that block the autophosphorylation of histidine kinases with different modes of actions.
Modulational instability of two-component Bose-Einstein condensates in an optical lattice
Jin, G R; Nahm, K; Jin, Guang-Ri; Kim, Chul Koo; Nahm, Kyun
2004-01-01
We study modulational instability of two-component Bose-Einstein condensates in a deep optical lattice, which is modelled as a coupled discrete nonlinear Schr\\"{o}dinger equation. The excitation spectrum and the modulational instability condition of the total system are presented analytically. In the long-wavelength limit, our results agree with the homogeneous two-component Bose-Einstein condensates case. The discreteness effects result in the appearance of the modulational instability for the condensates in miscible region. The numerical calculations confirm our analytical results and show that the interspecies coupling can transfer the instability from one component to another.
Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model
DEFF Research Database (Denmark)
Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth
2005-01-01
We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...
Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies
Energy Technology Data Exchange (ETDEWEB)
Li, Chuanzhong, E-mail: lichuanzhong@nbu.edu.cn; He, Jingsong, E-mail: hejingsong@nbu.edu.cn [Department of Mathematics, Ningbo University, Ningbo 315211 (China)
2013-11-15
We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.
Institute of Scientific and Technical Information of China (English)
Yan Jing; Shan Lei; Wang Yue; Xiao Zhi-Li; Wen Hai-Hu
2008-01-01
Low-temperature specific heat in a dichalcogenide superconductor 2H-NbSe2 is measured in various magnetic fields. It is found that the specific heat can be described very well by a simple model concerning two components corresponding to vortex normal core and ambient superconducting region, separately. For calculating the specific heat outside the vortex core region, we use the Bardeen-Cooper-Schrieffer (BCS) formalism under the assumption of a narrow distribution of the superconducting gaps. The field-dependent vortex core size in the mixed state of 2H-NbSe2, determined by using this model, can explain the nonlinear field dependence of specific heat coefficient γ(H), which is in good agreement with the previous experimental results and more formal calculations. With the high-temperature specific heat data, we can find that, in the multi-band superconductor 2H-NbSe2, the recovered density of states (or Fermi surface) below Tc under a magnetic field seems not to be gapped again by the charge density wave (CDW) gap, which suggests that the superconducting gap and the CDW gap may open on different Fermi surface sheets.
The fermi paradox is neither Fermi's nor a paradox.
Gray, Robert H
2015-03-01
The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox.
Quantum gases finite temperature and non-equilibrium dynamics
Szymanska, Marzena; Davis, Matthew; Gardiner, Simon
2013-01-01
The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...
Kinetic equation for strongly interacting dense Fermi systems
Lipavsky, P; Spicka, V
2001-01-01
We review the non-relativistic Green's-function approach to the kinetic equations for Fermi liquids far from equilibrium. The emphasis is on the consistent treatment of the off-shell motion between collisions and on the non-instant and non-local picture of binary collisions. The resulting kinetic equation is of the Boltzmann type, and it represents an interpolation between the theory of transport in metals and the theory of moderately dense gases. The free motion of particles is renormalised by various mean field and mass corrections in the spirit of Landau's quasiparticles in metals. The collisions are non-local in the spirit of Enskog's theory of non-ideal gases. The collisions are moreover non-instant, a feature which is absent in the theory of gases, but which is shown to be important for dense Fermi systems. In spite of its formal complexity, the presented theory has a simple implementation within the Monte-Carlo simulation schemes. Applications in nuclear physics are given for heavy-ion reactions and th...
Enrico Fermi the obedient genius
Bruzzaniti, Giuseppe
2016-01-01
This biography explores the life and career of the Italian physicist Enrico Fermi, which is also the story of thirty years that transformed physics and forever changed our understanding of matter and the universe: nuclear physics and elementary particle physics were born, nuclear fission was discovered, the Manhattan Project was developed, the atomic bombs were dropped, and the era of “big science” began. It would be impossible to capture the full essence of this revolutionary period without first understanding Fermi, without whom it would not have been possible. Enrico Fermi: The Obedient Genius attempts to shed light on all aspects of Fermi’s life - his work, motivation, influences, achievements, and personal thoughts - beginning with the publication of his first paper in 1921 through his death in 1954. During this time, Fermi demonstrated that he was indeed following in the footsteps of Galileo, excelling in his work both theoretically and experimentally by deepening our understanding of the Pauli e...
Three-wave interaction in two-component quadratic nonlinear lattices
DEFF Research Database (Denmark)
Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth
1999-01-01
We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation kno...
A novel two-component system found in Mycobacterium tuberculosis
DEFF Research Database (Denmark)
Morth, J. P.; Gosmann, S.; Nowak, E.;
2005-01-01
We report the identification of a novel two-component system in Mycobacterium tuberculosis. We show that the putative histidine kinase with the genomic locus tag Rv3220c is able to self-phosphorylate in the presence of Mg2+/ATP and subsequently transfer the phosphoryl group to a novel response...
Light Responsive Two-Component Supramolecular Hydrogel: A Sensitive Platform for Humidity Sensors
Samai, Suman
2016-02-15
The supramolecular assembly of anionic azobenzene dicarboxylate and cationic cetyltrimethylammonium bromide (CTAB) formed a stimuli responsive hydrogel with a critical gelation concentration (CGC) of 0.33 wt%. This self-sustainable two-component system was able to repair damage upon light irradiation. Moreover, it was successfully employed in the fabrication of highly sensitive humidity sensors for the first time.
A Two-Component Generalization of Burgers' Equation with Quasi-Periodic Solution
Pan, Hongfei; Xia, Tiecheng; Chen, Dengyuan
2014-10-01
In this paper, we aim for the theta function representation of quasi-periodic solution and related crucial quantities for a two-component generalization of Burgers' equation. Our tools include the theory of algebraic curves, meromorphic functions, Baker-Akhiezer functions and the Dubrovin-type equations for auxiliary divisor. Eith these tools, the explicit representations for above quantities are obtained.
Two-component Brownian coagulation: Monte Carlo simulation and process characterization
Institute of Scientific and Technical Information of China (English)
Haibo Zhao; Chu guang Zheng
2011-01-01
The compositional distribution within aggregates of a given size is essential to the functionality of composite aggregates that are usually enlarged by rapid Brownian coagulation.There is no analytical solution for the process of such two-component systems.Monte Carlo method is an effective numerical approach for two-component coagulation.In this paper,the differentially weighted Monte Carlo method is used to investigate two-component Brownian coagulation,respectively,in the continuum regime,the freemolecular regime and the transition regime.It is found that ( 1 ) for Brownian coagulation in the continuum regime and in the free-molecular regime,the mono-variate compositional distribution,i.e.,the number density distribution function of one component amount (in the form of volume of the component in aggregates) satisfies self-preserving form the same as particle size distribution in mono-component Brownian coagulation; (2) however,for Brownian coagulation in the transition regime the mono-variate compositional distribution cannot reach self-similarity; and (3) the bivariate compositional distribution,i.e.,the combined number density distribution function of two component amounts in the three regimes satisfies a semi self-preserving form.Moreover,other new features inherent to aggregative mixing are also demonstrated; e.g.,the degree of mixing between components,which is largely controlled by the initial compositional mass fraction,improves as aggregate size increases.
Transport of a two-component mixture in one-dimensional channels
Borman, VD; Tronin, VN; Tronin, [No Value; Troyan, [No Value
2004-01-01
The transport of a two-component gas mixture in subnanometer channels is investigated theoretically for an arbitrary filling of channels. Special attention is paid to consistent inclusion of density effects, which are associated both with the interaction and with a finite size of particles. The anal
The Integrability of New Two-Component KdV Equation
Directory of Open Access Journals (Sweden)
Ziemowit Popowicz
2010-02-01
Full Text Available We consider the bi-Hamiltonian representation of the two-component coupled KdV equations discovered by Drinfel'd and Sokolov and rediscovered by Sakovich and Foursov. Connection of this equation with the supersymmetric Kadomtsev-Petviashvilli-Radul-Manin hierarchy is presented. For this new supersymmetric equation the Lax representation and odd Hamiltonian structure is given.
The Qualitative Analysis of a Solution of a Series Maintenance System with Two Components
Institute of Scientific and Technical Information of China (English)
GUOWei-hua; YANGMing-zeng
2003-01-01
In this paper, firstly we study the series maintenance system with two components, obtain its exsistence and uniqueness of a dynamic state nonnegative solution by strongly continuous semigroups of operators theory. Then we prove that 0 is the eigenvalue of the system's host operators, and finally we study the eigenvector of the eigenvalue 0.
A novel two-component system involved in secretion stress response in Streptomyces lividans.
Directory of Open Access Journals (Sweden)
Sonia Gullón
Full Text Available BACKGROUND: Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. METHODOLOGY/PRINCIPAL FINDINGS: Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155 that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.
Impacts of photon bending on observational aspects of Two Component Advective Flow
Chatterjee, Arka
2016-01-01
Nature of photon trajectories in a curved spacetime around black holes are studied without constraining their motion to any plane. Impacts of photon bending are separately scrutinized for Keplerian and CENBOL components of Two Component Advective Flow (TCAF) model. Parameters like Red shift, Bolometric Flux, temperature profile and time of arrival of photons are also computed.
The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis
DEFF Research Database (Denmark)
Bisicchia, Paola; Noone, David; Lioliou, Efthimia
2007-01-01
Adaptation of bacteria to the prevailing environmental and nutritional conditions is often mediated by two-component signal transduction systems (TCS). The Bacillus subtilis YycFG TCS has attracted special attention as it is essential for viability and its regulon is poorly defined. Here we show...
Modeling Thermal Dust Emission with Two Components: Application to the Planck HFI Maps
Meisner, Aaron
2014-01-01
We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to...
Global dissipative solutions for the two-component Camassa-Holm shallow water system
Directory of Open Access Journals (Sweden)
Yujuan Wang
2015-01-01
Full Text Available This article presents a continuous semigroup of globally defined weak dissipative solutions for the two-component Camassa-Holm system. Such solutions are established by using a new approach based on characteristics a set of new variables overcoming the difficulties inherent in multi-component systems.
Phase separation and dynamics of two-component Bose-Einstein condensates
DEFF Research Database (Denmark)
Lee, Kean Loon; Jørgensen, Nils Byg; Liu, I-Kang;
2016-01-01
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition...
Phase of Two-Component Bose-Einstein Condensates with a Coupling Drive
Institute of Scientific and Technical Information of China (English)
YU Zhao-Xian; JIN Shuo; JIAO Zhi-Yong; WANG Ji-Suo
2007-01-01
By using the invariant theory, we study the phases of two-component Bose-Einstein condensates with a coupling drive under the case that the strength of the interatomic interaction in each condensate equals the interspecies interaction. The dynamical and geometric phases are presented respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.
The dynamics of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates
Institute of Scientific and Technical Information of China (English)
Lü Bin-Bin; Hao Xue; Tian Qiang
2011-01-01
This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.
Instabilities on crystal surfaces: The two-component body-centered solid-on-solid model
Carlon, E.; van Beijeren, H.; Mazzeo, G.
1996-01-01
The free energy of crystal surfaces that can be described by the two-component body-centered solid-on-solid model has been calculated in a mean-field approximation. The system may model ionic crystals with a bcc lattice structure (for instance CsCl). Crossings between steps are energetically favored
Geometric Integrability of Two-Component Camassa-Holm and Hunter-Saxton Systems
Institute of Scientific and Technical Information of China (English)
SONG Juu-Feng; QU Chang-Zheng
2011-01-01
It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number o, conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.
Transport of a two-component mixture in one-dimensional channels
Borman, VD; Tronin, VN; Tronin, [No Value; Troyan, [No Value
2004-01-01
The transport of a two-component gas mixture in subnanometer channels is investigated theoretically for an arbitrary filling of channels. Special attention is paid to consistent inclusion of density effects, which are associated both with the interaction and with a finite size of particles. The
Caraveo, Patrizia A
2010-01-01
2009 has been an extraordinary year for gamma-ray pulsar astronomy and 2010 promises to be equally good. Not only have we registered an extraordinary increase in the number of pulsars detected in gamma rays, but we have also witnessed the birth of new sub-families: first of all, the radio-quiet gamma pulsars and later an ever growing number of millisecond pulsars, a real surprise. We started with a sample of 7 gamma-ray emitting neutron stars (6 radio pulsars and Geminga) and now the Fermi-LAT harvest encompasses 24 "Geminga-like" new gamma-ray pulsars, a dozen millisecond pulsars and about thirty radio pulsars. Moreover, radio searches targeted to LAT unidentified sources yielded 18 new radio millisecond pulsars, several of which have been already detected also in gamma rays. Thus, currently the family of gamma-ray emitting neutron stars seems to be evenly divided between classical radio pulsars, millisecond pulsars and radio quiet neutron stars.
Tomkins, RPT
1991-01-01
This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.
Schoen, Helmut
2015-01-01
Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.
Geotail observations of temperature anisotropy of the two-component protons in the dusk plasma sheet
Directory of Open Access Journals (Sweden)
M. N. Nishino
2007-03-01
Full Text Available In search for clues towards the understanding of the cold plasma sheet formation under northward IMF, we study the temperature anisotropy of the two-component protons in the plasma sheet near the dusk low-latitude boundary observed by the Geotail spacecraft. The two-component protons result from mixing of the cold component from the solar wind and the hot component of the magnetospheric origin, and may be the most eloquent evidence for the transport process across the magnetopause. The cold component occasionally has a strong anisotropy in the dusk flank, and the sense of the anisotropy depends on the observed locations: the parallel temperature is enhanced in the tail flank while the perpendicular temperature is enhanced on the dayside. The hot component is nearly isotropic in the tail while the perpendicular temperature is enhanced on the dayside. We discuss possible mechanism that can lead to the observed temperature anisotropies.
Trapping of two-component matter-wave solitons by mismatched optical lattices
Energy Technology Data Exchange (ETDEWEB)
Shi, Z.; Law, K.J.H. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States)], E-mail: kevrekid@gmail.com; Malomed, B.A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)
2008-05-26
We consider a one-dimensional model of a two-component Bose-Einstein condensate in the presence of periodic external potentials of opposite signs, acting on the two species. The interaction between the species is attractive, while intra-species interactions may be attractive too [the system of the bright-bright (BB) type], or of opposite signs in the two components [the gap-bright (GB) type]. We identify the existence and stability domains for soliton complexes of the BB and GB types. The evolution of unstable solitons leads to the establishment of oscillatory states. The increase of the strength of the nonlinear attraction between the species results in symbiotic stabilization of the complexes, despite the fact that one component is centered around a local maximum of the respective periodic potential.
Peng, Daoling; Weigend, Florian; Reiher, Markus
2013-01-01
We present an efficient algorithm for one- and two-component relativistic exact-decoupling calculations. The spin-orbit coupling was taken into account for the evaluation of relativistically transformed Hamiltonian. The relativistic decoupling transformation has to be evaluated with primitive functions so that the construction of the relativistic one-electron Hamiltonian becomes the bottleneck of the whole calculation for large molecules. We apply our recently developed local DLU scheme [J. Chem. Phys. 136 (2012) 244108] to accelerate this step. With our new implementation two-component relativistic density functional calculations can be performed invoking the resolution-of-identity density-fitting approximation and (Abelian as well as non-Abelian) point group symmetries to accelerate both the exact-decoupling and the two-electron part. The capability of our implementation is illustrated at the example of silver clusters with up to 309 atoms, for which the cohesive energy is calculated and extrapolated to the...
Use of two-component signal transduction systems in the construction of synthetic genetic networks.
Ninfa, Alexander J
2010-04-01
Two-component signal transduction systems are a common type of signaling system in prokaryotes; the typical cell has dozens of systems regulating aspects of physiology and controlling responses to environmental conditions. In this review, I consider how these systems may be useful for engineering novel cell functions. Examples of successful incorporation of two-component systems into engineered systems are noted, and features of the systems that favor or hinder potential future use of these signaling systems for synthetic biology applications are discussed. The focus will be on the engineering of novel couplings of sensory functions to signaling outputs. Recent successes in this area are noted, such as the development of light-sensitive transmitter proteins and chemotactic receptors responsive to nitrate. Copyright 2010 Elsevier Ltd. All rights reserved.
Lou, Qiang; Qi, Yijun; Ma, Yuanfang; Qu, Di
2014-01-01
Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE) combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS). Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.
Casino, Patricia; Rubio, Vicente; Marina, Alberto
2009-10-16
The chief mechanism used by bacteria for sensing their environment is based on two conserved proteins: a sensor histidine kinase (HK) and an effector response regulator (RR). The signal transduction process involves highly conserved domains of both proteins that mediate autokinase, phosphotransfer, and phosphatase activities whose output is a finely tuned RR phosphorylation level. Here, we report the structure of the complex between the entire cytoplasmic portion of Thermotoga maritima class I HK853 and its cognate, RR468, as well as the structure of the isolated RR468, both free and BeF(3)(-) bound. Our results provide insight into partner specificity in two-component systems, recognition of the phosphorylation state of each partner, and the catalytic mechanism of the phosphatase reaction. Biochemical analysis shows that the HK853-catalyzed autokinase reaction proceeds by a cis autophosphorylation mechanism within the HK subunit. The results suggest a model for the signal transduction mechanism in two-component systems.
A hydrodynamic scheme for two-component winds from hot stars
Votruba, V; Kubát, J; Rätzel, D
2007-01-01
We have developed a time-dependent two-component hydrodynamics code to simulate radiatively-driven stellar winds from hot stars. We use a time-explicit van Leer scheme to solve the hydrodynamic equations of a two-component stellar wind. Dynamical friction due to Coulomb collisions between the passive bulk plasma and the line-scattering ions is treated by a time-implicit, semi-analytic method using a polynomial fit to the Chandrasekhar function. This gives stable results despite the stiffness of the problem. This method was applied to model stars with winds that are both poorly and well-coupled. While for the former case we reproduce the mCAK solution, for the latter case our solution leads to wind decoupling.
Atomic Tunneling Effect in Two-Component Bose-Einstein Condensates with a Coupling Drive
Institute of Scientific and Technical Information of China (English)
JIAOZhi-Yong; YUZhao-Xian; YANGXin-Jian
2004-01-01
In this paper, we have studied the atomic population difference and the atomic tunneling current of two-component Bose-Einstein condensates with a coupling drive. It is found that when the two-component Bose Einstein condensates are initially in the coherent states, the atomic population difference may exhibit the step structure, in which the numbers of the step increase with the decrease of the Rabi frequency and with the increment of the initial phase difference. The atomic population difference may exhibit collapses, and revivals, in which their periods are affected dramatically by the Rabi frequency and the initial phase difference. The atomic tunneling current may exhibit damping oscillation behaviors, and exist the step structure for the time range of 10-10 ～ 10-9 second.
Engineering bacterial two-component system PmrA/PmrB to sense lanthanide ions.
Liang, Haihua; Deng, Xin; Bosscher, Mike; Ji, Quanjiang; Jensen, Mark P; He, Chuan
2013-02-13
The Salmonella PmrA/PmrB two-component system uses an iron(III)-binding motif on the cell surface to sense the environmental or host ferric level and regulate PmrA-controlled gene expression. We replaced the iron(III)-binding motif with a lanthanide-binding peptide sequence that is known to selectively recognize trivalent lanthanide ions. The newly engineered two-component system (PmrA/PmrB) can effectively sense lanthanide ion and regulate gene expression in E. coli . This work not only provides the first known lanthanide-based sensing and response in live cells but also demonstrates that the PmrA/PmrB system is a suitable template for future synthetic biology efforts to construct bacteria that can sense and respond to other metal ions in remediation or sequestration.
