Parametric study of two-body floating-point wave absorber
Amiri, Atena; Panahi, Roozbeh; Radfar, Soheil
2016-03-01
In this paper, we present a comprehensive numerical simulation of a point wave absorber in deep water. Analyses are performed in both the frequency and time domains. The converter is a two-body floating-point absorber (FPA) with one degree of freedom in the heave direction. Its two parts are connected by a linear mass-spring-damper system. The commercial ANSYS-AQWA software used in this study performs well in considering validations. The velocity potential is obtained by assuming incompressible and irrotational flow. As such, we investigated the effects of wave characteristics on energy conversion and device efficiency, including wave height and wave period, as well as the device diameter, draft, geometry, and damping coefficient. To validate the model, we compared our numerical results with those from similar experiments. Our study results can clearly help to maximize the converter's efficiency when considering specific conditions.
On The Dynamics and Design of a Two-body Wave Energy Converter
Liang, Changwei; Zuo, Lei
2016-09-01
A two-body wave energy converter oscillating in heave is studied in this paper. The energy is extracted through the relative motion between the floating and submerged bodies. A linearized model in the frequency domain is adopted to study the dynamics of such a two-body system with consideration of both the viscous damping and the hydrodynamic damping. The closed form solution of the maximum absorption power and corresponding power take-off parameters are obtained. The suboptimal and optimal designs for a two-body system are proposed based on the closed form solution. The physical insight of the optimal design is to have one of the damped natural frequencies of the two body system the same as, or as close as possible to, the excitation frequency. A case study is conducted to investigate the influence of the submerged body on the absorption power of a two-body system subjected to suboptimal and optimal design under regular and irregular wave excitations. It is found that the absorption power of the two-body system can be significantly higher than that of the single body system with the same floating buoy in both regular and irregular waves. In regular waves, it is found that the mass of the submerged body should be designed with an optimal value in order to achieve the maximum absorption power for the given floating buoy. The viscous damping on the submerged body should be as small as possible for a given mass in both regular and irregular waves.
Wave attenuation charcteristics of tethered float system
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.
incident wave height transmitted wave height G wave number float mass number of rows of floats drag power transmitted wave power incident wave power 111 112 P. Vethamony float radius wave period time velocity and acceleration of fluid... particles, respectively wave attenuation in percentage displacement, velocity and acceleration of float, respectively amplitude of float displacement added mass damping coefficient fluid particle displacement amplitude of fluid particle displacement...
Near-Shore Floating Wave Energy Converters
DEFF Research Database (Denmark)
Ruol, Piero; Zanuttigh, Barbara; Martinelli, Luca
2011-01-01
and transmission characteristics are approximated to functions of wave height, period and obliquity. Their order of magnitude are 20% and 80%, respectively. It is imagined that an array of DEXA is deployed in front of Marina di Ravenna beach (IT), a highly touristic site of the Adriatic Coast. Based on the CERC......Aim of this note is to analyse the possible application of a Wave Energy Converter (WEC) as a combined tool to protect the coast and harvest energy. Physical model tests are used to evaluate wave transmission past a near-shore floating WEC of the wave activated body type, named DEXA. Efficiency...
Wave transmission prediction of multilayer floating breakwater using neural network
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Patil, S.G.; Hegde, A.V.
In the present study, an artificial neural network method has been applied for wave transmission prediction of multilayer floating breakwater. Two neural network models are constructed based on the parameters which influence the wave transmission...
Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke
2012-01-01
This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...
WindWaveFloat (WWF): Final Scientific Report
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Alla; Roddier, Dominique; Banister, Kevin
2012-03-30
Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.
Two-body Dirac equation and its wave function at the origin
International Nuclear Information System (INIS)
Ito, Hitoshi
1998-01-01
We propose a relativistic bound state equation for the Dirac particles interacting through an Abelian gauge field. It reduces to the (one body) Dirac equation in the infinite limit of one of the masses and is invariant under the PCT transformation. This invariance is a consequence of a modification of the Stueckelberg-Feynman boundary condition for propagation of the negative-energy two-body states, by which the some effect of the crossed diagram is taken in the lowest ladder equation. We can correct back the modification in perturbative calculations of the weak-coupling theory by adding a counter correction term in the interaction kernel. The equation can be used for the phenomenology of the heavy flavored mesons. We get good behavior of the wave function at the origin (WFO), with which the annihilation amplitude of the pseudoscalar meson becomes finite. Some comments are mentioned for the application in the heavy quark effective theory. The talk was based on a preprint
Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures
Zou, T.; Kaminski, M.L.
2016-01-01
In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated
Wave energy absorption by a floating air bag
DEFF Research Database (Denmark)
Kurniawan, Adi; Chaplin, John; Greaves, Deborah
2017-01-01
A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting...
Experimental testing of moorings for large floating wave energy converters
DEFF Research Database (Denmark)
Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter
2016-01-01
This paper presents the outcome of a test campaign, which investigates the behaviour of a synthetic mooring system applied to the Floating Power Plant wave energy converter. The study investigates the motion and tension response under operational and extreme sea states expected at the deployment ...
Numerical simulation of floating bodies in extreme free surface waves
Directory of Open Access Journals (Sweden)
Z. Z. Hu
2011-02-01
Full Text Available In this paper, we use the in-house Computational Fluid Dynamics (CFD flow code AMAZON-SC as a numerical wave tank (NWT to study wave loading on a wave energy converter (WEC device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water. The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.
Wave Energy, Lever Operated Pivoting Float LOPF Study
DEFF Research Database (Denmark)
Margheritini, Lucia
The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg...... University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed...... for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency...
A Floating Offshore Wind Turbine in Extreme Wave Conditions
DEFF Research Database (Denmark)
Wehmeyer, Christof
is an expected maximum wave in accordance with a Rayleigh distribution. The maximum waves are numerically represented by embedded Stream-function waves. The author compares the resulting bow tendon loading of the hybrid model to the measured responses, as a key performance indicator. 90% to 95% of the loads show...... a satisfying match, though the hybrid model over predicts the remaining 5% to 10% maximum loads by 32%, 34% and 29% for a linear irregular sea state, a nonlinear irregular sea state and a nonlinear irregular sea state with an embedded Stream-function wave, respectively. The limited number of sea states during...... important aspects, which make them non-conservative in use for FOWT: (A) The offshore wind industry intends to install floating structures at much lower water depth (from 50m onwards), than the offshore oil & gas industry (from 300m onwards). In such cases a linear wave theory approach might...
Damping Wind and Wave Loads on a Floating Wind Turbine
DEFF Research Database (Denmark)
Christiansen, Søren; Bak, Thomas; Knudsen, Torben
2013-01-01
Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due......, and we show the influence that both wind speed, wave frequencies and misalignment between wind and waves have on the system dynamics. A new control model is derived that extends standard turbine models to include the hydrodynamics, additional platform degrees of freedom, the platform mooring system...
Floating attenuator wave energy device. Wavegen HYDRA project
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
The Wavegen Project which set out to develop a floating externally tensioned articulated wave-energy generator based on work carried out at RMCS Shrivenham in the 1980s has been abandoned until further notice. The computer modelling carried out in the early days indicated much promise, but the promise turned to disappointment when difficulties cropped-up in attempting to put the design into practice. A particular problem arose in matching the external tension to an equivalent beam stiffness to tune the natural bending frequency of the raft to that of the driving waves. A further eleven practical problems encountered are discussed.
Optimized Latching Control of Floating Point Absorber Wave Energy Converter
Gadodia, Chaitanya; Shandilya, Shubham; Bansal, Hari Om
2018-03-01
There is an increasing demand for energy in today’s world. Currently main energy resources are fossil fuels, which will eventually drain out, also the emissions produced from them contribute to global warming. For a sustainable future, these fossil fuels should be replaced with renewable and green energy sources. Sea waves are a gigantic and undiscovered vitality asset. The potential for extricating energy from waves is extensive. To trap this energy, wave energy converters (WEC) are needed. There is a need for increasing the energy output and decreasing the cost requirement of these existing WECs. This paper presents a method which uses prediction as a part of the control scheme to increase the energy efficiency of the floating-point absorber WECs. Kalman Filter is used for estimation, coupled with latching control in regular as well as irregular sea waves. Modelling and Simulation results for the same are also included.
Numerical Simulation of Floating Bodies in Extreme Free Surface Waves
Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling
2010-05-01
A task of the EPSRC funded research project 'Extreme Wave loading on Offshore Wave Energy Devices: a Hierarchical Team Approach' is to investigate the survivability of two wave energy converter (WEC) devices Pelamis and the Manchester Bobber using different CFD approaches. Both devices float on the water surface, generating the electricity from the motion of the waves. In this paper, we describe developments of the AMAZON-SC 3D numerical wave tank (NWT) to study extreme wave loading of a fixed or floating (in Heave motion) structure. The extreme wave formulation as an inlet condition is due to Dalzell (1999) and Ning et. al. (2009) in which a first or second-order Stokes focused wave can be prescribed. The AMAZON-SC 3D code (see e.g. Hu et al. (2009)) uses a cell centred finite volume method of the Godunov-type for the space discretization of the Euler and Navier Stokes equations. The computational domain includes both air and water regions with the air/water boundary captured as a discontinuity in the density field thereby admitting the break up and recombination of the free surface. Temporal discretisation uses the artificial compressibility method and a dual time stepping strategy to maintain a divergence free velocity field. Cartesian cut cells are used to provide a fully boundary-fitted gridding capability on an regular background Cartesian grid. Solid objects are cut out of the background mesh leaving a set of irregularly shaped cells fitted to the boundary. The advantages of the cut cell approach have been outlined previously by Causon et al. (2000, 2001) including its flexibility for dealing with complex geometries whether stationary or in relative motion. The field grid does not need to be recomputed globally or even locally for moving body cases; all that is necessary is to update the local cut cell data at the body contour for as long as the motion continues. The handing of numerical wave paddles and device motion in a NWT is therefore straightforward
Wave energy, lever operated pivoting float LOPF study
Energy Technology Data Exchange (ETDEWEB)
Margheritini, L.
2012-11-01
The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency, produce 610 MWh/y (609.497 kWh/y) with an average power output of 69.6 kW, which requires a generator capacity of 700 kW. It is expected the generator efficiency can be increased to 90% in the future. More specific calculations (from EnergiNet) show that with one generator of 695 kW the expected power production is 585 MWh/y; with a generator of 250 kW and 100 kW, the expected power production is 481 MWh/y and 182 MWh/y respectively. In addition there are several areas for future improvements for increased power production. (Author)
Floating attenuator wave energy device: Wavegen HYDRA project
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
This report describes research funded by the Department of Trade and Industry (DTI) into the feasibility of developing and constructing a floating attenuator wave energy device known as HYDRA following initial studies by Wavegen. HYDRA is a floating externally tensioned articulated raft wave energy generator based on work by Professor FJM Farley and colleagues during the 1980s. The project's first four work tasks confirmed the theoretical potential of the device but also highlighted significant practical problems in translating that potential into a viable design. It was therefore decided not to proceed further, i.e. not to construct and test a prototype device. The report provides a general description of the device and describes the results of the initial analysis and the first series of model tests. It then discusses device design and component testing and explains the methodology for determining device performance at a particular site and mathematical modelling of a one-third scale device. To help future research and development programmes, the report emphasises the generic problems associated with the development of wave devices.
Wave energy absorption by a submerged air bag connected to a rigid float
DEFF Research Database (Denmark)
Kurniawan, Adi; Chaplin, J. R.; Hann, M. R.
2017-01-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are gene......A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements...
Hydroelastic response of a floating runway to cnoidal waves
International Nuclear Information System (INIS)
Ertekin, R. C.; Xia, Dingwu
2014-01-01
The hydroelastic response of mat-type Very Large Floating Structures (VLFSs) to severe sea conditions, such as tsunamis and hurricanes, must be assessed for safety and survivability. An efficient and robust nonlinear hydroelastic model is required to predict accurately the motion of and the dynamic loads on a VLFS due to such large waves. We develop a nonlinear theory to predict the hydroelastic response of a VLFS in the presence of cnoidal waves and compare the predictions with the linear theory that is also developed here. This hydroelastic problem is formulated by directly coupling the structure with the fluid, by use of the Level I Green-Naghdi theory for the fluid motion and the Kirchhoff thin plate theory for the runway. The coupled fluid structure system, together with the appropriate jump conditions are solved in two-dimensions by the finite-difference method. The numerical model is used to study the nonlinear response of a VLFS to storm waves which are modeled by use of the cnoidal-wave theory. Parametric studies show that the nonlinearity of the waves is very important in accurately predicting the dynamic bending moment and wave run-up on a VLFS in high seas
Hydroelastic response of a floating runway to cnoidal waves
Energy Technology Data Exchange (ETDEWEB)
Ertekin, R. C., E-mail: ertekin@hawaii.edu [Department of Ocean and Resources Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Xia, Dingwu [Engineering Services, British Petroleum GoM, Houston, Texas 77079 (United States)
2014-02-15
The hydroelastic response of mat-type Very Large Floating Structures (VLFSs) to severe sea conditions, such as tsunamis and hurricanes, must be assessed for safety and survivability. An efficient and robust nonlinear hydroelastic model is required to predict accurately the motion of and the dynamic loads on a VLFS due to such large waves. We develop a nonlinear theory to predict the hydroelastic response of a VLFS in the presence of cnoidal waves and compare the predictions with the linear theory that is also developed here. This hydroelastic problem is formulated by directly coupling the structure with the fluid, by use of the Level I Green-Naghdi theory for the fluid motion and the Kirchhoff thin plate theory for the runway. The coupled fluid structure system, together with the appropriate jump conditions are solved in two-dimensions by the finite-difference method. The numerical model is used to study the nonlinear response of a VLFS to storm waves which are modeled by use of the cnoidal-wave theory. Parametric studies show that the nonlinearity of the waves is very important in accurately predicting the dynamic bending moment and wave run-up on a VLFS in high seas.
Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines
DEFF Research Database (Denmark)
Kallesøe, Bjarne Skovmose
This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world’s first combined wave and wind energy platform. The floating energy...
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions
Jerke, Jonathan; Poirier, Bill
2018-03-01
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Extended onshore control of a floating wind turbine with wave disturbance reduction
DEFF Research Database (Denmark)
Christiansen, S.; Knudsen, T.; Bak, Thomas
2014-01-01
Reaching for higher wind resources floating wind turbines are being investigated. Wave induced loads significantly increase for floating wind turbines, and applying conventional onshore control strategies to floating wind turbines has been shown to impose negative damped oscillations in fore......-aft due to the low natural frequency of the floating structure. We suggest a control loop extension of the onshore controller which stabilizes the system and reduces the wave disturbance. The result is improved performance in power fluctuations, blade pitch activity, and platform oscillations...
Physical measurements of breaking wave impact on a floating wave energy converter
Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison
2013-04-01
Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.
CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves
Directory of Open Access Journals (Sweden)
Brecht Devolder
2018-03-01
Full Text Available In this paper we use the Computational Fluid Dynamics (CFD toolbox OpenFOAM to perform numerical simulations of multiple floating point absorber wave energy converters (WECs arranged in a geometrical array configuration inside a numerical wave tank (NWT. The two-phase Navier-Stokes fluid solver is coupled with a motion solver to simulate the hydrodynamic flow field around the WECs and the wave-induced rigid body heave motion of each WEC within the array. In this study, the numerical simulations of a single WEC unit are extended to multiple WECs and the complexity of modelling individual floating objects close to each other in an array layout is tackled. The NWT is validated for fluid-structure interaction (FSI simulations by using experimental measurements for an array of two, five and up to nine heaving WECs subjected to regular waves. The validation is achieved by using mathematical models to include frictional forces observed during the experimental tests. For all the simulations presented, a good agreement is found between the numerical and the experimental results for the WECs’ heave motions, the surge forces on the WECs and the perturbed wave field around the WECs. As a result, our coupled CFD–motion solver proves to be a suitable and accurate toolbox for the study of fluid-structure interaction problems of WEC arrays.
Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure
Directory of Open Access Journals (Sweden)
Taro Kakinuma
2012-01-01
Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.
DEFF Research Database (Denmark)
Yde, Anders; Pedersen, Mads Mølgaard; Bellew, Sarah Bellew
This report presents results from the PSO project 2011-1-10668 entitled Poseidon 2. The project is a continuation of the previous PSO project entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines. Floating Power Plant has developed the technology...... for a novel, floating, wave- and wind-energy hybrid device. To test the technology they have scaled the design to P37, a 37 m wide test platform that has been undergoing offshore testing for four complete test phases (totaling more than 2 years). The test platform provides electricity to the grid from both...... wind and wave energy, however its purpose is purely for research and development. The PSO project has equipped the platform with comprehensive measurements equipment for measuring platform motion, wave and wind conditions and turbine loads. Data from the test periods has been used for evaluating...
DEFF Research Database (Denmark)
Christiansen, Søren; Tabatabaeipour, Seyed Mojtaba; Bak, Thomas
2013-01-01
pitch such that the state trajectories of the controlled system tracks the reference trajectories. The framework is demonstrated with a reference model of the desired closed-loop system undisturbed by the incident waves. This allows the wave-induced motion of the platform to be damped significantly...... compared to a baseline floating wind turbine controller at the cost of more pitch action....
Estimating Wind and Wave Induced Forces On a Floating Wind Turbine
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Natarajan, Anand; Kim, Taeseong
2013-01-01
-principles derived state space model of the floating wind turbine. The ability to estimate aero- and hydrodynamic states could prove crucial for the performance of model-based control methods applied on floating wind turbines. Furthermore, two types of water kinematics have been compared two determine whether......In this work, the basic model for a spar buoy floating wind turbine [1], used by an extended Kalman filter, is presented and results concerning wind speed and wave force estimations are shown. The wind speed and aerodynamic forces are estimated using an extended Kalman filter based on a first...... or not linear and nonlinear water kinematics lead to significantly different loads....
Nonlinear optimization method of ship floating condition calculation in wave based on vector
Ding, Ning; Yu, Jian-xing
2014-08-01
Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results.
Wave response analyses of floating crane structure; Crane sen no jobu kozobutsu no haro oto
Energy Technology Data Exchange (ETDEWEB)
Nobukawa, H.; Takaki, M.; Kitamura, M.; Ahou, G. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering; Higashimura, M. [Fukada Salvage and Marine Works Co. Ltd., Osaka (Japan)
1996-12-31
Identifying a dynamic load acting on a lifted load in a floating crane moving in waves is important for preparing an operation manual for the floating crane. Analyses were made on motions in waves of a floating crane with a lifting load of 3,600 tons, with considerations given to deformation of the crane structure. Discussions were given on a dynamic load acting on a lifted load. If a case that considers elastic deformation in the crane structure is compared with a case that does not consider same in calculating hull motions of the floating crane, the difference between them is small if wave length {lambda} to the ship length L is about 0.5. However, if {lambda}/L is 1.0 and 1.5, the difference grows very large. Therefore, the effect of deformation in the crane structure on hull motions of the floating crane cannot be ignored in these cases. A dynamic load acting on a lifted load that considers deformation in the crane structure is about 5% of lifted weight in a headsea condition in which the wave height is 2 m and {lambda}/L is 1.5. As opposed, an estimated value of a dynamic load when the crane structure is regarded as a rigid body is 13%, which is 2.6 times as great as the case that considers deformation of the crane structure. 3 refs., 17 figs., 1 tab.
Wave response analyses of floating crane structure; Crane sen no jobu kozobutsu no haro oto
Energy Technology Data Exchange (ETDEWEB)
Nobukawa, H; Takaki, M; Kitamura, M; Ahou, G [Hiroshima University, Hiroshima (Japan). Faculty of Engineering; Higashimura, M [Fukada Salvage and Marine Works Co. Ltd., Osaka (Japan)
1997-12-31
Identifying a dynamic load acting on a lifted load in a floating crane moving in waves is important for preparing an operation manual for the floating crane. Analyses were made on motions in waves of a floating crane with a lifting load of 3,600 tons, with considerations given to deformation of the crane structure. Discussions were given on a dynamic load acting on a lifted load. If a case that considers elastic deformation in the crane structure is compared with a case that does not consider same in calculating hull motions of the floating crane, the difference between them is small if wave length {lambda} to the ship length L is about 0.5. However, if {lambda}/L is 1.0 and 1.5, the difference grows very large. Therefore, the effect of deformation in the crane structure on hull motions of the floating crane cannot be ignored in these cases. A dynamic load acting on a lifted load that considers deformation in the crane structure is about 5% of lifted weight in a headsea condition in which the wave height is 2 m and {lambda}/L is 1.5. As opposed, an estimated value of a dynamic load when the crane structure is regarded as a rigid body is 13%, which is 2.6 times as great as the case that considers deformation of the crane structure. 3 refs., 17 figs., 1 tab.
2005-11-25
fact, Koutandos et al. (2004) even now have had to limit their work only to the x–z plane while using a similar approach. In this paper, therefore, we...breakwater Koutandos et al. (2004) have presented data pertaining to transmission coefficients for waves passing a fixed, infinitely long, floating...4. Values of A and B for determining α. Fig. 5. Wave height comparison with data presented in Koutandos et al. (2004). Fig. 6. Wave transmission past
Optimal Configurations of Wave Energy Converter Arrays with a Floating Body
Directory of Open Access Journals (Sweden)
Zhang Wanchao
2016-10-01
Full Text Available An array of floating point-absorbing wave energy converters (WECs is usually employed for extracting efficiently ocean wave energy. For deep water environment, it is more feasible and convenient to connect the absorbers array with a floating body, such as a semi-submersible bottom-moored disk, whose function is to act as the virtual seabed. In the present work, an array of identical floating symmetrically distributed cylinders in a coaxial moored disk as a wave energy device is proposed The power take-off (PTO system in the wave energy device is assumed to be composed of a linear/nonlinear damper activated by the buoys heaving motion. Hydrodynamic analysis of the examined floating system is implemented in frequency domain. Hydrodynamic interferences between the oscillating bodies are accounted for in the corresponding coupled equations. The array layouts under the constraint of the disk, incidence wave directions, separating distance between the absorbers and the PTO damping are considered to optimize this kind of WECs. Numerical results with regular waves are presented and discussed for the axisymmetric system utilizing heave mode with these interaction factors, in terms of a specific numbers of cylinders and expected power production.
Freely floating structures trapping time-harmonic water waves (revisited)
Kuznetsov, Nikolay; Motygin, Oleg
2014-01-01
We study the coupled small-amplitude motion of the mechanical system consisting of infinitely deep water and a structure immersed in it. The former is bounded above by a free surface, whereas the latter is formed by an arbitrary finite number of surface-piercing bodies floating freely. The mathematical model of time-harmonic motion is a spectral problem in which the frequency of oscillations serves as the spectral parameter. It is proved that there exist axisymmetric structures consisting of ...
Recovery of uranium from seawater using wave power and floating offshore units
International Nuclear Information System (INIS)
Bjoerk, B.; Vallander, P.
1981-06-01
This report is a final contribution to a study of the technical and economic feasibility of floating units for the recovery of uranium from seawater. The seawater is supplied by wave energy and received by a sloping plane. An optimization was carried out which involved study of the number of storeys of adsorbent beds in a floating unit, the number and tonnage of service vessels and the number of moorings. Different adsorbent bed areas, thickness of layers of adsorbent material, length of floating units and length of extraction cycles were considered. The costs of a plant for each combination of optimization parameters were calculated and are presented. The most feasible offshore plant will recover uranium at a cost of about 1900 SEK/kg. It will comprise 22 floating units, each with an adsorbent bed area of 300 m 2 per metre of the unit and an adsorbent thickness of 0.10 metres. (Authors)
On the fundamental performance of the floating offshore wave power device (FOWAD)
International Nuclear Information System (INIS)
Hotta, H.; Washio, Y.; Miyazaki, T.
1990-01-01
This paper reports on the wave power absorption, wave dissipation, mooring line tension and oscillation in regular and irregular (long created and short created) waves of the floating offshore wave power device (FOWAD) that were measured and analyzed by a scale model test in a wave tank. FOWAD is an oscillating water column type device equipped with air turbine generators, and air chambers facing the waves. Therefore, it belongs in the close of terminator type wave power devices. It has several projecting walls in front of each air chamber, several buoyancy compartments behind each chamber and stabilizer at the keel. The measured data indicates that, the performance and stability were improved in comparison with former terminator type devices, FOWAD absorbed about 30% of wave power and mooring line tension was within the limits of safety even in rough seas. Nevertheless the performance for dissipation of waves can be improved. This paper describes on the results of the model test and subsequent analysis
Concentration of frequencies of trapped waves in problems on freely floating bodies
Energy Technology Data Exchange (ETDEWEB)
Nazarov, Sergei A [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St.-Petersburg (Russian Federation)
2012-09-30
It is shown that by choosing the shape of two identical bodies floating freely in a channel with symmetric cross-section it is possible to form any pre-assigned number of linearly independent trapped waves (localized solutions). Bibliography: 27 titles.
A Floating Offshore Wind Turbine in Extreme Wave Conditions
DEFF Research Database (Denmark)
Wehmeyer, Christof
in order to include non-linear irregular incident waves as well as non-linear irregular incident waves with an embedded Stream-function wave. A linear background sea state into which a Stream-function wave was embedded was assumed no longer appropriate. Therefore a 2nd order sea state model was developed...... and served as well as the background sea state in which the Stream-function wave was embedded. The combined sea state was then applied in the numerical model in order to investigate the bow tendon responses of the FOWT TLP. A comparison of measured bow mooring responses and the numerically predicted bow......The PhD work evaluated the performance of engineering procedures, used in the design of bottom fixed offshore wind turbines, for the hydrodynamic ULS analysis of a FOWT tension leg platform (TLP). Dynamically sensitive topsides have been included and water depths were considered, where wave shapes...
Analysis of Floating Buoy of a Wave Power Generating Jack-Up Platform Haiyuan 1
Directory of Open Access Journals (Sweden)
Date Li
2013-01-01
Full Text Available The paper focuses on the performance of floating buoys of a wave power generating jack-up platform called Haiyuan 1, in order to work out the optimum designed draft and hydraulic pressure. The performance of the buoy, especially its delivered power, is an important issue in designing oscillating buoy wave energy converter. In this case, major factors affect the performance including incident wave, designed draft, and hydraulic pressure on the buoy. To find out the relationship among design draft, hydraulic pressure, and delivered power, the key point is to precisely estimate wave induced motion of the buoy. Three-dimensional theory and time domain method based on potential theory were adopted in the paper. Unlike ship and other floating structures, motion of wave energy converter (WEC buoy in wave will be weakened because of energy take-off, which will cause significant draft changing with time. Thus, draft changing should be taken into consideration as well. In addition, green water problem occurs more frequently than that in ship and other floating structures and also might the reduce delivered power. Therefore, green water problem will also be taken into account when choosing the optimum designed draft and hydraulic pressure. The calculation indicates that the optimum designed draft is 0.935 m, while the optimum designed hydraulic pressure is 30 kN.
Directory of Open Access Journals (Sweden)
Lorenzo Iorio
2014-09-01
Full Text Available We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency νg is much smaller than the particle's orbital one nb. We make neither a priori assumptions about the direction of the wavevector kˆ nor on the orbital configuration of the particle. While the semi-major axis a is left unaffected, the eccentricity e, the inclination I, the longitude of the ascending node Ω, the longitude of pericenter ϖ and the mean anomaly ℳ undergo non-vanishing long-term changes of the form dΨ/dt=F(Kij;e,I,Ω,ω,Ψ=e,I,Ω,ϖ,M, where Kij, i,j=1,2,3 are the coefficients of the tidal matrix K. Thus, in addition to the variations of its orientation in space, the shape of the orbit would be altered as well. Strictly speaking, such effects are not secular trends because of the slow modulation introduced by K and by the orbital elements themselves: they exhibit peculiar long-term temporal patterns which would be potentially of help for their detection in multidecadal analyses of extended data records of planetary observations of various kinds. In particular, they could be useful in performing independent tests of the inflation-driven ultra-low gravitational waves whose imprint may have been indirectly detected in the Cosmic Microwave Background by the Earth-based experiment BICEP2. Our calculation holds, in general, for any gravitationally bound two-body system whose orbital frequency nb is much larger than the frequency νg of the external wave, like, e.g., extrasolar planets and the stars orbiting the Galactic black hole. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.
Wave energy absorption by a submerged air bag connected to a rigid float.
Kurniawan, A; Chaplin, J R; Hann, M R; Greaves, D M; Farley, F J M
2017-04-01
A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.
Aero-hydro-elastic simulation platform for wave energy systems and floating wind turbines
Energy Technology Data Exchange (ETDEWEB)
Kallesoee, B.S.
2011-01-15
This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world's first combined wave and wind energy platform. The floating energy conversion platform, Poseidon, is owned and operated by Floating Power Plant A/S. The platform has been operating for two test periods; one period where it was operating as a wave energy conversion platform only and one period where the three turbines was mounted and the platform operated as a combined wind and wave energy platform. The PSO project has equipped the platform with comprehensive measurements equipment for measuring platform motion, wave and wind conditions and turbine loads. Data from the first test period has been used for determine if the turbine could be mounted on the platform. Preliminary analysis of data from the second test period indicates that the platform is suitable as wind turbine foundation and that the turbines reduce the platform motion. (Author)
Recovery of uranium from seawater using wave power and floating offshore units
International Nuclear Information System (INIS)
Bjoerk, B.; Vallander, P.
1981-03-01
This report is the final contribution to a study of the technical and economic feasibility of floating units for the recovery of uranium from seawater. The seawater is supplied by wave energy and received by a sloping plane. An optimization was carried out which involved study of the number of storeys of adsorbent beds in a floating unit, the number and tonnage of service vessels and the number of moorings. Different absorbent bed areas, thicknesses of layers of adsorbent material, length of floating units and length of extraction cycles were considered. The annual uranium uptake was calculated for an offshore location 20 nautical miles to the south-east of South Africa. The costs of the total plant for each combination of optimization parameters were calculated and are presented. The cost of the recovered uranium for each combination of optimization parameters is shown. The most feasible offshore plant will recover uranium at a cost of about 1 900 SEK/kg. It will comprise 22 floating units, each with an adsorbent bed area of 300 m 2 per metre of the unit and an adsorbent thickness of 0.10 metres. A conceptual layout of the selected floating unit is shown in drawings. (author)
Model-Based Control of a Ballast-Stabilized Floating Wind Turbine Exposed to Wind and Waves
DEFF Research Database (Denmark)
Christiansen, Søren
2013-01-01
wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hy-drodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure......, the hydrodynamics and the loads change the dynamic behavior of a floating wind turbine. Consequently, conventional wind turbine control cause instabilities on floating wind turbines. This work addresses the control of a floating spar buoy wind turbine, and focuses on the impact of the additional platform dynamics....... A time varying control model is presented based on the wind speed and wave frequency. Estimates of the wind speed and wave frequency are used as scheduling variables in a gain scheduled linear quadratic controller to improve the electrical power production while reducing fatigue. To address the problem...
Initial Assessment of Mooring Solutions for Floating Wave Energy Converters
DEFF Research Database (Denmark)
Thomsen, Jonas Bjerg; Kofoed, Jens Peter; Delaney, Martin
2016-01-01
The present study investigates three different types of mooring systems in order to establish potential cost reductions and applicability to wave energy converters (WECs). Proposed mooring systems for three existing WECs create the basis for this study, and the study highlights areas of interest ...
DEFF Research Database (Denmark)
Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter
2017-01-01
-source boundary element method code NEMOH and the commercial time-domain mooring analysis tool OrcaFlex. The work used the wind/wave energy converter Floating Power Plant as a case study, which is defined as a large floating structure with a passive mooring system. The investigated mooring consists of a three...
DEFF Research Database (Denmark)
Sørensen, Eigil V.; Aarup, Bendt
The objective of the FLOAT project is to study the reliability of high-performance fibre-reinforced concrete, also known as Compact Reinforced Composite (CRC), for the floats of wave energy converters. In order to reach a commercial breakthrough, wave energy converters need to achieve a lower price...
Yang, Jing; Zhang, Da-hai; Chen, Ying; Liang, Hui; Tan, Ming; Li, Wei; Ma, Xian-dong
2017-10-01
A novel floating pendulum wave energy converter (WEC) with the ability of tide adaptation is designed and presented in this paper. Aiming to a high efficiency, the buoy's hydrodynamic shape is optimized by enumeration and comparison. Furthermore, in order to keep the buoy's well-designed leading edge always facing the incoming wave straightly, a novel transmission mechanism is then adopted, which is called the tidal adaptation mechanism in this paper. Time domain numerical models of a floating pendulum WEC with or without tide adaptation mechanism are built to compare their performance on various water levels. When comparing these two WECs in terms of their average output based on the linear passive control strategy, the output power of WEC with the tide adaptation mechanism is much steadier with the change of the water level and always larger than that without the tide adaptation mechanism.
Digital Repository Service at National Institute of Oceanography (India)
Patil, S.G.; Mandal, S.; Hegde, A.V.
Understanding the physics of complex system plays an important role in selection of data for training intelligent computing models. Based on the physics of the wave transmission of Horizontally Interlaced Multilayer Moored Floating Pipe Breakwater...
Bull, Diana
2014-01-01
A stochastic approach is used to gain a sophisticated understanding of a non-axisymmetric floating oscillating water column's response to random waves. A linear, frequency-domain performance model that links the oscillating structure to air-pressure fluctuations with a Wells Turbine in 3-dimensions is used to study the device performance at a northern California deployment location. Both short-term, sea-state, and long-term, annual, predictions are made regarding the devices performance. U...
Digital Repository Service at National Institute of Oceanography (India)
Patil, S.G.; Mandal, S.; Hegde, A.V.
studies on floating breakwaters in the past but failed to give a simple mathematical model to predict the wave transmission through floating breakwaters by considering all the boundary conditions. Computational intelligence techniques, such as, Artificial...
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2018-02-01
We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.
Design and characterization of an ocean wave powered lifejacket using 2DOF floating boards
Mi, Jia; Xu, Lin; Yang, Yaling; Zuo, Lei
2018-04-01
Lifejacket is an indispensable life-saving equipment for ships and airplanes. Traditional lifejacket is designed to prevent human from drowning. However, the water temperature is usually low, especially in winter, which significantly reduces the human body temperature and leads to death. Meanwhile, power is critical for drowning people to use emergency communication equipment. This paper proposed an ocean wave powered lifejacket using 2DOF floating boards to provide both buoyance and electricity for drowning people. Hence, they can use this continuous electric power to keep key body warm and send distress signal. This lifejacket is featured with two 2DOF floating boards and the mechanical motion rectifier (MMR) can convert the 2-DOF motions to the unidirectional rotation of generator. The design principle is illustrated and the dynamic modelling for the 2-DOF motions has been analyzed. Bench test and lake test have been conducted to validate the design concept.
Wave-free floating body forms for a shallow sea area; Senkaiiki no naminashi futai keijo ni tsuite
Energy Technology Data Exchange (ETDEWEB)
Kyozuka, Y; Nariai, Y [Kyushu University, Fukuoka (Japan)
1997-10-01
In column footing or semi-submergible type marine structures, a vertical wave force vanishes at a specific period of waves. This phenomenon is called wave-free characteristics. This wave-free characteristics make it possible to design marine structures superior in oscillation performance in waves. Since Bessho`s wave-free theory is useful only for an infinite water depth, this paper studied the wave-free theory for a shallow sea area. On a wave-free singularity and required floating body form, 2-D and 3-D axisymmetric floating body forms were determined, and vertical wave force characteristics of the obtained body forms were calculated and verified experimentally. Since the source term of the wave-free singularity was weaker in a shallow sea area than an infinite deep water area, resulting in the narrow width of the obtained wave-free body forms in a shallow sea area. The wave-free theory for a shallow sea area was verified by both numerical calculation based on a singularity distribution method and model experiment for these floating body forms. 3 refs., 10 figs.
Nonlinear Hydroelastic Waves Generated due to a Floating Elastic Plate in a Current
Directory of Open Access Journals (Sweden)
Ping Wang
2017-01-01
Full Text Available Effects of underlying uniform current on the nonlinear hydroelastic waves generated due to an infinite floating plate are studied analytically, under the hypotheses that the fluid is homogeneous, incompressible, and inviscid. For the case of irrotational motion, the Laplace equation is the governing equation, with the boundary conditions expressing a balance among the hydrodynamics, the uniform current, and elastic force. It is found that the convergent series solutions, obtained by the homotopy analysis method (HAM, consist of the nonlinear hydroelastic wave profile and the velocity potential. The impacts of important physical parameters are discussed in detail. With the increment of the following current intensity, we find that the amplitudes of the hydroelastic waves decrease very slightly, while the opposing current produces the opposite effect on the hydroelastic waves. Furthermore, the amplitudes of waves increase very obviously for higher opposing current speed but reduce very slightly for higher following current speed. A larger amplitude of the incident wave increases the hydroelastic wave deflections for both opposing and following current, while for Young’s modulus of the plate there is the opposite effect.
Directory of Open Access Journals (Sweden)
Hyebin Lee
2018-02-01
Full Text Available Wind-wave hybrid power generation systems have the potential to become a significant source of affordable renewable energy. However, their strong interactions with both wind- and wave-induced forces raise a number of technical challenges for modelling. The present study undertakes a numerical investigation on multi-body hydrodynamic interaction between a wind-wave hybrid floating platform and multiple wave energy converters (WECs in a frequency domain. In addition to the exact responses of the platform and the WECs, the power take-off (PTO mechanism was taken into account for analysis. The coupled hydrodynamic coefficients and wave exciting forces were obtained from WAMIT, the 3D diffraction/radiation solver based on the boundary element method. The overall performance of the multiple WECs is presented and compared with the performance of a single isolated WEC. The analysis showed significant differences in the dynamic responses of the WECs when the multi-body interaction was considered. In addition, the PTO damping effect made a considerable difference to the responses of the WECs. However, the platform response was only minimally affected by PTO damping. With regard to energy capture, the interaction effect of the designed multiple WEC array layout is evaluated. The WEC array configuration showed both constructive and destructive effects in accordance with the incident wave frequency and direction.
Model-based control of a ballast-stabilized floating wind turbine exposed to wind and waves
Energy Technology Data Exchange (ETDEWEB)
Christiansen, Soeren
2013-01-15
The wind turbine is a commercial product which is competing against other sources of energy, such as coal and gas. This competition drives a constant development to reduce costs and improve efficiency in order to reduce the total cost of the energy. The latest offshore development is the floating wind turbine, for water depths beyond 50 meters where winds are stronger and less turbulent. A floating wind turbine is subject to not only aerodynamics and wind induced loads, but also to hydrodynamics and wave induced loads. In contrast to a bottom fixed wind turbine, the floating structure, the hydrodynamics and the loads change the dynamic behavior of a floating wind turbine. Consequently, conventional wind turbine control cause instabilities on floating wind turbines. This work addresses the control of a floating spar buoy wind turbine, and focuses on the impact of the additional platform dynamics. A time varying control model is presented based on the wind speed and wave frequency. Estimates of the wind speed and wave frequency are used as scheduling variables in a gain scheduled linear quadratic controller to improve the electrical power production while reducing fatigue. To address the problem of negative damped fore-aft tower motion, additional control loops are suggested which stabilize the response of the onshore controller and reduce the impact of the wave induced loads. This research is then extended to model predictive control, to further address wave disturbances. In the context of control engineering, the dynamics and disturbances of a floating wind turbine have been identified and modeled. The objectives of maximizing the production of electrical power and minimizing fatigue have been reached by using advanced methods of estimation and control. (Author)
Numerical and tank test of a pivoted floating device for wave energy
International Nuclear Information System (INIS)
Coiro, Domenico P.; Calise, Giuseppe; Bizzarrini, Nadia; Troise, Giancarlo
2015-01-01
In this paper a system for extracting energy from waves is presented. The present work deals with numerical and experimental tests on a scaled model, performed in the DII towing tank facility. The device is made up of a floating body, which oscillates due to waves, and of a linear electromechanical generator. The electromechanical generator, based on ball-bearing screw, is linked both to the buoyant body and a fixed frame, converting relative movements of its anchor point in electrical power. Numerical analyses on such device have been performed in order to evaluate critical parameters for the system optimization, including analytical study of the system, potential flow and computational fluid dynamics (CFD) simulations, based on Reynolds Averaged Navier-Stokes (RANS), as well. [it
On the concept of sloped motion for free-floating wave energy converters.
Payne, Grégory S; Pascal, Rémy; Vaillant, Guillaume
2015-10-08
A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range.
International Nuclear Information System (INIS)
Lee, J.; Cho, W.
2003-01-01
This paper deals with a numerical investigation of incident wave interactions with a moored pontoon-type floating breakwater. The element-free Galerkin method, in which only nodal data are required to analyze the problem, is employed to solve the diffraction and radiation boundary value problems addressed by the modified Helmholtz equation. The numerical model includes the hydrodynamic and mooring analyses, and it is validated by previous numerical and experimental results. Using the numerical model, we are able to assess the hydrodynamic performance of a moored pontoon-type floating breakwater in regular waves. Numerical results are presented to show the effects of wave conditions and mooring system configuration. This paper also presents the simple forms of stiffness coefficients of a slack mooring line. The influence of mooring line condition on the performance of a floating breakwater is highlighted. (author)
Theory of the synchronous motion of an array of floating flap gates oscillating wave surge converter
Michele, Simone; Sammarco, Paolo; d'Errico, Michele
2016-08-01
We consider a finite array of floating flap gates oscillating wave surge converter (OWSC) in water of constant depth. The diffraction and radiation potentials are solved in terms of elliptical coordinates and Mathieu functions. Generated power and capture width ratio of a single gate excited by incoming waves are given in terms of the radiated wave amplitude in the far field. Similar to the case of axially symmetric absorbers, the maximum power extracted is shown to be directly proportional to the incident wave characteristics: energy flux, angle of incidence and wavelength. Accordingly, the capture width ratio is directly proportional to the wavelength, thus giving a design estimate of the maximum efficiency of the system. We then compare the array and the single gate in terms of energy production. For regular waves, we show that excitation of the out-of-phase natural modes of the array increases the power output, while in the case of random seas we show that the array and the single gate achieve the same efficiency.
