WorldWideScience

Sample records for twitch oxidative fibers

  1. Unchanged content of oxidative enzymes in fast-twitch muscle fibers and V˙O2 kinetics after intensified training in trained cyclists

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Gunnarsson, Thomas Gunnar Petursson; Thomassen, Martin

    2015-01-01

    perturbation during INT. Pulmonary V˙O2 kinetics was determined in eight trained male cyclists (V˙O2-max: 59 ± 4 (means ± SD) mL min(-1) kg(-1)) during MOD (205 ± 12 W ~65% V˙O2-max) and INT (286 ± 17 W ~85% V˙O2-max) exercise before and after a 7-week HIT period (30-sec sprints and 4-min intervals) with a 50...... DW(-1) min(-1)) of CS (56 ± 8 post-HIT vs. 59 ± 10 pre-HIT), HAD (27 ± 6 vs. 29 ± 3) and PFK (340 ± 69 vs. 318 ± 105) and the capillary to fiber ratio (2.30 ± 0.16 vs. 2.38 ± 0.20) was unaltered following HIT. V˙O2 kinetics was unchanged with HIT and the speed of the primary response did not differ...... of oxidative enzymes in fast-twitch fibers, and did not change V˙O2 kinetics....

  2. Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers

    Science.gov (United States)

    Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.

    2009-01-01

    Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125

  3. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    Science.gov (United States)

    Sanchez, B.; Li, J.; Bragos, R.; Rutkove, S. B.

    2014-05-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz-10 MHz frequency range and modeled to a resistivity Cole-Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease.

  4. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    International Nuclear Information System (INIS)

    Sanchez, B; Li, J; Rutkove, S B; Bragos, R

    2014-01-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz–10 MHz frequency range and modeled to a resistivity Cole–Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease. (paper)

  5. Influence of N-acetylcysteine on oxidative stress in slow-twitch soleus muscle of heart failure rats

    OpenAIRE

    Martinez, Paula Felippe [UNESP; Bonomo, Camila [UNESP; Guizoni, Daniele Mendes [UNESP; Oliveira Junior, Silvio Assis [UNESP; Damatto, Ricardo Luiz [UNESP; Cezar, Marcelo Diarcadia Mariano [UNESP; Lima, Aline Regina Ruiz [UNESP; Pagan, Luana Urbano [UNESP; Seiva, Fabio Rodrigues; Fernandes, Denise Castro; Laurindo, Francisco Rafael Martins; Novelli, Ethel Lourenzi Barbosa [UNESP; Matsubara, Luiz Shiguero [UNESP; Zornoff, Leonardo Antonio Mamede [UNESP; Okoshi, Katashi [UNESP

    2015-01-01

    Background: Chronic heart failure is characterized by decreased exercise capacity with early exacerbation of fatigue and dyspnea. Intrinsic skeletal muscle abnormalities can play a role in exercise intolerance. Causal or contributing factors responsible for muscle alterations have not been completely defined. This study evaluated skeletal muscle oxidative stress and NADPH oxidase activity in rats with myocardial infarction (MI) induced heart failure. Methods and Results: Four months after MI,...

  6. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    Science.gov (United States)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  7. Structure and properties of tempo-oxidized cotton fibers

    Directory of Open Access Journals (Sweden)

    Milanovic Jovana

    2012-01-01

    Full Text Available In this paper, the influence of the catalytic oxidation using water soluble and stable nitroxyl radical 2,2´,6,6´-tetramethylpiperidine-1-oxyl (TEMPO on structure and properties of cotton fibers was studied. In particular, the selective TEMPO-mediated oxidation has become very interesting way for introduction of functional groups into cellulose fibers with the aim to obtain oxycellulose fibers with specific properties. Unmodified and modified fibers were characterized in terms of weight loss values, introduced functional groups and crystallinity index. Also, oxidized fibers were characterized in terms of the sorption, morphological, and physico-mechanical properties. The TEMPO-oxidized cotton fibers show a minimum increase of fineness (from 1.32 to 1.28 dtex and increase of crystallinity index (up to 91.9%, while the tensile strength of fibers decreases (up to 10.82 cN/tex. By the TEMPO-mediated oxidation of cotton fibers significant amount of carboxyl groups (up to 0.795 mmol/g cell can be introduced into cellulose fibers. Introduced hydrophilic carboxyl groups increases the sorption properties of oxidized fibers, that can be used directly or for further chemical modification.

  8. Photocatalysis application of zinc oxide fibers obtained by electrospinning

    International Nuclear Information System (INIS)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2010-01-01

    Using the electrospinning technique, composite fibers of polyvinylbutyral and zinc nitrate were obtained. After a heat treatment at 600 deg C, nanostructured zinc oxide fibers were obtained. The fibers were characterized using X ray diffraction. The photocatalytic activity of the nanostructured fibers was determined using the photodegradation of a methyl orange solution. The increase in the heat treatment temperature decreases the photoactivity of the zinc oxide. The heat treatment, the phases and the surface area, affect the physical, chemical and photocatalytic activity of the zinc oxide. (author)

  9. Oxidation behaviour of ribbon shape carbon fibers and their composites

    International Nuclear Information System (INIS)

    Manocha, L.M.; Warrier, Ashish; Manocha, S.; Edie, D.D.; Ogale, A.A.

    2006-01-01

    Carbon fibers, though important constituent as reinforcements for high performance carbon/carbon composites, are shadowed by their oxidation in air at temperatures beginning 450 deg. C. Owing to tailorable properties of carbon fibers, efforts are underway to explore structural modification possibilities to improve the oxidation resistance of the fibers and their composites. The pitch based ribbon shape carbon fibers are found to have highly preferential oriented graphitic structure resulting in high mechanical properties and thermal conductivity. In the present work oxidation behaviour of ribbon shape carbon fibers and their composites heat treated to 1000-2700 deg. C has been studied. SEM examination of these composites exhibits development of graphitic texture and ordering within the fibers with increase in heat treatment temperature. Oxidation studies made by thermogravimetric analysis in air show that matrix has faster rate of oxidation and in the initial stages the matrix gets oxidized at faster rate with slower rate of oxidation of the fibers depending on processing conditions of fibers and composites

  10. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  11. Interactions between the glass fiber coating and oxidized carbon nanotubes

    International Nuclear Information System (INIS)

    Ku-Herrera, J.J.; Avilés, F.; Nistal, A.; Cauich-Rodríguez, J.V.; Rubio, F.; Rubio, J.; Bartolo-Pérez, P.

    2015-01-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible

  12. Crystal-free Formation of Non-Oxide Optical Fiber

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  13. Recovery of Action Potentials and Twitches after K-contractures in Frog Skeletal Muscle(Physiology)

    OpenAIRE

    Atsuko, Suzuki; Ibuki, Shirakawa; Kazunari, Noguchi; Hirohiko, Kishi; Haruo, Sugi; Department of Physiology, School of Medicine, Teikyo University:(Present office)Department of Physical Therapy, Health Science University; Department of Physiology, School of Medicine, Teikyo University; Department of Physiology, School of Medicine, Teikyo University; Department of Physiology, School of Medicine, Teikyo University; Department of Physiology, School of Medicine, Teikyo University

    2004-01-01

    To give information about intracellular Ca^ translocation during and after K-contractures in vertebrate skeletal muscle fibers, we examined recovery of action potentials and twitches after interruption and spontaneous relaxation of K-contractures at low temperature (3℃) that greatly reduced the rate of Ca^ reuptake by the sarcoplasmic reticulum. On membrane repolarization interrupting K-contractures, the amplitude of both action potentials and twitches recovered quickly, while the falling pha...

  14. Fiber Fabrication Facility for Non-Oxide and Specialty Glasses

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Unique facility for the research, development, and fabrication of non-oxide and specialty glasses and fibers in support of Navy/DoD programs.DESCRIPTION:...

  15. Oxidative stability of pullulan electrospun fibers containing fish oil

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Damberg, Cecilie; Chronakis, Ioannis S.

    2017-01-01

    The effect of oil content and addition of natural antioxidants on the morphology and oxidative stability of pullulan ultra-thin fibers loaded with fish oil and obtained by electrospinning was investigated. Pullulan sub-micron fibers containing 10 and 30wt% fish oil were prepared and both presented...... into food matrices. These results show the feasibility to encapsulate fish oil in pullulan ultra-thin fibers and to improve their oxidative stability by adding natural antioxidants such as δ-tocopherol and rosemary extract. Therefore, this study might open up new opportunities for further technological...... development in the production of omega-3 nanodelivery systems, which have potential applications in different types of fortified foods. Encapsulation of fish oil in electrospun pullulan fibers stabilized by natural antioxidants....

  16. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.

    Science.gov (United States)

    Callister, Robert J; Pierce, Patricia A; McDonagh, Jennifer C; Stuart, Douglas G

    2005-04-01

    A description is provided of the ratio of slow-tonic vs. slow- and fast-twitch fibers for five muscles in the adult turtle, Pseudemys (Trachemys) scripta elegans. The cross-sectional area of each fiber type and an estimation of the relative (weighted) cross-sectional area occupied by the different fiber types are also provided. Two hindlimb muscles (flexor digitorum longus, FDL; external gastrocnemius, EG) were selected on the basis of their suitability for future motor-unit studies. Three neck muscles (the fourth head of testo-cervicis, TeC4; the fourth head of retrahens capitus collique, RCCQ4; transversalis cervicis, TrC) were chosen for their progressively decreasing oxidative capacity. Serial sections were stained for myosin adenosine triphosphatase (ATPase), NADH-diaphorase, and alpha-glycerophosphate dehydrogenase (alpha-GPDH). Conventional fiber-type classification was then performed using indirect markers for contraction speed and oxidative (aerobic) vs. glycolytic (anaerobic) metabolism: i.e., slow oxidative (SO, including slow-twitch and possibly slow-tonic fibers), fast-twitch, oxidative-glycolytic (FOG), and fast-twitch glycolytic (Fg) fibers. Slow-tonic fibers in the SO class were then revealed by directing the monoclonal antibody, ALD-58 (raised against the slow-tonic fiber myosin heavy chain of chicken anterior latissimus dorsi), to additional muscle cross sections. All five of the tested muscles contained the four fiber types, with the ATPase-stained fibers including both slow-tonic and slow-twitch fibers. The extreme distributions of SO fibers were in the predominately glycolytic TrC vs. the predominately oxidative TeC4 muscle (TrC-SO, 9%; FOG, 20%; Fg, 71% vs. TeC4-SO, 58%: FOG, 16%; Fg, 25%). Across the five muscles, the relative prevalence of slow-tonic fibers (4-47%) paralleled that of the SO fibers (9-58%). TeC4 had the highest prevalence of slow-tonic fibers (47%). The test muscles exhibited varying degrees of regional concentration of each

  17. Core–Shell Electrospun Hollow Aluminum Oxide Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Jonathan W. Rajala

    2015-10-01

    Full Text Available In this work, core–shell electrospinning was employed as a simple method for the fabrication of composite coaxial polymer fibers that became hollow ceramic tubes when calcined at high temperature. The shell polymer solution consisted of polyvinyl pyrollidone (PVP in ethanol mixed with an aluminum acetate solution to act as a ceramic precursor. The core polymer was recycled polystyrene to act as a sacrificial polymer that burned off during calcination. The resulting fibers were analyzed with X-ray diffraction (XRD and energy dispersive spectroscopy (EDS to confirm the presence of gamma-phase aluminum oxide when heated at temperatures above 700 °C. The fiber diameter decreased from 987 ± 19 nm to 382 ± 152 nm after the calcination process due to the polymer material being burned off. The wall thickness of these fibers is estimated to be 100 nm.

  18. Optical and mechanical anisotropy of oxide glass fibers

    DEFF Research Database (Denmark)

    Deubener, J.; Yue, Yuanzheng

    2012-01-01

    products [1], whereas stretching (frozen-in strain) results in optical and mechanical anisotropy of glass fibers, which is quantified inter alia by the specific birefringence [2]. The paper will stress the later effects by combining previous results on the structural origins of birefringence...... and anisotropic shrinkage in silica and phosphate fibers with recent studies on relaxation of optical anisotropy in E-glass fibers [3,4].......Upon fiber drawing, glass forming oxide melts are thermally quenched and mechanically stretched. High cooling rates (up to 106 K/min) of quenched glass fibres lead to higher enthalpy state of liquids, thereby, to higher fictive temperature than regular quenching (e.g. 20 K/min) of bulk glass...

  19. High density thoria-silica-metal (III) oxide fibers

    International Nuclear Information System (INIS)

    1974-01-01

    Transparent refractory fibers, at least 50% thoria and additionally containing silica and metal(III) oxides, particularly Al 2 O 3 and B 2 O 3 or Cr 2 O 3 are made by shaping and dehydratively gelling, particularly by extruding in air, viscous aqueous thoria solutions or sols containing colloidal silica with boric acid-stabilized aluminum acetate, or additionally chromium acetate or colloidal Cr 2 O 3 , and heating the resulting gelled fibers in a controlled manner to decompose and volatilize undesired constituents and convert fibers to refractory fibers which are useful to form, for example, refractory fabrics, or as reinforcement for composites. The fabrics are heat resistant. A special application is X-ray protective clothing

  20. Differences between glycogen biogenesis in fast- and slow-twitch rabbit muscle

    DEFF Research Database (Denmark)

    Cussó, R; Lerner, L R; Cadefau, J

    2003-01-01

    Skeletal muscle glycogen is an essential energy substrate for muscular activity. The biochemical properties of the enzymes involved in de novo synthesis of glycogen were analysed in two types of rabbit skeletal muscle fiber (fast- and slow-twitch). Glycogen concentration was higher in fast...

  1. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    Science.gov (United States)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  2. Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration

    Directory of Open Access Journals (Sweden)

    Miyabara E.H.

    2005-01-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA, on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001 and CsA significantly reduced the body weight gain (15.5%; P = 0.01 during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05. CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001. Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.

  3. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors

    Science.gov (United States)

    Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao

    2014-07-01

    Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics. Electronic supplementary information (ESI) available: Equations and characterization. SEM images of GGO, XRD and XPS of Bi2O3 NTs, HRTEM images and EDX Spectra of Bi2O3 NT5-GF, CV curves of Bi2O3NT5-GF, Bi2O3 NTs and bismuth nitrate in three-electrode system (vs. Ag/AgCl). CV and GCD curves of Bi2O3 NT1-GF and Bi2O3 NT3-GF. See DOI: 10.1039/c4nr02615b

  4. Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S

    International Nuclear Information System (INIS)

    Takeda, M.; Urano, A.; Sakamoto, J.; Imai, Y.

    1998-01-01

    Polycarbosilane-derived SiC fibers, Nicalon, Hi-Nicalon, and Hi-Nicalon type S were exposed for 1 to 100 h at 1273-1773 K in air. Oxide layer growth and tensile strength change of these fibers were examined after the oxidation test. As a result, three types of SiC fibers decreased their strength as oxide layer thickness increased. Fracture origins were determined at near the oxide layer-fiber interface. Adhered fibers arised from softening of silicon oxide at high temperature were also observed. In this study, Hi-Nicalon type S showed better oxidation resistance than other polycarbosilane-derived SiC fibers after 1673 K or higher temperature exposure in air for 10 h. This result was explained by the poreless silicon oxide layer structure of Hi-Nicalon type S. (orig.)

  5. Stretchable Fiber Supercapacitors with High Volumetric Performance Based on Buckled MnO2 /Oxidized Carbon Nanotube Fiber Electrodes.

    Science.gov (United States)

    Li, Mingyang; Zu, Mei; Yu, Jinshan; Cheng, Haifeng; Li, Qingwen

    2017-03-01

    A stretchable fiber supercapacitor (SC) based on buckled MnO 2 /oxidized carbon nanotube (CNT) fiber electrode is fabricated by a simple prestraining-then-buckling method. The prepared stretchable fiber SC has a specific volumetric capacitance up to 409.4 F cm -3 , which is 33 times that of the pristine CNT fiber based SC, and shows the outstanding stability and repeatability in performance as a stretchable SC. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    International Nuclear Information System (INIS)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-01-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products

  7. Spider silk as a template for obtaining magnesium oxide and magnesium hydroxide fibers

    Directory of Open Access Journals (Sweden)

    Dmitrović Svetlana

    2018-01-01

    Full Text Available Spider silk fibers, collected from Pholcus Phalangioides spider were used as a template for obtaining magnesium oxide (MgO, periclase as well as magnesium hydroxide (Mg(OH2, brucite fibers. Magnesium oxide fibers were obtained in a simple manner by heat induced decomposition of magnesium salt (MgCl2 in the presence of the spider silk fibers, while magnesium hydroxide fibers were synthesized by hydration of MgO fibers at 50, 70 and 90 C, for 48 and 96 h. According to Scanning electron microscopy (SEM, dimensions of spider silk fibers determined the dimension of synthesized MgO fibers, while for Mg(OH2 fibers, the average diameter was increased with prolonging the hydration period. The surface of Mg(OH2 fibers was noticed to be covered with brucite in a form of plates. X-Ray diffraction (XRD analysis showed that MgO fibers were single-phased (the pure magnesium oxide fibers were obtained, while Mg(OH2 fibers were two- or single-phased brucite depending on incubation period, and/or incubation temperature. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 45012

  8. The role of nitric oxide in muscle fibers with oxidative phosphorylation defects

    International Nuclear Information System (INIS)

    Tengan, Celia H.; Kiyomoto, Beatriz H.; Godinho, Rosely O.; Gamba, Juliana; Neves, Afonso C.; Schmidt, Beny; Oliveira, Acary S.B.; Gabbai, Alberto A.

    2007-01-01

    NO has been pointed as an important player in the control of mitochondrial respiration, especially because of its inhibitory effect on cytochrome c oxidase (COX). However, all the events involved in this control are still not completely elucidated. We demonstrate compartmentalized abnormalities on nitric oxide synthase (NOS) activity on muscle biopsies of patients with mitochondrial diseases. NOS activity was reduced in the sarcoplasmic compartment in COX deficient fibers, whereas increased activity was found in the sarcolemma of fibers with mitochondrial proliferation. We observed increased expression of neuronal NOS (nNOS) in patients and a correlation between nNOS expression and mitochondrial content. Treatment of skeletal muscle culture with an NO donor induced an increase in mitochondrial content. Our results indicate specific roles of NO in compensatory mechanisms of muscle fibers with mitochondrial deficiency and suggest the participation of nNOS in the signaling process of mitochondrial proliferation in human skeletal muscle

  9. Analysis of the Microstructure and Oxidation Behavior of Some Commercial Carbon Fibers

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Kim, Bohye; Yang, Kap Seung; Im, Hun Kook; Bang, Yun Hyuk; Kim, Sung Ryong

    2011-01-01

    The relationship between the microstructure, mechanical properties, and oxidation behavior of pitch-, polyacrylonitrile (PAN)-, and Rayon-based carbon fibers (CFs) has been studied in detail. Three types of carbon fiber were exposed to isothermal oxidation in air and the weight change was measured by thermogravimetric analyzer (TGA) apparatus. After activation energy was gained according to the conversion at reacting temperature, the value of specific surface area and the surface morphology was compared, and the reaction mechanism of oxidation affecting development of pores of carbon fibers was examined. This study will lead to a new insight into the relationship between the microstructure and mechanical properties of carbon fibers

  10. Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1982-01-01

    1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

  11. Preparation and characterization of sugar cane bagasse fiber modified with nanoparticles of zirconium oxide

    International Nuclear Information System (INIS)

    Carvalho, K.C.C. de; Mulinari, D.R.; Voorwald, H.C.J.; Cioffi, M.O.H.

    2010-01-01

    The sugar cane bagasse fiber are renewable materials and have great application potential when used as reinforcement in a polymer matrix to give rise to composite materials and as supports for adsorption of heavy metals. This paper therefore describes the preparation and characterization of bleached and hydrated zirconium oxide modified sugar cane bagasse fiber by conventional precipitation method. Through the technique of electron microscopy we observed the presence of oxide nanoparticles on the fiber surface, proving the efficiency of the conventional precipitation method. With the X-ray diffraction analysis it was determined a decrease of 6.2% in the crystallinity index of modified fibers when compared to the bleached fibers showing the deposition of amorphous zirconium oxide on the fiber surface. (author)

  12. Fiber specific changes in sphingolipid metabolism in skeletal muscles of hyperthyroid rats.

    Science.gov (United States)

    Chabowski, A; Zendzian-Piotrowska, M; Mikłosz, A; Łukaszuk, B; Kurek, K; Górski, J

    2013-07-01

    Thyroid hormones (T3, T4) are well known modulators of different cellular signals including the sphingomyelin pathway. However, studies regarding downstream effects of T3 on sphingolipid metabolism in skeletal muscle are scarce. In the present work we sought to investigate the effects of hyperthyroidism on the activity of the key enzymes of ceramide metabolism as well as the content of fundamental sphingolipids. Based on fiber/metabolic differences, we chose three different skeletal muscles, with diverse fiber compositions: soleus (slow-twitch oxidative), red (fast-twitch oxidative-glycolytic) and white (fast-twitch glycolytic) section of gastrocnemius. We demonstrated that T3 induced accumulation of sphinganine, ceramide, sphingosine, as well as sphingomyelin, mostly in soleus and in red, but not white section of gastrocnemius. Concomitantly, the activity of serine palmitoyltransferase and acid/neutral ceramidase was increased in more oxidative muscles. In conclusion, hyperthyroidism induced fiber specific changes in the content of sphingolipids that were relatively more related to de novo synthesis of ceramide rather than to its generation via hydrolysis of sphingomyelin.

  13. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    Science.gov (United States)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  14. Enhanced oxidation resistance of carbon fiber reinforced lithium aluminosilicate composites by boron doping

    International Nuclear Information System (INIS)

    Xia, Long; Jin, Feng; Zhang, Tao; Hu, Xueting; Wu, Songsong; Wen, Guangwu

    2015-01-01

    Highlights: • C f /LAS composites exhibit enhanced oxidation resistance by boron doping. • Boron doping is beneficial to the improvement of graphitization degree of carbon fibers. • Graphitization of carbon fibers together with the decrease of viscosity of LAS matrix is responsible to the enhancement of oxidation resistance of C f /LAS composites. - Abstract: Carbon fiber reinforced lithium aluminosilicate matrix composites (C f /LAS) modified with boron doping were fabricated and oxidized for 1 h in static air. Weight loss, residual strength and microstructure were analyzed. The results indicate that boron doping has a remarkable effect on improving the oxidation resistance for C f /LAS. The synergism of low viscosity of LAS matrix at high temperature and formation of graphite crystals on the surface of carbon fibers, is responsible for excellent oxidation resistance of the boron doped C f /LAS.

  15. Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli.

    Directory of Open Access Journals (Sweden)

    Zengli Yu

    2008-05-01

    Full Text Available Oxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS and nitric oxide (NO determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx/atrogin-1 and muscle RING finger-1 (MuRF1, in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia.

  16. Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors

    Science.gov (United States)

    Li, Bo; Cheng, Jianli; Wang, Zhuanpei; Li, Yinchuan; Ni, Wei; Wang, Bin

    2018-02-01

    Flexible supercapacitors have attracted great interest due to outstanding flexibility and light weight. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) fibers have the great potential in using as electrodes for flexible supercapacitors due to the good flexibility. However, the reported conductivity and specific capacitance of these PEDOT: PSS fibers are not very high, which limit their electrochemical performances. In this work, composite fibers of reduced graphene oxide(rGO)-PEDOT: PSS with a highly-wrinkled structure on the surface and pores inside are prepared by wet spinning. The fibers with different ratios of graphene to PEDOT:PSS show a distinctly enhanced conductivity up to ca. 590 S·cm-1 and high strength up to ca. 18.4 MPa. Meanwhile, the composite fibers show an improved electrochemical performances, including a high specific areal capacitance of 131 mF cm-2 and high specific areal energy density of 4.55 μWh·cm-2. The flexible supercapacitors including fiber-shaped supercapacitors and interdigital designed supercapacitors not only could work in different bending states without obvious capacitance decay, but also have small leakage current. The interdigital design can further improve the performances of composite fibers with high capacitance and high utilization compared with traditional parallel connected structure.

  17. Study of Polydiacetylene-Poly (Ethylene Oxide Electrospun Fibers Used as Biosensors

    Directory of Open Access Journals (Sweden)

    A K M Mashud Alam

    2016-03-01

    Full Text Available Polydiacetylene (PDA is an attractive conjugated material for use in biosensors due to its unique characteristic of undergoing a blue-to-red color change in response to external stimuli. 10,12-Pentacosadiynoic acid (PCDA and poly (ethylene oxide (PEO were used in this study to develop fiber composites via an electrospinning method at various mass ratios of PEO to PCDA, solution concentrations, and injection speeds. The PEO-PDA fibers in blue phase were obtained via photo-polymerization upon UV-light irritation. High mass ratios of PEO to PCDA, low polymer concentrations of spinning solution, and low injection speeds promoted fine fibers with small diameters and smooth surfaces. The colorimetric transition of the fibers was investigated when the fibers were heated at temperatures ranging from 25 °C to 120 °C. A color switch from blue to red in the fibers was observed when the fibers were heated at temperatures greater than 60 °C. The color transition was more sensitive in the fibers made with a low mass ratio of PEO to PCDA due to high fraction of PDA in the fibers. The large diameter fibers also promoted the color switch due to high reflectance area in the fibers. All of the fibers were analyzed using Fourier transform infrared spectroscopy (FT-IR and differential scanning calorimetry (DSC and compared before and after the color change occurred. The colorimetric transitional mechanism is proposed to occur due to conformational changes in the PDA macromolecules.

  18. Preferential type II muscle fiber damage from plyometric exercise.

    Science.gov (United States)

    Macaluso, Filippo; Isaacs, Ashwin W; Myburgh, Kathryn H

    2012-01-01

    Plyometric training has been successfully used in different sporting contexts. Studies that investigated the effect of plyometric training on muscle morphology are limited, and results are controversial with regard to which muscle fiber type is mainly affected. To analyze the skeletal muscle structural and ultrastructural change induced by an acute bout of plyometric exercise to determine which type of muscle fibers is predominantly damaged. Descriptive laboratory study. Research laboratory. Eight healthy, untrained individuals (age = 22 ± 1 years, height = 179.2 ± 6.4 cm, weight = 78.9 ± 5.9 kg). Participants completed an acute bout of plyometric exercise (10 sets of 10 squat-jumps with a 1-minute rest between sets). Blood samples were collected 9 days and immediately before and 6 hours and 1, 2, and 3 days after the acute intervention. Muscle samples were collected 9 days before and 3 days after the exercise intervention. Blood samples were analyzed for creatine kinase activity. Muscle biopsies were analyzed for damage using fluorescent and electron transmission microscopy. Creatine kinase activity peaked 1 day after the exercise bout (529.0 ± 317.8 U/L). Immunofluorescence revealed sarcolemmal damage in 155 of 1616 fibers analyzed. Mainly fast-twitch fibers were damaged. Within subgroups, 7.6% of type I fibers, 10.3% of type IIa fibers, and 14.3% of type IIx fibers were damaged as assessed by losses in dystrophin staining. Similar damage was prevalent in IIx and IIa fibers. Electron microscopy revealed clearly distinguishable moderate and severe sarcomere damage, with damage quantifiably predominant in type II muscle fibers of both the glycolytic and oxidative subtypes (86% and 84%, respectively, versus only 27% of slow-twitch fibers). We provide direct evidence that a single bout of plyometric exercise affected mainly type II muscle fibers.

  19. Zinc Oxide Nanowire Interphase for Enhanced Lightweight Polymer Fiber Composites

    Science.gov (United States)

    Sodano, Henry A.; Brett, Robert

    2011-01-01

    The objective of this work was to increase the interfacial strength between aramid fiber and epoxy matrix. This was achieved by functionalizing the aramid fiber followed by growth of a layer of ZnO nanowires on the fiber surface such that when embedded into the polymer, the load transfer and bonding area could be substantially enhanced. The functionalization procedure developed here created functional carboxylic acid surface groups that chemically interact with the ZnO and thus greatly enhance the strength of the interface between the fiber and the ZnO.

  20. Graphene Oxide-Based Q-Switched Erbium-Doped Fiber Laser

    International Nuclear Information System (INIS)

    Yap, Y. K.; Harun, S. W.; Ahmad, H.; Huang, N. M.

    2013-01-01

    We demonstrate a pulsed ring erbium-doped fiber laser based on graphene oxide (GO), employing a simplified Hummer's method to synthesize the GO via chemical oxidation of graphite flakes at room temperature. By dipping a fiber ferrule end face onto the GO suspension, GO is successfully coated onto the end face, making it a simple saturable absorption device. A stable Q-switched pulsed fiber laser is achieved with a low pump threshold of 9.5 mW at 980 nm. The pulse repetition rate ranges from 16.0 to 57.0 kHz. The pulse width and the pulse energy are studied and discussed

  1. Fabrication and thermal oxidation of ZnO nano fibers prepared via electro spinning technique

    International Nuclear Information System (INIS)

    Baek, Jeongha; Park, Juyun; Kim, Don; Kang, Yongcheol; Koh, Sungwi; Kang, Jisoo

    2012-01-01

    Materials on the scale of nano scale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nano fibers using the electro spinning method for potential uses of solar cells and sensors. After ZnO nano fibers were obtained, calcination temperature effects on the ZnO nano fibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nano fibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nano fibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nano fibers. These techniques have helped US deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nano fibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised

  2. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy

    Science.gov (United States)

    Reyes, Nicholas L.; Banks, Glen B.; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H. Denny; Hirenallur-S, Dinesh K.; Hockenbery, David M.; Raftery, Daniel; Iritani, Brian M.

    2015-01-01

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases. PMID:25548157

  3. Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

    Science.gov (United States)

    Rice, Catherine E.; Welker, Mark F.

    2008-01-01

    LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes.

  4. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah, E-mail: a.f.shojaie@guilan.ac.ir; Zanjanchi, Mohammad Ali

    2011-03-31

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  5. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    International Nuclear Information System (INIS)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah; Zanjanchi, Mohammad Ali

    2011-01-01

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  6. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  7. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  8. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle.

    Science.gov (United States)

    Baylor, S M; Hollingworth, S

    2003-08-15

    Experiments were carried out to compare the amplitude and time course of Ca2+ release from the sarcoplasmic reticulum (SR) in intact slow-twitch and fast-twitch mouse fibres. Individual fibres within small bundles were injected with furaptra, a low-affinity, rapidly responding Ca2+ indicator. In response to a single action potential at 16 degrees C, the peak amplitude and half-duration of the change in myoplasmic free [Ca2+] (Delta[Ca2+]) differed significantly between fibre types (slow-twitch: peak amplitude, 9.4 +/- 1.0 microM (mean +/- S.E.M.); half-duration, 7.7 +/- 0.6 ms; fast-twitch: peak amplitude 18.5 +/- 0.5 microM; half-duration, 4.9 +/- 0.3 ms). SR Ca2+ release was estimated from Delta[Ca2+] with a computational model that calculated Ca2+ binding to the major myoplasmic Ca2+ buffers (troponin, ATP and parvalbumin); buffer concentrations and reaction rate constants were adjusted to reflect fibre-type differences. In response to an action potential, the total concentration of released Ca2+ (Delta[CaT]) and the peak rate of Ca2+ release ((d/dt)Delta[CaT]) differed about 3-fold between the fibre types (slow-twitch: Delta[CaT], 127 +/- 7 microM; (d/dt)Delta[CaT], 70 +/- 6 microM ms-1; fast-twitch: Delta[CaT], 346 +/- 6 microM; (d/dt)Delta[CaT], 212 +/- 4 microM ms-1). In contrast, the half-duration of (d/dt)Delta[CaT] was very similar in the two fibre types (slow-twitch, 1.8 +/- 0.1 ms; fast-twitch, 1.6 +/- 0.0 ms). When fibres were stimulated with a 5-shock train at 67 Hz, the peaks of (d/dt)Delta[CaT] in response to the second and subsequent shocks were much smaller than that due to the first shock; the later peaks, expressed as a fraction of the amplitude of the first peak, were similar in the two fibre types (slow-twitch, 0.2-0.3; fast-twitch, 0.1-0.3). The results support the conclusion that individual SR Ca2+ release units function similarly in slow-twitch and fast-twitch mammalian fibres.

  9. Application of zinc oxide fiber in the photocatalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2011-01-01

    In this work, zinc oxide fibers were obtained by electrospinning using polyvinylbutyral and zinc nitrate as precursors. After the synthesis, the material was heat treated at different temperatures to evaluate the effect of microstructure on its photocatalytic activity. The fibers obtained after heat treatment were characterized for morphology, phases, crystallinity and photocatalytic activity. The photocatalysis reaction was accompanied by the degradation of methyl orange in the presence of zinc oxide under UV illumination. It was observed that the crystallinity of zincite is a fundamental factor for the control of the photocatalytic activity of this material. (author)

  10. Nanocrystalline samarium oxide coated fiber optic gas sensor

    International Nuclear Information System (INIS)

    Renganathan, B.; Sastikumar, D.; Srinivasan, R.; Ganesan, A.R.