Indian Academy of Sciences (India)
Surendra P Verma
2000-03-01
This paper presents error propagation equations for modeling of radiogenic isotopes during mixing of two components or end-members. These equations can be used to estimate errors on an isotopic ratio in the mixture of two components, as a function of the analytical errors or the total errors of geological field sampling and analytical errors. Two typical cases (``Small errors'' and ``Large errors'') are illustrated for mixing of Sr isotopes. Similar examples can be formulated for the other radiogenic isotopic ratios. Actual isotopic data for sediment and basalt samples from the Cocos plate are also included to further illustrate the use of these equations. The isotopic compositions of the predicted mixtures can be used to constrain the origin of magmas in the central part of the Mexican Volcanic Belt. These examples show the need of high quality experimental data for them to be useful in geochemical modeling of magmatic processes.
A two-component Frenkel-Kontorowa model for surface alloy formation
Daruka, I
2003-01-01
It has been shown by recent experiments that bulk immiscible metals (e.g. Ag/Cu, Ag/Co and Au/Ni) can form binary alloys on certain surfaces where the substrate mediates the elastic misfits between the two components, thus relieving the elastic strain in the overlayer. These novel surface alloys exhibit a rich phase structure. We formulate a two-component Frenkel-Kontorova model in one dimension to study surface alloy formation. This model can naturally incorporate dislocation formation that plays a crucial role in determining the actual structure of the system. Using energy minimization calculations we provide a phase diagram in terms of average alloy composition and the energy of mixing. Monte Carlo simulations were also performed to study the structure and interaction of the emerging dislocations.
Energy Technology Data Exchange (ETDEWEB)
Xu, Fei [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China); Huang, Jiahao, E-mail: hjiahao@mail2.sysu.edu.cn [TianQin Research Center & School of Physics and Astronomy, Sun Yat-Sen University, SYSU Zhuhai Campus, Zhuhai 519082 (China); Liu, Quan [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)
2017-03-03
Highlights: • A scheme for detecting magnetic field gradients via a double-well two-component Bose–Einstein condensate interferometer. • The magnetic field gradient can be extracted by either the spin population or the external state. • Our proposal is potentially sensitive to weak magnetic field inhomogeneity due to its small sensor size. - Abstract: We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose–Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.
Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys
Przewlocka, H.; Siedlecka, J.
1982-01-01
The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.
In vivo study of the two-component signaling network in Escherichia coli
Sommer, Erik
2012-01-01
Microorganisms commonly use ‘two-component’ signaling systems for sensing environmental conditions, with members being present in nearly all bacterial and archaeal genomes in different numbers. Prototypical two-component systems are comprised of a sensory histidine kinase and a response regulator protein that is phosphorylated by the kinase. The regulator typically acts as a transcription factor regulating gene expression. Due to their prevalence in microorganisms, a basic understanding of th...
Directory of Open Access Journals (Sweden)
Christian H Bell
2010-02-01
Full Text Available Two-component signal transduction pathways comprising histidine protein kinases (HPKs and their response regulators (RRs are widely used to control bacterial responses to environmental challenges. Some bacteria have over 150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is the chemotaxis pathway. Here, we present the 1.40 A crystal structure of the histidine-containing phosphotransfer domain of the chemotaxis HPK, CheA(3, in complex with its cognate RR, CheY(6. A methionine finger on CheY(6 that nestles in a hydrophobic pocket in CheA(3 was shown to be important for the interaction and was found to only occur in the cognate RRs of CheA(3, CheY(6, and CheB(2. Site-directed mutagenesis of this methionine in combination with two adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from CheA(3-P to CheY(6. Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs, dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA(3-P. The structure presented here has allowed us to identify specificity determinants for the CheA-CheY interaction and subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal transduction.
Two-component model of the interaction of an interstellar cloud with surrounding hot plasma
Provornikova, E. A.; Izmodenov, V. V.; Lallement, R.
2011-01-01
We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma...
General aspects of two-component regulatory circuits in bacteria: Domains, signals and roles.
Padilla-Vaca, Felipe; Mondragón-Jaimes, Verónica; Franco, Bernardo
2016-08-09
All living organisms are subject to changing environments, which must be sensed in order to respond swiftly and efficiently. Two-component systems (TCS) are signal transduction regulatory circuits based typically on a membrane bound sensor kinase and a cytoplasmic response regulator, that is activated through a histidine to aspartate phosphorelay reactions. Activated response regulator acts usually as a transcription factor. The best known examples were identified in bacteria, but they are also found in fungi, algae and plants. Thus far, they are not found in mammals. Regulatory circuits coupled to two-component systems exhibit a myriad of responses to environmental stimuli such as: redox potential, pH, specific metabolites, pressure, light and more recently to specific antimicrobial peptides that activate a sensor kinase responsible for expressing virulence factors through the active response regulator. In this review we explore general aspects on two-component systems that ultimately can play a role on virulence regulation, also the intriguing domain properties of the sensor kinases that can be a potential target for antimicrobial compounds. Only a handful of sensor kinases are extensively characterized, the vast majority belong to what we call 'the dark matter of bacterial signal transduction' since no known signal, structure and biochemical properties are available. Regulatory circuits from vertebrate pathogenic organisms can explain virulence in terms of either response to environmental factors or specific niche occupancy. Hopefully, knowledge on these signal transduction systems can lead to identify novel molecules that target two-component systems, since the increase of drug resistant microorganisms is worrisome.
Histidine Phosphotransfer Proteins in Fungal Two-Component Signal Transduction Pathways
2013-01-01
The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, s...
Institute of Scientific and Technical Information of China (English)
Zhang Xiao-Fei; Zhang Pei; He Wan-Quan; Liu Xun-Xu
2011-01-01
By using a unified theory of the formation of various types of vector-solitons in two-component Bose-Einstein condensates with tunable interactions, we obtain a family of exact vector-soliton solutions for the coupled nonlinear Schr(o)dinger equations. Moreover, the Bogoliubov equation shows that there exists stable dark soliton in specific situations. Our results open up new ways in considerable experimental interest for the quantum control of multi-component Bose-Einstein condensates.
Bloch Oscillations of Two-Component Bose-Einstein Condensates in Optical Lattices
Institute of Scientific and Technical Information of China (English)
GU Huai-Qiang; WANG Zhi-Cheng; JIN Kang; TAN Lei
2006-01-01
@@ We study the Bloch oscillations of two-component Bose-Einstein condensates trapped in spin-dependent optical lattices. The influence of the intercomponent atom interaction on the system is discussed in detail Accelerated breakdown of the Bloch oscillations and revival phenomena are found respectively for the repulsive and attractive case. For both the cases, the system will finally be set in a quantum self-trapping state due to dynamical instability.
The CpxRA two-component system is essential for Citrobacter rodentium virulence.
Thomassin, Jenny-Lee; Giannakopoulou, Natalia; Zhu, Lei; Gross, Jeremy; Salmon, Kristiana; Leclerc, Jean-Mathieu; Daigle, France; Le Moual, Hervé; Gruenheid, Samantha
2015-05-01
Citrobacter rodentium is a murine intestinal pathogen used as a model for the foodborne human pathogens enterohemorrhagic Escherichia coli and enteropathogenic E. coli. During infection, these pathogens use two-component signal transduction systems to detect and adapt to changing environmental conditions. In E. coli, the CpxRA two-component signal transduction system responds to envelope stress by modulating the expression of a myriad of genes. Quantitative real-time PCR showed that cpxRA was expressed in the colon of C57BL/6J mice infected with C. rodentium. To determine whether CpxRA plays a role during C. rodentium infection, a cpxRA deletion strain was generated and found to have a colonization defect during infection. This defect was independent of an altered growth rate or a defective type III secretion system, and single-copy chromosomal complementation of cpxRA restored virulence. The C. rodentium strains were then tested in C3H/HeJ mice, a lethal intestinal infection model. Mice infected with the ΔcpxRA strain survived infection, whereas mice infected with the wild-type or complemented strains succumbed to infection. Furthermore, we found that the cpxRA expression level was higher during early infection than at a later time point. Taken together, these data demonstrate that the CpxRA two-component signal transduction system is essential for the in vivo virulence of C. rodentium. In addition, these data suggest that fine-tuned cpxRA expression is important for infection. This is the first study that identifies a C. rodentium two-component transduction system required for pathogenesis. This study further indicates that CpxRA is an interesting target for therapeutics against enteric pathogens.
A Possible Two-Component Structure of the Non-Perturbative Pomeron
Gauron, P; Gauron, Pierre; Nicolescu, Basarab
2000-01-01
We propose a QCD-inspired two-component Pomeron form which gives an excellent description of the proton-proton, pi-proton, kaon-proton, gamma-proton and gamma-gamma total cross sections. Our fit has a better CHI2/dof for a smaller number of parameters as compared with the PDG fit. Our 2-Pomeron form is fully compatible with weak Regge exchange-degeneracy, universality, Regge factorization and the generalized vector dominance model.
Different electronic charges in two-component superconductor by coherent state
Energy Technology Data Exchange (ETDEWEB)
Shi, Xuguang, E-mail: shixg@bjfu.edu.cn
2015-07-17
Recently, the different electronic charges, which are related to the different coupling constants with magnetic field, in the two-component superconductor have been studied in the frame of Ginzburg–Landau theory. In order to study the electronic charges in detail we suggest the wave function in the two-component superconductor to be in the coherent state. We find the different electronic charges exist not only in the coherent state but also in the incoherent state. But the ratio of the different charges in the coherent state is different from the ratio in the incoherence. The expressions of the coupling constants are given directly based on the coherence effects. We also discuss the winding number in such a system. - Highlights: • Suggest the wave function in two-component superconductor is coherent. • Interpret the existence of different electric charges by the coherent states. • Derive a new expression for the supercurrent. • Reveal the relation between different electric charges and winding number.
Indian Academy of Sciences (India)
K V Srividhya; S Krishnaswamy
2007-08-01
Bacteriophage induced lysis of host bacterial cell is mediated by a two component cell lysis cassette comprised of holin and lysozyme. Prophages are integrated forms of bacteriophages in bacterial genomes providing a repertoire for bacterial evolution. Analysis using the prophage database (http://bicmku.in:8082) constructed by us showed 47 prophages were associated with putative two component cell lysis genes. These proteins cluster into four different subgroups. In this process, a putative holin (essd) and endolysin (ybcS), encoded by the defective lambdoid prophage DLP12 was found to be similar to two component cell lysis genes in functional bacteriophages like p21 and P1. The holin essd was found to have a characteristic dual start motif with two transmembrane regions and C-terminal charged residues as in class II holins. Expression of a fusion construct of essd in Escherichia coli showed slow growth. However, under appropriate conditions, this protein could be over expressed and purified for structure function studies. The second component of the cell lysis cassette, ybcS, was found to have an N-terminal SAR (Signal Arrest Release) transmembrane domain. The construct of ybcS has been over expressed in E. coli and the purified protein was functional, exhibiting lytic activity against E. coli and Salmonella typhi cell wall substrate. Such targeted sequence-structure-function characterization of proteins encoded by cryptic prophages will help understand the contribution of prophage proteins to bacterial evolution.
Design of Novel Mixer and Applicator for Two-Component Surgical Adhesives
Go, Kevin; Kim, Yeong; Lee, Andy H.; Staricha, Kelly; Messersmith, Phillip; Glucksberg, Matthew
2015-01-01
Current mixer and applicator devices on the market are not able to properly and efficiently mix two-component surgical adhesives in small volumes necessary to achieve economic viability. Furthermore, in these devices a significant amount of adhesive is wasted during the application process, as material within the dead space of the mixing chamber must be discarded. We have designed and demonstrated a new active mixer and applicator system capable of rapidly and efficiently mixing two components of an adhesive and applying it to the surgical site. Recently, Messersmith et al. have developed a tissue adhesive inspired by the mussel byssus and have shown that it is effective as a surgical sealant, and is especially suited for wet environments such as in fetal surgery. Like some other tissue sealants, this one requires that two components of differing viscosities be thoroughly mixed within a specified and short time period. Through a combination of compression and shear testing, we demonstrated that our device could effectively mix the adhesive developed by Messersmith et al. and improve its shear strength to significantly higher values than what has been reported for vortex mixing. Overall, our mixer and applicator system not only has potential applications in mixing and applying various adhesives in multiple surgical fields but also makes this particular adhesive viable for clinical use. PMID:26421090
Real time propagation of the exact two component time-dependent density functional theory
Goings, Joshua J.; Kasper, Joseph M.; Egidi, Franco; Sun, Shichao; Li, Xiaosong
2016-09-01
We report the development of a real time propagation method for solving the time-dependent relativistic exact two-component density functional theory equations (RT-X2C-TDDFT). The method is fundamentally non-perturbative and may be employed to study nonlinear responses for heavy elements which require a relativistic Hamiltonian. We apply the method to several group 12 atoms as well as heavy-element hydrides, comparing with the extensive theoretical and experimental studies on this system, which demonstrates the correctness of our approach. Because the exact two-component Hamiltonian contains spin-orbit operators, the method is able to describe the non-zero transition moment of otherwise spin-forbidden processes in non-relativistic theory. Furthermore, the two-component approach is more cost effective than the full four-component approach, with similar accuracy. The RT-X2C-TDDFT will be useful in future studies of systems containing heavy elements interacting with strong external fields.
Bioinformatics analysis of two-component regulatory systems in Staphylococcus epidermidis
Institute of Scientific and Technical Information of China (English)
QIN Zhiqiang; ZHONG Yang; ZHANG Jian; HE Youyu; WU Yang; JIANG Juan; CHEN Jiemin; LUO Xiaomin; QU Di
2004-01-01
Sixteen pairs of two-component regulatory systems are identified in the genome of Staphylococcus epidermidis ATCC12228 strain, which is newly sequenced by our laboratory for Medical Molecular Virology and Chinese National Human Genome Center at Shanghai, by using bioinformatics analysis. Comparative analysis of the twocomponent regulatory systems in S. epidermidis and that of S.aureus and Bacillus subtilis shows that these systems may regulate some important biological functions, e.g. growth,biofilm formation, and expression of virulence factors in S.epidermidis. Two conserved domains, i.e. HATPase_c and REC domains, are found in all 16 pairs of two-component proteins.Homologous modelling analysis indicates that there are 4similar HATPase_c domain structures of histidine kinases and 13 similar REC domain structures of response regulators,and there is one AMP-PNP binding pocket in the HATPase_c domain and three active aspartate residues in the REC domain. Preliminary experiment reveals that the bioinformatics analysis of the conserved domain structures in the two-component regulatory systems in S. epidermidis may provide useful information for discovery of potential drug target.
Muzamal, Uzma; Gomez, Daniel; Kapadia, Fenika; Golemi-Kotra, Dasantila
2014-01-01
The response to cationic antimicrobial peptides (CAMPs) in Staphylococcus aureus relies on a two-component system (TCS), GraSR, an auxiliary protein GraX and an ATP-binding cassette (ABC) transporter, VraF/G. To understand the signal transduction mechanism by GraSR, we investigated the kinase activity of the cytoplasmic domain of histidine kinase GraS and the interaction with its cognate response regulator GraR. We also investigated interactions among the auxiliary protein GraX, GraS/R and the ATPase protein of the ABC transporter, VraF. We found that GraS lacks autophosphorylation activity, unlike a similar histidine kinase, BceS, of Bacillus subtilis. In addition, the interaction between GraS and GraR is very weak in comparison to the stronger interaction observed between BceS and its conjugated response regulator, BceR, suggesting that CAMP signaling may not flow directly from GraS to GraR. We found that the auxiliary protein GraX interacts with VraF and GraR, and requires the histidine phosphotransfer and dimerization domain of GraS to interact with this protein. Further, VraF requires the GraS region that connects the membrane-bound domain with the cytoplasmic domain of this protein for interaction with GraS. The interactions of GraX with GraS/R and VraF indicate that GraX may serve as a scaffold to bring these proteins in close proximity to GraS, plausibly to facilitate activation of GraS to ultimately transduce the signal to GraR.
The Fermiac or Fermi's Trolley
Coccetti, F.
2016-03-01
The Fermiac, known also as Fermi's trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.
The Fermi Paradox is Neither Fermis Nor a Paradox
Gray, Robert H
2016-01-01
The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth-and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked 'where is everybody?'- apparently suggesting that we don't see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist, or suggesting its absence is paradoxical. The claim 'they are not here; therefore they do not exist' was first published by Michael Hart, claiming that interstellar travel and colonization of the galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important...
Universal trimers emerging from a spin-orbit-coupled Fermi sea
Qiu, Xingze; Cui, Xiaoling; Yi, Wei
2016-11-01
We report the existence of a universal trimer state induced by an impurity interacting with a two-component spin-orbit-coupled Fermi gas in two dimensions. In the zero-density limit with a vanishing Fermi sea, the trimer is stabilized by the symmetry of the single-particle spectrum under spin-orbit coupling, and is therefore universal against the short-range details of the interaction potential. When the Fermi energy increases, we show that the trimer is further stabilized by particle-hole fluctuations over a considerable parameter region. We map out the phase diagram consisting of trimers, dimers, and polarons, and discuss the detection of these states using radio-frequency spectroscopy. The universal trimer revealed in our work is a direct manifestation of intriguing three-body correlations emerging from a many-body environment, which, in our case, is cooperatively supported by the single-particle spectral symmetry and the collective particle-hole excitations.
Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap
Institute of Scientific and Technical Information of China (English)
HAO Ya-Jiang
2011-01-01
By the density-functional calculation we investigate the ground-state properties of Bose-Fermi mixture confined in one-dimensional harmonic traps. The homogeneous mixture of bosons and polarized fermions with contact interaction can be exactly solved by the Bethe-ansatz method. After giving the exact formula of ground state energy density, we employ the local-density approximation to determine the density distribution of each component. It is shown that with the increase in interaction, the total density distribution evolves to Fermi-like distribution and the system exhibits phase separation between two components when the interaction is strong enough but finite. While in the infinite interaction limit both bosons and fermions display the completely same Fermi-like distributions and phase separation disappears.
Predictions of Phase Distribution in Liquid-Liquid Two-Component Flow
Wang, Xia; Sun, Xiaodong; Duval, Walter M.
2011-06-01
Ground-based liquid-liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid-liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59® two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20°C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved.
Specificity residues determine binding affinity for two-component signal transduction systems.
Willett, Jonathan W; Tiwari, Nitija; Müller, Susanne; Hummels, Katherine R; Houtman, Jon C D; Fuentes, Ernesto J; Kirby, John R
2013-11-05
Two-component systems (TCS) comprise histidine kinases and their cognate response regulators and allow bacteria to sense and respond to a wide variety of signals. Histidine kinases (HKs) phosphorylate and dephosphorylate their cognate response regulators (RRs) in response to stimuli. In general, these reactions appear to be highly specific and require an appropriate association between the HK and RR proteins. The Myxococcus xanthus genome encodes one of the largest repertoires of signaling proteins in bacteria (685 open reading frames [ORFs]), including at least 127 HKs and at least 143 RRs. Of these, 27 are bona fide NtrC-family response regulators, 21 of which are encoded adjacent to their predicted cognate kinases. Using system-wide profiling methods, we determined that the HK-NtrC RR pairs display a kinetic preference during both phosphotransfer and phosphatase functions, thereby defining cognate signaling systems in M. xanthus. Isothermal titration calorimetry measurements indicated that cognate HK-RR pairs interact with dissociation constants (Kd) of approximately 1 µM, while noncognate pairs had no measurable binding. Lastly, a chimera generated between the histidine kinase, CrdS, and HK1190 revealed that residues conferring phosphotransfer and phosphatase specificity dictate binding affinity, thereby establishing discrete protein-protein interactions which prevent cross talk. The data indicate that binding affinity is a critical parameter governing system-wide signaling fidelity for bacterial signal transduction proteins. Using in vitro phosphotransfer and phosphatase profiling assays and isothermal titration calorimetry, we have taken a system-wide approach to demonstrate specificity for a family of two-component signaling proteins in Myxococcus xanthus. Our results demonstrate that previously identified specificity residues dictate binding affinity and that phosphatase specificity follows phosphotransfer specificity for cognate HK-RR pairs. The data
Directory of Open Access Journals (Sweden)
Daniel Rozas
Full Text Available BACKGROUND: Bacterial two-component signal transduction regulatory systems are the major set of signalling proteins frequently mediating responses to changes in the environment. They typically consist of a sensor, a membrane-associated histidine kinase and a cytoplasmic response regulator. The membrane-associated sensor detects the environmental signal or stress, whereas the cytoplasmic regulatory protein controls the cellular response usually by gene transcription modulation. METHODOLOGY/PRINCIPALFINDINGS: The Streptomyces coelicolor two genes operon SCO5784-SCO5785 encodes a two-component system, where SCO5784 encodes a histidine-kinase sensor and SCO5785 encodes a response regulator protein. When the expression level of the regulator gene decreases, the antibiotic synthesis and sporulation is delayed temporarily in addition to some ribosomal genes became up regulated, whereas the propagation of the regulatory gene in high copy number results in the earlier synthesis of antibiotics and sporulation, as well as the down regulation of some ribosomal genes and, moreover, in the overproduction of several extracellular proteins. Therefore, this two-component system in S. coelicolor seems to influence various processes characterised by the transition from primary to secondary metabolism, as determined by proteomic and transcriptomic analyses. CONCLUSIONS/SIGNIFICANCE: Propagation of SCO5785 in multicopy enhances the production of antibiotics as well as secretory proteins. In particular, the increase in the expression level of secretory protein encoding genes, either as an artefactual or real effect of the regulator, could be of potential usefulness when using Streptomyces strains as hosts for homologous or heterologous extracellular protein production.