Energy Technology Data Exchange (ETDEWEB)
Averbukh, Elena [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); Kurkina, Oksana, E-mail: okurkina@hse.ru [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); National Research University Higher School of Economics, 25/12 Bol' shaya Pecherskaya St., 603155 Nizhny Novgorod (Russian Federation); Kurkin, Andrey [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); Soomere, Tarmo, E-mail: soomere@cs.ioc.ee [Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn (Estonia)
2014-01-03
By employing a simple model for small-scale linear edge waves propagating along a homogeneous sloping beach, we demonstrate that certain combinations of linear wave components may lead to durable changes in the thickness of the surfactant film, equivalently, in the concentration of various substances (debris, litter) floating on the water surface. Such changes are caused by high-amplitude transient elevations that resemble rogue waves and occur during dispersive focusing of wave fields with a continuous spectrum. This process can be treated as an intrinsic mechanism of production of patches in the surface layer of an otherwise homogeneous coastal environment impacted by linear edge waves.
Numerical Analysis of a Large Floating Wave Energy Converter with Adjustable Structural Geometry
DEFF Research Database (Denmark)
Ferri, Francesco; Pecher, Arthur Francois Serge; Kofoed, Jens Peter
2015-01-01
by the structural loads in extreme conditions. TheWeptos is a large floating WEC, with multiple absorbers, which has proven to be a serious candidate for the renewable energy market, due to both relevant power performance and reduced cost if compared with other WECs. The scope of this article is to compare two......The current cost of energy (CoE) from wave energy converters (WECs) is still significantly higher than other renewable energy resources, thus the sector has not yet reached a competitive level. WECs have a relative small turnover compared to the high capital cost, which to a large extent is driven...... different configurations of the Weptos machine, using the cost of energy (CoE) as a base of comparison. The numerical results are obtained via a multi-body analysis carried out in frequency domain....
DEFF Research Database (Denmark)
Ambühl, Simon; Sterndorff, Martin; Sørensen, John Dalsgaard
2014-01-01
Mooring systems for floating wave energy converters (WECs) are a major cost driver. Failure of mooring systems often occurs due to extreme loads. This paper introduces an extrapolation method for extreme response which accounts for the control system of a WEC that controls the loads onto...... measurements from lab-scaled WEPTOS WEC are taken. Different catenary anchor leg mooring (CALM) systems as well as single anchor legmooring (SALM)mooring systemsare implemented for a dynamic simulation with different number of mooring lines. Extreme tension loads with a return period of 50 years are assessed...... for the hawser as well as at the different mooring lines. Furthermore, the extreme load impact given failure of one mooring line is assessed and compared with extreme loads given no system failure....
International Nuclear Information System (INIS)
Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.
2016-01-01
The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.
Energy Technology Data Exchange (ETDEWEB)
Choudhary, Mangilal, E-mail: mangilal@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mukherjee, S.; Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2016-08-15
The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.
DEFF Research Database (Denmark)
Yde, Anders; Larsen, Torben J.; Hansen, Anders Melchior
2015-01-01
In this paper, results from comparisons of simulations and measured offshore data from a floating combined wind and wave energy conversion system are presented. The device is a downscaled prototype that consists of a floating platform equipped with ten wave energy absorbers and three wind turbines....... The numerical model of the platform is based on the aeroelastic code, HAWC2, developed by DTU Wind Energy, which is coupled with a special external system that reads the output generated directly by the wave analysis software, WAMIT. The model also includes models for the dynamic mooring lines as well...... as the turbines non-linear yaw and teeter motion behavior. The main focus on the comparison will be on the statistical trends of the platform motion, mooring loads and turbine loads in measurements and simulations during different operational conditions such as increasing wind speed, wave height and wind...
Yerrapragada, Karthik; Ansari, M. H.; Karami, M. Amin
2017-09-01
We propose utilization of the nonlinear coupling between the roll and pitch motions of wave energy harvesting vessels to increase their power generation by orders of magnitude. Unlike linear vessels that exhibit unidirectional motion, our vessel undergoes both pitch and roll motions in response to frontal waves. This significantly magnifies the motion of the vessel and thus improves the power production by several orders of magnitude. The ocean waves result in roll and pitch motions of the vessel, which in turn causes rotation of an onboard pendulum. The pendulum is connected to an electric generator to produce power. The coupled electro-mechanical system is modeled using energy methods. This paper investigates the power generation of the vessel when the ratio between pitch and roll natural frequencies is about 2 to 1. In that case, a nonlinear energy transfer occurs between the roll and pitch motions, causing the vessel to perform coupled pitch and roll motion even though it is only excited in the pitch direction. It is shown that co-existence of pitch and roll motions significantly enhances the pendulum rotation and power generation. A method for tuning the natural frequencies of the vessel is proposed to make the energy generator robust to variations of the frequency of the incident waves. It is shown that the proposed method enhances the power output of the floating wave power generators by multiple orders of magnitude. A small-scale prototype is developed for the proof of concept. The nonlinear energy transfer and the full rotation of the pendulum in the prototype are observed in the experimental tests.
Directory of Open Access Journals (Sweden)
Juhun Song
2016-07-01
Full Text Available Given the rapid progress made in understanding the dynamics of an offshore floating body in an ocean environment, the present study aimed to simulate ocean waves in a small-sized wave flume and to observe the motion of a cylindrical floating body placed in an offshore environment. To generate regular ocean waves in a wave flume, we combined a wave generator and a wave absorber. In addition, to precisely visualise the oscillation of the body, a set of light-emitting diode illuminators and a high-speed charge-coupled device camera were installed in the flume. This study also focuses on the spectral analysis of the movement of the floating body. The wave generator and absorbers worked well to simulate stable regular waves. In addition, the simulated waves agreed well with the plane waves predicted by shallow-water theory. As the period of the oncoming waves changed, the movement of the floating body was substantially different when tethered to a tension-leg mooring cable. In particular, when connected to the tension-leg mooring cable, the natural frequency of the floating body appeared suddenly at 0.391 Hz as the wave period increased.
Energy Technology Data Exchange (ETDEWEB)
Tsubogo, T.; Okada, H. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering
1997-08-01
The response strength in which deflection waves propagating in the elastic body of a large floating structure with an order of km in length and width was investigated. Attention was paid to the waves propagating the place fully away from the boundary of a very large floating body so as to obtain the dispersion relation of waves and the relation between incident waves and deflection waves. Next, the frequency response was checked from the aspect of the displacement amplitude and strength for beams and plates. The dispersion relation of waves propagating the place fully away from the boundary of a very large floating body and the relation between the waves and infinite-point incident waves were represented by an expression. Similarly, the waves propagates more than the infinite-point incident waves in frequency, wavelength, and speed. A lower-limit value exists in the propagation speed. The displacement and stress amplitudes are represented by a relational expression. For plates, the displacement amplitude increases when the wave direction coincides with the small-rigidity direction. The stress amplitude is maximized when the waves corresponding to the ``wave below a floating body = size of a characteristic wave number`` reach the large-rigidity direction. 10 refs., 10 figs., 2 tabs.
DEFF Research Database (Denmark)
Kumari Ramachandran, Gireesh Kumar Vasanta; Bredmose, Henrik; Sørensen, Jens Nørkær
2014-01-01
, which is a consequence of the wave-induced rotor dynamics. Loads and coupled responses are predicted for a set of load cases with different wave headings. Further, an advanced aero-elastic code, Flex5, is extended for the TLP wind turbine configuration and the response comparison with the simpler model......A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11...... for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency-and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison's equation, the aerodynamic loads are modeled by means of unsteady blade-element-momentum (BEM) theory...
Wave excited motion of a body floating on water confined between two semi-infinite ice sheets
Ren, K.; Wu, G. X.; Thomas, G. A.
2016-12-01
The wave excited motion of a body floating on water confined between two semi-infinite ice sheets is investigated. The ice sheet is treated as an elastic thin plate and water is treated as an ideal and incompressible fluid. The linearized velocity potential theory is adopted in the frequency domain and problems are solved by the method of matched eigenfunctions expansion. The fluid domain is divided into sub-regions and in each sub-region the velocity potential is expanded into a series of eigenfunctions satisfying the governing equation and the boundary conditions on horizontal planes including the free surface and ice sheets. Matching is conducted at the interfaces of two neighbouring regions to ensure the continuity of the pressure and velocity, and the unknown coefficients in the expressions are obtained as a result. The behaviour of the added mass and damping coefficients of the floating body with the effect of the ice sheets and the excitation force are analysed. They are found to vary oscillatorily with the wave number, which is different from that for a floating body in the open sea. The motion of the body confined between ice sheets is investigated, in particular its resonant behaviour with extremely large motion found to be possible under certain conditions. Standing waves within the polynya are also observed.
DEFF Research Database (Denmark)
Yde, Anders; Larsen, Torben J.; Hansen, Anders Melchior
2015-01-01
In this paper, results from comparisons of simulations and measured offshore data from a floating combined wind and wave energy conversion system are presented. The numerical model of the platform is based on the aeroelastic code, HAWC2, developed by DTU Wind Energy, which is coupled with a special...... external system that reads the output generated directly by the wave analysis software WAMIT. The main focus of the comparison is on the statistical trends of the platform motion, mooring loads, and turbine loads in measurements and simulations during different operational conditions. Finally, challenges...
DEFF Research Database (Denmark)
Joensen, Sunvard; Jensen, Jørgen Juncher; Mansour, Alaa E.
2007-01-01
duration of the time domain simulations needed (typically 60-300s to cover the hy-drodynamic memory effects in the response) the calcu-lation of the mean out-crossing rates of a given response are very fast. Thus complicated non-linear effects can be included. The FORM analysis also identifies the most...... probable wave episodes leading to given re-sponses. As an example the motions of floating foundations for offshore wind turbines are analysed taking into consid-eration both the wave and wind induced loads and con-sidering different mooring systems. The possible large horizontal motions make it important...
Directory of Open Access Journals (Sweden)
Jonas Bjerg Thomsen
2017-09-01
Full Text Available Mooring of floating wave energy converters is an important topic in renewable research since it highly influences the overall cost of the wave energy converter and thereby the cost of energy. In addition, several wave energy converter failures have been observed due to insufficient mooring systems. When designing these systems, it is necessary to ensure the applicability of the design tool and to establish an understanding of the error between model and prototype. The present paper presents the outcome of an experimental test campaign and construction of a numerical model using the open-source boundary element method code NEMOH and the commercial time-domain mooring analysis tool OrcaFlex. The work used the wind/wave energy converter Floating Power Plant as a case study, which is defined as a large floating structure with a passive mooring system. The investigated mooring consists of a three-legged turret system with synthetic lines, and it was tested for both operational and extreme events. In order to understand the difference between the model and experimental results, no tuning of the model was done, besides adding drag elements with values found from a simplified methodology. This resembles initial design cases where no experimental data are available. Generally good agreement was found for the tensions in the lines when the drag element was applied, with some overestimation of the motions. The main cause of difference was found to be underestimation of linear damping. A model was tested with additional linear damping, and it illustrated that a final analysis needs to use experimental data to achieve the best results. However, the analyses showed that the investigated model can be used without tuning in initial investigations of mooring systems, and it is expected that this approach can be applied to other similar systems.
DEFF Research Database (Denmark)
Marchalot, Tanguy; Kofoed, Jens Peter; Sørensen, Eigil V.
.com, 2011). CRC floats could be a very cost-effective technology with enhanced loading capacity and environmental resistance, and very low maintenance requirements, affecting directly the final energy price. The project involves DEXA Wave Energy Ltd, Wave Star A/S, Aalborg University and Hi-Con A......The objective of the FLOAT project is to study the reliability of high-performance fibre-reinforced concrete, also known as Compact Reinforced Composite (CRC), for the floats of wave energy converters. In order to reach commercial breakthrough, wave energy converters need to achieve a lower price...
Jaksic, V; O'Shea, R; Cahill, P; Murphy, J; Mandic, D P; Pakrashi, V
2015-02-28
Understanding of dynamic behaviour of offshore wind floating substructures is extremely important in relation to design, operation, maintenance and management of floating wind farms. This paper presents assessment of nonlinear signatures of dynamic responses of a scaled tension-leg platform (TLP) in a wave tank exposed to different regular wave conditions and sea states characterized by the Bretschneider, the Pierson-Moskowitz and the JONSWAP spectra. Dynamic responses of the TLP were monitored at different locations using load cells, a camera-based motion recognition system and a laser Doppler vibrometer. The analysis of variability of the TLP responses and statistical quantification of their linearity or nonlinearity, as non-destructive means of structural monitoring from the output-only condition, remains a challenging problem. In this study, the delay vector variance (DVV) method is used to statistically study the degree of nonlinearity of measured response signals from a TLP. DVV is observed to create a marker estimating the degree to which a change in signal nonlinearity reflects real-time behaviour of the structure and also to establish the sensitivity of the instruments employed to these changes. The findings can be helpful in establishing monitoring strategies and control strategies for undesirable levels or types of dynamic response and can help to better estimate changes in system characteristics over the life cycle of the structure. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
DEFF Research Database (Denmark)
Bredmose, Henrik; Lemmer, F.; Borg, Michael Borg
2017-01-01
Results of a test campaign for a floating wind turbine in simultaneous wind and wave forcing at scale 1:60 are presented. The floater is the Triple Spar floater, a hybrid between a spar buoy and a semi submersible tri-floater, tested here for the first time. The turbine is a model scale version...... of the DTU 10 MW reference wind turbine, which, also for the first time, is tested with active blade pitch control. The tests focus on the effects of aerodynamic damping and interaction effects between the wind forcing, wave forcing and the blade pitch control algorithm. Special focus is devoted...... to the instability of the platform pitch natural mode, that can occur if a standard land-based controller is applied....
International Nuclear Information System (INIS)
Sim, Kyuho; Park, Jisu; Jang, Seon-Jun
2015-01-01
This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance
Energy Technology Data Exchange (ETDEWEB)
Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of)
2015-01-15
This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.
Energy Technology Data Exchange (ETDEWEB)
Abe, T; Omata, K [Meiji University, Tokyo (Japan)
1996-10-27
A floating type wave power generator system using a ball screw is proposed. Output characteristics are simulated on the supposition of its employment aboard a navigational aid buoy. The relative linear movement produced by waves between the main body and float is transmitted via a load column to a ball nut and is converted into a rotary movement of a threaded shaft engaging the ball nut. Attached to the bottom end of the threaded shaft is a one-way clutch which connects to the generator axle when the relative velocity between the float and main body is positive. The simulation was conducted for a wave activated power generation buoy, 2.6m in outer diameter, 4.5m in length, and 6000kg in total mass. The buoy generated a mechanical output of 340kW when exposed to a sinusoidal wave 2.5 seconds in period and 40cm in wave height. A tank test was performed using a reduced scale model consisting of a ball screw, bicycle dynamo, and float, with the main body being 318mm in diameter and 833mm in length, when an average output of 4.51W was obtained at 60% efficiency. The results of the experiment agreed in some degree with the results of calculation, verifying the righteousness of the theoretical formula. 3 refs., 7 figs., 4 tabs.
Modelling of Wave Attenuation Induced by Multi-Purpose Floating Structures
DEFF Research Database (Denmark)
Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim
2014-01-01
, polychromatic, long- and short-crested irregular waves), WEC response and modification of the wave field have been measured to provide data for the understanding of WEC farm interactions and for the evaluation of farm interaction numerical models. A first extensive wave farm database is established...
Directory of Open Access Journals (Sweden)
Shengtao Zhou
2017-12-01
Full Text Available The Y-shape (triangular semi-submersible foundation has been adopted by most of the built full-scale floating wind turbines, such as Windfloat, Fukushima Mirai and Shimpuu. Considering the non-fully-symmetrical shape and met-ocean condition, the foundation laying angle relative to wind/wave directions will not only influence the downtime and power efficiency of the floating turbine, but also the strength and fatigue safety of the whole structure. However, the dynamic responses induced by various aligned wind and wave load directions have scarcely been investigated comparatively before. In our study, the directionality effects are investigated by means of combined wind and wave tests and coupled multi-body simulations. By comparing the measured data in three load directions, it is found that the differences of platform motions are mainly derived from the wave loads and larger pitch motion can always be observed in one of the directions. To make certain the mechanism underlying the observed phenomena, a coupled multi-body dynamic model of the floating wind turbine is established and validated. The numerical results demonstrate that the second-order hydrodynamic forces contribute greatly to the directionality distinctions for surge and pitch, and the first-order hydrodynamic forces determine the variations of tower base bending moments and nacelle accelerations. These findings indicate the directionality effects should be predetermined comprehensively before installation at sea, which is important for the operation and maintenance of the Y-shape floating wind turbines.
Dynamic analysis of floating wave energy generation system with mooring system
International Nuclear Information System (INIS)
Choi, Gyu Seok; Sohn, Jeong Hyun
2013-01-01
In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load
Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters
DEFF Research Database (Denmark)
Thomsen, Jonas Bjerg; Ferri, Francesco; Kofoed, Jens Peter
2018-01-01
The increasing desire for using renewable energy sources throughout the world has resulted in a considerable amount of research into and development of concepts for wave energy converters. By now, many different concepts exist, but still, the wave energy sector is not at a stage that is considere...
Effect of small floating disks on the propagation of gravity waves
Energy Technology Data Exchange (ETDEWEB)
Santi, F De; Olla, P, E-mail: olla@dsf.unica.it [ISAC-CNR, Sez. Cagliari, I-09042 Monserrato (Italy)
2017-04-15
A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided. (paper)
Incorporating Floating Surface Objects into a Fully Dispersive Surface Wave Model
2016-04-19
Bateman c , Joseph Calantoni c , James T. Kirby b a NRL Code 7320, 1009 Balch Blvd, Stennis Space Center, MS 39529 USA b Center for Applied Coastal...wave prop- agation. J. Waterway Port Coast. Ocean Eng. 119, 618–638 . rzech, M., Shi, F., Calantoni, J., Bateman , S., Veeramony, J., 2014. Small-scale...F., Bateman , S., Calantoni, J., 2016. Modeling small- scale physics of waves and ice in the MIZ. AGU 2016 Ocean Sciences Meeting, Session 9483
DEFF Research Database (Denmark)
Bellew, Sarah; Yde, Anders; Verelst, David Robert
2014-01-01
numerical models, which can combine the aerodynamic, hydrodynamic, structural exibility and mooring components. Very little oshore data exists, however, in order to validate these numerical models. Floating Power Plant are the developers of a oating, hybrid wind- and wave-energy device. The device uses...... the pitching wave energy devices, not only to increase and smooth the power output from the platform, but also to take the energy from the waves in a controlled manner, resulting in a stable platform for the wind turbine and a safe harbour for O&M. They are currently developing the nal design for their rst...... full-scale prototype, the P80, which has a width of 80 m. As part of the development, Floating Power Plant have completed 4 oshore test-phases (totalling over 2 years oshore operation) on a 37 m wide scaled test device, the P37. This paper focuses on the comparison of one of the leading numerical...
Directory of Open Access Journals (Sweden)
Kyoung-Rok Lee
2013-12-01
Full Text Available A floating Oscillating Water Column (OWC wave energy converter, a Backward Bent Duct Buoy (BBDB, was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.
Characterisation of the biofouling community on a floating wave energy device.
Nall, Christopher R; Schläppy, Marie-Lise; Guerin, Andrew J
2017-05-01
Wave energy devices are novel structures in the marine environment and, as such, provide a unique habitat for biofouling organisms. In this study, destructive scrape samples and photoquadrats were used to characterise the temperate epibenthic community present on prototypes of the Pelamis wave energy converter. The biofouling observed was extensive and diverse with 115 taxa recorded including four non-native species. Vertical zonation was identified on the sides of the device, with an algae-dominated shallow subtidal area and a deeper area characterised by a high proportion of suspension-feeding invertebrates. Differences in species composition and biomass were also observed between devices, along the length of the device and between sampling dates. This research provides an insight into the variation of biofouling assemblages on a wave energy device as well as the potential technical and ecological implications associated with biofouling on marine renewable energy structures.
Directory of Open Access Journals (Sweden)
John V. Ringwood
2013-08-01
Full Text Available Combining offshore wind and wave energy converting apparatuses presents a number of potentially advantageous synergies. To facilitate the development of a proposed floating platform combining these two technologies, proof of concept scale model testing on the wave energy converting component of this platform has been conducted. The wave energy component is based on the well-established concept of the oscillating water column. A numerical model of this component has been developed in the frequency domain, and the work presented here concerns the results of this modelling and testing. The results of both are compared to assess the validity and usefulness of the numerical model.
Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint
Energy Technology Data Exchange (ETDEWEB)
Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.
2014-03-01
This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.
On Long Baroclinic Rossby Waves in the Tropical North Atlantic Observed From Profiling Floats
2007-05-16
15b and 15c). Reclosing of vortex isolines while forming a new corotating eddy pair typically indicates excitation of periodical auto-oscillations in...important dynamical effect as reclosing of vortex isolines between corotating eddies, which are components of the semiannual standing Rossby wave
On the two-body problem in quantum mechanics
International Nuclear Information System (INIS)
Micu, L.
2008-01-01
Following the representation of a two-body system in classical mechanics, we build up a quantum picture which is free of spurious effects and retains the intrinsic features of the internal bodies. In the coordinate space the system is represented by the real particles, individually bound to a center of forces which in a certain limit coincides with the center of mass and the wave function writes as product of the individual wave functions with correlated arguments. (author)
Energy Technology Data Exchange (ETDEWEB)
Imai, Y [Hiroshima University, Hiroshima (Japan); Okusu, M [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1997-12-31
A method to predict drift force acting on a floating structure has been developed for a marine structure consisting of a number of floating elements, positioned in a region having a slope at the sea bottom. When a huge marine structure, such as floating air port, is located in a coastal area, scale of the overall structure is very large, of the order of scale of water depth change. The new method assumes that a marine structure consisting of an infinite number of cylindrical floating elements is installed in parallel to the seashore, where symmetrical nature of the configuration allows to predict behavior of the whole system by analyzing one element. Integration of pressures acting on structure surfaces determines the horizontal component of the drift force acting on the structure. Being influenced by topography, drift force predicted peaks at a frequency different from that for the level predicted on the assumption of constant water depth. This indicates the necessity for consideration of seabottom slope and effects of broken waves at the seashore. 6 refs., 12 figs.
Energy Technology Data Exchange (ETDEWEB)
Imai, Y. [Hiroshima University, Hiroshima (Japan); Okusu, M. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1996-12-31
A method to predict drift force acting on a floating structure has been developed for a marine structure consisting of a number of floating elements, positioned in a region having a slope at the sea bottom. When a huge marine structure, such as floating air port, is located in a coastal area, scale of the overall structure is very large, of the order of scale of water depth change. The new method assumes that a marine structure consisting of an infinite number of cylindrical floating elements is installed in parallel to the seashore, where symmetrical nature of the configuration allows to predict behavior of the whole system by analyzing one element. Integration of pressures acting on structure surfaces determines the horizontal component of the drift force acting on the structure. Being influenced by topography, drift force predicted peaks at a frequency different from that for the level predicted on the assumption of constant water depth. This indicates the necessity for consideration of seabottom slope and effects of broken waves at the seashore. 6 refs., 12 figs.
Energy Technology Data Exchange (ETDEWEB)
Yasuzawa, Y.; Kagawa, K.; Kitabayashi, K. [Kyushu University, Fukuoka (Japan); Kawano, D. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1997-08-01
The theory and formulation for the numerical response analysis of a large floating structure in regular waves were given. This paper also reports the comparison between the experiment in the Shipping Research Institute in the Minitry of Transport and the result calculated using numerical analytic codes in this study. The effect of the bending rigidity of a floating structure and the wave direction on the dynamic response of a structure was examined by numerical calculation. When the ratio of structure length and incident wavelength (L/{lambda}) is lower, the response amplitude on the transmission side becomes higher in a wave-based response. The hydrodynamic elasticity exerts a dominant influence when L/{lambda} becomes higher. For incident oblique waves, the maximum response does not necessarily appear on the incidence side. Moreover, the response distribution is also complicated. For example, the portion where any flexible amplitude hardly appears exists. A long structure response can be predicted from a short structure response to some degree. They differ in response properties when the ridigity based on the similarity rule largely differs, irrespective of the same L/{lambda}. For higher L/{lambda}, the wave response can be easily predicted when the diffrection force is replaced by the concentrated exciting force on the incidence side. 13 refs., 14 figs., 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Ota, M; Ikegami, H; Yamaguchi, Y [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)
1997-10-01
The elastic response of VLFS of 1200m long in wave was studied experimentally using a water tank and integral elastic model of 1/80 scale. As offshore airport, a ultra- thin box type floating structure of 5km long, 1km wide and several meter thick is used, and the effect of elasticity is not negligible for such a structure. The experiment used a water tank of 160m long, 30m wide and 3.1m deep. Supposing a water depth of 20m for real VLFSs, the experiment was carried out mainly in a local shallow water area prepared with a temporary bottom together with that in a deep water area. A simple mooring equipment with a linear spring equivalent to real VLFSs was used. The integral floating model was prepared by not mechanical but welded junction to obtain uniform elasticity. The response in wave showed a complicated 3-D behavior, offering useful data for verification of a behavior estimation method. The response was nearly equal between shallow and deep water areas at the same wave length, and the response amplitude in regular waves was equivalent to the significant amplitude in long and short crested irregular waves. 7 refs., 8 figs., 3 tabs.
DAM-BREAK SHOCK WAVES WITH FLOATING DEBRIS: EXPERIMENTALANALYSIS AND TWO-PHASE MODELLING
Directory of Open Access Journals (Sweden)
Stefano Mambretti
2008-06-01
Full Text Available To predict floods and debris flow dynamics a numerical model, based on 1D De Saint Venant (SV equations, was developed. The McCormack – Jameson shock capturing scheme was employed for the solution of the equations, written in a conservative law form. This technique was applied to determine both the propagation and the profile of a two – phase debris flow resulting from the instantaneous and complete collapse of a storage dam. To validate the model, comparisons have been made between its predictions and laboratory measurements concerning flows of water and homogeneous granular mixtures in a uniform geometry flume reproducing dam – break waves. Agreements between computational and experimental results are considered very satisfactory for mature (non – stratified debris flows, which embrace most real cases. To better predict immature (stratified flows, the model should be improved in order to feature, in a more realistic way, the distribution of the particles of different size within the mixture. On the whole, the model proposed can easily be extended to channels with arbitrary cross sections for debris flow routing, as well as for solving different problems of unsteady flow in open channels by incorporating the appropriate initial and boundary conditions.
Rodriguez, Steven; Jaworski, Justin
2017-11-01
The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.
Energy Technology Data Exchange (ETDEWEB)
Fujikubo, M.; Yao, T.; Oida, H. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering
1996-12-31
Formulation was made on a one-dimensional beam finite element which is effective in analyzing structural response of very large floating structures by modeling them on beams on an elastic foundation. This element allows strict solution of vibration response in the beams on the elastic foundation to be calculated efficiently for a case where mass and rigidity change in the longitudinal direction. This analysis method was used to analyze structural response of a large pontoon-type floating structure to investigate mass in the end part for the structural response and the effect of decay while passing the structure. With a pontoon-type floating structure, reduction in bends and bending stress in the end part of the floating structure is important in designing the structure. Reducing the mass in the end part is effective as a means to avoid resonance in these responses and reduce the responses. Increase in rigidity of a floating structure shifts the peak in quasi-static response to lower frequency side, and reduces response in resonance, hence it is advantageous for improving the response. Since incident waves decay while passing through the floating structure, response in the lower wave side decreases. The peak frequency in the quasi-static response also decreases at the end part of the structure in the upper wave side due to decay in wave force. 7 refs., 11 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Fujikubo, M; Yao, T; Oida, H [Hiroshima University, Hiroshima (Japan). Faculty of Engineering
1997-12-31
Formulation was made on a one-dimensional beam finite element which is effective in analyzing structural response of very large floating structures by modeling them on beams on an elastic foundation. This element allows strict solution of vibration response in the beams on the elastic foundation to be calculated efficiently for a case where mass and rigidity change in the longitudinal direction. This analysis method was used to analyze structural response of a large pontoon-type floating structure to investigate mass in the end part for the structural response and the effect of decay while passing the structure. With a pontoon-type floating structure, reduction in bends and bending stress in the end part of the floating structure is important in designing the structure. Reducing the mass in the end part is effective as a means to avoid resonance in these responses and reduce the responses. Increase in rigidity of a floating structure shifts the peak in quasi-static response to lower frequency side, and reduces response in resonance, hence it is advantageous for improving the response. Since incident waves decay while passing through the floating structure, response in the lower wave side decreases. The peak frequency in the quasi-static response also decreases at the end part of the structure in the upper wave side due to decay in wave force. 7 refs., 11 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Vicente, Pedro C.; Falcao, Antonio F. de O.; Gato, Luiz M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Justino, Paulo A.P. [Laboratorio Nacional de Energia e Geologia, 1649-038 Lisboa (Portugal)
2009-07-01
It may be convenient that dense arrays of floating point absorbers are spread-moored to the sea bottom through only some of their elements (possibly located in the periphery), while the other array elements are prevented from drifting and colliding with each other by connections to adjacent elements. An array of identical floating point absorbers located at the grid points of an equilateral triangular grid is considered in the paper. A spread set of slack-mooring lines connect the peripheric floaters to the bottom. A weight is located at the centre of each triangle whose function is o pull the three floaters towards each other and keep the inter-body moorings lines under tension. The whole system - buoys, moorings and power take-off systems - is assumed linear, so that a frequency domain analysis may be employed. Hydrodynamic interference between the oscillating bodies is neglected. Equations are presented for a set of three identical point absorbers. This is then extended to more complex equilateral iriangular grid arrays. Results from numerical simulations, with regular and irregular waves, are presented for the motions and power absorption of hemispherical converters in arrays of three and seven elements and different mooring and power take-off parameters, and wave incidence angles. Comparisons are given with the unmoored and independently-moored buoy situations.
Institute of Scientific and Technical Information of China (English)
马钰; 肖龙飞; 胡志强
2014-01-01
Due to the energy crisis and the environmental issues like pollution and global warming, the exploration for renewable and clean energies becomes crucial. The offshore floating wind turbines (OFWTs) draw a great deal of attention recently as a means to exploit the steadier and stronger wind resources available in deep water seas. This paper studies the hydrodynamic characteristics of a spar-type wind turbine known as the OC3-Hywind concept and the dynamic responses of the turbine. Response characteristics of motions and mooring loads of the system under different sea states are evaluated and the effects of the loads induced by the wind and the wave on the system are discussed. The calculations are carried out with the numerical simulation code FAST in the time domain and the frequency analysis is made by using the FFT method. The results and the conclusions from this paper might help better understand the behavior characteristics of the floating wind turbine system under actual ocean environments and provide valuable data in design and engineering practice.
Two-body interactions by tachyon exchange
International Nuclear Information System (INIS)
Maccarrone, R.; Recami, E.
1982-01-01
Due to its relevance for the possible applications to particle physics and for causality problems, is analyzed in this paper the kinematic of (classical) tachyon-exchange between two bodies A, B, for all possible relative velocities. In particular, the two cases u.-vector V-vector c 2 are carefully investigated, V are the body B and tachyon speeds relative to A, respectively
Towards a two-body neuroscience
Dumas, Guillaume
2011-01-01
Recent work from our interdisciplinary research group has revealed the emergence of inter-brain synchronization across multiple frequency bands during social interaction.1 Our findings result from the close collaboration between experts who study neural dynamics and developmental psychology. The initial aim of the collaboration was to combine knowledge from these two fields in order to move from a classical one-brain neuroscience towards a novel two-body approach. A new technique called hyper...
Polarization phenomena in two body systems
International Nuclear Information System (INIS)
Thomas, G.H.
1978-01-01
A review is given of strong interactions at very low, low, intermediate, and high energies over the range 6.14 MeV to 150 GeV/c with regard to polarization phenomena in two-body systems. From the one-pion-exchange model to the theory that can possibly relate to all the phenomena, namely, quantum electrodynamics the review pointed to a unified explanation for the interactions under study. 46 references
Hydroelasticity of a Floating Plate
DEFF Research Database (Denmark)
Chen, X.; Jensen, Jørgen Juncher; Cui, W.
2003-01-01
The membrane forces are included in the hydroelastic analysis of a floating plate undergoing large vertical deflections in regular monochromatic multidirectional waves. The first-order vertical displacements induced by the linear wave exciting forces are calculated by the mode expansion method in...
Directory of Open Access Journals (Sweden)
Ahmed Elhanafi
2017-01-01
Full Text Available Offshore oscillating water columns (OWC represent one of the most promising forms of wave energy converters. The hydrodynamic performance of such converters heavily depends on their interactions with ocean waves; therefore, understanding these interactions is essential. In this paper, a fully nonlinear 2D computational fluid dynamics (CFD model based on RANS equations and VOF surface capturing scheme is implemented to carry out wave energy balance analyses for an offshore OWC. The numerical model is well validated against published physical measurements including; chamber differential air pressure, chamber water level oscillation and vertical velocity, overall wave energy extraction efficiency, reflected and transmitted waves, velocity and vorticity fields (PIV measurements. Following the successful validation work, an extensive campaign of numerical tests is performed to quantify the relevance of three design parameters, namely incoming wavelength, wave height and turbine damping to the device hydrodynamic performance and wave energy conversion process. All of the three investigated parameters show important effects on the wave–pneumatic energy conversion chain. In addition, the flow field around the chamber's front wall indicates areas of energy losses by stronger vortices generation than the rear wall.
Dynamic Response of a Floating Bridge Structure
Viuff, Thomas; Leira, Bernt Johan; Øiseth, Ole; Xiang, Xu
2016-01-01
A theoretical overview of the stochastic dynamic analysis of a floating bridge structure is presented. Emphasis is on the wave-induced response and the waves on the sea surface are idealized as a zero mean stationary Gaussian process. The first-order wave load processes are derived using linear potential theory and the structural idealization is based on the Finite Element Method. A frequency response calculation is presented for a simplified floating bridge structure example emphasising the ...
Fully Coupled Three-Dimensional Dynamic Response of a TLP Floating Wind Turbine in Waves and Wind
DEFF Research Database (Denmark)
Ramachandran, Gireesh Kumar V.R.; Bredmose, Henrik; Sørensen, Jens Nørkær
2013-01-01
is a consequence of the wave-induced rotor dynamics. In the absence of a controller scheme for the wind turbine, the rotor torque fluctuates considerably, which induces a growing roll response especially when the wind turbine is operated nearly at the rated wind speed. This can be eliminated either...... by appropriately adjusting the controller so as to regulate the torque or by optimizing the floater or tendon dimensions, thereby limiting the roll motion. Loads and coupled responses are predicted for a set of load cases with different wave headings. Based on the results, critical load cases are identified...
Energy Technology Data Exchange (ETDEWEB)
1968-05-06
This floating barrier consists of relatively long elements which can be connected to form a practically continuous assembly. Each element consists of an inflatable tube with an apron of certain height, made of impregnated fabric which is resistant to ocean water and also to hydrocarbons. Means for connecting one element to the following one, and means for attaching ballast to the apron are also provided.
DEFF Research Database (Denmark)
Stratigaki, Vasiliki; Troch, Peter; Stallard, Tim
2015-01-01
studying the important WEC array effects. The data obtained from these experimental tests will be very useful for validation and extension of numerical models. This model validation will enable optimization of the geometrical layout of WEC arrays for realistic wave farm applications and reduction...
A solution of the Schrodinger equation with two-body correlations included
International Nuclear Information System (INIS)
Fabre de la Ripelle, M.
1984-01-01
A procedure for introducing the two-body correlations in the solution of the Schrodinger equation is described. The N-body Schrodinger equation for nucleons subject to two-(or many)-body N-N interaction has never been solved with accuracy except for few-body systems. Indeed it is difficult to take the two-body correlations generated by the interaction into account in the wave function
An Analysis of the Loads on and Dynamic Response of a Floating Flexible Tube in Waves and Currents
2014-05-09
the tube about 4.57 meters. The CFD code associated with the SolidWorks Flow Simulation tool was applied for this application. Flow Simulation uses...Liquid-Filled Membrane Structure in Waves," Journal of Fluids and Structures, no. 9, pp. 937-956, 1995. [16] SolidWorks , " Flow Simulation 2012...influence of Reynolds number on the drag coefficient. Simulations were performed with the 100% full (solid) model with flow velocities that yielded
Relativistic two-body equation for one Dirac and one Duffin-Kemmer particle
International Nuclear Information System (INIS)
Krolikowski, W.
1983-01-01
A new relativistic two-body wave equation is proposed for one spin-1/2 and one spin-0 or spin-1 particle which, if isolated from each other, are described by the Dirac and the Duffin-Kemmer equation, respectively. For a static mutual interaction this equation splits into two equations: a two-body wave equation for one Dirac and one Klein-Gordon particle (which was introduced by the author previously) and a new two-body wave equation for one Dirac and one Proca particle. The proposed equation may be applied in particular to the quark-diquark system. In Appendix, however, an alternative approach is sketched, where the diquark is described as the point limit of a very close Breit system rather than a Duffin-Kemmer particle. (Author)
Energy Technology Data Exchange (ETDEWEB)
Murai, M.; Kagemoto, H.; Fujino, M. [The University of Tokyo, Tokyo (Japan)
1997-08-01
On the hydroelastic behaviors of a huge floating structure, a mutual interaction theory based on the area division method is used for the analysis of a fluid problem and a mode analysis method is used for the analysis of deformation. On the continuous deformation of a floating structure, the structure is considered as a set of partial structures obtained when the plane shape was divided into squares and discretely handled as a series of rigid motions in the small partial structures obtained by dividing the partial structures more finely. The experimental result in a water tank and the distribution method at a singular point were compared on the deformation of the elastic floating structure estimated by calculation based on this formulation. The result showed that the estimation method on the hydroelastic problem proposed in this paper is valid. On the prediction of hydroelastic behaviors of a huge floating structure, various calculation examples indicate that the hydroelastic behavior is not only the relation between the structure length and wavelength, but also that the bending rigidity of a structure is a very important factor. For a huge floating structure in the 5,000 m class, up to shorter wavelength of about {lambda}/L = 1/100 must be investigated. 6 refs., 14 figs., 5 tabs.
Three-body vertices with two-body techniques
International Nuclear Information System (INIS)
Mitra, A.N.; Sharma, V.K.
1976-01-01
It has long been recognized that vertex functions for few particle systems provide a convenient medium for the analysis of reactions in the language of Feynman diagrams, analogously to elementary particle processes. The development of three-particle theory during the last decade has provided considerably more impetus for the use of the language of three-body vertex functions through the possibility of their 'exact' evaluations with only two-body input. While three-body vertices are probably superfluous for the description of only three-body processes (for which exact amplitudes are already available) their practical usefulness often extends to reactions involving more than three-particle systems (for which 'exact' amplitudes are still a distant goal), as long as such systems can be meaningfully described in terms of not more than three particles playing the active role. This paper investigates a simplified construction of three-body vertices. This must check against their standard definition as overlap integral. Unfortunately this definition involves a non-trivial normalization of three-body wave functions with realistic NN potentials, and has little practical scope for extension beyond A=3. (Auth.)
Two-body loss rates for reactive collisions of cold atoms
Cop, C.; Walser, R.
2018-01-01
We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.
The response of pile-guided floats subjected to dynamic loading : volume I final report.
2014-08-01
Pile : - : Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis fo...
Meson spectra from two-body dirac equations with minimal interactions
International Nuclear Information System (INIS)
Crater, H.W.; Becker, R.L.; Wong, C.Y.
1991-01-01
Many authors have used two-body relativistic wave equations with spin in nonperturbative numerical quark model calculations of the meson spectrum. Usually, they adopt a truncation of the Bethe-Salpeter equation of QED and/or scalar. QED and replace the static Coulomb interactions of those field theories with a semiphenomenological Q bar Q potential whose insertion in the Breit terms give the corresponding spin corrections. However, the successes of these wave equations in QED have invariably depended on perturbative treatment of the terms in each beyond the Coulomb terms. There have been no successful nonperturbative numerical test of two-body quantum wave equations in QED, because in most equations the effective potentials beyond the Coulomb are singular and can only be treated perturbatively. This is a glaring omission that we rectify here for the case of the two-body Dirac equations of constraint dynamics. We show in this paper that a nonperturbative numerical treatment of these equations for QED yields the same spectral results as a perturbative treatment of them which in turn agrees with the standard spectral results for positronium and muonium. This establishes that the vector and scalar interaction structures of our equations accurately incorporate field theoretic interactions in a bone fide relativistic wave equation. The last portion of this work will report recent quark model calculations using these equations with the Adler-Piran static Q bar Q potential
FLOAT2 WP4: Development of Materials
DEFF Research Database (Denmark)
Esteves, Luis Pedro; Aarup, Bendt
This report refers to complementary material testing to support the design and production of UHPC floaters for installation in the Wave Star Machine under FLOAT2 project. The main objective of WP4 is the characterization of mechanical properties of fiber-reinforced UHPC.......This report refers to complementary material testing to support the design and production of UHPC floaters for installation in the Wave Star Machine under FLOAT2 project. The main objective of WP4 is the characterization of mechanical properties of fiber-reinforced UHPC....
Multinucleon Ejection Model for Two Body Current Neutrino Interactions
Energy Technology Data Exchange (ETDEWEB)
Sobczyk, Jan T.; /Fermilab
2012-06-01
A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.
On the special relativistic two-body problem
International Nuclear Information System (INIS)
Afanas'ev, G.N.; Asanov, R.A.
1979-01-01
The Poincare method is applied to the consideration of the two-body problem within the Special Relativity. The formulation of the theory contains two arbitrary functions of the Lorentz invariants. A specific choice of these functions leads to the correct description of three crucial experiments of the General Relativity. The expansion on the inverse powers of the light velocity being performed, the approximate Lorentz covariant two-body equations without retardation effects are obtained
Double system wave energy converter for the breaker zone
International Nuclear Information System (INIS)
Malavasi, Stefano; Negri; Marco
2015-01-01
In this paper a particular type of wave energy converter, namely EDS (Energy Double System) is presented. It is a two-body point absorber composed by a heaving float and a surging paddle, mounted on the same structure and aligned along the wave propagation direction. The system is designed for working in the breaker zone, where waves close to breaking can generate a considerable surging force on the paddle. A scale EDS model has been built and tested in the wave flume of the Hydraulics Laboratory of the 'Politecnico' of Milan. The power absorbed by the system, varying its configuration, position and wave, has been measured, and interesting efficiencies have been found.
Floating on the margins [Environmental issues for floating production platforms
International Nuclear Information System (INIS)
Grimshaw, R.