    2014-01-01

    Highlights: • This fiber optic gas sensor works at room temperature. • As-prepared and annealed Sm 2 O 3 nanoparticles are act as sensor materials. • Sm 2 O 3 clad modified fiber detect the ammonia, ethanol and methanol gases. • The response of evanescent wave loss has been studied for different concentrations. - Abstract: Nanocrystalline Sm 2 O 3 coated fiber optic sensor is proposed for detecting toxic gases such as ammonia, methanol and ethanol vapors. Sm 2 O 3 in the as prepared form as well as annealed form have been used as gas sensing materials, by making them as cladding of a PMMA fiber. The spectral characteristics of the Sm 2 O 3 gas sensor are presented for ammonia, methanol and ethanol gases with different concentrations ranging from 0 to 500 ppm. The sensor exhibits a linear variation in the output light intensity with the concentration. The enhanced gas sensitivity and selectivity of the sensor for ethanol is discussed briefly

  11. Photocatalysis application of zinc oxide fibers obtained by electrospinning; Fribras de oxido de zinco obtidas por electrospinning aplicadas a fotocatalise

    Energy Technology Data Exchange (ETDEWEB)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (DEM/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais

    2010-07-01

    Using the electrospinning technique, composite fibers of polyvinylbutyral and zinc nitrate were obtained. After a heat treatment at 600 deg C, nanostructured zinc oxide fibers were obtained. The fibers were characterized using X ray diffraction. The photocatalytic activity of the nanostructured fibers was determined using the photodegradation of a methyl orange solution. The increase in the heat treatment temperature decreases the photoactivity of the zinc oxide. The heat treatment, the phases and the surface area, affect the physical, chemical and photocatalytic activity of the zinc oxide. (author)

  12. Effects of resistance training on fast- and slow-twitch muscles in rats

    Directory of Open Access Journals (Sweden)

    M Umnova

    2010-09-01

    Full Text Available The purpose of this study was to investigate the effect of resistance training (RT on muscle strength, the dependence of that on the fast-twitch (FT and slow-twitch (ST fibers hypertrophy, nuclear domain size, synthesis and degradation rate of contractile proteins and on the expression of myosin isoforms’. 16 weeks old Wistar rats were trained on a vertical treadmill for six days a week during six weeks. The power of exercise increased 4.9% per session. In RT group the mass of studied muscles increased about 10%, hindlimb grip strength increased from 5.20±0.27 N/100g bw to the 6.05±0.29 N/100g bw (p<0.05. Cross-sectional area and number of myonuclei of FT and ST fibers in plantaris (Pla and soleus (Sol muscles increased, myonuclear domain size did not change significantly. RT increased the MyHC IId isoforms relative content and decreased that of IIb and IIa isoforms in Pla muscle, in Sol muscle increased only IIa isoform. In Pla muscle the relative content of myosin light chain (MyLC 1slow and 2slow isoforms decreased and that of MyLC 2fast isoforms increased during RT. MyLC 3 and MyLC 2 ratio did not change significantly in Pla but increased in Sol muscle by 14.3±3.4�0(p<0.01. The rat RT programme caused hypertrophy of FT and ST muscle fibers, increase of myonuclear number via fusion of satellite cells with damaged fibers or formation of new muscle fibers as a result of myoblast fusion and myotubes formation, maintaining myonuclear domain size.

  13. Single muscle fiber adaptations with marathon training.

    Science.gov (United States)

    Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David

    2006-09-01

    The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P training program. Muscle fiber size declined (P training. P(o) was maintained in both fiber types with training and increased (P 60% increase (P training and was unchanged in MHC IIa fibers. Peak power increased (P training with a further increase (P marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.

  14. Viability of oxide fiber coatings in ceramic composites for accommodation of misfit stresses

    International Nuclear Information System (INIS)

    Kerans, R.J.

    1996-01-01

    The C and BN fiber coatings used in most ceramic composites perform a less obvious but equally essential function, in addition to crack deflection; they accommodate misfit stresses due to interfacial fracture surface roughness. Coatings substituted for them must also perform that function to be effective. However, in general, oxides are much less compliant materials than C and BN, which raises the question of the feasibility of oxide substitutes. The viability of oxide coatings for accommodating misfit stresses in Nicalon fiber/SiC composites was investigated by calculating the maximum misfit stresses as functions of coating properties and geometries. Control of interfacial fracture path was also briefly considered. The implications regarding composite properties were examined by calculating properties for composites with mechanically viable oxide coatings

  15. Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Sebnem DUZYER

    2016-11-01

    Full Text Available The aim of this study to investigate the effects of different sterilization methods on electrospun polyester. Ethylene oxide (EO, autoclave (AU and ultraviolet (UV sterilization methods were applied to electrospun fibers produced from polyethylene terephthalate (PET solutions with concentrations of 10, 15 and 20 wt.%. The surface characteristics of the fibers were examined by scanning electron microscope (SEM, atomic force microscope (AFM, surface pore size studies and contact angle measurements. Differential scanning calorimetry (DSC tests were carried out to characterize the thermal properties. Fourier Transform Infrared spectroscopy (FTIR tests were performed to analyze the micro structural properties. SEM studies showed that different sterilization methods made significant changes on the surfaces of the fibers depending on the PET concentration. Although the effects were decreased with the increasing polymer concentration, the fiber structure was damaged especially with the EO sterilization. The contact angle values were decreased with the UV sterilization method the most.

  16. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection

    Directory of Open Access Journals (Sweden)

    Miguel Hernaez

    2017-12-01

    Full Text Available The influence of graphene oxide (GO over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO2 thin film. Layer by layer (LbL coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  17. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection.

    Science.gov (United States)

    Hernaez, Miguel; Mayes, Andrew G; Melendi-Espina, Sonia

    2017-12-27

    The influence of graphene oxide (GO) over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR) has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO₂ thin film. Layer by layer (LbL) coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI) and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  18. Sensing characteristics of nanocrystalline bismuth oxide clad-modified fiber optic gas sensor

    Science.gov (United States)

    Manjula, M.; Karthikeyan, B.; Sastikumar, D.

    2017-08-01

    Gas sensing properties of nanocrystalline bismuth oxide clad - modified fiber optic sensor is reported for ammonia, ethanol, methanol and acetone gasses at room temperature. The output of sensor increases or decreases for certain gasses when the concentration of the gas is increased. The sensor exhibits high response and good selectivity to methanol gas. Time response characteristics of the sensor are also reported.

  19. Oxidation of BN-coated SiC fibers in ceramic matrix composites

    International Nuclear Information System (INIS)

    Sheldon, B.W.; Sun, E.Y.

    1996-01-01

    Thermodynamic calculations were performed to analyze the simultaneous oxidation of BN and SiC. The results show that, with limited amounts of oxygen present, the formation of SiO 2 should occur prior to the formation of B 2 O 3 . This agrees with experimental observations of oxidation in glass-ceramic matrix composites with BN-coated SiC fibers, where a solid SiO 2 reaction product containing little or no boron has been observed. The thermodynamic calculations suggest that this will occur when the amount of oxygen available is restricted. One possible explanation for this behavior is that SiO 2 formation near the external surfaces of the composite closes off cracks or pores, such that vapor phase O 2 diffusion into the composite occurs only for a limited time. This indicates that BN-coated SiC fibers will not always oxidize to form significant amounts of a low-melting, borosilicate glass

  20. Twitching in sensorimotor development from sleeping rats to robots.

    Science.gov (United States)

    Blumberg, Mark S; Marques, Hugo Gravato; Iida, Fumiya

    2013-06-17

    It is still not known how the 'rudimentary' movements of fetuses and infants are transformed into the coordinated, flexible and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: when twitches are mimicked in robot models of the musculoskeletal system, the basic neural circuitry undergoes self-organization. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Brito, F., E-mail: fro_brito@yahoo.com.m [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Alejo-Armenta, C. [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Garcia-Hipolito, M. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360, Coyoacan 04510, DF (Mexico); Camarillo, E.; Hernandez A, J. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico); Falcony, C. [Departamento de Fisica, CINVESTAV-IPN, AP 14-740, 07000, DF (Mexico); Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico)

    2011-05-15

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 {mu}m, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: {yields} Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. {yields} Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. {yields} The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  2. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    International Nuclear Information System (INIS)

    Ramos-Brito, F.; Alejo-Armenta, C.; Garcia-Hipolito, M.; Camarillo, E.; Hernandez A, J.; Falcony, C.; Murrieta S, H.

    2011-01-01

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 μm, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0] and [0 0 0 1] directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: → Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0] and [0 0 0 1] directions. → Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. → The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  3. Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions.

    Science.gov (United States)

    Zhang, Chao; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2016-02-10

    Regenerated silk fibroin (RSF)/graphene oxide (GO) hybrid silk fibers were dry-spun from a mixed dope of GO suspension and RSF aqueous solution. It was observed that the presence of GO greatly affect the viscosity of RSF solution. The RSF/GO hybrid fibers showed from FTIR result lower β-sheet content compared to that of pure RSF fibers. The result of synchrotron radiation wide-angle X-ray diffraction showed that the addition of GO confined the crystallization of silk fibroin (SF) leading to the decrease of crystallinity, smaller crystallite size, and new formation of interphase zones in the artificial silks. Synchrotron radiation small-angle X-ray scattering also proved that GO sheets in the hybrid silks and blended solutions were coated with a certain thickness of interphase zones due to the complex interaction between the two components. A low addition of GO, together with the mesophase zones formed between GO and RSF, enhanced the mechanical properties of hybrid fibers. The highest breaking stress of the hybrid fibers reached 435.5 ± 71.6 MPa, 23% improvement in comparison to that of degummed silk and 72% larger than that of pure RSF silk fiber. The hybrid RSF/GO materials with good biocompatibility and enhanced mechanical properties may have potential applications in tissue engineering, bioelectronic devices, or energy storage.

  4. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    Science.gov (United States)

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  5. Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.

    Science.gov (United States)

    Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing

    2014-10-01

    A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.

  6. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.

    Science.gov (United States)

    Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M

    2002-08-15

    The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination.

  7. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    International Nuclear Information System (INIS)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-01-01

    Graphical abstract: Carbon nanotube/carbon fiber hybrid fiber was proposed by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition process. - Highlights: • Carbon nanotube coated carbon fiber was prepared by two methods. • Uniform and dense CNTs network formed by oxidative treatments combined with EPD. • Pretreatment of the CF is beneficial to EPD of CNTs on carbon fiber surface. • CNTs enhanced the surface activity and wettability of carbon fibers. • CNTs have contributed to the interfacial properties of composite. - Abstract: To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed

  8. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    Science.gov (United States)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  9. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    OpenAIRE

    Nitai Chandra Adak; Suman Chhetri; Naresh Chandra Murmu; Pranab Samanta; Tapas Kuila

    2018-01-01

    Thermally reduced graphene oxide (TRGO) was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF)/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spe...

  10. Thermal oxidation induced degradation of carbon fiber reinforced composites and carbon nanotube sheet enhanced fiber/matrix interface for high temperature aerospace structural applications

    Science.gov (United States)

    Haque, Mohammad Hamidul

    Recent increase in the use of carbon fiber reinforced polymer matrix composite, especially for high temperature applications in aerospace primary and secondary structures along with wind energy and automotive industries, have generated new challenges to predict its failure mechanisms and service life. This dissertation reports the experimental study of a unidirectional carbon fiber reinforced bismaleimide (BMI) composites (CFRC), an excellent candidate for high temperature aerospace components, undergoing thermal oxidation at 260 °C in air for over 3000 hours. The key focus of the work is to investigate the mechanical properties of the carbon fiber BMI composite subjected to thermal aging in three key aspects - first, studying its bulk flexural properties (in macro scale), second, characterizing the crack propagation along the fiber direction, representing the interfacial bonding strength between fiber and matrix (in micro scale), and third, introducing nano-structured materials to modify the interface (in nano scale) between the carbon fiber and BMI resin and mechanical characterization to study its influence on mitigating the aging effect. Under the first category, weight loss and flexural properties have been monitored as the oxidation propagates through the fiber/matrix interface. Dynamic mechanical analysis and micro-computed tomography analysis have been performed to analyze the aging effects. In the second category, the long-term effects of thermal oxidation on the delamination (between the composite plies) and debonding (between fiber and matrix) type fracture toughness have been characterized by preparing two distinct types of double cantilever beam specimens. Digital image correlation has been used to determine the deformation field and strain distribution around the crack propagation path. Finally the resin system and the fiber/matrix interface have been modified using nanomaterials to mitigate the degradations caused by oxidation. Nanoclay modified

  11. Vanadium oxide thin films and fibers obtained by acetylacetonate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Berezina, O.; Kirienko, D. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Pergament, A., E-mail: aperg@psu.karelia.ru [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Stefanovich, G.; Velichko, A. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Zlomanov, V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation)

    2015-01-01

    Vanadium oxide films and fibers have been fabricated by the acetylacetonate sol–gel method followed by annealing in wet nitrogen. The samples are characterized by X-ray diffraction and electrical conductivity measurements. The effects of a sol aging, the precursor decomposition and the gas atmosphere composition on the annealing process, structure and properties of the films are discussed. The two-stage temperature regime of annealing of amorphous films in wet nitrogen for formation of the well crystallized VO{sub 2} phase is chosen: 1) 25–550 °C and 2) 550–600 °C. The obtained films demonstrate the metal–insulator transition and electrical switching. Also, the effect of the polyvinylpyrrolidone additive concentration and electrospinning parameters on qualitative (absence of defects and gel drops) and quantitative (length and diameter) characteristics of vanadium oxide fibers is studied. - Highlights: • Vanadium oxide thin films and fibers are synthesized by sol–gel method. • The effect of annealing, atmosphere, time and electrospinning parameters is studied. • Produced VO{sub 2} structures exhibit metal–insulator transition and electrical switching.

  12. Microstructured fibers with high lanthanum oxide glass core for nonlinear applications

    Science.gov (United States)

    Kobelke, J.; Schuster, K.; Litzkendorf, D.; Schwuchow, A.; Kirchhof, J.; Bartelt, H.; Tombelaine, V.; Leproux, P.; Couderc, V.; Labruyere, A.

    2009-05-01

    We demonstrate a low loss microstructured fiber (MOF) with a high nonlinear glass core and silica holey cladding. The substitution of mostly used silica as core material of microstructured fibers by lanthanum oxide glass promises a high nonlinear conversion efficiency for supercontinuum (SC) generation. The glass composition is optimized in terms of thermochemical and optical requirements. The glass for the MOF core has a high lanthanum oxide concentration (10 mol% La2O3) and a good compatibility with the silica cladding. This is performed by adding a suitable alumina concentration up to 20 mol%. The lanthanum oxide glass preform rods were manufactured by melting technique. Besides purity issues the material homogeneity plays an important role to achieve low optical loss. The addition of fluorides allows the better homogenization of the glass composition in the preform volume by refining. The minimum attenuation of an unstructured fiber drawn from this glass is about 0.6 dB/m. It is mostly caused by decreasing of scattering effects. The microstructured silica cladding allows the considerable shifting of dispersive behavior of the MOF for an optimal pump light conversion. The MOF shows zero dispersion wavelengths (ZDW) of 1140 nm (LP01 mode) and 970 nm (LP11 mode). The supercontinuum generation was investigated with a 1064 nm pump laser (650 ps). It shows a broad band emission between 500 nm and 2200 nm.

  13. Twitch interpolation technique in testing of maximal muscle strength

    DEFF Research Database (Denmark)

    Bülow, P M; Nørregaard, J; Danneskiold-Samsøe, B

    1993-01-01

    The aim was to study the methodological aspects of the muscle twitch interpolation technique in estimating the maximal force of contraction in the quadriceps muscle utilizing commercial muscle testing equipment. Six healthy subjects participated in seven sets of experiments testing the effects...

  14. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi-Ting [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Yu, Yi-Hui [Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan (China); Nguyen, Van-Huy [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Lu, Kung-Te [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Wu, Jeffrey Chi-Sheng, E-mail: cswu@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Luh-Maan [Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan (China); Kuo, Chi-Wen [Taiwan Semiconductor Manufacturing Company, Hsinchu 30078, Taiwan (China)

    2013-11-15

    Graphical abstract: We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. -- Highlights: • The combination of optical fiber and honeycomb significantly enhanced the performance of VOCs photodegradation. • The removal efficiency of m-xylene is enhanced to 96.5% as compared to 22.0% for UV irradiation alone. • Fiber-illuminated honeycomb reactor is the first step toward an industrial-scale technology on the removal of xylene. -- Abstract: The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO{sub 2} photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO{sub 2} selectivity. Interestingly, Mn-TiO{sub 2} in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future.

  15. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level

    International Nuclear Information System (INIS)

    Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen

    2013-01-01

    Graphical abstract: We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. -- Highlights: • The combination of optical fiber and honeycomb significantly enhanced the performance of VOCs photodegradation. • The removal efficiency of m-xylene is enhanced to 96.5% as compared to 22.0% for UV irradiation alone. • Fiber-illuminated honeycomb reactor is the first step toward an industrial-scale technology on the removal of xylene. -- Abstract: The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO 2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO 2 selectivity. Interestingly, Mn-TiO 2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future

  16. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.B.; Hood, D.A.; Terjung, R.L.

    1988-01-01

    Management of adenine nucleotide catabolism differs among skeletal muscle fiber types. This study evaluated whether there are corresponding differences in the rates of de novo synthesis of adenine nucleotide among fiber type sections of skeletal muscle using an isolated perfused rat hindquarter preparation. Label incorporation into adenine nucleotides from the [1-14C]glycine precursor was determined and used to calculate synthesis rates based on the intracellular glycine specific radioactivity. Results show that intracellular glycine is closely related to the direct precursor pool. Rates of de novo synthesis were highest in fast-twitch red muscle (57.0 +/- 4.0, 58.2 +/- 4.4 nmol.h-1.g-1; deep red gastrocnemius and vastus lateralis), relatively high in slow-twitch red muscle (47.0 +/- 3.1; soleus), and low in fast-twitch white muscle (26.1 +/- 2.0 and 21.6 +/- 2.3; superficial white gastrocnemius and vastus lateralis). Rates for four mixed muscles were intermediate, ranging between 32.3 and 37.3. Specific de novo synthesis rates exhibited a strong correlation (r = 0.986) with muscle section citrate synthase activity. Turnover rates (de novo synthesis rate/adenine nucleotide pool size) were highest in high oxidative muscle (0.82-1.06%/h), lowest in low oxidative muscle (0.30-0.35%/h), and intermediate in mixed muscle (0.44-0.55%/h). Our results demonstrate that differences in adenine nucleotide management among fiber types extends to the process of de novo adenine nucleotide synthesis

  17. Sarcomere length-dependence of activity-dependent twitch potentiation in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    MacIntosh Brian R

    2002-12-01

    Full Text Available Abstract Background It has been reported that potentiation of a skeletal muscle twitch response is proportional to muscle length with a negative slope during staircase, and a positive slope during posttetanic potentiation. This study was done to directly compare staircase and posttetanic responses with measurement of sarcomere length to compare their length-dependence. Methods Mouse extensor digitorum longus (EDL muscles were dissected to small bundles of fibers, which permit measurement of sarcomere length (SL, by laser diffraction. In vitro fixed-end contractions of EDL fiber bundles were elicited at 22°C and 35°C at sarcomere lengths ranging from 2.35 μm to 3.85 μm. Twitch contractions were assessed before and after 1.5 s of 75 Hz stimulation at 22°C or during 10 s of 10 Hz stimulation at 22°C or 35°C. Results Staircase potentiation was greater at 35°C than 22°C, and the relative magnitude of the twitch contraction (Pt*/Pt was proportional to sarcomere length with a negative slope, over the range 2.3 μm – 3.7 μm. Linear regression yielded the following: Pt*/Pt = -0.59·SL+3.27 (r2 = 0.74; Pt*/Pt = -0.39·SL+2.34 (r2 = 0.48; and Pt*/Pt = -0.50·SL+2.45 (r2 = 0.80 for staircase at 35°C, and 22°C and posttetanic response respectively. Posttetanic depression rather than potentiation was present at long SL. This indicates that there may be two processes operating in these muscles to modulate the force: one that enhances and a second that depresses the force. Either or both of these processes may have a length-dependence of its mechanism. Conclusion There is no evidence that posttetanic potentiation is fundamentally different from staircase in these muscles.

  18. Ag supported on carbon fiber cloth as the catalyst for hydrazine oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Liu, Ran; Ye, Ke; Gao, Yinyi; Zhang, Wenping; Wang, Guiling; Cao, Dianxue

    2015-01-01

    Highlights: • CFC supported microspherical Ag is obtained by square-wave potential method. • Ag/CFC electrode has high catalytic activity toward hydrazine oxidation. • Hydrazine oxidation on the electrode proceeds by a near 4-electron pathway. - Abstract: Silver particles with microspheric structure are directly electrodeposited on carbon fiber cloth (CFC) substrate by square-wave potential electrodeposition method. The electrocatalytic behaviors of the Ag/CFC electrode toward hydrazine oxidation in alkaline solution are examined by cyclic voltammetry and chronoamperometry. An onset oxidation potential of -0.5 V and a peak current density of 30 mA cm −2 are achieved in the solution containing 1.0 mol L −1 KOH and 20.0 mmol L −1 hydrazine. The microspheric structure of the Ag/CFC electrode provides large electroactive surface area, hence, abundant active sites are vacant for hydrazine oxidation. The calculated apparent activation energies at different potentials show that hydrazine electro-oxidation at higher potential has faster kinetics than that at lower potential. In addition, the transfer electron number of hydrazine oxidation reaction on the Ag/CFC electrode is close to four, suggesting hydrazine is almost completely electrooxidized on the electrode and the full use of hydrazine fuel is basically achieved.

  19. Clad modified optical fiber gas sensors based on nanocrystalline nickel oxide embedded coatings

    Science.gov (United States)

    Yamini, K.; Renganathan, B.; Ganesan, A. R.; Prakash, T.

    2017-07-01

    A clad modified optical fiber gas sensor for sensing volatile organic compound vapours (VOCs) such as formaldehyde (HCHO), ammonia (NH3), ethanol (C2H5OH) and methanol (CH3OH) up to 500 ppm was studied using nanocrystalline nickel oxide embedded coatings. Prior to the measurements, nickel oxide in two different crystallite sizes such as 24 nm and 76 nm was synthesized by calcination of reverse precipitated nickel hydroxide subsequently at 450 °C and 900 °C for 30 min. Then, samples physical properties were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Our gas sensing measurement concludes that the lower crystallite size (24 nm) nickel oxide nanocrystals exhibits superior performance to formaldehyde and ethanol vapours as compared with other two VOCs, the observed experimental results were discussed in detail.

  20. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  1. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chang-Mao, E-mail: hungcm1031@gmail.com [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h{sup -1}.

  2. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    International Nuclear Information System (INIS)

    Hung, Chang-Mao

    2009-01-01

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h -1 .

  3. Fast-twitch glycolytic skeletal muscle is predisposed to age-induced impairments in mitochondrial function

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Díaz, Víctor; Soldini, Lavinia

    2013-01-01

    The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high-resolution respirom......The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high......-resolution respirometry and mitochondrial protein expression in soleus, quadricep, and lateral gastrocnemius skeletal muscles, which represent type 1 slow-twitch oxidative muscle (soleus) and type 2 fast-twitch glycolytic muscle (quadricep and gastrocnemius), respectively, in young (10-12 weeks) and mature (74-76 weeks......) mice. Electron transport through mitochondrial complexes I and III increases with age in quadricep and gastrocnemius, which is not observed in soleus. Mitochondrial coupling efficiency during respiration through complex I also deteriorates with age in gastrocnemius and shows a tendency (p = .085...

  4. Alkali-resistant low-temperature atomic-layer-deposited oxides for optical fiber sensor overlays

    Science.gov (United States)

    Kosiel, K.; Dominik, M.; Ściślewska, I.; Kalisz, M.; Guziewicz, M.; Gołaszewska, K.; Niedziółka-Jonsson, J.; Bock, W. J.; Śmietana, M.

    2018-04-01

    This paper presents an investigation of properties of selected metallic oxides deposited at a low temperature (100 °C) by atomic layer deposition (ALD) technique, relating to their applicability as thin overlays for optical fiber sensors resistant in alkaline environments. Hafnium oxide (Hf x O y with y/x approx. 2.70), tantalum oxide (Ta x O y with y/x approx. 2.75) and zirconium oxide (Zr x O y with y/x approx. 2.07), which deposition was based, respectively, on tetrakis(ethylmethyl)hafnium, tantalum pentachloride and tetrakis(ethylmethyl)zirconium with deionized water, were tested as thin layers on planar Si (100) and glass substrates. Growth per cycle (GPC) in the ALD processes was 0.133-0.150 nm/cycle. Run-to-run GPC reproducibility of the ALD processes was best for Hf x O y (0.145 ± 0.001 nm/cycle) and the poorest for Ta x O y (0.133 ± 0.003 nm/cycle). Refractive indices n of the layers were 2.00-2.10 (at the wavelength λ = 632 nm), with negligible k value (at λ for 240-930 nm). The oxides examined by x-ray diffractometry proved to be amorphous, with only small addition of crystalline phases for the Zr x O y . The surfaces of the oxides had grainy but smooth topographies with root-mean square roughness ˜0.5 nm (at 10 × 10 μm2 area) according to atomic force microscopy. Ellipsometric measurements, by contrast, suggest rougher surfaces for the Zr x O y layers. The surfaces were also slightly rougher on the glass-based samples than on the Si-based ones. Nanohardness and Young modules were 4.90-8.64 GPa and 83.7-104.4 GPa, respectively. The tests of scratch resistance revealed better tribological properties for the Hf x O y and the Ta x O y than for the Zr x O y . The surfaces were hydrophilic, with wetting angles of 52.5°-62.9°. The planar oxides on Si, being resistive even to concentrated alkali (pH 14), proved to be significantly more alkali-resistive than Al2O3. The Ta x O y overlay was deposited on long-period grating sensor induced in optical

  5. Nitric Oxide-Releasing Silica Nanoparticle-Doped Polyurethane Electrospun Fibers

    Science.gov (United States)

    Koh, Ahyeon; Carpenter, Alexis W.; Slomberg, Danielle L.; Schoenfisch, Mark H.

    2013-01-01

    Electrospun polyurethane fibers doped with nitric oxide (NO)-releasing silica particles are presented as novel macromolecular scaffolds with prolonged NO-release and high porosity. Fiber diameter (119–614 nm) and mechanical strength (1.7–34.5 MPa of modulus) were varied by altering polyurethane type and concentration, as well as the NO-releasing particle composition, size, and concentration. The resulting NO-releasing electrospun nanofibers exhibited ~83% porosity with flexible plastic or elastomeric behavior. The use of N-diazeniumdiolate- or S-nitrosothiol-modified particles yielded scaffolds exhibiting a wide range of NO release totals and durations (7.5 nmol mg−1–0.12 μmol mg−1 and 7 h to 2 weeks, respectively). The application of NO-releasing porous materials as coating for subcutaneous implants may improve tissue biocompatibility by mitigating the foreign body response and promoting cell integration. PMID:23915047

  6. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  7. Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer

    Science.gov (United States)

    Arasu, P. T.; Noor, A. S. M.; Shabaneh, A. A.; Yaacob, M. H.; Lim, H. N.; Mahdi, M. A.

    2016-12-01

    A single mode fiber Bragg grating (FBG) is used to generate Surface Plasmon Resonance (SPR). The uniform gratings of the FBG are used to scatter light from the fiber optic core into the cladding thus enabling the interaction between the light and a thin gold film in order to generate SPR. Applying this technique, the cladding around the FBG is left intact, making this sensor very robust and easy to handle. A thin film of graphene oxide (GO) is deposited over a 45 nm gold film to enhance the sensitivity of the SPR sensor. The gold coated sensor demonstrated high sensitivity of approximately 200 nm/RIU when tested with different concentrations of ethanol in an aqueous medium. A 2.5 times improvement in sensitivity is observed with the GO enhancement compared to the gold coated sensor.

  8. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  9. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Shamizadeh, Mohammad; Moradian, Rostam; Astinchap, Bandar

    2014-01-01

    Highlights: • Co 3 O 4 nanoparticles were introduced as a novel SPME fiber coating. • The fiber was evaluated for the extraction of BTEX in combination with GC–MS. • The fiber showed extraction efficiencies better than a PDMS fiber toward BTEX. • The fiber was successfully applied to the determination of BTEX in real samples. - Abstract: In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co 3 O 4 nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared

  10. Flexible Lithium-Ion Fiber Battery by the Regular Stacking of Two-Dimensional Titanium Oxide Nanosheets Hybridized with Reduced Graphene Oxide.

    Science.gov (United States)

    Hoshide, Tatsumasa; Zheng, Yuanchuan; Hou, Junyu; Wang, Zhiqiang; Li, Qingwen; Zhao, Zhigang; Ma, Renzhi; Sasaki, Takayoshi; Geng, Fengxia

    2017-06-14

    Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems.

  11. The formation and growing properties of poly(ethylene terephthalate) fiber growing media after thermo-oxidative treatment

    International Nuclear Information System (INIS)

    Chang, C.P.; Lin, S.M.

    2007-01-01

    This research uses three kinds of recycled synthetic fibers that all possess excellent thermal plasticity property as raw material to develop a new firm cultivation media: polyethylene terephthalate, polyamide and polypropylene. One can not only freely control plants cultivation growing condition by changing bulk density of the media, but also solve disposal problem after usage by applying thermal oxidative treatment during manufacturing processes. The water content, air permeability and formation conditions of these fiber growing media that are required in plants growing habitat were discussed, and compared the fallout with rockwool (RW) growing media that is commonly used at present days. The results indicated that the polyethylene terephthalate fiber media could attain best formation characteristics among these fibers at the same bulk density range. Furthermore, the fiber media that were thermo-oxidative treated at 240-260 deg. C could obtained above 90% total porosity, 23-49% air capacity and 48-68% water availability, water contents raised from 1735-1094 to 2145-1156% under bulk densities of 0.03-0.09 g/cm 3 , which conforms to the common plant growing habitat conditions. Its performance well surpasses the rockwool growing media. We also discovered that the thermo-oxidative treated polyethylene terephthalate (PET) fiber media could be easily broken down and become powdery by exerting pressure, thus greatly reduce its volume and effectively improve disposal processes that are difficult presently for the huge refuse create by rockwool

  12. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    Science.gov (United States)

    Wang, Jinlong; Yunus, Rizwangul; Li, Jinge; Li, Peilin; Zhang, Pengyi; Kim, Jeonghyun

    2015-12-01

    Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnOx) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnOx/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnOx layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO4 and then surface-deposition of MnOx particles from the bulk phase. The MnOx particles assembled with nanosheets were uniformly coated on the PET fibers. MnOx/PET showed good activity for HCHO decomposition at room temperature which followed the Mars-van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m3, space velocity ∼17,000 h-1 and relative humidity∼50%. This research provides a facile method to deposit active MnOx onto polymers with low air resistance, and composite MnOx/PET material is promising for indoor air purification.

  13. Fiber optical dose rate measurement based on the luminescence of beryllium oxide

    Directory of Open Access Journals (Sweden)

    Teichmann Tobias

    2018-01-01

    Full Text Available This work presents a fiber optical dose rate measurement system based on the radioluminescence and optically stimulated luminescence of beryllium oxide. The system consists of a small, radiation sensitive probe which is coupled to a light detection unit with a long and flexible light guide. Exposing the beryllium oxide probe to ionizing radiation results in the emission of light with an intensity which is proportional to the dose rate. Additionally, optically stimulated luminescence can be used to obtain dose and dose rate information during irradiation or retrospectively. The system is capable of real time dose rate measurements in fields of high dose rates and dose rate gradients and in complex, narrow geometries. This enables the application for radiation protection measurements as well as for quality control in radiotherapy. One inherent drawback of fiber optical dosimetry systems is the generation of Cherenkov radiation and luminescence in the light guide itself when it is exposed to ionizing radiation. This so called “stem” effect leads to an additional signal which introduces a deviation in the dose rate measurement and reduces the spatial resolution of the system, hence it has to be removed. The current system uses temporal discrimination of the effect for radioluminescence measurements in pulsed radiation fields and modulated optically stimulated luminescence for continuous irradiation conditions. This work gives an overview of the major results and discusses new-found obstacles of the applied methods of stem discrimination.

  14. Graphene oxide decorated with silver nanoparticles as a coating on a stainless-steel fiber for solid-phase microextraction.

    Science.gov (United States)

    Wang, Licheng; Hou, Xiudan; Li, Jubai; Liu, Shujuan; Guo, Yong

    2015-07-01

    A novel graphene oxide decorated with silver nanoparticles coating on a stainless-steel fiber for solid-phase microextraction was prepared. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid-phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4-116.3% with relative standard deviations less than 16.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Qian Xin, E-mail: qx3023@nimte.ac.cn [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang Xuefei; Ouyang Qin; Chen Yousi; Yan Qing [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment. Black-Right-Pointing-Pointer The concentration of oxygen and nitrogen on the fiber surface increased after surface treatment. Black-Right-Pointing-Pointer The intensity of oxidative reaction varied with the change of ammonium-salt solutions. Black-Right-Pointing-Pointer The higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative reaction happened. - Abstract: The surfaces of polyacrylonitrile-based carbon fibers were treated by an electrochemical anodic method. Three different kinds of ammonium-salt solutions namely NH{sub 4}HCO{sub 3}, (NH{sub 4}){sub 2}CO{sub 3} and (NH{sub 4}){sub 3}PO{sub 4} were respectively chosen as the electrolytes. The effect of these electrolytes on the surface structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed that longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment, and the root mean square roughness (RMS) of carbon fiber surface increased from 4.6 nm for untreated fibers to 13.5 nm for treated fibers in (NH{sub 4}){sub 3}PO{sub 4} electrolytes. The concentration of oxygen and nitrogen atomic on the fiber surface increased after surface treatment. The tensile strength of oxidized fibers had an obvious decrease, whereas the interlaminar shear strength (ILSS) value of corresponding carbon fiber reinforced polymers (CFRPs) increased in a large extent. The intensity of oxidative reaction varied with the change of ammonium-salt solutions and electrochemical oxidation in (NH{sub 4}){sub 3}PO{sub 4} electrolyte was of the most violence. The corresponding mechanism was also discussed and the result showed that the higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative

  16. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Emilia Rios-Del Toro, E. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Celis, Lourdes B. [División de Geociencias Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Rangel-Mendez, J. Rene, E-mail: rene@ipicyt.edu.mx [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)

    2013-09-15

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO{sub 3} to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents.

  17. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator

    International Nuclear Information System (INIS)

    Emilia Rios-Del Toro, E.; Celis, Lourdes B.; Cervantes, Francisco J.; Rangel-Mendez, J. Rene

    2013-01-01

    Highlights: • Activated carbon fibers (ACFs) act as redox mediator. • Electron accepting capacity increased with oxidation time of ACF. •ACFs increased 8-fold the reduction of methyl red in biological assays. •Biofilm formed on the ACFs partly blocked their redox mediator capacity. -- Abstract: The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8 M HNO 3 to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents

  18. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    International Nuclear Information System (INIS)

    Wang, Jinlong; Yunus, Rizwangul; Li, Jinge; Li, Peilin; Zhang, Pengyi; Kim, Jeonghyun

    2015-01-01

    Graphical abstract: - Highlights: • The MnO x particles assembled with nanosheets were uniformly coated on PET fibers. • The growth process of MnO x layer on PET is clearly clarified. • MnO x /PET showed good activity for HCHO decomposition at room temperature. • MnO x /PET material is promising for indoor air purification due to its light, flexible and low air-resistant properties. - Abstract: Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnO x ) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnO x /PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnO x layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO 4 and then surface-deposition of MnO x particles from the bulk phase. The MnO x particles assembled with nanosheets were uniformly coated on the PET fibers. MnO x /PET showed good activity for HCHO decomposition at room temperature which followed the Mars–van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m 3 , space velocity ∼17,000 h −1 and relative humidity∼50%. This research provides a facile method to deposit active MnO x onto polymers with low air resistance, and composite MnO x /PET material is promising for indoor air purification.