Analytical solution and meaning of feasible regions in two-component three-way arrays.
Omidikia, Nematollah; Abdollahi, Hamid; Kompany-Zareh, Mohsen; Rajkó, Róbert
2016-10-01
Although many efforts have been directed to the development of approximation methods for determining the extent of feasible regions in two- and three-way data sets; analytical determination (i.e. using only finite-step direct calculation(s) instead of the less exact numerical ones) of feasible regions in three-way arrays has remained unexplored. In this contribution, an analytical solution of trilinear decomposition is introduced which can be considered as a new direct method for the resolution of three-way two-component systems. The proposed analytical calculation method is applied to the full rank three-way data array and arrays with rank overlap (a type of rank deficiency) loadings in a mode. Close inspections of the analytically calculated feasible regions of rank deficient cases help us to make clearer the information gathered from multi-way problems frequently emerged in physics, chemistry, biology, agricultural, environmental and clinical sciences, etc. These examinations can also help to answer, e.g., the following practical question: "Is two-component three-way data with proportional loading in a mode actually a three-way data array?" By the aid of the additional information resulted from the investigated feasible regions of two-component three-way data arrays with proportional profile in a mode, reasons for the inadequacy of the seemingly trilinear data treatment methods published in the literature (e.g., U-PLS/RBL-LD that was used for extraction of quantitative and qualitative information reported by Olivieri et al. (Anal. Chem. 82 (2010) 4510-4519)) could be completely understood.
Design principles in two component systems and his-asp phosphorelays
Salvadó López, Baldiri
2016-01-01
L’objectiu d’aquesta tesi és trobar principis generals que permetin relacionar l’estructura i les propietats funcionals dels circuits moleculars de transducció de senyals two-component systems (TCS) i his-asp phosphorelays (PR). La tesi s’inicia revisant els mètodes usats per a l’estudi de principis de disseny en sistemes moleculars i alguns dels resultats obtinguts fins ara, i discutint la importància de l’estudi dels principis de disseny. A continuació, explorem els proteomes seqüenc...
On the inspection policy of a two-component parallel system with failure interaction
Energy Technology Data Exchange (ETDEWEB)
Zequeira, Romulo I. [ISTIT, Equipe Modelisation et Surete des Systemes, Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: romulo.zequeira@utt.fr; Berenguer, Christophe [ISTIT, Equipe Modelisation et Surete des Systemes, Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr
2005-04-01
In this paper we study a two-component standby system which can successfully operate upon a demand if at least one component is not failed. We assume that failures can be detected only by periodic inspections. We consider that the failure of one component can modify the (conditional) failure probability of the component still alive with probability p and do not interact with probability 1-p. For that failure interaction scheme we obtain the system reliability function for the case of staggered inspections. We compare staggered and non-staggered inspections through numerical examples considering constant hazard rates.
Optimization and control of two-component radially self-accelerating beams
Energy Technology Data Exchange (ETDEWEB)
Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander [Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745 Jena (Germany)
2015-11-23
We report on the properties of radially self-accelerating intensity distributions consisting of two components in the angular frequency domain. We show how this subset of solutions, in literature also known as helicon beams, possesses peculiar characteristics that enable a better control over its properties. In this work, we present a step-by-step optimization procedure to achieve the best possible intensity contrast, a distinct rotation rate and long propagation lengths. All points are discussed on a theoretical basis and are experimentally verified.
Modulational instability for a self-attractive two-component Bose-Einstein condensate
Institute of Scientific and Technical Information of China (English)
Li Sheng-Chang; Duan Wen-Shan
2009-01-01
By means of the multiple-scale expansion method, the coupled nonlinear Schr(o)dinger equations without an explicit external potential are obtained in two-dimensional geometry for a self-attractive Bose-Einstein condensate composed of different hyperfine states. The modulational instability of two-component condensate is investigated by using a simple technique. Based on the discussion about two typical cases, the explicit expression of the growth rate for a purely growing modulational instability and the optimum stable conditions are given and analysed analytically. The results show that the modulational instability of this two-dimensional system is quite different from that in a one-dimensional system.
Xu, Fei; Huang, Jiahao; Liu, Quan
2017-03-01
We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose-Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.
Topological phases of two-component bosons in species-dependent artificial gauge potentials
Wu, Ying-Hai; Shi, Tao
2016-08-01
We study bosonic atoms with two internal states in artificial gauge potentials whose strengths are different for the two components. A series of topological phases for such systems is proposed using the composite fermion theory and the parton construction. It is found in exact diagonalization that some of the proposed states may be realized for simple contact interaction between bosons. The ground states and low-energy excitations of these states are modeled using trial wave functions. The effective field theories for these states are also constructed and reveal some interesting properties.
Numerical simulation of two-component flow fluid - fluid in the microchannel T- type
Directory of Open Access Journals (Sweden)
Shebeleva A.A.
2015-01-01
Full Text Available Results of testing methodology for calculating two-phase flows based on the method of fluid in the cells (VOF method, and the procedure for CSF accounting of surface tension forces in the microchannel are considered in the work. Mathematical modeling of two-component flow fluid -fluid in the T- microchannel conducted using this methodology. The following flow regimes studied slug flow, rivulet flow, parallel flow, dispersed (droplet flow, plug flow. Comparison of numerical results with experimental data done. Satisfactory agreement between the calculated values with the experimental data obtained.
Two-component systems and their co-option for eukaryotic signal transduction.
Schaller, G Eric; Shiu, Shin-Han; Armitage, Judith P
2011-05-10
Two-component signaling pathways involve histidine kinases, response regulators, and sometimes histidine-containing phosphotransfer proteins. Prevalent in prokaryotes, these signaling elements have also been co-opted to meet the needs of signal transduction in eukaryotes such as fungi and plants. Here we consider the evolution of such regulatory systems, with a particular emphasis on the roles they play in signaling by the plant hormones cytokinin and ethylene, in phytochrome-mediated perception of light, and as integral components of the circadian clock. Copyright © 2011 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Anca Visinescu
2011-04-01
Full Text Available Using the multiple scales method, the interaction between two bright and one dark solitons is studied. Provided that a long wave-short wave resonance condition is satisfied, the two-component Zakharov-Yajima-Oikawa (ZYO completely integrable system is obtained. By using a Madelung fluid description, the one-soliton solutions of the corresponding ZYO system are determined. Furthermore, a discussion on the interaction between one bright and two dark solitons is presented. In particular, this problem is reduced to solve a one-component ZYO system in the resonance conditions.
Two-component colour dipole emission in the central region of onium-onium scattering
Peschanski, R
1995-01-01
The initial-state radiation of soft colour dipoles produced in the central region of onium-onium scattering via single QCD Pomeron exchange (BFKL) is calculated in the framework of Mueller's dipole approach. The resulting dipole production has a two-component structure. One is constant with energy while the other grows and possesses a power-law tail at appreciably large transverse distances from the collision axis. It may be related to the growth of the gluon distribution at small Bjorken-x.
Dynamics of bubbles in a two-component Bose-Einstein condensate
Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki
2011-03-01
The dynamics of a phase-separated two-component Bose-Einstein condensate are investigated, in which a bubble of one component moves through the other component. Numerical simulations of the Gross-Pitaevskii equation reveal a variety of dynamics associated with the creation of quantized vortices. In two dimensions, a circular bubble deforms into an ellipse and splits into fragments with vortices, which undergo the Magnus effect. The Bénard-von Kármán vortex street is also generated. In three dimensions, a spherical bubble deforms into toruses with vortex rings. When two rings are formed, they exhibit leapfrogging dynamics.
Robinson, P. A.; Newman, D. L.
1990-01-01
A simple two-component model of strong turbulence that makes clear predictions for the scalings, spectra, and statistics of Langmuir waves is developed. Scalings of quantities such as energy density, power input, dissipation power wave collapse, and number density of collapsing objects are investigated in detail and found to agree well with model predictions. The nucleation model of wave-packet formation is strongly supported by the results. Nucleation proceeds with energy flowing from background to localized states even in the absence of a driver. Modulational instabilities play little or no role in maintaining the turbulent state when significant density nonuniformities are present.
The Two-Component Virial Theorem and the Physical Properties of Stellar Systems.
Dantas; Ribeiro; Capelato; de Carvalho RR
2000-01-01
Motivated by present indirect evidence that galaxies are surrounded by dark matter halos, we investigate whether their physical properties can be described by a formulation of the virial theorem that explicitly takes into account the gravitational potential term representing the interaction of the dark halo with the baryonic or luminous component. Our analysis shows that the application of such a "two-component virial theorem" not only accounts for the scaling relations displayed by, in particular, elliptical galaxies, but also for the observed properties of all virialized stellar systems, ranging from globular clusters to galaxy clusters.
... known as: Arterial Blood Gases; ABGs Formal name: Arterial Blood Gas Analysis Related tests: Electrolytes , Bicarbonate , BUN , Creatinine , Emergency and ... lives higher than sea level. Results from an arterial blood gas analysis are not diagnostic; they should be used in ...
Kauzmann, Walter
2012-01-01
Monograph and text supplement for first-year students of physical chemistry focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. 1966 edition.
National Research Council Canada - National Science Library
Jacques Arnaud; Laurent Chusseau; Fabrice Philippe
2013-01-01
We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent...
Tabor, David
1969-01-01
It has been tradional to treat gases, liquids and solids as if they were completely unrelated material. However, this book shows that many of their bulk properties can been explained in terms of intermolecular forces.
“Hard probes” of strongly-interacting atomic gases
Energy Technology Data Exchange (ETDEWEB)
Nishida, Yusuke [Los Alamos National Laboratory
2012-06-18
We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.
Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.
Hou, Yan-Hua; Yu, Zhenhua
2015-10-20
Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.
Holography, fermi surfaces and criticality
Čubrović, Mihailo
2013-01-01
We employ the novel method of AdS/CFT correspondence to study strongly correlated fermions, their ground states and the phase transitions between them. AdS/CFT maps the quantum many-body problem to a classical gravity problem, making it more tractable. We find a holographic description of Fermi
National Research Council Canada - National Science Library
Skerker, Jeffrey M; Prasol, Melanie S; Perchuk, Barrett S; Biondi, Emanuele G; Laub, Michael T
2005-01-01
Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals...
Unstaggered-staggered solitons in two-component discrete nonlinear Schr\\"{o}dinger lattices
Malomed, Boris A; Van Gorder, Robert A
2012-01-01
We present stable bright solitons built of coupled unstaggered and staggered components in a symmetric system of two discrete nonlinear Schr\\"{o}dinger (DNLS) equations with the attractive self-phase-modulation (SPM) nonlinearity, coupled by the repulsive cross-phase-modulation (XPM) interaction. These mixed modes are of a "symbiotic" type, as each component in isolation may only carry ordinary unstaggered solitons. The results are obtained in an analytical form, using the variational and Thomas-Fermi approximations (VA and TFA), and the generalized Vakhitov-Kolokolov (VK) criterion for the evaluation of the stability. The analytical predictions are verified against numerical results. Almost all the symbiotic solitons are predicted by the VA quite accurately, and are stable. Close to a boundary of the existence region of the solitons (which may feature several connected branches), there are broad solitons which are not well approximated by the VA, and are unstable.
Relationship between Fermi Resonance and Solvent Effects
Institute of Scientific and Technical Information of China (English)
JIANG Xiu-Lan; LI Dong-Fei; SUN Cheng-Lin; LI Zhan-Long; YANG Guang; ZHOU Mi; LI Zuo-Wei; GAO Shu-Qin
2011-01-01
We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS2 in C6H6 at different concentrations. Also, we investigate the Fermi resonance of C6H6 and CCl4 in their solution at different pressures. It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio, etc., on the other hand, the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.%@@ We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS2 in C6H6 at different concentrations.Also,we investigate the Fermi resonance of C6H6 and CCl4 in their solution at different pressures.It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio,etc.,on the other hand,the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.
Two-component jet simulations: I. Topological stability of analytical MHD outflow solutions
Matsakos, T; Vlahakis, N; Massaglia, S; Mignone, A; Trussoni, E
2007-01-01
Observations of collimated outflows in young stellar objects indicate that several features of the jets can be understood by adopting the picture of a two-component outflow, wherein a central stellar component around the jet axis is surrounded by an extended disk-wind. The precise contribution of each component may depend on the intrinsic physical properties of the YSO-disk system as well as its evolutionary stage. In this context, the present article starts a systematic investigation of two-component jet models via time-dependent simulations of two prototypical and complementary analytical solutions, each closely related to the properties of stellar-outflows and disk-winds. These models describe a meridionally and a radially self-similar exact solution of the steady-state, ideal hydromagnetic equations, respectively. By using the PLUTO code to carry out the simulations, the study focuses on the topological stability of each of the two analytical solutions, which are successfully extended to all space by remo...
Arabidopsis ethylene-response gene ETR1: Similiarity of product to two-component regulators
Energy Technology Data Exchange (ETDEWEB)
Chang, C.; Kwok, S.F.; Bleecker, A.B.; Meyerowitz, E.M. (California Institute of Technology, Pasadena, CA (United States))
1993-10-22
Ethylene behaves as a hormone in plants, regulating such aspects of growth and development as fruit ripening, flower senescence, and abscission. Ethylene insensitivity is conferred by dominant mutations in the ETR1 gene early in the ethylene signal transduction pathway of Arabidopsis thaliana. The ETR1 gene was cloned by the method of chromosome walking. Each of the four known etr1 mutant alleles contains a missense mutation near the amino terminus of the predicted protein. Although the sequence of the amino-terminal half of the deduced ETR1 protein appears to be novel, the carboxyl-terminal half is similar in sequence to both components of the prokaryotic family of signal transducers known as the two-component systems. Thus, an early step in ethylene signal transduction in plants may involve transfer of phosphate as in prokaryotic two-component systems. The dominant etr1-1 mutant gene conferred ethylene insensitivity to wild-type Arabidopsis plants when introduced by transformation.
Directory of Open Access Journals (Sweden)
Qiang Lou
2014-01-01
Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.
Two-component model of the interaction of an interstellar cloud with surrounding hot plasma
Provornikova, E A; Lallement, R
2011-01-01
We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma electrons instantly heat the plasma in the interaction region and that plasma flow can be described as isothermal. Using the two-component model of the interaction of cold neutral cloud and hot plasma, we estimate the lifetime of interstellar clouds. We focus on the clouds typical for the cluster of local interstellar clouds embedded in the hot Local Bubble and give an estimate of the lifetime of the Local interstellar cloud where the Sun currently travels. The charge transfer between highly charged plasma ions and neutr...
Patient Autonomy for the Management of Chronic Conditions: A Two-Component Re-conceptualization
Naik, Aanand D.; Dyer, Carmel B.; Kunik, Mark E.; McCullough, Laurence B.
2010-01-01
The clinical application of the concept of patient autonomy has centered on the ability to deliberate and make treatment decisions (decisional autonomy) to the virtual exclusion of the capacity to execute the treatment plan (executive autonomy). However, the one-component concept of autonomy is problematic in the context of multiple chronic conditions. Adherence to complex treatments commonly breaks down when patients have functional, educational, and cognitive barriers that impair their capacity to plan, sequence, and carry out tasks associated with chronic care. The purpose of this article is to call for a two-component re-conceptualization of autonomy and to argue that the clinical assessment of capacity for patients with chronic conditions should be expanded to include both autonomous decision making and autonomous execution of the agreed-upon treatment plan. We explain how the concept of autonomy should be expanded to include both decisional and executive autonomy, describe the biopsychosocial correlates of the two-component concept of autonomy, and recommend diagnostic and treatment strategies to support patients with deficits in executive autonomy. PMID:19180389
Numerical analysis of a non equilibrium two-component two-compressible flow in porous media
Saad, Bilal Mohammed
2013-09-01
We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.
Implications of Two-component Dark Matter Induced by Forbidden Channels and Thermal Freeze-out
Aoki, Mayumi
2016-01-01
We consider a model of two-component dark matter based on a hidden $U(1)_D$ symmetry, in which relic densities of the dark matter are determined by forbidden channels and thermal freeze-out. The hidden $U(1)_D$ symmetry is spontaneously broken to a residual $\\mathbb{Z}_4$ symmetry, and the lightest $\\mathbb{Z}_4$ charged particle can be a dark matter candidate. Moreover, depending on the mass hierarchy in the dark sector, we have two-component dark matter. We show that the relic density of the lighter dark matter component can be determined by forbidden annihilation channels which require larger couplings compared to the normal freeze-out mechanism. As a result, a large self-interaction of the lighter dark matter component can be induced, which may solve small scale problems of $\\Lambda$CDM model. On the other hand, the heavier dark matter component is produced by normal freeze-out mechanism. We find that interesting implications emerge between the two dark matter components in this framework. We explore dete...
Negative control in two-component signal transduction by transmitter phosphatase activity.
Huynh, TuAnh Ngoc; Stewart, Valley
2011-10-01
Bifunctional sensor transmitter modules of two-component systems exert both positive and negative control on the receiver domain of the cognate response regulator. In negative control, the transmitter module accelerates the rate of phospho-receiver dephosphorylation. This transmitter phosphatase reaction serves the important physiological functions of resetting response regulator phosphorylation level and suppressing cross-talk. Although the biochemical reactions underlying positive control are reasonably well understood, the mechanism for transmitter phosphatase activity has been unknown. A recent hypothesis is that the transmitter phosphatase reaction is catalysed by a conserved Gln, Asn or Thr residue, via a hydrogen bond between the amide or hydroxyl group and the nucleophilic water molecule in acyl-phosphate hydrolysis. This hypothetical mechanism closely resembles the established mechanisms of auxiliary phosphatases such as CheZ and CheX, and may be widely conserved in two-component signal transduction. In addition to the proposed catalytic residues, transmitter phosphatase activity also requires the correct transmitter conformation and appropriate interactions with the receiver. Evidence suggests that the phosphatase-competent and autokinase-competent states are mutually exclusive, and the corresponding negative and positive activities are likely to be reciprocally regulated through dynamic control of transmitter conformations. © 2011 Blackwell Publishing Ltd.
Mitrophanov, Alexander Y; Hadley, Tricia J; Groisman, Eduardo A
2010-08-27
Positive feedback loops are regulatory elements that can modulate expression output, kinetics and noise in genetic circuits. Transcriptional regulators participating in such loops are often expressed from two promoters, one constitutive and one autoregulated. Here, we investigate the interplay of promoter strengths and the intensity of the stimulus activating the transcriptional regulator in defining the output of a positively autoregulated genetic circuit. Using a mathematical model of two-component regulatory systems, which are present in all domains of life, we establish that positive feedback strongly affects the steady-state output levels at both low and high levels of stimulus if the constitutive promoter of the regulator is weak. By contrast, the effect of positive feedback is negligible when the constitutive promoter is sufficiently strong, unless the stimulus intensity is very high. Furthermore, we determine that positive feedback can affect both transient and steady state output levels even in the simplest genetic regulatory systems. We tested our modeling predictions by abolishing the positive feedback loop in the two-component regulatory system PhoP/PhoQ of Salmonella enterica, which resulted in diminished induction of PhoP-activated genes. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Belić, Milivoj [Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade (Serbia)
2014-12-15
We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number, and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.