1997-01-01
The main environmental issues challenging oilfield development using floating production platforms in harsh environments such as the Atlantic frontier are discussed. These fall into two broad categories -operating conditions and biological disturbance. Particular combinations of wind and currents can lead to extremely difficult operating conditions through which floating units are expected to maintain production for economic reasons. This imposes stringent conditions on the design and construction of tanker hulls and of risers to enable them to remain connected at all times. Prediction of wind and wave forces is a crucial element of operational and safety planning. Fauna in seabed sediments disturbed by pipeline laying often relocate but some seeding back of colonies may be required in hard rock areas. Migration routes for cetaceans and the feeding grounds of marine birds must be considered and the potential long and short term damage to commercial fisheries through discharges need to be assessed. A significant risk is the interaction of sub-sea facilities and fishing gear and oil spills. Operational and accidental discharges of production chemicals, produced water containing oil, deck drainage and treated sewage, and discharges to air from flaring and utility exhausts are of major environmental concern calling for mitigation and protection measures and contingency plans. Some of the environmental issues associated with decommissioning are reduced by the use of floating platforms but there are global and national regulations governing the process. (UK)
Hywind floating wind turbine project
Energy Technology Data Exchange (ETDEWEB)
Crome, Tim
2010-07-01
The Hywind floating wind turbine concept was developed by StatoilHydro. Technip was awarded the contract for engineering, fabrication and installation of a demonstration unit in May 2008 and the completed wind turbine was installed mid June 2009 at the west coast of Norway on 220 m water depth. The demonstration unit will generate 2,3 MW and is equipped with instrumentation for monitoring mooring forces, strains and motions. The fabrication of the SPAR type steel substructure was performed at Technip Offshore Finland facilities in Pori and was towed horizontally from Finland to Norway, where it was upended to a vertical position by water filling. The completed floating wind turbine was towed vertically to the final location west of Karmoey and connected to the pre-installed three legged anchor system using an Anchor Handling Tug type vessel. The wind turbine test period is scheduled to start in September 2009. Statoil will monitor the performance of the system for two years before decision will be taken for further development. The paper will present the main challenges and lessons learned through design, fabrication and installation of this first of its kind structure. Main emphasis will be on the special challenges experienced for this floating, catenary moored, slender unit which is highly exposed for wind induced forces in addition to current and waves in hostile North Sea environments. (Author)
Two-body quantum mechanical problem on spheres
Shchepetilov, Alexey V.
2005-01-01
The quantum mechanical two-body problem with a central interaction on the sphere ${\\bf S}^{n}$ is considered. Using recent results in representation theory an ordinary differential equation for some energy levels is found. For several interactive potentials these energy levels are calculated in explicit form.
DEFF Research Database (Denmark)
Tande, John Olav Giæver; Merz, Karl; Schmidt Paulsen, Uwe
2014-01-01
metric of energy production per unit steel mass. Floating offshore wind turbines represent a promising technology. The successful operation of HyWind and WindFloat in full scale demonstrates a well advanced technology readiness level, where further development will go into refining the concepts, cost...
Two-body Dirac equations for nucleon-nucleon scattering
International Nuclear Information System (INIS)
Liu Bin; Crater, Horace
2003-01-01
We investigate the nucleon-nucleon interaction by using the meson exchange model and the two-body Dirac equations of constraint dynamics. This approach to the two-body problem has been successfully tested for QED and QCD relativistic bound states. An important question we wish to address is whether or not the two-body nucleon-nucleon scattering problem can be reasonably described in this approach as well. This test involves a number of related problems. First we must reduce our two-body Dirac equations exactly to a Schroedinger-like equation in such a way that allows us to use techniques to solve them already developed for Schroedinger-like systems in nonrelativistic quantum mechanics. Related to this, we present a new derivation of Calogero's variable phase shift differential equation for coupled Schroedinger-like equations. Then we determine if the use of nine meson exchanges in our equations gives a reasonable fit to the experimental scattering phase shifts for n-p scattering. The data involve seven angular momentum states including the singlet states 1 S 0 , 1 P 1 , 1 D 2 and the triplet states 3 P 0 , 3 P 1 , 3 S 1 , 3 D 1 . Two models that we have tested give us a fairly good fit. The parameters obtained by fitting the n-p experimental scattering phase shift give a fairly good prediction for most of the p-p experimental scattering phase shifts examined (for the singlet states 1 S 0 , 1 D 2 and triplet states 3 P 0 , 3 P 1 ). Thus the two-body Dirac equations of constraint dynamics present us with a fit that encourages the exploration of a more realistic model. We outline generalizations of the meson exchange model for invariant potentials that may possibly improve the fit
Bilateral Floating Hip and Floating Knee: a Rare Complex Injury ...
African Journals Online (AJOL)
We report a rare complex injury of a 45-year-old man who sustained a bilateral floating hip and floating knee and hospitalised in our service six days after a traffic accident. The floating knees were open type III and II of Cauchoix score in phase of suppuration. He also presented with a floating ankle on the right side.
Energy Technology Data Exchange (ETDEWEB)
Ma, N; Hirayama, T; Sato, N [Yokohama National University, Yokohama (Japan). Faculty of Engineering
1997-12-31
A semisubmersible very large floating structure is compared with an equivalent pontoon type in vertical displacement and longitudinal bending moment in waves. The theoretical calculation is based on the mode synthesis method, and fluid force is analyzed by the three-dimensional singularity method for the symmetric structure, in which the effects of elastic deformation are taken into account. The semisubmersible and pontoon types are not much different from each other in eigenfrequency and mode shape in the dry mode. In the wet mode, on the other hand, the pontoon type is characterized by the synthetic mode in which torsional and bending modes overlap each other, each mode having a similar eigenfrequency. These types are different in elastic response, the pontoon type having several tens times higher coefficient of attenuation than the semisubmersible type. The pontoon type is generally lower in response, but its torsional mode is excited in transverse waves, making it higher than the semisubmersible type at near eigenfrequency of this mode. 15 refs., 17 figs., 2 tabs.
Energy Technology Data Exchange (ETDEWEB)
Ma, N.; Hirayama, T.; Sato, N. [Yokohama National University, Yokohama (Japan). Faculty of Engineering
1996-12-31
A semisubmersible very large floating structure is compared with an equivalent pontoon type in vertical displacement and longitudinal bending moment in waves. The theoretical calculation is based on the mode synthesis method, and fluid force is analyzed by the three-dimensional singularity method for the symmetric structure, in which the effects of elastic deformation are taken into account. The semisubmersible and pontoon types are not much different from each other in eigenfrequency and mode shape in the dry mode. In the wet mode, on the other hand, the pontoon type is characterized by the synthetic mode in which torsional and bending modes overlap each other, each mode having a similar eigenfrequency. These types are different in elastic response, the pontoon type having several tens times higher coefficient of attenuation than the semisubmersible type. The pontoon type is generally lower in response, but its torsional mode is excited in transverse waves, making it higher than the semisubmersible type at near eigenfrequency of this mode. 15 refs., 17 figs., 2 tabs.
Quasi two-body decays of D0 meson
International Nuclear Information System (INIS)
Terasaki, K.; Oneda, S.
1985-08-01
Quasi two-body decays of D 0 -meson are studied from an algebraic approach, using a hard meson extrapolation. In this innovation of old current algebra with new perspective, a reasonable unified description of K sub(S) → 2π and D 0 → K-barπ decays has been obtained previously, keeping only the contribution of ground state mesons to the now surviving surface term. In this paper, it is shown that quasi two-body decays can also be accomodated reasonably well in the same scheme. A distinctive feature of our result is that GAMMA(D 0 → phi K-bar 0 ) is sizable, while D 0 → rho 0 K-bar 0 is relatively suppressed. (author)
Orbit determination with the two-body integrals: III
Gronchi, G. F.; Baù, G.; Marò, S.
2015-10-01
We present the results of our investigation on the use of the two-body integrals to compute preliminary orbits by linking too short arcs of observations of celestial bodies. This work introduces a significant improvement with respect to the previous papers on the same subject: Gronchi et al. (2010, 2011). Here we find a univariate polynomial equation of degree 9 in the radial distance ρ of the orbit at the mean epoch of one of the two arcs. This is obtained by a combination of the algebraic integrals of the two-body problem. Moreover, the elimination step, which in Gronchi et al. (2010, 2011) was done by resultant theory coupled with the discrete Fourier transform, is here obtained by elementary calculations. We also show some numerical tests to illustrate the performance of the new algorithm.
General method for reducing the two-body Dirac equation
International Nuclear Information System (INIS)
Galeao, A.P.; Ferreira, P.L.
1992-01-01
A semi relativistic two-body Dirac equation with an enlarged set of phenomenological potentials, including Breit-type terms, is investigated for the general case of unequal masses. Solutions corresponding to definite total angular momentum and parity are shown to fall into two classes, each one being obtained by solving a system of four coupled first-order radial differential equations. The reduction of each of these systems to a pair of coupled Schroedinger-type equations is also discussed. (author)
Coulomb two-body problem with internal structure
International Nuclear Information System (INIS)
Kuperin, Yu.A.; Makarov, K.A.; Mel'nikov, Yu.B.
1988-01-01
The methods of the theory of extensions to an enlarged Hilbert space are used to construct a model of the interaction of the external (Coulomb) and internal (quark) channels in the two-body problem. The mutual influence of the spectra of the corresponding channel Hamiltonians is studied: it leads, in particular, to a rearrangement of the spectra of hadronic atoms. An explicit representation is obtained for the S matrix, and its singularities on the energy shell are studied
Universal relationship connecting various two-body effective residual interactions
International Nuclear Information System (INIS)
Knuepfer, W.; Huber, M.G.
1976-01-01
Starting from a momentum space analysis of the two-body matrix elements, a relation has been established between the size of the model space actually used in a specific calculation and the relevant properties of the effective residual interaction. It turns out that the two-body transition density acts like a filter function on the Fourier transform of the force; it exhibits a distinct structure which clearly reflects the size and the detailed properties of the configuration space actually used. From an investigation of this filter function an equivalence criterion for different effective residual two-body interactions has been established both for closed and open shell nuclei. This result can be used to construct simple although realistic effective forces. As an example, a model for a separable residual interaction is proposed in which the corresponding parameters are being clearly related to the nuclear radius (i.e., the mass number), to the quantum numbers (i.e., the angular momentum) of the state under consideration and to the size of the configuration space used. For a number of examples this force has been applied successfully for the description of low energy properties of both closed and open shell nuclei
Micromechanisms with floating pivot
Garcia, Ernest J.
2001-03-06
A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use floating pivot structures to relieve some of the problems encountered in the use of solid flexible pivots.
Colleu , Thomas; Morin , Luce; Pateux , Stéphane; Labit , Claude
2011-01-01
International audience; This paper presents a new representation called floating polygon soup for applications like 3DTV and FTV (Free Viewpoint Television). This representation is based on 3D polygons and takes as input MVD data. It extends the previously proposed polygon soup representation which is appropriate for both compression, transmission and rendering stages. The floating polygon soup conserves these advantages while also taking into account misalignments at the view synthesis stage...
Energy Technology Data Exchange (ETDEWEB)
Hirayama, T.; Ma, N.; Nishio, O.; Sato, N. [Yokohama National University, Yokohama (Japan). Faculty of Engineering
1996-12-31
Notice was given on response characteristics in a short wavelength range of a large floating structure for an offshore airport consisting of semi-submersible replaceable type units, and influence of unit lacking. An attempt was also made on performing restoration of inclination change during unit lacking and suppression of long-cycle variation in waves by using air pressure control. The result of a numerical calculation based on a three-dimensional singular point method may be summarized as follows: mass force added vertically on columns in short wavelength range differs in the outer edges and the central part; relatively uniform values are shown in the central part; and interactive interference is recognized in wave forces in the vertical direction, but the influence therefrom decreases as the wave length decreases. Calculations on vertical movements and bending moments in waves were performed by using a mode synthesizing method. The calculations used fluid force which was calculated based on the three-dimensional singular point method utilizing symmetry with respect to each condition for a complete model plus unit lacking and unit lacking plus inclination control. As a result of verifying the calculations by using an experiment, relatively good agreement was achieved in either case. A high-frequency vibration experiment made clear the characteristics of elastic response in the short-wave length range. 14 refs., 14 figs.
Hydroelastic analysis of a very large floating plate with large deflections in stochastic seaway
DEFF Research Database (Denmark)
Chen, Xu-jun; Jensen, Jørgen Juncher; Cui, Wei-cheng
2004-01-01
The hydroelasticity of a very large floating plate with large deflections in multidirectional irregular waves is discussed. After a brief introduction on wave loads on a flexible structure, the paper derives the generalised fluid force acting on a floating structure in multidirectional irregular ...
Topological color codes and two-body quantum lattice Hamiltonians
Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.
2010-02-01
Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the
$V_{td}$ from Hadronic Two-Body $B$ Decays
Gronau, Michael; Rosner, Jonathan L.
1996-01-01
Certain hadronic two-body decays of $B$ mesons are dominated by penguin diagrams. The ratios of rates for several such decays, including $\\Gamma(B^0 \\to \\overline{K}^{*0} K^0)/\\Gamma(B^0 \\to \\phi K^0)$, $\\Gamma(B^0 \\to \\overline{K}^{*0} K^{*0})/\\Gamma(B^0 \\to \\phi K^{*0})$, $\\Gamma(B^+ \\to \\overline{K}^{*0} K^+)$ $/\\Gamma(B^+ \\to \\phi K^+)$, and $\\Gamma(B^+ \\to \\overline{K}^{*0} K^{*+})/\\Gamma(B^+ \\to \\phi K^{*+})$, can provide information on the ratio of Cabibbo-Kobayashi-Maskawa (CKM) eleme...
Two-body threshold spectral analysis, the critical case
DEFF Research Database (Denmark)
Skibsted, Erik; Wang, Xue Ping
We study in dimension $d\\geq2$ low-energy spectral and scattering asymptotics for two-body $d$-dimensional Schrödinger operators with a radially symmetric potential falling off like $-\\gamma r^{-2},\\;\\gamma>0$. We consider angular momentum sectors, labelled by $l=0,1,\\dots$, for which $\\gamma......>(l+d/2 -1)^2$. In each such sector the reduced Schrödinger operator has infinitely many negative eigenvalues accumulating at zero. We show that the resolvent has a non-trivial oscillatory behaviour as the spectral parameter approaches zero in cones bounded away from the negative half-axis, and we derive...
Toric codes and quantum doubles from two-body Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Brell, Courtney G; Bartlett, Stephen D; Doherty, Andrew C [Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney (Australia); Flammia, Steven T, E-mail: cbrell@physics.usyd.edu.au [Perimeter Institute for Theoretical Physics, Waterloo (Canada)
2011-05-15
We present here a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the low-energy limits of entirely two-body Hamiltonians. Our construction makes use of a new type of perturbation gadget based on error-detecting subsystem codes. The procedure is motivated by a projected entangled pair states (PEPS) description of the target models, and reproduces the target models' behavior using only couplings that are natural in terms of the original Hamiltonians. This allows our construction to capture the symmetries of the target models.
Two-body non-leptonic decays on the lattice
Ciuchini, M; Martinelli, G; Silvestrini, L
1996-01-01
We show that, under reasonable hypotheses, it is possible to study two-body non-leptonic weak decays in numerical simulations of lattice QCD. By assuming that final-state interactions are dominated by the nearby resonances and that the couplings of the resonances to the final particles are smooth functions of the external momenta, it is possible indeed to overcome the difficulties imposed by the Maiani-Testa no-go theorem and to extract the weak decay amplitudes, including their phases. Under the same assumptions, results can be obtained also for time-like form factors and quasi-elastic processes.
International Nuclear Information System (INIS)
1993-10-01
The aim was to produce a general survey of the profitability of establishing floating offshore wind turbine arrays and to compare this with the cost and profitability of constructing offshore arrays with fixed foundations and arrays located on land sites. Aspects of design in all cases are described, also into relation to the special demands placed on dimensioning in relation to the types of location and foundation. The costs of the offshore arrays are evaluated in relation to capacity under conditions in Danish waters. The advantage of floating arrays is that they can be placed far out to sea where they can not be seen from the coast and thus not be considered to spoil the marine view. But as the water gets deeper the cost of floating foundations rises. It was found that it would not be technologically profitable to establish floating arrays at a depth of less than 30 - 40 meters which means that only the outer Danish waters can be taken into consideration. For depths of up to 70 meters, individual floating bases are more expensive than fixed ones but would be cheaper if a number of windmills could share the same anchor. For depths of more than 70 meters floating foundations would be the cheapest. The cost is dependent on the depth and distance from the coast and also on wind conditions. The main conclusion is that currently the cost of establishing wind turbine arrays in deeper outer waters on floating foundations is comparable to that of arrays sited at inner waters on solid foundations placed on the sea bed. (AB) (20 refs.)
Simple ``invariance'' of two-body decay kinematics
Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin
2013-09-01
We study the two-body decay of a mother particle into a massless daughter. We further assume that the mother particle is unpolarized and has a generic boost distribution in the laboratory frame. In this case, we show analytically that the laboratory frame energy distribution of the massless decay product has a peak, whose location is identical to the (fixed) energy of that particle in the rest frame of the corresponding mother particle. Given its simplicity and “invariance” under changes in the boost distribution of the mother particle, our finding should be useful for the determination of masses of mother particles. In particular, we anticipate that such a procedure will then not require a full reconstruction of this two-body decay chain (or, for that matter, information about the rest of the event). With this eventual goal in mind, we make a proposal for extracting the peak position by fitting the data to a well-motivated analytic function describing the shape of such an energy distribution. This fitting function is then tested on the theoretical prediction for top quark pair production and its decay, and it is found to be quite successful in this regard. As a proof of principle of the usefulness of our observation, we apply it for measuring the mass of the top quark at the LHC, using simulated data and including experimental effects.
A new separable expansion for the two-body problem
International Nuclear Information System (INIS)
Haberzettl, H.
1988-07-01
We derive a new separable expansion of the two-body T matrix which represents the T matrix as a series of diagonal separable terms. The representation is exact half-on-shell at all energies even when truncated to one single term; moreover, the truncated expansion satisfies the full off-shell unitarity relation. The approach does not take recourse to some complete set of functions but rather uses properties of the Lippmann-Schwinger equation itself to arrive at the expansion. It is based on the W-matrix representation of the two-body T matrix introduced by Bartnik, Haberzettl, and Sandhas. That representation provides a splitting of the T matrix in one single separable term which contains all bound state poles and scatttering cuts and in a nonsingular, real remainder which vanishes half-on-shell. The method presented here yields a separable expansion of this remainder in which all its properties are preserved term by term. Any given n-term approximation can easily be refined to an (n+1)-term expansion by simply adding a new term. At each stage the amount of additional numerical work is constant. The method is applicable to any kind of short range potential, local, nonlocal or energy dependent. (orig.)
Institutional Solutions to the ``Two-Body Problem"
Knezek, P.
2005-05-01
The Committee on the Status of Women (CSWA), in conjunction with the Employment Committee (EC), will hold a special session that will focus on institutional approaches to solving the ``two-body problem". In step with the national employment trend, for the majority of astronomers with partners, those partners work outside the home. This is particularly true for female astronomers, who generally are married to professionals (and often to other astronomers). Academic and professional institutions that employ the majority of astronomers are now beginning to recognize the importance of addressing what has come to be known as the ``two-body" problem in order to attract and retain the best scientists. A few of those institutions are making pioneering efforts to create pro-active approaches to the issue of dual-career couples. The special session will feature two or three speakers involved with the administration at institutions with pro-active policies. This special session will be coupled with the normal afternoon CSWA session, which will focus on the other side of the issue - how dual-career couples have successfully approached the issue at institutions that do NOT have proactive policies.
Ando, Koji
2018-03-01
A model of localized electron wave packets (EWPs), floating and breathing Gaussians with non-orthogonal valence-bond spin-coupling, is applied to compute the high-harmonic generation (HHG) spectrum from a LiH molecule induced by an intense laser pulse. The characteristic features of the spectrum, a plateau up to 50 harmonic-order and a cutoff, agreed well with those from the previous time-dependent complete active-space self-consistent-field calculation [T. Sato and K. L. Ishikawa, Phys. Rev. A 91, 023417 (2015)]. In contrast to the conventional molecular orbital picture in which the Li 2s and H 1s atomic orbitals are strongly mixed, the present calculation indicates that an incoherent sum of responses of single electrons reproduces the HHG spectrum, in which the contribution from the H 1s electron dominates the plateau and cutoff, whereas the Li 2s electron contributes to the lower frequency response. The results are comprehensive in terms of the shapes of single-electron potential energy curves constructed from the localized EWP model.
Energy Technology Data Exchange (ETDEWEB)
Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-06-03
During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitch and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.
Energy Technology Data Exchange (ETDEWEB)
Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-08-09
During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitch and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.
Two-body correlation functions in dilute nuclear matter
International Nuclear Information System (INIS)
Isayev, A A
2006-01-01
Finding the distinct features of the crossover from the regime of large overlapping Cooper pairs to the limit of non-overlapping pairs of fermions (Shafroth pairs) in multicomponent Fermi systems remains one of the actual problems in a quantum many-body theory. Here this transition is studied by calculating the two-body density, spin and isospin correlation functions in dilute asymmetric nuclear matter. It is shown that criterion of the crossover (Phys. Rev. Lett. 95, 090402 (2005)), consisting in the change of the sign of the density correlation function at low momentum transfer, fails to describe correctly the density-driven BEC-BCS transition at finite isospin asymmetry or finite temperature. As an unambiguous signature of the BEC-BCS transition, there can be used the presence (BCS regime) or absence (BEC regime) of the singularity in the momentum distribution of the quasiparticle density of states
Fluctuations of radiative heat exchange between two bodies
Biehs, S.-A.; Ben-Abdallah, P.
2018-05-01
We present a theory to describe the fluctuations of nonequilibrium radiative heat transfer between two bodies both in the far- and near-field regimes. As predicted by the blackbody theory, in the far field, we show that the variance of radiative heat flux is of the same order of magnitude as its mean value. However, in the near-field regime, we demonstrate that the presence of surface polaritons makes this variance more than one order of magnitude larger than the mean flux. We further show that the correlation time of heat flux in this regime is comparable to the relaxation time of heat carriers in each medium. This theory could open the way to an experimental investigation of heat exchanges far from the thermal equilibrium condition.
Micromagnetic simulation of two-body magnetic nanoparticles
Li, Fei; Lu, Jincheng; Yang, Yu; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.
2017-05-01
Field-induced magnetization dynamics was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value on nanometer scale in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The same results were observed when varying the radius of particles. The micromagnetic results are consistent with the previous theoretical prediction where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles could be implemented as a composite information bit.
Relativistic two-body forces in many-body systems
International Nuclear Information System (INIS)
Namyslowski, J.M.
1979-01-01
For the fully off-shell extension in the relativistic dynamics, based on a covariant light-front field theory, we define the relative momenta and their proper angular variables such that -1 < cos theta/sub α/ < 1. In terms of these variables and the timelike total momenta we write explicitly the Weinberg interaction, corresponding to the exchange of a spinless particle of mass μ. The total momentum dependence and the cluster decomposition property of the Weinberg interaction are presented in detail, together with its energy dependence and other nonlocal features. In the nonrelativistic limit we recover the Yukawa interaction, while for the finite masses the Weinberg interaction is a product of the Yukawa interaction and a form factor. The Weinberg two-body force goes to zero at large energies and is truly nonlocal, in spite of the fact that the underlying field theory has a local Lagrangian
Successive canonical transformation in model two-body electrodynamics
International Nuclear Information System (INIS)
Raha, S.
1978-10-01
The possibility is investigated of bypassing the no interaction theorum of Currie, Jordan and Sudarshan for direct action Lagrangians. Starting with the field theoretic description of a two-body electrodynamic problem, the field variable is solved for in terms of the particle variables, which paves the way to write an action-at-a-distance Hamiltonian for the problem. A suitable transformation is found which uncouples the field and the particle variables in the interaction up to order e 2 . It is shown that this transformation leaves the statement of Newton's 2nd law unchanged which also agrees with the standard results of electrodynamics. This allows for the identification of canonical variables for the proper action-at-a-distance problem. 19 references
Electroproduction of associated two-body final states
International Nuclear Information System (INIS)
Harding, D.J.
1983-01-01
The Large Aperture Magnet Experiment at the Cornell Electron Synchrotron measured electron scattering in the region 2.98 2 and 0.5 2 2 . The 11.5 GeV extracted electron beam struck a liquid hydrogen target in an eight kilogauss magnetic field. The charged particles in the final state were tracked through the field by a multiwire proportional chamber system of 34 planes. A lead-scintillator shower counter triggered the experiment on detection of a scattered electron. Time-of-flight and water Cherenkov counters identified some of the final state hadrons. The data recorded on tape was then passed through computer programs which linked proportional chamber strikes into tracks, fit momenta to the tracks, applied particle identification algorithms, selected interesting events, and plotted histograms of invariant masses. All of this is described here in detail, with special attention to the front-end electronics and the track-finding program. Many specific final states were observed. The analysis presented here concentrates on the reaction γ/sub v/p→pπ + ππ 0 , with the final hadrons resulting from the decay of a two-body state. The states pω 0 and p eta 0 are measured. Limits are set for the production of Δ + + rho - , Δ + rho 0 , and Δp + . The conclusion the author draws is that hadron-like two-body processes are almost completely absent in virtual photon scattering in this kinematic region. Vector meson production, excitation of the nucleons, and the scattering of the photons directly from individual partons are the important processes
Position control of a floating nuclear power plant
International Nuclear Information System (INIS)
Motohashi, K.; Hamamoto, T.; Sasaki, R.; Kojima, M.
1993-01-01
In spite of the increasing demand of electricity in Japan, the sites of nuclear power plants suitable for conventional seismic regulations become severely limited. Under these circumstances, several types of advanced siting technology have been developed. Among them, floating power plants have a great advantage of seismic isolation that leads to the seismic design standardization and factory fabrication. The feasibility studies or preliminary designs of floating power plants enclosed by breakwaters in the shallow sea have been carried out last two decades in U.S. and Japan. On the other hand, there are few investigations on the dynamic behavior of floating power plants in the deep sea. The offshore floating nuclear power plants have an additional advantage in that large breakwaters are not required, although the safety checking is inevitable against wind-induced waves. The tension-leg platforms which have been constructed for oil drilling in the deep sea seem to be a promising offshore siting technology of nuclear power plants. The tension-leg mooring system can considerably restrain the heave and pitch of a floating power plant because of significant stiffness in the vertical direction. Different from seismic effects, wind-induced waves may be predicted in advance by making use of ocean weather forecasts using artificial satellites. According to the wave prediction, the position of the floating plant may be controlled by adjusting the water content in ballast tanks and the length of tension-legs before the expected load arrives. The position control system can reduce the wave force acting on the plant and to avoid the unfavorable response behavior of the plant. In this study a semi-submerged circular cylinder with tension-legs is considered as a mathematical model. The configuration of circular cylinder is effective because the dynamic behavior does not depend on incident wave directions. It is also unique in that it can obtain the closed-form solution of
International Nuclear Information System (INIS)
Rockmore, R.
1984-01-01
A two-body threshold (π +- ,π +- π -+ ) reaction mechanism is suggested in direct analogy with pion absorption. The mechanism involves boson rescattering via Δ excitation. The relative importance of this mechanism and the ordinary one-body mechanism in nuclei is studied in the particular case of S-wave deuteron targets. The contribution of the two-body mechanism to the threshold reaction cross section is found to be less than 1% of the simple one-body estimate
Compound floating pivot micromechanisms
Garcia, Ernest J.
2001-04-24
A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.
International Nuclear Information System (INIS)
Fuchs, Elmar C; Woisetschlaeger, Jakob; Gatterer, Karl; Maier, Eugen; Pecnik, Rene; Holler, Gert; Eisenkoelbl, Helmut
2007-01-01
When high voltage is applied to distilled water filled in two glass beakers which are in contact, a stable water connection forms spontaneously, giving the impression of a floating water bridge. A detailed experimental analysis reveals static and dynamic structures as well as heat and mass transfer through this bridge
Neutron-deuteron scattering calculations with W-matrix representation of the two-body input
International Nuclear Information System (INIS)
Bartnik, E.A.; Haberzettl, H.; Januschke, T.; Kerwath, U.; Sandhas, W.
1987-05-01
Employing the W-matrix representation of the partial-wave T matrix introduced by Bartnik, Haberzettl, and Sandhas, we show for the example of the Malfliet-Tjon potentials I and III that the single-term separable part of the W-matrix representation, when used as input in three-nucleon neutron-deuteron scattering calculations, is fully capable of reproducing the exact results obtained by Kloet and Tjon. This approximate two-body input not only satisfies the two-body off-shell unitarity relation but, moreover, it also contains a parameter which may be used in optimizing the three-body data. We present numerical evidence that there exists a variational (minimum) principle for the determination of the three-body binding energy which allows one to choose this parameter also in the absence of an exact reference calculation. Our results for neutron-deuteron scattering show that it is precisely this choice of the parameter which provides optimal scattering data. We conclude that the W-matrix approach, despite its simplicity, is a remarkably efficient tool for high-quality three-nucleon calculations. (orig.)
Liang, Hui; Chen, Xiaobo
2017-10-01
A novel multi-domain method based on an analytical control surface is proposed by combining the use of free-surface Green function and Rankine source function. A cylindrical control surface is introduced to subdivide the fluid domain into external and internal domains. Unlike the traditional domain decomposition strategy or multi-block method, the control surface here is not panelized, on which the velocity potential and normal velocity components are analytically expressed as a series of base functions composed of Laguerre function in vertical coordinate and Fourier series in the circumference. Free-surface Green function is applied in the external domain, and the boundary integral equation is constructed on the control surface in the sense of Galerkin collocation via integrating test functions orthogonal to base functions over the control surface. The external solution gives rise to the so-called Dirichlet-to-Neumann [DN2] and Neumann-to-Dirichlet [ND2] relations on the control surface. Irregular frequencies, which are only dependent on the radius of the control surface, are present in the external solution, and they are removed by extending the boundary integral equation to the interior free surface (circular disc) on which the null normal derivative of potential is imposed, and the dipole distribution is expressed as Fourier-Bessel expansion on the disc. In the internal domain, where the Rankine source function is adopted, new boundary integral equations are formulated. The point collocation is imposed over the body surface and free surface, while the collocation of the Galerkin type is applied on the control surface. The present method is valid in the computation of both linear and second-order mean drift wave loads. Furthermore, the second-order mean drift force based on the middle-field formulation can be calculated analytically by using the coefficients of the Fourier-Laguerre expansion.
Updated analysis of some two-body charmless B decays
International Nuclear Information System (INIS)
Chiang Chengwei; Rosner, Jonathan L.
2002-01-01
New data from the BaBar, Belle, and CLEO Collaborations on B decays to two-body charmless final states are analyzed, with the following consequences. (1) The penguin amplitude which dominates the decay B + →π + K *0 has a magnitude similar to that dominating B + →π + K 0 . (2) The decay B + →π + η, a good candidate for observing direct CP violation, should be detectable at present levels of sensitivity. (3) The decays B + →η ' K + and B + →ηK* + are sufficiently similar in rate to the corresponding decays B 0 →η ' K 0 and B 0 →ηK* 0 , respectively, that one cannot yet infer the need for 'tree' amplitudes t ' contributing to the B + but not the B 0 decays. Statistical requirements for observing this and other examples of tree-penguin interference are given. (4) Whereas the B + →η ' K + and B 0 →η ' K 0 rates cannot be accounted for by the penguin amplitude p ' alone but require an additional flavor-singlet penguin contribution s ' , no such flavor-singlet penguin contribution is yet called for in the decays B + →ηK* + or B 0 →ηK *0 . Predictions for the rates for B + →η ' K* + and B 0 →η ' K* 0 are given which would allow one to gauge the importance of these flavor-singlet penguin amplitudes
Reply to C. M. Will on the axially symmetric two-body problem in general relativity
International Nuclear Information System (INIS)
Cooperstock, F.I.; Lim, P.H.
1985-01-01
The recent paper by Will (1983) is considered which purports to demonstrate that the gravitational radiation which the authors had computed from their model two-body free-fall system is consistent with the so-called quadrupole formula. It is shown that in fact the system presented by Will is different from the authors and that the illegitimate application of the quadrupole formula to the authors system leads to a smaller flux than that which is correctly deduced using general relativity and a proper consideration of nonlinearities. It is demonstrated that a judicious choice of stress release is propagated through the bodies as a superposition of plane and spherical waves leading to pressure fluctuations to the order in question. This underlines the essential distinction between the authors problem and the Will problem. Various aspects of the problem are also discussed. 25 references
Growing halophytes floating at sea
Directory of Open Access Journals (Sweden)
Ricardo Radulovich
2017-11-01
Full Text Available Freshwater shortages are increasingly limiting both irrigated and rainfed agriculture. To expand possibilities for controlled plant production without using land nor freshwater, we cultivated potted halophytes floating at sea that were provided with rain- and seawater. Plantlets of two mangroves (Avicennia germinans and Rhizophora mangle and plants of two herbaceous species, sea purslane (Sesuvium portulacastrum and salt couch grass (Sporobolus virginicus were grown in near-coastal tropical Pacific waters of Costa Rica for 733 days. There were a total of 504 rainless days, including two dry periods of ca. 150 d long each, evidencing prolonged and exclusive reliance on seawater. Pots with a sandy soil mixture and the transplanted plants were placed on low-cost wooden floating rafts with their lower end perforated and immersed for capillary rise of water. Free seawater entry and exit through the bottom from bobbing with waves, which also occasionally added water from the top, effectively controlled soil salinity build-up even during the rainless seasons. Continuous leaching made necessary frequent fertilizer addition. No water deficit symptoms were observed and midday canopy temperature during rainless periods was not significantly different between species or from air temperature. With all-year-round growth, height increase of mangrove plantlets ranged from 208.1 to 401.5 mm yr−1. Fresh biomass production of sea purslane and the grass was 10.9 and 3.0 kg m−2 yr−1 respectively. High yield, edibility and protein content of 10.2% dry weight established sea purslane as a potential crop. While further research is needed, the method evidenced to be a viable plant production option of potentially far-reaching applications.
Floating Gate CMOS Dosimeter With Frequency Output
Garcia-Moreno, E.; Isern, E.; Roca, M.; Picos, R.; Font, J.; Cesari, J.; Pineda, A.
2012-04-01
This paper presents a gamma radiation dosimeter based on a floating gate sensor. The sensor is coupled with a signal processing circuitry, which furnishes a square wave output signal, the frequency of which depends on the total dose. Like any other floating gate dosimeter, it exhibits zero bias operation and reprogramming capabilities. The dosimeter has been designed in a standard 0.6 m CMOS technology. The whole dosimeter occupies a silicon area of 450 m250 m. The initial sensitivity to a radiation dose is Hz/rad, and to temperature and supply voltage is kHz/°C and 0.067 kHz/mV, respectively. The lowest detectable dose is less than 1 rad.
International Nuclear Information System (INIS)
Grishchuk, M.Kh.; Laptev, A.G.; Pashkov, V.A.
1980-01-01
Specially developed level indicator is suggested with differential to-transformer converter of the float motion, operating in line with a movable electronic block, intended for indicating the level of the dissociating nitrogen tetroxide liquid phase. On the basis of the indicator elements the device is realized to measure the time of calibrated volume fillino. in by liquid nitrogen tetroxide in steady state operation of the experimental bench-marks [ru
DEFF Research Database (Denmark)
Muñoz Vives, Josep; Bel, Jean-Christophe; Capel Agundez, Arantxa
2016-01-01
In 1975, Blake and McBryde established the concept of 'floating knee' to describe ipsilateral fractures of the femur and tibia.1This combination is much more than a bone lesion; the mechanism is usually a high-energy trauma in a patient with multiple injuries and a myriad of other lesions...... fixation when both fractures (femoral and tibial) are extra-articular.Plates are the 'standard of care' in cases with articular fractures.A combination of implants are required by 40% of floating knees.Associated ligamentous and meniscal lesions are common, but may be irrelevant in the case of an intra......-articular fracture which gives the worst prognosis for this type of lesion. Cite this article: Muñoz Vives K, Bel J-C, Capel Agundez A, Chana Rodríguez F, Palomo Traver J, Schultz-Larsen M, Tosounidis, T. The floating knee.EFORT Open Rev2016;1:375-382. DOI: 10.1302/2058-5241.1.000042....
Pontecorvo reactions of two-body antiproton annihilation in deuterium
International Nuclear Information System (INIS)
Kondratyuk, L.A.; Sapozhnikov, M.G.
1988-01-01
Rare annihilation reactions for stopped antiprotons in deuterium, p-bard→π - p; K + Σ - ; K 0 Λ, are considered using the two-step model described by the triangle diagram. It was found that the probabilities, W, of these processes are very sensitive to the behaviour of the deuteron wave function at small distances as well as to the meson form factors. It appears that the ratios R(KX)=W(KX)/W(π - p) are much less model-dependent and are about 10 -2 for R(K 0 λ) and 10 -4 for R(K + Σ - ). 17 refs.; 1 fig.; 3 tabs
Generic calculation of two-body partial decay widths at the full one-loop level
Goodsell, Mark D.; Liebler, Stefan; Staub, Florian
2017-11-01
We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wave-function corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a \\overline{ {DR}} (or \\overline{ {MS}}) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop-induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infrared divergences for such cases, which is achieved through an infrared counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiatively induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described.
Generic calculation of two-body partial decay widths at the full one-loop level
Energy Technology Data Exchange (ETDEWEB)
Goodsell, Mark D. [Sorbonne Universites, UPMC Univ Paris 06, UMR 7589, LPTHE, Paris (France); CNRS, UMR 7589, LPTHE, Paris (France); Liebler, Stefan [DESY, Hamburg (Germany); Staub, Florian [Karlsruhe Institute of Technology, Institute for Theoretical Physics (ITP), Karlsruhe (Germany); Karlsruhe Institute of Technology, Institute for Nuclear Physics (IKP), Eggenstein-Leopoldshafen (Germany)
2017-11-15
We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wave-function corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a DR (or MS) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop-induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infrared divergences for such cases, which is achieved through an infrared counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiatively induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described. (orig.)
Ipsilateral Floating Hip and Floating Knee – A Rare Entity
Directory of Open Access Journals (Sweden)
Yashavantha Kumar
2013-04-01
Full Text Available Introduction: Ipsilateral floating hip and floating knee are very rare injuries. These injuries so uncommon that only three cases of similar kind have been reported. These injuries are due to high velocity injuries following motor vehicle accidents. Management of such complex injuries is a challenging task even in experienced hands as there are no standard treatment guidelines for such fractures. Case Report: We hereby report a 20 yr old male who sustained ipsilateral floating hip and ipsilateral floating knee injuries following motor vehicle accident. Patient was stabilized initially and later taken up for surgery. Patient was treated with interlocking nail for femur and tibia in the same sitting whereas acetabulam fracture was managed conservatively. At five months all the fractures united well with restoration of good range of motion in both hip and knee. Conclusion: Ipsilateral floating knee and floating hip are very rare injuries seen following high velocity motor vehicle accidents. There are no standard guidelines for treatment of those fractures as only a few cases of similar kind have been reported in literature. Early fixation and aggressive mobilization ensures fracture union and fewer complications. Keywords: Floating hip, Floating Knee, Ipsilateral.
Significance of relative velocity in drag force or drag power estimation for a tethered float
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Sastry, J.S.
There is difference in opinion regarding the use of relative velocity instead of particle velocity alone in the estimation of drag force or power. In the present study, a tethered spherical float which undergoes oscillatory motion in regular waves...
Recent Developments in the Construction of Floating Structures ...
African Journals Online (AJOL)
This paper presents the applications of floating structures in (a) creating land from the ocean for airports, container ports, cruise terminals, oil storage, power plants, fish farms, recreation facilities, aquatic observatories, residential facilities, marinas and even relay bases for receiving micro waves from outer space, etc, ...
Floating Oil-Spill Containment Device
Jones, Jack A.
2012-01-01
Previous oil containment booms have an open top that allows natural gas to escape, and have significant oil leakage due to wave action. Also, a subsea pyramid oil trap exists, but cannot move relative to moving oil plumes from deepsea oil leaks. The solution is to have large, moveable oil traps. One version floats on the sea surface and has a flexible tarp cover and a lower weighted skirt to completely entrap the floating oil and natural gas. The device must have at least three sides with boats pulling at each apex, and sonar or other system to track the slowly moving oil plume, so that the boats can properly locate the booms. The oil trap device must also have a means for removal of the oil and the natural gas. A second design version has a flexible pyramid cover that is attached by lines to ballast on the ocean floor. This is similar to fixed, metal pyramid oil capture devices in the Santa Barbara Channel off the coast of California. The ballast lines for the improved design, however, would have winches that can move the pyramid to always be located above the oil and gas plume. A third design is a combination of the first two. It uses a submerged pyramid to trap oil, but has no anchor and uses boats to locate the trap. It has ballast weights located along the bottom of the tarp and/or at the corners of the trap. The improved floating oil-spill containment device has a large floating boom and weighted skirt surrounding the oil and gas entrapment area. The device is triangular (or more than three sides) and has a flexible tarp cover with a raised gas vent area. Boats pull on the apex of the triangles to maintain tension and to allow the device to move to optimum locations to trap oil and gas. The gas is retrieved from a higher buoyant part of the tarp, and oil is retrieved from the floating oil layer contained in the device. These devices can be operated in relatively severe weather, since waves will break over the devices without causing oil leaking. Also, natural
Energy Technology Data Exchange (ETDEWEB)
Kellerman, Peter
2013-12-21
The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.
Two-body density matrix for closed s-d shell nuclei
International Nuclear Information System (INIS)
Dimitrova, S.S.; Kadrev, D.N.; Antonov, A.N.; Stoitsov, M.V.
2000-01-01
The two-body density matrix for 4 He, 16 O and 40 Ca within the Low-order approximation of the Jastrow correlation method is considered. Closed analytical expressions for the two-body density matrix, the center of mass and relative local densities and momentum distributions are presented. The effects of the short-range correlations on the two-body nuclear characteristics are investigated. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Inoue, Y.; Tabeta, S.; Takei, Y. [Yokohama National University, Yokohama (Japan). Faculty of Engineering
1996-12-31
A rough design was performed on a floating airport. On this floating structure, environmental external force was estimated, mooring design was carried out, and discussions was given on the position retaining performance important for airport functions and behavior of the floating structure. The discussion was given on cases that the airport is surrounded and not surrounded by floating breakwaters. A floating structure which becomes super-large in size requires considerations on force due to sea level gradient as a result of a tide. Deriving flow condition changes and force acting on the floating structure simultaneously by using numerical calculations makes it possible to estimate current force given with considerations on influence of the flow conditions created by installing the floating airport. Estimation was carried out by using a zone dividing method on wave drifting force acting upon the floating airport. As a result, it was found that installing floating and permeating type breakwaters can reduce the wave drifting force acting on the floating airport. The wave drifting force working on the floating airport can be reduced by installing the floating and permeating type breakwaters to lower levels than when no such breakwaters are installed. The airport may be moored with less number of fenders when the fenders of the same type are used. 18 refs., 10 figs., 5 tabs.