  19. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinlong [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China); Yunus, Rizwangul [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Xinjiang Zhongtai Chemical Company, Xinjiang 831511 (China); Li, Jinge; Li, Peilin [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Zhang, Pengyi, E-mail: zpy@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China); Kim, Jeonghyun [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China)

    2015-12-01

    Graphical abstract: - Highlights: • The MnO{sub x} particles assembled with nanosheets were uniformly coated on PET fibers. • The growth process of MnO{sub x} layer on PET is clearly clarified. • MnO{sub x}/PET showed good activity for HCHO decomposition at room temperature. • MnO{sub x}/PET material is promising for indoor air purification due to its light, flexible and low air-resistant properties. - Abstract: Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnO{sub x}) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnO{sub x}/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnO{sub x} layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO{sub 4} and then surface-deposition of MnO{sub x} particles from the bulk phase. The MnO{sub x} particles assembled with nanosheets were uniformly coated on the PET fibers. MnO{sub x}/PET showed good activity for HCHO decomposition at room temperature which followed the Mars–van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m{sup 3}, space velocity ∼17,000 h{sup −1} and relative humidity∼50%. This research provides a facile method to deposit active MnO{sub x} onto polymers with low air resistance, and composite MnO{sub x}/PET material is promising for indoor air purification.

  20. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    Science.gov (United States)

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  1. The twitch interpolation technique for study of fatigue of human quadriceps muscle

    DEFF Research Database (Denmark)

    Bülow, P M; Nørregaard, J; Mehlsen, J

    1995-01-01

    The aim of the study was to examine if the twitch interpolation technique could be used to objectively measure fatigue in the quadriceps muscle in subjects performing submaximally. The 'true' maximum isometric quadriceps torque was determined in 21 healthy subject using the twitch interpolation...... technique. Then an endurance test was performed in which the subjects made repeated isometric contractions at 50% of the 'true' maximum torque for 4 s, separated by 6 s rest periods. During the test, the force response to single electrical stimulation (twitch amplitude) was measured at 50% and 25......). In conclusion, the twitch technique can be used for objectively measuring fatigue of the quadriceps muscle....

  2. TWITCH PARAMETERS IN TRANSVERSAL AND LONGITUDINAL BICEPS BRACHII RESPONSE

    Directory of Open Access Journals (Sweden)

    Boštjan Šimunič

    2010-01-01

    Full Text Available Assessment of the contractile properties of skeletal muscles is continuing to be an important issue and a difficult task methodologically. Longitudinal direction of skeletal muscle contraction blurs intrinsic muscle belly contractile properties with many factors. This study evaluates and explains contractile properties such as: delay time (Td, contraction time (Tc, half relaxation time (Tr and maximal amplitude (Dm extracted from twitch transversal response and compare them with torque response. In fifteen healthy males (age 23.7 ± 3.4 years isometric twitch transversal and torque responses were simultaneously recorded during graded electrically elicited contractions in the biceps brachii muscle. The amplitude of electrical stimulation was increased in 5 mA steps from a threshold up to a maximal response. The muscles’ belly transversal response was measured by a high precision mechanical displacement sensor while elbow joint torque was calculated from force readings. Results indicate a parabolic relation between the transversal displacement and the torque Dm. A significantly shorter Tc was found in transversal response without being correlated to torque Tc (r = -0.12; > 0.05. A significant correlation was found between torque Tc and the time occurrence of the second peak in the transversal response (r = 0.83; < 0.001. Electrical stimulation amplitude dependant variation of the Tc was notably different in transversal than in torque response. Td was similar at submaximal and maximal responses but larger in transversal at just above threshold contractions. Tr has a similar linear trend in both responses, however, the magnitude and the slope are much larger in the transversal response. We could conclude that different mechanisms affect longitudinal and transversal twitch skeletal muscle deformations. Contractile properties extracted from the transversal response enable alternative insights into skeletal muscle contraction mechanics.

  3. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  4. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    Science.gov (United States)

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  5. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea); Kim, Taejin [Core Technology Research Center for Fuel Cell, Jeollabuk-do 561-844 (Korea)

    2009-05-15

    In order to investigate the catalytic capacity of metals and metal oxides based on electrospun carbon fibers for improving hydrogen storage, electrospinning and heat treatments were carried out to obtain metal/metal oxide-embedded carbon fibers. Although the fibers were treated with the same activation procedure, they had different pore structures, due to the nature of the metal oxide. When comparing the catalytic capacity of metal and metal oxide, metal exhibits better performance as a catalyst for the improvement of hydrogen storage, when considering the hydrogen storage system. When a metal oxide with an m.p. lower than the temperature of heat treatment was used, the metal oxide was changed to metal during the heat treatment, developing a micropore structure. The activation process produced a high specific surface area of up to 2900 m{sup 2}/g and a pore volume of up to 2.5 cc/g. The amount of hydrogen adsorption reached approximately 3 wt% at 100 bar and room temperature. (author)

  6. Ammonia gas sensing property of gadolinium oxide using fiber optic gas sensor

    Science.gov (United States)

    Kumar, J. Santhosh; Ranganathan, B.; Sastikumar, D.

    2017-05-01

    The design of fiber optic sensor is based on a cladding modification methodology. A fiber-optic chemical sensor is developed by replacing a certain portion of the original cladding with a chemically sensitive material, specifically, calcinated gadolinium oxide (Gd2O3).Both the light absorption co-efficient and refractive index change upon exposure to chemical vapours of volatile organic compounds (VOCs) such as ammonia (NH3), ethanol (CH3CH2OH), and methanol (CH3OH). The spectral characteristics of the sensor were studied for different concentrations ranging from 0-500 ppm. These changes induced the optical intensity modulation of the transmitted optical signal. During interaction between the sensing material and VOCs, the output intensity is taken into account to detect the toxic VOCs present in the environment. This was systematically investigated by X-ray diffractometer (XRD) and SEM. The XRD analysis indicated that the calcinated Gd2O3 was formed in cubic structure with the crystallite size of 13 nm. The Gd2O3 nanorods with thickness ranging from 80 to 120 nm were confirmed from SEM. The ammonia gas response of the Gd2O3 sensor is presented. A model is proposed for understanding the spectral intensity variations.

  7. Electrophoretic deposition of graphene oxide onto carbon fibers for in-tube solid-phase microextraction.

    Science.gov (United States)

    Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Bu, Yanan; Luo, Chuannan; Sun, Min

    2017-09-29

    Carbon fibers (CFs) were functionalized with graphene oxide (GO) by an electrophoretic deposition (EPD) method for in-tube solid-phase microextraction (SPME). GO-CFs were filled into a poly(ether ether ketone) (PEEK) tube to obtain a fibers-in-tube SPME device, which was connected with high performance liquid chromatography (HPLC) equipment to build online SPME-HPLC system. Compared with CFs, GO-CFs presented obviously better extraction performance, due to excellent adsorption property and large surface area of GO. Using ten polycyclic aromatic hydrocarbons (PAHs) as model analytes, the important extraction conditions were optimized, such as sample flow rate, extraction time, organic solvent content and desorption time. An online analysis method was established with wide linear range (0.01-50μgL -1 ) and low detection limits (0.001-0.004μgL -1 ). Good sensitivity resulted from high enrichment factors (1133-3840) of GO-CFs in-tube device towards PAHs. The analysis method was used to online determination of PAHs in wastewater samples. Some target analytes were detected and relative recoveries were in the range of 90.2-112%. It is obvious that the proposed GO-CFs in-tube device was an efficient extraction device, and EPD could be used to develop nanomaterials functionalized sorbents for sample preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    Directory of Open Access Journals (Sweden)

    Nitai Chandra Adak

    2018-02-01

    Full Text Available Thermally reduced graphene oxide (TRGO was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spectroscopy and field emission scanning electron microscopy (FE-SEM techniques. It was observed that the wrinkled structure of synthesized TRGO may be helpful to interlock with the epoxy resin and CF.The inter-laminar shear strength, in-plane fracture toughness and impact strength increased by ~67%, 62% and 93% at 0.2 wt % of TRGO loading in the CF/epoxy composites as compared to the CF reinforced epoxy. The mechanical properties of the hybrid composites decreased beyond the 0.2 wt % of TRGO incorporation in the epoxy resin. The fracture surfaces of the hybrid composites were studied by FE-SEM image analysis to investigate the synergistic effect of TRGO in the CF/epoxy composite. This study suggested that TRGO could be used asgood nanofiller to resist the matrix and fiber fracture.

  9. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber.

    Science.gov (United States)

    Minn, Khant; Anopchenko, Aleksei; Yang, Jingyi; Lee, Ho Wai Howard

    2018-02-05

    We report a novel optical waveguide design of a hollow step index fiber modified with a thin layer of indium tin oxide (ITO). We show an excitation of highly confined waveguide mode in the proposed fiber near the wavelength where permittivity of ITO approaches zero. Due to the high field confinement within thin ITO shell inside the fiber, the epsilon-near-zero (ENZ) mode can be characterized by a peak in modal loss of the hybrid waveguide. Our results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided core mode to the thin-film ENZ mode. We also show that the phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents inside the central bore of the fiber. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.

  10. Reliability of maximal mitochondrial oxidative phosphorylation in permeabilized fibers from the vastus lateralis employing high-resolution respirometry

    DEFF Research Database (Denmark)

    Cardinale, Daniele A; Gejl, Kasper D; Ørtenblad, Niels

    2018-01-01

    The purpose was to assess the impact of various factors on methodological errors associated with measurement of maximal oxidative phosphorylation (OXPHOS) in human skeletal muscle determined by high-resolution respirometry in saponin-permeabilized fibers. Biopsies were collected from 25 men...

  11. Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling.

    Science.gov (United States)

    Raffaello, Anna; Laveder, Paolo; Romualdi, Chiara; Bean, Camilla; Toniolo, Luana; Germinario, Elena; Megighian, Aram; Danieli-Betto, Daniela; Reggiani, Carlo; Lanfranchi, Gerolamo

    2006-03-13

    Denervation deeply affects muscle structure and function, the alterations being different in slow and fast muscles. Because the effects of denervation on fast muscles are still controversial, and high-throughput studies on gene expression in denervated muscles are lacking, we studied gene expression during atrophy progression following denervation in mouse tibialis anterior (TA). The sciatic nerve was cut close to trochanter in adult CD1 mice. One, three, seven, and fourteen days after denervation, animals were killed and TA muscles were dissected out and utilized for physiological experiments and gene expression studies. Target cDNAs from TA muscles were hybridized on a dedicated cDNA microarray of muscle genes. Seventy-one genes were found differentially expressed. Microarray results were validated, and the expression of relevant genes not probed on our array was monitored by real-time quantitative PCR (RQ-PCR). Nuclear- and mitochondrial-encoded genes implicated in energy metabolism were consistently downregulated. Among genes implicated in muscle contraction (myofibrillar and sarcoplasmic reticulum), genes typical of fast fibers were downregulated, whereas those typical of slow fibers were upregulated. Electrophoresis and Western blot showed less pronounced changes in myofibrillar protein expression, partially confirming changes in gene expression. Isometric tension of skinned fibers was little affected by denervation, whereas calcium sensitivity decreased. Functional studies in mouse extensor digitorum longus muscle showed prolongation in twitch time parameters and shift to the left in force-frequency curves after denervation. We conclude that, if studied at the mRNA level, fast muscles appear not less responsive than slow muscles to the interruption of neural stimulation.

  12. Effect of thermally reduced graphene oxide on dynamic mechanical properties of carbon fiber/epoxy composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole

  13. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level.

    Science.gov (United States)

    Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen

    2013-11-15

    The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO2 selectivity. Interestingly, Mn-TiO2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes.

    Science.gov (United States)

    Taylor, I Mitch; Robbins, Elaine M; Catt, Kasey A; Cody, Patrick A; Happe, Cassandra L; Cui, Xinyan Tracy

    2017-03-15

    Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: MB.Gholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba; Shamizadeh, Mohammad [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam; Astinchap, Bandar [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Technology Research Laboratory, Razi University, Kermanshah (Iran, Islamic Republic of)

    2014-04-01

    Highlights: • Co{sub 3}O{sub 4} nanoparticles were introduced as a novel SPME fiber coating. • The fiber was evaluated for the extraction of BTEX in combination with GC–MS. • The fiber showed extraction efficiencies better than a PDMS fiber toward BTEX. • The fiber was successfully applied to the determination of BTEX in real samples. - Abstract: In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co{sub 3}O{sub 4} nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared.

  16. Preparation of anti-oxidative SiC/SiO2 coating on carbon fibers from vinyltriethoxysilane by sol–gel method

    International Nuclear Information System (INIS)

    Xia Kedong; Lu Chunxiang; Yang Yu

    2013-01-01

    Highlights: ► The SiC/SiO 2 coating was prepared on carbon fibers by the sol–gel method. ► Nano-crystallites with an average diameter of 130 nm were aligned along the fiber axis uniformly. ► The oxidation resistant property of coated carbon fiber was increased with the increase of sol concentration and the heat treatment temperature. ► The oxidation activation energy of the coated carbon fiber was increased by 23% in comparison with uncoated carbon fiber. - Abstract: The anti-oxidative SiC/SiO 2 coating was prepared on carbon fibers by a sol–gel process using vinyltriethoxysilane (VTES) as the single source precursor. The derived coating was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The oxidation resistant properties of the carbon fiber with and without coating were studied by isothermal oxidation. The results indicated that the carbothermal reduction reaction led to the decrease of SiO 2 phase and the increase of SiC phase at 1500 °C. The uniform SiC/SiO 2 coating prepared from a sol concentration of 4 wt% and heat treated at 1500 °C showed the optimal oxidation resistant property. The oxidation resistance of the carbon fiber was improved by the SiC/SiO 2 coating, and the oxidation activation energy was increased by about 23% as compared with uncoated carbon fiber.

  17. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  18. Melt Drawing/Coating of Oxide Fibers for Composite Materials Applications

    National Research Council Canada - National Science Library

    Weber, J

    1996-01-01

    .... Fiber coatings were formed by pulsed excimer laser ablation. Push-out tests on coated fibers imbedded in a ceramic matrix gave small values of the debonding shear strength, tau d 25 MPa, for fibers coated with 2 MgO-SiO2 (enstatite...

  19. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles.

    Science.gov (United States)

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-03-15

    The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P fast twitch fibres (P fast twitch fibres by 24 +/- 5 % (P slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P slow twitch fibres, compared to control (no H(2)O(2); P fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.

  20. Dark solitons in erbium-doped fiber lasers based on indium tin oxide as saturable absorbers

    Science.gov (United States)

    Guo, Jia; Zhang, Huanian; Li, Zhen; Sheng, Yingqiang; Guo, Quanxin; Han, Xile; Liu, Yanjun; Man, Baoyuan; Ning, Tingyin; Jiang, Shouzhen

    2018-04-01

    Dark solitons, which have good stability, long transmission distance and strong anti-interference ability. By using a coprecipitation method, the high quality indium tin oxide (ITO) were prepared with an average diameter of 34.1 nm. We used a typical Z-scan scheme involving a balanced twin-detector measurement system to investigated nonlinear optical properties of the ITO nanoparticles. The saturation intensity and modulation depths are 13.21 MW/cm2 and 0.48%, respectively. In an erbium-doped fiber (EDF) lasers, we using the ITO nanoparticles as saturable absorber (SA), and the formation of dark soliton is experimentally demonstrated. The generated dark solitons are centered at the wavelength of 1561.1 nm with a repetition rate of 22.06 MHz. Besides, the pulse width and pulse-to-pulse interval of the dark solitons is ∼1.33ns and 45.11 ns, respectively. These results indicate that the ITO nanoparticles is a promising nanomaterial for ultrafast photonics.

  1. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications.

    Science.gov (United States)

    Han, Kook In; Kim, Seungdu; Lee, In Gyu; Kim, Jong Pil; Kim, Jung-Ha; Hong, Suck Won; Cho, Byung Jin; Hwang, Wan Sik

    2017-02-19

    Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF's positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH) and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO's excellent sensing properties and SF's flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  2. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kook In Han

    2017-02-01

    Full Text Available Cylindrical silk fiber (SF was coated with Graphene oxide (GO for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF’s positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS, Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO’s excellent sensing properties and SF’s flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  3. Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers

    Science.gov (United States)

    Zhao, Bo; Zhu, Wenkun; Mu, Tao; Hu, Zuowen; Duan, Tao

    2017-01-01

    A novel Pt/ACF (Pt supported on activated carbon fibers) electrode was successfully prepared with impregnation and electrodeposition method. Characterization of the electrodes indicated that the Pt/ACF electrode had a larger effective area and more active sites. Electrochemical degradation of ethylenediaminetetra-acetic acid (EDTA) in aqueous solution with Pt/ACF electrodes was investigated. The results showed that the 3% Pt/ACF electrode had a better effect on EDTA removal. The operational parameters influencing the electrochemical degradation of EDTA with 3% Pt/ACF electrode were optimized and the optimal removal of EDTA and chemical oxygen demand (COD) were 94% and 60% after 100 min on condition of the electrolyte concentration, initial concentration of EDTA, current density and initial value of pH were 0.1 mol/L, 300 mg/L, 40 mA/cm2 and 5.0, respectively. The degradation intermediates of EDTA in electrochemical oxidation with 3% Pt/ACF electrode were identified by gas chromatography-mass spectrum (GC-MS). PMID:28754016

  4. Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers.

    Science.gov (United States)

    Zhao, Bo; Zhu, Wenkun; Mu, Tao; Hu, Zuowen; Duan, Tao

    2017-07-21

    A novel Pt/ACF (Pt supported on activated carbon fibers) electrode was successfully prepared with impregnation and electrodeposition method. Characterization of the electrodes indicated that the Pt/ACF electrode had a larger effective area and more active sites. Electrochemical degradation of ethylenediaminetetra-acetic acid (EDTA) in aqueous solution with Pt/ACF electrodes was investigated. The results showed that the 3% Pt/ACF electrode had a better effect on EDTA removal. The operational parameters influencing the electrochemical degradation of EDTA with 3% Pt/ACF electrode were optimized and the optimal removal of EDTA and chemical oxygen demand (COD) were 94% and 60% after 100 min on condition of the electrolyte concentration, initial concentration of EDTA, current density and initial value of pH were 0.1 mol/L, 300 mg/L, 40 mA/cm² and 5.0, respectively. The degradation intermediates of EDTA in electrochemical oxidation with 3% Pt/ACF electrode were identified by gas chromatography-mass spectrum (GC-MS).

  5. Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation.

    Science.gov (United States)

    Guo, Ankang; Ming, Xin; Fu, Yang; Wang, Gang; Wang, Xianbao

    2017-09-06

    Solar vapor generation is a promising and whole new branch of photothermal conversion for harvesting solar energy. Various materials and devices for solar thermal conversion were successively produced and reported for higher solar energy utilization in the past few years. Herein, a compact device of reduced graphene oxides (rGO) and paper fibers was designed and assembled for efficient solar steam generation under light illumination, and it consists of water supply pipelines (WSP), a thermal insulator (TI) and a double-sided absorbing film (DSF). Heat localization is enabled by the black DSF due to its broad absorption of sunlight. More importantly, the heat transfer, from the hot DSF to the cold base fluid (water), was suppressed by TI with a low thermal conductivity. Meanwhile, bulk water was continuously transported to the DSF by WSP through TI, which was driven by the surface energy and surface tension based on the capillary effect. The effects of reduction degrees of rGO on the photothermal conversion were explored, and the evaporation efficiency reached 89.2% under one sun with 60 mg rGO. This new microdevice provided a basic technical support for distillation, desalination, sewage treatment, and related technologies.

  6. Pt nanocrystals electrodeposited on reduced graphene oxide/carbon fiber paper with efficient electrocatalytic properties

    Directory of Open Access Journals (Sweden)

    Zhiling Chen

    2017-08-01

    Full Text Available Carbon fiber paper (CFP wrapped with reduced graphene oxide (rGO film as the composite support (rGO/CFP of Pt catalysts was studied. It was found that rGO could affect the size and morphology of Pt nanocrystals (NCs. Concave nanocubes (CNC Pt NCs ~ 20 nm were uniformly electrodeposited on high reduced HrGO/CFP while irregular Pt NCs ~ 62 nm were loaded on low reduced LrGO. Compared with Pt-LrGO/CFP and Pt-MrGO/CFP, the CNC Pt-HrGO/CFP exhibited a higher electrochemically active surface area (121.7 m2 g−1, as well as enhanced electrooxidation activity of methanol (499 mA mg−1 and formic acid (950 mA mg−1. The results further demonstrated that the CNC Pt-HrGO/CFP could serve as the gas diffusion electrode in fuel cells and yielded a satisfactory performance (1855 mW mg−1. The work can provide an attractive perspective on the convenient preparation of the novel gas diffusion electrode for proton exchange membrane fuel cells.

  7. Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation

    International Nuclear Information System (INIS)

    Tsai, Hsiang-Yu; Shih, Zih-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2013-01-01

    Te/Pt nanonetwork-decorated carbon fiber microelectrodes (CFMEs) have been fabricated and employed as anodic catalysts in a direct methanol fuel cell (DMFC). Te nanowires were prepared from tellurite ions (TeO 3 2− ) through a seed-mediated growth process and were deposited onto CFMEs to form three-dimensional Te nanonetworks. The Te nanonetworks then acted as a framework and reducing agent to reduce PtCl 6 2− ions to form Te/Pt through a galvanic replacement reaction, leading to the formation of Te/PtCFMEs. By controlling the reaction time, the amount of Pt and morphology of Te/Pt nanonetworks were controlled, leading to various degrees of electrocatalytic activity. The Te/PtCFMEs provide a high electrochemical active surface area (129.2 m 2 g −1 ), good catalytic activity (1.2 A mg −1 ), high current density (20.0 mA cm −2 ), long durability, and tolerance toward the poisoning species for methanol oxidation in 0.5 M sulfuric acid containing 1 M methanol. We have further demonstrated an enhanced current density by separately using 3 and 5 Te/PtCFMEs. Our results show that the low-cost, stable, and effective Te/PtCFMEs have great potential in the fabrication of cost-effective fuel cells. (paper)

  8. Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide

    International Nuclear Information System (INIS)

    Zhang Ling; Wan Lihua; Chang Ning; Liu Jianyong; Duan Chao; Zhou Qi; Li Xiangling; Wang Xinze

    2011-01-01

    Phosphate removal from wastewater is very important for the prevention of eutrophication. Adsorption of phosphate from water was investigated using activated carbon fiber loaded with lanthanum oxide (ACF-La) as a novel adsorbent. The effects of variables (La/ACF mass ratio, impregnation time, activation time, and activation temperature) have been studied by the single-factor method. Response surface methodology (RSM), based on three-variable-three-level Box-Behnken design (BBD), was employed to assess the individual and collective effects of the main independent parameters on the phosphate removal. The optimal conditions within the range studied for preparing ACF-La were found as follows: La/ACF mass ratio of 11.78%, activation time of 2.5 h and activation temperature at 650 ° C , respectively. The phosphate removal using the ACF-La prepared under the optimal conditions was up to 97.6% even when the phosphate concentration in water was 30 mg P/L, indicating that ACF-La may be an effective adsorbent. The results from Fourier transform infrared (FT-IR) spectroscopy and change of pH values associated with the adsorption process revealed that the probable mechanism of phosphate ions onto ACF-La was not only ion exchange and coulomb interaction, but also a result of Lewis acid-base interaction due to La-O coordination bonding.

  9. The role of Sox6 in zebrafish muscle fiber type specification.

    Science.gov (United States)

    Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W

    2015-01-01

    The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation

  10. Comparison of collagen fibre architecture between slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi.

    Science.gov (United States)

    Nakamura, Y N; Iwamoto, H; Tabata, S; Ono, Y

    2003-07-01

    1. Collagen fibre architectures of perimysium and endomysium in the slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi were compared. 2. Type I and III collagens were distributed in both perimysium and endomysium as indicated by their positive immunohistochemical reactions to polyclonal antibodies. 3. Cells invested by endomysium with no myofibres were larger in the cranial part because of the presence of larger slow-twitch myofibres. The honeycomb structure of endomysium was divided into several parts by thick perimysium. 4. The thick perimysial collagen fibres with parallel fibrils, which were interconnected by the loose reticular fibrils and thin fibres, were more numerous and thicker in the cranial part than the caudal. 5. Thick endomysial sidewall of cells in the cranial part was composed of a rougher reticulum of slightly thicker collagen fibrils compared with the thin sidewall in the caudal part. 6. These results indicated that both perimysial constitutions of collagen fibres and endomysial collagen fibrils had attained much larger growth in the slow-twitch cranial part than the fast-twitch caudal in broiler latissimus dorsi muscle.

  11. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda

    2002-01-01

    Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... treatment gave a more reactive surface than alkaline wet oxidation for wheat straw, whereas the opposite was observed for beech. Fourier transform infrared (FT-IR) spectroscopy showed an almost complete loss of the ester carbonyl stretching signal and the corresponding C-C-O stretching in wet...

  12. Method of producing superconducting fibers of bismuth strontium calcium copper oxide (Bi(2212) and Bi(2223))

    Science.gov (United States)

    Schwartzkopf, Louis A.

    1991-10-01

    Fibers of Bi(2212) have been produce by pendant drop melt extraction. This technique involves the end of a rod of Bi(2212) melted with a hydrogen-oxygen torch, followed by lowering onto the edge of a spinning wheel. The fibers are up to 15 cm in length with the usual lateral dimensions, ranging from 20 um to 30 um. The fibers require a heat treatment to make them superconducting.

  13. Skeletal muscle fiber characteristics and oxidative capacity in hemiparetic stroke survivors

    DEFF Research Database (Denmark)

    Severinsen, Kaare; Dalgas, Ulrik; Overgaard, Kristian

    2016-01-01

    by ATPase histochemistry. Enzymatic concentrations of citrate synthase (CS) and 3-Hydroxyacyl-coenzymeA-dehydrogenase (HAD) were determined using freeze-dried muscle tissue. Findings were correlated with clinical outcomes. RESULTS: In the paretic muscles the mean fiber area was smaller (P=0.......0004), and a lower proportion of type 1 fibers (P=0.0016) and a higher proportion of type 2X fibers (P=0.0002) were observed. The paretic muscle had lower CS (P=0.013) and HAD concentrations (P=0.037). Mean fiber area correlated with muscle strength (r=0.43, P=0.041), and CS concentration correlated with aerobic...

  14. De novo synthesis of purine nucleotides in different fiber types of rat skeletal muscle

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.; Hood, D.A.; Terjung, R.L.

    1986-01-01

    The contribution of de novo purine nucleotide synthesis to nucleotide metabolism in skeletal muscles is not known. The authors have determined rates of de novo synthesis in soleus (slow-twitch red), red gastrocnemius (fast-twitch red), and white gastrocnemius (fast-twitch white) using the perfused rat hindquarter. 14 C glycine incorporation into ATP was linear after 1 and 2 hours of perfusion with 0.2 mM added glycine. The intracellular (I) and extracellular (E) specific activity of 14 C glycine was determined by HPLC of phenylisothiocyanate derivatives of neutralized PCA extracts. The rates of de novo synthesis when expressed relative to muscle ATP content show slow and fast-twitch red muscles to be similar and about twice as great as fast-twitch white muscles. This could represent a greater turnover of the adenine nucleotide pool in more oxidative red muscle types

  15. THE EFFECT OF STIMULUS ANTICIPATION ON THE INTERPOLATED TWITCH TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Duane C. Button

    2008-12-01

    Full Text Available The objective of this study was to investigate the effect of expected and unexpected interpolated stimuli (IT during a maximum voluntary contraction on quadriceps force output and activation. Two groups of male subjects who were either inexperienced (MI: no prior experience with IT tests or experienced (ME: previously experienced 10 or more series of IT tests received an expected or unexpected IT while performing quadriceps isometric maximal voluntary contractions (MVCs. Measurements included MVC force, quadriceps and hamstrings electromyographic (EMG activity, and quadriceps inactivation as measured by the interpolated twitch technique (ITT. When performing MVCs with the expectation of an IT, the knowledge or lack of knowledge of an impending IT occurring during a contraction did not result in significant overall differences in force, ITT inactivation, quadriceps or hamstrings EMG activity. However, the expectation of an IT significantly (p < 0.0001 reduced MVC force (9.5% and quadriceps EMG activity (14.9% when compared to performing MVCs with prior knowledge that stimulation would not occur. While ME exhibited non-significant decreases when expecting an IT during a MVC, MI force and EMG activity significantly decreased 12.4% and 20.9% respectively. Overall, ME had significantly (p < 0.0001 higher force (14.5% and less ITT inactivation (10.4% than MI. The expectation of the noxious stimuli may account for the significant decrements in force and activation during the ITT

  16. Preparation of silica-sustained electrospun polyvinylpyrrolidone fibers with uniform mesopores via oxidative removal of template molecules by H2O2 treatment

    International Nuclear Information System (INIS)

    Kang, Haigang; Zhu, Yihua; Shen, Jianhua; Yang, Xiaoling; Chen, Cheng; Cao, Huimin; Li, Chungzhong

    2010-01-01

    Silica-sustained electrospun PVP fibers with uniform mesopores were synthesized via facile oxidative removal of template molecules by H 2 O 2 extraction. Tetraethyl orthosilicate, polyvinylpyrrolidone (PVP), and triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer pluronic P 123 compose the electrospinning sol to fabricate the silica-sustained PVP hybrid fibers. The effect of different post-treatment methods on the pore size distribution was investigated by calcination and extraction, respectively. Experimental results showed that oxidative removal of structure-directing agent P 123 in the hybrid fibers by H 2 O 2 treatment can easily form narrow pore size distribution, and the incorporation of 3D silica skeleton built by hot steam aging facilitated preserving the original cylindrical morphology of fibers. Scanning electron microscopy (SEM), N 2 adsorption-desorption isotherm, transmission electron microscopy (TEM), X-ray diffraction (XRD), FT-IR spectra and thermogravimetric analysis (TGA) were used to characterize the hybrid fibers. The hybrid fibers can be expected to have potential applications in drug release or tissue engineering because of their suitable pore size, large surface area and good biocompatibility.

  17. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    International Nuclear Information System (INIS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-01-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO. (paper)

  18. Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber.

    Science.gov (United States)

    Yu, Zhenhua; Song, Yanrong; Dong, Xinzheng; Li, Yanlin; Tian, Jinrong; Wang, Yonggang

    2013-10-10

    A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.

  19. The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing.

    Science.gov (United States)

    Wang, Yuedan; Qing, Xing; Zhou, Quan; Zhang, Yang; Liu, Qiongzhen; Liu, Ke; Wang, Wenwen; Li, Mufang; Lu, Zhentan; Chen, Yuanli; Wang, Dong

    2017-09-15

    Novel woven fiber organic electrochemical transistors based on polypyrrole (PPy) nanowires and reduced graphene oxide (rGO) have been prepared. SEM revealed that the introduction of rGO nanosheets could induce the growth and increase the amount of PPy nanowires. Moreover, it could enhance the electrical performance of fiber transistors. The hybrid transistors showed high on/off ratio of 10 2 , fast switch speed, and long cycling stability. The glucose sensors based on the fiber organic electrochemical transistors have also been investigated, which exhibited outstanding sensitivity, as high as 0.773 NCR/decade, with a response time as fast as 0.5s, a linear range of 1nM to 5μM, a low detection concentration as well as good repeatability. In addition, the glucose could be selectively detected in the presence of ascorbic acid and uric acid interferences. The reliability of the proposed glucose sensor was evaluated in real samples of rabbit blood. All the results indicate that the novel fiber transistors pave the way for portable and wearable electronics devices, which have a promising future for healthcare and biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fabrication of Fiber Bragg Grating Coating with TiO2 Nanostructured Metal Oxide for Refractive Index Sensor

    Directory of Open Access Journals (Sweden)

    Shaymaa Riyadh Tahhan

    2017-01-01

    Full Text Available To increase the sensitivity of biosensor a new approach using an optical fiber Bragg grating (FBG coated with a suitable nanostructured metal oxide (NMO is proposed which is costly effective compared to other biosensors. Bragg grating was written on a D-shaped optical fiber by phase mask method using a 248 nm KrF excimer laser for a 5 min exposure time producing a grating with a period of 528 nm. Titanium dioxide (TiO2 nanostructured metal oxide was coated over the fiber for the purpose of increasing its sensing area. The etched D-shaped FBG was then coated with 312 nm thick TiO2 nanostructured layer to ensure propagating the radiation modes within the core. The final structure was used to sense deionized water and saline. The etched D-shaped FBG original sensitivity before coating to air-deionized water and to air-saline was 0.314 nm/riu and 0.142 nm/riu, respectively. After coating the sensitivity became 1.257 nm/riu for air-deionized water and 0.857 nm/riu for air-saline.

  1. The effect of consuming oxidized oil supplemented with fiber on lipid profiles in rat model

    Directory of Open Access Journals (Sweden)

    Shila Shafaeizadeh

    2011-01-01

    Conclusions: Pectin consumption could decrease serum malondialdehyde and cholesterol in the diet that contains oxidized oil. Pectin supplementation could decrease the detrimental effects of thermally oxidized oil.