Modeling and Simulation of Two-Phase Two-Component Flow with Disappearing Nonwetting Phase
Neumann, Rebecca; Ippisch, Olaf
2012-01-01
Carbon Capture and Storage (CCS) is a recently discussed new technology, aimed at allowing an ongoing use of fossil fuels while preventing the produced CO2 to be released to the atmosphere. CSS can be modeled with two components (water and CO2) in two phases (liquid and CO2). To simulate the process, a multiphase flow equation with equilibrium phase exchange is used. One of the big problems arising in two-phase two-component flow simulations is the disappearance of the nonwetting phase, which leads to a degeneration of the equations satisfied by the saturation. A standard choice of primary variables, which is the pressure of one phase and the saturation of the other phase, cannot be applied here. We developed a new approach using the pressure of the nonwetting phase and the capillary pressure as primary variables. One important advantage of this approach is the fact that we have only one set of primary variables that can be used for the biphasic as well as the monophasic case. We implemented this new choice o...
Features of protein-protein interactions in two-component signaling deduced from genomic libraries.
White, Robert A; Szurmant, Hendrik; Hoch, James A; Hwa, Terence
2007-01-01
As more and more sequence data become available, new approaches for extracting information from these data become feasible. This chapter reports on one such method that has been applied to elucidate protein-protein interactions in bacterial two-component signaling pathways. The method identifies residues involved in the interaction through an analysis of over 2500 functionally coupled proteins and a precise determination of the substitutional constraints placed on one protein by its signaling mate. Once identified, a simple log-likelihood scoring procedure is applied to these residues to build a predictive tool for assigning signaling mates. The ability to apply this method is based on a proliferation of related domains within multiple organisms. Paralogous evolution through gene duplication and divergence of two-component systems has commonly resulted in tens of closely related interacting pairs within one organism with a roughly one-to-one correspondence between signal and response. This provides us with roughly an order of magnitude more protein pairs than there are unique, fully sequenced bacterial species. Consequently, this chapter serves as both a detailed exposition of the method that has provided more depth to our knowledge of bacterial signaling and a look ahead to what would be possible on a more widespread scale, that is, to protein-protein interactions that have only one example per genome, as the number of genomes increases by a factor of 10.
Carrano, Charles S.; Rino, Charles L.
2016-06-01
We extend the power law phase screen theory for ionospheric scintillation to account for the case where the refractive index irregularities follow a two-component inverse power law spectrum. The two-component model includes, as special cases, an unmodified power law and a modified power law with spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this spectral model, we solve the fourth moment equation governing intensity variations following propagation through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked that exploits self-similar properties of the structure to achieve a universal scaling, such that different combinations of perturbation strength, propagation distance, and frequency produce the same results. The numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index and intensity correlation length under strong scatter conditions. A series of numerical experiments are conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scintillation observations; explore the relative contributions to the scintillation due to large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral break will influence the scintillation statistics.
STEM education and Fermi problems
Holubova, Renata
2017-01-01
One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.
Feneric Fermi Size Enhancement of Pairing in Mesoscopic Fermi Systems
Farine, M; Schuck, P; Viñas, X
2002-01-01
The finite size dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well as atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is a surface effect which, when properly included, accounts for the data.
DEFF Research Database (Denmark)
Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline;
2011-01-01
Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity...
Institute of Scientific and Technical Information of China (English)
ZHANG Hong-Biao
2003-01-01
The eigenstates describing two-component Bose-Einstein condensates (BEC) with weakly excitations have been found, by using the SO(3,2) algebraic mean-field approximation. We show that the two-component modified BEC (see Eq (26)) possesses uniquely super-Poissonian distribution in a fixcd magnetic ficld along z direction. The distribution will be uncertain, if B ＝ 0.
Atomic Tunneling Effect in Two-Component Bose-Einstein Condensates with a Coupling Drive
Institute of Scientific and Technical Information of China (English)
JIAO Zhi-Yong; YU Zhao-Xian; YANG Xin-Jian
2004-01-01
In this paper, we have studied the atomic population difference and the atomic tunneling current of twocomponent Bose-Einstein condensates with a coupling drive. It is found that when the two-component Bose-Einstein condensates are initially in the coherent states, the atomic population difference may exhibit the step structure, in which the numbers of the step increase with the decrease of the Rabi frequency and with the increment of the initial phase difference. The atomic population difference may exhibit collapses, and revivals, in which their periods are affected dramatically by the Rabi frequency and the initial phase difference. The atomic tunneling current may exhibit damping oscillation behaviors, and exist the step structure for the time range of 10-10 ～ 10-9 second.
Global solutions for the two-component Camassa-Holm system
Grunert, K; Raynaud, X
2011-01-01
We prove existence of a global conservative solution of the Cauchy problem for the two-component Camassa-Holm (2CH) system on the line, allowing for nonvanishing and distinct asymptotics at plus and minus infinity. The solution is proven to be smooth as long as the density is bounded away from zero. Furthermore, we show that by taking the limit of vanishing density in the 2CH system, we obtain the global conservative solution of the (scalar) Camassa-Holm equation, which provides a novel way to define and obtain these solutions. Finally, it is shown that while solutions of the 2CH system have infinite speed of propagation, singularities travel with finite speed.
The sae locus of Staphylococcus aureus encodes a two-component regulatory system.
Giraudo, A T; Calzolari, A; Cataldi, A A; Bogni, C; Nagel, R
1999-08-01
Sae is a regulatory locus that activates the production of several exoproteins in Staphylococcus aureus. A 3.4-kb fragment of a S. aureus genomic library, screened with a probe adjacent to the transposon insertion of a sae::Tn551 mutant, was cloned into a bifunctional vector. This fragment was shown to carry the sae locus by restoration of exoprotein production in sae mutants. The sae locus was mapped to the SmaI-D fragment of the staphylococcal chromosome by pulse-field electrophoresis. Sequence analysis of the cloned fragment revealed the presence of two genes, designated saeR and saeS, encoding a response regulator and a histidine protein kinase, respectively, with high homology to other bacterial two-component regulatory systems.
The curvature of semidirect product groups associated with two-component Hunter-Saxton systems
Kohlmann, Martin
2011-06-01
In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its μ-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group Diff( S) with a space of scalar functions on S we show that both equations are locally well posed. The main result of this paper is that the sectional curvature associated with the 2HS is constant and positive and that 2µHS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in Escher et al (2011 J. Geom. Phys. 61 436-52).
Feshbach P -Q partitioning technique and the two-component Dirac equation
Luo, Da-Wei; Pyshkin, P. V.; Yu, Ting; Lin, Hai-Qing; You, J. Q.; Wu, Lian-Ao
2016-09-01
We provide an alternative approach to relativistic dynamics based on the Feshbach projection technique. Instead of directly studying the Dirac equation, we derive a two-component equation for the upper spinor. This approach allows one to investigate the underlying physics in a different perspective. For particles with small mass such as the neutrino, the leading-order equation has a Hermitian effective Hamiltonian, implying there is no leakage between the upper and lower spinors. In the weak relativistic regime, the leading order corresponds to a non-Hermitian correction to the Pauli equation, which takes into account the nonzero possibility of finding the lower-spinor state and offers a more precise description.
Energy Spectrum of Two-Component Bose-Einstein Condensates in Optical Lattices
Institute of Scientific and Technical Information of China (English)
HAN Jiu-Rong; LIU Jin-Ming; JING Hui; WANG Yu-Zhu
2005-01-01
With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We find that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only.According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.
The SaeRS Two-Component System of Staphylococcus aureus
Liu, Qian; Yeo, Won-Sik; Bae, Taeok
2016-01-01
In the Gram-positive pathogenic bacterium Staphylococcus aureus, the SaeRS two-component system (TCS) plays a major role in controlling the production of over 20 virulence factors including hemolysins, leukocidins, superantigens, surface proteins, and proteases. The SaeRS TCS is composed of the sensor histidine kinase SaeS, response regulator SaeR, and two auxiliary proteins SaeP and SaeQ. Since its discovery in 1994, the sae locus has been studied extensively, and its contributions to staphylococcal virulence and pathogenesis have been well documented and understood; however, the molecular mechanism by which the SaeRS TCS receives and processes cognate signals is not. In this article, therefore, we review the literature focusing on the signaling mechanism and its interaction with other global regulators. PMID:27706107
Zhang, Shumeng; Hu, Yimin; Fan, Qingyun; Wang, Xun; He, Jin
2015-08-01
YvqEC is one of the two-component signal transduction systems that may respond to cell envelope stress and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvqE and a response regulator YvqC. In this study, we separately constructed a single gene mutant ΔyvqE and a double gene mutant ΔyvqEC in Bacillus thuringiensis BMB171 through a homing endonucleases I-SceI mediated markerless gene deletion method. We found that the deletion of either yvqE or yvqEC weakened the resistance of B. thuringiensis against vancomycin. We also identified nine operons that may be involved in the cellular metabolism regulated by YvqC. This study not only enriches our understanding of bacterial resistance mechanisms against vancomycin, but also helps investigate the functions of YvqEC.
Addition Formulae of Discrete KP, q-KP and Two-Component BKP Systems
Gao, Xu; Li, Chuan-Zhong; He, Jing-Song
2016-04-01
In this paper, we construct the addition formulae for several integrable hierarchies, including the discrete KP, the q-deformed KP, the two-component BKP and the D type Drinfeld-Sokolov hierarchies. With the help of the Hirota bilinear equations and τ functions of different kinds of KP hierarchies, we prove that these addition formulae are equivalent to these hierarchies. These studies show that the addition formula in the research of the integrable systems has good universality. Supported by the Zhejiang Provincial Natural Science Foundation under Grant No. LY15A010004, the National Natural Science Foundation of China under Grant Nos. 11201251, 11571192 and the Natural Science Foundation of Ningbo under Grant No. 2015A610157. Jingsong He is supported by the National Natural Science Foundation of China under Grant No. 11271210, K.C. Wong Magna Fund in Ningbo University
Preparation of two component Fibrin Glue and its clinical evaluation in skin grafts and flaps
Directory of Open Access Journals (Sweden)
Jain P
2003-01-01
Full Text Available Tissue adhesive is one of the alternative to conventional suturing and has some added advantages. Fibrin glue has been used in obtaining haemostasis following trauma to spleen and liver. It has also been used in repair of dural tear and bronchial fistula. Fibrin glue is a biological tissue adhesive based on the final stage of coagulation wherein. Thrombin acting on fibrinogen converts it into fibrin. Thus, it has two components, one is fibrinogen and another is thrombin. We have prepared both components of fibrin glue. Fibrinogen was obtained from patient's own blood and thrombin from fresh frozen plasma of screened healthy donor. The glue was used in 20 cases requiring skin graft or flap. The results were compared with conventional suturing method. Use of the fibrin glue is simple, safe, cost effective, and rapid technique to fix the skin grafts and flaps with avoidance of peroperative bleeding and postoperative collection. It also has better overall results.
Dynamic form factor of two-component plasmas beyond the static local field approximation
Daligault, J
2003-01-01
The spectrum of ion density fluctuations in a strongly coupled plasma is described both within the static G(k, 0) and high-frequency G(k, infinity) local field approximation. By a direct comparison with molecular dynamics data, we find that for large coupling, G(k, 0) is inadequate. Based on this result, we employ the Zwanzig-Mori memory function approach to model the Thomson scattering cross section, i.e. the electron dynamic form factor S sub e sub e (k, omega) of a dense two-component plasma. We show the sensitivity of S sub e sub e (k, omega) to three approximations for G(k, omega).
PREPARATION OF PUZZOLANA ACTIVE TWO COMPONENT COMPOSITE FOR LATENT HEAT STORAGE
Directory of Open Access Journals (Sweden)
Jan Fort
2016-10-01
Full Text Available Application of Phase Change Materials (PCMs represents promising way for an increase of energy efficiency of industrial devices, reduction of energy demands for heating and cooling, waste heat recovery, solar energy storage and smart control of buildings interior climate. In this paper, the potential of diatomite as the bearer for the shape stable PCM was studied in order to develop material applicable in the mix composition of composite materials. Considering availability, endurance and compatibility of diatomite with the cement and lime based materials, preparation of diatomite/wax composite brings pozzolana active PCM with great promises at a reasonable cost. Prepared composite was analysed in detail using laser diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Also the pozzolanic activity was measured. The prepared two components composite exhibits high latent heat storage and particle size distribution compatible with cement and hydrated lime.
WalRK two component system of Bacillus anthracis responds to temperature and antibiotic stress.
Dhiman, Alisha; Gopalani, Monisha; Bhatnagar, Rakesh
2015-04-17
WalRK Two Component System (TCS) of Bacillus anthracis forms a functional TCS. This report elaborates upon the WalRK genomic architecture, promoter structure, promoter activity and expression under various stress conditions in B. anthracis. 5' RACE located the WalRK functional promoter within 317 bp region upstream of WalR. Reporter gene assays demonstrated maximal promoter activity during early growth phases indicating utility in exponential stages of growth. qRT-PCR showed upregulation of WalRK transcripts during temperature and antibiotic stress. However, WalR overexpression did not affect the tested antibiotic MIC values in B. anthracis. Collectively, these results confirm that WalRK responds to cell envelope stress in B. anthracis.
Output Rate of Atomic Four-Wave Mixing in Two-Component Bose-Einstein Condensate
Institute of Scientific and Technical Information of China (English)
LI Jia-Hua; LI Wei-Bing; PENG Ju-Cun
2004-01-01
In this letter, following the proposal of Heurich et al. [Phys. Rev. A63 (2001) 033605], we analyze and discuss output rate of atomic four-wave mixing in the two-component Bose-Einstein condensate under the condition of the steady state. The results show that the magnitude of the signal beam increases with the increase of the intensity of the probe beam, up to a saturated value, then it decreases as the probe beam increases. The influence of the interaction range on the signal beam is also predicted. In particular, it is worth while pointing out that in contrast to the previous solutions, our obtained analytical solutions are of very simple and explicit forms, which open the door for further investigating the related physical mechanisms.
Genomic analysis of two-component signal transduction proteins in basidiomycetes.
Lavín, José L; Ramírez, Lucía; Ussery, David W; Pisabarro, Antonio G; Oguiza, José A
2010-01-01
Two-component system (TCS) proteins are components of complex signal transduction pathways in fungi, and play essential roles in the regulation of several cellular functions and responses. Species of basidiomycetes have a marked variation in their specific physiological traits, morphological complexity and lifestyles. In this study, we have used the available complete genomes of basidiomycetes to carry out a thorough identification and an extensive comparative analysis of the TCS proteins in this fungal phylum. In comparison with ascomycetes, basidiomycetes exhibit an intermediate number of TCS proteins. Several TCS proteins are highly conserved among all the basidiomycetes, and other TCS proteins appear to be specific to particular species of basidiomycetes. Moreover, some species appear to have developed a unique histidine kinase group with unusual domain architecture, the Dual-histidine kinases. The presence of differential sets of TCS proteins between basidiomycete species might reflect their adaptation to diverse environmental niches.
A two-component system regulates hemin acquisition in Porphyromonas gingivalis.
Directory of Open Access Journals (Sweden)
Jodie C Scott
Full Text Available Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with infection of the periodontia. The organism has a small number of two-component signal transduction systems, and after comparing genome sequences of strains W83 and ATCC 33277 we discovered that the latter was mutant in histidine kinase (PGN_0752, while the cognate response regulator (PGN_0753 remained intact. Microarray-based transcriptional profiling and ChIP-seq assays were carried out with an ATCC 33277 transconjugant containing the functional histidine kinase from strain W83 (PG0719. The data showed that the regulon of this signal transduction system contained genes that were involved in hemin acquisition, including gingipains, at least three transport systems, as well as being self-regulated. Direct regulation by the response regulator was confirmed by electrophoretic mobility shift assays. In addition, the system appears to be activated by hemin and the regulator acts as both an activator and repressor.
Histidine phosphotransfer proteins in fungal two-component signal transduction pathways.
Fassler, Jan S; West, Ann H
2013-08-01
The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, suggest that the essential interactions between Ypd1 and response regulator domains would be a good target for antifungal drug development. The goal of this minireview is to summarize the wealth of data on S. cerevisiae Ypd1 and to consider the potential benefits of conducting related studies in pathogenic fungi.
An intimate link: two-component signal transduction systems and metal transport systems in bacteria.
Singh, Kamna; Senadheera, Dilani B; Cvitkovitch, Dennis G
2014-01-01
Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Using examples garnered from recent studies, we summarize the cross-regulatory relationships between metal ions and TCSTSs. We present evidence of how bacterial TCSTSs modulate metal ion homeostasis and also how metal ions, in turn, function to control the activities of these signaling systems linked with bacterial survival and virulence.
Two-component signal transduction as potential drug targets in pathogenic bacteria.
Gotoh, Yasuhiro; Eguchi, Yoko; Watanabe, Takafumi; Okamoto, Sho; Doi, Akihiro; Utsumi, Ryutaro
2010-04-01
Gene clusters contributing to processes such as cell growth and pathogenicity are often controlled by two-component signal transduction systems (TCSs). Specific inhibitors against TCS systems work differently from conventional antibiotics, and developing them into new drugs that are effective against various drug-resistant bacteria may be possible. Furthermore, inhibitors of TCSs that control virulence factors may reduce virulence without killing the pathogenic bacteria. Previous TCS inhibitors targeting the kinase domain of the histidine kinase sensor suffered from poor selectivity. Recent TCS inhibitors, however, target the sensory domains of the sensors blocking the quorum sensing system, or target the essential response regulator. These new targets are introduced, together with several specific TCSs that have the potential to serve as effective drug targets. Copyright 2010 Elsevier Ltd. All rights reserved.
Cross-talk and specificity in two-component signal transduction pathways.
Agrawal, Ruchi; Sahoo, Bikash Kumar; Saini, Deepak Kumar
2016-05-01
Two-component signaling systems (TCSs) are composed of two proteins, sensor kinases and response regulators, which can cross-talk and integrate information between them by virtue of high-sequence conservation and modular nature, to generate concerted and diversified responses. However, TCSs have been shown to be insulated, to facilitate linear signal transmission and response generation. Here, we discuss various mechanisms that confer specificity or cross-talk among TCSs. The presented models are supported with evidence that indicate the physiological significance of the observed TCS signaling architecture. Overall, we propose that the signaling topology of any TCSs cannot be predicted using obvious sequence or structural rules, as TCS signaling is regulated by multiple factors, including spatial and temporal distribution of the participating proteins.
Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation
Energy Technology Data Exchange (ETDEWEB)
Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)
2015-01-21
We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.
Chatterjee, Arka; Ghosh, Himadri
2016-01-01
Two component advective flow (TCAF) successfully explains spectral and timing properties of black hole candidates. We study the nature of photon trajectories in the vicinity of a Schwarzschild black hole and incorporate this in predicting images of TCAF with a black hole at the Centre. We also compute the emitted spectra. We employ a Monte-Carlo simulation technique to achieve our goal. For accurate prediction of the image and the spectra, null trajectories are generated without constraining the motion to any specific plane. Red shift, bolometric flux and corresponding temperature have been calculated with appropriate relativistic consideration. The centrifugal barrier dominated boundary layer or CENBOL near the inner region of the disk which acts as the Compton cloud is appropriately modelled as a thick accretion disk in Schwarzschild geometry for the purpose of imaging and computing spectra. The variations of spectra and image with physical parameters such as the accretion rate ($\\dot{m}_d$) and inclination...
Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow
2017-04-01
This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.