An investigation of two-body abrasive wear of laser processed surfaces
International Nuclear Information System (INIS)
Abass, G.
1995-01-01
This paper reports two body abrasive wear studies of alloy and composite deposits produced with a 2 kW continuous wave CO/sub 2/ laser. Stellite alloy 6, Alloy 4815, Stainless steel and SiC powders were used to produce alloy and composite deposits on an En 3b mild steel substrate. The cladding material was injected into the laser produced melt pool by means of a pneumatic powder delivery system. In the present studies instead of using the conventional pin-on-disc method of wear measurement, a more realistic and practical wear testing procedure was adopted. The wear testing machine used was capable of measuring wear of three comparatively larger (30 x 30 x 10 mm) clad samples by abrading simultaneously against a revolving alumina disc. A comparative study of microstructure, hardness and wear of alloy and composite clads was made. The clad deposits were found sound and continuous. The hardness and wear resistance of the composites were markedly higher than that of the alloy clads. (author) 9 figs
Chain and ladder models with two-body interactions and analytical ground states
Manna, Sourav; Nielsen, Anne E. B.
2018-05-01
We consider a family of spin-1 /2 models with few-body, SU(2)-invariant Hamiltonians and analytical ground states related to the one-dimensional (1D) Haldane-Shastry wave function. The spins are placed on the surface of a cylinder, and the standard 1D Haldane-Shastry model is obtained by placing the spins with equal spacing in a circle around the cylinder. Here, we show that another interesting family of models with two-body exchange interactions is obtained if we instead place the spins along one or two lines parallel to the cylinder axis, giving rise to chain and ladder models, respectively. We can change the scale along the cylinder axis without changing the radius of the cylinder. This gives us a parameter that controls the ratio between the circumference of the cylinder and all other length scales in the system. We use Monte Carlo simulations and analytical investigations to study how this ratio affects the properties of the models. If the ratio is large, we find that the two legs of the ladder decouple into two chains that are in a critical phase with Haldane-Shastry-like properties. If the ratio is small, the wave function reduces to a product of singlets. In between, we find that the behavior of the correlations and the Renyi entropy depends on the distance considered. For small distances the behavior is critical, and for long distances the correlations decay exponentially and the entropy shows an area law behavior. The distance up to which there is critical behavior gets larger as the ratio increases.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
Energy Technology Data Exchange (ETDEWEB)
NONE
2012-11-01
The current project is a preliminary study intended to clarify the background and give a better basis for an evaluation of the risks and possible rewards of funding a full project with the overall purpose of developing and testing a new concept for wave energy floaters, made of Ultra High Performance Fibre Reinforced Concrete (UHPC), as an enabling technology for the establishment of competitive wave energy production (FLOAT). As an initial step for this preliminary study of FLOAT an investigation has been undertaken in relation to preliminary design of 2 types of floaters, essential properties of UHPFRC - and identification of necessary developments, compilation of existing data from off shore applications and analysis of effect on Cost Of Energy. Preliminary float design and economical considerations - is a theoretical and numerical study including preliminary float designs and cost estimates. It aims at making a first comparison between the different materials options for DEXA and Wave Star floats and giving a first judgement about the suitability of CRC concrete. This is done through a qualitative assessment of pros and cons of different materials for both types of floats and a design study of the Dexa Wave float. It is concluded that the requirements for the Dexa Wave float are so that CRC is not able to compete with conventional concrete for the best and most cost effective solution. The good durability (leading to low maintenance costs), the mechanical properties and the ductility of CRC are not important enough to offset the increased cost for this float. For Wave Star on the other hand, there are significant advantages in using CRC as the only other option in this case is fibre glass, which is a much more expensive product. An investigation was made of methods of optimizing the properties of CRC - customizing them for particular applications in WEC's. The method of optimization has been to change the types of fibres in the mix, and it is demonstrated
Control development for floating wind
International Nuclear Information System (INIS)
Savenije, Feike; Peeringa, Johan
2014-01-01
Control of a floating wind turbine has proven to be challenging, but essential for lowering the cost of floating wind energy. Topic of a recent joint R and D project by GustoMSC, MARIN and ECN, is the concept design and verification with coupled simulations and model tests of the GustoMSC Tri-Floater. Only using an integral design approach, including mooring and control design, a cost effective system can be obtained. In this project, ECN developed a general floating wind turbine control strategy and applied this in a case study to the GustoMSC Tri-Floater and the OC3Hywind spar, both equipped with the NREL 5MW RWT. The designed controller ensures stable operation, while maintaining proper speed and power regulation. The motions of the floating support are reduced and substantial load reduction has been achieved
Large floating structures technological advances
Wang, BT
2015-01-01
This book surveys key projects that have seen the construction of large floating structures or have attained detailed conceptual designs. This compilation of key floating structures in a single volume captures the innovative features that mark the technological advances made in this field of engineering, and will provide a useful reference for ideas, analysis, design, and construction of these unique and emerging urban projects to offshore and marine engineers, urban planners, architects and students.
Viterna, Larry A. (Inventor)
2009-01-01
A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.
Electrically floating, near vertical incidence, skywave antenna
Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.
2014-07-08
An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.
Present situation of floating nuclear power plants
Energy Technology Data Exchange (ETDEWEB)
Sakurai, A [Central Research Inst. of Electric Power industry, Tokyo (Japan)
1975-08-01
The present situation of investigation and the future problems of floating nuclear power plants in Japan are examined, referring to those in USA. The committee report on a new power generation system in 1970 is quoted. In this report, the site conditions are supposed to be 5 km offshore, 100m water depth, 60 m/sec wind velocity, 10 m wave height, 200 m wave length, 12 seconds wave period 0.2 g earthquake acceleration, and 2.5 knots tide current. The semisubmersible hull of double construction 15 m under water is employed. A pair of 1,000,000 kW BWR reactors are utilized. A sea water desalting unit using bleed steam from turbines is installed. The solid radioactive wastes packed in drums are disposed in the sea. The design and cost estimation were made. The names of the organizations who have made investigation in this field, namely the Civil Engineering Society, the Sience and Technology Agency and other several centers, are reported. The Chubu Electric Power Company is forwarding its project. Referring to the investigations in USA, the project of Atlantic nuclear power station unit is described. A report of plant design has been submitted by O.P.S. to United States Atomic Energy Commission in 1973. The Coastal Area Facilities Act was instituted in New Jersey in 1973. Although the Atlantic nuclear power station has been postponed, it is the most feasible project. For the realization of a floating nuclear power plant in Japan, investigation must be started on the ground construction that can endure the construction of breakwater in water depth of 14 to 30 meter.
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Knapp, W.
2006-01-01
Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this ext......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...... power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates...
International Nuclear Information System (INIS)
Filho, Victo S.; Tomio, Lauro; Frederico, T.; Gammal, Arnaldo
2002-01-01
The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive two-body interaction is numerically investigated, considering wide variations of the nonconservative parameters, related to atomic feeding and dissipation. We study the possible limitations of the mean-field description for an atomic condensate with attractive two-body interaction, by defining the parameter regions, where stable or unstable formation can be found. The present study is useful and timely considering the possibility of large variations of attractive two-body scattering lengths, which may be feasible in recent experiments
A bibliography of high energy two-body and inclusive scattering data
International Nuclear Information System (INIS)
Gault, F.D.; Read, B.J.; Roberts, R.G.
1977-09-01
A bibliography is presented of the data on high energy two-body and quasi-two-body final state scattering processes. This updated edition also covers one and two-particle inclusive production. It contains references to those published papers whose main purpose is to provide data on high energy two-body and inclusive hadronic scattering cross-sections rather than just properties of the produced particles. It covers the leading high energy physics journals and the period up to June 1977. The entries are grouped by process in the order indicated in the Table of Contents, and an author index is also provided. (author)
Two-body tensor interactions in the nuclear matter response function
International Nuclear Information System (INIS)
Besprosvany, J.
1997-01-01
The inclusive scattering response of nuclear matter is studied in the regime of large momentum transfer q, and around the quasielastic peak. We review interaction corrections to free propagation as embodied in the impulse approximation. Calculations of the two-body and many-body corrections within an eikonal approach are presented. These use an approximated two-body density matrix which takes account of spin and isospin degrees of freedom. Both calculations give similar and sizable corrections at q = 550 MeV and reproduce data extrapolated from finite nuclei; this indicates the relevance of two-body tensor contributions in this regime. (Author)
Frisch, Jerome
2012-09-01
Very large floating structures (VLFSs) have been used for broad applications such as floating storage facilities, floating piers, floating bridges, floating airports, entertainment facilities, even habitation, and other purposes. Owing to its small bending rigidity, VLFS deforms elastically when subjected to wave action. This elastic deformation due to wave is called hydro elastic response and it can be obtained by solving the interaction between the surface wave and the floating structure in the frequency domain. In solving the fluid-structure interaction, the floating structure can be modelled by applying the finite element method, whereas the fluid part may be analyzed by using the Green\\'s function method. When using the Green\\'s function which satisfies the boundary condition on the free-surface, the sea bottom and that at infinite distance from the floating structure, the unknown parameters to be determined for the fluid part can be minimized to be only those associated with the wetted surface of the floating structure. However, in the evaluation of the Green\\'s function, extensive computation time O(N2) is needed (N is the number of unknowns). Therefore, acceleration techniques are necessary to tackle the computational complexity. Nowadays, standard multi-core office PCs are already quite powerful if all the cores can be used efficiently. This paper will show different parallelisation strategies for speeding up the Green\\'s function computation. A shared memory based implementation as well as a distributed memory concept will be analysed regarding speed-up and efficiency. For large computations, batch jobs can be used to compute detailed results in high resolution on a large computational cluster or supercomputer. Different speed-up computations on clusters will be included for showing strong speed-up results. © 2012 IEEE.
DEFF Research Database (Denmark)
Collu, Maurizio; Borg, Michael; Manuel, Lance
2016-01-01
Interest in offshore floating wind turbines has been growing over the last decade. While a number of studies have been conducted to model the dynamics of offshore floating HAWT systems (e.g. OC3-Phase IV, OC4-Phase II), relatively few studies have been conducted on floating VAWT systems, despite...... offshore floating VAWT, considering a turbulent wind field and stochastically generated waves, to assess the more critical loads and distinguish them from those with negligible effect, when estimating the global system response. The floating VAWT system considered is comprised of a 5MW rotor supported...
DEFF Research Database (Denmark)
Borg, Michael; Collu, M.
2015-01-01
The re-emerging interest in vertical axis wind turbines for floating offshore applications has led to a need to investigate the relatively complex dynamics of such floating offshore structures. Through the use of a coupled model of dynamics this article investigates the frequency......-domain characteristics of floating vertical axis wind turbine aerodynamic loads. The impact of platform induced motion on aerodynamic loads is discussed in detail, with results indicating an increase in aerodynamic loads of several orders of magnitude over the range of frequencies usually containing significant wave...
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Chandramohan, P.; Sastry, J.S.; Narasimhan, S.
Added-mass (alpha) and damping coefficients (beta) of a tethered spherical float, undergoing oscillatory motion in sinusoidal waves, have been derived from the motion generated velocity potential for one degree-of-freedom (surge) using potential...
Two-body similarity and its violation in tokamak edge plasmas
International Nuclear Information System (INIS)
Catto, P.J.; Knoll, D.A.; Krasheninnikov, S.I.
1996-01-01
Scaling laws found under the assumption that two-body collisions dominate can be effectively used to benchmark complex multi-dimensional codes dedicated to investigating tokamak edge plasmas. The applicability of such scaling laws to the interpretation of experimental data, however, is found to be restricted to the relatively low plasma densities ( 19 m -3 ) at which multistep processes, which break the two-body collision approximation, are unimportant. copyright 1996 American Institute of Physics
Artisanal fishing net float loss and a proposal for a float design solution
Directory of Open Access Journals (Sweden)
Paulo de Tarso Chaves
2016-03-01
Full Text Available Abstract Plastic floats from fishing nets are commonly found washed up on beaches in southern Brazil. They are usually broken and show signs of having been repaired. Characteristics of floats and interviews with fishermen suggest two main causes of float loss. First, collisions between active gear, bottom trawl nets for shrimp, and passive gear, drift nets for fish, destroy nets and release fragments of them, including floats. Second, the difficulty with which floats are inserted on the float rope of the nets when they are used near the surface. Floats are inserted to replace damaged or lost floats, or they may be removed if it is desired that the nets be used in deeper waters. Floats may thus be poorly fixed to the cables and lost. Here a new float design that offers greater safety in use and for the replacement of floats is described and tested.
DEFF Research Database (Denmark)
Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke
This paper deals with a case study on the wave height reduction behind floating Wave Dragon wave energy converters in Santander Bay, Spain. The study is performed using the MIKE21 Boussinesq model from DHI. The Wave Dragon transmission characteristics in the numerical wave propagation model...... are based on previously performed physical model tests in scale 1:51. Typical winter storm conditions are considered in the case study together with different stiffness in the mooring system of the floating device. From the study it is found that if multiple Wave Dragons are positioned in a farm the wave...
Coupled Mooring Analyses for the WEC-Sim Wave Energy Converter Design Tool: Preprint
Energy Technology Data Exchange (ETDEWEB)
Sirnivas, Senu; Yu, Yi-Hsiang; Hall, Matthew; Bosma, Bret
2016-07-01
A wave-energy-converter-specific time-domain modeling method (WEC-Sim) was coupled with a lumped-mass-based mooring model (MoorDyn) to improve its mooring dynamics modeling capability. This paper presents a verification and validation study on the coupled numerical method. First, a coupled model was built to simulate a 1/25 model scale floating power system connected to a traditional three-point catenary mooring with an angle of 120 between the lines. The body response and the tension force on the mooring lines at the fairlead in decay tests and under regular and irregular waves were examined. To validate and verify the coupled numerical method, the simulation results were compared to the measurements from a wave tank test and a commercial code (OrcaFlex). Second, a coupled model was built to simulate a two-body point absorber system with a chain-connected catenary system. The influence of the mooring connection on the point absorber was investigated. Overall, the study showed that the coupling of WEC-Sim and the MoorDyn model works reasonably well for simulating a floating system with practical mooring designs and predicting the corresponding dynamic loads on the mooring lines. Further analyses on improving coupling efficiency and the feasibility of applying the numerical method to simulate WEC systems with more complex mooring configuration are still needed.
International Nuclear Information System (INIS)
Brizzi, R.; Fabre de la Ripelle, M.; Lassaut, M.
1999-01-01
The binding energies and root mean square radii obtained from the Integro-Differential Equation Approach (IDEA) and from the Weight Function Approximation (WFA) of the IDEA for an even number of bosons and for 12 C, 16 O and 40 Ca are compared to those recently obtained by the Variational Monte Carlo, Fermi Hypernetted Chain and Coupled Cluster expansion method with model potentials. The IDEA provides numbers very similar to those obtained by other methods although it takes only two-body correlations into account. The analytical expression of the wave function for the WFA is given for bosons in ground state when the interaction pair is outside the potential range. Due to its simple structure, the equations of the IDEA can easily be extended to realistic interaction for nuclei like it has already been done for the tri-nucleon and the 4 He. (authors)
Strength Tests on Hulls and Floats
Matthaes, K
1942-01-01
The present report deals with strength tests on hulls and floats intended in part for the collection of construction data for the design of these components and in part for the stress analysis of the finished hulls and floats.
A new assessment of floating exchange rates
Waimann, D. R.
1981-01-01
The switch to floating exchange rates during the 1970s has given economists the first comprehensive opportunity to assess the arguments for and against floating. Much new work has been done on various aspects of floating exchange rate behaviour. This article attempts a limited survey of the evidence concerning two important issues—whether floating exchange rates are inherently unstable and whether they harm international trade.
40 CFR 65.45 - External floating roof converted into an internal floating roof.
2010-07-01
... External floating roof converted into an internal floating roof. The owner or operator who elects to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION...
Have Floating Rates Been a Success?
Higham, David
1983-01-01
Floating exchange rates have not lived up to all expectations, but neither have they performed as badly as some critics have suggested. Examined are the impact of floating rates on balance of payments adjustment, domestic economic policy, and inflation and the claim that floating rates have displayed excessive fluctuations. (Author/RM)
Floating Microparticulate Oral Diltiazem Hydrochloride Delivery ...
African Journals Online (AJOL)
Purpose: To formulate and evaluate floating microparticulate oral diltiazem delivery system for possible delivery to the heart. Method: Floating microspheres were prepared using cellulose acetate and Eudragit RS100 polymers by emulsion solvent evaporation technique. The dried floating microspheres were evaluated for ...
Methodology to Calculate the Costs of a Floating Offshore Renewable Energy Farm
Directory of Open Access Journals (Sweden)
Laura Castro-Santos
2016-04-01
Full Text Available This paper establishes a general methodology to calculate the life-cycle cost of floating offshore renewable energy devices, applying it to wave energy and wind energy devices. It is accounts for the contributions of the six main phases of their life-cycle: concept definition, design and development, manufacturing, installation, exploitation and dismantling, the costs of which have been defined. Moreover, the energy produced is also taken into account to calculate the Levelized Cost of Energy of a floating offshore renewable energy farm. The methodology proposed has been applied to two renewable energy devices: a floating offshore wave energy device and a floating offshore wind energy device. Two locations have been considered: Aguçadoura and São Pedro de Moel, both in Portugal. Results indicate that the most important cost in terms of the life-cycle of a floating offshore renewable energy farm is the exploitation cost, followed by the manufacturing and the installation cost. In addition, the best area in terms of costs is the same independently of the type of floating offshore renewable energy considered: Aguçadoura. However, the results in terms of Levelized Cost of Energy are different: Aguçadoura is better when considering wave energy technology and the São Pedro de Moel region is the best option when considering floating wind energy technology. The method proposed aims to give a direct approach to calculate the main life-cycle cost of a floating offshore renewable energy farm. It helps to assess its feasibility and evaluating the relevant characteristics that influence it the most.
Nuclear shape evolution starting from superdeformed state. Role of two-body collision and rotation
International Nuclear Information System (INIS)
Liu, Yu-xin; Sakata, Fumihiko
1999-01-01
With the nuclear density distribution being simulated by the Boltzmann Uehling-Uhlenbeck equation and Vlasov equation with several rotational frequencies, the time evolution of the quadrupole moment of nucleus 86 Zr starting with superdeformed shape is studied. The contribution of two-body collisions and the effects of collective rotation to the shape evolution is investigated. The numerical results indicate that the two-body collisions play a role of damping on the evolution from a superdeformed shape to a normal deformed one in a case without rotation. In a case of rotation with lower frequency, the two-body collisions accelerate the evolution process. A new role of the collective rotation to enhance the nuclear fission is proposed. (author)
Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint
Energy Technology Data Exchange (ETDEWEB)
Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.
2006-03-01
This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of
Generalized separable expansion method of the two-body and the three-body scattering amplitudes
International Nuclear Information System (INIS)
Oryu, S.; Ishihara, T.
1976-01-01
A systematic method is proposed for obtaining new N-rank separable amplitudes of the two-body and the three-body equations. First of all, the authors start from the Amado equation which is modified from the three-body Faddeev equation by using the two-body Yamaguchi potential for the nucleon-nucleon interaction. It is well known that the Amado equation can be integrated on the real axis because the kernel has a logarithmic cut on the real axis. However, a separable three-body form factor which is regular on the real axis except for the cut has been found. (Auth.)
Statistical methods for including two-body forces in large system calculations
International Nuclear Information System (INIS)
Grimes, S.M.
1980-07-01
Large systems of interacting particles are often treated by assuming that the effect on any one particle of the remaining N-1 may be approximated by an average potential. This approach reduces the problem to that of finding the bound-state solutions for a particle in a potential; statistical mechanics is then used to obtain the properties of the many-body system. In some physical systems this approach may not be acceptable, because the two-body force component cannot be treated in this one-body limit. A technique for incorporating two-body forces in such calculations in a more realistic fashion is described. 1 figure
Neutral weak-current two-body contributions in inclusive scattering from {sup 12}C
Energy Technology Data Exchange (ETDEWEB)
Lovato, Alessandro [ANL; Gandolfi, Stefano [LANL; Carlson, Joseph [LANL; Pieper, S. C. [ANL; Schiavilla, Rocco [JLAB, ODU
2014-05-01
An {\\it ab initio} calculation of the sum rules of the neutral weak response functions in $^{12}$C is reported, based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic currents, consisting of one- and two-body terms. We find that the sum rules of the response functions associated with the longitudinal and transverse components of the (space-like) neutral current are largest and that a significant portion ($\\simeq 30$\\%) of the calculated strength is due to two-body terms. This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data on nuclei.
One- and two-body dissipation in peripheral heavy ion collisions
International Nuclear Information System (INIS)
Bartel, J.; Feldmeier, H.
1980-01-01
For peripheral collisions of heavy ions we solve the man-body Schroedinger equation in second order time-dependent perturbation theory. The two nuclei interact via a two-body interaction of finite range. With controllable approximations we get to a sensible comparison between 1p-1h excitations caused by the coherent Hartree part and direct 2p-2h excitations both created by the same two-body interaction. The results of the calculation show that for peripheral collisions almost all excitation energy originates from one-body dissipation. Furthermore we encounter large virtual excitations during the collision indicating a non Markovian process. (orig.)
Handbook of floating-point arithmetic
Muller, Jean-Michel; de Dinechin, Florent; Jeannerod, Claude-Pierre; Joldes, Mioara; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Torres, Serge
2018-01-01
This handbook is a definitive guide to the effective use of modern floating-point arithmetic, which has considerably evolved, from the frequently inconsistent floating-point number systems of early computing to the recent IEEE 754-2008 standard. Most of computational mathematics depends on floating-point numbers, and understanding their various implementations will allow readers to develop programs specifically tailored for the standard’s technical features. Algorithms for floating-point arithmetic are presented throughout the book and illustrated where possible by example programs which show how these techniques appear in actual coding and design. The volume itself breaks its core topic into four parts: the basic concepts and history of floating-point arithmetic; methods of analyzing floating-point algorithms and optimizing them; implementations of IEEE 754-2008 in hardware and software; and useful extensions to the standard floating-point system, such as interval arithmetic, double- and triple-word arithm...
Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint
Energy Technology Data Exchange (ETDEWEB)
Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.
2013-09-01
Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.
An Integrated Structural Strength Analysis Method for Spar Type Floating Wind Turbine
Institute of Scientific and Technical Information of China (English)
胡志强; 刘毅; 王晋
2016-01-01
An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper, and technical issues related to turbine structure modeling and stress combination are also addressed. The NREL-5MW “Hywind” Spar type wind turbine is adopted as study object. Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool, FAST, on the purpose of obtaining the dynamic characteristics of the floating wind turbine, and determining parameters for design load cases of finite element calculation. Then design load cases are identified, and finite element analyses are performed for these design load cases. The structural stresses due to wave-induced loads and wind-induced loads are calculated, and then combined to assess the structural strength of the floating wind turbine. The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.
Determination of current loads of floating platform for special purposes
Ma, Guang-ying; Yao, Yun-long; Zhao, Chen-yao
2017-08-01
This article studied a new floating offshore platform for special purposes, which was assembled by standard floating modules. The environmental load calculation of the platform is an important part of the research of the ocean platform, which has always been paid attention to by engineers. In addition to wave loads, the wind loads and current loads are also important environmental factors that affect the dynamic response of the offshore platform. The current loads on the bottom structure should not be ignored. By Fluent software, the hydrostatic conditions and external current loads of the platform were calculated in this paper. The coefficient which is independent of the current velocity, namely, current force coefficient, can be fitted through current loads, which can be used for the consequent hydrodynamic and mooring analyses.
Simple realization of the Fredkin gate using a series of two-body operators
International Nuclear Information System (INIS)
Chau, H.F.; Wilczek, F.
1995-01-01
The Fredkin three-bit gate is universal for computational logic, and is reversible. Classically, it is impossible to do universal computation using reversible two-bit gates only. Here we construct the Fredkin gate using a combination of six two-body reversible (quantum) operators
Comments upon a bound state model for a two body system
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
We show that in classical mechanics, classical and relativistic quantum mechanics it is possible to replace the equation of the relative motion for a two-body bound system at rest by individual dynamical equations with correlated solutions. We compare the representations of a bound system in terms of the relative and individual coordinates and mention some of the observable differences. (author)
The time-dependent Hartree-Fock equations with Coulomb two-body interaction
International Nuclear Information System (INIS)
Chadam, J.M.; Glassey, R.T.
1975-06-01
The existence and uniqueness of global solutions to the Cauchy problem is proved in the space of ''smooth'' density matrices for the time-dependent Hartree-Fock equations describing the motion of finite Fermi systems interacting via a Coulomb two-body potential [fr
Effective linear two-body method for many-body problems in atomic and nuclear physics
International Nuclear Information System (INIS)
Kim, Y.E.; Zubarev, A.L.
2000-01-01
We present an equivalent linear two-body method for the many body problem, which is based on an approximate reduction of the many-body Schroedinger equation by the use of a variational principle. The method is applied to several problems in atomic and nuclear physics. (author)
Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory
Dick, Frank; Norbury, John W.
2009-01-01
The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…
78 FR 54756 - Extension of Expiration Dates for Two Body System Listings
2013-09-06
... Security Online, at http://www.socialsecurity.gov . SUPPLEMENTARY INFORMATION: Background We use the... SOCIAL SECURITY ADMINISTRATION 20 CFR Part 404 [Docket No. SSA-2013-0039] RIN 0960-AH60 Extension of Expiration Dates for Two Body System Listings AGENCY: Social Security Administration. ACTION...
Universal algorithms and programs for calculating the motion parameters in the two-body problem
Bakhshiyan, B. T.; Sukhanov, A. A.
1979-01-01
The algorithms and FORTRAN programs for computing positions and velocities, orbital elements and first and second partial derivatives in the two-body problem are presented. The algorithms are applicable for any value of eccentricity and are convenient for computing various navigation parameters.
Wollmershäuser, Timo
2004-01-01
After the experience with the currency crises of the 1990s, a broad consensus has emerged among economists that such shocks can only be avoided if countries that decided to maintain unrestricted capital mobility adopt either independently floating exchange rates or very hard pegs (currency boards, dollarisation). As a consequence of this view which has been enshrined in the so-called impossible trinity all intermediate currency regimes are regarded as inherently unstable. As far as the econom...
Can flexibility help you float?
Burton, L. J.; Bush, J. W. M.
2012-10-01
We consider the role of flexibility in the weight-bearing characteristics of bodies floating at an interface. Specifically, we develop a theoretical model for a two-dimensional thin floating plate that yields the maximum stable plate load and optimal stiffness for weight support. Plates small relative to the capillary length are primarily supported by surface tension, and their weight-bearing potential does not benefit from flexibility. Above a critical size comparable to the capillary length, flexibility assists interfacial flotation. For plates on the order of and larger than the capillary length, deflection from an initially flat shape increases the force resulting from hydrostatic pressure, allowing the plate to support a greater load. In this large plate limit, the shape that bears the most weight is a semicircle, which displaces the most fluid above the plate for a fixed plate length. Exact results for maximum weight-bearing plate shapes are compared to analytic approximations made in the limits of large and small plate sizes. The value of flexibility for floating to a number of biological organisms is discussed in light of our study.
Applicability of linear and non-linear potential flow models on a Wavestar float
DEFF Research Database (Denmark)
Bozonnet, Pauline; Dupin, Victor; Tona, Paolino
2017-01-01
as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...
14 CFR 27.753 - Main float design.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 27.753 Section 27.753... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 27.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...
14 CFR 29.753 - Main float design.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 29.753 Section 29.753... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.753 Main float design. (a) Bag floats. Each bag float must be designed to withstand— (1) The maximum pressure differential...
Transformations of the perturbed two-body problem to unperturbed harmonic oscillators
Energy Technology Data Exchange (ETDEWEB)
Szebehely, V; Bond, V
1983-05-01
Singular, nonlinear, and Liapunov unstable equations are made regular and linear through transformations that change the perturbed planar problem of two bodies into unperturbed and undamped harmonic oscillators with constant coefficients, so that the stable solution may be immediately written in terms of the new variables. The use of arbitrary and special functions for the transformations allows the systematic discussion of previously introduced and novel anomalies. For the case of the unperturbed two-body problem, it is proved that if transformations are power functions of the radial variable, only the eccentric and the true anomalies (with the corresponding transformations of the radial variable) will result in harmonic oscillators. The present method significantly reduces computation requirements in autonomous space operations. 11 references.
The two-body problem of a pseudo-rigid body and a rigid sphere
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.
2012-01-01
n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....
Relaxation in a two-body Fermi-Pasta-Ulam system in the canonical ensemble
Sen, Surajit; Barrett, Tyler
The study of the dynamics of the Fermi-Pasta-Ulam (FPU) chain remains a challenging problem. Inspired by the recent work of Onorato et al. on thermalization in the FPU system, we report a study of relaxation processes in a two-body FPU system in the canonical ensemble. The studies have been carried out using the Recurrence Relations Method introduced by Zwanzig, Mori, Lee and others. We have obtained exact analytical expressions for the first thirteen levels of the continued fraction representation of the Laplace transformed velocity autocorrelation function of the system. Using simple and reasonable extrapolation schemes and known limits we are able to estimate the relaxation behavior of the oscillators in the two-body FPU system and recover the expected behavior in the harmonic limit. Generalizations of the calculations to larger systems will be discussed.
Floating Microparticulate Oral Diltiazem Hydrochloride Delivery ...
African Journals Online (AJOL)
Delivery System for Improved Delivery to Heart ... Conclusion: Microparticulate floating (gastroretentive) oral drug delivery system of diltiazem prepared ..... treatment of cardiac disease. ... hydrochloride-loaded mucoadhesive microspheres.
Annihilation diagrams in two-body nonleptonic decays of charmed mesons
International Nuclear Information System (INIS)
Bedaque, P.; Das, A.; Mathur, V.S.
1994-06-01
In the pole-dominance model for the two-body nonleptonic decays of charmed mesons D → PV and D → VV, it is shown that the contributions of the intermediate pseudoscalar and the axial-vector meson poles cancel each other in the annihilation diagrams in the chiral limit. In the same limit, the annihilation diagrams for the D → PP decays vanish independently. (author). 6 refs, 3 figs
Direct and mixing-induced CP violation in charmless two-body B decays.
Derkach, Denis
2012-01-01
The recent analyses performed by the LHCb collaboration in the sector of the charmless two-body B-decays. The following analyses are included: time-integrated CP asymmetry measurement of Bd ! Kp and Bs ! pK decays, time-dependent measurements of Bd ! pp and Bs ! KK decays, effective lifetime measurements of Bs ! KK decays, and triple asymmetries of Bs ! f f.
Charm-conserving strangeness-changing two body hadronic decays of charmed baryons
International Nuclear Information System (INIS)
Khanna, M.P.
1993-10-01
The charm-conserving strangeness-changing two body hadronic decays of charmed baryons are examined in the SU(4) symmetry scheme. In addition to the 20''-Hamiltonian, we consider a 15-piece of the weak Hamiltonian which may arise due to SU(4) breaking or due to some non-conventional dynamics. The numerical estimates for decay widths of some of the modes are presented. (author). 15 refs, 3 tabs
Dimensionally regularized Tsallis' statistical mechanics and two-body Newton's gravitation
Zamora, J. D.; Rocca, M. C.; Plastino, A.; Ferri, G. L.
2018-05-01
Typical Tsallis' statistical mechanics' quantifiers like the partition function and the mean energy exhibit poles. We are speaking of the partition function Z and the mean energy 〈 U 〉 . The poles appear for distinctive values of Tsallis' characteristic real parameter q, at a numerable set of rational numbers of the q-line. These poles are dealt with dimensional regularization resources. The physical effects of these poles on the specific heats are studied here for the two-body classical gravitation potential.
The relativistic two-body potentials of constraint theory from summation of Feynman diagrams
Jallouli, H.; Sazdjian, H.
1996-01-01
The relativistic two-body potentials of constraint theory for systems composed of two spin-0 or two spin-1/2 particles are calculated, in perturbation theory, by means of the Lippmann-Schwinger type equation that relates them to the scattering amplitude. The cases of scalar and vector interactions with massless photons are considered. The two-photon exchange contributions, calculated with covariant propagators,are globally free of spurious infra-red singularities and produce at leading order ...
Translationally invariant multipartite Bell inequalities involving only two-body correlators
International Nuclear Information System (INIS)
Tura, J; B Sainz, A; Acín, A; Lewenstein, M; Augusiak, R; Vértesi, T
2014-01-01
Bell inequalities are natural tools that allow one to certify the presence of nonlocality in quantum systems. The known constructions of multipartite Bell inequalities contain, however, correlation functions involving all observers, making their experimental implementation difficult. The main purpose of this work is to explore the possibility of witnessing nonlocality in multipartite quantum states from the easiest-to-measure quantities, that is, the two-body correlations. In particular, we determine all three- and four-partite Bell inequalities constructed from one- and two-body expectation values that obey translational symmetry, and show that they reveal nonlocality in multipartite states. Also, by providing a particular example of a five-partite Bell inequality, we show that nonlocality can be detected from two-body correlators involving only nearest neighbours. Finally, we demonstrate that any translationally invariant Bell inequality can be maximally violated by a translationally invariant state and the same set of observables at all sites. We provide a numerical algorithm allowing one to seek for maximal violation of a translationally invariant Bell inequality. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’. (paper)
Two-body and three-body correlations in Os-shell nuclei
International Nuclear Information System (INIS)
Halderson, D.W.
1974-01-01
It is well known that conventional Brueckner calculations with modern nucleon-nucleon potentials have failed to reproduce experimental saturation properties of finite nuclei. The intent was to determine whether the discrepancies are due to the methods of calculation or the nucleon-nucleon potentials. Brueckner procedures which include only two-body correlations were applied to Os-shell nuclei. Calculations were performed with and without the Hartree-Fock condition, with and without partial occupation probabilities, and with various propagators and Pauli correction techniques. Then the entire class of three-body correlations was calculated by matrix solution of the Bethe-Faddeev equations. The convergence necessary to validate this technique was achieved by constructing a set of basic functions which contain no center of mass excitations and yet are still properly antisymmetrized. The two-body calculations yielded typical Brueckner results. The nuclei were underbound or the radii were too small. However, the three-body calculations yielded reasonable radii and moderate overbinding for the Reid soft core and Hamada-Johnston potentials. Therefore, the Bethe-Faddeev formalism has been shown to be a reasonable approach to calculation of the three-body correlations in finite nuclei; and the results of []these calculations demonstrate that the underbinding and collapsed radii of two-body calculations were largely due to the uncalculated correlations. (auth)
Implementing floating-point DSP
Czech Academy of Sciences Publication Activity Database
Kadlec, Jiří; Chappel, S.
2006-01-01
Roč. 2, č. 3 (2006), s. 12-14 R&D Projects: GA AV ČR 1ET400750406; GA MŠk 1M0567 EU Projects: European Commission(XE) 027611 - AETHER Program:FP6 Institutional research plan: CEZ:AV0Z10750506 Keywords : PicoBlaze * floating point * FPGA Subject RIV: JC - Computer Hardware ; Software http://www.xilinx.com/publications/ magazines /emb_03/xc_pdf/p12-14_3emb-point.pdf
Seismic response analysis of floating nuclear power plant
International Nuclear Information System (INIS)
Hagiwara, Yutaka; Nakamura, Hideharu; Shiojiri, Hiroo
1988-01-01
Since Floating Nuclear Power Plants (FNPs) are considered to be isolated from horizontal seismic motion, it is anticipated to reduce seismic load for plant components and buildings on the barge. On the other hand, barge oscillation and sloshing in the closed basin might be excited by earthquakes, because natural periods of those motions correspond to relatively-long period component (between 2 and 20 seconds) of seismic motion. Therefore, it is necessary to evaluate seismic isolation effects and barge oscillation, for the rational design of FNPs. However, there do not exist any reasonable analytical tools which can evaluate seismic response of floating structures in closed basin. The purpose of the present report is to develop a seismic analysis method for FNPs. The proposed method is based on the finite element method, and the formulation includes fluid-structure interaction, water surface wave, buoyancy effect, and non-linear characteristics of mooring system. Response analysis can be executed in both time-domain and frequency-domain. Shaking table tests were conducted to validate the proposed method of analysis. The test results showed significant isolation effect of floating structure, and apparent interaction between the barge and the basin. And 2-D and 3-D frequency domain analyses and the 2-D linear and non-linear time-domain analyses were done and those analyses could simulate the test results well. (author)
Experimental study on moonpool resonance of offshore floating structure
Directory of Open Access Journals (Sweden)
Seung-Ho Yang
2013-06-01
Full Text Available Offshore floating structures have so-called moonpool in the centre area for the purpose of drilling, installation of subsea structures, recovery of Remotely-Operated Vehicle (ROV and divers. However, this vertical opening has an effect on the operating performance of floating offshore structure in the vicinity of moonpool resonance frequency; piston mode and sloshing mode. Experimental study based on model test was carried out. Moonpool resonance of floating offshore structure on fixed condition and motion free condition were investigated. And, the effect of cofferdam which is representative inner structure inside moonpool was examined. Model test results showed that Molin's theoretical formula can predict moonpool resonance on fixed condition quite accurately. However, motion free condition has higher resonance frequency when it is compared with that of motion fixed. The installation of cofferdam moves resonance frequency to higher region and also generates secondary resonance at lower frequency. Furthermore, it was found that cofferdam was the cause of generating waves in the longitudinal direction when the vessel was in beam sea.
Sanli, Ceyda; Saitoh, K.; Luding, Stefan; van der Meer, Roger M.
2014-01-01
When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal
Underwater Shock Response Analysis of a Floating Vessel
Directory of Open Access Journals (Sweden)
J.E. van Aanhold
1998-01-01
Full Text Available The response of a surface vessel to underwater shock has been calculated using an explicit finite element analysis. The analysis model is two-dimensional and contains the floating steel structure, a large surrounding water volume and the free surface. The underwater shock is applied in the form of a plane shock wave and cavitation is considered in the analysis. Advanced computer graphics, in particular video animations, provide a powerful and indispensable means for the presentation and evaluation of the analysis results.
Floating liquid bridge charge dynamics
Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz
2016-01-01
The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.
Nuclear floating power desalination complexes
International Nuclear Information System (INIS)
Panov, Y.K.; Polunichev, V.I.; Zverev, K.V.
1998-01-01
Russia is a single country in the world which possesses a powerful ice-breaker transport fleet that allows a solution of important social-economic tasks of the country's northern regions by maintaining a year-round navigation along the Arctic sea route. A total operating record of the marine nuclear reactors up until till now exceeds 150 reactor-years, with their main equipment operating life reacting 120 thousand hours. Design and constructional progresses have been made continuously during forty years of nuclear-powered ships construction in Russia. Well proven technology of all components experienced in the marine nuclear reactors give grounds to recommend marine NSSSs of KLT-40 type as energy sources for the heat and power co-generation plants and the sea water desalination complexes, particularly as a floating installation. Co-generation stations are considered for deployment in the extreme Northern Region of Russia. Nuclear floating desalination complexes can be used for drinkable water production in the coastal regions of Northern Africa, the Near East, India etc. (author)
Quasi-two-body decays B→ηc(1S,2S [ρ(770,ρ(1450,ρ(1700→] ππ in the perturbative QCD approach
Directory of Open Access Journals (Sweden)
Ya Li
2017-11-01
Full Text Available In this paper, we calculated the branching ratios of the quasi-two-body decays B→ηc(1S,2S [ρ(770,ρ(1450,ρ(1700→]ππ by employing the perturbative QCD (PQCD approach. The contributions from the P-wave resonances ρ(770, ρ(1450 and ρ(1700 were taken into account. The two-pion distribution amplitude ΦππP is parameterized by the vector current time-like form factor Fπ to study the considered decay modes. We found that (a the PQCD predictions for the branching ratios of the considered quasi-two-body decays are in the order of 10−7∼10−6, while the two-body decay rates B(B→ηc(1S,2S(ρ(1450,ρ(1700 are extracted from those for the corresponding quasi-two-body decays; (b the whole pattern of the pion form factor-squared |Fπ|2 measured by the BABAR Collaboration could be understood based on our theoretical results; (c the general expectation based on the similarity between B→ηcππ and B→J/ψππ decays are confirmed: R2(ηc≈0.45 is consistent with the measured R2(J/ψ≈0.56±0.09 within errors; and (d new ratios R3(ηc(1S and R4(ηc(2S among the branching ratios of the considered decay modes are defined and could be tested by future experiments.
Vertical pump with free floating check valve
International Nuclear Information System (INIS)
Lindsay, M.
1980-01-01
A vertical pump is described which has a bottom discharge with a free floating check valve disposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions
Two-body relativistic scattering with an O(1,1)-symmetric square-well potential
International Nuclear Information System (INIS)
Arshansky, R.; Horwitz, L.P.
1984-01-01
Scattering theory in the framework of a relativistic manifestly covariant quantum mechanics is applied to the relativistic analog of the nonrelativistic one-dimensional square-well potential, a two-body O(1,1)-symmetric hyperbolic square well in one space and one time dimension. The unitary S matrix is explicitly obtained. For well sizes large compared to the de Broglie wavelength of the reduced motion system, simple formulas are obtained for the associated sequence of resonances. This sequence has equally spaced levels and constant widths for higher resonances, and linearly increasing widths for lower-lying levels
Vibrations versus collisions and the iterative structure of two-body dynamics
International Nuclear Information System (INIS)
Pfitzner, A.; Cassing, W.; Peter, A.
1993-11-01
The two-body correlation function is decomposed into two channel correlation functions for the pp- and the ph-channel. The associated coupled equations describe the evolution in the respective channels as well as their mixing. Integration of the ph-channel in terms of vibrational RPA-states yields a closed equation for the correlations in the pp-channel comprising phonon-particle coupling and a memory term. In the stationary limit the equation for a generalised effective interaction is derived which iterates both the G-matrix (ladders) and the polarisation matrix (loops), thus accounting nonperturbatively for the mixing of ladders and loops. (orig.)