  2. Ischemia Increases the Twitch Latent Period in the Soleus and Extensor Carpi Radialis Longus Muscles from Adult Rats.

    Science.gov (United States)

    Morales, Camilo; Fierro, Leonardo

    2017-10-01

    Complete ischemia and reperfusion effects on twitch force (∫(F·t)), twitch latent period (TLP), maximal rate of rise of twitch tension (δF/δt) max , and twitch maximum relaxation rate (TMRR) were assessed. We divided 36 adult rats into four groups; two control groups (n = 9), a group undergoing 1 hour of ischemia followed by 1 hour of reperfusion (n = 9), and one group exposed to 2 hours of ischemia followed by 1 hour of reperfusion (n = 9). We have induced twitch contractions every 10 minutes in the soleus and the extensor carpi radialis longus (ECRL). Twitch contractions were recorded and then analyzed for ∫(F·t), TLP, (δF/δt) max , and TMRR. During 1 hour and 40 minutes of ischemia, TLP increased to 179 ± 24% (p values.

  3. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  4. Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium

    International Nuclear Information System (INIS)

    Tabassum, Rana; Gupta, Banshi D

    2016-01-01

    We present an experimental study on a surface plasmon resonance (SPR) based fiber optic hydrogen gas sensor employing a palladium doped zinc oxide nanocomposite (ZnO (1−x) Pd x , 0 ≤ x ≤ 0.85) layer over the silver coated unclad core of the fiber. Palladium doped zinc oxide nanocomposites (ZnO (1−x) Pd x )  are prepared by a chemical route for different composition ratios and their structural, morphological and hydrogen sensing properties are investigated experimentally. The sensing principle involves the absorption of hydrogen gas by ZnO (1−x) Pd x , altering its dielectric function. The change in the dielectric constant is analyzed in terms of the red shift of the resonance wavelength in the visible region of the electromagnetic spectrum. To check the sensing capability of sensing probes fabricated with varying composition ratio (x) of nanocomposite, the SPR curves are recorded typically for 0% H 2 and 4% H 2 in N 2 atmosphere for each fabricated probe. On changing the concentration of hydrogen gas from 0% to 4%, the red shift in the SPR spectrum confirms the change in dielectric constant of ZnO (1−x) Pd x on exposure to hydrogen gas. It is noted that the shift in the SPR spectrum increases monotonically up to a certain fraction of Pd in zinc oxide, beyond which it starts decreasing. SEM images and the photoluminescence (PL) spectra reveal that Pd dopant atoms substitutionally incorporated into the ZnO lattice profoundly affect its defect levels; this is responsible for the optimal composition of ZnO (1−x) Pd x to sense the hydrogen gas. The sensor is highly selective to hydrogen gas and possesses high sensitivity. Since optical fiber sensing technology is employed along with the SPR technique, the present sensor is capable of remote sensing and online monitoring of hydrogen gas. (paper)

  5. Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite.

    Science.gov (United States)

    Tabassum, Rana; Gupta, Banshi D

    2015-02-10

    We analyze surface plasmon resonance-based fiber-optic sensor for sensing of small concentrations of hydrogen gas in the visible region of the electromagnetic spectrum. One of the two probes considered has multilayers of zinc oxide (ZnO) and palladium (Pd) while the other has layer of their composite over a silver coated unclad core of the fiber. The analysis is carried out for different volume fractions of palladium nanoparticles dispersed in zinc oxide host material in the nanocomposite layer. For the analysis, a Maxwell-Garnett model is adopted for calculating the dielectric function of a ZnO:Pd nanocomposite having nanoparticles of dimensions smaller than the wavelength of radiation used. The effects of the volume fraction of the nanoparticles in the nanocomposite and the thickness of the nanocomposite layer on the figure of merit of the sensor have been studied. The film thickness of the layer and the volume fraction of nanoparticles in the ZnO:Pd nanocomposite layer have been optimized to achieve the maximum value of the figure of merit of the sensor. It has been found that the figure of merit of the sensing probe coated with ZnO:Pd nanocomposite is more than twofold of the sensing probe coated with multilayers of Pd and ZnO over a silver coated unclad core of the fiber; hence, the sensor with a nanocomposite layer works better than that with multilayers of zinc oxide and palladium. The sensor can be used for online monitoring and remote sensing of hydrogen gas.

  6. The role of Six1 in muscle progenitor cells and the establishment of fast-twitch muscle fibres

    OpenAIRE

    Nord, Hanna

    2014-01-01

    Myogenesis is the process of skeletal muscle tissue formation where committed muscle progenitor cells differentiate into skeletal muscle fibres. Depending on the instructive cues the muscle progenitor cells receive they will differentiate into specific fibre types with different properties. The skeletal muscle fibres can be broadly classified as fast-twitch fibres or slow-twitch fibres, based on their contractile speed. However, subgroups of fast- and slow-twitch fibres with different metabol...

  7. Visualization of Twitching Motility and Characterization of the Role of the PilG in Xylella fastidiosa.

    Science.gov (United States)

    Shi, Xiangyang; Lin, Hong

    2016-04-08

    Xylella fastidiosa is a Gram-negative non-flagellated bacterium that causes a number of economically important diseases of plants. The twitching motility provides X. fastidiosa a means for long-distance intra-plant movement and colonization, contributing toward pathogenicity in X. fastidiosa. The twitching motility of X. fastidiosa is operated by type IV pili. Type IV pili of Xylella fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon encoding proteins that are involved with signal transduction pathways. To elucidate the roles of pilG in the twitching motility of X. fastidiosa, a pilG-deficient mutant XfΔpilG and its complementary strain XfΔpilG-C containing native pilG were developed. A microfluidic chambers integrated with a time-lapse image recording system was used to observe twitching motility in XfΔpilG, XfΔpilG-C and its wild type strain. Using this recording system, it permits long-term spatial and temporal observations of aggregation, migration of individual cells and populations of bacteria via twitching motility. X. fastidiosa wild type and complementary XfΔpilG-C strain showed typical twitching motility characteristics directly observed in the microfluidic flow chambers, whereas mutant XfΔpliG exhibited the twitching deficient phenotype. This study demonstrates that pilG contributes to the twitching motility of X. fastidiosa. The microfluidic flow chamber is used as a means for observing twitching motility.

  8. Influence of temperature on oxidation mechanisms of fiber-textured AlTiTaN coatings.

    Science.gov (United States)

    Khetan, Vishal; Valle, Nathalie; Duday, David; Michotte, Claude; Delplancke-Ogletree, Marie-Paule; Choquet, Patrick

    2014-03-26

    The oxidation kinetics of AlTiTaN hard coatings deposited at 265 °C by DC magnetron sputtering were investigated between 700 and 950 °C for various durations. By combining dynamic secondary ion mass spectrometry (D-SIMS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations of the different oxidized coatings, we were able to highlight the oxidation mechanisms involved. The TEM cross-section observations combined with XRD analysis show that a single amorphous oxide layer comprising Ti, Al, and Ta formed at 700 °C. Above 750 °C, the oxide scale transforms into a bilayer oxide comprising an Al-rich upper oxide layer and a Ti/Ta-rich oxide layer at the interface with the coated nitride layer. From the D-SIMS analysis, it could be proposed that the oxidation mechanism was governed primarily by inward diffusion of O for temperatures of ≤700 °C, while at ≥750 °C, it is controlled by outward diffusion of Al and inward diffusion of O. Via a combination of structural and chemical analysis, it is possible to propose that crystallization of rutile lattice favors the outward diffusion of Al within the AlTiTa mixed oxide layer with an increase in the temperature of oxidation. The difference in the mechanisms of oxidation at 700 and 900 °C also influences the oxidation kinetics with respect to oxidation time. Formation of a protective alumina layer decreases the rate of oxidation at 900 °C for long durations of oxidation compared to 700 °C. Along with the oxidation behavior, the enhanced thermal stability of AlTiTaN compared to that of the TiAlN coating is illustrated.

  9. Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber

    International Nuclear Information System (INIS)

    Ahmad, H; Soltanian, M R K; Alimadad, M; Harun, S W

    2014-01-01

    An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW. (paper)

  10. Integrating nanohybrid membranes of reduced graphene oxide: chitosan: silica sol gel with fiber optic SPR for caffeine detection

    Science.gov (United States)

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.

    2017-05-01

    Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.

  11. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    Science.gov (United States)

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  12. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...... hydroxide. Numerical simulations of the electromagnetic field around the probe-sample interaction region are used to explain the experimental observations. With an aluminum-coated fiber probe, lines of 35 nm in width were transferred into the amorphous silicon layer. (C) 1997 American Institute of Physics....

  13. Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe.

    Science.gov (United States)

    Bogdanowicz, Robert; Niedziałkowski, Paweł; Sobaszek, Michał; Burnat, Dariusz; Białobrzeska, Wioleta; Cebula, Zofia; Sezemsky, Petr; Koba, Marcin; Stranak, Vitezslav; Ossowski, Tadeusz; Śmietana, Mateusz

    2018-04-27

    In this work an application of optical fiber sensors for real-time optical monitoring of electrochemical deposition of ketoprofen during its anodic oxidation is discussed. The sensors were fabricated by reactive magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. ITO tuned in optical properties and thickness allows for achieving a lossy-mode resonance (LMR) phenomenon and it can be simultaneously applied as an electrode in an electrochemical setup. The ITO-LMR electrode allows for optical monitoring of changes occurring at the electrode during electrochemical processing. The studies have shown that the ITO-LMR sensor’s spectral response strongly depends on electrochemical modification of its surface by ketoprofen. The effect can be applied for real-time detection of ketoprofen. The obtained sensitivities reached over 1400 nm/M (nm·mg −1 ·L) and 16,400 a.u./M (a.u.·mg −1 ·L) for resonance wavelength and transmission shifts, respectively. The proposed method is a valuable alternative for the analysis of ketoprofen within the concentration range of 0.25⁻250 μg mL −1 , and allows for its determination at therapeutic and toxic levels. The proposed novel sensing approach provides a promising strategy for both optical and electrochemical detection of electrochemical modifications of ITO or its surface by various compounds.

  14. Contractile Activity Is Necessary to Trigger Intermittent Hypobaric Hypoxia-Induced Fiber Size and Vascular Adaptations in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    David Rizo-Roca

    2018-05-01

    Full Text Available Altitude training has become increasingly popular in recent decades. Its central and peripheral effects are well-described; however, few studies have analyzed the effects of intermittent hypobaric hypoxia (IHH alone on skeletal muscle morphofunctionality. Here, we studied the effects of IHH on different myofiber morphofunctional parameters, investigating whether contractile activity is required to elicit hypoxia-induced adaptations in trained rats. Eighteen male Sprague-Dawley rats were trained 1 month and then divided into three groups: (1 rats in normobaria (trained normobaric inactive, TNI; (2 rats subjected daily to a 4-h exposure to hypobaric hypoxia equivalent to 4,000 m (trained hypobaric inactive, THI; and (3 rats subjected daily to a 4-h exposure to hypobaric hypoxia just before performing light exercise (trained hypobaric active, THA. After 2 weeks, the tibialis anterior muscle (TA was excised. Muscle cross-sections were stained for: (1 succinate dehydrogenase to identify oxidative metabolism; (2 myosin-ATPase to identify slow- and fast-twitch fibers; and (3 endothelial-ATPase to stain capillaries. Fibers were classified as slow oxidative (SO, fast oxidative glycolytic (FOG, fast intermediate glycolytic (FIG or fast glycolytic (FG and the following parameters were measured: fiber cross-sectional area (FCSA, number of capillaries per fiber (NCF, NCF per 1,000 μm2 of FCSA (CCA, fiber and capillary density (FD and CD, and the ratio between CD and FD (C/F. THI rats did not exhibit significant changes in most of the parameters, while THA animals showed reduced fiber size. Compared to TNI rats, FOG fibers from the lateral/medial fields, as well as FIG and FG fibers from the lateral region, had smaller FCSA in THA rats. Moreover, THA rats had increased NCF in FG fibers from all fields, in medial and posterior FIG fibers and in posterior FOG fibers. All fiber types from the three analyzed regions (except the posterior FG fibers displayed a

  15. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats.

    Directory of Open Access Journals (Sweden)

    Christopher J Lynch

    Full Text Available Second generation antipsychotics (SGAs, like olanzapine, exhibit acute metabolic side effects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understanding how SGAs affect the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with vehicle or olanzapine for 24h using a dose leading to a mild hyperglycemia. RNA-Seq was performed on gastrocnemius muscle, followed by alignment of the data with the Rat Genome Assembly 5.0. Olanzapine altered expression of 1347 out of 26407 genes. Genes encoding skeletal muscle fiber-type specific sarcomeric, ion channel, glycolytic, O2- and Ca2+-handling, TCA cycle, vascularization and lipid oxidation proteins and pathways, along with NADH shuttles and LDH isoforms were affected. Bioinformatics analyses indicate that olanzapine decreased the expression of slower and more oxidative fiber type genes (e.g., type 1, while up regulating those for the most glycolytic and least metabolically flexible, fast twitch fiber type, IIb. Protein turnover genes, necessary to bring about transition, were also up regulated. Potential upstream regulators were also identified. Olanzapine appears to be rapidly affecting the muscle transcriptome to bring about a change to a fast-glycolytic fiber type. Such fiber types are more susceptible than slow muscle to atrophy, and such transitions are observed in chronic metabolic diseases. Thus these effects could contribute to the altered body composition and metabolic disease olanzapine causes. A potential interventional strategy is implicated because aerobic exercise, in contrast to resistance exercise, can oppose such slow to fast fiber transitions.

  16. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Li, Yaxin; Zaini, Paulo A; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J

    2009-10-01

    A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa.

  17. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa

    OpenAIRE

    Cursino, Luciana; Li, Yaxin; Zaini, Paulo A.; De La Fuente, Leonardo; Hoch, Harvey C.; Burr, Thomas J.

    2017-01-01

    A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this prote...

  18. Type 2 iodothyronine deiodinase levels are higher in slow-twitch than fast-twitch mouse skeletal muscle and are increased in hypothyroidism.

    Science.gov (United States)

    Marsili, Alessandro; Ramadan, Waile; Harney, John W; Mulcahey, Michelle; Castroneves, Luciana Audi; Goemann, Iuri Martin; Wajner, Simone Magagnin; Huang, Stephen A; Zavacki, Ann Marie; Maia, Ana Luiza; Dentice, Monica; Salvatore, Domenico; Silva, J Enrique; Larsen, P Reed

    2010-12-01

    Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T(4) to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P Hypothyroidism caused a 40% (P hypothyroidism argue for a more important role for D2-generated T(3) in skeletal muscle physiology than previously assumed.

  19. Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles?

    Science.gov (United States)

    Caron, Guillaume; Decherchi, Patrick; Marqueste, Tanguy

    2015-09-01

    This study was designed to investigate the metabosensitive afferent response evoked by electrically induced fatigue (EIF), lactic acid (LA) and potassium chloride (KCl) in three muscle types. We recorded the activity of groups III-IV afferents originating from soleus, gastrocnemius and tibialis anterior muscles. Our data showed a same pattern of response in the three muscles after chemical injections, i.e., a bell curve with maximal discharge rate at 1 mM for LA injections and a linear relationship between KCl concentrations and the afferent discharge rate. Furthermore, a stronger response was recorded after EIF in the gastrocnemius muscle compared to the two other muscles. The change in afferent discharge after 1 mM LA injection was higher for the gastrocnemius muscle compared to the response obtained with the corresponding concentration applied in the two other muscles, whereas changes to KCl injections did not dramatically differ between the three muscles. We conclude that anatomical (mass, phenotype, vascularization, receptor and afferent density…) and functional (flexor vs. extensor) differences between muscles could explain the amplitude of these responses.

  20. Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatography of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2012-01-01

    A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhanced Microwave Absorption and Surface Wave Attenuation Properties of Co0.5Ni0.5Fe2O4 Fibers/Reduced Graphene Oxide Composites

    Directory of Open Access Journals (Sweden)

    Yinrui Li

    2018-03-01

    Full Text Available Co0.5Ni0.5Fe2O4 fibers with a diameter of about 270 nm and a length of about 10 μm were synthesized by a microemulsion-mediated solvothermal method with subsequent heat treatment. The Co0.5Ni0.5Fe2O4 fibers/reduced graphene oxide (RGO composite was prepared by a facile in-situ chemical reduction method. The crystalline structures and morphologies were investigated based on X-ray diffraction patterns and scanning electron microscopy. Magnetization measurements were carried out using a vibrating sample magnetometer at room temperature. Co0.5Ni0.5Fe2O4 fibers/RGO composites achieve both a wider and stronger absorption and an adjustable surface wave attenuation compared with Co0.5Ni0.5Fe2O4 fibers, indicating the potential for application as advanced microwave absorbers.

  2. Blood flow response to electrically induced twitch and tetanic lower-limb muscle contractions.

    NARCIS (Netherlands)

    Janssen, T.W.; Hopman, M.T.E.

    2003-01-01

    OBJECTIVES: To compare the effect of electric stimulation (ES)-induced twitch with tetanic leg muscle contractions on blood flow responses and to assess blood flow responses in the contralateral inactive leg. DESIGN: Intervention with within-subject comparisons. SETTING: University research

  3. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2011-10-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

  4. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle.

    Science.gov (United States)

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-08-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.

  5. Age-related differences in twitch properties and muscle activation of the first dorsal interosseous.

    Science.gov (United States)

    Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B; Nicoll, Justin X

    2017-06-01

    To examine twitch force potentiation and twitch contraction duration, as well as electromyographic amplitude (EMG RMS ) and motor unit mean firing rates (MFR) at targeted forces between young and old individuals in the first dorsal interosseous (FDI). Ultrasonography was used to assess muscle quality. Twenty-two young (YG) (age=22.6±2.7years) and 14 older (OD) (age=62.1±4.7years) individuals completed conditioning contractions at 10% and 50% maximal voluntary contraction, (MVC) during which EMG RMS and MFRs were assessed. Evoked twitches preceded and followed the conditioning contractions. Ultrasound images were taken to quantify muscle quality (cross-sectional area [CSA] and echo intensity [EI]). No differences were found between young and old for CSA, pre-conditioning contraction twitch force, or MFRs (P>0.05). However, OD individuals exhibited greater EI and contraction duration (PMFRs. Ultrasonography suggested age-related changes in muscle structure contributed to altered contractile properties in the OD. Greater muscle activation requirements can have negative implications on fatigue resistance at low to moderate intensities in older individuals. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  6. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    International Nuclear Information System (INIS)

    Han, Zhenbang; Han, Xu; Zhao, Xiaoming; Yu, Jiantao; Xu, Hang

    2016-01-01

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H 2 O 2 activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H 2 O 2 decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H 2 O 2 . In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  7. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhenbang, E-mail: hzbang@aliyun.com [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Han, Xu [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Xiaoming, E-mail: zhaoxiaoming@tjpu.edu.cn [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin 300387 (China); Yu, Jiantao; Xu, Hang [School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-12-15

    Iron(II) phthalocyanine was immobilized onto amidoximated polyacrylonitrile fiber to construct a bioinspired catalytic system for oxidizing organic dyes by H{sub 2}O{sub 2} activation. The amidoxime groups greatly helped to anchor Iron(II) phthalocyanine molecules onto the fiber through coordination interaction, which has been confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and UV diffuse reflectance spectroscopy analyses. Electron spin resonance studies indicate that the catalytic process of physically anchored Iron(II) phthalocyanine performed via a hydroxyl radical pathway, while the catalyst bonded Iron(II) phthalocyanine through coordination effect could selectively catalyze the H{sub 2}O{sub 2} decomposition to generate high-valent iron-oxo species. This may result from the amidoxime groups functioning as the axial fifth ligands to favor the heterolytic cleavage of the peroxide O−O bond. This feature also enables the catalyst to only degrade the dyes adjacent to the catalytic active centers and enhances the efficient utilization of H{sub 2}O{sub 2}. In addition, this catalyst could effectively catalyze the mineralization of organic dyes and can be easily recycled without any loss of activity.

  8. Oxidation effects on the mechanical properties of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    Science.gov (United States)

    Bhatt, Ramakrishna T.

    1989-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  9. Synergistic effect of Ag nanoparticle-decorated graphene oxide and carbon fiber on electrical actuation of polymeric shape memory nanocomposites

    International Nuclear Information System (INIS)

    Lu, Haibao; Leng, Jinsong; Du, Shanyi; Liang, Fei; Gou, Jihua

    2014-01-01

    This study reports an effective approach of significantly improving electrical properties and recovery performance of shape memory polymer (SMP) nanocomposite, of which its shape recovery was triggered by electrically resistive Joule heating. Reduced graphene oxide (GOs) self-assembled and grafted onto carbon fiber, were used to enhance the interfacial bonding with the SMP matrix via van der Waals force and covalent bond, respectively. A layer of Ag nanoparticles was synthesized from Ag + solution and chemically deposited onto GO assemblies. These Ag nanoparticles were expected to bridge the gap between GO and improve the electrical conductivity. The experimental results reveal that the electrical conductivity of the SMP nanocomposite was significantly improved via the synergistic effect between Ag nanoparticle-decorated GO and carbon fiber. Finally, the electrically induced shape memory effect of the SMP nanocomposite was achieved, and the temperature distribution in the SMP nanocomposites was recorded and monitored. An effective approach was demonstrated to produce the electro-activated SMP nanocomposites and the resistive Joule heating was viable at a low electrical voltage below 10 V. (paper)

  10. Effect of Graphene Oxide Mixed Epoxy on Mechanical Properties of Carbon Fiber/Acrylonitrile-Butadiene-Styrene Composites.

    Science.gov (United States)

    Wang, Cuicui; Ge, Heyi; Ma, Xiaolong; Liu, Zhifang; Wang, Ting; Zhang, Jingyi

    2018-04-01

    In this study, the watersoluble epoxy resin was prepared via the ring-opening reaction between diethanolamine and epoxy resin. The modified resin mixed with graphene oxide (GO) as a sizing agent was coated onto carbon fiber (CF) and then the GO-CF reinforced acrylonitrile-butadienestyrene (ABS) composites were prepared. The influences of the different contents of GO on CF and CF/ABS composite were explored. The combination among epoxy, GO sheets and maleic anhydride grafted ABS (ABSMA) showed a synergistic effect on improving the properties of GO-CF and GO-CF/ABS composite. The GO-CF had higher single tensile strength than the commercial CF. The maximum ILSS of GO-CF/ABS composite obtained 19.2% improvement as compared with that of the commercial CF/ABS composite. Such multiscale enhancement method and the synergistic reinforced GO-CF/ABS composite show good prospective applications in many industry areas.

  11. Microwave-assisted combustion synthesis of nano iron oxide/iron-coated activated carbon, anthracite, cellulose fiber, and silica, with arsenic adsorption studies

    Science.gov (United States)

    Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was com...

  12. Charge Movement in a Fast Twitch Skeletal Muscle from Rat

    OpenAIRE

    Simon, B. J.; Beam, K. G.

    1983-01-01

    Voltage-dependent charge movement in the rat omohyoid muscle was investigated using the three microelectrode voltage clamp technique. The charge that moved during a depolarization from the holding potential (-90 mV) to the test potential, V, increased with increasing V, saturating around 0 mV. The charge vs. voltage relationship was well fitted by Q = Qmax/{1 + exp[-(V - V)/k]}, with Qmax = 28.5 nC/μF, V = -34.2 mV, and k = 8.7 mV. Repolarization of the fiber from the test potential back to t...

  13. MAGNETIC VERSUS ELECTRICAL STIMULATION IN THE INTERPOLATION TWITCH TECHNIQUE OF ELBOW FLEXORS

    Directory of Open Access Journals (Sweden)

    Sofia I. Lampropoulou

    2012-12-01

    Full Text Available The study compared peripheral magnetic with electrical stimulation of the biceps brachii m. (BB in the single pulse Interpolation Twitch Technique (ITT. 14 healthy participants (31±7 years participated in a within-subjects repeated-measures design study. Single, constant-current electrical and magnetic stimuli were delivered over the motor point of BB with supramaximal intensity (20% above maximum at rest and at various levels of voluntary contraction. Force measurements from right elbow isometric flexion and muscle electromyograms (EMG from the BB, the triceps brachii m. (TB and the abductor pollicis brevis m. (APB were obtained. The twitch forces at rest and maximal contractions, the twitch force-voluntary force relationship, the M-waves and the voluntary activation (VA of BB between magnetic and electrical stimulation were compared. The mean amplitude of the twitches evoked at MVC was not significantly different between electrical (0.62 ± 0.49 N and magnetic (0.81 ± 0.49 N stimulation (p > 0.05, and the maximum VA of BB was comparable between electrical (95% and magnetic (93% stimulation (p > 0. 05. No differences (p >0.05 were revealed in the BB M-waves between electrical (13.47 ± 0.49 mV.ms and magnetic (12.61 ± 0.58 mV.ms stimulation. The TB M-waves were also similar (p > 0.05 but electrically evoked APB M-waves were significantly larger than those evoked by magnetic stimulation (p < 0.05. The twitch-voluntary force relationship over the range of MVCs was best described by non-linear functions for both electrical and magnetic stimulation. The electrically evoked resting twitches were consistently larger in amplitude than the magnetically evoked ones (mean difference 3.1 ± 3.34 N, p < 0.05. Reduction of the inter-electrodes distance reduced the twitch amplitude by 6.5 ± 6.2 N (p < 0.05. The fundamental similarities in voluntary activation assessment of BB with peripheral electrical and magnetic stimulation point towards a promising

  14. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.

    Science.gov (United States)

    Macdonald, W A; Stephenson, D G

    2006-05-15

    Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 microm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (-log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 microm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 microm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.

  15. Moving People from Science Adjacent to Science Doers with Twitch.tv

    Science.gov (United States)

    Gay, Pamela L.; CosmoQuest

    2017-10-01

    The CosmoQuest community is testing the ability to attract people from playing online videogames to doing fully online citizen science by engaging people through the Twitch.tv streaming platform. Twitch.tv launched in 2011 as an online platform for video gamers to stream their gameplay while providing narrative. In its six years of regular growth, the platform has added support for people playing non-video games, and for those participating in non-game activities. As part of their expansion, in April 2017, Twitch.tv hosted a science week during which they streamed the Cosmos series and allowed different feeds provide real-time commentary. They also hosted panel discussions on a variety of science topics. CosmoQuest participated in this event and used it as a jumping off point for beginning to interact with Twitch.tv community members online. With CosmoQuest’s beta launch of Image Detectives, they expanded their use of this streaming platform to include regular “office hours”, during which team members did science with CosmoQuest’s online projects, took questions from community members, and otherwise promoted the CosmoQuest community. This presentation examines this case study, and looks at how well different kinds of Twitter engagements attracted audiences, the conversion rate from viewer to subscriber, and at how effectively CosmoQuest was able to migrate users from viewing citizen science on Twitch.tv to participating in citizen science on CosmoQuest.org.This project was supported through NASA cooperative agreement NNX17AD20A.

  16. Preparation and characterization of sugar cane bagasse fiber modified with nanoparticles of zirconium oxide; Preparacao e caracterizacao de fibras de bagaco de cana modificadas com nanoparticulas de oxido de zirconio

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, K.C.C. de; Mulinari, D.R.; Voorwald, H.C.J.; Cioffi, M.O.H., E-mail: kcccarvalho@hotmail.com.b [UNESP, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia(FEG)

    2010-07-01

    The sugar cane bagasse fiber are renewable materials and have great application potential when used as reinforcement in a polymer matrix to give rise to composite materials and as supports for adsorption of heavy metals. This paper therefore describes the preparation and characterization of bleached and hydrated zirconium oxide modified sugar cane bagasse fiber by conventional precipitation method. Through the technique of electron microscopy we observed the presence of oxide nanoparticles on the fiber surface, proving the efficiency of the conventional precipitation method. With the X-ray diffraction analysis it was determined a decrease of 6.2% in the crystallinity index of modified fibers when compared to the bleached fibers showing the deposition of amorphous zirconium oxide on the fiber surface. (author)

  17. Connexin 39.9 Protein Is Necessary for Coordinated Activation of Slow-twitch Muscle and Normal Behavior in Zebrafish*

    Science.gov (United States)

    Hirata, Hiromi; Wen, Hua; Kawakami, Yu; Naganawa, Yuriko; Ogino, Kazutoyo; Yamada, Kenta; Saint-Amant, Louis; Low, Sean E.; Cui, Wilson W.; Zhou, Weibin; Sprague, Shawn M.; Asakawa, Kazuhide; Muto, Akira; Kawakami, Koichi; Kuwada, John Y.

    2012-01-01

    In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca2+ transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers. PMID:22075003

  18. The effects of beta-adrenoceptor activation on contraction in isolated fast- and slow-twitch skeletal muscle fibres of the rat.

    OpenAIRE

    Cairns, S. P.; Dulhunty, A. F.

    1993-01-01

    1. The aim of the experiments was to examined the effects of beta-adrenoceptor activation on twitch and tetanic contractions in fast- and slow-twitch mammalian skeletal muscle fibres. Isometric force was recorded from bundles of intact fibres isolated from the normal and denervated slow-twitch soleus and normal fast-twitch sternomastoid muscles of the rat. 2. Terbutaline (10 microM), a beta 2-adrenoceptor agonist, induced an average 15% potentiation of peak twitch and peak tetanic force in no...

  19. Graphene Oxide Quantum Dots Exfoliated From Carbon Fibers by Microwave Irradiation: Two Photoluminescence Centers and Self-Assembly Behavior.

    Science.gov (United States)

    Yuan, Jian-Min; Zhao, Rui; Wu, Zhen-Jun; Li, Wei; Yang, Xin-Guo

    2018-04-17

    Graphene oxide quantum dots (GOQDs) attract great attention for their unique properties and promising application potential. The difficulty in the formation of a confined structure, and the numerous and diverse oxygen-containing functional groups results in a low emission yield to GOQDs. Here, GOQDs with a size of about 5 nm, exfoliated from carbon fibers by microwave irradiation, are detected and analyzed. The exfoliated GOQDs are deeply oxidized and induce large numbers of epoxy groups and ether bonds, but only a small amount of carbonyl groups and hydroxyl groups. The subdomains of sp 2 clusters, involving epoxy groups and ether bonds, are responsible for the two strong photoluminescence emissions of GOQDs under different excitation wavelengths. Moreover, GOQDs tend to self-assemble at the edges of their planes to form self-assembly films (SAFs) with the evaporation of water. SAFs can further assemble into different 3D patterns with unique microstructures such as sponge bulk, sponge ball, microsheet, sisal, and schistose coral, which are what applications such as supercapacitors, cells, catalysts, and electrochemical sensors need. This method for preparation of GOQDs is easy, quick, and environmentally friendly, and this work may open up new research interests about GOQDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    Science.gov (United States)

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m 2 /day) and 26 mg N/L/day (43 mg N/m 2 /day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  1. Effect of different sintering aids on thermo-mechanical properties and oxidation of SiC fibers - Reinforced ZrB{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Sciti, D., E-mail: diletta.sciti@istec.cnr.it [ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, I-48018 Faenza (Italy); Silvestroni, L. [ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, I-48018 Faenza (Italy); Saccone, G.; Alfano, D. [CIRA, Italian Aerospace Research Center, 81043 Capua (Italy)

    2013-01-15

    Reinforced zirconium diboride composites containing 15 vol% of Hi Nicalon SiC chopped fibers were hot pressed with addition of various sintering additives, Si{sub 3}N{sub 4}, ZrSi{sub 2} or MoSi{sub 2}. Depending on the sintering aid, different densification temperatures were set in the range 1650-1750 Degree-Sign C. Temperature and additive strongly influenced the matrix/fiber interface, which in turn had a strong impact on the mechanical properties and the oxidation behavior at 1650 Degree-Sign C. Even the workability, performed either by conventional machining or electro discharge machining, varied depending on the sintering additive and the secondary phases formed in the system. The system containing Si{sub 3}N{sub 4} turned out to have the highest mechanical properties, but intermediate oxidation resistance; the composite containing ZrSi{sub 2} had the lowest sintering temperature, but displayed the worst oxidation resistance, and finally the composite containing MoSi{sub 2} showed intermediate mechanical properties, but the highest oxidation resistance and lowest degree of damage upon machining. Preliminary measurements of thermal shock resistance by the water quenching method were also carried out. -- Highlights: Black-Right-Pointing-Pointer We produced SiC fibers reinforced ZrB{sub 2} using different sintering aids. Black-Right-Pointing-Pointer The sintering additives affected properties, oxidation and machinability. Black-Right-Pointing-Pointer The system containing Si{sub 3}N{sub 4} had the highest mechanical properties. Black-Right-Pointing-Pointer The composite containing MoSi{sub 2} had the highest oxidation resistance. Black-Right-Pointing-Pointer ZrB{sub 2}-SiC fibers have higher thermal shock resistance than ZrB{sub 2}-SiC particles.

  2. Fiber Strength of Hi Nicalon(TM) S After Oxidation and Scale Crystallization in Si(OH)4 Saturated Steam (Postprint)

    Science.gov (United States)

    2017-02-06

    transmission electron microscopy. At 700°C and higher, if SiO2 glass scales got too thick they often dewetted the SiC fibers and would spheroidize... SiO2 glass wicked to the spheroids as fast as it formed on the dewetted SiC surface, causing faster oxidation. SiO2 crystallization to cristobalite... glass scales got too thick they often dewetted the SiC fibers and would spheroidize. SiO2 glass wicked to the spheroids as fast as it formed on the

  3. Real time dose rate measurements with fiber optic probes based on the RL and OSL of beryllium oxide

    International Nuclear Information System (INIS)

    Teichmann, T.; Sponner, J.; Jakobi, Ch.; Henniger, J.

    2016-01-01

    This work covers the examination of fiber optical probes based on the radioluminescence and real time optically stimulated luminescence of beryllium oxide. Experiments are carried out to determine the fundamental dosimetric and temporal properties of the system and evaluate its suitability for dose rate measurements in brachytherapy and other applications using non-pulsed radiation fields. For this purpose the responses of the radioluminescence and optically stimulated luminescence signal have been investigated in the dose rate range of 20 mGy/h to 3.6 Gy/h and for doses of 1 mGy up to 6 Gy. Furthermore, a new, efficient analysis procedure, the double phase reference summing, is introduced, leading to a real time optically stimulated luminescence signal. This method allows a complete compensation of the stem effect during the measurement. In contrast to previous works, the stimulation of the 1 mm cylindrical beryllium oxide detectors is performed with a symmetric function during irradiation. The investigated dose rates range from 0.3 to 3.6 Gy/h. The real time optically stimulated luminescence signal of beryllium oxide shows a dependency on both the dose rate and the applied dose. To overcome the problem of dose dependency, further experiments using higher stimulation intensities have to follow. - Highlights: • RL and OSL measurements with BeO extended to low dose (rate) range. • A new method to obtain the real time OSL: Dual Phase Reference Summing. • Real time OSL signal shows both dose and dose rate dependency. • Real time OSL enables a complete discrimination of the stem effect.