The curvature of semidirect product groups associated with two-component Hunter-Saxton systems
Energy Technology Data Exchange (ETDEWEB)
Kohlmann, Martin, E-mail: kohlmann@ifam.uni-hannover.de [Institute for Applied Mathematics, University of Hannover, D-30167 Hannover (Germany)
2011-06-03
In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its {mu}-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group Diff(S) with a space of scalar functions on S we show that both equations are locally well posed. The main result of this paper is that the sectional curvature associated with the 2HS is constant and positive and that 2{mu}HS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in Escher et al (2011 J. Geom. Phys. 61 436-52).
Phase diagram of two-component bosons on an optical lattice
Energy Technology Data Exchange (ETDEWEB)
Altman, Ehud; Hofstetter, Walter; Demler, Eugene; Lukin, Mikhail D [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)
2003-09-01
We present a theoretical analysis of the phase diagram of two-component bosons on an optical lattice. A new formalism is developed which treats the effective spin interactions in the Mott and superfluid phases on the same footing. Using this new approach we chart the phase boundaries of the broken spin symmetry states up to the Mott to superfluid transition and beyond. Near the transition point, the magnitude of spin exchange can be very large, which facilitates the experimental realization of spin-ordered states. We find that spin and quantum fluctuations have a dramatic effect on the transition, making it first order in extended regions of the phase diagram. When each species is at integer filling, an additional phase transition may occur, from a spin-ordered insulator to a Mott insulator with no broken symmetries. We determine the phase boundaries in this regime and show that this is essentially a Mott transition in the spin sector.
Two-component mixture model: Application to palm oil and exchange rate
Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad
2014-12-01
Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.
Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari
2011-06-01
The nonlinear dynamics of the outflow driven by magnetic explosion on the surface of compact object is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as an initial equilibrium state, a spherical stellar object embedded in the hydrostatic plasma which has a density ρ(r) ~ r-α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of compact star breaks the dynamical equilibrium and triggers two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly in time around the stellar surface, initiating a magnetically driven outflow. Then it excites a strong forward shock, shock driven outflow. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface, and follows a simple scaling relation υmag ~ υA1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that the evolution of the strong forward shock can be described by a self-similar relation Γsh ~ rsh, where Γsh is the Lorentz factor of the plasma measured at the shock surface rsh. It should be stressed that the pure hydrodynamic process is responsible for the acceleration of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, would deepen the understanding of the magnetic active phenomena on various magnetized stellar objects.
Phosphate sink containing two-component signaling systems as tunable threshold devices.
Directory of Open Access Journals (Sweden)
Munia Amin
2014-10-01
Full Text Available Synthetic biology aims to design de novo biological systems and reengineer existing ones. These efforts have mostly focused on transcriptional circuits, with reengineering of signaling circuits hampered by limited understanding of their systems dynamics and experimental challenges. Bacterial two-component signaling systems offer a rich diversity of sensory systems that are built around a core phosphotransfer reaction between histidine kinases and their output response regulator proteins, and thus are a good target for reengineering through synthetic biology. Here, we explore the signal-response relationship arising from a specific motif found in two-component signaling. In this motif, a single histidine kinase (HK phosphotransfers reversibly to two separate output response regulator (RR proteins. We show that, under the experimentally observed parameters from bacteria and yeast, this motif not only allows rapid signal termination, whereby one of the RRs acts as a phosphate sink towards the other RR (i.e. the output RR, but also implements a sigmoidal signal-response relationship. We identify two mathematical conditions on system parameters that are necessary for sigmoidal signal-response relationships and define key parameters that control threshold levels and sensitivity of the signal-response curve. We confirm these findings experimentally, by in vitro reconstitution of the one HK-two RR motif found in the Sinorhizobium meliloti chemotaxis pathway and measuring the resulting signal-response curve. We find that the level of sigmoidality in this system can be experimentally controlled by the presence of the sink RR, and also through an auxiliary protein that is shown to bind to the HK (yielding Hill coefficients of above 7. These findings show that the one HK-two RR motif allows bacteria and yeast to implement tunable switch-like signal processing and provides an ideal basis for developing threshold devices for synthetic biology applications.
Dimensionality and Finite Number Effect on BCS Transition of Atomic Fermi Gas
Institute of Scientific and Technical Information of China (English)
CUI Hai-Tao; WANG Lin-Cheng; YI Xue-Xi
2005-01-01
The effect of finite number and dimensionality has been discussed in this paper. The finite number effect has a negative correction to final temperature for 2D or 3D atomic Fermi gases. The changing of final temperature obtained by scanning from BEC region to BCS region are 10% or so with N ≤ 103 and can be negligible when N ＞ 103.However, in 1D atomic Fermi gas, the effect gives a positive correction which greatly changes the final temperature in Fermi gas. This behavior is completely opposed to the 2D and 3D cases and a proper explanation is still to be found.Dimensionality also has a positive correction, in which the more tightly trapping, the higher final temperature one gets with the same particle number. A discussion is also presented.
DEFF Research Database (Denmark)
Islam, Aminul; Hansen, Hans Nørgaard; Marhöfer, David Maximilian
2011-01-01
Two component (2k) injection moulding is growing rapidly even in the field of precision micro moulding. Besides combining different material properties in the same product, two component moulding can eliminate many assembly steps in manufacturing process chain. One of the biggest technical...... challenges associated with 2k moulding is the unavailability of suitable two component material combinations which can meet the diverse requirement from product and process point of view. This paper presents a new pair of commercial polymer materials (BASF Ultramid A3EG10 and Kraiburg TPE Thermolast K TC5PCZ......-of-the-art two component micro moulding machine named Formica Plast from Desma Tec. The tests performed on the demonstrator showed potential for the material pair to be used in high precision two component moulding applications. The adhesion between the two materials, replication quality of the 2k part, sealing...
Cai, Rong-Gen; Qi, Yong-Hui; Wu, Yue-Liang; Zhang, Yun-Long
2017-06-01
The (2 +1 )-dimensional non-Fermi liquid (NFL) has a dual description in the (3 +1 )-dimensional anti-de Sitter (AdS) spacetime. We begin with a dyonic Reissner-Nordstrom (RN) black brane background, and consider the bulk Dirac fermion field coupled with the background U (1 ) gauge field, as well an intrinsic axial gauge field which is induced by chiral anomaly. The axial gauge field is effectively induced from the topological term in the bulk, which would lead to nontrivial effects on the boundary NFL. We study these effects through calculating the retarded Green's functions of the dual NFL holographically, in both analytical and numerical approaches. We also obtain correlation functions in the low frequency limit at zero and finite temperatures, as well as the dispersion spectrum of the Dirac cones, Fermi arc of the surface states, which can be related with the experiment.
Fermi resonance in optical microcavities
Yi, Chang-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min
2015-04-01
Fermi resonance is a phenomenon of quantum mechanical superposition, which most often occurs between normal and overtone modes in molecular systems that are nearly coincident in energy. We find that scarred resonances in deformed dielectric microcavities are the very phenomenon of Fermi resonance, that is, a pair of quasinormal modes interact with each other due to coupling and a pair of resonances are generated through an avoided resonance crossing. Then the quantum number difference of a pair of quasinormal modes, which is a consequence of quantum mechanical superposition, equals periodic orbits, whereby the resonances are localized on the periodic orbits. We derive the relation between the quantum number difference and the periodic orbits and confirm it in an elliptic, a rectangular, and a stadium-shaped dielectric microcavity.
DEFF Research Database (Denmark)
Jensen, Arne; Nenciu, Gheorghe
2008-01-01
We review and further develop the framework in [9] of the stationary theory of resonances, arising by perturbation of either threshold, or embedded in the continuum, eigenvalues. While in [9] only non/degenerate eigenvalues were considered, here we add some results for the degenerate case. [9] A........ Jensen and G. Nenciu, The Fermi Golden Rule and its form at thresholds in odd dimensions. Comm. Math. Phys 261 (2006), 693-727...
Cai, Rong-Gen; Wu, Yue-Liang; Zhang, Yun-Long
2016-01-01
In this paper we investigate the $(2+1)$-dimensional topological non-Fermi liquid in strongly correlated electron system, which has a holographic dual description by Einstein gravity in $(3+1)$-dimensional anti-de Sitter (AdS) space-time. In a dyonic Reissner-Nordstrom black hole background, we consider a Dirac fermion coupled to the background $U(1)$ gauge theory and an intrinsic chiral gauge field $b_M$ induced by chiral anomaly. UV retarded Green's function of the charged fermion in the UV boundary from AdS$_4$ gravity is calculated, by imposing in-falling wave condition at the horizon. We also obtain IR correlation function of the charged fermion at the IR boundary arising from the near horizon geometry of the topological black hole with index $k=0,\\pm 1$. By using the UV retarded Green's function and IR correlation function, we analyze the low frequency behavior of the topological non-Fermi liquid at zero and finite temperatures, especially the relevant non-Fermi liquid behavior near the quantum critical...
Enrico Fermi and the Dolomites
Battimelli, Giovanni
2014-01-01
Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scient...
Fermi Timing and Synchronization System
Energy Technology Data Exchange (ETDEWEB)
Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.
2006-07-19
The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.
Enrico Fermi and the Dolomites
Energy Technology Data Exchange (ETDEWEB)
Battimelli, Giovanni, E-mail: giovanni.battimelli@uniroma1.it; Angelis, Alessandro de, E-mail: alessandro.de.angelis@cern.ch
2014-11-15
Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scientific discussions held in the region of the Dolomites.
Enrico Fermi and the Dolomites
Battimelli, Giovanni; de Angelis, Alessandro
2014-11-01
Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scientific discussions held in the region of the Dolomites.
Fermi/non-Fermi mixing in SU($N$) Kondo effect
Kimura, Taro
2016-01-01
We apply conformal field theory analysis to the $k$-channel SU($N$) Kondo system, and find a peculiar behavior in the cases $N > k > 1$, which we call Fermi/non-Fermi mixing: The low temperature scaling is described as the Fermi liquid, while the zero temperature IR fixed point exhibits the non-Fermi liquid signature. We also show that the Wilson ratio is no longer universal for the cases $N > k > 1$. The deviation from the universal value of the Wilson ratio could be used as an experimental signal of the Fermi/non-Fermi mixing.
All-optical production of 6Li quantum gases
Burchianti, A.; Seman, J. A.; Valtolina, G.; Morales, A.; Inguscio, M.; Zaccanti, M.; Roati, G.
2015-03-01
We report efficient production of quantum gases of 6Li using a sub-Doppler cooling scheme based on the D1 transition. After loading in a standard magneto-optical trap, an atomic sample of 109 atoms is cooled at a temperature of 40 μK by a bichromatic D1 gray-molasses. More than 2×107 atoms are then transferred into a high-intensity optical dipole trap, where a two-spin state mixture is evaporatively cooled down to quantum degeneracy. We observe that D1 cooling remains effective in the deep trapping potential, allowing an effective increase of the atomic phase-space density before starting the evaporation. In a total experimental cycle of 11 s, we produce weakly-interacting degenerate Fermi gases of 7×105 atoms at T/TF molecules. We further describe a simple and compact optical system both for high-resolution imaging and for imprinting a thin optical barrier on the atomic cloud; this represents a first step towards the study of quantum tunneling in strongly interacting superfluid Fermi gases.
Directory of Open Access Journals (Sweden)
Ming-Che Liu
Full Text Available Stenotrophomonas maltophilia, a gram-negative bacterium, has increasingly emerged as an important nosocomial pathogen. It is well-known for resistance to a variety of antimicrobial agents including cationic antimicrobial polypeptides (CAPs. Resistance to polymyxin B, a kind of CAPs, is known to be controlled by the two-component system PhoPQ. To unravel the role of PhoPQ in polymyxin B resistance of S. maltophilia, a phoP mutant was constructed. We found MICs of polymyxin B, chloramphenicol, ampicillin, gentamicin, kanamycin, streptomycin and spectinomycin decreased 2-64 fold in the phoP mutant. Complementation of the phoP mutant by the wild-type phoP gene restored all of the MICs to the wild type levels. Expression of PhoP was shown to be autoregulated and responsive to Mg2+ levels. The polymyxin B and gentamicin killing tests indicated that pretreatment of low Mg2+ can protect the wild-type S. maltophilia from killing but not phoP mutant. Interestingly, we found phoP mutant had a decrease in expression of SmeZ, an efflux transporter protein for aminoglycosides in S. maltophilia. Moreover, phoP mutant showed increased permeability in the cell membrane relative to the wild-type. In summary, we demonstrated the two-component regulator PhoP of S. maltophilia is involved in antimicrobial susceptibilities and low Mg2+ serves as a signal for triggering the pathway. Both the alteration in membrane permeability and downregulation of SmeZ efflux transporter in the phoP mutant contributed to the increased drug susceptibilities of S. maltophilia, in particular for aminoglycosides. This is the first report to describe the role of the Mg2+-sensing PhoP signaling pathway of S. maltophilia in regulation of the SmeZ efflux transporter and in antimicrobial susceptibilities. This study suggests PhoPQ TCS may serve as a target for development of antimicrobial agents against multidrug-resistant S. maltophilia.
Teschler, Jennifer K; Cheng, Andrew T; Yildiz, Fitnat H
2017-09-15
Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. choleraevxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying ΔvxrA and ΔvxrB mutations are deficient in biofilm formation, while the ΔvxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels.IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers our
Energy Technology Data Exchange (ETDEWEB)
Mazaud, J.P.
1996-06-01
The natural gas or naphtha are the main constituents used for the production of synthetic gases. Several production ways of synthetic gases are industrially used as for example the natural gas or naphtha catalytic reforming, the selective oxidation of natural gas or heavy fuels and the coal oxy-vapo-gasification. The aim of this work is to study the different steps of production and treatment of the synthetic gases by the way of catalytic reforming. The first step is the desulfurization of the hydrocarbons feedstocks. The process used in industry is described. Then is realized the catalytic hydrocarbons reforming process. After having recalled some historical data on the catalytic reforming, the author gives the reaction kinetics and thermodynamics. The possible reforming catalysts, industrial equipments and furnaces designs are then exposed. The carbon dioxide is a compound easily obtained during the reforming reactions. It is a wasteful and harmful component which has to be extracted of the gaseous stream. The last step is then the gases de-carbonation. Two examples of natural gas or naphtha reforming reactions are at last given: the carbon monoxide conversion by steam and the carbon oxides reactions with hydrogen (methanization). (O.M.). 8 figs., 6 tabs.
Two-component coupled KdV equations and its connection with the generalized Harry Dym equations
Energy Technology Data Exchange (ETDEWEB)
Popowicz, Ziemowit, E-mail: ziemek@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wrocław, Wrocław pl. M. Borna 9, 50-205 Wrocław (Poland)
2014-01-15
It is shown that three different Lax operators in the Dym hierarchy produce three generalized coupled Harry Dym equations. These equations transform, via the reciprocal link, to the coupled two-component Korteweg de Vries (KdV) system. The first equation gives us known integrable two-component KdV system, while the second reduces to the known symmetrical two-component KdV equation. The last one reduces to the Drienfeld-Sokolov equation. This approach gives us new Lax representation for these equations.
Two-component coupled KdV equations and its connection with the generalized Harry Dym equations
Popowicz, Ziemowit
2014-01-01
It is shown that three different Lax operators in the Dym hierarchy produce three generalized coupled Harry Dym equations. These equations transform, via the reciprocal link, to the coupled two-component Korteweg de Vries (KdV) system. The first equation gives us known integrable two-component KdV system, while the second reduces to the known symmetrical two-component KdV equation. The last one reduces to the Drienfeld-Sokolov equation. This approach gives us new Lax representation for these equations.
Directory of Open Access Journals (Sweden)
Mhamad Abou-Hamdan
2015-08-01
Full Text Available Abstract The bacterial genus Bartonella is classified in the alpha-2 Proteobacteria on the basis of 16S rDNA sequence comparison. The Bartonella two-component system feuPQ is found in nearly all bacterial species. We investigated the usefulness of the response regulator feuP gene sequence in the classification of 18 well characterized Bartonella species. Phylogenetic relationships were inferred using parsimony neighbour-joining and maximum-likelihood methods. Reliable classifications of most of the studied species were obtained. Bartonella were divided into two supported clades containing two supported clusters each. These results were similar to our previous data obtained with groEL ftsZ and ribC genes sequences. The wide range of feuP DNA sequence similarity 78.6 to 96.5 among Bartonella species makes it a promising candidate for multi-locus sequence typing MLST of clinical isolates. This is the first report proving the usefulness of feuP sequences in bartonellae classification at the species level.
Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.
Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K
2012-06-01
We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.
Comparative Analysis of Two-component Signal Transduction System in Two Streptomycete Genomes
Institute of Scientific and Technical Information of China (English)
Wu WEI; Yixue LI; Weihua WANG; Zhiwei CAO; Hong YU; Xiaojing WANG; Jing ZHAO; Hao TAN; Hao XU; Weihong JIANG
2007-01-01
Species of the genus Streptomyces are major bacteria responsible for producing most natural antibiotics. Streptomyces coelicolor A3(2) and Streptomyces avermitilis were sequenced in 2002 and 2003,respectively. Two-component signal transduction systems (TCSs), consisting of a histidine sensor kinase (SK) and a cognate response regulator (RR), form the most common mechanism of transmembrane signal transduction in prokaryotes. TCSs in S. coelicolor A3(2) have been analyzed in detail. Here, we identify and classify the SK and RR of S. avermitilis and compare the TCSs with those of S. coelicolor A3(2) by computational approaches. Phylogenetic analysis of the cognate SK-RR pairs of the two species indicated that the cognate SK-RR pairs fall into four classes according to the distribution of their orthologs in other organisms. In addition to the cognate SK-RR pairs, some potential partners of non-cognate SK-RR were found, including those of unpaired SK and orphan RR and the cross-talk between different components in either strain. Our study provides new clues for further exploration of the molecular regulation mechanism of streptomycetes with industrial importance.
A feasibility study of using two-component polyurethane adhesive in constructing wooden structures
Institute of Scientific and Technical Information of China (English)
Mohammad Derikvand; Ghanbar Ebrahimi; Mehdi Tajvidi
2014-01-01
This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted tests to compare the shear strength and adhesion per-formance of PUR with polyvinyl acetate (PVAc) adhesive on block-shear specimens constructed of oriental beech (Fagus orientalis L.), fir (Abies alba Mill.), poplar (Populus deltoides Bartr.), white oak (Quercus alba L.), sycamore (Platanus orientalis L.) and white walnut (Juglans cinerea L.). The values of the percentage of wood failure were also determined in specimens constructed with each adhesive. The highest shear strength values of both adhesives were obtained in specimens constructed of beech, while the lowest shear strength values were obtained in fir and poplar specimens. Average shear strength of the PUR adhesive was 16.5%higher than that of the PVAc adhesive. Specimens constructed of fir, poplar and sycamore were characterised by the highest percentages of wood failure, whereas the lowest average percentages of wood failure were obtained in beech and oak specimens. With the exception of oak specimens, there was no statistically significant difference between per-centage of wood failure among the PUR and PVAc adhesives. Generally, the PUR adhesive showed an acceptable adhesion performance on wood materials used in our study.
The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation
Energy Technology Data Exchange (ETDEWEB)
Alm, Eric; Huang, Katherine; Arkin, Adam
2006-09-13
Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.