Observation of Exclusive Two-Body B Decays to Kaons and Pions
International Nuclear Information System (INIS)
Godang, R.; Kinoshita, K.; Lai, I.C.; Pomianowski, P.; Schrenk, S.; Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J.; Chadha, M.; Chan, S.; Eigen, G.; Miller, J.S.; OGrady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F.; Bliss, D.W.; Masek, G.; Paar, H.P.; Prell, S.; Sharma, V.; Asner, D.M.; Gronberg, J.; Hill, T.S.; Lange, D.J.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Roberts, D.; Ryd, A.; Balest, R.; Behrens, B.H.; Ford, W.T.; Gritsan, A.; Park, H.; Roy, J.; Smith, J.G.; Alexander, J.P.; Baker, R.; Bebek, C.; Berger, B.E.; Berkelman, K.; Bloom, K.; Boisvert, V.; Cassel, D.G.; Crowcroft, D.S.; Dickson, M.; Dombrowski, S. von; Drell, P.S.; Ecklund, K.M.; Ehrlich, R.; Foland, A.D.; Gaidarev, P.; Galik, R.S.; Gibbons, L.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Hopman, P.I.; Kandaswamy, J.; Kim, P.C.; Kreinick, D.L.; Lee, T.; Liu, Y.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Valant-Spaight, B.; Ward, C.; Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Patton, S.; Prescott, C.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R.A.; Ershov, A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Yamamoto, H.; Browder, T.E.; Li, Y.
1998-01-01
We have studied two-body charmless hadronic decays of B mesons into the final states ππ, Kπ, and KK. Using 3.3x10 6 BB pairs collected with the CLEO-II detector, we have made the first observation of the decay B 0 →K + π - , the sum of B + →π + π 0 and B + →K + π 0 decays, and see strong evidence for the decay B + →K 0 π + (an average over charge-conjugate states is always implied). We place upper limits on branching fractions for the remaining decay modes. copyright 1998 The American Physical Society
One dimensional two-body collisions experiment based on LabVIEW interface with Arduino
Saphet, Parinya; Tong-on, Anusorn; Thepnurat, Meechai
2017-09-01
The purpose of this work is to build a physics lab apparatus that is modern, low-cost and simple. In one dimensional two-body collisions experiment, we used the Arduino UNO R3 as a data acquisition system which was controlled by LabVIEW program. The photogate sensors were designed using LED and LDR to measure position as a function of the time. Aluminium frame houseware and blower were used for the air track system. In both totally inelastic and elastic collision experiments, the results of momentum and energy conservation are in good agreement with the theoretical calculations.
Two-body tunnel transitions in a Mn 4 single-molecule magnet
Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.
2004-05-01
The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross-relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn 4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps.
Two-body photodisintegration of 3He between 7 and 16 MeV
International Nuclear Information System (INIS)
Tornow, W.; Karwowski, H.J.; Kelley, J.H.; Raut, R.; Rusev, G.; Stave, S.C.; Tonchev, A.P.; Deltuva, A.; Fonseca, A.C.; Marcucci, L.E.; Viviani, M.; Kievsky, A.; Golak, J.; Skibinski, R.; Witala, H.; Schiavilla, R.
2011-01-01
A comprehensive data set is reported for the two-body photodisintegration cross section of 3 He using mono-energetic photon beams at eleven energies between 7.0 and 16.0 MeV. A 3 He+Xe high-pressure gas scintillator served as target and detector. Although our data are in much better agreement with our state-of-the-art theoretical calculations than the majority of the previous data, these calculations underpredict the new data by about 10%. This disagreement suggests an incomplete understanding of the dynamics of the three-nucleon system and its response to electromagnetic probes.
Two-body photodisintegration of {sup 3}He between 7 and 16 MeV
Energy Technology Data Exchange (ETDEWEB)
Tornow, W., E-mail: tornow@tunl.duke.edu [Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Karwowski, H.J. [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Kelley, J.H. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Raut, R.; Rusev, G.; Stave, S.C.; Tonchev, A.P. [Duke University, Durham, NC 27708-0308 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Deltuva, A.; Fonseca, A.C. [Centro de Fisica Nuclear da Universidade de Lisboa, P-1649-003 Lisboa (Portugal); Marcucci, L.E. [Department of Physics, ' Enrico Fermi' , University of Pisa, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56100 Pisa (Italy); Viviani, M.; Kievsky, A. [INFN, Sezione di Pisa, I-56100 Pisa (Italy); Golak, J.; Skibinski, R.; Witala, H. [M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Krakow (Poland); Schiavilla, R. [Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)
2011-08-11
A comprehensive data set is reported for the two-body photodisintegration cross section of {sup 3}He using mono-energetic photon beams at eleven energies between 7.0 and 16.0 MeV. A {sup 3}He+Xe high-pressure gas scintillator served as target and detector. Although our data are in much better agreement with our state-of-the-art theoretical calculations than the majority of the previous data, these calculations underpredict the new data by about 10%. This disagreement suggests an incomplete understanding of the dynamics of the three-nucleon system and its response to electromagnetic probes.
Hydrodynamic analysis of floating platform for special purposes under complex water environment
Ma, Guang-ying; Yao, Yun-long
2018-03-01
This article studied a new floating offshore platform for special purposes, which was assembled by standard floating modules. By using ANSYS AQWA software, the hydrodynamic model of the platform was established. The time history responses of the platform motions and the cable tension forces were calculate under complex water environments, such as wind, wave, current and mooring. The results showed that the tension of the four cables are far less than the breaking tension of the cable, so that the cable will not break. This study can be referenced by the relevant researchers and engineers.
Selection and optimization of mooring cables on floating platform for special purposes
Ma, Guang-ying; Yao, Yun-long; Zhao, Chen-yao
2017-08-01
This paper studied a new type of assembled marine floating platform for special purposes. The selection and optimization of mooring cables on the floating platform are studied. By using ANSYS AQWA software, the hydrodynamic model of the platform was established to calculate the time history response of the platform motion under complex water environments, such as wind, wave, current and mooring. On this basis, motion response and cable tension were calculated with different cable mooring states under the designed environmental load. Finally, the best mooring scheme to meet the cable strength requirements was proposed, which can lower the motion amplitude of the platform effectively.
On the effects of the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian
International Nuclear Information System (INIS)
Badnell, N.R.
1997-01-01
We have incorporated the two-body non-fine-structure operators of the Breit-Pauli Hamiltonian, namely contact spin-spin, two-body Darwin and orbit-orbit, into the program AUTOSTRUCTURE. Illustrative results are presented, including some for reactions involving the process of autoionization. (author)
Searches for two-body charmless baryonic $B^0$ decays at LHCb
AUTHOR|(CDS)2083570; Eklund, Lars
2016-09-26
The results of two separate searches for the rare two-body charmless baryonic decays B0 -> p pbar and B0s -> p pbar at the LHCb experiment are reported in this thesis. The first analysis uses a data sample, corresponding to an integrated luminosity of 0.9 fb^-1, of proton-proton collision data collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. An excess of B0 -> p pbar candidates with respect to background expectations is seen with a statistical significance of 3.3 standard deviations. This constitutes the first evidence for a two-body charmless baryonic B0 decay. No significant B0s -> p pbar signal was observed. However, a small excess of B0s -> p pbar events allowed the extraction of two sided confidence level intervals for the B0s -> p pbar branching fraction using the Feldman-Cousins frequentist method. This improved the upper limit on the B0s -> p pbar branching fraction by three orders of magnitude over previous bounds. The 68.3% confidence level intervals on the branching fractions w...
Global solutions to the electrodynamic two-body problem on a straight line
Bauer, G.; Deckert, D.-A.; Dürr, D.; Hinrichs, G.
2017-06-01
The classical electrodynamic two-body problem has been a long standing open problem in mathematics. For motion constrained to the straight line, the interaction is similar to that of the two-body problem of classical gravitation. The additional complication is the presence of unbounded state-dependent delays in the Coulomb forces due to the finiteness of the speed of light. This circumstance renders the notion of local solutions meaningless, and therefore, straightforward ODE techniques cannot be applied. Here, we study the time-symmetric case, i.e., the Fokker-Schwarzschild-Tetrode (FST) equations, comprising both advanced and retarded delays. We extend the technique developed in Deckert and Hinrichs (J Differ Equ 260:6900-6929, 2016), where existence of FST solutions was proven on the half line, to ensure global existence—a result that had been obtained by Bauer (Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik, Herbert Utz Verlag, München, 1997). Due to the novel technique, the presented proof is shorter and more transparent but also relies on the idea to employ asymptotic data to characterize solutions.
Energy spectra of massive two-body decay products and mass measurement
Agashe, Kaustubh; Hong, Sungwoo; Kim, Doojin
2016-01-01
We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a massless product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the SM particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial b...
Frisch, Jerome; Gao, Ruiping; Mundani, Ralf-Peter; Wang, Chien Ming; Rank, Ernst
2012-01-01
Very large floating structures (VLFSs) have been used for broad applications such as floating storage facilities, floating piers, floating bridges, floating airports, entertainment facilities, even habitation, and other purposes. Owing to its small
Experimental Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter
The Wave Dragon is a floating slack-moored Wave Energy Converter (WEC) of the overtopping type. Oncoming waves are focused by two wing reflectors towards the ramp of the device, surge-up and overtop into a reservoir placed at a higher level than the surface of the sea. The energy production takes...
Numerical Simulation of Wake Effects in the Lee of a Farm of Wave Dragon Wave Energy Converters
DEFF Research Database (Denmark)
Beels, C.; Troch, P.; De Visch, K.
2009-01-01
. In this paper wake effects in the lee of a single Wave Dragon WEC and multiple Wave Dragon WECs are studied in a time-dependent mild-slope equation model. The Wave Dragon WEC is a floating offshore converter of the overtopping type. The water volume of overtopped waves is first captured in a basin above mean...
SOFIA - A simulation tool for bottom founded and floating offshore structures
DEFF Research Database (Denmark)
Nielsen, Morten Eggert; Ulriksen, Martin Dalgaard; Damkilde, Lars
2017-01-01
This paper presents a recently developed simulation tool, SOFIA (Simulation Of Floaters In Action), suitable for modeling slender bottom founded and moored/freely floating space frame structures exposed to environmental loads. In contrast to traditional rigid body formulations of floating...... and structure domains, which are coupled through the structural equation of motion. The structural domain is handled by means of the finite element method, while large displacements and stress stiffening effects, exhibited by moored floating structures, are inherently included due to a co-rotational element...... formulation. The fluid domain is modeled by an appropriate water wave theory, and the hydrodynamic loads are evaluated at the instantaneous fluid-structure interface by means of a relative Morison equation. The equation of motion is solved in time domain, which makes SOFIA capable of handling bottom founded...
Floating and sinking: the imprint of massive scalars around rotating black holes.
Cardoso, Vitor; Chakrabarti, Sayan; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo
2011-12-09
We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.
14 CFR 23.753 - Main float design.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521. [Doc...
14 CFR 29.757 - Hull and auxiliary float strength.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and auxiliary float strength. 29.757... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.757 Hull and auxiliary float strength. The hull, and auxiliary floats if used, must withstand the...
CP violation in charmless two-body B decays at LHCb
CERN. Geneva
2013-01-01
The study of CP violation in charmless charged two-body decays of neutral B mesons provides a test of the Cabibbo-Kobayashi-Maskawa picture of the Standard Model, and is a sensitive probe to contributions of processes beyond it. Using a data sample of proton-proton collisions, corresponding to an integrated luminosity of 1.0 fb-1, collected with the LHCb detector at a centre-of-mass energy of 7 TeV, CP violation has been observed for the first time in the B0_s to K-pi+ decay with a significance of more than 5 sigma. Furthermore, first measurements of direct and mixing-induced CP-violating asymmetries in the B0_s to K+K- decay have been performed, opening new avenues to the determination of the unitarity triangle angle gamma using decays affected by penguin processes.
Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2001-01-01
Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
Bose-Einstein atoms in atomic traps with predominantly attractive two-body interactions
International Nuclear Information System (INIS)
Hussein, M.S.; Vorov, O.K.
2002-01-01
Using the Perron-Frobenius theorem, we prove that the results by Wilkin, Gunn, and Smith [Phys. Rev. Lett. 80, 2265 (1998)] for the ground states at angular momentum L of N harmonically trapped Bose atoms, interacting via weak attractive δ 2 (r) forces, are valid for a broad class of predominantly attractive interactions V(r), not necessarily attractive for any r. This class is described by sufficient conditions on the two-body matrix elements of the potential V(r). It includes, in particular, the Gaussian attraction of arbitrary radius, -1/r-Coulomb and log(r)-Coulomb forces, as well as all the short-range interactions satisfying inequality ∫d 2 r-vectorV(r)<0. In the precollapse regime, the angular momentum L is concentrated in the collective 'center-of-mass' mode, and there is no condensation at high L
Measurements of Charmless Three-Body and Quasi-Two-Body B Decays
Energy Technology Data Exchange (ETDEWEB)
Barrera, Barbara
2000-08-28
The authors present preliminary results of a search for several exclusive charmless hadronic B decays from electron-positron annihilation data collected by the BaBar detector near the Upsilon(4S) resonance. These include three-body decay modes with final states h{+-}h{sup minus-plus}h{+-} and h{+-}h{sup minus-plus}pi{sup 0}, and quasi-two-body decay modes with final states X{sup 0}h and X{sup 0}K{sub S}{sup 0}, where h = pi or K and X{sup 0} = eta-prime or omega. They find beta(B{sup 0} --> rho{sup minus-plus}pi{sup {+-}}) = (49{+-}13{sub {minus}5}{sup +6}) x 10{sup {minus}6} and beta(B{sup +} --> eta-prime-K{sup +}) = (62{+-}18{+-}8) x 10{sup {minus}6} and present upper limits for right other decays.
Low-Thrust Orbital Transfers in the Two-Body Problem
Directory of Open Access Journals (Sweden)
A. A. Sukhanov
2012-01-01
Full Text Available Low-thrust transfers between given orbits within the two-body problem are considered; the thrust is assumed power limited. A simple method for obtaining the transfer trajectories based on the linearization of the motion near reference orbits is suggested. Required calculation accuracy can be reached by means of use of a proper number of the reference orbits. The method may be used in the case of a large number of the orbits around the attracting center; no averaging is necessary in this case. The suggested method also is applicable to the cases of partly given final orbit and if there are constraints on the thrust direction. The method gives an optimal solution to the linearized problem which is not optimal for the original nonlinear problem; the difference between the optimal solutions to the original and linearized problems is estimated using a numerical example. Also examples illustrating the method capacities are given.
Generic calculation of two-body partial decay widths at the full one-loop level
Energy Technology Data Exchange (ETDEWEB)
Goodsell, Mark D. [UPMC Univ. Paris 06 (France); Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Sorbonne Univ., Paris (France); Liebler, Stefan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Staub, Florian [Karlsruhe Institute for Technology, Karlsruhe (Germany). Inst. for Theoretical Physics; Karlsruhe Institute for Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Physics
2017-04-15
We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wavefunction corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a DR (or MS) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infra-red divergences for such cases, which is achieved through an infra-red counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiative induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described.
Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.
2011-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ
Generic calculation of two-body partial decay widths at the full one-loop level
International Nuclear Information System (INIS)
Goodsell, Mark D.; Liebler, Stefan; Staub, Florian; Karlsruhe Institute for Technology, Eggenstein-Leopoldshafen
2017-04-01
We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wavefunction corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a DR (or MS) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infra-red divergences for such cases, which is achieved through an infra-red counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiative induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described.
Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper
Hu, Yaqi; He, Erming
2017-12-01
Floating wind turbines are subjected to more severe structural loads than fixed-bottom wind turbines due to additional degrees of freedom (DOFs) of their floating foundations. It's a promising way of using active structural control method to improve the structural responses of floating wind turbines. This paper investigates an active vibration control strategy for a barge-type floating wind turbine by setting a stroke-limited hybrid mass damper (HMD) in the turbine's nacelle. Firstly, a contact nonlinear modeling method for the floating wind turbine with clearance between the HMD and the stroke limiters is presented based on Euler-Lagrange's equations and an active control model of the whole system is established. The structural parameters are validated for the active control model and an equivalent load coefficient method is presented for identifying the wind and wave disturbances. Then, a state-feedback linear quadratic regulator (LQR) controller is designed to reduce vibration and loads of the wind turbine, and two optimization methods are combined to optimize the weighting coefficients when considering the stroke of the HMD and the active control power consumption as constraints. Finally, the designed controllers are implemented in high fidelity simulations under five typical wind and wave conditions. The results show that active HMD control strategy is shown to be achievable and the designed controllers could further reduce more vibration and loads of the wind turbine under the constraints of stroke limitation and power consumption. "V"-shaped distribution of the TMD suppression effect is inconsistent with the Weibull distribution in practical offshore floating wind farms, and the active HMD control could overcome this shortcoming of the passive TMD.
Kuznetsov, N.; Maz'ya, V.; Vainberg, B.
2002-08-01
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'
Genetics Home Reference: Floating-Harbor syndrome
... Patton MA, Hurst J, Donnai D, McKeown CM, Cole T, Goodship J. Floating-Harbor syndrome. J Med ... medicine? What is newborn screening? New Pages Lyme disease Fibromyalgia White-Sutton syndrome All New & Updated Pages ...
Cholecystosonographic findings of clonorchiasis: Floating echogenic foci
Energy Technology Data Exchange (ETDEWEB)
Kim, Ho Kyun [Choong Joo X-ray Clinic, Choongjoo (Korea, Republic of)
1989-06-15
Author analysed cholecystosonographic findings in 22 patients with clonorchiasis, suspected prospectively by ultrasound and proved subsequently by demonstration of eggs in the stools. Fifteen gallbladders had nonshadowing, fusiform, discrete echogenic foci measuring 3{approx}6 mm in the lumen. Among these, the echogenic foci floated spontaneously in three cases, while in twelve cases they floated by position change or a light blow by the transducer. In the rest of the seven gallbladders, the echogenic foci were at the dependent portion. In the in vitro study with a worm suspension in saline in a surgical glove, the same echogenic foci as those seen in the gallbladders were demonstrated. The echogenic foci were precipitated in the dependent portion but float with a light blow on the glove. Author conclude that the floating echogenic foci in the lumen of the gallbladder are due to adult worms of clonorchis sinensis.
Cholecystosonographic findings of clonorchiasis: Floating echogenic foci
International Nuclear Information System (INIS)
Kim, Ho Kyun
1989-01-01
Author analysed cholecystosonographic findings in 22 patients with clonorchiasis, suspected prospectively by ultrasound and proved subsequently by demonstration of eggs in the stools. Fifteen gallbladders had nonshadowing, fusiform, discrete echogenic foci measuring 3∼6 mm in the lumen. Among these, the echogenic foci floated spontaneously in three cases, while in twelve cases they floated by position change or a light blow by the transducer. In the rest of the seven gallbladders, the echogenic foci were at the dependent portion. In the in vitro study with a worm suspension in saline in a surgical glove, the same echogenic foci as those seen in the gallbladders were demonstrated. The echogenic foci were precipitated in the dependent portion but float with a light blow on the glove. Author conclude that the floating echogenic foci in the lumen of the gallbladder are due to adult worms of clonorchis sinensis
Design and preparation of controlled floating gastroretentive ...
African Journals Online (AJOL)
gastroretentive delivery systems for enhanced fexofenadine ... Abstract. Purpose: To design and prepare effervescent floating gastroretentive tablets for controlled fexofenadine ..... Complex of Carbopol with Polyvinylpyrrolidone as a. Matrix for ...
Fear of Floating: Exchange Rate Flexibility Indices
Reinhart, Carmen
2001-01-01
Many emerging market countries have suffered financial crises. One view blames soft pegs for these crises. Adherents to that view suggest that countries move to corner solutions--hard pegs or floating exchange rates. We analyze the behavior of exchange rates, reserves, and interest rates to assess whether there is evidence that country practice is moving toward corner solutions. We focus on whether countries that claim they are floating are indeed doing so. We find that countries that say th...
Dynamic analysis of maritime gasbag-type floating bridge subjected to moving loads
Directory of Open Access Journals (Sweden)
Huan-huan Wang
2016-03-01
Full Text Available This paper studied the dynamic response of a new gasbag-type floating bridge under the effect of a moving load. The arbitrary Lagrangian-Eulerian (ALE method was used to simulate the movement of seawater and air, and the penalty-based method was used to study the coupling between gasbags and fluid. A three-dimensional finite element model of the floating bridge was established, and the numerical model was verified by comparing with the experimental results. In order to prevent resonance, the natural frequencies and flexural mode shapes were analyzed. Based on the initial state analysis, the dynamic responses of the floating bridge subjected to different moving loads were investigated. Vertical displacements and radial deformations of gasbags under different loads were compared, and principal stress distributions of gasbags were researched while driving. The hinge forces between adjacent modules were calculated to ensure the connection strength. Besides, the floating bridge under wave impacting was analyzed. Those results can provide references for the analysis and design of this new floating bridge.
Energy Technology Data Exchange (ETDEWEB)
Yabuuchi, Noriaki; Shimazaki, Junya; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takahashi, Masao [Niigata Engineering Co. Ltd., Tokyo (Japan); Nakazawa, Toshio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Kazuo [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)
2001-02-01
In the previous report of 'Conceptual Design Study of FNPP (Floating Nuclear Power Plant)', a design study on a concept for FNPP, which is sited off the sea coast on the open sea with water depth of 20m and it is moored on protected sea by the breakwater was conducted and the floating platform guarded by the breakwater was found to be stable enough to install the nuclear power plant from analysis simulating the movement of the platform due to sea wave or wind. In this report, studies on a basic safety design concept of the FNPP, setting natural phenomena for design condition, required safety functions and a review on dynamic analysis of the large floating structure are presented. The studies revealed that the stability of the floating platform is an essential issue for the FNPP soundness, and the design base natural phenomena such as S1 and S2-class storm including S1 and S2-class earthquake should be considered in evaluation of the stability of the floating platform, and it is one of key technical subjects how to set the magnitude of these storm in application of design evaluation on each FNPP case. (J.P.N.)
Sensitivity analysis of floating offshore wind farms
International Nuclear Information System (INIS)
Castro-Santos, Laura; Diaz-Casas, Vicente
2015-01-01
Highlights: • Develop a sensitivity analysis of a floating offshore wind farm. • Influence on the life-cycle costs involved in a floating offshore wind farm. • Influence on IRR, NPV, pay-back period, LCOE and cost of power. • Important variables: distance, wind resource, electric tariff, etc. • It helps to investors to take decisions in the future. - Abstract: The future of offshore wind energy will be in deep waters. In this context, the main objective of the present paper is to develop a sensitivity analysis of a floating offshore wind farm. It will show how much the output variables can vary when the input variables are changing. For this purpose two different scenarios will be taken into account: the life-cycle costs involved in a floating offshore wind farm (cost of conception and definition, cost of design and development, cost of manufacturing, cost of installation, cost of exploitation and cost of dismantling) and the most important economic indexes in terms of economic feasibility of a floating offshore wind farm (internal rate of return, net present value, discounted pay-back period, levelized cost of energy and cost of power). Results indicate that the most important variables in economic terms are the number of wind turbines and the distance from farm to shore in the costs’ scenario, and the wind scale parameter and the electric tariff for the economic indexes. This study will help investors to take into account these variables in the development of floating offshore wind farms in the future
Modelling of the Overtopping Flow on the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Pecher, Arthur; Kofoed, Jens Peter
2010-01-01
The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions of the perf......The Wave Dragon is a floating slack-moored Wave Energy Converter of the overtopping type, which is facing now the last phase of development before the commercial exploitation: the deployment of a full-scale demonstrator. In this phase a modelling tool allowing for accurate predictions...
Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong; PAN Feng
2001-01-01
The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.
International Nuclear Information System (INIS)
Haberzettl, H.; Sandhas, W.
1981-01-01
Noclear reactions: Four-body problem. Effective two-body equations with exact (2+2)-subsystem contributions. Relation to field-theoretical model by Fonseca and Shanley. Three-body propagator with exchange effects. (orig.)
Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine
Zhao, Yong-sheng; She, Xiao-he; He, Yan-ping; Yang, Jian-min; Peng, Tao; Kou, Yu-feng
2018-04-01
Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research. Key words: floating wind turbine, model test, WindStar TLP, dynamic response
Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions
Energy Technology Data Exchange (ETDEWEB)
Guenther, Anneke
2011-02-02
calculate the {sup 4}He ground-state energy. As they are of direct interest for nuclear astrophysics collective excitation modes, namely giant resonances, are investigated in the framework of the Random Phase Approximation. Including the full three-body interaction would be very time-demanding. Therefore, a density-dependent two-body interaction is used instead. This simple interaction leads to a significant improvement in the description of the isovector dipole and isoscalar quadrupole resonances while the isoscalar monopole resonances remain in good agreement with experimental data compared to the results obtained with pure unitarily transformed two-body interactions. (orig.)
Modified two-body potential model to the 3He(α,γ)8B reaction at extremely low energies
International Nuclear Information System (INIS)
Igamov, S.B.; Santullaev, A.; Yarmukhamedov, R.
2005-01-01
Full text: A reliable estimation of rates of different nuclear astrophysical reactions A(α,γ)B responsible for light elements abundance is one of the most actual problem of the modern nuclear astrophysics. Solution of this problem is impossible without obtaining of rather low energy cross sections (or equivalently its astrophysical S-factor (AS) S Aa (E)) for such reactions as 3 He(α,γ) 8 B, 7 Be(p,γ) 8 B, etc. In the present work modified two-body potential approach allowing to determine both the asymptotic normalization constant (ANC) of the overlap integral for the bound wave function f the nucleus B in the (A+α)-channel C Aα;1.j (or respective nuclear vertex constant for the virtual decay B→A+α, where 1(j) is orbital (total) angular momentum of a particle α in the nucleus B=(A+α), and the AS S Aα (E) at the stellar energies (E≤25 keV) from an analysis of the analysis of the S exp (E) for the peripheral direct capture reaction A(α,γ)B is developed. The method involves two additional conditions that verify the peripheral character of the reaction under consideration and on it S(E) is expressed i the terms of ANC C Aα;1.j as Z Aα;1.j =C Aα;1.j 2 /b l +j 2 , where b lj is the single-particle ANC for the wave function of the bound B=(A+α) state calculated within the shell model using the phenomenological Woods-Saxon potential with the geometric parameters (a radius r 0 and a diffuseness a). The value of b lj strongly changes as a function (r 0 ,a)-pair is determined by variation of values of the parameters r 0 , and a in a wide physical acceptable range. The present method allows one to remove the model dependence of the calculated direct on S(E) on the geometric parameters r 0 , and a both for the two-body bound (A+α) state and the Aα-scattering state in minimum. The developed method has been applied to the analysis of the experimental S exp (E) of the direct capture 3 He(α,γ) 7 Be and 7 Be(p,γ) 8 B reactions at extremely low energies. By
Universal Two-Body Spectra of Ultracold Harmonically Trapped Atoms in Two and Three Dimensions
DEFF Research Database (Denmark)
Zinner, Nikolaj Thomas
2012-01-01
of the short-range interaction. The results in three dimensions are examplified for narrow s-wave Feshbach resonances and we show how effective range corrections can modify the rearrangement of the level structure. However, this requires extremely narrow resonances or very tight traps that are not currently...
General structure of a two-body operator for spin-(1/2) particles
International Nuclear Information System (INIS)
Ershov, S.N.
2004-01-01
A direct derivation of the operator structure for two spin-(1/2) particles is presented subject to invariance under basic symmetries and Galilean frame transformation. The partial wave decomposition for coefficient functions, valid on- and off-shell, is explicitly deduced. The momentum transfer representation and angular momentum decomposition for general spin-dependent potentials are obtained
Correlation between observable of four nucleon system in two-body model
International Nuclear Information System (INIS)
Barlette, V.E.
1988-01-01
The four nucleon system with effective nucleon-trinucleon interaction for s waves in states of spin Y = 0 and isospin Y = 0, is studied. The correlations between four nucleon systemn and scattering wavelength, binding energies and, coulomb energy of four nucleons are investigated by N/D method considering only the excited state. (M.C.K.)
Characterization and Scaling of Heave Plates for Ocean Wave Energy Converters
Rosenberg, Brian; Mundon, Timothy
2016-11-01
Ocean waves present a tremendous, untapped source of renewable energy, capable of providing half of global electricity demand by 2040. Devices developed to extract this energy are known as wave energy converters (WECs) and encompass a wide range of designs. A somewhat common archetype is a two-body point-absorber, in which a surface float reacts against a submerged "heave" plate to extract energy. Newer WEC's are using increasingly complex geometries for the submerged plate and an emerging challenge in creating low-order models lies in accurately determining the hydrodynamic coefficients (added mass and drag) in the corresponding oscillatory flow regime. Here we present experiments in which a laboratory-scale heave plate is sinusoidally forced in translation (heave) and rotation (pitch) to characterize the hydrodynamic coefficients as functions of the two governing nondimensional parameters, Keulegan-Carpenter number (amplitude) and Reynolds number. Comparisons against CFD simulations are offered. As laboratory-scale physical model tests remain the standard for testing wave energy devices, effects and implications of scaling (with respect to a full-scale device) are also investigated.
The LOCV asymmetric nuclear matter two-body density distributions versus those of FHNC
Tafrihi, Azar
2018-05-01
The theoretical computations of the electron-nucleus scattering can be improved, by employing the asymmetric nuclear matter (ASM) two-body density distributions (TBDD) . But, due to the sophistications of the calculations, the TBDD with arbitrary isospin asymmetry have not yet been computed in the Fermi Hypernetted Chain (FHNC) or the Monte Carlo (MC) approaches. So, in the present work, we intend to find the ASM TBDD, in the states with isospin T, spin S and spin projection Sz, in the Lowest Order Constrained Variational (LOCV) method. It is demonstrated that, at small relative distances, independent of the proton to neutron ratio β, the state-dependent TBDD have a universal shape. Expectedly, it is observed that, at low (high) β values, the nucleons prefer to make a pair in the T = 1(0) states. In addition, the strength of the tensor-dependent correlations is investigated, using the ratio of the TBDD in the TSSz = 010 state with θ = π / 2 and that of θ = 0. The mentioned ratios peak at r ∼ 0 . 9 fm, considering different β values. It is hoped that, the present results could help a better reproduction of the experimental data of the electron-nucleus scattering.
Short versus long range interactions and the size of two-body weakly bound objects
International Nuclear Information System (INIS)
Lombard, R.J.; Volpe, C.
2003-01-01
Very weakly bound systems may manifest intriguing ''universal'' properties, independent of the specific interaction which keeps the system bound. An interesting example is given by relations between the size of the system and the separation energy, or scaling laws. So far, scaling laws have been investigated for short-range and long-range (repulsive) potentials. We report here on scaling laws for weakly bound two-body systems valid for a larger class of potentials, i.e. short-range potentials having a repulsive core and long-range attractive potentials. We emphasize analogies and differences between the short- and the long-range case. In particular, we show that the emergence of halos is a threshold phenomenon which can arise when the system is bound not only by short-range interactions but also by long-range ones, and this for any value of the orbital angular momentum l. These results enlarge the image of halo systems we are accustomed to. (orig.)
Medium modified two-body scattering amplitude from proton-nucleus total cross-sections
Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.
2001-01-01
Recently (R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 145 (1998) 277; R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA-TP-1998-208438), we have extracted nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. Here, we investigate the ratio of real to imaginary part of the two-body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate total proton-nucleus cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2001 Elsevier Science B.V. All rights reserved.
Three-body calculation of two-body threshold electrodisintegration of 3He and 3H
International Nuclear Information System (INIS)
Heimbach, C.R.; Lehman, D.R.; O'Connell, J.S.
1977-01-01
Threshold two-body electrodisintegration of 3 He and 3 H is investigated within the context of exact three-body theory. The calculations performed are based on the formalism of Gibson and Lehman. Careful consideration is given to the singularities of the disintegration Born amplitude for this case, since the momentum transfer is not zero, to assure validity of the numerical methods. Calculated results are compared with all the latest threshold 3 He electrodisintegration data which samples a range of scattered-electron angles, 92.6 0 0 , and incident electron energies, 40 MeV 0 3 H electrodisintegration for some of the same kinematics. The mechanism for the sharp rise as a function of excitation energy in the (e,e') cross section for theta/sub e/ approx. 90 0 due to the 2 S → 2 S monopole transition from Coulomb scattering is singled out by examination of the contributions to the Coulomb doublet amplitude. A similar analysis is carried out for the doublet and quartet transverse amplitudes where the 2 S → 4 P magnetic quadrupole transition dominates for excitation energies less than 20 MeV
Experimental determination of two-body spectrum and pair polarizability of argon
International Nuclear Information System (INIS)
Barocchi, F.; Zoppi, M.
1980-01-01
Despite the considerable amount of experimental and theoretical work which has been done in the past ten years on collision-induced light scattering (CILS) with investigation of depolarized scattering in moderate- and high-pressure gases, liquids and even solids of isotropic molecules, various discrepancies, as far as the quantitative comparison is concerned, do still remain among the various experiments. In order to understand in detail the scattering mechanism and make useful connections between experiments and theory, those discrepancies must be understood and results reconciled. To try to derive reliable information from CILS, we performed an experiment in gaseous argon at T = 298 K between 10 and 250 amagat devoting particular attention to possible sources of discrepancies. First, we introduce the general expressions for the moments of the two-body spectrum and briefly discuss the results of preceding experiments for the integrated intensity, then the experimental procedure and results of the present experiment in argon will be described in some detail. (KBE)
CP Violation and Lifetime Measurements of Two-body Charmless Decays of B Hadrons at LHCb
AUTHOR|(INSPIRE)INSPIRE-00453516; Eklund, Lard
This thesis presents lifetime measurements of charmless two-body decays of b hadrons, specifically the decay modes known as $B\\to h^+ h^{'-}$, where $B$ refers to meson or baryon containing a $b$ quark and $h^{(')}$ refers to a proton $p$, pion $\\pi$ or kaon $K$. Using the large data samples collected by the LHCb detector, the $B\\to h^+ h^{'-}$ channels with the largest branching fractions provide an opportunity to perform high-precision measurements of the properties of the decays. The leading-order processes in $B \\rightarrow h^{+}h'^{-}$ decays are tree and penguin topologies, where the loop-dominated channels could be sensitive to non-standard model physics. The $B^0_S \\to K^+ K^{-}$ mode is particularly interesting as it has a $CP$-even final state, as well as being dominated by penguin decay processes. The $B^0_S \\to K^+ K^{-}$ effective lifetime can be used to calculate the $B_{s}^{0}$ decay-rate asymmetry $A_{\\Delta \\Gamma}$, which quantifies the amount of $CP$ violation in the decay. Using LHCb ...
Schwinger variational principle in the nuclear two-body problem and multichannel theory
International Nuclear Information System (INIS)
Zubarev, A.L.; Podkopaev, A.P.
1978-01-01
The aim of the investigation is to study the Schwinger variational principle in the nuclear two-body problem and the multichannel theory. An approach is proposed to problems of the potential scattering based on the substitution of the exact potential operator V by the finite rank operator Vsup((n)) with which the dynamic equations are solved exactly. The functionals obtained for observed values coincide with corresponding expressions derived by the Schwinger variational principle with the set of test functions. The determination of the Schwinger variational principle is given. The method is given for finding amplitude of the double-particle scattering with the potential Vsup((n)). The corresponding amplitudes are constructed within the framework of the multichannel potential model. Interpolation formula for determining amplitude, which describes with high accuracy a process of elastic scattering for any energies, is obtained. On the basis of the above method high-energy amplitude may be obtained within the range of small and large scattering angles
Research on spark discharge of floating roof tank shunt
International Nuclear Information System (INIS)
Bi, Xiaolei; Liu, Quanzhen; Liu, Baoquan; Gao, Xin; Hu, Haiyan; Liu, Juan
2013-01-01
In order to quantitatively analyze the spark discharge risk of floating roof tank shunts, the breakdown voltage of shunt has been calculated by Townsend theory, the shunt spark discharge experiment is carried out by using 1.2/50 μs impulse voltage wave, and the relationship between breakdown voltage of shunt spark discharge and air gap is analyzed. It has been indicated by theoretical analysis and experimental study that the small gap is more easily cause spark discharge than the big gap when the contact between shunt and tank shell is poor. When air gap distance is equal to 0.1 cm, average breakdown voltage is 5280 V. When the air gap distance is less than 0.3 cm, experiment data agree well with Townsend theory. Therefore, in the condition of small gap, Townsend theory can be used to calculated breakdown voltage of shunt. Finally, based on the above conclusions, improvements for avoiding the spark discharge risk of shunt of floating roof tanks have been proposed.
Greenhouse heating with a fresh water floating collector solar pond
International Nuclear Information System (INIS)
Arbel, A.; Sokolov, M.
1991-01-01
The fresh water floating collector solar pond was investigated both experimentally and theoretically in a previous work, and it is now matched, by simulation, with the heat load requirements of a greenhouse. Results of the simulation indicate that such a pond is a potential energy source for greenhouse heating. This is especially true when the material properties are such that solar absorption and storage are enhanced. This paper reports that to demonstrate this point, three sets of collectors constructed with materials of different physical (radiation) properties were tested. One set is constructed of common materials which are readily available and are normally used as covers for greenhouses. The second set made of improved materials which are also available but have a smaller long-wave transmittance. The last set made of ideal material which additionally possesses selective radiation absorption properties. Collectors made of ideal materials make a superior solar pond; thus, manufacturing films with improved properties should become a worthwhile challenge for the agricultural polyethylene-films industry. Preliminary economic studies indicate that even with the low oil (<$20/Bbl) prices which exist between 1986-1989, the fresh water floating collectors solar pond provides an economically attractive alternative to the conventional oil-burning heating system. This is especially true in mild climate areas and when the large initial investment is justified by long-term greenhouse utilization planning
Motion characteristics of a tethered float in regular waves
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.; Sastry, J.S.; Narasimhan, S.
stream_size 8 stream_content_type text/plain stream_name 1_Int_Offshore_Polar_Eng_Conf_Proc_1991_510.pdf.txt stream_source_info 1_Int_Offshore_Polar_Eng_Conf_Proc_1991_510.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...
Floating seal system for rotary devices
Banasiuk, H.A.
1983-08-23
This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.
Dispersion measurements from Sofar floats on the Iberian Abyssal plain
International Nuclear Information System (INIS)
Rees, J.M.; Gmitrowicz, M.
1989-01-01
Tracks of SOFAR floats launched on the Iberian Abyssal Plain are presented. The floats were launched in two groups in early October 1984 and mid-February 1985 to a nominal depth of 2500 m. Of these floats, 4 from the first deployment and 2 from the second functioned properly. Float signals were recorded by four autonomous listening stations at a depth of 1900 m. These preliminary results show the tracks of floats up to July 1986 and represent 3600 float days of information. The main task of the experiment was to especially study the dispersion of radioactive substances
Nonlocality in many-body quantum systems detected with two-body correlators
Energy Technology Data Exchange (ETDEWEB)
Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)
2015-11-15
Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.
Charmless two-body B(s)→VP decays in soft collinear effective theory
International Nuclear Information System (INIS)
Wang Wei; Wang Yuming; Yang Deshan; Lue Caidian
2008-01-01
We provide the analysis of charmless two-body B→VP decays under the framework of the soft collinear effective theory (SCET), where V(P) denotes a light vector (pseudoscalar) meson. Besides the leading power contributions, some power corrections (chiraly enhanced penguins) are also taken into account. Using the current available B→PP and B→VP experimental data on branching fractions and CP asymmetry variables, we find two kinds of solutions in χ 2 fit for the 16 nonperturbative inputs which are essential in the 87 B→PP and B→VP decay channels. Chiraly enhanced penguins can change several charming penguins sizably, since they share the same topology. However, most of the other nonperturbative inputs and predictions on branching ratios and CP asymmetries are not changed too much. With the two sets of inputs, we predict the branching fractions and CP asymmetries of other modes especially B s →VP decays. The agreements and differences with results in QCD factorization and perturbative QCD approach are analyzed. We also study the time-dependent CP asymmetries in channels with CP eigenstates in the final states and some other channels such as B 0 /B 0 →π ± ρ ± and B s 0 /B s 0 →K ± K* ± . In the perturbative QCD approach, the (S-P)(S+P) penguins in annihilation diagrams play an important role. Although they have the same topology with charming penguins in SCET, there are many differences between the two objects in weak phases, magnitudes, strong phases, and factorization properties.
Full Two-Body Problem Mass Parameter Observability Explored Through Doubly Synchronous Systems
Davis, Alex Benjamin; Scheeres, Daniel
2018-04-01
The full two-body problem (F2BP) is often used to model binary asteroid systems, representing the bodies as two finite mass distributions whose dynamics are influenced by their mutual gravity potential. The emergent behavior of the F2BP is highly coupled translational and rotational mutual motion of the mass distributions. For these systems the doubly synchronous equilibrium occurs when both bodies are tidally-locked and in a circular co-orbit. Stable oscillations about this equilibrium can be shown, for the nonplanar system, to be combinations of seven fundamental frequencies of the system and the mutual orbit rate. The fundamental frequencies arise as the linear periods of center manifolds identified about the equilibrium which are heavily influenced by each body’s mass parameters. We leverage these eight dynamical constraints to investigate the observability of binary asteroid mass parameters via dynamical observations. This is accomplished by proving the nonsingularity of the relationship between the frequencies and mass parameters for doubly synchronous systems. Thus we can invert the relationship to show that given observations of the frequencies, we can solve for the mass parameters of a target system. In so doing we are able to predict the estimation covariance of the mass parameters based on observation quality and define necessary observation accuracies for desired mass parameter certainties. We apply these tools to 617 Patroclus, a doubly synchronous Trojan binary and flyby target of the LUCY mission, as well as the Pluto and Charon system in order to predict mutual behaviors of these doubly synchronous systems and to provide observational requirements for these systems’ mass parameters
Ma, Guang-ying; Yao, Yun-long
2018-03-01
In this paper, the fatigue lives of a new type of assembled marine floating platform for special purposes were studied. Firstly, by using ANSYS AQWA software, the hydrodynamic model of the platform was established. Secondly, the structural stresses under alternating change loads were calculated under complex water environments, such as wind, wave, current and ice. The minimum fatigue lives were obtained under different working conditions. The analysis results showed that the fatigue life of the platform structure can meet the requirements
Measuring the travel behaviour impact of free-floating car-sharing
Becker, Henrik; Ciari, Francesco; Axhausen, Kay W.