  4. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical....

  5. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application

    Directory of Open Access Journals (Sweden)

    Hilal Ahmad Rather

    2018-06-01

    Full Text Available Skin wound healing involves a coordinated cellular response to achieve complete reepithelialisation. Elevated levels of reactive oxygen species (ROS in the wound environment often pose a hindrance in wound healing resulting in impaired wound healing process. Cerium oxide nanoparticles (CeNPs have the ability to protect the cells from oxidative damage by actively scavenging the ROS. Furthermore, matrices like nanofibers have also been explored for enhancing wound healing. In the current study CeNP functionalised polycaprolactone (PCL-gelatin nanofiber (PGNPNF mesh was fabricated by electrospinning and evaluated for its antioxidative potential. Wide angle XRD analysis of randomly oriented nanofibers revealed ∼2.6 times reduced crystallinity than pristine PCL which aided in rapid degradation of nanofibers and release of CeNP. However, bioactive composite made between nanoparticles and PCL-gelatin maintained the fibrous morphology of PGNPNF upto 14 days. The PGNPNF mesh exhibited a superoxide dismutase (SOD mimetic activity due to the incorporated CeNPs. The PGNPNF mesh enhanced proliferation of 3T3-L1 cells by ∼48% as confirmed by alamar blue assay and SEM micrographs of cells grown on the nanofibrous mesh. Furthermore, the PGNPNF mesh scavenged ROS, which was measured by relative DCF intensity and fluorescence microscopy; and subsequently increased the viability and proliferation of cells by three folds as it alleviated the oxidative stress. Overall, the results of this study suggest the potential of CeNP functionalised PCL-gelatin nanofibrous mesh for wound healing applications.

  6. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  7. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    Science.gov (United States)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  8. Oxidative Treatment to Improve Coating and Electrochemical Stability of Carbon Fiber Paper with Niobium Doped Titanium Dioxide Sols for Potential Applications in Fuel Cells

    International Nuclear Information System (INIS)

    Alvar, Esmaeil Navaei; Zhou, Biao; Eichhorn, S. Holger

    2014-01-01

    Highlights: • Solution coating of metal oxide layer directly onto carbon paper. • Most uniform Metal oxide coating on functionalized carbon paper. • Highest electrochemical stability for metal oxide coated functionalized carbon paper. - Abstract: Regular hydrophobized carbon paper cannot be used for unitized regenerative fuel cell applications as it corrodes at high potentials on the oxygen electrode side. Reported here are the oxidative treatment and dip-coating of carbon paper (Spectracarb™ 2050A-0850) with Nb-doped TiO 2 sols (anatase phase) to increase the corrosion resistance of the carbon paper at the interface between catalyst layer and gas diffusion backing layer. Coating of carbon paper with Nb-doped TiO 2 sols generates a reasonably uniform layer of TiO 2 and covers the individual carbon fibers well only if the carbon paper is oxidatively functionalized prior to coating. This can be reasoned with a better wetting of the functionalized carbon paper by the sol-gel and the formation of covalent bonds between Ti and the large number of functional groups on the surface of oxidized carbon paper, which is in good agreement with previous observation for carbon nanotubes. The resistance towards oxidation of coated and uncoated samples of untreated and functionalized carbon paper was probed by cyclic voltammetry in 0.5 M aqueous H 2 SO 4 at 1.2 V versus Ag/AgCl for up to 72 hours to mimic the conditions in a unitized regenerative fuel cell. Among these four cases studied here, functionalized carbon paper coated with a layer of Nb-doped TiO 2 shows the highest stability towards electrochemical oxidation while uncoated functionalized carbon paper is the least stable due to the large number of available oxidation sites. These results clearly demonstrate that a coating of carbon fibers with TiO 2 generates a lasting protection against oxidation under conditions encountered at the oxygen electrode side of unitized regenerative fuel cells

  9. Tunable Q-switched erbium doped fiber laser based on metal transition oxide saturable absorber and refractive index characteristic of multimode interference effects

    Science.gov (United States)

    Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.

    2017-12-01

    Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.

  10. Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion

    International Nuclear Information System (INIS)

    Huang, S S; Yan, P G; Zhang, G L; Zhao, J Q; Li, H Q; Lin, R Y; Wang, Y G

    2014-01-01

    We experimentally investigated soliton rains in an ytterbium-doped fiber (YDF) laser with a net normal dispersion cavity using a graphene-oxide (GO) saturable absorber (SA). The 195 m-long-cavity, the fiber birefringence filter and the inserted 2.5 nm narrow bandwidth filter play important roles in the formation of the soliton rains. The soliton rain states can be changed by the effective gain bandwidth of the laser. The experimental results can be conducive to an understanding of dissipative soliton features and mode-locking dynamics in all-normal dispersion fiber lasers with GOSAs. To the best of our knowledge, this is the first demonstration of soliton rains in a GOSA passively mode-locked YDF laser with a net normal dispersion cavity. (letter)

  11. Modification of electrical properties of zinc oxide by continuous wave ytterbium fiber laser irradiation

    International Nuclear Information System (INIS)

    Kido, H; Takahashi, M; Tani, J; Abe, N; Tsukamoto, M

    2011-01-01

    The polycrystalline plate-like ZnO samples were irradiated by a continuous wave Yb fiber laser and electrical properties of modified layer were investigated. The laser beam of spot size of 16 μm in diameter was scanned on the surface at a velocity of 5mm/s. There was a threshold for the laser modification. The laser etched grooves were formed above laser power of 20 W. The laser etched depth increased in relation to the laser power, 0.46 mm at 20 W and 5.0 mm at 126 W. The surface layers of laser etched grooves were modified in color and electrical property. The color changed from light yellow to black, and the electrical resistivity drastically decreased from initial value of 1.1x10 5 Ωcm to 3.2x10 -1 Ωcm at 56 W, 2.8x10 -1 Ωcm at 91 W, and 2.0x10 -1 Ωcm at 126 W. The Hall measurement showed that the modified surface layer was an n-type semiconductor and carrier concentration of the layer was 1.5x10 17 cm -3 at 56 W, 7.2x10 17 cm -3 at 91 W, and 1.9x10 18 cm -3 at 126 W.

  12. Modification of electrical properties of zinc oxide by continuous wave ytterbium fiber laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kido, H; Takahashi, M; Tani, J [Electronic Materials Research Division, Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553 (Japan); Abe, N; Tsukamoto, M, E-mail: kido@omtri.or.jp [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2011-05-15

    The polycrystalline plate-like ZnO samples were irradiated by a continuous wave Yb fiber laser and electrical properties of modified layer were investigated. The laser beam of spot size of 16 {mu}m in diameter was scanned on the surface at a velocity of 5mm/s. There was a threshold for the laser modification. The laser etched grooves were formed above laser power of 20 W. The laser etched depth increased in relation to the laser power, 0.46 mm at 20 W and 5.0 mm at 126 W. The surface layers of laser etched grooves were modified in color and electrical property. The color changed from light yellow to black, and the electrical resistivity drastically decreased from initial value of 1.1x10{sup 5} {Omega}cm to 3.2x10{sup -1} {Omega}cm at 56 W, 2.8x10{sup -1} {Omega}cm at 91 W, and 2.0x10{sup -1} {Omega}cm at 126 W. The Hall measurement showed that the modified surface layer was an n-type semiconductor and carrier concentration of the layer was 1.5x10{sup 17} cm{sup -3} at 56 W, 7.2x10{sup 17} cm{sup -3} at 91 W, and 1.9x10{sup 18} cm{sup -3} at 126 W.

  13. Effect of сopper сoating on fibers made of aluminum alloy, titanium, and FeCrAl alloy on surface morphology and activity in CO oxidation

    Science.gov (United States)

    Lukiyanchuk, I. V.; Rudnev, V. S.; Serov, M. M.; Krit, B. L.; Lukiyanchuk, G. D.; Nedozorov, P. M.

    2018-04-01

    The catalytic activity of both copper fibers and copper-coated fibers of a diameter of 50-100 μm made of aluminum alloy, technical grade titanium, and FeCrAl alloy in CO oxidation has been estimated. Metal fibers have been fabricated by the method of pendant drop melt extraction (PDME). The fibers copper plating was carried out by chemical and electrochemical methods. The composition and structure of samples and coatings before and after catalytic tests have been characterized by the methods of scanning electron microscopy, energy-dispersive analysis, and X-ray fluorescence analysis. It has been shown that the catalytic activity of copper-coated fibers made of FeCrAl alloy in the reaction of CO oxidation is not inferior to that of copper fibers.

  14. Effect of tibial bone resection on the development of fast- and slow-twitch skeletal muscles in foetal sheep.

    Science.gov (United States)

    West, J M; Williams, N A; Luff, A R; Walker, D W

    2000-04-01

    To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.

  15. The relationship between passive stiffness and evoked twitch properties: the influence of muscle CSA normalization

    International Nuclear Information System (INIS)

    Ryan, E D; Thompson, B J; Sobolewski, E J; Herda, T J; Costa, P B; Walter, A A; Cramer, J T

    2011-01-01

    Passive stiffness measurements are often used as a clinical tool to examine a muscle's passive lengthening characteristics. The purpose of this study was to examine the relationship between passive stiffness and evoked twitch properties prior to and following normalization of passive stiffness to muscle cross-sectional area (CSA). Ten healthy volunteers (mean ± SD age = 23 ± 3 year) performed passive range of motion, evoked twitch, and muscle CSA assessments of the plantar flexor muscles. Passive stiffness was determined from the slope of the final 5° of the angle–torque curve. Peak twitch torque (PTT) and rate of torque development (RTD) were determined via transcutaneous electrical stimulation, and muscle CSA was assessed using a peripheral quantitative computed tomography scanner. Pearson product moment correlation coefficients (r) were used to assess the relationships between passive stiffness and PTT and RTD and normalized passive stiffness (passive stiffness . muscle CSA −1 ) and PTT and RTD. Significant positive relationships were observed between passive stiffness and PTT (P = 0.003, r = 0.828) and RTD (P = 0.003, r = 0.825). There were no significant relationships between normalized passive stiffness and PTT (P = 0.290, r = 0.372) or RTD (P = 0.353, r = 0.329) demonstrating that stiffness did not account for a significant portion of the variance in twitch properties. Passive stiffness was largely influenced by the amount of muscle tissue in this study. Future studies that examine muscle stiffness and its relationship with performance measures, among different populations, and following various interventions may consider normalizing stiffness measurements to muscle CSA

  16. Isolation of flavonoids from apple peel using novel graphene oxide cotton fiber.

    Science.gov (United States)

    Xu, Z; Peng, R; Chen, X; Ghosh, R; Rupasinghe, H P V

    2017-11-01

    A novel graphene oxide cotton fibre (GOF) was used to adsorb flavonoids from crude ethanol extracts derived from apple peels. Ultra-high pressure liquid chromatography-mass spectrometry was used to analyse polyphenol content, and the resulting data demonstrated that GOF-based flash chromatography can be used to efficiently separate polyphenols from sugars and can facilitate the removal of 95% of the sugar content. Flavonoids can be easily separated from phenolic acids. Chalcones and flavonols were eluted with 100% methanol and subsequently flavan-3-ols can be eluted with 0.04 M sodium hydroxide. The novel GOF has the potential to be used in the isolation of flavonoids.

  17. The Nuclear Receptor, Nor-1, Markedly Increases Type II Oxidative Muscle Fibers and Resistance to Fatigue

    OpenAIRE

    Pearen, Michael A.; Eriksson, Natalie A.; Fitzsimmons, Rebecca L.; Goode, Joel M.; Martel, Nick; Andrikopoulos, Sofianos; Muscat, George E. O.

    2012-01-01

    Nuclear hormone receptors (NR) have been implicated as regulators of lipid and carbohydrate metabolism. The orphan NR4A subgroup has emerged as regulators of metabolic function. Targeted silencing of neuron-derived orphan receptor 1 (Nor-1)/NR4A3 in skeletal muscle cells suggested that this NR was necessary for oxidative metabolism in vitro. To investigate the in vivo role of Nor-1, we have developed a mouse model with preferential expression of activated Nor-1 in skeletal muscle. In skeletal...

  18. Carbon fiber brush electrode as a novel substrate for atmospheric solids analysis probe (ASAP) mass spectrometry: Electrochemical oxidation of brominated phenols.

    Science.gov (United States)

    Skopalová, Jana; Barták, Petr; Bednář, Petr; Tomková, Hana; Ingr, Tomáš; Lorencová, Iveta; Kučerová, Pavla; Papoušek, Roman; Borovcová, Lucie; Lemr, Karel

    2018-01-25

    A carbon fiber brush electrode (CFBE) was newly designed and used as a substrate for both controlled potential electrolysis and atmospheric solids analysis probe (ASAP) mass spectrometry. Electropolymerized and strongly adsorbed products of electrolysis were directly desorbed and ionized from the electrode surface. Electrochemical properties of the electrode investigated by cyclic voltammetry revealed large electroactive surface area (23 ± 3 cm 2 ) at 1.3 cm long array of carbon fibers with diameter 6-9 μm. Some products of electrochemical oxidation of pentabromophenol and 2,4,6-tribromophenol formed a compact layer on the carbon fibers and were analyzed using ASAP. Eleven new oligomeric products were identified including quinones and biphenoquinones. These compounds were not observed previously in electrolyzed solutions by liquid or gas chromatography/mass spectrometry. The thickness around 58 nm and 45 nm of the oxidation products layers deposited on carbon fibers during electrolysis of pentabromophenol and 2,4,6-tribromophenol, respectively, was estimated from atomic force microscopy analysis and confirmed by scanning electron microscopy with energy-dispersive X-ray spectroscopy measurements. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Use of sodium butyrate as an alternative to dietary fiber: effects on the embryonic development and anti-oxidative capacity of rats.

    Science.gov (United States)

    Lin, Yan; Fang, Zheng-feng; Che, Lian-qiang; Xu, Sheng-yu; Wu, De; Wu, Cai-mei; Wu, Xiu-qun

    2014-01-01

    In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets--(1) control diet (C group), (2) high fat + high fiber diet (HF group), (3) high-fat +5% sodium butyrate diet (SB group), and (4) HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group)--intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF) and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF.

  20. Use of sodium butyrate as an alternative to dietary fiber: effects on the embryonic development and anti-oxidative capacity of rats.

    Directory of Open Access Journals (Sweden)

    Yan Lin

    Full Text Available In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets--(1 control diet (C group, (2 high fat + high fiber diet (HF group, (3 high-fat +5% sodium butyrate diet (SB group, and (4 HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group--intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF.

  1. Electrochemical Oxidation of Cysteine at a Film Gold Modified Carbon Fiber Microelectrode Its Application in a Flow—Through Voltammetric Sensor

    Science.gov (United States)

    Wang, Lai-Hao; Huang, Wen-Shiuan

    2012-01-01

    A flow-electrolytical cell containing a strand of micro Au modified carbon fiber electrodes (CFE) has been designedand characterized for use in a voltammatric detector for detecting cysteine using high-performance liquid chromatography. Cysteine is more efficiently electrochemical oxidized on a Au /CFE than a bare gold and carbon fiber electrode. The possible reaction mechanism of the oxidation process is described from the relations to scan rate, peak potentials and currents. For the pulse mode, and measurements with suitable experimental parameters, a linear concentration from 0.5 to 5.0 mg·L−1 was found. The limit of quantification for cysteine was below 60 ng·mL−1. PMID:22737024

  2. Ni/Ni-YSZ current collector/anode dual layer hollow fibers for micro-tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanawka, K.; Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K. [Department of Chemical Engineering and Chemical Technology, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-10-15

    A co-extrusion technique was employed to fabricate a novel dual layer NiO/NiO-YSZ hollow fiber (HF) precursor which was then co-sintered at 1,400 C and reduced at 700 C to form, respectively, a meshed porous inner Ni current collector and outer Ni-YSZ anode layers for SOFC applications. The inner thin and highly porous ''mesh-like'' pure Ni layer of approximately 50 {mu}m in thickness functions as a current collector in micro-tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni-YSZ layer of 260 {mu}m acts as an anode, providing also major mechanical strength to the dual-layer HF. Achieved morphology consisted of short finger-like voids originating from the inner lumen of the HF, and a sponge-like structure filling most of the Ni-YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 x 10{sup 5} S m{sup -1}. This result is significantly higher than previous reported results on single layer Ni-YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual-layer HF design as a new and highly efficient way of collecting current from the lumen of micro-tubular SOFC. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.

    Science.gov (United States)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P

    2017-08-24

    This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.

  5. Bio-electro oxidation of indigo carmine by using microporous activated carbon fiber felt as anode and bioreactor support.

    Science.gov (United States)

    Garcia, Luane Ferreira; Rodrigues Siqueira, Ana Claudia; Lobón, Germán Sanz; Marcuzzo, Jossano Saldanha; Pessela, Benevides Costa; Mendez, Eduardo; Garcia, Telma Alves; de Souza Gil, Eric

    2017-11-01

    The bioremediation and electro-oxidation (EO) processes are included among the most promising cleaning and decontamination mechanisms of water. The efficiency of bioremediation is dictated by the biological actuator for a specific substrate, its suitable immobilization and all involved biochemical concepts. The EO performance is defined by the anode efficiency to perform the complete mineralization of target compounds and is highlighted by the low or null use of reagent. Recently, the combination of both technologies has been proposed. Thus, the development of high efficient, low cost and eco-friendly anodes for sustainable EO, as well as, supporting devices for immobilization of biological systems applied in bioremediation is an open field of research. Therefore, the aim of this work was to promote the bio-electrochemical remediation of indigo carmine dye (widely common in textile industry), using new anode based on a microporous activated carbon fiber felt (ACFF) and ACFF with immobilized Laccase (Lcc) from Pycnoporus sanguineus. The results were discolorations of 62.7% with ACFF anode and 83.60% with ACFF-MANAE-Lcc anode, both for 60 min in tap water. This remediation rates show that this new anode has low cost and efficiency in the degradation of indigo dye and can be applied for other organic pollutant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment in an aerobic bioreactor packed with carbon fibers.

    Science.gov (United States)

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko; Yokoyama, Hiroshi; Kawahara, Hirofumi; Ogino, Akifumi; Osada, Takashi

    2015-03-01

    Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment was demonstrated in an aerobic bioreactor packed with carbon fibers (CF reactor). The CF reactor had a demonstrated advantage in mitigating N2 O emission and avoiding NOx (NO3  + NO2 ) accumulation. The N2 O emission factor was 0.0003 g N2 O-N/gTN-load in the CF bioreactor compared to 0.03 gN2 O-N/gTN-load in an activated sludge reactor (AS reactor). N2 O and CH4 emissions from the CF reactor were 42 g-CO2 eq/m(3) /day, while those from the AS reactor were 725 g-CO2 eq/m(3) /day. The dissolved inorganic nitrogen (DIN) in the CF reactor removed an average of 156 mg/L of the NH4 -N, and accumulated an average of 14 mg/L of the NO3 -N. In contrast, the DIN in the AS reactor removed an average 144 mg/L of the NH4 -N and accumulated an average 183 mg/L of the NO3 -N. NO2 -N was almost undetectable in both reactors. © 2014 Japanese Society of Animal Science.

  7. Carbon Fiber Ultramicrodic Electrode Electrodeposited with Over-Oxidized Polypyrrole for Amperometric Detection of Vesicular Exocytosis from Pheochromocytoma Cell

    Directory of Open Access Journals (Sweden)

    Li Wang

    2015-01-01

    Full Text Available Vesicular exocytosis is ubiquitous, but it is difficult to detect within the cells’ communication mechanism. For this purpose, a 2 µm ultramicrodic carbon fiber electrode was fabricated in this work based on electrodeposition with over-oxidized polypyrrole nanoparticle (PPyox-CFE, which was applied successfully for real-time monitoring of quantal exocytosis from individual pheochromocytoma (PC12 cells. PPyox-CFE was evaluated by dopamine (DA solutions through cyclic voltammetry and amperometry electrochemical methods, and results revealed that PPyox-CFE improved the detection limit of DA. In particular, the sensitivity of DA was improved to 24.55 µA·µM−1·µm−2 using the PPyox-CFE. The ultramicrodic electrode combined with the patch-clamp system was used to detect vesicular exocytosis of DA from individual PC12 cells with 60 mM K+ stimulation. A total of 287 spikes released from 7 PC12 cells were statistically analyzed. The current amplitude (Imax and the released charge (Q of the amperometric spikes from the DA release by a stimulated PC12 cell is 45.1 ± 12.5 pA and 0.18 ± 0.04 pC, respectively. Furthermore, on average ~562,000 molecules were released in each vesicular exocytosis. PPyox-CFE, with its capability of detecting vesicular exocytosis, has potential application in neuron communication research.

  8. Using maleic anhydride functionalized graphene oxide for improving the interfacial properties of carbon fiber/BMI composites

    Directory of Open Access Journals (Sweden)

    W. Li

    2016-11-01

    Full Text Available Maleic anhydride functionalized graphene oxide (MAH-GO was synthesized and then introduced into carbon fiber (CF reinforced bismaleimide (BMI composites, with the aim of improving the interfacial adhesion strength between CF and BMI resin. Various characterization techniques including Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectra (XPS and thermogravimetric analysis (TGA demonstrated that the maleic anhydride has been successfully grafted onto the GO surfaces. The study showed that the interlaminar shear strength (ILSS and flexural properties of CF/BMI composites were all improved by the incorporation of GO and MAH-GO, and the MAH-GO showed the substantially improved effect due to the strong interaction between the MAH-GO and the resin matrix. The maximum increment of the ILSS, flexural strength and flexural modulus of composites were 24.4, 28.7 and 49.7%, respectively. Scanning electron microscope (SEM photographs of the fracture surfaces revealed that the interfacial bonding between CF and resin matrix was significantly strengthened by the addition of MAH-GO. The results suggest that this feasible method may be an ideal substitute for the traditional method in the interfacial modification of composites.

  9. Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide.

    Science.gov (United States)

    Sridevi, S; Vasu, K S; Sampath, S; Asokan, S; Sood, A K

    2016-07-01

    An enhanced optical detection of D-glucose and glycated hemoglobin (HbA1c ) has been established in this study using etched fiber Bragg gratings (eFBG) coated with aminophenylboronic acid (APBA)-functionalized reduced graphene oxide (RGO). The read out, namely the shift in Bragg wavelength (ΔλB ) is highly sensitive to changes that occur due to the adsorption of glucose (or HbA1c ) molecules on the eFBG sensor coated with APBA-RGO complex through a five-membered cyclic ester bond formation between glucose and APBA molecules. A limit of detection of 1 nM is achieved with a linear range of detection from 1 nM to 10 mM in the case of D-glucose detection experiments. For HbA1c , a linear range of detection varying from 86 nM to 0.23 mM is achieved. The observation of only 4 pm (picometer) change in ΔλB even for the 10 mM lactose solution confirms the specificity of the APBA-RGO complex coated eFBG sensors to glucose molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo.

    Science.gov (United States)

    Wang, XinGang; Ono, Yosuke; Tan, Swee Chuan; Chai, Ruth JinFen; Parkin, Caroline; Ingham, Philip W

    2011-10-01

    Sox6 has been proposed to play a conserved role in vertebrate skeletal muscle fibre type specification. In zebrafish, sox6 transcription is repressed in slow-twitch progenitors by the Prdm1a transcription factor. Here we identify sox6 cis-regulatory sequences that drive fast-twitch-specific expression in a Prdm1a-dependent manner. We show that sox6 transcription subsequently becomes derepressed in slow-twitch fibres, whereas Sox6 protein remains restricted to fast-twitch fibres. We find that translational repression of sox6 is mediated by miR-499, the slow-twitch-specific expression of which is in turn controlled by Prdm1a, forming a regulatory loop that initiates and maintains the slow-twitch muscle lineage.

  11. Comparison study on photocatalytic oxidation of pharmaceuticals by TiO{sub 2}-Fe and TiO{sub 2}-reduced graphene oxide nanocomposites immobilized on optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Lu; Wang, Huiyao, E-mail: huiyao@nmsu.edu; Jiang, Wenbin; Mkaouar, Ahmed Radhi; Xu, Pei, E-mail: pxu@nmsu.edu

    2017-07-05

    Highlights: • Incorporating rGO or Fe{sup 3+} ions in TiO{sub 2} photocatalyst could enhance photocatalysis. • TiO{sub 2}-rGO exhibited higher photocatalytic activity under UV irradiation. • TiO{sub 2}-Fe demonstrated more suitable for visible light irradiation. • Reduced recombination rate contributed to enhanced photocatalysis of TiO{sub 2}-rGO. • Narrower band gap accounted for increased photocatalytic activity of TiO{sub 2}-Fe. - Abstract: Incorporating reduced graphene oxide (rGO) or Fe{sup 3+} ions in TiO{sub 2} photocatalyst could enhance photocatalytic degradation of organic contaminants in aqueous solutions. This study characterized the photocatalytic activities of TiO{sub 2}-Fe and TiO{sub 2}-rGO nanocomposites immobilized on optical fibers synthesized by polymer assisted hydrothermal deposition method. The photocatalysts presented a mixture phase of anatase and rutile in the TiO{sub 2}-rGO and TiO{sub 2}-Fe nanocomposites. Doping Fe into TiO{sub 2} particles (2.40 eV) could reduce more band gap energy than incorporating rGO (2.85 eV), thereby enhancing utilization efficiency of visible light. Incorporating Fe and rGO in TiO{sub 2} decreased significantly the intensity of TiO{sub 2} photoluminescence signals and enhanced the separation rate of photo-induced charge carriers. Photocatalytic performance of the synthesized nanocomposites was measured by the degradation of three pharmaceuticals under UV and visible light irradiation, including carbamazepine, ibuprofen, and sulfamethoxazole. TiO{sub 2}-rGO exhibited higher photocatalytic activity for the degradation of pharmaceuticals under UV irradiation, while TiO{sub 2}-Fe demonstrated more suitable for visible light oxidation. The results suggested that the enhanced photocatalytic performance of TiO{sub 2}-rGO could be attributed to reduced recombination rate of photoexcited electrons-hole pairs, but for TiO{sub 2}-Fe nanocomposite, narrower band gap would contribute to increased photocatalytic

  12. Single muscle fiber gene expression with run taper.

    Directory of Open Access Journals (Sweden)

    Kevin Murach

    Full Text Available This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I and fast-twitch (MHC IIa muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO₂max = 70±1 ml•kg-1•min-1 during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:18±0:30 min:s, 89±1% HRmax while in heavy training (∼72 km/wk and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14, Myostatin (MSTN, Heat shock protein 72 (HSP72, Muscle ring-finger protein-1 (MURF1, Myogenic factor 6 (MRF4, and Insulin-like growth factor 1 (IGF1 via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (P<0.05. MSTN was suppressed with exercise in both fiber types and training states (P<0.05 while MURF1 and HSP72 responded to running in MHC IIa and I fibers, respectively, regardless of training state (P<0.05. Robust induction of FN14 (previously shown to strongly correlate with hypertrophy and greater overall transcriptional flexibility with exercise in the tapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed after taper in competitive endurance athletes.

  13. YouTube Live and Twitch: A Tour of User-Generated Live Streaming Systems

    OpenAIRE

    Pires , Karine; SIMON , Gwendal

    2015-01-01

    International audience; User-Generated live video streaming systems are services that allow anybody to broadcast a video stream over the Internet. These Over-The-Top services have recently gained popularity, in particular with e-sport, and can now be seen as competitors of the traditional cable TV. In this paper, we present a dataset for further works on these systems. This dataset contains data on the two main user-generated live streaming systems: Twitch and the live service of YouTube. We ...

  14. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep.

    Science.gov (United States)

    West, J M; Barclay, C J; Luff, A R; Walker, D W

    1999-04-01

    At early stages of muscle development, skeletal muscles contract and relax slowly, regardless of whether they are destined to become fast- or slow-twitch. In this study, we have characterised the activation profiles of developing fast- and slow-twitch muscles from a precocial species, the sheep, to determine if the activation profiles of the muscles are characteristically slow when both the fast- and slow-twitch muscles have slow isometric contraction profiles. Single skinned muscle fibres from the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles from fetal (gestational ages 70, 90, 120 and 140 days; term 147 days) and neonatal (8 weeks old) sheep were used to determine the isometric force-pCa (pCa = -log10[Ca2+]) and force-pSr relations during development. Fast-twitch mammalian muscles generally have a greatly different sensitivity to Ca2+ and Sr2+ whereas slow-twitch muscles have a similar sensitivity to these divalent cations. At all ages studied, the force-pCa and force-pSr relations of the FDL muscle were widely separated. The mean separation of the mid-point of the curves (pCa50-pSr50) was approximately 1.1. This is typical of adult fast-twitch muscle. The force-pCa and force-pSr curves for soleus muscle were also widely separated at 70 and 90 days gestation (pCa50-pSr50 approximately 0.75); between 90 days and 140 days this separation decreased significantly to approximately 0.2. This leads to a paradoxical situation whereby at early stages of muscle development the fast muscles have contraction dynamics of slow muscles but the slow muscles have activation profiles more characteristic of fast muscles. The time course for development of the FDL and soleus is different, based on sarcomere structure with the soleus muscle developing clearly defined sarcomere structure earlier in gestation than the FDL. At 70 days gestation the FDL muscle had no clearly defined sarcomeres. Force (N cm-2) increased almost linearly between 70 and 140 days

  15. Time-resolved X-ray diffraction studies of frog skeletal muscle isometrically twitched by two successive stimuli using synchrotron radiation

    International Nuclear Information System (INIS)

    Tanaka, Hidehiro; Kobayashi, Takakazu; Wakabayashi, Katsuzo

    1986-01-01

    In order to clarify the delay between muscular structural changes and mechanical responses, the intensity changes of the equatorial and myosin layer-line reflections were studied by a time-resolved X-ray diffraction technique using synchrotron radiation. The muscle was stimulated at 12-13 0 C by two successive stimuli at an interval during which the second twitch started while tension was still being exerted by the muscle. At the first twitch, the intensity changes of the 1,0 and 1,1 equatorial reflections reached 65 and 200% of the resting values, and further changes to 55 and 220% were seen at the second twitch, respectively. Although the second twitch decreased not only the time to peak tension but also that to the maximum intensity changes of the equatorial reflections, the delay between the intensity changes and the development of tension at the first twitch were still observed at the second twitch. On the other hand, the intensities of the 42.9 nm off-meridional and the 21.5 nm meridional myosin reflections decreased at the first twitch to the levels found when a muscle was isometrically tetanized, and no further decrease in their intensities was observed at the second twitch. These results indicate that a certain period of time is necessary for myosin heads to contr0116e to tension development after their arrival in the vicinity of the thin filaments during contraction. (Auth.)

  16. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer

    Directory of Open Access Journals (Sweden)

    Tai Phillip WL

    2011-07-01

    Full Text Available Abstract Background Hundreds of genes, including muscle creatine kinase (MCK, are differentially expressed in fast- and slow-twitch muscle fibers, but the fiber type-specific regulatory mechanisms are not well understood. Results Modulatory region 1 (MR1 is a 1-kb regulatory region within MCK intron 1 that is highly active in terminally differentiating skeletal myocytes in vitro. A MCK small intronic enhancer (MCK-SIE containing a paired E-box/myocyte enhancer factor 2 (MEF2 regulatory motif resides within MR1. The SIE's transcriptional activity equals that of the extensively characterized 206-bp MCK 5'-enhancer, but the MCK-SIE is flanked by regions that can repress its activity via the individual and combined effects of about 15 different but highly conserved 9- to 24-bp sequences. ChIP and ChIP-Seq analyses indicate that the SIE and the MCK 5'-enhancer are occupied by MyoD, myogenin and MEF2. Many other E-boxes located within or immediately adjacent to intron 1 are not occupied by MyoD or myogenin. Transgenic analysis of a 6.5-kb MCK genomic fragment containing the 5'-enhancer and proximal promoter plus the 3.2-kb intron 1, with and without MR1, indicates that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers (types I and IIa, respectively, but is not required for expression in fast-twitch muscle fibers (types IIb and IId. Conclusions In this study, we discovered that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers and that MR1's positive transcriptional activity depends on a paired E-box MEF2 site motif within a SIE. This is the first study to delineate the DNA controls for MCK expression in different skeletal muscle fiber types.

  17. The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: Graphene oxide vs. silane coupling agents

    Science.gov (United States)

    Jing, Mengfan; Che, Junjin; Xu, Shuman; Liu, Zhenwei; Fu, Qiang

    2018-03-01

    In this work, a comparison study was carried out to investigate the efficacy of glass fiber (GF) in reinforcing poly(lactic acid) (PLA) by using traditional silane coupling agents (GF-S) and novel graphene oxide (GF-GO) as surface modifiers. The crystallization behavior of the PLA matrix was investigated by differential scanning calorimetry. The mechanical performances and the thermomechanical properties of the composites were evaluated by uniaxial tensile testing and dynamic mechanical analysis, respectively. For neat GF without any treatment, the poor interfacial adhesion and the sharp shortening of the GF length result in the relatively poor mechanical performances of PLA/GF composites. However, the incorporation of GF-S significantly improves the mechanical strength and keeps relatively good toughness of the composites, while GF-GO exhibits excellent nucleation ability for PLA and could moderately increase the modulus of the composites. The thermomechanical properties of the composites are improved markedly resulting from the crystallinity increase. The different surface modification of glass fiber influences the crystallinity of matrix, the interfacial interaction and the length of fiber, which altogether affect the mechanical performances of the prepared PLA/GF composites.

  18. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.

    Science.gov (United States)

    Sun, Gengzhi; Zhang, Xiao; Lin, Rongzhou; Yang, Jian; Zhang, Hua; Chen, Peng

    2015-04-07

    One of challenges existing in fiber-based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two-dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2 ) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy-related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well-aligned multi-walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2 -rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid-state, flexible, asymmetric supercapacitors. This fiber-based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reinforced microextraction of polycyclic aromatic hydrocarbons from polluted soil samples using an in-needle coated fiber with polypyrrole/graphene oxide nanocomposite.