Zhou, Lei; Yang, Liu; Zeng, Xianfei; Danzheng, Jiacuo; Zheng, Qing; Liu, Jiayun; Liu, Feng; Xin, Yijuan; Cheng, Xiaodong; Su, Mingquan; Ma, Yueyun; Hao, Xiaoke
2015-07-01
Two-component systems (TCSs) have been reported to exhibit a sensing and responding role under drug stress that induces drug resistance in several bacterial species. However, the relationship between TCSs and multidrug resistance in Mycobacterium tuberculosis has not been comprehensively analysed to date. In this study, 90 M. tuberculosis clinical isolates were analysed using 15-loci mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeat (VNTR) typing and repetitive extragenic palindromic (rep)-PCR-based DNA fingerprinting. The results showed that all of the isolates were of the Beijing lineage, and strains with a drug-susceptible phenotype had not diverged into similar genotype clusters. Expression analysis of 13 response regulators of TCSs using real-time PCR and tandem mass spectrometry (MS/MS) proteomic analysis demonstrated that four response regulator genes (devR, mtrA, regX3 and Rv3143) were significantly upregulated in multidrug-resistant (MDR) strains compared with the laboratory strain H37Rv as well as drug-susceptible and isoniazid-monoresistant strains (PMycobacterium bovis BCG did not alter its sensitivity to the four antitubercular drugs. This suggests that upregulation of devR, which is common in MDR-TB strains, might be induced by drug stress and hypoxic adaptation following the acquisition of multidrug resistance.
Singular solutions of a modified two-component Camassa-Holm equation.
Holm, Darryl D; O Náraigh, Lennon; Tronci, Cesare
2009-01-01
The Camassa-Holm (CH) equation is a well-known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation has been recently extended to a two-component integrable system (CH2), which includes both velocity and density variables in the dynamics. Although possessing peakon solutions in the velocity, the CH2 equation does not admit singular solutions in the density profile. We modify the CH2 system to allow a dependence on the average density as well as the pointwise density. The modified CH2 system (MCH2) does admit peakon solutions in the velocity and average density. We analytically identify the steepening mechanism that allows the singular solutions to emerge from smooth spatially confined initial data. Numerical results for the MCH2 system are given and compared with the pure CH2 case. These numerics show that the modification in the MCH2 system to introduce the average density has little short-time effect on the emergent dynamical properties. However, an analytical and numerical study of pairwise peakon interactions for the MCH2 system shows a different asymptotic feature. Namely, besides the expected soliton scattering behavior seen in overtaking and head-on peakon collisions, the MCH2 system also allows the phase shift of the peakon collision to diverge in certain parameter regimes.
ACOUSTIC WAVES EMISSION IN THE TWO-COMPONENT HEREDITARY-ELASTIC MEDIUM
Directory of Open Access Journals (Sweden)
V. S. Polenov
2014-01-01
Full Text Available Summary. On the dynamics of two-component media a number of papers, which address the elastic waves in a homogeneous, unbounded fluid-saturated porous medium. In other studies address issues of dissipative processes in harmonic deformation hereditary elastic medium. In the article the dissipative processes of the viscoelastic porous medium, which hereditary properties are described by the core relaxation fractional exponential function U.N. Rabotnova integro-differential Boltzmann-Volterr ratio, harmonic deformation by the straining saturated incompressible liquid are investigated. Speed of wave propagation, absorption coefficient, mechanical loss tangent, logarithmic decrement, depending on fractional parameter γ, determining formulas received. The frequency logarithm and temperature graph dependences with the goal fractional parameter are constructed. Shows the dependences velocity and attenuation coefficient of the tangent of the phase angle of the logarithm of the temperature, and the dependence of the attenuation coefficient of the logarithm of the frequency. Dependencies the speed and the tangent of the phase angle of the frequency identical function of the logarithm of temperature.
Cui, Yanhua; Liu, Wei; Qu, Xiaojun; Chen, Zhangting; Zhang, Xu; Liu, Tong; Zhang, Lanwei
2012-05-20
The Gram-positive bacterium Lactobacillus delbrueckii subsp. bulgaricus is of vital importance to the food industry, especially to the dairy industry. Two component systems (TCSs) are one of the most important mechanisms for environmental sensing and signal transduction in the majority of Gram-positive and Gram-negative bacteria. A typical TCS consists of a histidine protein kinase (HPK) and a cytoplasmic response regulator (RR). To investigate the functions of TCSs during acid adaptation in L. bulgaricus, we used quantitative PCR to reveal how TCSs expression changes during acid adaptation. Two TCSs (JN675228/JN675229 and JN675230/JN675231) and two HPKs (JN675236 and JN675240) were induced during acid adaptation. These TCSs were speculated to be related with the acid adaptation ability of L. bulgaricus. The mutants of JN675228/JN675229 were constructed in order to investigate the functions of JN675228/JN675229. The mutants showed reduced acid adaptation compared to that of wild type, and the complemented strains were similar to the wild-type strain. These observations suggested that JN675228 and JN675229 were involved in acid adaptation in L. bulgaricus. The interaction between JN675228 and JN675229 was identified by means of yeast two-hybrid system. The results indicated there is interaction between JN675228 and JN675229.
Freshwater DOM quantity and quality from a two-component model of UV absorbance
Carter, Heather T.; Tipping, Edward; Koprivnjak, Jean-Francois; Miller, Matthew P.; Cookson, Brenda; Hamilton-Taylor, John
2012-01-01
We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L-1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).
Monte Carlo simulations of two-component drop growth by stochastic coalescence
Alfonso, L.; Raga, G. B.; Baumgardner, D.
2009-02-01
The evolution of two-dimensional drop distributions is simulated in this study using a Monte Carlo method. The stochastic algorithm of Gillespie (1976) for chemical reactions in the formulation proposed by Laurenzi et al. (2002) was used to simulate the kinetic behavior of the drop population. Within this framework, species are defined as droplets of specific size and aerosol composition. The performance of the algorithm was checked by a comparison with the analytical solutions found by Lushnikov (1975) and Golovin (1963) and with finite difference solutions of the two-component kinetic collection equation obtained for the Golovin (sum) and hydrodynamic kernels. Very good agreement was observed between the Monte Carlo simulations and the analytical and numerical solutions. A simulation for realistic initial conditions is presented for the hydrodynamic kernel. As expected, the aerosol mass is shifted from small to large particles due to collection process. This algorithm could be extended to incorporate various properties of clouds such several crystals habits, different types of soluble CCN, particle charging and drop breakup.
Monte Carlo simulations of two-component drop growth by stochastic coalescence
Directory of Open Access Journals (Sweden)
L. Alfonso
2009-02-01
Full Text Available The evolution of two-dimensional drop distributions is simulated in this study using a Monte Carlo method. The stochastic algorithm of Gillespie (1976 for chemical reactions in the formulation proposed by Laurenzi et al. (2002 was used to simulate the kinetic behavior of the drop population. Within this framework, species are defined as droplets of specific size and aerosol composition. The performance of the algorithm was checked by a comparison with the analytical solutions found by Lushnikov (1975 and Golovin (1963 and with finite difference solutions of the two-component kinetic collection equation obtained for the Golovin (sum and hydrodynamic kernels. Very good agreement was observed between the Monte Carlo simulations and the analytical and numerical solutions. A simulation for realistic initial conditions is presented for the hydrodynamic kernel. As expected, the aerosol mass is shifted from small to large particles due to collection process. This algorithm could be extended to incorporate various properties of clouds such several crystals habits, different types of soluble CCN, particle charging and drop breakup.
Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers.
Wu, Guo-min; Chen, Jian; Huo, Shu-ping; Liu, Gui-feng; Kong, Zhen-wu
2014-05-25
We prepared thermoset nancomposites from biomass-based two-component waterborne polyurethane (2K-WPU) and cellulose namowhiskers (CNWs). Due to the formation of hydrogen bonds, the viscosity of 2K-WPU dispersion was found to be increased with the addition of CNWs. SEM images showed "sea-island structure" corresponding to the microphase separation between CNWs nano-filler and the 2K-WPU matrix. The α-relaxation temperature (Tα) and glass transition temperature (Tg) increased with the increase of CNWs content, which was due to the formation of a rigid CNWs nano-phase acting as crosslinking points in the 2K-WPU matrix. Mechanical properties from tensile test showed Young's modulus and tensile strength of 2K-WPU/CNWs nanocomposites were reinforced by the addition of CNWs. Thermo-stability of 2K-WPU/CNWs nanocomposites decreased slightly with the increase of CNWs content, which could be attributed to the increased thermal conductivity of the material after adding CNWs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Photonic band-gap properties for two-component slow light
Ruseckas, J; Juzeliunas, G; Unanyan, R G; Otterbach, J; Fleischhauer, M
2011-01-01
We consider two-component "spinor" slow light in an ensemble of atoms coherently driven by two pairs of counterpropagating control laser fields in a double tripod-type linkage scheme. We derive an equation of motion for the spinor slow light (SSL) representing an effective Dirac equation for a massive particle with the mass determined by the two-photon detuning. By changing the detuning the atomic medium acts as a photonic crystal with a controllable band gap. If the frequency of the incident probe light lies within the band gap, the light tunnels through the sample. For frequencies outside the band gap, the transmission probability oscillates with increasing length of the sample. In both cases the reflection takes place into the complementary mode of the probe field. We investigate the influence of the finite excited state lifetime on the transmission and reflection coefficients of the probe light. We discuss possible experimental implementations of the SSL using alkali atoms such as Rubidium or Sodium.
Sander, Myriam C; Werkle-Bergner, Markus; Gerjets, Peter; Shing, Yee Lee; Lindenberger, Ulman
2012-02-15
We recently introduced a two-component model of the mechanisms underlying age differences in memory functioning across the lifespan. According to this model, memory performance is based on associative and strategic components. The associative component is relatively mature by middle childhood, whereas the strategic component shows a maturational lag and continues to develop until young adulthood. Focusing on work from our own lab, we review studies from the domains of episodic and working memory informed by this model, and discuss their potential implications for educational settings. The episodic memory studies uncover the latent potential of the associative component in childhood by documenting children's ability to greatly improve their memory performance following mnemonic instruction and training. The studies on working memory also point to an immature strategic component in children whose operation is enhanced under supportive conditions. Educational settings may aim at fostering the interplay between associative and strategic components. We explore possible routes towards this goal by linking our findings to recent trends in research on instructional design. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models
Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri
2016-04-01
The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.
Vortices with scalar condensates in two-component Ginzburg-Landau systems
Forgacs, Peter
2016-01-01
In a class of two-component Ginzburg-Landau models (TCGL) with a U(1)$\\times$U(1) symmetric potential, vortices with a condensate at their core may have significantly lower energies than the Abrikosov-Nielsen-Olesen (ANO) ones. On the example of liquid metallic hydrogen (LMH) above the critical temperature for protons we show that the ANO vortices become unstable against core-condensation, while condensate-core (CC) vortices are stable. For LMH the ratio of the masses of the two types of condensates, $M=m_2/m_1$ is large, and then as a consequence the energy per flux quantum of the vortices, $E_n/n$ becomes a non-monotonous function of the number of flux quanta, $n$. This leads to yet another manifestation of neither type 1 nor type 2, (type 1.5) superconductivity: superconducting and normal domains coexist while various "giant" vortices form. We note that LMH provides a particularly clean example of type 1.5 state as the interband coupling between electronic and protonic Cooper-pairs is forbidden.
Two-component membrane material properties and domain formation from dissipative particle dynamics.
Illya, G; Lipowsky, R; Shillcock, J C
2006-09-21
The material parameters (area stretch modulus and bending rigidity) of two-component amphiphilic membranes are determined from dissipative particle dynamics simulations. The preferred area per molecule for each species is varied so as to produce homogeneous mixtures or nonhomogeneous mixtures that form domains. If the latter mixtures are composed of amphiphiles with the same tail length, but different preferred areas per molecule, their material parameters increase monotonically as a function of composition. By contrast, mixtures of amphiphiles that differ in both tail length and preferred area per molecule form both homogeneous and nonhomogeneous mixtures that both exhibit smaller values of their material properties compared to the corresponding pure systems. When the same nonhomogeneous mixtures of amphiphiles are assembled into planar membrane patches and vesicles, the resulting domain shapes are different when the bending rigidities of the domains are sufficiently different. Additionally, both bilayer and monolayer domains are observed in vesicles. We conclude that the evolution of the domain shapes is influenced by the high curvature of the vesicles in the simulation, a result that may be relevant for biological vesicle membranes.
Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos
Energy Technology Data Exchange (ETDEWEB)
Angus, G.W.; Gentile, G. [Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050 Belgium (Belgium); Diaferio, A. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, Torino, I-10125 Italy (Italy); Famaey, B. [Observatoire astronomique de Strasbourg, CNRS UMR 7550, Université de Strasbourg, 11 rue de l' Université, Strasbourg, F-67000 France (France); Heyden, K.J. van der, E-mail: garry.angus@vub.ac.be, E-mail: diaferio@ph.unito.it, E-mail: benoit.famaey@astro.unistra.fr, E-mail: gianfranco.gentile@ugent.be, E-mail: heyden@ast.uct.ac.za [Astrophysics, Cosmology and Gravity Centre, Dept. of Astronomy, University of Cape Town, Private Bag X3, Rondebosch, 7701 South Africa (South Africa)
2014-10-01
In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrino ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.
Modelling elliptical galaxies phase-space constraints on two-component (gamma1,gamma2) models
Ciotti, L
1999-01-01
In the context of the study of the properties of the mutual mass distribution of the bright and dark matter in elliptical galaxies, present a family of two-component, spherical, self-consistent galaxy models, where one density distribution follows a gamma_1 profile, and the other a gamma_2 profile [(gamma_1,gamma_2) models], with different total masses and ``core'' radii. A variable amount of Osipkov-Merritt (radial) orbital anisotropy is allowed in both components. For these models, I derive analytically the necessary and sufficient conditions that the model parameters must satisfy in order to correspond to a physical system. Moreover, the possibility of adding a black hole at the center of radially anisotropic gamma models is discussed, determining analytically a lower limit of the anisotropy radius as a function of gamma. The analytical phase-space distribution function for (1,0) models is presented, together with the solution of the Jeans equations and the quantities entering the scalar virial theorem. It...
P2CS: a two-component system resource for prokaryotic signal transduction research
Directory of Open Access Journals (Sweden)
Méjean Vincent
2009-07-01
Full Text Available Abstract Background With the escalation of high throughput prokaryotic genome sequencing, there is an ever-increasing need for databases that characterise, catalogue and present data relating to particular gene sets and genomes/metagenomes. Two-component system (TCS signal transduction pathways are the dominant mechanisms by which micro-organisms sense and respond to external as well as internal environmental changes. These systems respond to a wide range of stimuli by triggering diverse physiological adjustments, including alterations in gene expression, enzymatic reactions, or protein-protein interactions. Description We present P2CS (Prokaryotic 2-Component Systems, an integrated and comprehensive database of TCS signal transduction proteins, which contains a compilation of the TCS genes within 755 completely sequenced prokaryotic genomes and 39 metagenomes. P2CS provides detailed annotation of each TCS gene including family classification, sequence features, functional domains, as well as genomic context visualization. To bypass the generic problem of gene underestimation during genome annotation, we also constituted and searched an ORFeome, which improves the recovery of TCS proteins compared to searches on the equivalent proteomes. Conclusion P2CS has been developed for computational analysis of the modular TCSs of prokaryotic genomes and metagenomes. It provides a complete overview of information on TCSs, including predicted candidate proteins and probable proteins, which need further curation/validation. The database can be browsed and queried with a user-friendly web interface at http://www.p2cs.org/.
Monedero, Vicente; Revilla-Guarinos, Ainhoa; Zúñiga, Manuel
2017-01-01
Two-component systems (TCSs) are widespread signal transduction pathways mainly found in bacteria where they play a major role in adaptation to changing environmental conditions. TCSs generally consist of sensor histidine kinases that autophosphorylate in response to a specific stimulus and subsequently transfer the phosphate group to their cognate response regulators thus modulating their activity, usually as transcriptional regulators. In this review we present the current knowledge on the physiological role of TCSs in species of the families Lactobacillaceae and Leuconostocaceae of the group of lactic acid bacteria (LAB). LAB are microorganisms of great relevance for health and food production as the group spans from starter organisms to pathogens. Whereas the role of TCSs in pathogenic LAB (most of them belonging to the family Streptococcaceae) has focused the attention, the roles of TCSs in commensal LAB, such as most species of Lactobacillaceae and Leuconostocaceae, have been somewhat neglected. However, evidence available indicates that TCSs are key players in the regulation of the physiology of these bacteria. The first studies in food-associated LAB showed the involvement of some TCSs in quorum sensing and production of bacteriocins, but subsequent studies have shown that TCSs participate in other physiological processes, such as stress response, regulation of nitrogen metabolism, regulation of malate metabolism, and resistance to antimicrobial peptides, among others. Copyright © 2017 Elsevier Inc. All rights reserved.
The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation.
Haag, Andreas F; Bagnoli, Fabio
2016-01-05
Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.
Directory of Open Access Journals (Sweden)
Alisha Dhiman
2014-01-01
Full Text Available Two-component signal transduction systems (TCS, consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.
Directory of Open Access Journals (Sweden)
Eric Alm
2006-11-01
Full Text Available Two-component systems including histidine protein kinases represent the primary signal transduction paradigm in prokaryotic organisms. To understand how these systems adapt to allow organisms to detect niche-specific signals, we analyzed the phylogenetic distribution of nearly 5,000 histidine protein kinases from 207 sequenced prokaryotic genomes. We found that many genomes carry a large repertoire of recently evolved signaling genes, which may reflect selective pressure to adapt to new environmental conditions. Both lineage-specific gene family expansion and horizontal gene transfer play major roles in the introduction of new histidine kinases into genomes; however, there are differences in how these two evolutionary forces act. Genes imported via horizontal transfer are more likely to retain their original functionality as inferred from a similar complement of signaling domains, while gene family expansion accompanied by domain shuffling appears to be a major source of novel genetic diversity. Family expansion is the dominant source of new histidine kinase genes in the genomes most enriched in signaling proteins, and detailed analysis reveals that divergence in domain structure and changes in expression patterns are hallmarks of recent expansions. Finally, while these two modes of gene acquisition are widespread across bacterial taxa, there are clear species-specific preferences for which mode is used.
Dhiman, Alisha; Bhatnagar, Sonika; Kulshreshtha, Parul; Bhatnagar, Rakesh
2014-01-01
Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.
[Two-component signal transduction as attractive drug targets in pathogenic bacteria].
Utsumi, Ryutaro; Igarashi, Masayuki
2012-01-01
Gene clusters contributing to processes such as cell growth and pathogenicity are often controlled by two-component signal transduction systems (TCSs). TCS consists of a histidine kinase (HK) and a response regulator (RR). TCSs are attractive as drug targets for antimicrobials because many HK and RR genes are coded on the bacterial genome though few are found in lower eukaryotes. The HK/RR signal transduction system is distinct from serine/threonine and tyrosine phosphorylation in higher eukaryotes. Specific inhibitors against TCS systems work differently from conventional antibiotics, and developing them into new drugs that are effective against various drug-resistant bacteria may be possible. Furthermore, inhibitors of TCSs that control virulence factors may reduce virulence without killing the pathogenic bacteria. Previous TCS inhibitors targeting the kinase domain of the histidine kinase sensor suffered from poor selectivity. Recent TCS inhibitors, however, target the sensory domains of the sensors blocking the quorum sensing system, or target the essential response regulator. These new targets are introduced, together with several specific TCSs that have the potential to serve as effective drug targets.
P2CS: a two-component system resource for prokaryotic signal transduction research.
Barakat, Mohamed; Ortet, Philippe; Jourlin-Castelli, Cécile; Ansaldi, Mireille; Méjean, Vincent; Whitworth, David E
2009-07-15
With the escalation of high throughput prokaryotic genome sequencing, there is an ever-increasing need for databases that characterise, catalogue and present data relating to particular gene sets and genomes/metagenomes. Two-component system (TCS) signal transduction pathways are the dominant mechanisms by which micro-organisms sense and respond to external as well as internal environmental changes. These systems respond to a wide range of stimuli by triggering diverse physiological adjustments, including alterations in gene expression, enzymatic reactions, or protein-protein interactions. We present P2CS (Prokaryotic 2-Component Systems), an integrated and comprehensive database of TCS signal transduction proteins, which contains a compilation of the TCS genes within 755 completely sequenced prokaryotic genomes and 39 metagenomes. P2CS provides detailed annotation of each TCS gene including family classification, sequence features, functional domains, as well as genomic context visualization. To bypass the generic problem of gene underestimation during genome annotation, we also constituted and searched an ORFeome, which improves the recovery of TCS proteins compared to searches on the equivalent proteomes. P2CS has been developed for computational analysis of the modular TCSs of prokaryotic genomes and metagenomes. It provides a complete overview of information on TCSs, including predicted candidate proteins and probable proteins, which need further curation/validation. The database can be browsed and queried with a user-friendly web interface at http://www.p2cs.org/.