2016-01-01
Free-floating car-sharing schemes operate without fixed car-sharing stations, ahead reservations or return-trip requirements. Providing fast and convenient motorization, they attract both public transport users and (former) car-owners. Thus, its impact on individual travel behavior depends on the user type. Estimating the travel behavior impact of these novel systems therefore requires quantitative data. Using a two-wave survey approach including travel diaries, this research shows, that free...
International Nuclear Information System (INIS)
Yabuuchi, Noriaki; Shimazaki, Junya; Ochiai, Masaaki; Takahashi, Masao; Nakazawa, Toshio
2001-02-01
Offshore siting methods for a nuclear power plant are classified into three types as a floating type, a settled type and a land reclamation type. The floating nuclear power plant (FNPP) has a number of advantages, such as seismic isolation, standardization of design and manufacturing, and reduction of construction period. It is, however, required for FNPP to establish the safety standards, which are different from ones for land based nuclear power plant. Investigations for this subject have not been conducted sufficiently. In this report, design study on a concept for FNPP and a review on stability evaluation for the floating platform, which were performed in order to study the safety concept of the FNPP are described. The basic concept of the FNPP are described. The basic concept for FNPP is as follows: The FNPP is sited approximately 1 - 2km off the sea coast on the open sea with water depth of about 20m and it is moored of protected sea by the breakwater, it provide a floating platform for a 1,100MWe class PWR plant. The results of design study show that the floating platform for 1,100MWe class PWR plant of 300m (L) x 80m (W) x 35m (H), and displacement of approximately 300,000 ton can be constructed in a dockyard. This floating platform guarded by the breakwater is found to be stable enough to install the nuclear power plant from the analysis simulating the movement of the platform due to sea wave or wind. (author)
Energy Technology Data Exchange (ETDEWEB)
Yabuuchi, Noriaki; Shimazaki, Junya; Ochiai, Masaaki [Department of Nuclear Energy System, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Takahashi, Masao [Niigata Engineering Co. Ltd., Tokyo (Japan); Nakazawa, Toshio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Kazuo [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)
2001-02-01
Offshore siting methods for a nuclear power plant are classified into three types as a floating type, a settled type and a land reclamation type. The floating nuclear power plant (FNPP) has a number of advantages, such as seismic isolation, standardization of design and manufacturing, and reduction of construction period. It is, however, required for FNPP to establish the safety standards, which are different from ones for land based nuclear power plant. Investigations for this subject have not been conducted sufficiently. In this report, design study on a concept for FNPP and a review on stability evaluation for the floating platform, which were performed in order to study the safety concept of the FNPP are described. The basic concept of the FNPP are described. The basic concept for FNPP is as follows: The FNPP is sited approximately 1 - 2km off the sea coast on the open sea with water depth of about 20m and it is moored of protected sea by the breakwater, it provide a floating platform for a 1,100MWe class PWR plant. The results of design study show that the floating platform for 1,100MWe class PWR plant of 300m (L) x 80m (W) x 35m (H), and displacement of approximately 300,000 ton can be constructed in a dockyard. This floating platform guarded by the breakwater is found to be stable enough to install the nuclear power plant from the analysis simulating the movement of the platform due to sea wave or wind. (author)
Economic Floating Waste Detectionfor Surface Cleaning Robots
Directory of Open Access Journals (Sweden)
Sumroengrit Jakkrit
2017-01-01
Full Text Available Removing waste out of water surface is a routine task and can be operated by using autonomous surface cleaning robots. This paper presents amethodoflaser-based floating waste detection for surface robot guidance when waste positions are unknown beforehand. Basing on concept of refraction and reflection of laser ray, the proposed laser-based technique is proven to be applicable on floating waste detection. The economic waste detector is constructed and mounted on the robot. Five DOF equations of motion are formulated for calculation of waste position incorporating distance measured by the laser and also the robot motion caused by external wind force as well as water surface tension. Experiments were conducted on a pond with calm water and results show that the presented economic waste detection successfully identify and locate position of plastic bottles floating on water surface within the range of 5 meters.
Effects of Electrolyte on Floating Water Bridge
Hideo Nishiumi; Fumitaka Honda
2009-01-01
Fuchs found phenomena that when high voltage is applied to deionized water filled in two contacted beakers, a floating water bridge forms spontaneously. In this paper, we examined flow direction of water bridge and what effects the addition of electrolytes such as NaCl, NaOH, and N H 4 C l to the floating water bridge would give. We found that ionization degree reduced the length of water bridge though insoluble electrolyte A l 2 O 3 had no effect on the length of water bridge.
International Nuclear Information System (INIS)
Zhao Hongsheng; Li Baojiu; Bienayme, Olivier
2010-01-01
We derive a simple analytical expression for the two-body force in a subclass of modified Newtonian dynamics (MOND) theories and make testable predictions in the modification to the two-body orbital period, shape, precession rate, escape speed, etc. We demonstrate the applications of the modified Kepler's law in the timing of satellite orbits around the Milky Way, and checking the feasibility of MOND in the orbit of the large Magellanic cloud, the M31 galaxy, and the merging bullet clusters. MOND appears to be consistent with satellite orbits although with a tight margin. Our results on two-bodies are also generalized to restricted three-body, many-body problems, rings, and shells.
Three-dimensional formulation of the relativistic two-body problem in terms of rapidities
International Nuclear Information System (INIS)
Amirkhanov, I.V.; Grusha, G.V.; Mir-Kasimov, R.M.
1976-01-01
The scheme, based on the three-dimensional relativistic equation of the quasi-potential type is developed. As a basic variable rapidity, canonically conjugated to the relativistic relative distance is adopted. The free Green function has a simple pole in the complex rapidity plane, ensuring the fulfillment of the elastic unitarity for real potentials. In the local potential case the corresponding partial wave equation in configurational r-representation is a differential second-order equation. The problem of boundary conditions, which is a non-trivial one in the relativistic r-space, is studied. The exact solutions of the equation in simple cases have been found
Argo Float Data from the APDRC DAPPER Server, 1995-present
National Oceanic and Atmospheric Administration, Department of Commerce — The floats are designed to drift at a fixed pressure (usually 1000 dbar) for 10 days. After this period, the floats move to a profiling pressure (usually between...
Floating Inductance and FDNR Using Positive Polarity Current Conveyors
Directory of Open Access Journals (Sweden)
K. Pal
2004-01-01
Full Text Available A generalized circuit based on five positive polarity second-generation current conveyors is introduced. The circuit simulates a floating inductance, capacitor floatation circuit and floating fdnr. All these circuits use grounded capacitors.
Relativistic two-body system in (1+1)-dimensional QED. 1. On the circle S1
International Nuclear Information System (INIS)
Barut, A.O.; Saradzhev, F.M.
1994-01-01
From the coupled Maxwell-Dirac equations for two fermion fields Ψ 1 , Ψ 2 the authors derive a covariant two-body equation for the composite field Φ(x 1 , x 2 ) in configuration space which includes radiative self-energy effects. Both Coulomb gauge and covariant gauge have been used and their equivalence is proved. For the space S 1 the authors solve the two-body equation with mutual interactions exactly and obtain the mass spectrum in the case of massless fermions. 7 refs., 5 figs
A new approach to the semi-classical relativistic two-body problem for charged fermions
International Nuclear Information System (INIS)
Leiter, D.
1978-01-01
Generalizing from a recently developed hybrid formulation of classical electrodynamics with ''direct (charge-field) action'' structure an analogous semi-classical Dirac formulation of the theory is constructed, which is capable of describing the semi-classical quantum mechanics of two identical spin-1/2 particles. This semi-classical formulation is to be used as a heuristic aid in searching for the theoretical structure of a fully ''second quantized'' theory. The Pauli exclusion principle is incorporated by making the interaction fields (in the action principle) antisymmetric with respect to ''charge-field'' labeling. In this manner, ''position correlation'' effects associated with ''configuration interaction'' can also be accounted for. By studying the nature of the stationary-state solutions, the formalism is compared with the conventional quantum-mechanical one (to understand the similarities and the differences between this approach and the usual correlated Hartree-Fock approximation of ordinary relativistic quantum theory). The stationary-state solutions to the semi-classical formalism are shown to closely approximate the usual quantum-mechanical solutions when the wave functions are represented as a superposition of Slater determinants of Dirac-Coulombic-type wave functions with radial parts having a form which extremizes the total Breit energy. The manner in which this semi-classical theory might be extended to a fully ''second quantized'' formalism is sketched. (author)
Experiments on the WavePiston, Wave Energy Converter
DEFF Research Database (Denmark)
Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter
2011-01-01
This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... in the wave basin at Aalborg University allowed to investigate power production in the North Sea typical wave climate, with varying design parameters such as plate dimensions and their mutual distance. The power produced per meter by each collector is about the 5% of the available wave power. Experimental...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...
DEFF Research Database (Denmark)
Chen, X.; Cui, W.; Jensen, Jørgen Juncher
2003-01-01
are introduced in this paper. With the examples of the motion and displacement reponses of a floating plate undergoing large vertical deflections in multidirectional waves, the analysis method of the couple action between the vertical deflections in multidirectional waves, the analysis method of the couple...... action between the vertical displacement and the fluid are presented in the frequency domain. The influence of the membrane forces to the vertical displacements, bending moments and the stress are discussed. The numerical results indicate that the membrane forces have influence on the vertical...
14 CFR 25.753 - Main float design.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 25.753 Section 25.753 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Floats and Hulls § 25.753 Main float design...
Digital Repository Service at National Institute of Oceanography (India)
Youn, Y.-H.; Lee, H.; Chang, Y.-S.; Pankajakshan, T.
Continued observation of ARGO floats or years (about 4 years) makes the conductivity sensor more vulnerable to fouling by marine life and associated drift in salinity measurements. In this paper, we address this issue by making use of floats...
Motion performance and mooring system of a floating offshore wind turbine
Zhao, Jing; Zhang, Liang; Wu, Haitao
2012-09-01
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.
Motion Performance and Mooring System of a Floating Offshore Wind Turbine
Institute of Scientific and Technical Information of China (English)
Jing Zhao; Liang Zhang; Haitao Wu
2012-01-01
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures.However,countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas.The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform.This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system.The wind turbine was modeled as a wind block with a certain thrust coefficient,and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software.The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined.The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.
Dealing with Human Death: The Floating Perspective.
Kenyon, Gary M.
1991-01-01
Explores approach to dealing with human death. Describes floating perspective, based on insights from Choron and Jaspers, as suggesting it is possible to deal with human death by refraining from taking ultimate position on the problem. Position encourages openness to death. Examines role of anxiety and describes possible meaningful outcomes of…
Gastroretentive Floating Microspheres of Silymarin: Preparation and ...
African Journals Online (AJOL)
Erah
simulated gastric fluid for at least 12 h, and, therefore, could potentially ... systems (GRFDDS) have a bulk density ... The objective of this work was to develop and characterise gastroretentive floating microspheres of silymarin which, following oral administration, would exhibit .... hydrochloric acid to maintain sink conditions.
Reis kosmosesse : [Floating-kambrist] / Marika Makarova
Makarova, Marika
2011-01-01
Ameerika psühholoogi John C. Lilly poolt kasutusele võetud Floating-kambrist ehk hõljumisvannist, mis aeglustab ajulaineid ning seeläbi aitab vähendada lihaspinget, stressi, ärevust, peavalusid, vererõhku ning parandada und, selgroo- ja kaelavigastusi, suurendada loovust ja heaolu jne
A novel floating offshore wind turbine concept
DEFF Research Database (Denmark)
Vita, Luca; Schmidt Paulsen, Uwe; Friis Pedersen, Troels
2009-01-01
This paper will present a novel concept of a floating offshore wind turbine. The new concept is intended for vertical-axis wind turbine technology. The main purpose is to increase simplicity and to reduce total costs of an installed offshore wind farm. The concept is intended for deep water...... and large size turbines....
Effects of Electrolyte on Floating Water Bridge
Directory of Open Access Journals (Sweden)
Hideo Nishiumi
2009-01-01
spontaneously. In this paper, we examined flow direction of water bridge and what effects the addition of electrolytes such as NaCl, NaOH, and NH4Cl to the floating water bridge would give. We found that ionization degree reduced the length of water bridge though insoluble electrolyte Al2O3 had no effect on the length of water bridge.
IEEE Standard for Floating Point Numbers
Indian Academy of Sciences (India)
IAS Admin
Floating point numbers are an important data type in compu- tation which is used ... quite large! Integers are ... exp, the value of the exponent will be taken as (exp –127). The ..... bit which is truncated is 1, add 1 to the least significant bit, else.
Floating car data for traffic monitoring
DEFF Research Database (Denmark)
Torp, Kristian; Lahrmann, Harry Spaabæk
2005-01-01
This paper describes a complete prototype system that uses Floating Car Data (FCD) for both automatic and manual detection of queues in traffic. The system is developed under EU’s Tempo program. The systems consists of small hardware units placed in mobile traffic report units (we use taxis...
Two New Families of Floating FDNR Circuits
Directory of Open Access Journals (Sweden)
Ahmed M. Soliman
2010-01-01
Full Text Available Two new configurations for realizing ideal floating frequency-dependent negative resistor elements (FDNR are introduced. The proposed circuits are symmetrical and are realizable by four CCII or ICCII or a combination of both. Each configuration is realizable by eight different circuits. Simulation results are included to support the theory.
Floating plant dominance as a stable state
Scheffer, M.; Szabo, S.; Gragnani, A.; Nes, van E.H.; Rinaldi, S.; Kautsky, N.; Norberg, J.; Roijackers, R.M.M.; Franken, R.J.M.
2003-01-01
The authors demonstrate that floating-plant dominance can be a self-stabilizing ecosystem state, which may explain its notorious persistence in many situations. Their results, based on experiments, field data, and models (in Dutch ditches and Lake Kariba, Zimbabwe), represent evidence for
Floating convection barrier for evaporation source
International Nuclear Information System (INIS)
1975-01-01
A floating matrix of titanium in an uranium evaporation source, melted by an electron beam, serves as a barrier for preventing cooler material from reaching the evaporation area. This construction allows a big volume of melted uranium to be present and new uranium to be furnished in regulated intervals without manual intervention
Gastroretentive Floating Microspheres of Silymarin: Preparation and ...
African Journals Online (AJOL)
Methods: Cellulose microspheres – formulated with hydroxylpropyl methylcellulose (HPMC) and ethyl cellulose (EC) – and Eudragit microspheres – formulated with Eudragit® S 100 (ES) and Eudragit® RL (ERL) - were prepared by an emulsion-solvent evaporation method. The floating microspheres were evaluated for flow ...
Development of floating strip micromegas detectors
Energy Technology Data Exchange (ETDEWEB)
Bortfeldt, Jonathan
2014-04-28
Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10{sup 34} cm{sup -2}s{sup -1} around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm{sup 2} floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm{sup 2} floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm{sup 2} floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the
Development of floating strip micromegas detectors
International Nuclear Information System (INIS)
Bortfeldt, Jonathan
2014-01-01
Micromegas are high-rate capable, high-resolution micro-pattern gaseous detectors. Square meter sized resistive strip Micromegas are foreseen as replacement of the currently used precision tracking detectors in the Small Wheel, which is part of the forward region of the ATLAS muon spectrometer. The replacement is necessary to ensure tracking and triggering performance of the muon spectrometer after the luminosity increase of the Large Hadron Collider beyond its design value of 10 34 cm -2 s -1 around 2020. In this thesis a novel discharge tolerant floating strip Micromegas detector is presented and described. By individually powering copper anode strips, the effects of a discharge are confined to a small region of the detector. This reduces the impact of discharges on the efficiency by three orders of magnitude, compared to a standard Micromegas. The physics of the detector is studied and discussed in detail. Several detectors are developed: A 6.4 x 6.4 cm 2 floating strip Micromegas with exchangeable SMD capacitors and resistors allows for an optimization of the floating strip principle. The discharge behavior is investigated on this device in depth. The microscopic structure of discharges is quantitatively explained by a detailed detector simulation. A 48 x 50 cm 2 floating strip Micromegas is studied in high energy pion beams. Its homogeneity with respect to pulse height, efficiency and spatial resolution is investigated. The good performance in high-rate background environments is demonstrated in cosmic muon tracking measurements with a 6.4 x 6.4 cm 2 floating strip Micromegas under lateral irradiation with 550 kHz 20 MeV proton beams. A floating strip Micromegas doublet with low material budget is developed for ion tracking without limitations from multiple scattering in imaging applications during medical ion therapy. Highly efficient tracking of 20 MeV protons at particle rates of 550 kHz is possible. The reconstruction of the track inclination in a single
Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards
Street, Kenneth W., Jr.; Kobrick, Ryan L.; Klaus, David M.
2013-01-01
Abrasion of mechanical components and fabrics by soil on Earth is typically minimized by the effects of atmosphere and water. Potentially abrasive particles lose sharp and pointed geometrical features through erosion. In environments where such erosion does not exist, such as the vacuum of the Moon, particles retain sharp geometries associated with fracturing of their parent particles by micrometeorite impacts. The relationship between hardness of the abrasive and that of the material being abraded is well understood, such that the abrasive ability of a material can be estimated as a function of the ratio of the hardness of the two interacting materials. Knowing the abrasive nature of an environment (abrasive)/construction material is crucial to designing durable equipment for use in such surroundings. The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width. The ZOI has been found to be at least twice the size of a standard width measurement; in some cases, considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for de tailed analysis. Documenting additional changes to various surface roughness par ameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Further - more, by investigating the use of custom scratch tips for specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized
Some general features of two body reactions in K-p interactions at 3 GeV/c
International Nuclear Information System (INIS)
Badier, J.; Demoulin, M.; Goldberg, J.
1966-06-01
The differential and total cross sections of two-body reactions produced in 3 GeV/c K - proton collisions are presented. Their variation as a function of the baryonic number, strangeness, and isospin of the t and u cross channels is analyzed, as well as some implications of a baryon exchange mechanism. (authors) [fr
Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G
2017-12-07
We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.
Insulated Wire Fed Floating Monopole Antenna for Coastal Monitoring
Directory of Open Access Journals (Sweden)
Z. M. Loni
2018-04-01
Full Text Available A thin, flexible, insulated wire submerged in seawater forms a coaxial cable which has attenuation at ultra-high frequency (UHF dependent on the operating frequency, the diameter of the insulating material and the diameter of the inner conductor. An extension of the insulated wire above the surface through a spherical float forms a monopole antenna. Attenuation through the wire depends on the conductivity and temperature of seawater. This paper reports the effect of electromagnetic (EM wave propagation at 433 MHz through insulated wires with different radii of the insulating material and inner conductor. The attenuation was calculated and measured in the range of 32-47 dB/m. The propagation from the monopole antenna to a fixed shore based receiver was measured to be approximately equal to 1 dB/m. The propagation measurements were compared with a shielded coaxial cable. Results show that the propagation range depends on the ratio of the insulation radius to conductor radius for insulated wire, however, a shielded coaxial cable showed no significant attenuation. The technique has applications in coastal wireless sensor networks where the water depth changes continually due to tide and wave motion.
The two-body electrodisintegration of 4He studied through the (e,e'X) reaction
International Nuclear Information System (INIS)
Brand, F.J.F. van den.
1988-01-01
In this thesis a study of the electrodisintegration of 4/He into a proton and a triton is discussed. The purpose of this investigation is to obtain the proton spectral function which in turn is expected to contain information on the short-range and tensor correlations in the four-nucleon system. The 4 He(e,e'p) 3 H experiment was performed with the electron-scattering facility at NIKHEF-K. A specially designed cryogenic target system was used (ch. 3). From the data precise absolute cross sections were extracted with good missing-energy resolution as a funtion of missing momentum in the range 10 m | 2 and the polarization parameter of the exchanged virtual photon (ch. 5). In PIWA the (e,e'p) cross section factorizes into an off-shell electron-proton cross section and the spectral funtion. In the region where both kinetamics overlap a strong dependence of the extracted spectral-function results on the kinetamic variables was observed whereas such a dependence should not occur in PWIA. In order to understand this apparent breakdown of the PWIA the influence of rescattering of the outgoing proton on the residual nucleus or final-state interactions (ch. 6) and the electron-proton coupling on the spectral function (ch. 7) have been investigated. The spectral-function data for the full missing-moment range have been compared to various theoretical results (ch. 8). It turns out that the data are best described in the microscopic framework starting from a correlated wave function. In ch. 9 the results are presented obtained with the 4 He(e,e' 3 H)p reaction from which information can be obtained about the proton spectral function at momentum values up to 550 MeV/c. At these high proton moments a more direct signature of pair-correlations in the 4 He system can be obtained. 242 refs.; 85 figs.; 24 tabs
Voltage-Controlled Floating Resistor Using DDCC
Directory of Open Access Journals (Sweden)
M. Kumngern
2011-04-01
Full Text Available This paper presents a new simple configuration to realize the voltage-controlled floating resistor, which is suitable for integrated circuit implementation. The proposed resistor is composed of three main components: MOS transistor operating in the non-saturation region, DDCC, and MOS voltage divider. The MOS transistor operating in the non-saturation region is used to configure a floating linear resistor. The DDCC and the MOS transistor voltage divider are used for canceling the nonlinear component term of MOS transistor in the non-saturation region to obtain a linear current/voltage relationship. The DDCC is employed to provide a simple summer of the circuit. This circuit offers an ease for realizing the voltage divider circuit and the temperature effect that includes in term of threshold voltage can be compensated. The proposed configuration employs only 16 MOS transistors. The performances of the proposed circuit are simulated with PSPICE to confirm the presented theory.
Fresh water generators onboard a floating platform
International Nuclear Information System (INIS)
Tewari, P.K.; Verma, R.K.; Misra, B.M.; Sadhulkan, H.K.
1997-01-01
A dependable supply of fresh water is essential for any ocean going vessel. The operating and maintenance personnel on offshore platforms and marine structures also require a constant and regular supply of fresh water to meet their essential daily needs. A seawater thermal desalination unit onboard delivers good quality fresh water from seawater. The desalination units developed by Bhabha Atomic Research Centre (BARC) suitable for ocean going vessels and offshore platforms have been discussed. Design considerations of such units with reference to floating platforms and corrosive environments have been presented. The feasibility of coupling a low temperature vacuum evaporation (LTVE) desalination plant suitable for an onboard floating platform to a PHWR nuclear power plant has also been discussed. (author). 1 ref., 3 figs, 2 tabs
International Nuclear Information System (INIS)
Borg, Michael; Hansen, Anders Melchior; Bredmose, Henrik
2016-01-01
Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads. (paper)
Wave-particle interaction in the Faraday waves.
Francois, N; Xia, H; Punzmann, H; Shats, M
2015-10-01
Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, H.; Yoshida, K. [The University of Tokyo, Tokyo (Japan)
1996-12-31
A policy of improving a very large floating body was planned based on its dynamic characteristics, and a proposal was made thereon. Furthermore, discussions were given on stability that considers effect of elastic deformation required when a structure is mounted on a floating body. With respect to a structural design of a very large floating body in which elastic response is governing, and upon modeling the very large floating body into an aeolotropic plate on an elastic supporting floor, it was shown that the existing range of natural vibration speed in the elastic response is in higher range than the natural vibration speed of heave. It was also indicated that the peak height of response to waves in resonance is inversely proportional to wave frequency, and furthermore, degree of flowing in of vibration energy during the resonance is determined by an inner product of spatial vibration patterns of wave force and the excited mode shape. A proposal was made on a floating body improved of excessive response in the floating body edges by changing the characteristics of the floating body edges. In addition, discussions were given on stability that considers elastic deformation of a floating body that becomes necessary when a structure, such as a building, is built on a very large floating body. 9 refs., 9 figs., 3 tabs.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, H; Yoshida, K [The University of Tokyo, Tokyo (Japan)
1997-12-31
A policy of improving a very large floating body was planned based on its dynamic characteristics, and a proposal was made thereon. Furthermore, discussions were given on stability that considers effect of elastic deformation required when a structure is mounted on a floating body. With respect to a structural design of a very large floating body in which elastic response is governing, and upon modeling the very large floating body into an aeolotropic plate on an elastic supporting floor, it was shown that the existing range of natural vibration speed in the elastic response is in higher range than the natural vibration speed of heave. It was also indicated that the peak height of response to waves in resonance is inversely proportional to wave frequency, and furthermore, degree of flowing in of vibration energy during the resonance is determined by an inner product of spatial vibration patterns of wave force and the excited mode shape. A proposal was made on a floating body improved of excessive response in the floating body edges by changing the characteristics of the floating body edges. In addition, discussions were given on stability that considers elastic deformation of a floating body that becomes necessary when a structure, such as a building, is built on a very large floating body. 9 refs., 9 figs., 3 tabs.
Spectral analysis of Floating Car Data
Gössel, F.; Michler, E.; Wrase, B.
2003-01-01
Floating Car Data (FCD) are one important data source in traffic telematic systems. The original variable in these systems is the vehicle velocity. The paper analyses the measured value “vehicle velocity" by methods of information technology. Consequences for processing, transmission and storage of FCD under condition of limited resources are discussed. Starting point of the investigation is the analysis of spectral characteristics of velocity-time-profiles. The spectra are determined by...
Ships as future floating farm systems?
Moustafa, Khaled
2018-04-03
Environmental and agriculture challenges such as severe drought, desertification, sprawling cities and shrinking arable lands in large regions in the world compel us to think about alternative and sustainable farming systems. Ongoing projects to build floating cities in the sea suggest that building specific ships for farming purposes (as farming ships or farming boats) would also be attainable to introduce new farming surfaces and boost food production worldwide to cope with food insecurity issues.
Traumatic Floating Clavicle: A Case Report
Directory of Open Access Journals (Sweden)
Choo CY
2012-07-01
Full Text Available Shoulder girdle injuries after high energy traumatic impacts to the shoulder have been well documented. Based on the series of 1603 injuries of the shoulder girdle reported by Cave and colleagues, 85% of the dislocations were glenohumeral, 12% acromioclavicular and 3% sternoclavicular. Less frequently described are injuries involving both the sternoclavicular and acromioclavicular joints simultaneously in one extremity. The present case report discusses a case of traumatic floating clavicle associated with ipsilateral forearm and wrist injury which was treated surgically.
Floating nuclear power plant safety assurance principles
International Nuclear Information System (INIS)
Zvonarev, B.M.; Kuchin, N.L.; Sergeev, I.V.
1993-01-01
In the north regions of the Russian federation and low density population areas, there is a real necessity for ecological clean energy small power sources. For this purpose, floating nuclear power plants, designed on the basis of atomic ship building engineering, are being conceptualized. It is possible to use the ship building plants for the reactor purposes. Issues such as radioactive waste management are described
International Nuclear Information System (INIS)
Ji Zhengfeng; Wei Zhaohui; Zeng Bei
2011-01-01
The problem of finding the ground state of a frustration-free Hamiltonian carrying only two-body interactions between qubits is known to be solvable in polynomial time. It is also shown recently that, for any such Hamiltonian, there is always a ground state that is a product of single- or two-qubit states. However, it remains unclear whether the whole ground space is of any succinct structure. Here, we give a complete characterization of the ground space of any two-body frustration-free Hamiltonian of qubits. Namely, it is a span of tree tensor network states of the same tree structure. This characterization allows us to show that the problem of determining the ground-state degeneracy is as hard as, but no harder than, its classical analog.
Collector floating potentials in a discharge plasma
International Nuclear Information System (INIS)
Cercek, M.; Gyergyek, T.
1999-01-01
We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)
Turbomachinery systems for floating production applications
Energy Technology Data Exchange (ETDEWEB)
Windt, Jonathan P.; Kurz, Rainer [Solar Turbines Incorporated, San Diego, CA (United States)
2008-07-01
Since 1995 there has been a dramatic increase in oil and gas exploration and production using floating platforms in deeper waters located further offshore. This exploration started with tension leg platforms, progressed through SPARs and Semi-Submersibles, and later evolved into Floating Production Storage and Offloading (FPSO) vessels. Turbomachinery equipment installed on a floating platform or vessel will be expected to operate in the same manner as a land based machine, but in a variety of climate and environmental conditions that now includes motion. To operate successfully, specific design considerations for the turbo-machinery packages are required. It is critical to take into account the type of vessel, the expected list, trim and dynamic motion angles, the dynamic forces applied, the expected deck deflection as a result of those forces, understand the applicable class requirement, and where the equipment will be located on the vessel. This information is then translated into the design conditions to determine the type of mounting method to be used to attach the turbo-machinery package to the deck, the expected accelerations for structural analysis, and oil tank and system designs for fluid management. Furthermore, compressor designs need to allow utmost flexibility to adapt to changing operating conditions. (author)
Weinstein, Galina
2015-01-01
Between 1935 and 1936, Einstein was occupied with the Schwarzschild solution and the singularity within it while working in Princeton on the unified field theory and with his assistant Nathan Rosen, on the theory of the Einstein-Rosen bridges. He was also occupied with quantum theory. He believed that quantum theory was an incomplete representation of real things. Together with Rosen and Boris Podolsky he invented the EPR paradox. I demonstrate that the two-body problem in general relativity ...
On the evaluation of the U(3) content of the matrix elements of one-and two-body operators
International Nuclear Information System (INIS)
Vanagas, V.; Alcaras, J.A.C.
1991-09-01
An expression for the U(3) content of the matrix elements of one- and two-body operators in Elliott's basis is obtained. Three alternative ways of evaluating this content with increasing performance in computing time are presented. All of them allow an exact representation of that content in terms of integers, avoiding rounding errors in the computer codes. The role of dual bases in dealing with non-orthogonal bases is also clarified. (author)
Stability analysis of the Gyroscopic Power Take-Off wave energy point absorber
DEFF Research Database (Denmark)
Nielsen, Søren R. K.; Zhang, Zili; Kramer, Morten Mejlhede
2015-01-01
The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber consists of a float rigidly connected to a lever. The operational principle is somewhat similar to that of the so-called gyroscopic hand wrist exercisers, where the rotation of the float is brought forward by the rotational particle...
Measurement of branching fractions and CP violation for charmless charged two-body B decays at LHCb
Perazzini, Stefano
Charmless charged two-body B decays are sensitive probes of the CKM matrix, that parameterize CP violation in the Standard Model (SM), and have the potential to reveal the presence of New Physics. The framework of CP violation within the SM, the role of the CKM matrix, with its basic formalism, and the current experimental status are presented. The theoretical tools commonly used to deal with hadronic B decays and an overview of the phenomenology of charmless two-body B decays are outlined. LHCb is one of the four main experiments operating at the Large Hadron Collider (LHC), devoted to the measurement of CP violation and rare decays of charm and beauty hadrons. The LHCb detector is described, focusing on the technologies adopted for each sub-detector and summarizing their performances. The status-of-the-art of the LHCb measurements with charmless two-body B decays is then presented. Using the 37/pb of integrated luminosity collected at sqrt(s) = 7 TeV by LHCb during 2010, the direct CP asymmetries ACP(B0 -> ...
Investigation of Tank 241-AW-104 Composite Floating Layer
Energy Technology Data Exchange (ETDEWEB)
Meznarich, H. K. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Bolling, S. D. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Lachut, J. S. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Cooke, G. A. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States)
2018-02-27
Seven grab samples and one field blank were taken from Tank 241-AW-104 (AW-104) on June 2, 2017, and received at 222-S Laboratory on June 5, 2017. A visible layer with brown solids was observed floating on the top of two surface tank waste samples (4AW-17-02 and 4AW 17 02DUP). The floating layer from both samples was collected, composited, and submitted for chemical analyses and solid phase characterization in order to understand the composition of the floating layer. Tributyl phosphate and tridecane were higher in the floating layer than in the aqueous phase. Density in the floating layer was slightly lower than the mean density of all grab samples. Sodium nitrate and sodium carbonate were major components with a trace of gibbsite and very small size agglomerates were present in the solids of the floating layer. The supernate consisted of organics, soluble salt, and particulates.
Directory of Open Access Journals (Sweden)
H. Mariji
2016-01-01
Full Text Available The nucleon single-particle energies (SPEs of the selected nuclei, that is, O16, Ca40, and Ni56, are obtained by using the diagonal matrix elements of two-body effective interaction, which generated through the lowest-order constrained variational (LOCV calculations for the symmetric nuclear matter with the Aυ18 phenomenological nucleon-nucleon potential. The SPEs at the major levels of nuclei are calculated by employing a Hartree-Fock inspired scheme in the spherical harmonic oscillator basis. In the scheme, the correlation influences are taken into account by imposing the nucleon effective mass factor on the radial wave functions of the major levels. Replacing the density-dependent one-body momentum distribution functions of nucleons, n(k,ρ, with the Heaviside functions, the role of n(k,ρ in the nucleon SPEs at the major levels of the selected closed shell nuclei is investigated. The best fit of spin-orbit splitting is taken into account when correcting the major levels of the nuclei by using the parameterized Wood-Saxon potential and the Aυ18 density-dependent mean field potential which is constructed by the LOCV method. Considering the point-like protons in the spherical Coulomb potential well, the single-proton energies are corrected. The results show the importance of including n(k,ρ, instead of the Heaviside functions, in the calculation of nucleon SPEs at the different levels, particularly the valence levels, of the closed shell nuclei.
International Nuclear Information System (INIS)
Igamov, S.B.; Yarmukhamedov, R.
2007-01-01
A modified two-body potential approach is proposed for determination of both the asymptotic normalization coefficient (ANC) (or the respective nuclear vertex constant (NVC)) for the A+a->B (for the virtual decay B->A+a) from an analysis of the experimental S-factor for the peripheral direct capture a+A->B+γ reaction and the astrophysical S-factor, S(E), at low experimentally inaccessible energy regions. The approach proposed involves two additional conditions which verify the peripheral character of the considered reaction and expresses S(E) in terms of the ANC. The connection between NVC (ANC) and the effective range parameters for Aa-scattering is derived. To test this approach we reanalyse the precise experimental astrophysical S-factors for t+α->Li7+γ reaction at energies E= Li7(g.s.), α+t->Li7(0.478 MeV) and of S(E) at E=<50 keV. These ANC values have been used for getting information about the ''indirect'' measured values of the effective range parameters and the p-wave phase shift for αt-scattering in the energy range of 100-bar E-bar 180 keV
An inexpensive instrument for measuring wave exposure and water velocity
Figurski, J.D.; Malone, D.; Lacy, J.R.; Denny, M.
2011-01-01
Ocean waves drive a wide variety of nearshore physical processes, structuring entire ecosystems through their direct and indirect effects on the settlement, behavior, and survivorship of marine organisms. However, wave exposure remains difficult and expensive to measure. Here, we report on an inexpensive and easily constructed instrument for measuring wave-induced water velocities. The underwater relative swell kinetics instrument (URSKI) is a subsurface float tethered by a short (<1 m) line to the seafloor. Contained within the float is an accelerometer that records the tilt of the float in response to passing waves. During two field trials totaling 358 h, we confirmed the accuracy and precision of URSKI measurements through comparison to velocities measured by an in situ acoustic Doppler velocimeter and those predicted by a standard swell model, and we evaluated how the dimensions of the devices, its buoyancy, and sampling frequency can be modified for use in a variety of environments.
The floating knee: epidemiology, prognostic indicators & outcome following surgical management
Yesupalan Rajam S; Rethnam Ulfin; Nair Rajagopalan
2007-01-01
Abstract Background Floating Knee injuries are complex injuries. The type of fractures, soft tissue and associated injuries make this a challenging problem to manage. We present the outcome of these injuries after surgical management. Methods 29 patients with floating knee injuries were managed over a 3 year period. This was a prospective study were both fractures of the floating knee injury were surgically fixed using different modalities. The associated injuries were managed appropriately. ...
Simplified Design Procedures for Moorings of Wave-Energy Converters
DEFF Research Database (Denmark)
Bergdahl, Lars; Kofoed, Jens Peter
The goal of the report is that the reader shall be able to self-dependently make a first, preliminary analysis of wave-induced horizontal loads, motions and mooring forces for a moored floating wave energy device. Necessary prerequisites to attain that goal are the understanding of the physical p...
Wave Simulation in Truncated Domains for Offshore Applications
Wellens, P.R.
2012-01-01
Stress analysis and mitigation measures for floating pipeline
Wenpeng, Guo; Yuqing, Liu; Chao, Li
2017-03-01
Pipeline-floating is a kind of accident with contingency and uncertainty associated to natural gas pipeline occurring during rainy season, which is significantly harmful to the safety of pipeline. Treatment measures against pipeline floating accident are summarized in this paper on the basis of practical project cases. Stress states of pipeline upon floating are analyzed by means of Finite Element Calculation method. The effectiveness of prevention ways and subsequent mitigation measures upon pipeline-floating are verified for giving guidance to the mitigation of such accidents.
Power Generation Using Mechanical Wave Energy Converter
Directory of Open Access Journals (Sweden)
Srinivasan Chandrasekaran
2012-03-01
Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.
Advantages of floating covers with LLDPE Liners
International Nuclear Information System (INIS)
Munoz Gomez, J. M.
2014-01-01
Using floating covers in irrigation pounds and waste dam gives many advantages. It is a very interesting investment for those place with a high evaporation ratio. this is an easy system which improves several aspects in irrigation or drinkable water reservoirs, mainly it saves water and it saves clean-works (time and cost). It is also used in waste dam to deodorization. Time ago this application was developed with PVC liners and TPO liners, now the innovation is LLDPE liners which improve mechanical properties, durability and an easier installation. This paper develops the state of art of this design technology, and the back ground of our experience. (Author)
Horizontal, floating, plastic hose oil skimmer
Energy Technology Data Exchange (ETDEWEB)
1978-04-01
A horizontal, floating, plastic hose oil skimmer operates at -20/sup 0/ to +100/sup 0/C as a moving belt driven by a motor at 0.7 kw at 1400 rpm to pick up oil by adhesion from a surface such as that of used cooling water or cutting oil for subsequent stripping and collection by gravity flow. Two models provide collection rates of 10-45 l./hr for diesel oil, 35-115 l./hr for hydraulic oil, and 170-455 l./hr for gear oils and heavy heating oils.
Experiments in a floating water bridge
Woisetschläger, Jakob; Gatterer, Karl; Fuchs, Elmar C.
2010-01-01
In a high-voltage direct-current experiment, a watery connection formed between two beakers filled with deionized water, giving the impression of a `floating water bridge'. Having a few millimeters diameter and up to 2.5 cm length, this watery connection reveals a number of interesting phenomena currently discussed in water science. Focusing on optical measurement techniques, the flow through the bridge was visualized and data were recorded such as flow velocity and directions, heat production, density fluctuations, pH values, drag force and mass transfer. To provide a better understanding of the basic phenomena involved the discussion references related literature.
Dynamics of the floating water bridge
International Nuclear Information System (INIS)
Fuchs, Elmar C; Gatterer, Karl; Holler, Gert; Woisetschlaeger, Jakob
2008-01-01
When high voltage is applied to distilled water filled into two beakers close to each other, a water connection forms spontaneously, giving the impression of a floating water bridge (Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. The build-up mechanism, the chemical properties and the dynamics of this bridge as well as related additional phenomena are presented and discussed
The floating desalination complex GEYSER-1
International Nuclear Information System (INIS)
Vorobyov, V.M.
1997-01-01
A conventional floating desalination complex, GEYSER-1, is presented which is capable of producing 40,000 cubic meters per day (m 3 /d) of fresh water from brackish water or seawater. The complex includes a water intake system, a preliminary water preparation system, a high-pressure pump house and a power installation based on diesel or a gas turbines with service equipment. GEYSER-1 can be transported to the place of operation either by a heavy lift ship or by towing. (author)
Floating Foundations for Offshore Wind Turbines
DEFF Research Database (Denmark)
Andersen, Morten Thøtt
The concept of harnessing the power of the wind dates all the way back to the first ships traversing the seas. Later, windmills enabled the use of wind power for industrial purposes. Since then, technology has allowed the production of clean renewable energy through the use of wind turbines....... These turbines have traditionally been placed on land, but several factors have urged a move to offshore locations. Now the boundaries are being pushed into deeper and deeper waters, where the idea of floating offshore wind turbines has emerged. In less than a decade, these have gone from scattered small...
Floating retained root lesion mimicking apical periodontitis.
Chung, Ming-Pang; Chen, Chih-Ping; Shieh, Yi-Shing
2009-10-01
A case of a retained root tip simulating apical periodontitis on radiographic examination is described. The retained root tip, originating from the left lower first molar, floated under the left lower second premolar apical region mimicking apical periodontitis. It appeared as an ill-defined periapical radiolucency containing a smaller radiodense mass on radiograph. The differential diagnosis included focal sclerosing osteomyelitis (condensing osteitis) and ossifying fibroma. Upon exicisional biopsy, a retained root associated with granulation tissue was found. After 1-year follow-up, the patient was asymptomatic and the periradicular lesion was healing. Meanwhile, the associated tooth showed a normal response to stimulation testing.
A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.
Borg, M; Collu, M
2015-02-28
The need to further exploit offshore wind resources in deeper waters has led to a re-emerging interest in vertical axis wind turbines (VAWTs) for floating foundation applications. However, there has been little effort to systematically compare VAWTs to the more conventional horizontal axis wind turbine (HAWT). This article initiates this comparison based on prime principles, focusing on the turbine aerodynamic forces and their impact on the floating wind turbine static and dynamic responses. VAWTs generate substantially different aerodynamic forces on the support structure, in particular, a potentially lower inclining moment and a substantially higher torque than HAWTs. Considering the static stability requirements, the advantages of a lower inclining moment, a lower wind turbine mass and a lower centre of gravity are illustrated, all of which are exploitable to have a less costly support structure. Floating VAWTs experience increased motion in the frequency range surrounding the turbine [number of blades]×[rotational speed] frequency. For very large VAWTs with slower rotational speeds, this frequency range may significantly overlap with the range of wave excitation forces. Quantitative considerations are undertaken comparing the reference NREL 5 MW HAWT with the NOVA 5 MW VAWT. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
DEFF Research Database (Denmark)
Wang, K.; Hansen, Martin Otto Laver; Moan, T.
2014-01-01
Emergency shutdown is always a challenge for an operating vertical axis wind turbine. A 5-MW vertical axis wind turbine with a Darrieus rotor mounted on a semi-submersible support structure was examined in this study. Coupled non-linear aero-hydro-servo-elastic simulations of the floating vertical...... axis wind turbine were carried out for emergency shutdown cases over a range of environmental conditions based on correlated wind and wave data. When generator failure happens, a brake should be applied to stop the acceleration of the rotor to prevent the rotor from overspeeding and subsequent disaster...
Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine
Energy Technology Data Exchange (ETDEWEB)
Roald, L.; Jonkman, J.; Robertson, A.
2014-05-01
The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.