    Science.gov (United States)

    Behfar, Mina; Ghiasvand, Ali Reza; Yazdankhah, Fatemeh

    2017-07-01

    The surface of a stainless-steel wire was platinized using electrophoretic deposition method to create a high-surface-area with porous and cohesive substrate. The platinized fiber was coated by the polypyrrole/graphene oxide nanocomposite by electropolymerization and accommodated into a stainless-steel needle to fabricate an in-needle coated fiber. The developed setup was coupled to gas chromatography with flame ionization detection and applied to extract and determine polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene) in complicated solid matrices, along with reinforcement of the extraction by cooling the sorbent, using liquid carbon dioxide. To obtain the best extraction efficiency, the important experimental variables including extraction temperature and time, temperature of cooled sorbent, sampling flow rate, and desorption condition were studied. Under the optimal condition, limits of detection for five studied analytes were in the range of 0.2-0.8 pg/g. Linear dynamic ranges for the calibration curves were found to be in the range of 0.001-1000 ng/g. Relative standard deviations obtained for six replicated analyses of 1 ng/g of analytes were 4.9-13.5%. The reinforced in-needle coated fiber method was successfully applied for the analysis of polycyclic aromatic hydrocarbons in contaminated soil samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Oxidation Kinetics of Continuous Carbon Fibers in a Cracked Ceramic Matrix Composite. Degree awarded by Case Western Reserve Univ., May 2000

    Science.gov (United States)

    Halbig, Michael C.

    2001-01-01

    Experimental observations and results suggest two primary regimes as a function of temperature, i.e., diffusion and reaction controlled kinetics. Thermogravimetric analysis of carbon fiber in flowing oxygen gave an activation energy of 64.1 kJ/mol in the temperature range of 500 to 600 C and an apparent activation energy of 7.6 kJ/mol for temperatures from 600 to 1400 C. When C/SiC composite material was unstressed, matrix effects at temperatures from 900 to 1400 C protected the internal fibers. When under stress, self-protection was not observed. Increasing the stress from 10 to 25 ksi caused a 67 to 82 percent reduction in times to failure at temperatures from 750 to 1500 C. Based on experimental results, observation, and theory, a finite difference model was developed, which simulates the diffusion of oxygen into a matrix crack that is bridged by carbon fibers. The model allows the influence of important variables on oxidation kinetics to be studied systematically, i.e., temperature, reaction rate constant, diffusion coefficient, environment, and sample geometry.

  1. Multiwall carbon nanotube- zirconium oxide nanocomposite hollow fiber solid phase microextraction for determination of polyaromatic hydrocarbons in water, coffee and tea samples.

    Science.gov (United States)

    Yazdi, Mahnaz Nozohour; Yamini, Yadollah; Asiabi, Hamid

    2018-06-15

    The purpose of this study was to evaluate the application of hollow fiber solid-phase microextraction (HF-SPME) followed by HPLC-UV to determine the ultra-trace amounts of polycyclic aromatic hydrocarbons (PAHs) as model analytes in complex coffee and tea samples. HF-SPME can be effectively used as an alternative to the direct immersion SPME (DI-SPME) method in complex matrices. The DI-SPME method suffers from serious limitation in dirty and complicated matrices with low sample clean-up, while the HF-SPME method has high clean-up and selectivity due to the high porosity of hollow fiber that can pick out analyte from complicated matrices. As a hollow fiber sorbent, a novel multiwall carbon nanotube/zirconium oxide nanocomposite (MWCNT/ZrO 2 ) was fabricated. The excellent adsorption of PAHs on the sorbent was attributed to the dominant roles of π-π stacking interaction and hydrophobic interaction. Under the optimized extraction conditions, the wide linear range of 0.1-200 μg L -1 with coefficients of determination better than 0.998 and low detection limits of 0.033-0.16 μg L -1 with satisfactory precision (RSD tea samples were in the range of 92.0-106.0%. Compared to other methods, MWCNT/ZrO 2 hollow fiber solid phase microextraction demonstrated a good capability for determination of PAHs in complex coffee and tea samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog.

    Science.gov (United States)

    Cruz, Luisa F; Parker, Jennifer K; Cobine, Paul A; De La Fuente, Leonardo

    2014-12-01

    The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. L-carnitine pretreatment protects slow-twitch skeletal muscles in a rat model of ischemia-reperfusion injury.

    Science.gov (United States)

    Demirel, Mert; Kaya, Burak; Cerkez, Cem; Ertunc, Mert; Sara, Yildirim

    2013-10-01

    Ischemia-reperfusion (I/R) injury negatively affects the outcome of surgical interventions for amputated or severely traumatized extremities. This study aimed to evaluate the protective role of l-carnitine on the contractile properties of fast-twitch (extensor digitorum longus [EDL]) and slow-twitch (soleus [SOL]) skeletal muscles following I/R-induced injury in a rat model. Rats were divided into 4 groups (1) saline pretreatment, (2) l-carnitine pretreatment, (3) saline pretreatment and I/R, and (4) l-carnitine pretreatment and I/R. Twitch and tetanic contractions in the EDL and SOL muscles in each group were recorded. Additionally, a fatigue protocol was performed in these muscles. Twitch and tetanic contraction amplitudes were lower in the EDL and SOL muscles in which I/R was induced (P contraction amplitude in the SOL muscles following I/R (P muscles. l-Carnitine pretreatment did not alter the fatigue response in any of the muscles.

  4. Can fast-twitch muscle fibres be selectively recruited during lengthening contractions? Review and applications to sport movements.

    Science.gov (United States)

    Chalmers, Gordon R

    2008-01-01

    Literature examining the recruitment order of motor units during lengthening (eccentric) contractions was reviewed to determine if fast-twitch motor units can be active while lower threshold slow-twitch motor units are not active. Studies utilizing surface electromyogram (EMG) amplitude, single motor unit activity, spike amplitude-frequency analyses, EMG power spectrum, mechanomyographic, and phosphocreatine-to-creatine ratio (PCr/Cr) techniques were reviewed. Only single motor unit and PCr/Cr data were found to be suitable to address the goals of this review. Nine of ten single motor unit studies, examining joint movement velocities up to 225 degrees/s and forces up to 53% of a maximum voluntary contraction, found that the size principle of motor unit recruitment applied during lengthening contractions. Deviation from the size principle was demonstrated by one study examining movements within a small range of low velocities and modest forces, although other studies examining similar low forces and lengthening velocities reported size-ordered recruitment. The PCr/Cr data demonstrated the activation of all fibre types in lengthening maximal contractions. Most evidence indicates that for lengthening contractions of a wide range of efforts and speeds, fast-twitch muscle fibres cannot be selectively recruited without activity of the slow-twitch fibres of the same muscle.

  5. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    Science.gov (United States)

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  6. Profiling of oxidized phospholipids in lipoproteins from patients with coronary artery disease by hollow fiber flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Lee, Ju Yong; Byeon, Seul Kee; Moon, Myeong Hee

    2015-01-20

    Oxidized phospholipids (Ox-PLs) are oxidatively modified PLs that are produced during the oxidation of lipoproteins; oxidation of low density lipoproteins especially is known to be associated with the development of coronary artery disease (CAD). In this study, different lipoprotein classes (high density, low density, and very low density lipoproteins) from pooled plasma of CAD patients and pooled plasma from healthy controls were size-sorted on a semipreparative scale by multiplexed hollow fiber flow field-flow fractionation (MxHF5), and Ox-PLs that were extracted from each lipoprotein fraction were quantified by nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). The present study showed that oxidation of lipoproteins occurred throughout all classes of lipoproteins with more Ox-PLs identified from CAD patient lipoproteins: molecular structures of 283 unique PL species (including 123 Ox-PLs) from controls and 315 (including 169 Ox-PLs) from patients were identified by data-dependent collision-induced dissociation experiments. It was shown that oxidation of PLs occurred primarily with hydroxylation of PL; in particular, a saturated acyl chain such as 16:0, 18:0, or even 18:1 at the sn-1 location of the glycerol backbone along with sn-2 acyl chains with at least two double bonds were identified. The acyl chain combinations commonly found for hydroxylated Ox-PLs in the lipoproteins of CAD patients were 16:0/18:2, 16:0/20:4, 18:0/18:2, and 18:0/20:4.

  7. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    Science.gov (United States)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  8. Time-resolved x-ray diffraction from frog skeletal muscle during an isotonic twitch under a small load

    International Nuclear Information System (INIS)

    Sugi, Haruo; Amemiya, Yoshiyuki; Hashizume, Hiroo.

    1978-01-01

    A time-resolved x-ray diffraction technique was used to study the time course of change in the intensity ratio Isub(1,0)/Isub(1,1) during isotonic twitch (initial sarcomere, 2.4 μm) under a small load and to determine the kinetic properties of the crossbridges responsible for muscle contraction. Isotonic twitches in four other preparations with an initial sarcomere of 2.4 μm and in two with an initial sarcomere of 2.3 μm and 2.2 μm, respectively, were examined. In each case, the intensity ratio started to decrease at stimulation, reached a minimum value of 0.8 - 1.0 within the first 20 - 30% of the shortening phase, and maintained this value until the beginning of the relaxation phase. Gradual recovery of the intensity ratio to the resting value was seen during the relaxation phase. During the recovery phase, the intensity ratio appeared to exhibit oscillatory changes. Though the extent of shortening was reduced by about 30% at the end of each experiment, the duration of the shortening phase remained almost unchanged in all the preparations examined. The time course of change in the intensity ratio was also examined during an isometric twitch in four preparations (sarcomere, 2.4 μm) with the tibial end connected to a strain gauge. The extent of internal shortening of muscle fibres against the tendons and the recording system during an isometric twitch or a tetanus at low temperatures was estimated. The intensity ratio decreased to a minimum value of 0.5 - 0.6 during the rising phase of isometric tension and started to return to the resting value after the beginning of relaxation. In both isotonic and isometric twitches, a decrease in the intensity ratio resulted from both a decrease in the 1,0 intensity and an increase in the 1,1 intensity. (J.P.N.)

  9. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging.

    Science.gov (United States)

    Jayasinghe, Isuru D; Munro, Michelle; Baddeley, David; Launikonis, Bradley S; Soeller, Christian

    2014-10-06

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Decrease in sarcoplasmic reticulum calcium content, not myofilament function, contributes to muscle twitch force decline in isolated cardiac trabeculae

    Science.gov (United States)

    Milani-Nejad, Nima; Brunello, Lucia; Gyorke, Sándor; Janssen, Paul M.L.

    2014-01-01

    We set out to determine the factors responsible for twitch force decline in isolated intact rat cardiac trabeculae. The contractile force of trabeculae declined over extended periods of isometric twitch contractions. The force-frequency relationship within the frequency range of 4–8 Hz, at 37 °C, became more positive and the frequency optimum shifted to higher rates with this decline in baseline twitch tensions. The post-rest potentiation (37 °C), a phenomenon highly dependent on calcium handling mechanisms, became more pronounced with decrease in twitch tensions. We show that the main abnormality during muscle run-down was not due to a deficit in the myofilaments; maximal tension achieved using a K+ contracture protocol was either unaffected or only slightly decreased. Conversely, the sarcoplasmic reticulum (SR) calcium content, as assessed by rapid cooling contractures (from 27 °C to 0 °C), decreased, and had a close association with the declining twitch tensions (R2 ~ 0.76). SR Ca2+-ATPase, relative to Na+/Ca2+ exchanger activity, was not altered as there was no significant change in paired rapid cooling contracture ratios. Furthermore, confocal microscopy detected no abnormalities in the overall structure of the cardiomyocytes and t-tubules in the cardiac trabeculae (~23 °C). Overall, the data indicates that the primary mechanism responsible for force run-down in multi-cellular cardiac preparations is a decline in the SR calcium content and not the maximal tension generation capability of the myofilaments. PMID:25056841

  11. Train-of-four recovery precedes twitch recovery during reversal with sugammadex in pediatric patients: A retrospective analysis.

    Science.gov (United States)

    Vieira Carlos, Ricardo; Luis Abramides Torres, Marcelo; de Boer, Hans Donald

    2018-04-01

    After reversal of a rocuronium-induced neuromuscular blockade with sugammadex, the recovery of train-of-four ratio to 0.9 is faster than recovery of first twitch of the train-of-four to 90% in adults. These findings after reversal of neuromuscular blockade with sugammadex have not yet been investigated in pediatric patients. The aim of this retrospective analysis was to investigate the relationship of the recovery of first twitch of the train-of-four height and train-of-four ratio after reversal of rocuronium-induced neuromuscular blockade with sugammadex in pediatric patients. Patients ASA I-III, aged 2-11 years, and who underwent abdominal and/or perineal surgery were included in the analysis. After extracting the necessary data from the hospital database, the patients were divided into 2 groups based on the dose of sugammadex received: group A: 2 mg.kg -1 for reversal of moderate neuromuscular blockade and group B: 4 mg.kg -1 for reversal of deep neuromuscular blockade. The relationship of the recovery of first twitch of the train-of-four height and train-of-four ratio in these 2 groups were analyzed. Data from 43 pediatric patients aged 2-11 years could be analyzed. The first twitch of the train-of-four height at the recovery of train-of-four ratio to 0.9 in group B was statistically significantly lower compared with group A. This height 3 and 5 minutes after the train-of-four ratio reached 0.9 showed no statistically significant differences between groups. The results were in line with the results found in adults and showed that the train-of-four ratio recovered to 0.9 was faster than first twitch of the train-of-four height recovered to the same level. © 2018 John Wiley & Sons Ltd.

  12. Reduced phrenic motoneuron recruitment during sustained inspiratory threshold loading compared to single-breath loading: a twitch interpolation study

    Directory of Open Access Journals (Sweden)

    Mathieu Raux

    2016-11-01

    Full Text Available In humans, inspiratory constraints engage cortical networks involving the supplementary motor area. Functional magnetic resonance imaging (fMRI shows that the spread and intensity of the corresponding respiratory-related cortical activation dramatically decrease when a discrete load becomes sustained. This has been interpreted as reflecting motor cortical reorganisation and automatisation, but could proceed from sensory and/or affective habituation. To corroborate the existence of motor reorganisation between single-breath and sustained inspiratory loading (namely changes in motor neurones recruitment, we conducted a diaphragm twitch interpolation study based on the hypothesis that motor reorganisation should result in changes in the twitch interpolation slope. Fourteen healthy subjects (age: 21 – 40 years were studied. Bilateral phrenic stimulation was delivered at rest, upon prepared and targeted voluntary inspiratory efforts (vol, upon unprepared inspiratory efforts against a single-breath inspiratory threshold load (single-breath, and upon sustained inspiratory efforts against the same type of load (continuous. The slope of the relationship between diaphragm twitch transdiaphragmatic pressure and the underlying transdiaphragmatic pressure was –1.1 ± 0.2 during vol, –1.5 ± 0.7 during single-breath, and -0.6 ± 0.4 during continuous (all slopes expressed in percent of baseline.percent of baseline-1 all comparisons significant at the 5% level. The contribution of the diaphragm to inspiration, as assessed by the gastric pressure to transdiaphragmatic pressure ratio, was 31 ± 17 % during vol, 22 ± 16 % during single-breath (p=0.13, and 19 ± 9 % during continuous (p = 0.0015 vs. vol. This study shows that the relationship between the amplitude of the transdiaphragmatic pressure produced by a diaphragm twitch and its counterpart produced by the underlying diaphragm contraction is not unequivocal. If twitch interpolation is interpreted as

  13. Expression of Dihydropyridine and Ryanodine Receptors in Type IIA Fibers of Rat Skeletal Muscle

    International Nuclear Information System (INIS)

    Anttila, Katja; Mänttäri, Satu; Järvilehto, Matti

    2007-01-01

    In this study, the fiber type specificity of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) in different rat limb muscles was investigated. Western blot and histochemical analyses provided for the first time evidence that the expression of both receptors correlates to a specific myosin heavy chain (MHC) composition. We observed a significant (p=0.01) correlation between DHP as well as Ry receptor density and the expression of MHC IIa (correlation factor r=0.674 and r=0.645, respectively) in one slow-twitch, postural muscle (m. soleus), one mixed, fast-twitch muscle (m. gastrocnemius) and two fast-twitch muscles (m. rectus femoris, m. extensor digitorum longus). The highest DHP and Ry receptor density was found in the white part of m. rectus femoris (0.058±0.0060 and 0.057±0.0158 ODu, respectively). As expected, the highest relative percentage of MHC IIa was also found in the white part of m. rectus femoris (70.0±7.77%). Furthermore, histochemical experiments revealed that the IIA fibers stained most strongly for the fluorophore-conjugated receptor blockers. Our data clearly suggest that the expression of DHPRs and RyRs follows a fiber type-specific pattern, indicating an important role for these proteins in the maintenance of an effective Ca 2+ cycle in the fast contracting fiber type IIA

  14. Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities

    Science.gov (United States)

    Li, Xipeng; Zhao, Changwei; Yang, Mei; Yang, Bin; Hou, Deyin; Wang, Tao

    2017-10-01

    Reduced graphene oxide-NH2 (R-GO-NH2), a kind of amino graphene oxide, was embedded into the polyamide (PA) layer of nanofiltration (NF) composite hollow fiber membranes via interfacial polymerization to enhance the permeate flux and antifouling properties of NF membranes under low pressure conditions. In addition, it could mitigate the poor compatibility issue between graphene oxide materials and PA layer. To evaluate the influence of R-GO-NH2 on the performance of the NF composite hollow fiber membrane, SEM, AFM, FTIR, XPS and Zeta potentials were used to characterize the membranes. The results indicated that the compatibility and interactions between R-GO-NH2 and PA layer were enhanced, which was mainly due to the polymerization reaction between amino groups of R-GO-NH2 and acyl chloride groups of TMC. Therefore, salts rejection of the current membranes was improved significantly, and the modified membranes with 50 mg/L R-GO-NH2 demonstrated highest performance in terms of the rejections, which were 26.9%, 98.5%, 98.1%, and 96.1%, for NaCl, Na2SO4, MgSO4, and CaCl2 respectively. It was found that with the R-GO-NH2 contents rasing from 0 to 50 mg/L, pure water flux increased from 30.44 ± 1.71 to 38.57 ± 2.01 L/(m2.h) at 2 bar. What's more, the membrane demonstrated improved antifouling properties.

  15. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  16. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease?

    DEFF Research Database (Denmark)

    Gaster, M; Staehr, P; Beck-Nielsen, H

    2001-01-01

    To gain further insight into the mechanisms underlying muscle insulin resistance, the influence of obesity and type 2 diabetes on GLUT4 immunoreactivity in slow and fast skeletal muscle fibers was studied. Through a newly developed, very sensitive method using immunohistochemistry combined...... with morphometry, GLUT4 density was found to be significantly higher in slow compared with fast fibers in biopsy specimens from lean and obese subjects. In contrast, in type 2 diabetic subjects, GLUT4 density was significantly lower in slow compared with fast fibers. GLUT4 density in slow fibers from diabetic...... was reduced to 77% in the obese subjects and to 61% in type 2 diabetic patients compared with the control subjects. We propose that a reduction in the fraction of slow-twitch fibers, combined with a reduction in GLUT4 expression in slow fibers, may reduce the insulin-sensitive GLUT4 pool in type 2 diabetes...

  17. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    Science.gov (United States)

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-({TiO}_{{2}} /{WO}_{{3}} )

    Science.gov (United States)

    Araújo, E. S.; Libardi, J.; Faia, P. M.; de Oliveira, H. P.

    2018-02-01

    Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz-40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

  19. Photocatalytic oxidation of low concentration 2,4-D solution with new TiO2 fiber catalyst in a continuous flow reactor.

    Science.gov (United States)

    Terashima, Y; Ozaki, H; Giri, R R; Tano, T; Nakatsuji, S; Takanami, R; Taniguchi, S

    2006-01-01

    Environmental pollution by low concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D) is a concern these days due to ever increasingly stringent regulations. Photocatalysis with immobilized TiO2 fiber is a promising oxidation method. Laboratory experiments on photocatalytic degradation of 0.045 mmol l(-1) 2,4-D with the world's first high-strength TiO2 fiber catalyst were carried out in a continuous flow reactor in which the degradations were, in general, similar to those with high 2,4-D concentrations investigated elsewhere. Degradation and mineralization of 2,4-D were significantly enhanced with no initial pH adjustments. The rate constants for total organic carbon (TOC) without pH adjustment were about two-fold bigger than the pH adjustment cases. CO2 gas measurement and carbon mass-balance were carried out for the first time, where about 34% organic carbon converted into CO2 gas during four-hour oxidation. 2,4-Dichlorophenol (2,4-DCP), phenol, benzyl alcohol and two unknowns (RT = 2.65 and 3.78 min.) were detected as aromatic intermediates while Phenol was the new aromatic in HPLC analysis. Dechlorination efficiencies were high (> 70%) in all the cases, and more than 90% efficiencies were observed in chloride mass balance. Bigger flow rates and solution temperature fixed at 20 degrees C without pH adjustment greatly enhanced 2,4-D mineralization. These results can be an important basis in applying the treatment method for dioxin-contaminated water and wastewater.

  20. Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Desplanches, D.; Romatowski, J. G.; Widrick, J. J.

    2000-01-01

    The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.

  1. Constructing Ultrahigh-Capacity Zinc-Nickel-Cobalt Oxide@Ni(OH)2 Core-Shell Nanowire Arrays for High-Performance Coaxial Fiber-Shaped Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhang, Qichong; Xu, Weiwei; Sun, Juan; Pan, Zhenghui; Zhao, Jingxin; Wang, Xiaona; Zhang, Jun; Man, Ping; Guo, Jiabin; Zhou, Zhenyu; He, Bing; Zhang, Zengxing; Li, Qingwen; Zhang, Yuegang; Xu, Lai; Yao, Yagang

    2017-12-13

    Increased efforts have recently been devoted to developing high-energy-density flexible supercapacitors for their practical applications in portable and wearable electronics. Although high operating voltages have been achieved in fiber-shaped asymmetric supercapacitors (FASCs), low specific capacitance still restricts the further enhancement of their energy density. This article specifies a facile and cost-effective method to directly grow three-dimensionally well-aligned zinc-nickel-cobalt oxide (ZNCO)@Ni(OH) 2 nanowire arrays (NWAs) on a carbon nanotube fiber (CNTF) with an ultrahigh specific capacitance of 2847.5 F/cm 3 (10.678 F/cm 2 ) at a current density of 1 mA/cm 2 , These levels are approximately five times higher than those of ZNCO NWAs/CNTF electrodes (2.10 F/cm 2 ) and four times higher than Ni(OH) 2 /CNTF electrodes (2.55 F/cm 2 ). Benefiting from their unique features, we successfully fabricated a prototype coaxial FASC (CFASC) with a maximum operating voltage of 1.6 V, which was assembled by adopting ZNCO@Ni(OH) 2 NWAs/CNTF as the core electrode and a thin layer of carbon coated vanadium nitride (VN@C) NWAs on a carbon nanotube strip (CNTS) as the outer electrode with KOH poly(vinyl alcohol) (PVA) as the gel electrolyte. A high specific capacitance of 94.67 F/cm 3 (573.75 mF/cm 2 ) and an exceptional energy density of 33.66 mWh/cm 3 (204.02 μWh/cm 2 ) were achieved for our CFASC device, which represent the highest levels of fiber-shaped supercapacitors to date. More importantly, the fiber-shaped ZnO-based photodetector is powered by the integrated CFASC, and it demonstrates excellent sensitivity in detecting UV light. Thus, this work paves the way to the construction of ultrahigh-capacity electrode materials for next-generation wearable energy-storage devices.

  2. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans

    DEFF Research Database (Denmark)

    Krustrup, Peter; Secher, Niels; Relu, Mihai U.

    2008-01-01

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W...... without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P ... at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation....

  3. Women at Altitude: Voluntary Muscle Exercise Performance with and Without a-Adrenergic Receptor Blockage

    Science.gov (United States)

    1999-02-01

    proportion of active muscle volume occupied by slow - twitch fibers (a consequence of women having a smaller, fast - twitch fiber cross-sectional area (11,27...oxidative metabolism and in the ratio of slow -to- fast twitch fiber area must be considered with caution, however, since the proportion of slow fatiguing...ventilatory acclimatization to 4300m. Respir.Physiol. 70: 195-204,1987. 27. Nygaard, E. Skeletal muscle fibre characteristics in young women. Acta

  4. American football and other sports injuries may cause migraine/persistent pain decades later and can be treated successfully with electrical twitch-obtaining intramuscular stimulation (ETOIMS).

    Science.gov (United States)

    Chu, J; McNally, S; Bruyninckx, F; Neuhauser, D

    2017-04-01

    Autonomous twitch elicitation at myofascial trigger points from spondylotic radiculopathies-induced denervation supersensitivity can provide favourable pain relief using electrical twitch-obtaining intramuscular stimulation (ETOIMS). To provide objective evidence that ETOIMS is safe and efficacious in migraine and persistent pain management due to decades-old injuries to head and spine from paediatric American football. An 83-year-old mildly hypertensive patient with 25-year history of refractory migraine and persistent pain self-selected to regularly receive fee-for-service ETOIMS 2/week over 20 months. He had 180 sessions of ETOIMS. Pain levels, blood pressure (BP) and heart rate/pulse were recorded before and immediately after each treatment alongside highest level of clinically elicitable twitch forces/session, session duration and intervals between treatments. Twitch force grades recorded were from 1 to 5, grade 5 twitch force being strongest. Initially, there was hypersensitivity to electrical stimulation with low stimulus parameters (500 µs pulse-width, 30 mA stimulus intensity, frequency 1.3 Hz). This resolved with gradual stimulus increments as tolerated during successive treatments. By treatment 27, autonomous twitches were noted. Spearman's correlation coefficients showed that pain levels are negatively related to twitch force, number of treatments, treatment session duration and directly related to BP and heart rate/pulse. Treatment numbers and session durations directly influence twitch force. At end of study, headaches and quality of life improved, hypertension resolved and antihypertensive medication had been discontinued. Using statistical process control methodology in an individual patient, we showed long-term safety and effectiveness of ETOIMS in simultaneous diagnosis, treatment, prognosis and prevention of migraine and persistent pain in real time obviating necessity for randomised controlled studies.

  5. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging

    OpenAIRE

    Jayasinghe, Isuru D.; Munro, Michelle; Baddeley, David; Launikonis, Bradley S.; Soeller, Christian

    2014-01-01

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres...

  6. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S

    2005-05-01

    This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.

  7. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    Science.gov (United States)

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  8. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  9. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  10. Neuronal nitric oxide synthase is dislocated in type I fibers of myalgic muscle but can recover with physical exercise training

    DEFF Research Database (Denmark)

    Jensen, L; Andersen, L L; Schrøder, H D

    2015-01-01

    Trapezius myalgia is the most common type of chronic neck pain. While physical exercise reduces pain and improves muscle function, the underlying mechanisms remain unclear. Nitric oxide (NO) signaling is important in modulating cellular function, and a dysfunctional neuronal NO synthase (nNOS) ma...

  11. Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media

    International Nuclear Information System (INIS)

    Boggs, Bryan K.; Botte, Gerardine G.

    2010-01-01

    Plating bath concentrations of Pt(IV) and Ir(III) have been optimized as well as the total catalytic loading of bimetallic Pt-Ir alloy for the electro-oxidation of ammonia in alkaline media at standard conditions. This was accomplished using cyclic voltammetry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and statistical optimization tools. Concentrations of Pt(IV) and Ir(III) of the plating bath strongly influence electrode surface atomic compositions of the Pt-Ir alloy directly affecting the electro-oxidation behavior of ammonia. Several anode materials were studied using cyclic voltammetry, which demonstrated that Pt-Ir was the most active catalyst for the electro-oxidation of ammonia. Criteria for optimization were minimizing the climatic oxidation overpotential for ammonia and maximizing the exchange current density. Optimized bath composition was found to be 8.844 ± 0.001 g L -1 Pt(IV) and 4.112 ± 0.001 g L -1 Ir(III) based on electrochemical techniques. Physical characterization of the electrodes by SEM indicates that the plating bath concentrations of Pt and Ir influence the growth and deposition behavior of the alloy.

  12. Nitric oxide sensor based on carbon fiber covered with nickel porphyrin layer deposited using optimized electropolymerization procedure

    Czech Academy of Sciences Publication Activity Database

    Hrbáč, J.; Gregor, Č.; Machová, M.; Králová, Jana; Bystroň, T.; Číž, Milan; Lojek, Antonín

    2007-01-01

    Roč. 71, č. 1 (2007), s. 46-53 ISSN 1567-5394 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : nitric oxide sensor * electropolymerization * carbon fibre Subject RIV: BO - Biophysics Impact factor: 2.992, year: 2007

  13. Kinetics of Acid Orange 7 oxidation by using carbon fiber and reticulated vitreous carbon in an electro-Fenton process.

    Science.gov (United States)

    Ramírez-Pereda, Blenda; Álvarez-Gallegos, Alberto; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth A

    2018-05-01

    In this study, a micro-scale parallel plate reactor was built to electrochemically generate hydrogen peroxide (H 2 O 2 ) and to develop the Fenton reaction in situ, for the treatment of toxic organic pollutants. Two types of carbon materials were compared and used as cathodes: unidirectional carbon fiber (CF) and reticulated vitreous carbon (RVC). As anode, a stainless steel mesh was used. The results of H 2 O 2 were experimentally compared by means of electrogeneration process. RVC cathode with dimensions of 2.5 × 1 × 5 cm (170 mA and variable voltage V = 2.0-2.7) and 180 min produced 5.3 mM H 2 O 2 , with an H 2 O 2 production efficiency of 54%. Unidirectional carbon fiber cathode produced 7.5 mM of H 2 O 2 (96% of H 2 O 2 production efficiency) when a voltage of 1.8 V was applied during 180 min to a total area of 480 cm 2 of this material. Acid Orange 7 (AO7) was degraded to a concentration of 0.16 mM during the first 40 min of the process, which represented 95% of the initial concentration. Electrolysis process removed nearly 100% of the AO7 using both cathodes at the end of these experiments (180 min). Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  15. Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility

    Science.gov (United States)

    Cruz, Luisa F.; Cobine, Paul A.

    2012-01-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297

  16. Attenuated fatigue in slow twitch skeletal muscle during isotonic exercise in rats with chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Morten Munkvik

    Full Text Available During isometric contractions, slow twitch soleus muscles (SOL from rats with chronic heart failure (chf are more fatigable than those of sham animals. However, a muscle normally shortens during activity and fatigue development is highly task dependent. Therefore, we examined the development of skeletal muscle fatigue during shortening (isotonic contractions in chf and sham-operated rats. Six weeks following coronary artery ligation, infarcted animals were classified as failing (chf if left ventricle end diastolic pressure was >15 mmHg. During isoflurane anaesthesia, SOL with intact blood supply was stimulated (1s on 1s off at 30 Hz for 15 min and allowed to shorten isotonically against a constant afterload. Muscle temperature was maintained at 37°C. In resting muscle, maximum isometric force (F(max and the concentrations of ATP and CrP were not different in the two groups. During stimulation, F(max and the concentrations declined in parallel sham and chf. Fatigue, which was evident as reduced shortening during stimulation, was also not different in the two groups. The isometric force decline was fitted to a bi-exponential decay equation. Both time constants increased transiently and returned to initial values after approximately 200 s of the fatigue protocol. This resulted in a transient rise in baseline tension between stimulations, although this effect which was less prominent in chf than sham. Myosin light chain 2s phosphorylation declined in both groups after 100 s of isotonic contractions, and remained at this level throughout 15 min of stimulation. In spite of higher energy demand during isotonic than isometric contractions, both shortening capacity and rate of isometric force decline were as well or better preserved in fatigued SOL from chf rats than in sham. This observation is in striking contrast to previous reports which have employed isometric contractions to induce fatigue.

  17. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  18. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  19. Fiscal 2000 achievement report on the venture business assisting type regional consortium - Core industry creation type. Development of technology for manufacturing large-size, optionally shapable, totally oxide type continuous fiber ceramic composite; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. All oxide ogata nin'i keijo renzoku sen'i kyoka ceramics no seizo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This research and development endeavor is based on Tokyo University's technical seeds and aims to put on the market Al{sub 2}O{sub 3} based CFCC (continuous fiber ceramic composite) materials. They do not break down and are shapable into large or complicate forms as required, which features are not to be expected from a single ceramic material, and are usable in a high temperature oxidizing atmosphere. High purity alumina fiber and alumina-silica fiber containing 70% of Al{sub 2}O{sub 3} were selected, and woven. The resultant cloth was baked at a low temperature for burning away organic impurities. The cloth was then immersed in a zirconia sol containing 30wt% of the stock solution, and was allowed to dry at 105 degrees C. An alumina slurry was prepared containing a dispersant and a binder, and was applied to the zirconia-soaked cloth until it was as thick as desired. The cloth was kept at 800 degrees C for 1 hour for degreasing, and was baked at a low temperature where no heat caused degradation of the ceramic fiber would occur. Specimens stand long use when the temperature is 1,300 degrees or lower for high purity fiber and approximately 1,150 degrees or lower for alumina-silica fiber. They withstand 30-100MPa, dependent on the manufacturing conditions and the kind of fiber used. (NEDO)

  20. Time-related changes in firing rates are influenced by recruitment threshold and twitch force potentiation in the first dorsal interosseous.

    Science.gov (United States)

    Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B

    2017-08-01

    What is the central question of this study? The influences of motor unit recruitment threshold and twitch force potentiation on the changes in firing rates during steady-force muscular contractions are not well understood. What is the main finding and its importance? The behaviour of motor units during steady force was influenced by recruitment threshold, such that firing rates decreased for lower-threshold motor units but increased for higher-threshold motor units. In addition, individuals with greater changes in firing rates possessed greater twitch force potentiation. There are contradictory reports regarding changes in motor unit firing rates during steady-force contractions. Inconsistencies are likely to be the result of previous studies disregarding motor unit recruitment thresholds and not examining firing rates on a subject-by-subject basis. It is hypothesized that firing rates are manipulated by twitch force potentiation during contractions. Therefore, in this study we examined time-related changes in firing rates at steady force in relationship to motor unit recruitment threshold in the first dorsal interosseous and the influence of twitch force potentiation on such changes in young versus aged individuals. Subjects performed a 12 s steady-force contraction at 50% maximal voluntary contraction, with evoked twitches before and after the contraction to quantify potentiation. Firing rates, in relationship to recruitment thresholds, were determined at the beginning, middle and end of the steady force. There were no firing rate changes for aged individuals. For the young, firing rates decreased slightly for lower-threshold motor units but increased for higher-threshold motor units. Twitch force potentiation was greater for young than aged subjects, and changes in firing rates were correlated with twitch force potentiation. Thus, individuals with greater increases in firing rates of higher-threshold motor units and decreases in lower-threshold motor units

  1. New insight on biological interaction analysis: new nanocrystalline mixed metal oxide SPME fiber for GC-FID analysis of BTEX and its application in human hemoglobin-benzene interaction studies.