Yu, Shuijing; Peng, Yanping; Chen, Wanyi; Deng, Yangwu; Guo, Yanhua
2014-09-01
Lactobacillus casei has traditionally been recognized as a probiotic, thus needing to survive the industrial production processes and transit through the gastrointestinal tract before providing benefit to human health. The two-component signal transduction system (TCS) plays important roles in sensing and reacting to environmental changes, which consists of a histidine kinase (HK) and a response regulator (RR). In this study we identified HKs and RRs of six sequenced L. casei strains. Ortholog analysis revealed 15 TCS clusters (HK-RR pairs), one orphan HKs and three orphan RRs, of which 12 TCS clusters were common to all six strains, three were absent in one strain. Further classification of the predicted HKs and RRs revealed interesting aspects of their putative functions. Some TCS clusters are involved with the response under the stress of the bile salts, acid, or oxidative, which contribute to survive the difficult journey through the human gastrointestinal tract. Computational predictions of 15 TCSs were verified by PCR experiments. This genomic level study of TCSs should provide valuable insights into the conservation and divergence of TCS proteins in the L. casei strains.
Hiscox, Thomas J; Ohtani, Kaori; Shimizu, Tohru; Cheung, Jackie K; Rood, Julian I
2014-12-01
Clostridium perfringens is a Gram-positive rod that is widely distributed in nature and is the etiological agent of several human and animal diseases. The complete genome sequence of C. perfringens strain 13 has been determined and multiple two-component signal transduction systems identified. One of these systems, designated here as the MalNO system, was analyzed in this study. Microarray analysis was used to carry out functional analysis of a malO mutant. The results, which were confirmed by quantitative reverse-transcriptase PCR, indicated that genes putatively involved in the uptake and metabolism of maltose were up-regulated in the malO mutant. These effects were reversed by complementation with the wild-type malO gene. Growth of these isogenic strains in medium with and without maltose showed that the malO mutant recovered more quickly from maltose deprivation when compared to the wild-type and complemented strains, leading to the conclusion that the MalNO system regulates maltose utilization in C. perfringens. It is postulated that this regulatory network may allow this soil bacterium and opportunistic pathogen to respond to environmental conditions where there are higher concentrations of maltose or maltodextrins, such as in the presence of decaying plant material in rich soil. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bretl, Daniel J; Demetriadou, Chrystalla; Zahrt, Thomas C
2011-12-01
Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis.
The Formation of Bulges, Discs and Two Component Galaxies in the CANDELS Survey at z < 3
Margalef-Bentabol, Berta; Mortlock, Alice; Hartley, Will; Duncan, Kenneth; Ferguson, Harry C; Koekemoer, Anton M; Dekel, Avishai; Primack, Joel R
2016-01-01
We examine a sample of 1495 galaxies in the CANDELS fields to determine the evolution of two component galaxies, including bulges and discs, within massive galaxies at the epoch 1 < z < 3 when the Hubble sequence forms. We fit all of our galaxies' light profiles with a single S\\'ersic fit, as well as with a combination of exponential and S\\'ersic profiles. The latter is done in order to describe a galaxy with an inner and an outer component, or bulge and disc component. We develop and use three classification methods (visual, F-test and the RFF) to separate our sample into 1-component galaxies (disc/spheroids-like galaxies) and 2-component galaxies (galaxies formed by an 'inner part' or bulge and an 'outer part' or disc). We then compare the results from using these three different ways to classify our galaxies. We find that the fraction of galaxies selected as 2-component galaxies increases on average 50 per cent from the lowest mass bin to the most massive galaxies, and decreases with redshift by a fa...
Packing characteristics of two-component bilayers composed of ester- and ether-linked phospholipids.
Batenjany, M M; O'Leary, T J; Levin, I W; Mason, J T
1997-01-01
The miscibility properties of ether- and ester-linked phospholipids in two-component, fully hydrated bilayers have been studied by differential scanning calorimetry (DSC) and Raman spectroscopy. Mixtures of 1,2-di-O-hexadecyl-rac-glycero-3-phosphocholine (DHPC) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DHPE) and of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with 1,2-di-O-hexadecyl-sn-glycero-3-phosphoethanolamine (DHPE) have been investigated. The phase diagram for the DPPC/DHPE mixtures indicates that these two phospholipids are miscible in all proportions in the nonrippled bilayer gel phase. In contrast, the DHPC/DPPE mixtures display two regions of gel phase immiscibility between 10 and 30 mol% DPPE. Raman spectroscopic measurements of DHPC/DPPE mixtures in the C-H stretching mode region suggest that this immiscibility arises from the formation of DHPC-rich interdigitated gel phase domains with strong lateral chain packing interactions at temperatures below 27 degrees C. However, in the absence of interdigitation, our findings, and those of others, lead to the conclusion that the miscibility properties of mixtures of ether- and ester-linked phospholipids are determined by the nature of the phospholipid headgroups and are independent of the character of the hydrocarbon chain linkages. Thus it seems unlikely that the ether linkage has any significant effect on the miscibility properties of phospholipids in biological membranes. PMID:9083673
Vapour-mediated sensing and motility in two-component droplets
Cira, N. J.; Benusiglio, A.; Prakash, M.
2015-03-01
Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the `tears of wine' effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.
Impact of backmixing of the aqueous phase on two-component rare earth separation process
Institute of Scientific and Technical Information of China (English)
WU Sheng; CHENG Fuxiang; LIAO Chunsheng; YAN Chunhua
2013-01-01
Solvent extraction based on mixer-settler is the major industrial method of rare earth (RE) separation.In the mixer-settler extraction process,due to the insufficient settling time in normal circumstances,backmixing of the aqueous phase could have significant impact on the process of RE extraction separation.Therefore on the basis of the extraction equilibrium and mass balance of the mixer-settler extraction process,here we developed a mathematic expression of the aqueous phase backmixing in a two-component separation process,and obtained a quantitative analysis of the backmixing effect on the purification process by the approximations according to certain hypotheses.Two extraction systems of La/Ce and Pr/Nd separation were chosen as the examples to analyze the backmixing effect,and the results showed that the aqueous backmixing had greater influence in the scrubbing segment than in the extraction segment,especially in the system with a high separation factor such as La/Ce separation.Therefore it was suggested that the aqueous backmixing effect should be well attended in the design and application of RE extraction separation.
A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.
Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng
2011-09-20
We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein.
Adhesion-induced phase behavior of two-component membranes and vesicles.
Rouhiparkouhi, Tahereh; Weikl, Thomas R; Discher, Dennis E; Lipowsky, Reinhard
2013-01-22
The interplay of adhesion and phase separation is studied theoretically for two-component membranes that can phase separate into two fluid phases such as liquid-ordered and liquid-disordered phases. Many adhesion geometries provide two different environments for these membranes and then partition the membranes into two segments that differ in their composition. Examples are provided by adhering vesicles, by hole- or pore-spanning membranes, and by membranes supported by chemically patterned surfaces. Generalizing a lattice model for binary mixtures to these adhesion geometries, we show that the phase behavior of the adhering membranes depends, apart from composition and temperature, on two additional parameters, the area fraction of one membrane segment and the affinity contrast between the two segments. For the generic case of non-vanishing affinity contrast, the adhering membranes undergo two distinct phase transitions and the phase diagrams in the composition/temperature plane have a generic topology that consists of two two-phase coexistence regions separated by an intermediate one-phase region. As a consequence, phase separation and domain formation is predicted to occur separately in each of the two membrane segments but not in both segments simultaneously. Furthermore, adhesion is also predicted to suppress the phase separation process for certain regions of the phase diagrams. These generic features of the adhesion-induced phase behavior are accessible to experiment.
Landau Theory of Helical Fermi Liquids.
Lundgren, Rex; Maciejko, Joseph
2015-08-07
We construct a phenomenological Landau theory for the two-dimensional helical Fermi liquid found on the surface of a three-dimensional time-reversal invariant topological insulator. In the presence of rotation symmetry, interactions between quasiparticles are described by ten independent Landau parameters per angular momentum channel, by contrast with the two (symmetric and antisymmetric) Landau parameters for a conventional spin-degenerate Fermi liquid. We project quasiparticle states onto the Fermi surface and obtain an effectively spinless, projected Landau theory with a single projected Landau parameter per angular momentum channel that captures the spin-momentum locking or nontrivial Berry phase of the Fermi surface. As a result of this nontrivial Berry phase, projection to the Fermi surface can increase or lower the angular momentum of the quasiparticle interactions. We derive equilibrium properties, criteria for Fermi surface instabilities, and collective mode dispersions in terms of the projected Landau parameters. We briefly discuss experimental means of measuring projected Landau parameters.
Effects of external magnetic trap on two dark solitons of a two-component Bose-Einstein condensate
Institute of Scientific and Technical Information of China (English)
Hong Li; D. N. Wang
2008-01-01
Two dark solitons are considered in a two-component Bose-Einstein condensate with an external magnetic trap, and effects of the trap potential on their dynamics are investigated by the numerical simulation. The results show that the dark solitons attract, collide and repel periodically in two components as time changes, the time period depends strictly on the initial condition and the potential, and there are obvious self-trapping effects on the two dark solitons.
Directory of Open Access Journals (Sweden)
Mark K. Ashby
2006-01-01
Full Text Available The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005 were searched for the presence of potential two-component open reading frames (ORFs using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005 and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events.
Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro
2017-02-01
In the present paper, we propose a two-component generalization of the reduced Ostrovsky (Vakhnenko) equation, whose differential form can be viewed as the short-wave limit of a two-component Degasperis-Procesi (DP) equation. They are integrable due to the existence of Lax pairs. Moreover, we have shown that the two-component reduced Ostrovsky equation can be reduced from an extended BKP hierarchy with negative flow through a pseudo 3-reduction and a hodograph (reciprocal) transform. As a by-product, its bilinear form and N-soliton solution in terms of pfaffians are presented. One- and two-soliton solutions are provided and analyzed. In the second part of the paper, we start with a modified BKP hierarchy, which is a Bäcklund transformation of the above extended BKP hierarchy, an integrable semi-discrete analogue of the two-component reduced Ostrovsky equation is constructed by defining an appropriate discrete hodograph transform and dependent variable transformations. In particular, the backward difference form of above semi-discrete two-component reduced Ostrovsky equation gives rise to the integrable semi-discretization of the short wave limit of a two-component DP equation. Their N-soliton solutions in terms of pffafians are also provided.
Quantitative Kinetic Analyses of Shutting Off a Two-Component System
Directory of Open Access Journals (Sweden)
Rong Gao
2017-05-01
Full Text Available Cells rely on accurate control of signaling systems to adapt to environmental perturbations. System deactivation upon stimulus removal is as important as activation of signaling pathways. The two-component system (TCS is one of the major bacterial signaling schemes. In many TCSs, phosphatase activity of the histidine kinase (HK is believed to play an essential role in shutting off the pathway and resetting the system to the prestimulus state. Two basic challenges are to understand the dynamic behavior of system deactivation and to quantitatively evaluate the role of phosphatase activity under natural cellular conditions. Here we report a kinetic analysis of the response to shutting off the archetype Escherichia coli PhoR-PhoB TCS pathway using both transcription reporter assays and in vivo phosphorylation analyses. Upon removal of the stimulus, the pathway is shut off by rapid dephosphorylation of the PhoB response regulator (RR while PhoB-regulated gene products gradually reset to prestimulus levels through growth dilution. We developed an approach combining experimentation and modeling to assess in vivo kinetic parameters of the phosphatase activity with kinetic data from multiple phosphatase-diminished mutants. This enabled an estimation of the PhoR phosphatase activity in vivo, which is much stronger than the phosphatase activity of PhoR cytoplasmic domains analyzed in vitro. We quantitatively modeled how strong the phosphatase activity needs to be to suppress nonspecific phosphorylation in TCSs and discovered that strong phosphatase activity of PhoR is required for cross-phosphorylation suppression.
Transcriptome analysis of the Brucella abortus BvrR/BvrS two-component regulatory system.
Directory of Open Access Journals (Sweden)
Cristina Viadas
Full Text Available BACKGROUND: The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. METHODOLOGY/PRINCIPAL FINDINGS: A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d, lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. CONCLUSIONS/SIGNIFICANCE: All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche.
Energy Technology Data Exchange (ETDEWEB)
Nohaile, M J [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
1996-05-01
Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five {alpha}-helices and a five-stranded {beta}-sheet in a ({beta}/{alpha}){sub 5} topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.
Gene Regulation by the LiaSR Two-Component System in Streptococcus mutans.
Directory of Open Access Journals (Sweden)
Manoharan Shankar
Full Text Available The LiaSR two-component signal transduction system regulates cellular responses to several environmental stresses, including those that induce cell envelope damages. Downstream regulons of the LiaSR system have been implicated in tolerance to acid, antibiotics and detergents. In the dental pathogen Streptococcus mutans, the LiaSR system is necessary for tolerance against acid, antibiotics, and cell wall damaging stresses during growth in the oral cavity. To understand the molecular mechanisms by which LiaSR regulates gene expression, we created a mutant LiaR in which the conserved aspartic acid residue (the phosphorylation site, was changed to alanine residue (D58A. As expected, the LiaR-D58A variant was unable to acquire the phosphate group and bind to target promoters. We also noted that the predicted LiaR-binding motif upstream of the lia operon does not appear to be well conserved. Consistent with this observation, we found that LiaR was unable to bind to the promoter region of lia; however, we showed that LiaR was able to bind to the promoters of SMU.753, SMU.2084 and SMU.1727. Based on sequence analysis and DNA binding studies we proposed a new 25-bp conserved motif essential for LiaR binding. Introducing alterations at fully conserved positions in the 25-bp motif affected LiaR binding, and the binding was dependent on the combination of positions that were altered. By scanning the S. mutans genome for the occurrence of the newly defined LiaR binding motif, we identified the promoter of hrcA (encoding a key regulator of the heat shock response that contains a LiaR binding motif, and we showed that hrcA is negatively regulated by the LiaSR system. Taken together our results suggest a putative role of the LiaSR system in heat shock responses of S. mutans.
Eguchi, Yoko; Ishii, Eiji; Hata, Kensuke; Utsumi, Ryutaro
2011-03-01
Two-component signal transduction systems (TCSs), utilized extensively by bacteria and archaea, are involved in the rapid adaptation of the organisms to fluctuating environments. A typical TCS transduces the signal by a phosphorelay between the sensor histidine kinase and its cognate response regulator. Recently, small-sized proteins that link TCSs have been reported and are called "connectors." Their physiological roles, however, have remained elusive. SafA (sensor associating factor A) (formerly B1500), a small (65-amino-acid [65-aa]) membrane protein, is among such connectors and links Escherichia coli TCSs EvgS/EvgA and PhoQ/PhoP. Since the activation of the EvgS/EvgA system induces acid resistance, we examined whether the SafA-activated PhoQ/PhoP system is also involved in the acid resistance induced by EvgS/EvgA. Using a constitutively active evgS1 mutant for the activation of EvgS/EvgA, we found that SafA, PhoQ, and PhoP all contributed to the acid resistance phenotype. Moreover, EvgS/EvgA activation resulted in the accumulation of cellular RpoS in the exponential-phase cells in a SafA-, PhoQ-, and PhoP-dependent manner. This RpoS accumulation was caused by another connector, IraM, expression of which was induced by the activation of the PhoQ/PhoP system, thus preventing RpoS degradation by trapping response regulator RssB. Acid resistance assays demonstrated that IraM also participated in the EvgS/EvgA-induced acid resistance. Therefore, we propose a model of a signal transduction cascade proceeding from EvgS/EvgA to PhoQ/PhoP and then to RssB (connected by SafA and IraM) and discuss its contribution to the acid resistance phenotype.
Signal integration by the two-component signal transduction response regulator CpxR.
Wolfe, Alan J; Parikh, Niyati; Lima, Bruno P; Zemaitaitis, Bozena
2008-04-01
The CpxAR two-component signal transduction system in Escherichia coli and other pathogens senses diverse envelope stresses and promotes the transcription of a variety of genes that remedy these stresses. An important member of the CpxAR regulon is cpxP. The CpxA-dependent transcription of cpxP has been linked to stresses such as misfolded proteins and alkaline pH. It also has been proposed that acetyl phosphate, the intermediate of the phosphotransacetylase (Pta)-acetate kinase (AckA) pathway, can activate the transcription of cpxP in a CpxA-independent manner by donating its phosphoryl group to CpxR. We tested this hypothesis by measuring the transcription of cpxP using mutants with mutations in the CpxAR pathway, mutants with mutations in the Pta-AckA pathway, and mutants with a combination of both types of mutations. From this epistasis analysis, we learned that CpxR integrates diverse stimuli. The stimuli that originate in the envelope depend on CpxA, while those associated with growth and central metabolism depend on the Pta-AckA pathway. While CpxR could receive a phosphoryl group from acetyl phosphate, this global signal was not the primary trigger for CpxR activation associated with the Pta-AckA pathway. On the strength of these results, we contend that the interactions between central metabolism and signal transduction can be quite complex and that successful investigations of such interactions must include a complete epistatic analysis.
Banerjee, Rahul; Yan, Honggao; Cukier, Robert I
2014-05-08
Signal transduction can be accomplished via a two-component system (TCS) consisting of a histidine kinase (HK) and a response regulator (RR). In this work, we simulate the response regulator RR468 from Thermotoga maritima, in which phosphorylation and dephosphorylation of a conserved aspartate residue acts as a switch via a large conformational change concentrated in three proximal loops. A detailed view of the conformational transition is obscured by the lack of stability of the intermediate states, which are difficult to detect using common structural biology techniques. Molecular dynamics (MD) trajectories of the inactive and active conformations were run, and show that the inactive (or active) trajectories do not exhibit sampling of the active (or inactive) conformations on this time scale. Targeted MD (TMD) was used to generate trajectories that span the inactive and active conformations and provide a view of how a localized event like phosphorylation can lead to conformational changes elsewhere in the protein, especially in the three proximal loops. The TMD trajectories are clustered to identify stages along the transition path. Residue interaction networks are identified that point to key residues having to rearrange in the process of transition. These are identified using both hydrogen bond analysis and residue interaction strength measurements. Potentials of mean force are generated for key residue rearrangements to ascertain their free energy barriers. We introduce methods that attempt to extrapolate from one conformation to the other and find that the most fluctuating proximal loop can transit part way from one to the other, suggesting that this conformational information is embedded in the sequence.
Imidazole as a Small Molecule Analogue in Two-Component Signal Transduction.
Page, Stephani C; Silversmith, Ruth E; Collins, Edward J; Bourret, Robert B
2015-12-15
In two-component signal transduction systems (TCSs), responses to stimuli are mediated through phosphotransfer between protein components. Canonical TCSs use His → Asp phosphotransfer in which phosphoryl groups are transferred from a conserved His on a sensory histidine kinase (HK) to a conserved Asp on a response regulator (RR). RRs contain the catalytic core of His → Asp phosphotransfer, evidenced by the ability of RRs to autophosphorylate with small molecule analogues of phospho-His proteins. Phosphorelays are a more complex variation of TCSs that additionally utilize Asp → His phosphotransfer through the use of an additional component, the histidine-containing phosphotransfer domain (Hpt), which reacts with RRs both as phosphodonors and phosphoacceptors. Here we show that imidazole has features of a rudimentary Hpt. Imidazole acted as a nucleophile and attacked phosphorylated RRs (RR-P) to produce monophosphoimidazole (MPI) and unphosphorylated RR. Phosphotransfer from RR-P to imidazole required the intact RR active site, indicating that the RR provided the core catalytic machinery for Asp → His phosphotransfer. Imidazole functioned in an artificial phosphorelay to transfer phosphoryl groups between unrelated RRs. The X-ray crystal structure of an activated RR·imidazole complex showed imidazole oriented in the RR active site similarly to the His of an Hpt. Imidazole interacted with RR nonconserved active site residues, which influenced the relative reactivity of RR-P with imidazole versus water. Rate constants for reaction of imidazole or MPI with chimeric RRs suggested that the RR active site contributes to the kinetic preferences exhibited by the YPD1 Hpt.