Reliability-Based Optimal Design for Very Large Floating Structure
Institute of Scientific and Technical Information of China (English)
ZHANG Shu-hua(张淑华); FUJIKUBO Masahiko
2003-01-01
Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post-yielding damage strongly suggest the need for proper consideration in design rather than just life loss prevention. This can be addressed through the development of design methodology that balances the initial cost of the very large floating structure (VLFS) against the expected potential losses resulting from future extreme wave-induced structural damage. Here, the development of a methodology for determining optimal, cost-effective design will be presented and applied to a VLFS located in the Tokyo bay. Optimal design criteria are determined based on the total expected life-cycle cost and acceptable damage probability and curvature of the structure, and a set of sizes of the structure are obtained. The methodology and applications require expressions of the initial cost and the expected life-cycle damage cost as functions of the optimal design variables. This study includes the methodology, total life-cycle cost function, structural damage modeling, and reliability analysis.
Energy Technology Data Exchange (ETDEWEB)
Dagher, Habib [Univ. of Maine, Orno, ME (United States); Viselli, Anthony [Univ. of Maine, Orno, ME (United States); Goupee, Andrew [Univ. of Maine, Orno, ME (United States); Allen, Christopher [Univ. of Maine, Orno, ME (United States)
2017-08-15
The primary goal of the basin model test program discussed herein is to properly scale and accurately capture physical data of the rigid body motions, accelerations and loads for different floating wind turbine platform technologies. The intended use for this data is for performing comparisons with predictions from various aero-hydro-servo-elastic floating wind turbine simulators for calibration and validation. Of particular interest is validating the floating offshore wind turbine simulation capabilities of NREL’s FAST open-source simulation tool. Once the validation process is complete, coupled simulators such as FAST can be used with a much greater degree of confidence in design processes for commercial development of floating offshore wind turbines. The test program subsequently described in this report was performed at MARIN (Maritime Research Institute Netherlands) in Wageningen, the Netherlands. The models considered consisted of the horizontal axis, NREL 5 MW Reference Wind Turbine (Jonkman et al., 2009) with a flexible tower affixed atop three distinct platforms: a tension leg platform (TLP), a spar-buoy modeled after the OC3 Hywind (Jonkman, 2010) and a semi-submersible. The three generic platform designs were intended to cover the spectrum of currently investigated concepts, each based on proven floating offshore structure technology. The models were tested under Froude scale wind and wave loads. The high-quality wind environments, unique to these tests, were realized in the offshore basin via a novel wind machine which exhibits negligible swirl and low turbulence intensity in the flow field. Recorded data from the floating wind turbine models included rotor torque and position, tower top and base forces and moments, mooring line tensions, six-axis platform motions and accelerations at key locations on the nacelle, tower, and platform. A large number of tests were performed ranging from simple free-decay tests to complex operating conditions with
First evidence for the two-body charmless baryonic decay $B^0 \\to p \\bar{p}$
INSPIRE-00258707; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Cowie, E; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2013-01-01
The results of a search for the rare two-body charmless baryonic decays $B^0 \\to p \\bar{p}$ and $B_s^0 \\to p \\bar{p}$ are reported. The analysis uses a data sample, corresponding to an integrated luminosity of 0.9 fb$^{-1}$, of $pp$ collision data collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. An excess of $B^0 \\to p \\bar{p}$ candidates with respect to background expectations is seen with a statistical significance of 3.3 standard deviations. This is the first evidence for a two-body charmless baryonic $B^0$ decay. No significant $B_s^0 \\to p \\bar{p}$ signal is observed, leading to an improvement of three orders of magnitude over previous bounds. If the excess events are interpreted as signal, the 68.3\\% confidence level intervals on the branching fractions are \\begin{eqnarray} \\cal{B}(\\rm{B}^0 \\to p \\bar{p}) & = & ( 1.47 \\,^{+0.62}_{-0.51} \\,^{+0.35}_{-0.14} ) \\times 10^{-8} \\,, \
Animal Diet Formulation with Floating Price
Directory of Open Access Journals (Sweden)
S.H Nasseri
2016-12-01
Full Text Available In the process of milk production, the highest cost relates to animal feed. Based on reports provided by the experts, around seventy percent of dairy livestock costs included feed costs. In order to minimize the total price of livestock feed, according to the limits of feed sources in each region or season, and also the transportation and maintenance costs and ultimately milk price reduction, optimization of the livestock nutrition program is an essential issue. Because of the uncertainty and lack of precision in the optimal food ration done with existing methods based on linear programming, there is a need to use appropriate methods to meet this purpose. Therefore, in this study formulation of completely mixed nutrient diets of dairy cows is done by using a fuzzy linear programming in early lactation. Application of fuzzy optimization method and floating price make it possible to formulate and change the completely mixed diets with adequate safety margins. Therefore, applications of fuzzy methods in feed rations of dairy cattle are recommended to optimize the diets. Obviously, it would be useful to design suitable software, which provides the possibility of using floating prices to set feed rations by the use of fuzzy optimization method.
Water-Pressure Distribution on Seaplane Float
Thompson, F L
1929-01-01
The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)
Feasibility study on floating nuclear power station
International Nuclear Information System (INIS)
Kajima, Ryoichi
1987-01-01
It is stipulated that nuclear power plants are to be built on solid rock bases on land in Japan. However, there are a limited number of appropriate siting grounds. The Central Research Institute of Electric Power Industry has engaged since 1981 in the studies on the construction technology of power plants, aiming at establishing new siting technology to expand the possible siting areas for nuclear power plants. Underground siting is regarded as a proven technology due to the experience in underground hydroelectric power plants. The technology of siting on quaternary ground is now at the stage of verification. In this report, the outline of floating type offshore/inshore siting technology is introduced, which is considered to be feasible in view of the technical and economical aspects. Three fixed structure types were selected, of which the foundations are fixed to seabed, plant superstructures are above sea surface, and which are floating type. Aiming at ensuring the aseismatic stability of the plant foundations, the construction technology is studied, and the structural concept omitting buoyancy is possible. The most practical water depth is not more than 20 m. The overall plant design, earthquake isolation effect and breakwater are described. (Kako, I.)
Floating / Travelling Gardens of (Postcolonial Time
Directory of Open Access Journals (Sweden)
Carmen Concilio
2017-11-01
Full Text Available This essay on travelling gardens of (postcolonial time opens with two iconic images of floating gardens in contemporary postcolonial literature: Will Phantom’s bio-garbage rafter, which saves him in the midst of a cyclone in Carpentaria (2008, by the Aboriginal author Alexis Wright, and Pi’s carnivore island-organism in Life of Pi (2001, which cannot save him from his shipwreck, by Canadian writer Yan Martel. These floating, hybrid gardens of the Anthropocene precede the real travelling gardens of both Michael Ondaatje’s The Cat’s Table (2011 and Amitav Ghosh’s Ibis Trilogy (2008-2015, two authors who both indirectly and directly tell the story of botanical gardens in Asia, and of plant and seed smuggling and transplantation (“displacement” also hinting at their historical and economic colonial implications. For, after all, botanical gardens imply a very specific version of care, Cura (Robert Pogue Harrison 2009, while embodying a precise, imperial scientific and economic project (Brockway 2002; Johnson 2011.
The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine
International Nuclear Information System (INIS)
Bayati, I; Jonkman, J; Robertson, A; Platt, A
2014-01-01
The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of a floating system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the Maritime Research Institute Netherlands (MARIN) offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method was applied to the Offshore Code Comparison Collaboration Continuation OC4-DeepCwind semisubmersible platform, supporting the National Renewable Energy Laboratory's 5-MW baseline wind turbine. In this paper, the loads and response of the system caused by the second-order hydrodynamics are analysed and compared to the first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second
14 CFR 136.11 - Helicopter floats for over water.
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter floats for over water. 136.11... TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Air Tour Safety Standards § 136.11 Helicopter floats for over water. (a) A helicopter used in commercial air tours over water beyond the shoreline must...
Production of floating pellets using appropriate methods | Suleiman ...
African Journals Online (AJOL)
The study investigated into the use of floating materials like candle wax, yeast and baking powder to achieve pellet buoyancy. Ten diets were formulated with incorporation of floating agents; Diet I-YBCT- (yeast-baking powder in cold water -toasted), Diet II-YBCU- (yeast-baking powder in cold water -untoasted) Diet III ...
Design and Evaluation of an Oral Floating Matrix Tablet of ...
African Journals Online (AJOL)
Purpose: To develop floating matrix tablets of salbutamol sulphate using ethyl cellulose and acrycoat S-100 as polymers, and sodium bicarbonate, citric acid and tartaric acid as gas generating agents. Methods: Twenty four formulations were prepared and segregated into four major categories, A to D. The floating tablets ...
Response estimation for a floating bridge using acceleration output only
Petersen, Øyvind Wiig; Øiseth, Ole; Nord, Torodd Skjerve; Lourens, E.; Sas, P.; Moens, D.; van de Walle, A.
2016-01-01
The Norwegian Public Roads Administration is reviewing the possibility of using floating bridges as fjord crossings. The dynamic behaviour of very long floating bridges with novel designs are prone to uncertainties. Studying the dynamic behaviour of existing bridges is valuable for understanding
Development and evaluation of floating microspheres of curcumin in ...
African Journals Online (AJOL)
Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence and to study their effect on alloxan-induced diabetic rats. Methods: Floating microsphere were prepared by emulsion-solvent diffusion method, using hydroxylpropyl methylcellulose, chitosan and Eudragit S 100 polymer in ...
Development and Evaluation of Floating Microspheres of Curcumin ...
African Journals Online (AJOL)
Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence time and increased drug bioavailability. Methods: Floating microsphere were prepared by emulsion solvent diffusion method, using hydroxylpropyl methylcellulose (HPMC), ethyl cellulose (EC), Eudragit S 100 polymer in ...
Herbal carrier-based floating microparticles of diltiazem ...
African Journals Online (AJOL)
Purpose: To formulate and characterize a gastroretentive floating drug delivery system for diltiazem hydrochloride using psyllium husk and sodium alginate as natural herbal carriers to improve the therapeutic effect of the drug in cardiac patients. Methods: Floating microparticles containing diltiazem hydrochloride were ...
Floating Solar Photovoltaics Gaining Ground | State, Local, and Tribal
flotovoltaics (a trademarked term) or floating solar, represent an emerging application in which PV panels are , including efficiency gains (due to water cooling the panels), reductions in unwanted algae growth, slower 994 panels floating on 130 foam-filled pontoons atop the winery's irrigation pond and an additional
Zhao, WenHua; Yang, JianMin; Hu, ZhiQiang; Xiao, LongFei; Peng, Tao
2013-03-01
The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas (FLNG) system, which is a new type of floating LNG (Liquid Natural Gas) platform that consists of a ship-type FPSO hull equipped with LNG storage tanks and liquefaction plants. In particular, this study focuses on the investigation of the roll response of FLNG hull in free-decay motions, white noise waves and also in irregular waves. Model tests of the FLNG system in 60%H filling condition excited by both white noise waves and irregular waves combined with steady wind and current have been carried out. Response Amplitude Operators (RAOs) and time histories of the responses are obtained for sway, roll and yaw motions. Obvious Low Frequency (LF) components of the roll motions are observed, which may be out of expectation. To facilitate the physical understanding of this phenomenon, we filter the roll motions at the period of 30 s into two parts: the Wave Frequency (WF) motions and the Low Frequency (LF) motions respectively. The results indicate that the LF motions are closely related to the sway and yaw motions. Possible reasons for the presence of the LF motions of roll have been discussed in detail, through the comparison with the sway and yaw motions. As for the numerical part, the simulation of the modeled case is conducted with the help of the software SESAM®. A good agreement between experiments and calculations is reported within the scope of trends. However, the numerical simulations should be further improved for the prediction of the FLNG system in the heading sea.
A novel grounded to floating admittance converter with electronic control
Prasad, Dinesh; Ahmad, Javed; Srivastava, Mayank
2018-01-01
This article suggests a new grounded to floating admittance convertor employing only two voltage differencing transconductance amplifiers (VDTAs). The proposed circuit can convert any arbitrary grounded admittance into floating admittance with electronically controllable scaling factor. The presented converter enjoys the following beneficial: (1) no requirement of any additional passive element (2) scaling factor can be tuned electronically through bias currents of VDTAs (3) no matching constraint required (4) low values of active/passive sensitivity indexes and (5) excellent non ideal behavior that indicates no deviation in circuit behavior even under non ideal environment. Application of the proposed configuration in realization of floating resistor and floating capacitor has been presented and the workability of these floating elements has been confirmed by active filter design examples. SPICE simulations have been performed to demonstrate the performance of the proposed circuits.
Time domain calculation of connector loads of a very large floating structure
Gu, Jiayang; Wu, Jie; Qi, Enrong; Guan, Yifeng; Yuan, Yubo
2015-06-01
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0°. This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS
The state of development of wave energy
International Nuclear Information System (INIS)
Duckers, L.J.
1991-01-01
Wave energy converters are being developed and tested in as many as ten countries. The author believes that the shore mounted converters will be economically attractive in many locations around the world. These devices are simple and easily maintained. In order to harvest the greater offshore resource floating devices such as the Clam, Duck and Whale will be needed. Urgent research and development is needed to bring these to the prototype stage. Future deployment of large arrays of these floating systems could be quickly and easily achieved in many parts of the world and they would provide considerable quantities of environmentally benign, reasonably cheap energy. (author) 6 figs., 5 refs
Extreme Loads on the Mooring Lines and Survivability Mode for the Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Parmeggiani, Stefano; Kofoed, Jens Peter; Friis-Madsen, E.
2011-01-01
Dragon aims at optimizing the power production by adapting the floating level to the incoming waves and by activating the hydro-turbines and regulating their working speed. In extreme conditions though, the control strategy could be changed in order to reduce the forces in the mooring system, lowering...
Energy Technology Data Exchange (ETDEWEB)
Yoshida, K; Suzuki, H; Hosomi, I [The University of Tokyo, Tokyo (Japan); Nahata, H [The Long-Term Credit Bank of Japan, Ltd., Tokyo (Japan)
1997-12-31
The effects of tsunami and seaquake on large floating structures are theoretically studied, where these effects are followed in terms of local strength using the equation proposed by Sells to predict surface shapes changed by seaquake-caused uplift of the seabottom. The equation is combined with the one for tsunami propagation, to better predict the tsunami motion. The simulation results indicate the necessity of considering the effects of tsunami for the design of a large floating structure. The authors discuss that the effect of tsunami is minimized when a floating structure is set at a depth of at least 40 to 50m, chain length should be determined by equalizing the breaking weight with the load at which the structure starts to move, and a structure should be set at a position where it is not attacked by transverse waves. They also discuss that seaquake intensity should be predicted by the equation of motion of compressible fluid, and, noting local strength of a floating structure, it will not be damaged when it is at least 16mm thick under the conditions of 2m as seabottom uplift and 0.5m as draft depth. 15 refs., 9 figs., 2 tabs.
Energy Technology Data Exchange (ETDEWEB)
Yoshida, K.; Suzuki, H.; Hosomi, I. [The University of Tokyo, Tokyo (Japan); Nahata, H. [The Long-Term Credit Bank of Japan, Ltd., Tokyo (Japan)
1996-12-31
The effects of tsunami and seaquake on large floating structures are theoretically studied, where these effects are followed in terms of local strength using the equation proposed by Sells to predict surface shapes changed by seaquake-caused uplift of the seabottom. The equation is combined with the one for tsunami propagation, to better predict the tsunami motion. The simulation results indicate the necessity of considering the effects of tsunami for the design of a large floating structure. The authors discuss that the effect of tsunami is minimized when a floating structure is set at a depth of at least 40 to 50m, chain length should be determined by equalizing the breaking weight with the load at which the structure starts to move, and a structure should be set at a position where it is not attacked by transverse waves. They also discuss that seaquake intensity should be predicted by the equation of motion of compressible fluid, and, noting local strength of a floating structure, it will not be damaged when it is at least 16mm thick under the conditions of 2m as seabottom uplift and 0.5m as draft depth. 15 refs., 9 figs., 2 tabs.
CP-violating effects in two-body baryonic decays of B0-B-bar0 system
International Nuclear Information System (INIS)
Du Dongsheng; Xing Zhizhong
1992-01-01
CP-violating effects in partial-decay-rate asymmetries for two-body baryonic decays of B d 0 -B-bar d 0 and B s 0 -B-bar s 0 systems are examined. Those final states decayed from both B 0 and B-bar 0 are mainly studied. Two cases are discussed in detail: one is for Z 0 factory for incoherent BB-bar production, the other is for C = + 1 BB - production above the υ(4S)resonance at symmetric colliders. The bb-bar pairs needed for testing these effects are estimated for 3σ signature. For the decay modes B d d →PP-bar, Δ ++ Δ-bar -- and Δ 0 Δ-bar 0 , N b -bar b ∼ 10 7 -10 8
Vector and tensor meson production in quasi-two-body final states using the dual fermion model
International Nuclear Information System (INIS)
Becker, L.; Matthaeus, E.; Weigt, G.
1976-01-01
Phenomenological dual fermion amplitudes are obtained by using Neveu-Schwarz-Ramond model as a guide to incorporate half-integer spin. The model relates the production mechanism of different resonances lying on the same degenerate Regge trajectory, thus allowing a simultaneous description of vector and tensor meson production. A characteristic feature of the amplitudes is their non-evasive coupling structure. Predictions of the model for rho 0 -f-g 0 , ω-A 2 - and anti K*(890)-anti K*(1420) production in quasi-two-body reactions are compared with experimental data. The differential cross sections for natural and unnatural spin-parity t-channel exchanges as well as their contributions to different helicities of the produced resonances are given. In particular, new properties arise from the non-evasive pion exchange. Reasonable agreement with the data is found. (Auth.)
Vector and tensor meson production in quasi-two-body final states using the dual fermion model
International Nuclear Information System (INIS)
Becker, L.; Matthaeus, E.; Weigt, G.
1975-01-01
Phenomenological dual fermion amplitudes are obtained by using the Neveu-Schwarz-Ramond model as a guide to incorporate half-integer spin. The model relates the production mechanism of different resonances lying on the same degenerated Regge trajectory, thus allowing a simultaneous description of vector and tensor meson production. A characteristic feature of the amplitudes is their non-evasive coupling structure. Predictions of the model for rho 0 - f - g 0 , ω - A 2 - and anti K-890 and anti K-1420 resonances production in quasi-two-body reactions are compared with experimental data. The differential cross sections for natural and unnatural spin-parity t-channel exchanges as well as their contributions to different helicities of the produced resonances are given. In particular, new properties arise from the non-evasive pion exchange. Reasonable agreement with the data is found. (author)
International Nuclear Information System (INIS)
Frolov, A.V.; Safonov, A.I.; Vasilyev, S.A.; Lukashevich, I.I.
1994-01-01
We propose a novel method to detect hydrogen atoms in the pure hyperfine state b at the small dense spot of the sample cell surface by injecting in pulses small controlled amounts of atoms in the reactive mixed state a into the cell volume. The total recombination rate inferred from a carbon bolometer overheating will display pronounced peaks due to two-body ab recombination. The relaxation rate of these peaks to the original value of the bolometer signal will be proportional to b-atoms' density at the spot. This method can be applied to measure the surface density of polarized H in the experiments with the field compression and with the cold spot as well. 14 refs., 4 figs
International Nuclear Information System (INIS)
Haberzettl, H.; Sandhas, W.
1981-01-01
Effective two-body equations for the four-body problem are derived within the general N-body theory of Alt, Grassberger, and Sandhas. In contrast to usual treatments, the final expressions do not require separable (2+2) subamplitudes but incorporate these exactly. All four-body amplitudes can be calculated from the solution of a single integral equation for the reaction (3+1)→(3+1). With single-term separable approximations for the two-particle and the (3+1) subsystem amplitudes the driving terms of the final equations are seen to reduce to those of the field-theoretical model by Fonseca and Shanley. Since our results are based on an exact and complete N-body theory, the investigation of subsystem reaction mechanisms is facilitated. As a consequence, we are led to a three-particle propagator which has the right pole behavior and includes exchange effects
International Nuclear Information System (INIS)
Kwok, C.K.S.
1982-01-01
A systematic study of abrasive wear resistance of Fe/Cr/Mn based alloys has been carried out using a two body pin-on-disc wear machine. Abrasives used were silicon carbide, alumina and quartz. The objective of this study was to evaluate the abrasive wear resistance and to investigate the relationships between microstructure, mechanical properties, and abrasive wear resistance for these experimental alloys. Several commercial alloys were also tested to provide a basis for comparison. The goal of this study was to develop information so as to improve wear resistance of these experimental alloys by means of thermal treatments. Grain-refinement by double heat treatment was carried out in this research
Asratyan, A.; Balatz, M.; Boehnlein, D.; Childres, S.; Davidenko, G.; Dolgolenko, A.; Dzyubenko, G.; Kaftanov, V.; Kubantsev, M.; Reay, N. W.; Musser, J.; Rosenfeld, C.; Stanton, N. R.; Thun, R.; Tzanakos, G. S.; Verebryusov, V.; Vishnyakov, V.
1999-05-01
Novel detector schemes are proposed for the short-baseline neutrino experiments of next generation, aimed at exploring the large- Δm 2 domain of ν μ→ν τ oscillations in the appearance mode. These schemes emphasize good spectrometry for charged particles and for electromagnetic showers and efficient reconstruction of π0→ γγ decays. The basic elements are a sequence of relatively thin emulsion targets, immersed in magnetic field and interspersed with electronic trackers, and a fine-grained electromagnetic calorimeter built of lead glass. These elements act as an integral whole in reconstructing the electromagnetic showers. This conceptual scheme shows good performance in identifying the τ (quasi-) two-body decays by their characteristic kinematics and in selecting the electronic decays of the τ.
International Nuclear Information System (INIS)
Asratyan, A.; Balatz, M.; Boehnlein, D.; Childres, S.; Davidenko, G.; Dolgolenko, A.; Dzyubenko, G.; Kaftanov, V.; Kubantsev, M.; Reay, N.W.; Musser, J.; Rosenfeld, C.; Stanton, N.R.; Thun, R.; Tzanakos, G.S.; Verebryusov, V.; Vishnyakov, V.
1999-01-01
Novel detector schemes are proposed for the short-baseline neutrino experiments of next generation, aimed at exploring the large-Δm 2 domain of ν μ →ν τ oscillations in the appearance mode. These schemes emphasize good spectrometry for charged particles and for electromagnetic showers and efficient reconstruction of π 0 →γγ decays. The basic elements are a sequence of relatively thin emulsion targets, immersed in magnetic field and interspersed with electronic trackers, and a fine-grained electromagnetic calorimeter built of lead glass. These elements act as an integral whole in reconstructing the electromagnetic showers. This conceptual scheme shows good performance in identifying the τ (quasi-) two-body decays by their characteristic kinematics and in selecting the electronic decays of the τ
Directory of Open Access Journals (Sweden)
Lukas eHeydrich
2013-12-01
Full Text Available In neurology and psychiatry the detailed study of illusory own body perceptions has suggested close links between bodily processing and self-consciousness. One such illusory own body perception is heautoscopy where patients have the sensation of being reduplicated and to exist at two or even more locations. In previous experiments, using a video head-mounted display, self-location and self-identification were manipulated by applying conflicting visuo-tactile information. Yet the experienced singularity of the self was not affected, i.e. participants did not experience having multiple bodies or selves. In two experiments presented in this paper, we investigated self-location and self-identification while participants saw two virtual bodies (video-generated in study 1 and 3D computer generated in study 2 that were stroked either synchronously or asynchronously with their own body. In both experiments, we report that self-identification with two virtual bodies was stronger during synchronous stroking. Furthermore, in the video generated setup with synchronous stroking participants reported a greater feeling of having multiple bodies than in the control conditions. In study 1, but not in study 2, we report that self-location – measured by anterior posterior drift – was significantly shifted towards the two bodies in the synchronous condition only. Self-identification with two bodies, the sensation of having multiple bodies, and the changes in self-location show that the experienced singularity of the self can be studied experimentally. We discuss our data with respect to ownership for supernumerary hands and heautoscopy. We finally compare the effects of the video and 3D computer generated head-mounted display technology and discuss the possible benefits of using either technology to induce changes in illusory self-identification with a virtual body.
Analysis of Switched-Rigid Floating Oscillator
Directory of Open Access Journals (Sweden)
Prabhakar R. Marur
2009-01-01
Full Text Available In explicit finite element simulations, a technique called deformable-to-rigid (D2R switching is used routinely to reduce the computation time. Using the D2R option, the deformable parts in the model can be switched to rigid and reverted back to deformable when needed during the analysis. The time of activation of D2R however influences the overall dynamics of the system being analyzed. In this paper, a theoretical basis for the selection of time of rigid switching based on system energy is established. A floating oscillator problem is investigated for this purpose and closed-form analytical expressions are derived for different phases in rigid switching. The analytical expressions are validated by comparing the theoretical results with numerical computations.
Preliminary results from NOAMP deep drifting floats
International Nuclear Information System (INIS)
Ollitrault, M.
1989-01-01
This paper is a very brief and preliminary outline of first results obtained with deep SOFAR floats in the NOAMP area. The work is now going toward more precise statistical estimations of mean and variable currents, together with better tracking to resolve submesoscales and estimate diffusivities due to mesoscale and smaller scale motions. However the preliminary results confirm that the NOAMP region (and surroundings) has a deep mesoscale eddy field that is considerably more energetic that the mean field (r.m.s. velocities are of order 5 cm s -1 ), although both values are diminished compared to the western basin. A data report containing trajectories and statistics is scheduled to be published by IFREMER in the near future. The project main task is to especially study the dispersion of radioactive substances
Ionizing radiation effects on floating gates
International Nuclear Information System (INIS)
Cellere, G.; Paccagnella, A.; Visconti, A.; Bonanomi, M.
2004-01-01
Floating gate (FG) memories, and in particular Flash, are the dominant among modern nonvolatile memory technologies. Their performance under ionizing radiation was traditionally studied for the use in space, but has become of general interest in recent years. We are showing results on the charge loss from programmed FG arrays after 10 keV x-rays exposure. Exposure to ionizing radiation results in progressive discharge of the FG. More advanced devices, featuring smaller FG, are less sensitive to ionizing radiation that older ones. The reason is identified in the photoemission of electrons from FG, since at high doses it dominates over charge loss deriving from electron/hole pairs generation in the oxides
Nuclear Security for Floating Nuclear Power Plants
Energy Technology Data Exchange (ETDEWEB)
Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-13
Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states
Sharing risk and reward - floating production contractorship
International Nuclear Information System (INIS)
Gisvold, K.M.
1994-01-01
The conference paper summarizes the contractual experience so far gained on Petrojarl 1 floating production system and the associated shuttling services on the Norwegian continental shelf. The paper attempts to draw some lines into the future with respect to development of the business format and the evolution of the relationship between the contractor and the various oil companies in question. Turnkey production services as well as transport and project services to the oil industry are provided. The scope of these services ranges from top of the sea bed wellhead to quayside at the refinery, and is based on ownership control of the employed vessels as well as complete manning of all services. 7 figs
Variation of wave directional spread parameters along the Indian coast
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.
through a directional wave spectrum, which represents distribution of wave energies over various wave frequencies and directions. Most widely practiced technique for directional data collection involves use of the floating buoys. The data analysis.... Estimation of directional spectra from the maximum entropy principle, Proceedings 5th International Conference on Offshore Mechanics and Arctic Engineering, Tokyo, Japan 1986; vol. I: 80-85. [6] Kuik AJ, Vledder G, Holthuijsen LH. A method for the routine...
Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi
2017-03-01
Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kagemoto, H.; Fujino, M.; Zhu, T. [The University of Tokyo, Tokyo (Japan)
1996-12-31
A floating structure such as an international airport is anticipated to have a length of about 5,000 m and a width of about 1,000 m. A singular point method may be used as a method to estimate force that such a floating body is subjected to from waves. In order to derive a solution with practically sufficient accuracy, 1250 elements are required in the length direction and 250 elements in the width direction, or a total of 312,500 elements. Calculating this number of elements should use finally a linear equation system handling complex coefficients comprising 312,500 elements, which would require a huge amount of calculation time. This paper proposes a method to derive solution on wave forces acting on a super-large floating structure or fluid force coefficients such as added mass coefficients and decay coefficients at a practically workable calculation amount and still without degrading the accuracy. The structure was assumed to be a box-shaped structure. Strengths of the singular points to be distributed on each element were assumed to be almost constant except for edges in lateral, oblique and longitudinal waves. Under this assumption, the interior of the floating structure excepting its edges was represented by several large elements to have reduced the number of elements. A calculation method proposed based on this conception was verified of its effectiveness. 2 refs., 25 figs., 3 tabs.
Characterising the spatial variability of the tidal stream energy resource from floating turbines
Ward, Sophie; Neill, Simon; Robins, Peter
2017-04-01
The shelf seas, in particular the northwest European shelf seas surrounding the UK, contain significant tidal power potential. Tidal stream energy is both predictable and reliable providing that sites are well-selected based upon the hydrodynamic regime and the device specifics. In this high resolution three-dimensional tidal modelling study, we investigate how the tidal stream resource around the Welsh coast (UK) varies with water depth and location, with particular focus on the Pembrokeshire region. The potential extractable energy for a floating tidal stream energy converter is compared with that for a bottom-fixed device, highlighting the need to vary the resource characterisation criteria based on device specifics. We demonstrate how small variations in the tidal current speeds - with hub depth or due to tidal asymmetry - can lead to substantial variations in potential power output. Further, the results indicate that power generation from floating tidal energy converters will be more significantly influenced by tidal elevations in regions characterised by a lower tidal range (more progressive waves) than regions that experience a high tidal range (standing waves). As numerical modelling capacity improves and tidal stream energy converter technologies develop, ongoing improved quantification of the tidal resource is needed, as well as consideration of the possible feedbacks of the devices and energy extraction on the hydrodynamic regime and the surrounding area.
Control design methods for floating wind turbines for optimal disturbance rejection
Lemmer, Frank; Schlipf, David; Cheng, Po Wen
2016-09-01
An analysis of the floating wind turbine as a multi-input-multi-output system investigating the effect of the control inputs on the system outputs is shown. These effects are compared to the ones of the disturbances from wind and waves in order to give insights for the selection of the control layout. The frequencies with the largest impact on the outputs due to limited effect of the controlled variables are identified. Finally, an optimal controller is designed as a benchmark and compared to a conventional PI-controller using only the rotor speed as input. Here, the previously found system properties, especially the difficulties to damp responses to wave excitation, are confirmed and verified through a spectral analysis with realistic environmental conditions. This comparison also assesses the quality of the employed simplified linear simulation model compared to the nonlinear model and shows that such an efficient frequency-domain evaluation for control design is feasible.
Energy Technology Data Exchange (ETDEWEB)
Putov, B.I.
1980-01-01
A reduction in the free play may be achieved through the rational selection of the basic dimensions of the body elements, the disposition of the bodies one relative to the other and by the use of various means for passive stabilization. In the design of MPBU not only the mean values of the free play parameters, which characterize a floating base from the point of view of the time people stay on it, must be available, but also the maximal possible values of the parameters with one and the same wave state, which determine the safety of the operation of the drilling equipment. Studies in installations of various standard off shore drilling rigs showed that the mean values of the free play parameters for all off shore drilling rigs with wave heights from 0.8 to 1.2 meters are half the maximal values.
Floating arterial thrombus related stroke treated by intravenous thrombolysis.
Vanacker, P; Cordier, M; Janbieh, J; Federau, C; Michel, P
2014-01-01
The effects of intravenous thrombolysis on floating thrombi in cervical and intracranial arteries of acute ischemic stroke patients are unknown. Similarly, the best prevention methods of early recurrences remain controversial. This study aimed to describe the clinical and radiological outcome of thrombolyzed strokes with floating thrombi. We retrospectively analyzed all thrombolyzed stroke patients in our institution between 2003 and 2010 with floating thrombi on acute CT-angiography before the intravenous thrombolysis. The floating thrombus was diagnosed if an elongated thrombus of at least 5 mm length, completely surrounded by contrast on supra-aortic neck or intracerebral arteries, was present on CT-angiography. Demographics, vascular risk factors, and comorbidities were recorded and stroke etiology was determined after a standardized workup. Repeat arterial imaging was performed by CTA at 24 h or before if clinical worsening was noted and then by Doppler and MRA during the first week and at four months. Of 409 thrombolyzed stroke patients undergoing acute CT Angiography, seven (1.7%) had a floating thrombus; of these seven, six had it in the anterior circulation. Demographics, risk factors and stroke severity of these patients were comparable to the other thrombolyzed patients. After intravenous thrombolysis, the floating thrombi resolved completely at 24 h in four of the patients, whereas one had an early recurrent stroke and one developed progressive worsening. One patient developed early occlusion of the carotid artery with floating thrombus and subsequently a TIA. The two patients with a stable floating thrombus had no clinical recurrences. In the literature, only one of four reported cases were found to have a thrombolysis-related early recurrence. Long-term outcome seemed similar in thrombolyzed patients with floating thrombus, despite a possible increase of very early recurrence. It remains to be established whether acute mechanical thrombectomy could be
An overset grid approach to linear wave-structure interaction
DEFF Research Database (Denmark)
Read, Robert; Bingham, Harry B.
2012-01-01
A finite-difference based approach to wave-structure interaction is reported that employs the overset approach to grid generation. A two-dimensional code that utilizes the Overture C++ library has been developed to solve the linear radiation problem for a floating body of arbitrary form. This sof......A finite-difference based approach to wave-structure interaction is reported that employs the overset approach to grid generation. A two-dimensional code that utilizes the Overture C++ library has been developed to solve the linear radiation problem for a floating body of arbitrary form...
An array effect of wave energy farm buoys
Directory of Open Access Journals (Sweden)
Hyuck-Min Kweon
2012-12-01
Full Text Available An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion. Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.
Float level switch for a nuclear power plant containment vessel
International Nuclear Information System (INIS)
Powell, J.G.
1993-01-01
This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures
Float level switch for a nuclear power plant containment vessel
Powell, James G.
1993-01-01
This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.
Floating cultivation of marine cyanobacteria using coal fly ash
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, M.; Yoshida, E.; Takeyama, H.; Matsunaga, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Dept. of Biotetechnology
2000-07-01
The aim was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. The viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine microalgae was investigated. The marine cyanobacterium Synechococcus sp. NKBC 040607 was found to adhere to floating CFA blocks in liquid culture medium. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.
Pisutha-Arnond, N; Chan, V W L; Iyer, M; Gavini, V; Thornton, K
2013-01-01
We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.
A Method for Modeling of Floating Vertical Axis Wind Turbine
DEFF Research Database (Denmark)
Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir
2013-01-01
It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine....... This integrated dynamic model takes into account the wind inflow, aerodynamics, hydrodynamics, structural dynamics (wind turbine, floating platform and the mooring lines) and a generator control. This approach calculates dynamic equilibrium at each time step and takes account of the interaction between the rotor...
Can Heavier Liquid Float on Top of a Lighter One?
International Nuclear Information System (INIS)
Ayyad, A. H.; Takrori, F.
2011-01-01
We report on a first observation of a floating spherical Hg (density 13 g/cm 3 ) drop on top of a glycerin (density 1.26 g/cm 3 ) drop, the latter is hemispherical and about four times larger in volume. This observation is clearly against nature's gravity law and has never been reported before. Here we present spectacular high resolution photos that clearly demonstrate this remarkable floating phenomenon. Using milli-Q water, the Hg drop would stay down adhered at the triple line. Instead, the coincidental use of tap water displays the same phenomenon. Increasing the volume of the supporting liquid to a certain value causes the Hg drop to sink. A 5-M NaCl aqueous solution is found enough to show the same floating phenomenon. This floating mercury as a phenomenon is puzzling. On this length scale it seems that surface tension and curvature dominate over gravity. (fundamental areas of phenomenology (including applications))
Multifractal analysis of managed and independent float exchange rates
Stošić, Darko; Stošić, Dusan; Stošić, Tatijana; Stanley, H. Eugene
2015-06-01
We investigate multifractal properties of daily price changes in currency rates using the multifractal detrended fluctuation analysis (MF-DFA). We analyze managed and independent floating currency rates in eight countries, and determine the changes in multifractal spectrum when transitioning between the two regimes. We find that after the transition from managed to independent float regime the changes in multifractal spectrum (position of maximum and width) indicate an increase in market efficiency. The observed changes are more pronounced for developed countries that have a well established trading market. After shuffling the series, we find that the multifractality is due to both probability density function and long term correlations for managed float regime, while for independent float regime multifractality is in most cases caused by broad probability density function.
High voltage switches having one or more floating conductor layers
Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson
2015-11-24
This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.
WindFloat Pacific Project, Final Scientific and Technical Report
Energy Technology Data Exchange (ETDEWEB)
Banister, Kevin [Principle Power, Inc., Emeryville, CA (United States)
2017-01-17
PPI’s WindFloat Pacific project (WFP) was an up to 30 MW floating offshore wind demonstration project proposed off the Coast of Oregon. The project was to be sited approximately 18 miles due west of Coos Bay, in over 1000 ft. of water, and is the first floating offshore wind array proposed in the United States, and the first offshore wind project of any kind proposed off the West Coast. PPI’s WindFloat, a semi-submersible foundation designed for high-capacity (6MW+) offshore wind turbines, is at the heart of the proposed project, and enables access to the world class wind resource at the project site and, equally, to other deep water, high wind resource areas around the country.
Review of radiological problems of floating nuclear power plants
International Nuclear Information System (INIS)
Rodd, T.
1982-01-01
Radiological problems associated with floating nuclear power plants under both normal operation and accident conditions are discussed. In the latter case, aspects of both the airborne and liquid pathways are reviewed
International Nuclear Information System (INIS)
Suresha, B.; Kumar, Kunigal N. Shiva
2009-01-01
The aim of the research article is to study the mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced vinyl ester composites. The measured wear volume loss increases with increase in abrading distance/abrasive particle size. However, the specific wear rate decreases with increase in abrading distance and decrease in abrasive particle size. The results showed that the highest specific wear rate is for glass fabric reinforced vinyl ester composite with a value of 10.89 x 10 -11 m 3 /Nm and the lowest wear rate is for carbon fabric reinforced vinyl ester composite with a value of 4.02 x 10 -11 m 3 /Nm. Mechanical properties were evaluated and obtained values are compared with the wear behaviour. The worn surface features have been examined using scanning electron microscope (SEM). Photomicrographs of the worn surfaces revealed higher percentage of broken glass fiber as compared to carbon fiber. Also better interfacial adhesion between carbon and vinyl ester in carbon reinforced vinyl ester composite was observed.
Energy Technology Data Exchange (ETDEWEB)
Barrera, Barbara
2000-08-28
The authors present preliminary results of a search for charmless two-body B decays to charged pions and kaons using data collected by the BaBar detector at the Stanford Linear Accelerator Center's PEP-II Storage ring. In a sample of 8.8 million produced B anti-B pairs the authors measure the branching fractions beta(B{sup 0} --> pi{sup +}pi{sup {minus}}) = (9.3{sub {minus}2.3{minus}1.4}{sup +2.6+1.2}) x 10{sup {minus}6} and beta(B{sup 0} --> K{sup +}pi{sup {minus}}) = (12.5{sub {minus}2.6{minus}1.7}{sup +3.0+1.3}) x 10{sup {minus}6}, where the first uncertainty is statistical and the second is systematic. For the decay B{sup 0} --> K{sup +}K{sup {minus}} they find no significant signal and set an upper limit of beta(B{sup 0} --> K{sup +}K{sup {minus}}) < 6.6 x 10{sup {minus}6} at the 90% confidence level.
Measurement of time dependent CP asymmetries in charged charmless hadronic two-body B decays at LHCb
Pennazzi, S
2008-01-01
The LHCb experiment is one of the four experiments that are installed at the protonproton Large Hadron Collider (LHC) at CERN, Geneva. The experiment is at the latest stage of its setting-up. The first collisions at high energy in LHC are planned to mid-2008, with the first results on the experiments soon after. The LHCb detector is a single-arm spectrometer conceived to pursue an extensive study of CP violation in the B meson system, over-constraining the Standard Model predictions and looking for any possible effect beyond this theory, and to look for rare phenomena in the b quark sector with very high precision. The subject of the present work is the study of the non-leptonic B meson decays into charged charmless two-body final states. This class of decays has been extensively studied and it is still matter of great interest at the B-factories and at Tevatron. In fact the current knowledge of this class of decays in the Bd/Bu sector starts to be quite constrained, but the Bs still remains a field where a r...
Two-body decays of gluino at full one-loop level in the quark-flavour violating MSSM.
Eberl, Helmut; Ginina, Elena; Hidaka, Keisho
2017-01-01
We study the two-body decays of the gluino at full one-loop level in the Minimal Supersymmetric Standard Model with quark-flavour violation (QFV) in the squark sector. The renormalisation is done in the [Formula: see text] scheme. The gluon and photon radiations are included by adding the corresponding three-body decay widths. We discuss the dependence of the gluino decay widths on the QFV parameters. The main dependence stems from the [Formula: see text]-[Formula: see text] mixing in the decays to up-type squarks, and from the [Formula: see text]-[Formula: see text] mixing in the decays to down-type squarks due to the strong constraints from B-physics on the other quark-flavour-mixing parameters. The full one-loop corrections to the gluino decay widths are mostly negative and of the order of about -10%. The QFV part stays small in the total width but can vary up to -8% for the decay width into the lightest [Formula: see text] squark. For the corresponding branching ratio the effect is somehow washed out by at least a factor of two. The electroweak corrections can be as large as 35% of the SUSY QCD corrections.
DEFF Research Database (Denmark)
Wang, Kai; Moan, Torgeir; Hansen, Martin Otto Laver
2016-01-01
Floating vertical-axis wind turbines (FVAWTs) provide the potential for utilizing offshore wind resources in moderate and deep water because of their economical installation and maintenance. Therefore, it is important to assess the performance of the FVAWT concept. This paper presents a stochastic...... on the response is demonstrated by comparing the floating wind turbine with the equivalent land-based wind turbine. Additionally, by comparing the behaviour of FVAWTs with flexible and rigid rotors, the effect of rotor flexibility is evaluated. Furthermore, the FVAWT is also investigated in the parked condition...... dynamic response analysis of a 5MW FVAWT based on fully coupled nonlinear time domain simulations. The studied FVAWT, which is composed of a Darrieus rotor and a semi-submersible floater, is subjected to various wind and wave conditions. The global motion, structural response and mooring line tension...