    Directory of Open Access Journals (Sweden)

    Reza Hosseinzadeh

    Full Text Available Nanocrystalline mixed metal oxides (MMO of various metal cations were synthesized and were used for coating a piece of copper wire as a new high sensitive solid phase micro extraction (SPME fiber in extraction and determination of BTEX compounds from the headspace of aqueous samples prior to GC-FID analysis. Under optimum extraction conditions, the proposed fiber exhibited low detection limits, and quantification limits, good reproducibility, simple and fast preparation method, high fiber capacity and high thermal and mechanical durability. These are some of the most important advantages of the new fiber. The proposed fiber was used for human hemoglobin upon interaction with benzene. Binding isotherm, Scatchard and Klotz logarithmic plots were constructed using HS-SPME-GC data, accurately. The obtained binding isotherm analyzed using Hill method. The Hill parameters have been obtained by calculating saturation parameter from the ratio of measured chromatographic peak areas in the presence and absence of hemoglobin. In this interaction, Hill coefficient and Hill constant determined as (nH = 6.14 and log KH = 6.47 respectively. These results reveal the cooperativity of hemoglobin upon interaction with benzene.

  2. A silica fiber coated with a ZnO-graphene oxide nanocomposite with high specific surface for use in solid phase microextraction of the antiepileptic drugs diazepam and oxazepam.

    Science.gov (United States)

    Alizadeh, Reza; Salami, Maryam; Seidi, Shahram

    2018-06-02

    A novel ZnO-graphene oxide nanocomposite was prepared and is shown to be a viable coating on fused silica fibers for use in solid phase microextraction (SPME) of diazepam and oxazepam from urine, this followed by thermal desorption and gas chromatographic quantitation using a flame ionization detector. A central composite design was used to optimize extraction time, salt percentage, sample pH and desorption time. Limits of detection are 0.5 μg·L -1 for diazepam and 1.0 μg·L -1 for oxazepam. Repeatability and reproducibility for one fiber (n = 4), expressed as the relative standard deviation at a concentration of 50 μg·L -1 , are 8.3 and 11.3% for diazepam, and 6.7 and 10.1% for oxazepam. The fiber-to-fiber reproducibility is Graphical abstract A hydrothermal method was introduced for preparation of ZnO- GO nano composite on a fused silica fiber as solid phase microextraction with high mechanical, chemical stability and long service life.

  3. Bis(trifluoromethanesulfonyl)imide-based ionic liquids grafted on graphene oxide-coated solid-phase microextraction fiber for extraction and enrichment of polycyclic aromatic hydrocarbons in potatoes and phthalate esters in food-wrap.

    Science.gov (United States)

    Hou, Xiudan; Guo, Yong; Liang, Xiaojing; Wang, Xusheng; Wang, Lei; Wang, Licheng; Liu, Xia

    2016-06-01

    A class of novel, environmental friendly ionic liquids (ILs) were synthesized by on-fiber preparation strategy and modified on graphene oxide (GO)-coated stainless steel wire, which was used as a solid-phase microextraction (SPME) fiber for efficient enrichment of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs). Surface characteristic of the ILs and polymeric-ILs (PILs) fibers with the wave-structure were inspected by scanning electron microscope. The successfully synthesis of bis(trifluoromethanesulfonyl)imide (NTf2(-))-based ILs were also characterized by energy dispersive spectrometer analysis. Through the chromatograms of the proposed two ILs (1-aminoethyl-3-methylimidazolium bromide (C2NH2MIm(+)Br(-)), C2NH2MIm(+)NTf2(-)) and two PILs (polymeric 1-vinyl-3-hexylimidazolium bromide (poly(VHIm(+)Br(-))), poly(VHIm(+)NTf2(-)))-GO-coated fibers for the extraction of analytes, NTf2(-)-based PIL demonstrated higher extraction capacity for hydrophobic compounds than other as-prepared ILs. Analytical performances of the proposed fibers were investigated under the optimized extraction and desorption conditions coupled with gas chromatography (GC). Compared with the poly(VHIm(+)Br(-))-GO fiber, the poly(VHIm(+)NTf2(-))-GO SPME fiber brought wider linear ranges for analytes with correlation coefficient in the range of 0.9852-0.9989 and lower limits of detection ranging from 0.015-0.025μgL(-1). The obtained results indicated that the newly prepared PILs-GO coating was a feasible, selective and green microextraction medium, which could be suitable for extraction and determination of PAHs and PAEs in potatoes and food-wrap sample, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Influence of the Hybrid Combination of Multiwalled Carbon Nanotubes and Graphene Oxide on Interlaminar Mechanical Properties of Carbon Fiber/Epoxy Laminates

    Science.gov (United States)

    Rodríguez-González, J. A.; Rubio-González, C.; Jiménez-Mora, M.; Ramos-Galicia, L.; Velasco-Santos, C.

    2017-10-01

    An effective strategy to improve the mode I and mode II interlaminar fracture toughness (G IC and G IIC ) of unidirectional carbon fiber/epoxy (CF/E) laminates using a hybrid combination of multiwalled carbon nanotubes (MWCNTs) and graphene oxide (GO) is reported. Double cantilever beam (DCB) and end notched flexure (ENF) tests were conducted to evaluate the G IC and G IIC of the CF/E laminates fabricated with sprayed MWCNTs, GO and MWCNTs/GO hybrid. Scanning electron microscopy was employed to observe the fracture surfaces of tested DCB and ENF specimens. Experimental results showed the positive effect on the G IC and G IIC by 17% and 14% improvements on CF/E laminates with 0.25 wt.% MWCNTs/GO hybrid content compared to the neat CF/E. Also, the interlaminar shear strength value was increased for MWCNTs/GO-CF/E laminates. A synergetic effect between MWCNTs and GO resulted in improved interlaminar mechanical properties of CF/E laminates made by prepregs.

  5. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  6. Polymer-Derived Ceramic Fibers

    Science.gov (United States)

    Ichikawa, Hiroshi

    2016-07-01

    SiC-based ceramic fibers are derived from polycarbosilane or polymetallocarbosilane precursors and are classified into three groups according to their chemical composition, oxygen content, and C/Si atomic ratio. The first-generation fibers are Si-C-O (Nicalon) fibers and Si-Ti-C-O (Tyranno Lox M) fibers. Both fibers contain more than 10-wt% oxygen owing to oxidation during curing and lead to degradation in strength at temperatures exceeding 1,300°C. The maximum use temperature is 1,100°C. The second-generation fibers are SiC (Hi-Nicalon) fibers and Si-Zr-C-O (Tyranno ZMI) fibers. The oxygen content of these fibers is reduced to less than 1 wt% by electron beam irradiation curing in He. The thermal stability of these fibers is improved (they are stable up to 1,500°C), but their creep resistance is limited to a maximum of 1,150°C because their C/Si atomic ratio results in excess carbon. The third-generation fibers are stoichiometric SiC fibers, i.e., Hi-Nicalon Type S (hereafter Type S), Tyranno SA, and Sylramic™ fibers. They exhibit improved thermal stability and creep resistance up to 1,400°C. Stoichiometric SiC fibers meet many of the requirements for the use of ceramic matrix composites for high-temperature structural application. SiBN3C fibers derived from polyborosilazane also show promise for structural applications, remain in the amorphous state up to 1,800°C, and have good high-temperature creep resistance.

  7. Interaction between carbon fibers and polymer sizing: Influence of fiber surface chemistry and sizing reactivity

    Science.gov (United States)

    Moosburger-Will, Judith; Bauer, Matthias; Laukmanis, Eva; Horny, Robert; Wetjen, Denise; Manske, Tamara; Schmidt-Stein, Felix; Töpker, Jochen; Horn, Siegfried

    2018-05-01

    Different aspects of the interaction of carbon fibers and epoxy-based polymer sizings are investigated, e.g. the wetting behavior, the strength of adhesion between fiber and sizing, and the thermal stability of the sizing layer. The influence of carbon fiber surface chemistry and sizing reactivity is investigated using fibers of different degree of anodic oxidation and sizings with different number of reactive epoxy groups per molecule. Wetting of the carbon fibers by the sizing dispersion is found to be specified by both, the degree of fiber activation and the sizing reactivity. In contrast, adhesion strength between fibers and sizing is dominated by the surface chemistry of the carbon fibers. Here, the number of surface oxygen groups seems to be the limiting factor. We also find that the sizing and the additional functionalities induced by anodic oxidation are removed by thermal treatment at 600 °C, leaving the carbon fiber in its original state after carbonization.

  8. Textile composites based on natural fibers

    CSIR Research Space (South Africa)

    Li, Yan

    2009-04-01

    Full Text Available . The two kinds of fiber surface treatment methods were permanganate treatment and silane treatment. Vinyl ester was used as the matrix. The permeability values of sisal textile before and after fiber surface treatments are listed in Table 3. Comparisons... and more liquid resin flow through inter-bundles. Figure 4. Intra-bundle and inter-bundle flows As reported, permanganate, as an oxidant, can etch sisal fiber surface [20]. Scanning electronic micrograph of a permanganate treated sisal fiber...

  9. Autonomic components of Complex Regional Pain Syndrome (CRPS) are favourably affected by Electrical Twitch-Obtaining Intramuscular Stimulation (ETOIMS): effects on blood pressure and heart rate.

    Science.gov (United States)

    Chu, Jennifer; Bruyninckx, Frans; Neuhauser, Duncan V

    2017-07-01

    Favourable pain relief results on evoking autonomous twitches at myofascial trigger points with Electrical Twitch Obtaining Intramuscular Stimulation (ETOIMS). To document autonomic nervous system (ANS) dysfunction in Complex Regional Pain Syndrome (CRPS) from blood pressure (BP) and pulse/heart rate changes with ETOIMS. A patient with persistent pain regularly received serial ETOIMS sessions of 60, 90, 120 or ≥150 min over 24 months. Outcome measures include BP: systolic, diastolic, pulse pressure and pulse/heart rate, pre-session/immediate-post-session summed differences (SDPPP index), and pain reduction. His results were compared with that of two other patients and one normal control. Each individual represented the following maximal elicitable twitch forces (TWF) graded 1-5: maximum TWF2: control subject; maximum TWF3: CRPS patient with suspected ANS dysfunction; and maximum TWF4 and TWF5: two patients with respective slow-fatigue and fast-fatigue twitches who during ETOIMS had autonomous twitching at local and remote myotomes simultaneously from denervation supersensitivity. ETOIMS results between TWFs were compared using one-way analysis of variance test. The patients showed immediate significant pain reduction, BP and pulse/heart rate changes/reduction(s) except for diastolic BP in the TWF5 patient. TWF2 control subject had diastolic BP reduction with ETOIMS but not with rest. Linear regression showed TWF grade to be the most significant variable in pain reduction, more so than the number of treatments, session duration and treatment interval. TWF grade was the most important variable in significantly reducing outcome measures, especially pulse/heart rate. Unlike others, the TWF3 patient had distinctive reductions in SDPPP index. Measuring BP and pulse/heart rate is clinically practical for alerting ANS dysfunction maintained CRPS. SDPPP index (≥26) and pulse/heart rate (≥8) reductions with almost every ETOIMS treatment, plus inability to evoke

  10. EXERCISE, MANUAL THERAPY AND POSTURAL RE-EDUCATION FOR UNCONTROLLED EAR TWITCHING AND RELATED IMPAIRMENTS AFTER WHIPLASH INJURY: A CASE REPORT.

    Science.gov (United States)

    Flanders, Kelsey; Feldner, Heather

    2017-10-01

    Whiplash Associated Disorders and the interventions used to remediate them are well documented in physical therapy literature. However, specific interventions for spasms of the neck musculature that also involve constant ear twitching have yet to be addressed. The purpose of this case report is twofold. First, to describe comprehensive physical therapy management and outcomes for a subject with uncontrolled ear twitching and related musculoskeletal impairments, and second, to discuss the physical therapist's approach to evidence-based care when faced with a paucity of literature addressing physical therapy interventions for subjects with uncontrolled ear twitching. The subject was a 14-year-old female who sustained a right anterolateral whiplash injury when struck in the head by a volleyball seven months prior to physical therapy. Beginning five months after that injury, she experienced uncontrolled and constant superior/inferior movement of her right ear (hereafter described in this report as a twitch) in addition to facial and cervical pain from her initial injury. She was unable to participate in high school athletics due to her pain. A multimodal treatment approach including exercise, manual therapy, and postural reeducation was utilized during the subject's episode of care. After eight treatment sessions, the subjects's cervical range of motion and upper extremity strength improved. The reported frequency of ear twitching decreased, as did reports of neck and shoulder pain. In addition, her Neck Disability Index improved from a score of 22, indicating moderate disability, to 9, indicating mild disability and she was able to return to sport activity. With limited research to direct intervention, clinical reasoning was utilized to formulate an effective therapeutic intervention. A combination of manual therapy, exercise, and postural reeducation intervention was effective for this subject and could assist in guiding interventions for similarly unique clinical

  11. Type IV Pili are required for virulence, twitching motility, and biofilm formation of acidovorax avenae subsp. Citrulli.

    Science.gov (United States)

    Bahar, Ofir; Goffer, Tal; Burdman, Saul

    2009-08-01

    Acidovorax avenae subsp. citrulli is the causal agent of bacterial fruit blotch (BFB), a threatening disease of watermelon, melon, and other cucurbits. Despite the economic importance of BFB, relatively little is known about basic aspects of the pathogen's biology and the molecular basis of its interaction with host plants. To identify A. avenae subsp. citrulli genes associated with pathogenicity, we generated a transposon (Tn5) mutant library on the background of strain M6, a group I strain of A. avenae subsp. citrulli, and screened it for reduced virulence by seed-transmission assays with melon. Here, we report the identification of a Tn5 mutant with reduced virulence that is impaired in pilM, which encodes a protein involved in assembly of type IV pili (TFP). Further characterization of this mutant revealed that A. avenae subsp. citrulli requires TFP for twitching motility and wild-type levels of biofilm formation. Significant reductions in virulence and biofilm formation as well as abolishment of twitching were also observed in insertional mutants affected in other TFP genes. We also provide the first evidence that group I strains of A. avenae subsp. citrulli can colonize and move through host xylem vessels.

  12. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans.

    Science.gov (United States)

    Krustrup, Peter; Secher, Niels H; Relu, Mihai U; Hellsten, Ylva; Söderlund, Karin; Bangsbo, Jens

    2008-12-15

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P muscle VO2 response was slower (P muscle homogenate CP was lowered (P muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19% higher (P fibres are less efficient than ST fibres in vivo at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation.

  13. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the mdx Dystrophic Mouse

    Directory of Open Access Journals (Sweden)

    Craig Robert Wright

    2017-01-01

    Full Text Available Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD. There is interest in characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in Selenoprotein S (Seps1 are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion (mdx:Seps1−/+ were generated. The mdx:Seps1−/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor digitorum longus (EDL muscles, mRNA expression of monocyte chemoattractant protein 1 (Mcp-1 (P=0.034, macrophage marker F4/80 (P=0.030, and transforming growth factor-β1 (Tgf-β1 (P=0.056 were increased in mdx:Seps1−/+ mice. This was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion, the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are typically more vulnerable to degeneration in dystrophy.

  14. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the mdx Dystrophic Mouse.

    Science.gov (United States)

    Wright, Craig Robert; Allsopp, Giselle Larissa; Addinsall, Alex Bernard; McRae, Natasha Lee; Andrikopoulos, Sofianos; Stupka, Nicole

    2017-01-01

    Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD). There is interest in characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in Selenoprotein S ( Seps1 ) are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion ( mdx : Seps1 -/+ ) were generated. The mdx:Seps1 -/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor digitorum longus (EDL) muscles, mRNA expression of monocyte chemoattractant protein 1 ( Mcp-1 ) ( P = 0.034), macrophage marker F4/80 ( P = 0.030), and transforming growth factor-β1 ( Tgf-β1 ) ( P = 0.056) were increased in mdx:Seps1 -/+ mice. This was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion, the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are typically more vulnerable to degeneration in dystrophy.

  15. Calcium currents in a fast-twitch skeletal muscle of the rat.

    Science.gov (United States)

    Donaldson, P L; Beam, K G

    1983-10-01

    Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially

  16. Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites.

    Science.gov (United States)

    Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Roh, Hyung Doh; Park, Young-Bin; Park, Hyung Wook

    2017-10-18

    Well-aligned NiCo 2 S 4 nanowires, synthesized hydrothermally on the surface of woven Kevlar fiber (WKF), were used to fabricate composites with reduced graphene oxide (rGO) dispersed in polyester resin (PES) by means of vacuum-assisted resin transfer molding. The NiCo 2 S 4 nanowires were synthesized with three precursor concentrations. Nanowire growth was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Hierarchical and high growth density of the nanowires led to exceptional mechanical properties of the composites. Compared with bare WKF/PES, the tensile strength and absorbed impact energy were enhanced by 96.2% and 92.3%, respectively, for WKF/NiCo 2 S 4 /rGO (1.5%)/PES. The synergistic effect of NiCo 2 S 4 nanowires and rGO in the fabricated composites improved the electrical conductivity of insulating WKF/PES composites, reducing the resistance to ∼10 3 Ω. Joule heating performance depended strongly on the precursor concentration of the nanowires and the presence of rGO in the composite. A maximum surface temperature of 163 °C was obtained under low-voltage (5 V) application. The Joule heating performance of the composites was demonstrated in a surface deicing experiment; we observed that 17 g of ice melted from the surface of the composite in 14 min under an applied voltage of 5 V at -28 °C. The excellent performance of WKF/NiCo 2 S 4 /rGO/PES composites shows great potential for aerospace structural applications requiring outstanding mechanical properties and Joule heating capability for deicing of surfaces.

  17. Mitochondrial oxidative enzyme activity in individual fibre types in hypo- and hyperthyroid rat skeletal muscles.

    Science.gov (United States)

    Johnson, M A; Turnbull, D M

    1984-04-01

    Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.

  18. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions

    Science.gov (United States)

    Colliander, E. B.; Dudley, G. A.; Tesch, P. A.

    1988-01-01

    Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.

  19. Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity.

    Science.gov (United States)

    Elworthy, Stone; Hargrave, Murray; Knight, Robert; Mebus, Katharina; Ingham, Philip W

    2008-06-01

    The zebrafish embryo develops a series of anatomically distinct slow twitch muscle fibres that characteristically express genes encoding lineage-specific isoforms of sarcomeric proteins such as MyHC and troponin. We show here that different subsets of these slow fibres express distinct members of a tandem array of slow MyHC genes. The first slow twitch muscle fibres to differentiate, which are specified by the activity of the transcription factor Prdm1 (also called Ubo or Blimp1) in response to Hedgehog (Hh) signalling, express the smyhc1 gene. Subsequently, secondary slow twitch fibres differentiate in most cases independently of Hh activity. We find that although some of these later-forming fibres also express smyhc1, others express smyhc2 or smyhc3. We show that the smyhc1-positive fibres express the ubo (prdm1) gene and adopt fast twitch fibre characteristics in the absence of Prdm1 activity, whereas those that do not express smyhc1 can differentiate independently of Prdm1 function. Conversely, some smyhc2-expressing fibres, although independent of Prdm1 function, require Hh activity to form. The adult trunk slow fibres express smyhc2 and smyhc3, but lack smyhc1 expression. The different slow fibres in the craniofacial muscles variously express smyhc1, smyhc2 and smyhc3, and all differentiate independently of Prdm1.

  20. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release in rat fast- and slow-twitch skinned muscle fibres.

    Science.gov (United States)

    Talon, S; Huchet-Cadiou, C; Léoty, C

    1999-11-01

    Inositol 1,4,5-trisphosphate (InsP3), an intracellular messenger, induces Ca2+ release in various types of cells, particularly smooth muscle cells. Its role in skeletal muscle, however, is controversial. The present study shows that the application of InsP3 to rat slow- and fast-twitch saponin-skinned fibres induced contractile responses that were not related to an effect of InsP3 on the properties of the contractile proteins. The amplitude of the contractures was dependent upon the Ca(2+)-loading period, and was larger in slow- than in fast-twitch muscle. In both types of skeletal muscle, these responses, unlike caffeine contractures, were not inhibited by ryanodine (100 microM), but were abolished by heparin (20 micrograms.ml-1). In soleus muscle, the concentration of heparin required to inhibit the response by 50% (IC50) was 5.7 micrograms.ml-1, a similar value to that obtained previously in smooth muscle. Furthermore, the results show that in slow-twitch muscle, the InsP3 contractures have a "bell-shaped" dependency on the intracellular Ca2+ concentration. These results show that InsP3 receptors should be present in skeletal muscle. Thus, it is possible that InsP3 participates in the regulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle, particularly in slow-twitch fibres.

  1. A molybdenum disulfide/reduced graphene oxide fiber coating coupled with gas chromatography-mass spectrometry for the saponification-headspace solid-phase microextraction of polychlorinated biphenyls in food.

    Science.gov (United States)

    Lv, Fangying; Gan, Ning; Cao, Yuting; Zhou, You; Zuo, Rongjie; Dong, Youren

    2017-11-24

    In this work, the molybdenum disulfide/reduced graphene oxide (MoS 2 /RGO) composite material was synthesized as a fiber coating to extract seven indicator polychlorinated biphenyls (PCBs; PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180) present in food via a saponification-headspace solid-phase microextraction assay (saponification-HS-SPME). The MoS 2 /RGO coating was prepared and deposited on a stainless steel wire with the help of a silicone sealant and used as an SPME fiber. The alkali solution dissolved the fat and helped in releasing the PCBs present in milk to the headspace for extraction under 100°C. Following desorption in the inlet, the targets were quantified by gas chromatography-mass spectrometry. The effects of sorbent dosage, extraction time, added salts, and stirring rate on the extraction efficiency were investigated. The new coating was able to adsorb a higher amount of analytes, which was about 1.1-2.9 times in comparison with the commercially available SPME fiber (coated with divinylbenzene/carboxen/polydimethylsiloxane). It also showed the highest adsorption capability toward PCBs, which was 1.5-2.7 times that of the prepared RGO modified fiber. Moreover, MoS 2 also showed a strong affinity toward PCBs in a manner similar to its affinity for graphene. The developed method is simple and environmentally friendly as it does not require any organic solvents. Furthermore, it exhibits good sensitivity with detection limits less than 0.1ngmL -1 , linearity (0.25-100ngmL -1 ), and reproducibility (relative standard deviation below 10% for n=3). The novel SPME fibers are inexpensive, reusable, and can be easily prepared and manipulated. In addition, the saponification-HS-SPME assay was also found to be suitable for screening persistent organic pollutants in dairy products. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparison of direct, headspace and headspace cold fiber modes in solid phase microextraction of polycyclic aromatic hydrocarbons by a new coating based on poly(3,4-ethylenedioxythiophene)/graphene oxide composite.

    Science.gov (United States)

    Banitaba, Mohammad Hossein; Hosseiny Davarani, Saied Saeed; Kazemi Movahed, Siyavash

    2014-01-17

    A novel nanocomposite coating made of poly(3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide was electrochemically prepared on gold wire. The prepared fiber was applied to the solid-phase microextraction (SPME) and gas chromatographic analysis of six polycyclic aromatic hydrocarbons (PAHs). Three modes of extraction i.e. direct immersion (DI), headspace (HS) and headspace cold fiber (HS-CF) in SPME were investigated. The results were compared under optimized conditions of each mode, considering the effects of the three most important parameters which are extraction temperature, extraction time and ionic strength. The comparison showed that HS-CF-SPME results in the best outcome for the extraction of PAHs from water samples. Under the optimized conditions of this mode, the calibration curves were linear within the range of 0.4-600μgL(-1) and the detection limits were between 0.05 and 0.13μgL(-1). The intra-day and inter-day relative standard deviations obtained at 10μgL(-1) (n=5), using a single fiber, were 4.1-6.8% and 4.8-8.4%, respectively. The fiber-to-fiber repeatabilities (n=4), expressed as the relative standard deviations (RSD%), were between 6.5% and 10.7% at a 10μgL(-1) concentration level. The method was successfully applied to the analysis of PAHs in seawater samples showing recoveries from 85% to 107%. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A quantitative description of tubular system Ca2+ handling in fast‐ and slow‐twitch muscle fibres

    Science.gov (United States)

    Cully, Tanya R.; Edwards, Joshua N.; Murphy, Robyn M.

    2016-01-01

    Key points Current methods do not allow a quantitative description of Ca2+ movements across the tubular (t‐) system membrane without isolating the membranes from their native skeletal muscle fibre.Here we present a fluorescence‐based method that allows determination of the t‐system [Ca2+] transients and derivation of t‐system Ca2+ fluxes in mechanically skinned skeletal muscle fibres. Differences in t‐system Ca2+‐handling properties between fast‐ and slow‐twitch fibres from rat muscle are resolved for the first time using this new technique.The method can be used to study Ca2+ handling of the t‐system and allows direct comparisons of t‐system Ca2+ transients and Ca2+ fluxes between groups of fibres and fibres from different strains of animals. Abstract The tubular (t‐) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca2+ gradient and exchanges Ca2+ between the extracellular and intracellular environments. Little is known of the Ca2+‐handling properties of the t‐system as the small Ca2+ fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t‐system‐trapped rhod‐5N inside skinned fibres from rat and [Ca2+]t‐sys, allowing confocal measurements of Ca2+‐dependent changes in rhod‐5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca2+] transients in the t‐system ([Ca2+]t‐sys (t)). Furthermore, t‐system Ca2+‐buffering power was determined so that t‐system Ca2+ fluxes could be derived from [Ca2+]t‐sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca2+ induced a robust store‐operated Ca2+ entry (SOCE) in fast‐ and slow‐twitch fibres, reducing [Ca2+]t‐sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg2+ and [Ca2+]cyto (28 nm–1.3 μm) to Ca2+‐depleted fibres generated t‐system Ca2+ uptake rates

  4. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Cully, Tanya R; Edwards, Joshua N; Murphy, Robyn M; Launikonis, Bradley S

    2016-06-01

    Current methods do not allow a quantitative description of Ca(2+) movements across the tubular (t-) system membrane without isolating the membranes from their native skeletal muscle fibre. Here we present a fluorescence-based method that allows determination of the t-system [Ca(2+) ] transients and derivation of t-system Ca(2+) fluxes in mechanically skinned skeletal muscle fibres. Differences in t-system Ca(2+) -handling properties between fast- and slow-twitch fibres from rat muscle are resolved for the first time using this new technique. The method can be used to study Ca(2+) handling of the t-system and allows direct comparisons of t-system Ca(2+) transients and Ca(2+) fluxes between groups of fibres and fibres from different strains of animals. The tubular (t-) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca(2+) gradient and exchanges Ca(2+) between the extracellular and intracellular environments. Little is known of the Ca(2+) -handling properties of the t-system as the small Ca(2+) fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t-system-trapped rhod-5N inside skinned fibres from rat and [Ca(2+) ]t-sys , allowing confocal measurements of Ca(2+) -dependent changes in rhod-5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca(2+) ] transients in the t-system ([Ca(2+) ]t-sys (t)). Furthermore, t-system Ca(2+) -buffering power was determined so that t-system Ca(2+) fluxes could be derived from [Ca(2+) ]t-sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca(2+) induced a robust store-operated Ca(2+) entry (SOCE) in fast- and slow-twitch fibres, reducing [Ca(2+) ]t-sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg(2+) and [Ca(2+) ]cyto (28 nm-1.3 μm) to Ca(2+) -depleted fibres generated t-system Ca(2+) uptake rates dependent on [Ca(2

  5. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S; Williams, D A

    2000-01-01

    We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.

  6. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles.

    Science.gov (United States)

    Barclay, C J

    2012-12-01

    The aims of this study were to quantify the Ca(2+) release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca(2+) release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca(2+) release was quantified from the amount of ATP used to remove Ca(2+) from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca(2+) pump ATP turnover. At 20°C, Ca(2+) release in response to a single stimulus was 34 and 84 μmol (kg muscle)(-1) for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg(-1); EDL, 168 μmol kg(-1)). Delivery of another stimulus within 100 ms of the first produced a smaller Ca(2+) release. The maximum magnitude of the decrease in Ca(2+) release was greater in EDL than soleus. Ca(2+) release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca(2+) released and crossbridge cycles performed are consistent with a scheme in which Ca(2+) binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles.

  7. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.

    Science.gov (United States)

    Clausen, T; Overgaard, K; Nielsen, O B

    2004-02-01

    Muscles containing predominantly fast-twitch (type II) fibres [ext. dig. longus (EDL)] show considerably lower contractile endurance than muscles containing mainly slow-twitch (type I) fibres (soleus). To assess whether differences in Na+-K+ fluxes and excitability might contribute to this phenomenon, we compared excitation-induced Na+-K+ leaks, Na+ channels, Na+-K+ pump capacity, force and compound action potentials (M-waves) in rat EDL and soleus muscles. Isolated muscles were mounted for isometric contractions in Krebs-Ringer bicarbonate buffer and exposed to direct or indirect continuous or intermittent electrical stimulation. The time-course of force decline and concomitant changes in Na+-K+ exchange and M-waves were recorded. During continuous stimulation at 60-120 Hz, EDL showed around fivefold faster rate of force decline than soleus. This was associated with a faster loss of excitability as estimated from the area and amplitude of the M-waves. The net uptake of Na+ and the release of K+ per action potential were respectively 6.5- and 6.6-fold larger in EDL than in soleus, which may in part be due to the larger content of Na+ channels in EDL. During intermittent stimulation with 1 s 60 Hz pulse trains, EDL showed eightfold faster rate of force decline than soleus. The considerably lower contractile endurance of fast-twitch compared with slow-twitch muscles reflects differences in the rate of excitation-induced loss of excitability. This is attributed to the much larger excitation-induced Na+ influx and K+ efflux, leading to a faster rise in [K+]o in fast-twitch muscles. This may only be partly compensated by the concomitant activation of the Na+-K+ pumps, in particular in fibres showing large passive Na+-K+ leaks or reduced content of Na+-K+ pumps. Thus, endurance depends on the leak/pump ratio for Na+ and K+.

  8. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor.

    Science.gov (United States)

    Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M

    2009-01-01

    We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

  9. Preparation and photocatalytic performance of Fe (III)-amidoximated PAN fiber complex for oxidative degradation of azo dye under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yongchun, E-mail: dye@tjpu.edu.cn [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou, 350002 (China); Han, Zhenbang [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Liu, Chunyan [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou, 350002 (China); Du, Fang [Division of Textile Chemistry and Ecology, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China)

    2010-04-15

    Polyacrylonitrile (PAN) fiber was modified with hydroxylamine hydrochloride to introduce amidoxime groups onto the fiber surface. These amidoxime groups were used to react with Fe (III) ions to prepare Fe (III)-amidoximated PAN fiber complex, which was characterized using SEM, XRD, FTIR, XPS, DMA, and DRS respectively. Then the photocatalytic activity of Fe-AO-PAN was evaluated in the degradation of a typical azo dye, C. I. Reactive Red 195 in the presence of H{sub 2}O{sub 2} under visible light irradiation. Moreover, the effect of the Fe content of Fe-AO-PAN on dye degradation was also investigated. The results indicated that Fe (III) ions can crosslink between the modified PAN fiber chains by the coordination of Fe (III) ions with the amino nitrogen atoms and hydroxyl oxygen atoms of the amidoximation groups to form Fe (III)-amidoximated PAN fiber complex, and the Fe content of which is mainly determined by Fe (III) ions and amidoximation groups. Fe (III)-amidoximated PAN fiber complex is found to be activated in the visible light region. Moreover, Fe (III)-amidoximated PAN fiber complex shows the catalytic activity for dye degradation by H{sub 2}O{sub 2} at pH = 6.0 in the dark, and can be significantly enhanced by increasing light irradiation and Fe content, therefore, it can be used as a new heterogeneous Fenton photocatalyst for the effective decomposition of the dye in water. In addition, ESR spectra confirm that Fe (III)-amidoximated PAN fiber complex can generate more {center_dot}OH radicals from H{sub 2}O{sub 2} under visible light irradiation, leading to dye degradation. A possible mechanism of photocatalysis is proposed.

  10. Multifunctionality in epoxy/glass fibers composites with graphene interphase

    OpenAIRE

    Mahmood, Haroon

    2017-01-01

    In this project, the synergetic effect of a graphene interphase in epoxy/glass fibers composites was investigated by coating glass fibers (GF) with graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets by an electrophoretic deposition (EPD) technique. Graphite oxide was prepared using modified Hummers method in which raw graphite powder was oxidized using potassium permanganate (KMnO4) in acidic solution. Using ultrasonic technique, the graphite oxide was dispersed homogenously in w...

  11. SBIR-Long fluoride fiber

    Science.gov (United States)

    Jaeger, Raymond E.; Vacha, Lubos J.

    1987-08-01

    This report summarizes results obtained under a program aimed at developing new techniques for fabricating long lengths of heavy metal fluoride glass (HMFG) optical fiber. A new method for overcladding conventional HMFG preforms with a low melting oxide glass was developed, and improvements in the rotational casting method were made to increase preform length. The resulting composite glass canes consist of a fluoride glass overcoat layer to enhance strength and chemical durability. To show feasibility, prototype optical fiber preforms up to 1.6 cm in diameter with lengths of 22 cm were fabricated. These were drawn into optical fibers with lengths up to 900 meters.

  12. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    International Nuclear Information System (INIS)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M.A.; Nistal, A.; Rubio, J.