Temporal Variability from the Two-Component Advective Flow Solution and Its Observational Evidence
Dutta, Broja G.; Chakrabarti, Sandip K.
2016-09-01
In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclination black hole source GX 339-4 during its 2006-07 outburst using RXTE/PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν c) of ˜3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.
Large-scale Models Reveal the Two-component Mechanics of Striated Muscle
Directory of Open Access Journals (Sweden)
Robert Jarosch
2008-12-01
Full Text Available This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and ÃŽÂ±-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical Ã¢Â€Âœtwo-component modelÃ¢Â€Â of active muscle differentiated a Ã¢Â€Âœcontractile componentÃ¢Â€Â which stretches the Ã¢Â€Âœseries elastic componentÃ¢Â€Â during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit. Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation. Since each thin filament is anchored by four elastic ÃŽÂ±-actinin Z-filaments (provided with forceregulating sites for Ca2+ binding, the thin filament rotations change the torsional twist of the four Z-filaments as the Ã¢Â€Âœseries elastic componentsÃ¢Â€Â. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.
Energy Technology Data Exchange (ETDEWEB)
Nohaile, Michael James [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
1996-05-01
Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five α-helices and a five-stranded β-sheet in a (β/α)_{5} topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.
A second order anti-diffusive Lagrange-remap scheme for two-component flows
Directory of Open Access Journals (Sweden)
Lagoutière Frédéric
2011-11-01
Full Text Available We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that preserves sharp interfaces. Numerical results reported at the end of the paper are very encouraging, showing the interest of the second order accuracy for genuinely non-linear waves. Nous construisons un algorithme d’ordre deux et non dissipatif pour la résolution approchée des équations d’Euler de la dynamique des gaz compressibles à deux constituants en dimension un. Le modèle que nous considérons est celui à cinq équations proposé et analysé dans [1]. L’algorithme est basé sur [8] qui proposait une résolution approchée à l’ordre un et non dissipative au moyen d’un splitting de type Lagrange-projection. Dans le présent article, nous décrivons, dans le même formalisme, un algorithme d’ordre deux en temps et en espace, qui préserve des interfaces « parfaites » entre les constituants. Les résultats numériques rapportés à la fin de l’article sont très encourageants ; ils montrent clairement les avantages d’un schéma d’ordre deux pour les ondes vraiment non linéaires.
Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory
Energy Technology Data Exchange (ETDEWEB)
Cheng, Lan, E-mail: chenglanster@gmail.com [Institute for Theoretical Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany)
2014-10-28
This work deals with the perturbative treatment of spin-orbit-coupling (SOC) effects within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e). We investigate two schemes for constructing the SFX2C-1e SOC matrix: the SFX2C-1e+SOC [der] scheme defines the SOC matrix elements based on SFX2C-1e analytic-derivative theory, hereby treating the SOC integrals as the perturbation; the SFX2C-1e+SOC [fd] scheme takes the difference between the X2C-1e and SFX2C-1e Hamiltonian matrices as the SOC perturbation. Furthermore, a mean-field approach in the SFX2C-1e framework is formulated and implemented to efficiently include two-electron SOC effects. Systematic approximations to the two-electron SOC integrals are also proposed and carefully assessed. Based on benchmark calculations of the second-order SOC corrections to the energies and electrical properties for a set of diatomic molecules, we show that the SFX2C-1e+SOC [der] scheme performs very well in the computation of perturbative SOC corrections and that the “2eSL” scheme, which neglects the (SS|SS)-type two-electron SOC integrals, is both efficient and accurate. In contrast, the SFX2C-1e+SOC [fd] scheme turns out to be incompatible with a perturbative treatment of SOC effects. Finally, as a first chemical application, we report high-accuracy calculations of the {sup 201}Hg quadrupole-coupling parameters of the recently characterized ethylmercury hydride (HHgCH{sub 2}CH{sub 3}) molecule based on SFX2C-1e coupled-cluster calculations augmented with second-order SOC corrections obtained at the Hartree-Fock level using the SFX2C-1e+SOC [der]/2eSL scheme.
Disordered complex systems using cold gases and trapped ions
De, A S; Lewenstein, M; Ahufinger, V; Pons, M L; Sanpera, A; De, Aditi Sen; Sen, Ujjwal; Lewenstein, Maciej; Ahufinger, Veronica; Pons, Marisa Ll.; Sanpera, Anna
2005-01-01
We report our research on disordered complex systems using cold gases and trapped ions, and address the possibility of using complex systems for quantum information processing. Two simple paradigmatic models of disordered complex systems are revisited here. The first one corresponds to a short range disordered Ising Hamiltonian (spin glasses), which can be implemented with a Bose-Fermi (Bose-Bose) mixture in a disordered optical lattice. The second model we address here is a long range disordered Hamiltonian, characteristic of neural networks (Hopfield model), which can be implemented in a chain of trapped ions with appropriately designed interactions.
Bioterrorism and the Fermi Paradox
Cooper, Joshua
2013-04-01
We proffer a contemporary solution to the so-called Fermi Paradox, which is concerned with conflict between Copernicanism and the apparent paucity of evidence for intelligent alien civilizations. In particular, we argue that every community of organisms that reaches its space-faring age will (1) almost immediately use its rocket-building computers to reverse-engineer its genetic chemistry and (2) self-destruct when some individual uses said technology to design an omnicidal pathogen. We discuss some of the possible approaches to prevention with regard to Homo sapiens' vulnerability to bioterrorism, particularly on a short-term basis.
Smirnov, Boris M
2001-01-01
A comprehensive textbook and reference for the study of the physics of ionized gasesThe intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces
Energy Technology Data Exchange (ETDEWEB)
Clarke, R.
1987-01-01
The main greenhouse gases are carbon dioxide, methane, nitrous oxide, CFCs and ozone. They are greenhouse gases as they absorb radiation from the Earth and thus impede its emission back to space. CO{sub 2} is responsible for about half the enhanced greenhouse effect. A global warming of only a few degrees would have a profound effect on climate. Increased levels of CO{sub 2} promote plant growth, but may not benefit agriculture overall. Sea levels may rise. It is difficult to predict the effects of global warming in society. It would be possible to reduce the scale of the greenhouse effect by energy conservation, using alternative energy sources, and possibly by capturing CO{sub 2} from fossil fuel power stations and disposing of it on the ocean floor. 13 refs., 19 figs., 1 tab.
Shortcut to adiabaticity for an anisotropic unitary Fermi gas
Deng, Shujin; Yu, Qianli; Wu, Haibin
2016-01-01
Coherent control of complex quantum systems is a fundamental requirement in quantum information processing and engineering. Recently developed notion of shortcut to adiabaticity (STA) has spawned intriguing prospects. So far, the most experimental investigations of STA are implemented in the ideal thermal gas or the weakly interacting ultracold Bose gases. Here we report the first demonstration of a many-body STA in a 3D anisotropically trapped unitary Fermi gas. A new dynamical scaling law is demonstrated on such a strongly interacting quantum gas. By simply engineering the frequency aspect ratio of a harmonic trap, the dynamics of the gas can be manipulated and the many-body state can be transferred adiabatically from one stationary state to another one in short time scale without the excitation. The universal scaling both for non-interacting and unitary Fermi gas is also verified. This could be very important for future many-body quantum engineering and the exploration of the fundamental law of the thermod...
Directory of Open Access Journals (Sweden)
Jie Li
Full Text Available Two-component signal transduction systems (TCSs are a major mechanism used by bacteria in response to environmental changes. Although many sequenced archaeal genomes encode TCSs, they remain poorly understood. Previously, we reported that a methanogenic archaeon, Methanosaeta harundinacea, encodes FilI, which synthesizes carboxyl-acyl homoserine lactones, to regulate transitions of cellular morphology and carbon metabolic fluxes. Here, we report that filI, the cotranscribed filR2, and the adjacent filR1 constitute an archaeal TCS. FilI possesses a cytoplasmic kinase domain (histidine kinase A and histidine kinase-like ATPase and its cognate response regulator. FilR1 carries a receiver (REC domain coupled with an ArsR-related domain with potential DNA-binding ability, while FilR2 carries only a REC domain. In a phosphorelay assay, FilI was autophosphorylated and specifically transferred the phosphoryl group to FilR1 and FilR2, confirming that the three formed a cognate TCS. Through chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR using an anti-FilR1 antibody, FilR1 was shown to form in vivo associations with its own promoter and the promoter of the filI-filR2 operon, demonstrating a regulatory pattern common among TCSs. ChIP-qPCR also detected FilR1 associations with key genes involved in acetoclastic methanogenesis, acs4 and acs1. Electrophoretic mobility shift assays confirmed the in vitro tight binding of FilR1 to its own promoter and those of filI-filR2, acs4, and mtrABC. This also proves the DNA-binding ability of the ArsR-related domain, which is found primarily in Archaea. The archaeal promoters of acs4, filI, acs1, and mtrABC also initiated FilR1-modulated expression in an Escherichia coli lux reporter system, suggesting that FilR1 can up-regulate both archaeal and bacterial transcription. In conclusion, this work identifies an archaeal FilI/FilRs TCS that regulates the methanogenesis of M. harundinacea.
The two-component giant radio halo in the galaxy cluster Abell 2142
Venturi, T.; Rossetti, M.; Brunetti, G.; Farnsworth, D.; Gastaldello, F.; Giacintucci, S.; Lal, D. V.; Rudnick, L.; Shimwell, T. W.; Eckert, D.; Molendi, S.; Owers, M.
2017-07-01
Aims: We report on a spectral study at radio frequencies of the giant radio halo in A 2142 (z = 0.0909), which we performed to explore its nature and origin. The optical and X-ray properties of the cluster suggest that A 2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. Methods: We performed deep radio observations of A 2142 with the Giant Metrewave Radio Telescope (GMRT) at 608 MHz, 322 MHz, and 234 MHz and with the Very Large Array (VLA) in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions, from the galaxy scale, i.e. 5'', up to 60'' to image the diffuse cluster-scale emission. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A 2142, about 1 Mpc away from the cluster centre. We studied the spectral index in two regions: the central part of the halo, where the X-ray emission peaks and the two brightest dominant galaxies are located; and a second region, known as the ridge (in the direction of the most distant south-eastern cold front), selected to follow the bright part of the halo and X-ray emission. We complemented our deep observations with a preliminary LOw Frequency ARray (LOFAR) image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. Results: The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, i.e. α1.78 GHz118 MHz = 1.33 ± 0.08 . The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, i.e. α1.78 GHz118 MHz 1.5. We propose that the brightest part of the radio halo is powered by the central sloshing in A 2142, in a process similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On
Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.
Directory of Open Access Journals (Sweden)
Rong Gao
2013-10-01
Full Text Available Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS. In response to phosphate (Pi-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural
Energy–pressure relation for low-dimensional gases
Directory of Open Access Journals (Sweden)
Francesco Mancarella
2014-10-01
Full Text Available A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates, including classical and quantum – Bose and Fermi – ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy–pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb–Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks–Girardeau gas and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern–Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce
Composite Fermi liquids in the lowest Landau level
Wang, Chong; Senthil, T.
2016-12-01
We study composite Fermi liquid (CFL) states in the lowest Landau level (LLL) limit at a generic filling ν =1/n . We begin with the old observation that, in compressible states, the composite fermion in the lowest Landau level should be viewed as a charge-neutral particle carrying vorticity. This leads to the absence of a Chern-Simons term in the effective theory of the CFL. We argue here that instead a Berry curvature should be enclosed by the Fermi surface of composite fermions, with the total Berry phase fixed by the filling fraction ϕB=-2 π ν . We illustrate this point with the CFL of fermions at filling fractions ν =1 /2 q and (single and two-component) bosons at ν =1 /(2 q +1 ) . The Berry phase leads to sharp consequences in the transport properties including thermal and spin Hall conductances. We emphasize that these results only rely on the LLL limit and do not require particle-hole symmetry, which is present microscopically only for fermions at ν =1 /2 . Nevertheless, we show that the existing LLL theory of the composite Fermi liquid for bosons at ν =1 does have an emergent particle-hole symmetry. We interpret this particle-hole symmetry as a transformation between the empty state at ν =0 and the boson integer quantum hall state at ν =2 . This understanding enables us to define particle-hole conjugates of various bosonic quantum Hall states which we illustrate with the bosonic Jain and Pfaffian states. For bosons at ν =1 we construct paired non-Abelian states distinct from both the standard bosonic Pfaffian and its particle hole conjugate and show how they may arise naturally out of the neutral vortex composite Fermi liquid. The bosonic particle-hole symmetry can be realized exactly on the surface of a three-dimensional boson topological insulator. We also show that with the particle-hole and spin S U (2 ) rotation symmetries, there is no gapped topological phase for bosons at ν =1 . Finally we comment on systems that are not strictly in the
On the theory of polarized Fermi liquid
Mineev, V. P.
2004-01-01
The transport equation for transverse vibrations of magnetization in spin polarized Fermi liquid is derived from integral equation for the vertex function. The dispersion law for the transverse spin waves is established. The existance of zero-temperature spin-waves attenuation is confirmed. The problem of similar derivation in ferromagnetic "Fermi liquid" is discussed.
Fermi Surface and Antiferromagnetism in Europium Metal
DEFF Research Database (Denmark)
Andersen, O. Krogh; Loucks, T. L.
1968-01-01
We have calculated the Fermi surface of europium in order to find those features which determine the wave vector of the helical moment arrangement below the Néel point. We find that there are two pieces of Fermi surface: an electron surface at the symmetry point H, which has the shape of rounded-...
The Fermi paradox and coronary artery disease
National Research Council Canada - National Science Library
Gottlieb, Ilan; Lima, Ronaldo Souza Leão
2014-01-01
..., led Fermi to ask the famous question: "Where is everybody?" Fermi was confronted with a paradox that involved probability, scale, and evidence. Coronary artery disease (CAD) presents a similar challenge. The pathophysiological importance of nonobstructive CAD is well known, as two-thirds of acute coronary syndromes (ACS) originate...
Vacuum alignment and radiatively induced Fermi scale
Alanne, Tommi
2016-01-01
We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges radiatively. This scenario provides an interesting link between the unification and Fermi scale physics.
Enrico Fermi significato di una scoperta
2001-01-01
Questo volume è la riedizione, rinnovata ed ampliata, del volume "Enrico Fermi. Significato di una scoperta" edito dal FIEN (Forum Italiano dell'Energia Nucleare) nel 1982 e nel 1992 in occasione, rispettivamente, del 40mo e del 50mo anniversario della pila di Fermi.
Biased discrete symmetry breaking and Fermi balls
MacPherson, A L; Macpherson, Alick L; Campbell, Bruce A
1994-01-01
The spontaneous breaking of an approximate discrete symmetry is considered, with the resulting protodomains of true and false vacuum being separated by domain walls. Given a strong, symmetric Yukawa coupling of the real scalar field to a generic fermion, the domain walls accumulate a gas of fermions, which modify the domain wall dynamics. The splitting of the degeneracy of the ground states results in the false vacuum protodomain structures eventually being fragmented into tiny false vacuum bags with a Fermi gas shell (Fermi balls), that may be cosmologically stable due to the Fermi gas pressure and wall curvature forces, acting on the domain walls. As fermions inhabiting the domain walls do not undergo number density freeze out, stable Fermi balls exist only if a fermion anti-fermion asymmetry occurs. Fermi balls formed with a new Dirac fermion that possesses no standard model gauge charges provide a novel cold dark matter candidate.
N. Fabbri; M. Panfil; D. Clément; L. Fallani; M. Inguscio; C. Fort; J.-S. Caux
2015-01-01
Interactions are known to have dramatic effects on bosonic gases in one dimension (1D). Not only does the ground state transform from a condensate like state to an effective Fermi sea, but new fundamental excitations, which do not have any higher-dimensional equivalents, are predicted to appear. In
Directory of Open Access Journals (Sweden)
Laurent Chusseau
2013-02-01
Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.
Podar, Mircea
2007-01-01
Two-component signal transduction represents the main mechanism by which bacterial cells interact with their environment. The functional diversity of two-component systems and their relative importance in the different taxonomic groups and ecotypes of bacteria has become evident with the availability of several hundred genomic sequences. The vast majority of bacteria, including many high rank taxonomic units, while being components of complex microbial communities remain uncultured (i.e., have not been isolated or grown in the laboratory). Environmental genomic data from such communities are becoming available, and in addition to its profound impact on microbial ecology it will propel molecular biological disciplines beyond the traditional model organisms. This chapter describes the general approaches used in generating environmental genomic data and how that data can be used to advance the study of two component-systems and signal transduction in general.
DEFF Research Database (Denmark)
Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben
2007-01-01
. A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi component polymer processing. This paper investigates the effects of the process and material parameters on the bond strength of two component polymer parts and identifies the factors which can......Two component injection moulding is a commercially important manufacturing process and a key technology for Moulded Interconnect Devices (MIDs). Many fascinating applications of two component or multi component polymer parts are restricted due to the weak interfacial adhesion of the polymers...... effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength after moulding are also investigated. The material selections and environmental conditions were chosen based on the suitability of MID production, but the results and discussion presented...
Fernández-Piñar, Regina; Ramos, Juan Luis; Rodríguez-Herva, José Juan; Espinosa-Urgel, Manuel
2008-01-01
A two-component system formed by a sensor histidine kinase and a response regulator has been identified as an element participating in cell density signal transduction in Pseudomonas putida KT2440. It is a homolog of the Pseudomonas aeruginosa RoxS/RoxR system, which in turn belongs to the RegA/RegB family, described in photosynthetic bacteria as a key regulatory element. In KT2440, the two components are encoded by PP_0887 (roxS) and PP_0888 (roxR), which are transcribed in a single unit. Ch...
Kato, Akinori; Groisman, Eduardo A.
2004-01-01
A fundamental question in signal transduction is how an organism integrates multiple signals into a cellular response. Here we report the mechanism by which the Salmonella PmrA/PmrB two-component system responds to the signal controlling the PhoP/PhoQ two-component system. We establish that the PhoP-activated PmrD protein binds to the phosphorylated form of the response regulator PmrA, preventing both its intrinsic dephosphorylation and that promoted by its cognate sensor kinase PmrB. This re...
Reiss, Howard R.; Smirnov, Boris M.
2001-03-01
A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.
Quantum chaos on a critical Fermi surface
Patel, Aavishkar A
2016-01-01
We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of $N$ species of fermions at non-zero density coupled to a $U(1)$ gauge field in two spatial dimensions, and determine the Lyapunov rate and the butterfly velocity in an extended RPA approximation. The thermal diffusivity is found to be universally related to these chaos parameters, i.e. the relationship is independent of $N$, the gauge coupling constant, the Fermi velocity, the Fermi surface curvature, and high energy details.
As a leading cause of foodborne bacterial gastroenteritis, Campylobacter jejuni is a significant human pathogen. C. jejuni lives commensally in the gastrointestinal tract of animals, but tolerates variable environments during transit to a susceptible host. A two-component regulatory system, CprRS, w...
DEFF Research Database (Denmark)
Chan, JWYF; Maynard, Scott; Goodwin, PH
1998-01-01
A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY ana...
Been, de M.W.H.J.; Francke, C.; Moezelaar, R.; Abee, T.; Siezen, R.J.
2006-01-01
Members of the Bacillus cereus group are ubiquitously present in the environment and can adapt to a wide range of environmental fluctuations. In bacteria, these adaptive responses are generally mediated by two-component signal transduction systems (TCSs), which consist of a histidine kinase (HK) and