International Nuclear Information System (INIS)
Nagashima, Y; Itoh, K; Itoh, S-I; Fujisawa, A; Hoshino, K; Takase, Y; Yagi, M; Ejiri, A; Ida, K; Shinohara, K; Uehara, K; Kusama, Y
2006-01-01
This paper presents results of bispectral analysis applied to floating potential fluctuations in the edge region of ohmically heated plasmas in the JAERI Fusion Torus-2 Modified (JFT-2M) tokamak. Inside the outermost surface of plasmas, coherent mode fluctuations (CMs) in floating potential were observed around the frequency of the geodesic acoustic mode. The squared bicoherence shows significant nonlinear couplings between the CMs and background fluctuations. The biphase at the frequency of the CMs is localized around π, while that at frequencies of background fluctuations distributes in a wide range. The total bicoherence at the frequency of the CMs is proportional to the squared amplitude of the CMs. These observations are consistent with the theoretical prediction on the drift wave-zonal flow systems. Interpretation of the absolute value of the total bicoherence is also discussed
Buoy-Rope-Drum Wave Power System
Directory of Open Access Journals (Sweden)
Linsen Zhu
2013-01-01
Full Text Available A buoy-rope-drum wave power system is a new type of floating oscillating buoy wave power device, which absorbs energy from waves by buoy-rope-drum device. Based on the linear deep water wave theory and pure resistive load, with cylinder buoy as an example, the research sets up the theoretical model of direct-drive buoy-rope-drum wave power efficiency and analyzes the influence of the mass and load of the system on its generating efficiency. It points out the two main categories of the efficient buoy-rope-drum wave power system: light thin type and resonance type, and optimal designs of their major parameters are carried out on the basis of the above theoretical model of generating efficiency.
Multi-span Suspension Bridge with Floating Towers
Brunstad, Orjan
2013-01-01
The Norwegian Public Roads Administration (NPRA) is currently conducting a feasible study of crossing 8 fjords on the west coast of Norway. The most challenging crossing is the 3700 m wide Sognefjord. Three main concepts are under development, and one of the concepts of this crossing is a three span suspension bridge on floating towers. The floating foundation suggested is a multi-column pontoon with mooring lines to seabed. The object of this thesis was to study this bridge concept with resp...
Sustainability and the future of managed floating in China
Švarc, Jiří
2009-01-01
The purpose of this thesis is to study the Balance of Payments and the Exchange Rate of the People's Republic of China, and it aims to assess whether the current performance of their Managed Floating Exchange Rate is sustainable in the future (given the equilibrium of China's Balance of Payments) and examine what effect would a Free Floating Renminbi Exchange Rate have on the Chinese economy. The work uses the method of compilation - gathering and organizing information on the development of ...
Entropie analysis of floating car data systems
Directory of Open Access Journals (Sweden)
F. Gössel
2004-01-01
Full Text Available The knowledge of the actual traffic state is a basic prerequisite of modern traffic telematic systems. Floating Car Data (FCD systems are becoming more and more important for the provision of actual and reliable traffic data. In these systems the vehicle velocity is the original variable for the evaluation of the current traffic condition. As real FCDsystems are operating under conditions of limited transmission and processing capacity the analysis of the original variable vehicle speed is of special interest. Entropy considerations are especially useful for the deduction of fundamental restrictions and limitations. The paper analyses velocity-time profiles by means of information entropy. It emphasises in quantification of the information content of velocity-time profiles and the discussion of entropy dynamic in velocity-time profiles. Investigations are based on empirical data derived during field trials. The analysis of entropy dynamic is carried out in two different ways. On one hand velocity differences within a certain interval of time are used, on the other hand the transinformation between velocities in certain time distances was evaluated. One important result is an optimal sample-rate for the detection of velocity data in FCD-systems. The influence of spatial segmentation and of different states of traffic was discussed.
Enhancing Water Evaporation with Floating Synthetic Leaves
Boreyko, Jonathan; Vieitez, Joshua; Berrier, Austin; Roseveare, Matthew; Shi, Weiwei
2017-11-01
When a wetted nanoporous medium is exposed to a subsaturated ambient environment, the water menisci assume a concave curvature to achieve a negative pressure. This negative water pressure is required to balance the mismatch in water activity across the water-air interface to achieve local equilibrium. Here, we show that the diffusive evaporation rate of water can be greatly modulated by floating a nanoporous synthetic leaf at the water's free interface. For high ambient humidities, adding the leaf serves to enhance the evaporation rate, presumably by virtue of the menisci enhancing the effective liquid-vapor surface area. For low humidities, the menisci cannot achieve a local equilibrium and retreat partway into the leaf, which increases the local humidity directly above the menisci. In light of these two effects, we find the surprising result that leaves exposed to an ambient humidity of 90 percent can evaporate water at the same rate as leaves exposed to only 50 percent humidity. These findings have implications for using synthetic trees to enhance steam generation or water harvesting. This work was supported by the National Science Foundation (CBET-1653631).
Pc-Based Floating Point Imaging Workstation
Guzak, Chris J.; Pier, Richard M.; Chinn, Patty; Kim, Yongmin
1989-07-01
The medical, military, scientific and industrial communities have come to rely on imaging and computer graphics for solutions to many types of problems. Systems based on imaging technology are used to acquire and process images, and analyze and extract data from images that would otherwise be of little use. Images can be transformed and enhanced to reveal detail and meaning that would go undetected without imaging techniques. The success of imaging has increased the demand for faster and less expensive imaging systems and as these systems become available, more and more applications are discovered and more demands are made. From the designer's perspective the challenge to meet these demands forces him to attack the problem of imaging from a different perspective. The computing demands of imaging algorithms must be balanced against the desire for affordability and flexibility. Systems must be flexible and easy to use, ready for current applications but at the same time anticipating new, unthought of uses. Here at the University of Washington Image Processing Systems Lab (IPSL) we are focusing our attention on imaging and graphics systems that implement imaging algorithms for use in an interactive environment. We have developed a PC-based imaging workstation with the goal to provide powerful and flexible, floating point processing capabilities, along with graphics functions in an affordable package suitable for diverse environments and many applications.
Energy Technology Data Exchange (ETDEWEB)
Yago, K; Endo, H [Ship Research Inst., Tokyo (Japan)
1997-12-31
The hydroelastic response test was carried out in waves using an approximately 10m long large model, and the numerical analysis was done by the direct method, for a commercial-size (300m long) box-shaped floating structure with shallow draft. The scale ratio of the model is 1/30.8, and the minimum wave cycle is around 0.7s from wave-making capacity of the tank, which corresponds to 4 to 14s with the commercial-size structure. Elastic displacement and bending strain were measured. The calculated results by the direct method are in good agreement with the observed results. The fluid dynamic mutual interference effects between elements are weak in added mass but strong in damping force, indicating that the range of mutual interference is strongly related to rolling cycle in the range of mutual interference. Wave pressure on the floating structure bottom is high at the upper side of the wave, greatly damping towards the downside of the wave. However, response amplitude of elastic displacement tends to increase at the ends, both in upside and downside of the wave. For the floating structure studied, the 0 to 4th mode components are predominant in longitudinal waves, and the 6th or higher mode components are negligibly low. 21 refs., 15 figs., 2 tabs.
Energy Technology Data Exchange (ETDEWEB)
Yago, K.; Endo, H. [Ship Research Inst., Tokyo (Japan)
1996-12-31
The hydroelastic response test was carried out in waves using an approximately 10m long large model, and the numerical analysis was done by the direct method, for a commercial-size (300m long) box-shaped floating structure with shallow draft. The scale ratio of the model is 1/30.8, and the minimum wave cycle is around 0.7s from wave-making capacity of the tank, which corresponds to 4 to 14s with the commercial-size structure. Elastic displacement and bending strain were measured. The calculated results by the direct method are in good agreement with the observed results. The fluid dynamic mutual interference effects between elements are weak in added mass but strong in damping force, indicating that the range of mutual interference is strongly related to rolling cycle in the range of mutual interference. Wave pressure on the floating structure bottom is high at the upper side of the wave, greatly damping towards the downside of the wave. However, response amplitude of elastic displacement tends to increase at the ends, both in upside and downside of the wave. For the floating structure studied, the 0 to 4th mode components are predominant in longitudinal waves, and the 6th or higher mode components are negligibly low. 21 refs., 15 figs., 2 tabs.
Directory of Open Access Journals (Sweden)
Lorenzo Iorio
2014-01-01
Full Text Available By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr ≈ 2–4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t. More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose “elastic” parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t can be preliminarily constrained in a model-independent way down to a κ1 ≲ 2 x 10-13 year-3 level from latest Solar System’s planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≲ 10-8 year-3.
Diós, Péter; Pernecker, Tivadar; Nagy, Sándor; Pál, Szilárd; Dévay, Attila
2015-11-01
The object of the present study is to evaluate the effect of application of low-substituted hydroxypropyl cellulose (L-HPC) 11 and B1 as excipients promoting floating in gastroretentive tablets. Directly compressed tablets were formed based on experimental design. Face-centred central composite design was applied with two factors and 3 levels, where amount of sodium alginate (X 1) and L-HPC (X2 ) were the numerical factors. Applied types of L-HPCs and their 1:1 mixture were included in a categorical factor (X 3). Studied parameters were floating lag time, floating time, floating force, swelling behaviour of tablets and dissolution of paracetamol, which was used as a model active substance. Due to their physical character, L-HPCs had different water uptake and flowability. Lower flowability and lower water uptake was observed after 60 min at L-HPC 11 compared to L-HPC B1. Shorter floating times were detected at L-HPC 11 and L-HPC mixtures with 0.5% content of sodium alginate, whereas alginate was the only significant factor. Evaluating results of drug release and swelling studies on floating tablets revealed correlation, which can serve to help to understand the mechanism of action of L-HPCs in the field development of gastroretentive dosage forms.
Worlds Largest Wave Energy Project 2007 in Wales
DEFF Research Database (Denmark)
Christensen, Lars; Friis-Madsen, Erik; Kofoed, Jens Peter
2006-01-01
This paper introduces world largest wave energy project being developed in Wales and based on one of the leading wave energy technologies. The background for the development of wave energy, the total resource ands its distribution around the world is described. In contrast to wind energy turbines...... Dragon has to be scaled in accordance with the wave climate at the deployment site, which makes the Welch demonstrator device the worlds largest WEC so far with a total width of 300 meters. The project budget, the construction methods and the deployment site are also given....... a large number of fundamentally different technologies are utilised to harvest wave energy. The Wave Dragon belongs to the wave overtopping class of converters and the paper describes the fundamentals and the technical solutions used in this wave energy converter. An offshore floating WEC like the Wave...
Kanner, Samuel Adam Chinman
The design and operation of two counter-rotating vertical-axis wind turbines on a floating, semi-submersible platform is studied. The technology, called the Multiple Integrated and Synchronized Turbines (MIST) platform has the potential to reduce the cost of offshore wind energy per unit of installed capacity. Attached to the platform are closely-spaced, counter-rotating turbines, which can achieve a higher power density per planform area because of synergistic interaction effects. The purpose of the research is to control the orientation of the platform and rotational speeds of the turbines by modifying the energy absorbed by each of the generators of the turbines. To analyze the various aspects of the platform and wind turbines, the analysis is drawn from the fields of hydrodynamics, electromagnetics, aerodynamics and control theory. To study the hydrodynamics of the floating platform in incident monochromatic waves, potential theory is utilized, taking into account the slow-drift yaw motion of the platform. Steady, second-order moments that are spatially dependent (i.e., dependent on the platform's yaw orientation relative to the incident waves) are given special attention since there are no natural restoring yaw moment. The aerodynamics of the counter-rotating turbines are studied in collaboration with researchers at the UC Berkeley Mathematics Department using a high-order, implicit, large-eddy simulation. An element flipping technique is utilized to extend the method to a domain with counter-rotating turbines and the effects from the closely-spaced turbines is compared with existing experimental data. Hybrid testing techniques on a model platform are utilized to prove the controllability of the platform in lieu of a wind-wave tank. A 1:82 model-scale floating platform is fabricated and tested at the UC Berkeley Physical-Model Testing Facility. The vertical-axis wind turbines are simulated by spinning, controllable actuators that can be updated in real-time of
Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro; Zaccone, Claudio
2016-04-01
Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Islands floating and moving on a lake naturally were already described by Pliny the Elder in his Naturalis historia almost two millennia ago. Actually, he devoted a whole chapter of Naturalis historia to "Of Islands Ever Floating and Swimming", reporting how certain isles were always waving and never stood still. The status of "flotant" has been defined transitory; in fact, these small isles often disappear, in most of the cases because of a transition from floating island to firm land during decades is likely to happen. That is why most of the floating islands described by Pliny the Elder (e.g., Lacus Fundanus, Lacus Cutiliensis, Lacus Mutinensis, Lacus Statoniensis, Lacus Tarquiniensis, Lydia Calaminae, Lacus Vadimonis) do not exist anymore. In the present study, peat formation and organic matter evolution were investigated in order to understand how these peculiar environments form, and how stable actually they are. In fact, it is hoped that peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of organic sediments isolated from the sample at 385 cm of depth revealed that the island formed ca. 700 yrs ago (620±30 yr BP). The top 100 cm, consisting almost exclusively of Sphagnum mosses, show a very low bulk density (avg., 0.03±0.01 g cm-3
Pengaruh Frekuensi Melihat Iklan Floating terhadap Tingkat Kesadaran Merek
Directory of Open Access Journals (Sweden)
Forddhanto Bimantoro
2013-11-01
Full Text Available Abstract: Floating ad Â is online advertisement aiming to stimulate brand awareness by increasing familiarity through reexposing advertisement. This research examines the influence of ARCO Depok membersâ€™ exposure of floating ad at www.detik.com to their brand awareness about Samsung LED TV. The frequency of consuming the advertisement is differentiated into three categories, namely three times, five times and never. The result shows that the respondentsâ€™ exposure of floating ad could influence the level of brand awareness as much as 40.7%. However, this tendency was not represented in the category of five times. The result also shows that the only control variable which was able to significantly influence the level of brand awareness was the variable of respondentsâ€™ visitation to the site of detik.com. Abstrak: Iklan floating merupakan iklan di media internet yang bertujuan mencapai kesadaran merek dengan cara meningkatkan familiarity melalui frekuensi pengulangan iklan. Frekuensi melihat iklan floating dibedakan Â dengan memilah kelompok responden yang dikenai frekuensi melihat iklan 3 kali, 5 kali dan tidak melihat iklan. Penelitian ini menguji pengaruh frekuensi melihat iklan floating di www.detik.com terhadap tingkat kesadaran merek Samsung LED TV pada warga ARCO Depok, Jawa Barat. Hasil penelitian menunjukkan bahwa frekuensi melihat iklan floating dapat mempengaruhi tingkat kesadaran merek sebesar 40,7%; namun tidak terbukti pada kelompok yang melihat iklan sebanyak lima kali. Variabel kontrol yang mampu mempengaruhi tingkat kesadaran merek secara signifikan hanya variabel kunjungan responden ke detik.com.Â
The study to estimate the floating population in Seoul, Korea.
Lee, Geon Woo; Lee, Yong Jin; Kim, Youngeun; Hong, Seung-Han; Kim, Soohwaun; Kim, Jeong Soo; Lee, Jong Tae; Shin, Dong Chun; Lim, Youngwook
2017-01-01
Traffic-related pollutants have been reported to increase the morbidity of respiratory diseases. In order to apply management policies related to motor vehicles, studies of the floating population living in cities are important. The rate of metro rail transit system use by passengers residing in Seoul is about 54% of total public transportation use. Through the rate of metro use, the people-flow ratios in each administrative area were calculated. By applying a people-flow ratio based on the official census count, the floating population in 25 regions was calculated. The reduced level of deaths among the floating population in 14 regions having the roadside monitoring station was calculated as assuming a 20% reduction of mobile emission based on the policy. The hourly floating population size was calculated by applying the hourly population ratio to the regional population size as specified in the official census count. The number of people moving from 5 a.m. to next day 1 a.m. could not be precisely calculated when the population size was applied, but no issue was observed that would trigger a sizable shift in the rate of population change. The three patterns of increase, decrease, and no change of population in work hours were analyzed. When the concentration of particulate matter less than 10 μm in aerodynamic diameter was reduced by 20%, the number of excess deaths varied according to the difference of the floating population. The effective establishment of directions to manage the pollutants in cities should be carried out by considering the floating population. Although the number of people using the metro system is only an estimate, this disadvantage was supplemented by calculating inflow and outflow ratio of metro users per time in the total floating population in each region. Especially, 54% of metro usage in public transport causes high reliability in application.
The study to estimate the floating population in Seoul, Korea
Directory of Open Access Journals (Sweden)
Geon Woo Lee
2017-05-01
Full Text Available Traffic-related pollutants have been reported to increase the morbidity of respiratory diseases. In order to apply management policies related to motor vehicles, studies of the floating population living in cities are important. The rate of metro rail transit system use by passengers residing in Seoul is about 54% of total public transportation use. Through the rate of metro use, the people-flow ratios in each administrative area were calculated. By applying a people-flow ratio based on the official census count, the floating population in 25 regions was calculated. The reduced level of deaths among the floating population in 14 regions having the roadside monitoring station was calculated as assuming a 20% reduction of mobile emission based on the policy. The hourly floating population size was calculated by applying the hourly population ratio to the regional population size as specified in the official census count. The number of people moving from 5 a.m. to next day 1 a.m. could not be precisely calculated when the population size was applied, but no issue was observed that would trigger a sizable shift in the rate of population change. The three patterns of increase, decrease, and no change of population in work hours were analyzed. When the concentration of particulate matter less than 10 μm in aerodynamic diameter was reduced by 20%, the number of excess deaths varied according to the difference of the floating population. The effective establishment of directions to manage the pollutants in cities should be carried out by considering the floating population. Although the number of people using the metro system is only an estimate, this disadvantage was supplemented by calculating inflow and outflow ratio of metro users per time in the total floating population in each region. Especially, 54% of metro usage in public transport causes high reliability in application.
Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism
International Nuclear Information System (INIS)
Li, Qing'an; Kamada, Yasunari; Maeda, Takao; Murata, Junsuke; Iida, Kohei; Okumura, Yuta
2016-01-01
Wind turbines mounted on floating platforms are subjected to completely different and soft foundation properties, rather than onshore wind turbines. Due to the flexibility of their mooring systems, floating offshore wind turbines are susceptible to large oscillations such as aerodynamic force of the wind and hydrodynamic force of the wave, which may compromise their performance and structural stability. This paper focuses on the evaluation of aerodynamic forces depending on suppressing undesired turbine's motion by a rotor thrust control which is controlled by pitch changes with wind tunnel experiments. In this research, the aerodynamic forces of wind turbine are tested at two kinds of pitch control system: steady pitch control and cyclic pitch control. The rotational speed of rotor is controlled by a variable speed generator, which can be measured by the power coefficient. Moment and force acts on model wind turbine are examined by a six-component balance. From cyclic pitch testing, the direction and magnitude of moment can be arbitrarily controlled by cyclic pitch control. Moreover, the fluctuations of thrust coefficient can be controlled by collective pitch control. The results of this analysis will help resolve the fundamental design of suppressing undesired turbine's motion by cyclic pitch control. - Highlights: • Offshore wind offers additional options in regions with low onshore potential. • Two kinds of pitch control system: Steady pitch control and Cyclic pitch control. • Performance curves and unsteady aerodynamics are investigated in wind tunnel. • Fluctuations of thrust coefficient can be controlled by collective pitch control.
The typhoon effect on the aerodynamic performance of a floating offshore wind turbine
Directory of Open Access Journals (Sweden)
Zhe Ma
2017-12-01
Full Text Available The wind energy resource is considerably rich in the deep water of China South Sea, where wind farms have to face the challenge of extreme typhoon events. In this work, the typhoon effect on the aerodynamic performance of the 5MW OC3-Hywind floating offshore wind turbine (FOWT system has been investigated, based on the Aero-Hydro-Servo-Elastic FAST code. First, considering the full field observation data of typhoon “Damrey” is a long duration process with significant turbulence and high wind speed, so one 3-h representative truncated typhoon wind speed time history has been selected. Second, the effects of both the (variable-speed and collective-pitch control system of NREL 5 MW wind turbine and the motion of the floating platform on the blade aerodynamic performance of the FOWT system during the representative typhoon time history has been investigated, based on blade element momentum (BEM theory (coupled with potential theory for the calculation of the hydrodynamic loads of the Spar platform. Finally, the effects of different wind turbine control strategies, control parameter (KP–KI combinations, wave heights and parked modes on the rotor aerodynamic responses of the FOWT system have been clarified. The extreme typhoon event can result in considerably large extreme responses of the rotor thrust and the generated power due to the possible blade pitch angle error phenomenon. One active-parked strategy has been proposed for reducing the maximum aerodynamic responses of the FOWT system during extreme typhoon events.
Uncertainty Analysis of OC5-DeepCwind Floating Semisubmersible Offshore Wind Test Campaign: Preprint
Energy Technology Data Exchange (ETDEWEB)
Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-07-26
This paper examines how to assess the uncertainty levels for test measurements of the Offshore Code Comparison, Continued, with Correlation (OC5)-DeepCwind floating offshore wind system, examined within the OC5 project. The goal of the OC5 project was to validate the accuracy of ultimate and fatigue load estimates from a numerical model of the floating semisubmersible using data measured during scaled tank testing of the system under wind and wave loading. The examination of uncertainty was done after the test, and it was found that the limited amount of data available did not allow for an acceptable uncertainty assessment. Therefore, this paper instead qualitatively examines the sources of uncertainty associated with this test to start a discussion of how to assess uncertainty for these types of experiments and to summarize what should be done during future testing to acquire the information needed for a proper uncertainty assessment. Foremost, future validation campaigns should initiate numerical modeling before testing to guide the test campaign, which should include a rigorous assessment of uncertainty, and perform validation during testing to ensure that the tests address all of the validation needs.
International Nuclear Information System (INIS)
Warshaw, S I
2001-01-01
The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity σv is calculated, where σ is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the TDF
Directory of Open Access Journals (Sweden)
Cariou A.
2006-11-01
Full Text Available Pour calculer le potentiel de l'écoulement autour d'un corps en mouvement rectiligne uniforme, soit en fluide illimité (engin sous-marin, soit sur une mer infinie (corps flottant ou voisin de la surface libre, on se place dans le cadre du problème de Neumann extérieur ou du problème de Neumann Kelvin. Pour résoudre ces problèmes on se propose de délimiter autour de la carène un domaine fluide fini (,ri dont les frontières sont : la carène (SC, une surface (SE entourant la carène et éventuellement la portion de surface libre (SI. limitée par les lignes de flottaison de SC et SE. La solution à l'intérieur de (,ri est déterminée à l'aide d'une méthode d'éléments finis et elle est raccordée à la solution en domaine infini elle-même calculée grâce aux fonctions de Green du problème (ou solutions élémentaires. For computing the flow potential around a body in uniform rectilinear movement, either in an unlimited fluid (subsea croft or on an infinite sea (body floating near the free surface, consideration must be given ta the outside Neumann problem or ta the Neumann Kelvin problem. Ta solve these problems, this article proposes ta delimit a finite fluid realm (T: around the body. The limits of this realm are: I the body (SC, 2 a surface (SE surrounding the body, and eventually 3 the portion of free surface (SU bounded by the waterlines of SC and SE. The solution within iri is determined by a finite elements method, and it is related ta the solution in on infinite realm which in turn is computed by the Green functions of the problem (or elementary solutions.
Extremely stable piezo mechanisms for the New Gravitational Wave Observatory
Pijnenburg, J.A.C.M.; Rijnveld, N.; Hogenhuis, H.
2012-01-01
Detection and observation of gravitational waves requires extreme stability in the frequency range 3e-5 Hz to 1 Hz. NGO/LISA will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. To operate NGO/LISA, the following piezo mechanisms are
Floating venous thrombi: diagnosis with spiral-CT-venography
International Nuclear Information System (INIS)
Gartenschlaeger, M.; Schmidt, J.A.
1996-01-01
Local application of contrast agent into an ipsilateral dorsal foot vein and spiral CT were used to examine 16 consecutive cases with deep venous thrombosis proven at conventional venography; in addition, colour Doppler flow imaging was performed. At conventional venography, 8/16 thrombi appeared to be floating and the remaining 8/16 were adherent to the vessel wall. Spiral-CT showed 15/16 thrombi to be adherent to the vessel wall; the floating thrombus correlated with findings in conventional venography. At colour Doppler flow imaging 3/16 thrombi were considered floating, one of them was discordant to conventional venography. The comparison of conventional venography to spiral-CT demonstrates complete agreement for adherence to vessel wall seen in conventional venography (p=1,0) and significant discordance in cases with free-floating appearance in conventional venography. Adherence of thrombi to the wall of the vessel at conventional venography is in agreement with computed tomography. Conventional venography probably overestimates the prevalence of free floating thrombi. (orig./MG) [de
Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters
DEFF Research Database (Denmark)
Tedd, James; Frigaard, Peter
2007-01-01
This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived...... experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient...... to allow advanced control systems to be developed using this knowledge to significantly improve power capture....
Short term wave forecasting, using digital filters, for improved control of Wave Energy Converters
Energy Technology Data Exchange (ETDEWEB)
Tedd, J.; Frigaard, P. [Department of Civil Engineering, Aalborg University, Aalborg (Denmark)
2007-07-01
This paper presents a Digital Filter method for real time prediction of waves incident upon a Wave Energy device. The method transforms waves measured at a point ahead of the device, to expected waves incident on the device. The relationship between these incident waves and power capture is derived experimentally. Results are shown form measurements taken on the Wave Dragon prototype device, a floating overtopping device situated in Northern Denmark. In this case the method is able to accurately predict the surface elevation at the device 11.2 seconds before the measurement is made. This is sufficient to allow advanced control systems to be developed using this knowledge to significantly improve power capture.
Energy Technology Data Exchange (ETDEWEB)
Jeffrey, D C; Richmond, D J.E.; Salter, S H; Taylor, J R.M.
1976-09-01
This report is concerned mainly with the measurement of backbone forces on a string of floating duck converters. The results from experiments on single models in a narrow wave tank are presented showing surge and leave forces on cylinders and ducks of various dimensions.
Free-floating planets from microlensing
Sumi, Takahiro
2014-06-01
Gravitational microlensing has an unique sensitivity to exoplanets at outside of the snow-line and even exoplanets unbound to any host stars because the technique does not rely on any light from the host but the gravity of the lens. MOA and OGLE collaborations reported the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice (1.8_{-0.8}^{+1.7}) as common as main-sequence stars, based on two years of gravitational microlensing survey observations toward the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. The such short-timescale unbound planetary candidates have been detected with the similar rate in on-going observations and these groups are working to update the analysis with larger statistics. Recently, there are also discoveries of free-floating planetary mass objects by the direct imaging in young star-forming regions and in the moving groups, but these objects are limited to massive objects of 3 to 15 Jupiter masses.They are more massive than the population found by microlensing. So they may be a different population with the different formation process, either similar with that of stars and brown dwarfs, or formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits. It is important to fill the gap of these mass ranges to fully understand these populations. The Wide Field Infrared Survey Telescope (WFIRST) is the highest ranked recommendation for a large space mission in the recent New Worlds, New Horizons (NWNH) in Astronomy and Astrophysics 2010 Decadal Survey. Exoplanet microlensing program is one of the primary science of WFIRST. WFIRST will find about 3000 bound planets and 2000 unbound planets by the high precision continuous survey 15 min
N. E. L. Floating Terminator. Volume 3C(NFT) - Technical appraisal. Consultants' 1983 report
Energy Technology Data Exchange (ETDEWEB)
1986-01-01
A report is given by a team of Consultants on the estimated cost of converting wave energy into electrical energy by a 2 GW array of NEL Floating Terminator Devices and delivering the electricity to a sub-station on the west coast of Skye. A detailed engineering assessment is given. Comparisons with the estimates made by the team developing the concept are presented and discrepancies discussed. The main cost differences are caused by the different assessments of the power conversion efficiency and the electrical transmission costs.
Design and Aero-elastic Simulation of a 5MW Floating Vertical Axis Wind Turbine
DEFF Research Database (Denmark)
Vita, Luca; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge
2013-01-01
This paper deals with the design of a 5MW floating offshore Vertical Axis Wind Turbine (VAWT). The design is based on a new offshore wind turbine concept (DeepWind concept), consisting of a Darrieus rotor mounted on a spar buoy support structure, which is anchored to the sea bed with mooring lines......-DTU. The numerical simulations take into account the fully coupled aerodynamic and hydrodynamic loads on the structure, due to wind, waves and currents. The turbine is tested in operative conditions, at different sea states, selected according to the international offshore standards. The research is part...... of the European project DeepWind (2010-2014), which has been financed by the European Union (FP7-Future Emerging Technologies)....
Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj
2014-09-01
When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.
Modeling the Buoyancy System of a Wave Energy Power Plant
DEFF Research Database (Denmark)
Pedersen, Tom S.; Nielsen, Kirsten M.
2009-01-01
A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...... producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting...
International Nuclear Information System (INIS)
Cooperstock, F.I.; Hobill, D.W.
1979-01-01
Suggested difficulties and criticism regarding earlier work is addressed. It is demonstrated that the rate of gravitational energy loss from the authors' model free-fall system employing the widely accepted Bondi method agrees precisely with the results described in prior works. Origins of the breakdown of the quadrupole formalism for free fall, previously indicated, are now delineated in detail. The role of source structure in the energy loss rate re-emerges, bringing into question much of the earlier work of others. The iterative technique with flat-space wave operators is justified. A new approach to quasiperiodic systems such as binary stars is described. Ideally modeled upon the actual birth of such systems, it evolves from an initially stationary configuration, again avoiding the problems and ambiguities regarding incoming radiation
Some aspects of arctic offshore floating structures
Energy Technology Data Exchange (ETDEWEB)
Lubbad, Raed Khalil
2011-01-15
The present work highlights some aspects related to the analyses of Arctic offshore floating structures. This thesis consists of five papers, which can be divided into two main categories. One category deals with the dynamics of slender structures with an emphasis on the prediction and suppression of vortex induced vibrations (VIV), and the other category examines the process of interaction between sloping structures and sea ice with focus on developing a numerical model to simulate this process in real time. Slender structures, such as mooring lines and marine risers, are very important for the offshore petroleum industry, which is currently approaching deeper waters. Increasingly, attention has been focused on predicting the susceptibility of these structures to VIV. In this thesis, two asymptotic techniques namely, the local analysis and the WKB methods, were used to derive closed-form solutions for the natural frequencies and mode shapes of slender line-like structures. Both the top-tensioned nearly-vertical configuration and the catenary configuration were considered. The accuracy of the solutions derived was established through comparison with other analytic solution techniques and with results of numerical finite element solutions. The effects of the bending stiffness and the effects of approximating the tension variation as a linear function were discussed. Experimental data on the multi-modal in-line and cross-flow response behaviour of a towed catenary model were analysed to examine the usefulness of the solutions for predicting the response frequencies and envelopes due to VIV. Helical strakes are often used as a mitigating measure to suppress the VIV of slender structures. This thesis presented an innovative method to fit ropes helically to a riser in the installation phase. Such a procedure will help to overcome the handling problem associated with the use of conventional sharp-edged strakes. Experimental investigations were then performed to verify
Research of design challenges and new technologies for floating LNG
Directory of Open Access Journals (Sweden)
Dong-Hyun Lee
2014-06-01
Full Text Available With the rate of worldwide LNG demand expected to grow faster than that of gas demand, most major oil companies are currently investing their resources to develop floating LNG-FLNG (i.e. LNG FSRU and LNG FPSO. The global Floating LNG (FLNG market trend will be reviewed based on demand and supply chain relationships. Typical technical issues associated with FLNG design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this study, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU will be reviewed together with their investigated solution. At the same time, research of new LNG-related technologies such as combined containment system will be presented.
Floating cultivation of marine cyanobacteria using coal fly ash.
Matsumoto, M; Yoshida, E; Takeyama, H; Matsunaga, T
2000-01-01
The aim of this study was to develop improved methodologies for bulk culturing of biotechnologically useful marine cyanobacteria in the open ocean. We have investigated the viability of using coal fly ash (CFA) blocks as the support medium in a novel floating culture system for marine micro-algae. The marine cyanobacterium Synechococcus sp. NKBG 040607 was found to adhere to floating CFA blocks in liquid culture medium. Maximum density of attached cells of 2.0 x 10(8) cells/cm2 was achieved using seawater. The marine cyanobacterium Synechococcus sp. NKBG 042902 weakly adhered to floating CFA blocks in BG-11 medium. Increasing the concentration of calcium ion in the culture medium enhanced adherence to CFA blocks.
Mathematical modeling of large floating roof reservoir temperature arena
Directory of Open Access Journals (Sweden)
Liu Yang
2018-03-01
Full Text Available The current study is a simplification of related components of large floating roof tank and modeling for three dimensional temperature field of large floating roof tank. The heat transfer involves its transfer between the hot fluid in the oil tank, between the hot fluid and the tank wall and between the tank wall and the external environment. The mathematical model of heat transfer and flow of oil in the tank simulates the temperature field of oil in tank. Oil temperature field of large floating roof tank is obtained by numerical simulation, map the curve of central temperature dynamics with time and analyze axial and radial temperature of storage tank. It determines the distribution of low temperature storage tank location based on the thickness of the reservoir temperature. Finally, it compared the calculated results and the field test data; eventually validated the calculated results based on the experimental results.
Numerical modelling of floating debris in the world's oceans.
Lebreton, L C-M; Greer, S D; Borrero, J C
2012-03-01
A global ocean circulation model is coupled to a Lagrangian particle tracking model to simulate 30 years of input, transport and accumulation of floating debris in the world ocean. Using both terrestrial and maritime inputs, the modelling results clearly show the formation of five accumulation zones in the subtropical latitudes of the major ocean basins. The relative size and concentration of each clearly illustrate the dominance of the accumulation zones in the northern hemisphere, while smaller seas surrounded by densely populated areas are also shown to have a high concentration of floating debris. We also determine the relative contribution of different source regions to the total amount of material in a particular accumulation zone. This study provides a framework for describing the transport, distribution and accumulation of floating marine debris and can be continuously updated and adapted to assess scenarios reflecting changes in the production and disposal of plastic worldwide. Copyright © 2012 Elsevier Ltd. All rights reserved.
Formulation and evaluation of glipizide floating-bioadhesive tablets
Directory of Open Access Journals (Sweden)
Jayvadan K. Patel
2010-10-01
Full Text Available The purpose of this study was formulation and in vitro evaluation of floating-bioadhesive tablets to lengthen the stay of glipizide in its absorption area. Effervescent tablets were made using chitosan (CH, hydroxypropyl methylcellulose (HPMC, carbopolP934 (CP, polymethacrylic acid (PMA, citric acid, and sodium bicarbonate. Tablets with 5% effervescent base had longer lag time than 10%. The type of polymer had no significant effect on the floating lag time. All tablets floated atop the medium for 23-24 hr. Increasing carbopolP934 caused higher bioadhesion than chitosan (p < 0.05. All formulations showed a Higuchi, non-Fickian release mechanism. Tablets with 10% effervescent base, 80% CH/20% HPMC, or 80% CP/20% PMA seemed desirable.
Investigation of Tank 241-AN-101 Floating Solids
Energy Technology Data Exchange (ETDEWEB)
Kraft, Douglas P. [Washington River Protection Solutions, LLC, Richland, VA (United States); Meznarich, H. K. [Washington River Protection Solutions, LLC, Richland, VA (United States)
2017-10-30
Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floating and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.
Optimal Control of a Ballast-Stabilized Floating Wind Turbine
DEFF Research Database (Denmark)
Christiansen, Søren; Knudsen, Torben; Bak, Thomas
2011-01-01
Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. The use of floating structures for deeper waters is being explored. The control objective is a tradeoff between power capture and fatigue, especially that produced by the oscillations caused by the reduced...... structural stiffness of a floating installation in combination with a coupling between the fore–aft motion of the tower and the blade pitch. To address this problem, the present paper models a ballast-stabilized floating wind turbine, and suggests a linear quadratic regulator (LQR) in combination with a wind...... estimator and a state observer. The results are simulated using aero elastic code and analysed in terms of damage equivalent loads. When compared to a baseline controller, this controller clearly demonstrates better generator speed and power tracking while reducing fatigue loads....
A Floating Ocean Energy Conversion Device and Numerical Study on Buoy Shape and Performance
Directory of Open Access Journals (Sweden)
Ruiyin Song
2016-05-01
Full Text Available Wave and current energy can be harnessed in the East China Sea and South China Sea; however, both areas are subject to high frequencies of typhoon events. To improve the safety of the ocean energy conversion device, a Floating Ocean Energy Conversion Device (FOECD with a single mooring system is proposed, which can be towed to avoid severe ocean conditions or for regular maintenance. In this paper, the structure of the FOECD is introduced, and it includes a catamaran platform, an oscillating buoy part, a current turbine blade, hydraulic energy storage and an electrical generation part. The numerical study models the large catamaran platform as a single, large buoy, while the four floating buoys were modeled simply as small buoys. Theoretical models on wave energy power capture and efficiency were established. To improve the suitability of the buoy for use in the FOECD and its power harvesting capability, a numerical simulation of the four buoy geometries was undertaken. The shape profiles examined in this paper are cylindrical, turbinate (V-shaped and U-shaped cone with cylinder, and combined cylinder-hemisphere buoys. Simulation results reveal that the suitability of a turbinate buoy is the best of the four types. Further simulation models were carried out by adjusting the tip radius of the turbinate buoy. Three performance criteria including suitability, power harvesting capability and energy capture efficiency were analyzed. It reveals that the turbinate buoy has almost the same power harvesting capabilities and energy capture efficiency, while its suitability is far better than that of a cylindrical buoy.
Directory of Open Access Journals (Sweden)
K. Müller
2018-03-01
Full Text Available Fatigue load assessment of floating offshore wind turbines poses new challenges on the feasibility of numerical procedures. Due to the increased sensitivity of the considered system with respect to the environmental conditions from wind and ocean, the application of common procedures used for fixed-bottom structures results in either inaccurate simulation results or hard-to-quantify conservatism in the system design. Monte Carlo-based sampling procedures provide a more realistic approach to deal with the large variation in the environmental conditions, although basic randomization has shown slow convergence. Specialized sampling methods allow efficient coverage of the complete design space, resulting in faster convergence and hence a reduced number of required simulations. In this study, a quasi-random sampling approach based on Sobol sequences is applied to select representative events for the determination of the lifetime damage. This is calculated applying Monte Carlo integration, using subsets of a resulting total of 16 200 coupled time–domain simulations performed with the simulation code FAST. The considered system is the Danmarks Tekniske Universitet (DTU 10 MW reference turbine installed on the LIFES50+ OO-Star Wind Floater Semi 10 MW floating platform. Statistical properties of the considered environmental parameters (i.e., wind speed, wave height and wave period are determined based on the measurement data from the Gulf of Maine, USA. Convergence analyses show that it is sufficient to perform around 200 simulations in order to reach less than 10 % uncertainty of lifetime fatigue damage-equivalent loading. Complementary in-depth investigation is performed, focusing on the load sensitivity and the impact of outliers (i.e., values far away from the mean. Recommendations for the implementation of the proposed methodology in the design process are also provided.
Aerodynamics and Motion Performance of the H-Type Floating Vertical Axis Wind Turbine
Directory of Open Access Journals (Sweden)
Ying Guo
2018-02-01
Full Text Available Aerodynamics and motion performance of the floating vertical wind turbine (VAWT were studied in this paper, where the wind turbine was H-type and the floating foundation was truss spar type. Based on the double-multiple-stream-tube theory, the formulae were deduced to calculate the aerodynamic loads acting on the wind turbine considering the motions of the floating foundation. The surge-heave-pitch nonlinear coupling equations of the H-type floating VAWT were established. Aerodynamics and motion performance of a 5 MW H-type floating VAWT was studied, and the effect of the floating foundation motions on the aerodynamic loads was analyzed. It is shown that the motions of the floating foundation on the aerodynamics cannot be ignored. The motion of the H-type floating VAWT was also compared with that of the Φ-type floating VAWT: they have the same floating foundation, rated output power, mooring system and total displacement. The results show that the H-type floating VAWT has better motion performance, and the mean values of surge, heave and pitch of the H-type floating VAWT are much smaller comparing with the Φ-type floating VAWT.
Capture of free-floating planets by planetary systems
Goulinski, Nadav; Ribak, Erez N.
2018-01-01
Evidence of exoplanets with orbits that are misaligned with the spin of the host star may suggest that not all bound planets were born in the protoplanetary disc of their current planetary system. Observations have shown that free-floating Jupiter-mass objects can exceed the number of stars in our Galaxy, implying that capture scenarios may not be so rare. To address this issue, we construct a three-dimensional simulation of a three-body scattering between a free-floating planet and a star accompanied by a Jupiter-mass bound planet. We distinguish between three different possible scattering outcomes, where the free-floating planet may get weakly captured after the brief interaction with the binary, remain unbound or 'kick out' the bound planet and replace it. The simulation was performed for different masses of the free-floating planets and stars, as well as different impact parameters, inclination angles and approach velocities. The outcome statistics are used to construct an analytical approximation of the cross-section for capturing a free-floating planet by fitting their dependence on the tested variables. The analytically approximated cross-section is used to predict the capture rate for these kinds of objects, and to estimate that about 1 per cent of all stars are expected to experience a temporary capture of a free-floating planet during their lifetime. Finally, we propose additional physical processes that may increase the capture statistics and whose contribution should be considered in future simulations in order to determine the fate of the temporarily captured planets.
Energy Technology Data Exchange (ETDEWEB)
Dallapiccola, Carlo
2001-07-25
We present measurements of the branching fractions and a search for CP-violating charge asymmetries in charmless hadronic decays of B mesons into two-body final states of kaons and pions. The results are based on a data sample of approximately 23 million BB(bar) pairs collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC.
Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho
2009-01-19
A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.
Papaioannou, G.; Giacomozzi, F.; Papandreou, E.; Margesin, B.
2011-08-01
The paper investigates the actuation mechanism in floating electrode microelectromechanical system capacitive switches. It is demonstrated that in the pull-in state, the device operation turns from voltage to current controlled actuation. The current arises from Poole-Frenkel mechanism in the dielectric film and Fowler-Nordheim in the bridge-floating electrode air gap. The pull-out voltage seems to arise from the abrupt decrease of Fowler-Nordheim electric field intensity. This mechanism seems to be responsible for the very small difference with respect to the pull-in voltage.