    2016-01-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO_3/H_2SO_4 reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  13. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Uicab, O. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburna de Hidalgo, C.P. 97200 Mérida, Yucatán (Mexico); Yazdani-Pedram, M. [Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, S. Livingstone 1007, Independencia, Santiago (Chile); Toro, P. [Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Beauchef 850, Santiago (Chile); Gamboa, F. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso, 97310 Mérida, Yucatán (Mexico); Mazo, M.A.; Nistal, A.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain)

    2016-11-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO{sub 3}/H{sub 2}SO{sub 4} reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  14. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  15. A new method for non-invasive estimation of human muscle fiber type composition.

    Directory of Open Access Journals (Sweden)

    Audrey Baguet

    Full Text Available BACKGROUND: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT or type-II fibers and slow-twitch (ST or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative. METHODOLOGY: Eighty-three control subjects, 15 talented young track-and-field athletes, 51 elite athletes and 14 ex-athletes volunteered to participate in the current study. The carnosine content of all 163 subjects was measured in the gastrocnemius muscle by proton magnetic resonance spectroscopy ((1H-MRS. Muscle biopsies for fiber typing were taken from 12 untrained males. PRINCIPAL FINDINGS: A significant positive correlation was found between muscle carnosine, measured by (1H-MRS, and percentage area occupied by type II fibers. Explosive athletes had ∼30% higher carnosine levels compared to a reference population, whereas it was ∼20% lower than normal in typical endurance athletes. Similar results were found in young talents and ex-athletes. When active elite runners were ranked according to their best running distance, a negative sigmoidal curve was found between logarithm of running distance and muscle carnosine. CONCLUSIONS: Muscle carnosine content shows a good reflection of the disciplines of elite track-and-field athletes and is able to distinguish between individual track running distances. The differences between endurance and sprint muscle types is also observed in young talents and former athletes, suggesting this characteristic is genetically determined and can be applied in early talent identification. This quick method provides a valid alternative for the muscle biopsy method. In addition, this technique may also contribute to the diagnosis and monitoring of many conditions and

  16. "Positive people always win" : en studie av hur kvinnor som livestreamar på Twitch.tv upplever interaktionen med sina tittare i kanalchatten

    OpenAIRE

    Thoresen, Josef; Elfwendahl, Sofia

    2017-01-01

    I denna studie har vi undersökt kvinnor som livestreamar sitt datorspelande på hemsidan Twitch.tv och deras erfarenheter gällande chattkommentarer på deras livesändningar. Vi har främst fokuserat på negativa chattkommentarer och hur dessa påverkar kvinnorna, då tidigare forskning redan har visat på att kvinnor utsätts för fler trakasserier än män, både generellt på internet och på Twitch.tv (Nakandala, Ciampaglia, Su & Ahn. 2016). Vidare ville vi också se hur kvinnorna hanterar dessa nega...

  17. Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength

    Science.gov (United States)

    Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen

    2011-01-01

    Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234

  18. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.

    Directory of Open Access Journals (Sweden)

    Stewart I Head

    Full Text Available BACKGROUND: Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. METHODS AND RESULTS: The extensor digitorum longus muscle from mice aged 12-14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i before fatigue; (ii immediately after a fatigue protocol; and (iii after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. CONCLUSION: Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca(2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation.

  19. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    Science.gov (United States)

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  20. Percent voluntary inactivation and peak force predictions with the interpolated twitch technique in individuals with high ability of voluntary activation

    International Nuclear Information System (INIS)

    Herda, Trent J; Walter, Ashley A; Hoge, Katherine M; Stout, Jeffrey R; Costa, Pablo B; Ryan, Eric D; Cramer, Joel T

    2011-01-01

    The purpose of this study was to examine the sensitivity and peak force prediction capability of the interpolated twitch technique (ITT) performed during submaximal and maximal voluntary contractions (MVCs) in subjects with the ability to maximally activate their plantar flexors. Twelve subjects performed two MVCs and nine submaximal contractions with the ITT method to calculate percent voluntary inactivation (%VI). Additionally, two MVCs were performed without the ITT. Polynomial models (linear, quadratic and cubic) were applied to the 10–90% VI and 40–90% VI versus force relationships to predict force. Peak force from the ITT MVC was 6.7% less than peak force from the MVC without the ITT. Fifty-eight percent of the 10–90% VI versus force relationships were best fit with nonlinear models; however, all 40–90% VI versus force relationships were best fit with linear models. Regardless of the polynomial model or the contraction intensities used to predict force, all models underestimated the actual force from 22% to 28%. There was low sensitivity of the ITT method at high contraction intensities and the predicted force from polynomial models significantly underestimated the actual force. Caution is warranted when interpreting the % VI at high contraction intensities and predicted peak force from submaximal contractions

  1. Twitching motility of bacteria with type-IV pili: Fractal walks, first passage time, and their consequences on microcolonies

    Science.gov (United States)

    Bisht, Konark; Klumpp, Stefan; Banerjee, Varsha; Marathe, Rahul

    2017-11-01

    A human pathogen, Neisseria gonorrhoeae (NG), moves on surfaces by attaching and retracting polymeric structures called Type IV pili. The tug-of-war between the pili results in a two-dimensional stochastic motion called twitching motility. In this paper, with the help of real-time NG trajectories, we develop coarse-grained models for their description. The fractal properties of these trajectories are determined and their influence on first passage time and formation of bacterial microcolonies is studied. Our main observations are as follows: (i) NG performs a fast ballistic walk on small time scales and a slow diffusive walk over long time scales with a long crossover region; (ii) there exists a characteristic persistent length lp*, which yields the fastest growth of bacterial aggregates or biofilms. Our simulations reveal that lp*˜L0.6 , where L ×L is the surface on which the bacteria move; (iii) the morphologies have distinct fractal characteristics as a consequence of the ballistic and diffusive motion of the constituting bacteria.

  2. Structures and Performance of Graphene/Polyimide Composite Graphite Fibers

    Directory of Open Access Journals (Sweden)

    LI Na

    2017-09-01

    Full Text Available Dry-wet spinning process was used to gain graphene oxide/polyimide composite fibers, then graphene/polyimide composite carbon and graphite fibers were obtained through carbonized and graphitized. Different graphene oxide contents of the composite carbon and graphite fibers were measured by thermal gravimetric analysis, Raman, mechanical properties, electrical properties,SEM and so on. The results show that when the GO content is 0.3%(mass fraction,the same below, the thermal property of the graphene oxide/polyimide composite fibers is the best. The mechanical and electrical properties are obriously improved by the addition of GO, graphitization degree also increases. When the composite carbon fibers are treated at 2800℃, GO content increases to 2.0%, the thermal conductivity of the composite graphite fibers reaches 435.57W·m-1·K-1 and cross-section structures of carbon fibers are more compact.

  3. Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation.

    Science.gov (United States)

    Muthny, Tomas; Kovarik, Miroslav; Sispera, Ludek; Tilser, Ivan; Holecek, Milan

    2008-02-01

    The aim of our study was to evaluate the differences in protein and amino acid metabolism after subcutaneous turpentine administration in the soleus muscle (SOL), predominantly composed of red fibres, and the extensor digitorum longus muscle (EDL) composed of white fibres. Young rats (40-60 g) were injected subcutaneously with 0.2 ml of turpentine oil/100 g body weight (inflammation) or with the same volume of saline solution (control). Twenty-four hours later SOL and EDL were dissected and incubated in modified Krebs-Heinseleit buffer to estimate total and myofibrillar proteolysis, chymotrypsin-like activity of proteasome (CHTLA), leucine oxidation, protein synthesis and amino acid release into the medium. The data obtained demonstrate that in intact rats, all parameters measured except protein synthesis are significantly higher in SOL than in EDL. In turpentine treated animals, CHTLA increased and protein synthesis decreased significantly more in EDL. Release of leucine was inhibited significantly more in SOL. We conclude that turpentine-induced inflammation affects more CHTLA, protein synthesis and leucine release in EDL compared to SOL.

  4. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    Science.gov (United States)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  5. S-glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans.

    Science.gov (United States)

    Mollica, J P; Dutka, T L; Merry, T L; Lamboley, C R; McConell, G K; McKenna, M J; Murphy, R M; Lamb, G D

    2012-03-15

    Oxidation can decrease or increase the Ca2+ sensitivity of the contractile apparatus in rodent fast-twitch (type II) skeletal muscle fibres, but the reactions and molecular targets involved are unknown. This study examined whether increased Ca2+ sensitivity is due to S-glutathionylation of particular cysteine residues. Skinned muscle fibres were directly activated in heavily buffered Ca2+ solutions to assess contractile apparatus Ca2+ sensitivity. Rat type II fibres were subjected to S-glutathionylation by successive treatments with 2,2′-dithiodipyridine (DTDP) and glutathione (GSH), and displayed a maximal increase in pCa50 (−log10 [Ca2+] at half-maximal force) of ∼0.24 pCa units, with little or no effect on maximum force or Hill coefficient. Partial similar effect was produced by exposure to oxidized gluthathione (GSSG, 10 mM) for 10 min at pH 7.1, and near-maximal effect by GSSG treatment at pH 8.5. None of these treatments significantly altered Ca2+ sensitivity in rat type I fibres. Western blotting showed that both the DTDP–GSH and GSSG–pH 8.5 treatments caused marked S-glutathionylation of the fast troponin I isoform (TnI(f)) present in type II fibres, but not of troponin C (TnC) or myosin light chain 2. Both the increased Ca2+ sensitivity and glutathionylation of TnI(f) were blocked by N-ethylmaleimide (NEM). S-nitrosoglutathione (GSNO) also increased Ca2+ sensitivity, but only in conditions where it caused S-glutathionylation of TnI(f). In human type II fibres from vastus lateralis muscle, DTDP–GSH treatment also caused similar increased Ca2+ sensitivity and S-glutathionylation of TnI(f). When the slow isoform of TnI in type I fibres of rat was partially substituted (∼30%) with TnI(f), DTDP–GSH treatment caused a significant increase in Ca2+ sensitivity (∼0.08 pCa units). TnIf in type II fibres from toad and chicken muscle lack Cys133 present in mammalian TnIf, and such fibres showed no change in Ca2+ sensitivity with DTDP–GSH nor any S

  6. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... them if they do not contain seeds or pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, ...

  7. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  8. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  9. Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Mutungi, G; Ranatunga, K W

    1998-04-01

    1. The tension and sarcomere length responses induced by ramp stretches (at amplitudes of 1-3 % fibre length (Lo) and speeds of 0.01-12 Lo s-1) were examined at different temperatures (range, 10-35 degrees C) in resting intact muscle fibre bundles isolated from the soleus (a slow-twitch muscle) and extensor digitorum longus (a fast-twitch muscle) of the rat. Some observations are also presented on the effects of chemical skinning on passive viscoelasticity at 10 degrees C. 2. As previously reported, the tension response to a ramp stretch, in different preparations and under various conditions, could be resolved into a viscous (P1), a viscoelastic (P2) and an elastic (P3) component and showed characteristic differences between slow and fast muscle fibres. 3. Chemical skinning of the muscle fibres led to a decrease in the amplitude of all three tension components. However, the fast-slow fibre differences remained after skinning. For example, the viscosity coefficient derived from P1 tension data decreased from 0.84 +/- 0.06 before skinning to 0.44 +/- 0.06 kN s m-2 after skinning in fast fibres; the corresponding values in slow fibres were 2.1 +/- 0.08 and 0.87 +/- 0.09 kN s m-2, respectively. 4. Increasing the experimental temperature from 10 to 35 degrees C led to a decrease in all the tension components in both fast and slow muscle fibre bundles. The decrease of P1 (viscous) tension was such that the viscosity coefficient calculated using P1 data was reduced from 0.84 +/- 0.1 to 0.43 +/- 0.05 kN s m-2 in fast fibres and from 2.0 +/- 0.1 to 1.0 +/- 0.1 kN s m-2 in slow fibres (Q10 of approximately 1.3 in both). 5. In both fast and slow muscle fibre preparations, the plateau tension of the viscoelastic component (P2) decreased by 60-80 % as the temperature was increased from 10 to 35 degrees C giving P2 tension a Q10 of approximately 1.4 in slow fibres and approximately 1.7 in the fast fibres. Additionally, the relaxation time of the viscoelasticity decreased from

  10. Preliminary characterization of glass fiber sizing

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Petersen, H.; Almdal, K. [Technical Univ. of Denmark. DTU Nanotech, Kgs. Lyngby (Denmark); Kusano, Y.; Broendsted, P. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark)

    2013-09-01

    Glass fiber surfaces are treated with sizing during manufacturing. Sizing consists of several components, including a film former and a silane coupling agent that is important for adhesion between glass fibers and a matrix. Although the sizing highly affects the composite interface and thus the strength of the composites, little is known about the structure and chemistry of the sizing. A part of sizing was extracted by soxhlet extraction. The fibers were subsequently burned and some fibers were merely burned for analysis of glass fiber and sizing. The results showed that the analyzed fibers had amounts of bonded and physisorbed sizing similar to what has been presented in literature. An estimated sizing thickness was found to be approximately 100 nm. It is indicated that an epoxy-resin containing film former and a polyethylene oxide lubricant are present, yet no silanes or other sizing components were identified in the extractant. (Author)

  11. Biological resistance of polyethylene composites made with chemically modified fiber or flour

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2002-01-01

    The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...

  12. Jaw muscle fiber type distribution in Hawaiian gobioid stream fishes: histochemical correlations with feeding ecology and behavior.

    Science.gov (United States)

    Maie, Takashi; Meister, Andrew B; Leonard, Gerald L; Schrank, Gordon D; Blob, Richard W; Schoenfuss, Heiko L

    2011-12-01

    Differences in fiber type distribution in the axial muscles of Hawaiian gobioid stream fishes have previously been linked to differences in locomotor performance, behavior, and diet across species. Using ATPase assays, we examined fiber types of the jaw opening sternohyoideus muscle across five species, as well as fiber types of three jaw closing muscles (adductor mandibulae A1, A2, and A3). The jaw muscles of some species of Hawaiian stream gobies contained substantial red fiber components. Some jaw muscles always had greater proportions of white muscle fibers than other jaw muscles, independent of species. In addition, comparing across species, the dietary generalists (Awaous guamensis and Stenogobius hawaiiensis) had a lower proportion of white muscle fibers in all jaw muscles than the dietary specialists (Lentipes concolor, Sicyopterus stimpsoni, and Eleotris sandwicensis). Among Hawaiian stream gobies, generalist diets may favor a wider range of muscle performance, provided by a mix of white and red muscle fibers, than is typical of dietary specialists, which may have a higher proportion of fast-twitch white fibers in jaw muscles to help meet the demands of rapid predatory strikes or feeding in fast-flowing habitats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  13. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  14. Tetanic Ca2+ transient differences between slow- and fast-twitch mouse skeletal muscle fibres: a comprehensive experimental approach.

    Science.gov (United States)

    Calderón, Juan C; Bolaños, Pura; Caputo, Carlo

    2014-12-01

    One hundred and eighty six enzymatically dissociated murine muscle fibres were loaded with Mag-Fluo-4 AM, and adhered to laminin, to evaluate the effect of modulating cytosolic Ca(2+) buffers and sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), mitochondria, and Na(+)/Ca(2+) exchanger (NCX) on the differential tetanic Ca(2+) transient kinetics found in different fibre types. Tetanic Ca(2+) transients were classified as morphology type I (MT-I) or type II (MT-II) according to their shape. The first peak of the MT-I (n = 25) and MT-II (n = 23) tetanic Ca(2+) transients had an amplitude (∆F/F) of 0.41 ± 0.03 and 0.83 ± 0.05 and a rise time (ms) of 1.35 and 0.98, respectively. MT-I signals had a time constant of decay (τ1, ms) of 75.9 ± 4.2 while MT-II transients showed a double exponential decay with time constants of decay (τ1 and τ2, ms) of 18.3 ± 1.4 and 742.2 ± 130.3. Sarcoendoplasmic reticulum Ca(2+) ATPase inhibition demonstrated that the decay phase of the tetanic transients mostly rely on SERCA function. Adding Ca(2+) chelators in the AM form to MT-I fibres changed the morphology of the initial five peaks to a MT-II one, modifying the decay phase of the signal in a dose-dependent manner. Mitochondria and NCX function have a minor role in explaining differences in tetanic Ca(2+) transients among fibre types but still help in removing Ca(2+) from the cytosol in both MT-I and MT-II fibres. Cytoplasmic Ca(2+) buffering capacity and SERCA function explain most of the different kinetics found in tetanic Ca(2+) transients from different fibre types, but mitochondria and NCX have a measurable role in shaping tetanic Ca(2+) responses in both slow and fast-twitch muscle fibre types. We provided experimental evidence on the mechanisms that help understand the kinetics of tetanic Ca(2+) transients themselves and explain kinetic differences found among fibre types.

  15. Assessment of different dietary fibers (tomato fiber, beet root fiber, and inulin) for the manufacture of chopped cooked chicken products.

    Science.gov (United States)

    Cava, Ramón; Ladero, Luis; Cantero, V; Rosario Ramírez, M

    2012-04-01

    Three dietary fibers (tomato fiber [TF], beet root fiber [BRF], and inulin) at 3 levels of addition (1%, 2%, and 3%) were assessed for the manufacture of chopped, cooked chicken products and compared with a control product without fiber added. The effect of fiber incorporation on (i) batters, (ii) cooked (30 min at 70 °C), and (iii) cooked and stored (for 10 d at 4 °C) chicken products were studied. The addition of the fiber to chicken meat products reduced the pH of chicken batters in proportional to the level of fiber addition. Fiber incorporation increased water-holding capacity but only the addition of TF reduced cook losses. The color of batters and cooked products was significantly modified by the type and level of fiber added. These changes were more noticeable when TF was added. Texture parameters were affected by the incorporation of TF and BRF; they increased the hardness in proportional to the level of addition. The addition of tomato and BRF to chicken meat products reduced lipid oxidation processes. These changes were dependent on the level of fiber added. The reduction of lipid oxidation processes was more marked in TF meat products than in products with other types of fibers. In contrast, the addition level of inulin increased TBA-RS numbers in chicken meat products. Although the addition of TF increased the redness of the meat products, the use of this fiber was more suitable as it reduced the extent of lipid oxidation processes. INDUSTRIAL APPLICATION: Nowadays, the reduction of fat and the increase of fiber content in meat products is one of the main goals of meat industry. Numerous sources of fiber can be added to the meat products; however, before that it is necessary to study their technological effect on raw and cooked meat products in order to evaluate their suitability for meat products manufacture. In addition, some of them could have beneficial effect on meat products conservation that could also increase their shelf life. © 2012

  16. Layered double hydroxide films on nanoporous anodic aluminum oxide/aluminum wire: a new fiber for rapid analysis of Origanum vulgare essential oils.

    Science.gov (United States)

    Piryaei, Marzieh

    2018-01-01

    Zn/Al layered double hydroxide (LDH) films were fabricated in situ with anodic aluminium oxide aluminium as both the substrate and the sole aluminium source by means of urea hydrolysis. Headspace solid phase microextraction using LDH fibre in combination with capillary GC-MS was utilised as a monitoring technique for the collection and detection of the volatile compounds of Origanum vulgare. Experimental parameters, including the sample weight, microwave power, extraction time and humidity effect, were examined and optimised.

  17. Myosin isoform fiber type and fiber size in the tail of the Virginia opossum (Didelphis virginiana).

    Science.gov (United States)

    Hazimihalis, P J; Gorvet, M A; Butcher, M T

    2013-01-01

    Muscle fiber type is a well studied property in limb muscles, however, much less is understood about myosin heavy chain (MHC) isoform expression in caudal muscles of mammalian tails. Didelphid marsupials are an interesting lineage in this context as all species have prehensile tails, but show a range of tail-function depending on either their arboreal or terrestrial locomotor habits. Differences in prehensility suggest that MHC isoform fiber types may also be different, in that terrestrial opossums may have a large distribution of oxidative fibers for object carrying tasks instead of faster, glycolytic fiber types expected in mammals with long tails. To test this hypothesis, MHC isoform fiber type and their regional distribution (proximal/transitional/distal) were determined in the tail of the Virginia opossum (Didelphis virginiana). Fiber types were determined by a combination of myosin-ATPase histochemistry, immunohistochemistry, and SDS-PAGE. Results indicate a predominance of the fast MHC-2A and -2X isoforms in each region of the tail. The presence of two fast isoforms, in addition to the slow MHC-1 isoform, was confirmed by SDS-PAGE analysis. The overall MHC isoform fiber type distribution for the tail was: 25% MHC-1, 71% MHC-2A/X hybrid, and 4% MHC-1/2A hybrid. Oxidative MHC-2A/X isoform fibers were found to be relatively large in cross-section compared to slow, oxidative MHC-1 and MHC-1/2A hybrid fibers. A large percentage of fast MHC-2A/X hybrids fibers may be suggestive of an evolutionary transition in MHC isoform distribution (fast-to-slow fiber type) in the tail musculature of an opossum with primarily a terrestrial locomotor habit and adaptive tail-function. Copyright © 2012 Wiley Periodicals, Inc.

  18. Degradation of Continuous Fiber Ceramic Matrix Composites Under Constant-Load Conditions

    National Research Council Canada - National Science Library

    Halbig, Michael

    2000-01-01

    .... Thermogravimetric analysis of the oxidation of fully exposed carbon fiber (T300) and of C/SiC coupons will be presented as well as a model that predicts the oxidation patterns and kinetics of carbon fiber tows oxidizing in a nonreactive matrix.

  19. Graphite coated PVA fibers as the reinforcement for cementitious composites

    Science.gov (United States)

    Zhang, Yunhua; Zhang, Zhipeng; Liu, Zhichao

    2018-02-01

    A new preconditioning method was developed to PVA fibers as the reinforcement in cement-based materials. Virgin PVA fibers exhibits limited adhesion to graphite powders due to the presence of oil spots on the surface. Mixing PVA fibers with a moderately concentrated KMnO4-H2SO4 solution can efficiently remove the oil spots by oxidation without creating extra precipitate (MnO2) associated with the reduction reaction. This enhances the coating of graphite powders onto fiber surface and improves the mechanical properties of PVA fiber reinforced concrete (PVA-FRC). Graphite powders yields better fiber distribution in the matrix and reduces the fiber-matrix bonding, which is beneficial in uniformly distributing the stress among embedded fibers and creating steady generation and propagation of tight microcracks. This is evidenced by the significantly enhanced strain hardening behavior and improved flexural strength and toughness.

  20. AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Schjerling, Peter; Viollet, Benoit

    2008-01-01

    into muscle by certain stimuli. In contrast, no clear function has yet been determined for alpha(1) AMPK in skeletal muscle, possibly due to alpha-AMPK isoform signaling redundancy. By applying low-intensity twitch-contraction and H(2)O(2) stimulation to activate alpha(1) AMPK, but not alpha(2) AMPK......, in wildtype and alpha-AMPK transgenic mouse muscles, this study aimed to define conditions where alpha(1) AMPK is required to increase muscle glucose uptake. METHODOLOGY/PRINCIPAL FINDINGS: Following stimulation with H(2)O(2) (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2......-deoxyglucose uptake were measured in incubated soleus muscles from wildtype and muscle-specific kinase-dead AMPK (KD), alpha(1) AMPK knockout or alpha(2) AMPK knockout mice. H(2)O(2) increased the activity of both alpha(1) and alpha(2) AMPK in addition to Akt phosphorylation, and H(2)O(2)-stimulated glucose...

  1. The Major Outer Membrane Protein MopB Is Required for Twitching Movement and Affects Biofilm Formation and Virulence in Two Xylella fastidiosa strains.

    Science.gov (United States)

    Chen, Hongyu; Kandel, Prem P; Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo

    2017-11-01

    MopB is a major outer membrane protein (OMP) in Xylella fastidiosa, a bacterial plant pathogen that causes losses on many economically important crops. Based on in silico analysis, the uncharacterized MopB protein of X. fastidiosa contains a β-barrel structure with an OmpA-like domain and a predicted calcium-binding motif. Here, MopB function was studied by mutational analysis taking advantage of the natural competence of X. fastidiosa. Mutants of mopB were constructed in two different X. fastidiosa strains, the type strain Temecula and the more virulent WM1-1. Deletion of the mopB gene impaired cell-to-cell aggregation, surface attachment, and biofilm formation in both strains. Interestingly, mopB deletion completely abolished twitching motility. Electron microscopy of the bacterial cell surface revealed that mopB deletion eliminated type IV and type I pili formation, potentially caused by destabilization of the outer membrane. Both mopB mutants showed reduced virulence using tobacco (Nicotiana tabacum) as a host under greenhouse conditions. These results suggest that MopB has pleiotropic functions in biofilm formation and twitching motility and is important for virulence of X. fastidiosa.

  2. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.

    Science.gov (United States)

    Andruchov, Oleg; Galler, Stefan

    2008-03-01

    This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

  3. The age related slow and fast contributions to the overall changes in tibialis anterior contractile features disclosed by maximal single twitch scan.

    Science.gov (United States)

    Orizio, Claudio; Cogliati, Marta; Bissolotti, Luciano; Diemont, Bertrand; Gobbo, Massimiliano; Celichowski, Jan

    2016-01-01

    This work aimed to verify if maximal electrically evoked single twitch (STmax) scan discloses the relative functional weight of fast and slow small bundles of fibres (SBF) in determining the contractile features of tibialis anterior (TA) with ageing. SBFs were recruited by TA main motor point stimulation through 60 increasing levels of stimulation (LS): 20 stimuli at 2Hz for each LS. The lowest and highest LS provided the least ST and STmax, respectively. The scanned STmax was decomposed into individual SBF STs. They were identified when twitches from adjacent LS were significantly different and then subtracted from each other. Nine young (Y) and eleven old (O) subjects were investigated. Contraction time (CT) and STarea/STpeak (A/PT) were calculated per each SBF ST. 143 and 155 SBF STs were obtained in Y and O, respectively. Y: CT and A/PT range: 45-105ms and 67-183mNs/mN, respectively. Literature data set TA fast fibres at 34% so, from the arrays of CT and A/PT, 65ms and 100mNs/mN were identified as the upper limit for SBF fast ST classification. O: no SBF ST could be classified as fast. STmax scan reveals age-related changes in the relative contribution of fast and slow SBFs to the overall muscle mechanics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. An in vivo model for studying the dynamics of intracellular free calcium changes in slow- and fast-twitch muscle fibres.

    Science.gov (United States)

    Bátkai, S; Rácz, I B; Ivanics, T; Tóth, A; Hamar, J; Slaaf, D W; Reneman, R S; Ligeti, L

    1999-10-01

    The understanding of the regulation of the free cytosolic [Ca2+] ([Ca2+]i) in skeletal muscle is hampered by the lack of techniques for quantifying free [Ca2+]i in muscle fibres in situ. We describe a model for studying the dynamics of free [Ca2+]i in the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus (SOL) muscles of the rat in vivo using caffeine superfusion to induce changes in free [Ca2+]i. We assumed that differences in sensitivity between the two muscle types for this substance reflect differences in intracellular Ca2+ handling in the fibres of which these muscles consist. The Indo-1 ratiometric method, using intravital microscopy with incident light, was adapted to measure free [Ca2+]i in vivo. Fluorescence images were collected by means of a digital camera. Caffeine superfusion at 37 degrees C for 2 min, at concentrations of 1, 2, 5, 10 or 20 mmol/l, induced a concentration-dependent increase in free [Ca2+]i and revealed differences in caffeine sensitivity between the muscle types, with the SOL being more sensitive. In a separate set of experiments the contracture threshold, as assessed by topical application of caffeine, was determined in both muscle types. EDL had a higher threshold for developing contracture than SOL. These finding are in agreement with previous in vitro studies. We may conclude that the dynamics of free [Ca2+]i can be assessed reliably in intact mammalian muscle in vivo.

  5. Construction of fiber-shaped silver oxide/tantalum nitride p-n heterojunctions as highly efficient visible-light-driven photocatalysts.

    Science.gov (United States)

    Li, Shijie; Hu, Shiwei; Xu, Kaibing; Jiang, Wei; Liu, Yu; Leng, Zhe; Liu, Jianshe

    2017-10-15

    Constructing novel and efficient p-n heterojunction photocatalysts has stimulated great interest. Herein, we report the design and synthesis of fiber-shaped Ag 2 O/Ta 3 N 5 p-n heterojunctions as a kind of efficient photocatalysts. Ta 3 N 5 nanofibers were prepared by an electrospinning-calcination-nitridation method, and then the in-situ anchoring of Ag 2 O on their surfaces was realized by a facile deposition method. The resulting Ag 2 O/Ta 3 N 5 heterojunctions were comprised of porous Ta 3 N 5 nanofibers (diameter: ∼150nm) and Ag 2 O nanoparticles (size: ∼12nm). The photocatalytic activity of these heterojunctions were studied by decomposing rhodamine B (RhB) dye and tetracycline (TC) antibiotic under visible light (λ>400nm). In all the samples, the heterojunction with Ag 2 O/Ta 3 N 5 molar ratio of 0.2/1 displays the best activity. It is found that a synergistic effect contributes to the effective suppression of charges recombination between Ta 3 N 5 and Ag 2 O, leading to an enhanced photocatalytic activity with good stability. The photogenerated holes (h + ) and superoxide radicals (O 2 - ) play dominant roles in the photocatalytic process. These p-n heterojunctions will have great potential for environmental remediation because of the facile preparation process and exceptional photocatalytic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  7. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.

    Science.gov (United States)

    Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk

    2015-11-09

    Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.

  8. Fabrication and characterization of special microstructured fibers

    Science.gov (United States)

    Kobelke, J.; Schuster, K.; Schwuchow, A.; Litzkendorf, D.; Spittel, R.; Kirchhof, J.; Bartelt, H.

    2011-05-01

    Microstructured optical fibers (MOFs) as a novel type of light guiding media typically combine structural elements with very different chemical and optical behavior, e.g. silica - air, silica - high refractive index glasses. The applicative potential is very manifold: devices for telecommunication, nonlinear optics, sensing devices, fiber based gas lasers, etc. We report about preparation and characterization of selected total internal reflection (TIR) guiding MOFs: Air Clad Fiber, Suspended Core Fiber and heavy metal oxide (HMO) glass core MOFs. We fabricated Air Clad Fibers with extreme air fraction. The bridge width of about 0.13 μm corresponds to a numerical aperture (NA) of about 0.6. Suspended core fibers for evanescent sensing were prepared by pressurized drawing of arrangements of three and four capillaries. By inflating the cavities the NA was increased up to 0.68. Material combined MOFs were prepared for nonlinear application (e.g. supercontinuum generation) with lanthanum aluminum silicate glass core. Thermochemical and optical behaviors of high nonlinear core glass candidates were investigated for alumina concentration up to 20 mol% and lanthanum oxide concentration up to 24 mol% in silica matrix. The manufactured HMO glass core MOF with a La2O3 concentration of 10 mol% shows a similar background loss level like the unstructured HMO glass fiber about 1 dB/m.

  9. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Hua [Key Laboratory for Liquid phase chemical oxidation Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Wang Chengguo, E-mail: sduwangchg@gmail.com [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Zhang Shan; Lin Xue [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. Black-Right-Pointing-Pointer Carbon fiber surface functional groups were analyzed by LRS and XPS. Black-Right-Pointing-Pointer Proper treatment of carbon fiber can prove an effective way to increase composite's performance. Black-Right-Pointing-Pointer Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H{sub 2}SO{sub 4}, KClO{sub 3} and silane coupling agent ({gamma}-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor

  10. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    International Nuclear Information System (INIS)

    Yuan Hua; Wang Chengguo; Zhang Shan; Lin Xue

    2012-01-01

    Highlights: ► We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. ► Carbon fiber surface functional groups were analyzed by LRS and XPS. ► Proper treatment of carbon fiber can prove an effective way to increase composite's performance. ► Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H 2 SO 4 , KClO 3 and silane coupling agent (γ-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor performance of the resulting fiber/resin composites.

  11. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    International Nuclear Information System (INIS)

    Liu Ling; Zhao Yaomin; Jia Nengqin; Zhou Qin; Zhao Chongjun; Yan Manming; Jiang Zhiyu

    2006-01-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers

  12. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Liu [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Yaomin, Zhao [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Nengqin, Jia [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Qin, Zhou [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Chongjun, Zhao [Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800 (China); Manming, Yan [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Zhiyu, Jiang [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2006-05-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers.

  13. β2-Adrenergic Receptor Activation Suppresses the Rat Phenethylamine Hallucinogen-Induced Head Twitch Response: Hallucinogen-Induced Excitatory Post-synaptic Potentials as a Potential Substrate

    Science.gov (United States)

    Marek, Gerard J.; Ramos, Brian P.

    2018-01-01

    5-Hydroxytryptamine2A (5-HT2A) receptors are enriched in layers I and Va of the rat prefrontal cortex and neocortex and their activation increases the frequency of glutamatergic excitatory post-synaptic potentials/currents (EPSP/Cs) onto layer V pyramidal cells. A number of other G-protein coupled receptors (GPCRs) are also enriched in cortical layers I and Va and either induce (α1-adrenergic and orexin2) or suppress (metabotropic glutamate2 [mGlu2], adenosine A1, μ-opioid) both 5-HT-induced EPSCs and head twitches or head shakes induced by the phenethylamine hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Another neurotransmitter receptor also localized to apparent thalamocortical afferents to layers I and Va of the rat prefrontal cortex and neocortex is the β2-adrenergic receptor. Therefore, we conducted preliminary electrophysiological experiments with rat brain slices examining the effects of epinephrine on electrically-evoked EPSPs following bath application of DOI (3 μM). Epinephrine (0.3–10 μM) suppressed the late EPSPs produced by electrical stimulation and DOI. The selective β2-adrenergic receptor antagonist ICI-118,551 (300 nM) resulted in a rightward shift of the epinephrine concentration-response relationship. We also tested the selective β2-adrenergic receptor agonist clenbuterol and the antagonist ICI-118,551 on DOI-induced head twitches. Clenbuterol (0.3–3 mg/kg, i.p.) suppressed DOI (1.25 mg/kg, i.p.)-induced head twitches. This clenbuterol effect appeared to be at least partially reversed by the selective β2-adrenergic receptor antagonist ICI-118,553 (0.01–1 mg/kg, i.p.), with significant reversal at doses of 0.1 and 1 mg/kg. Thus, β2-adrenergic receptor activation reverses the effects of phenethylamine hallucinogens in the rat prefrontal cortex. While Gi/Go-coupled GPCRs have previously been shown to suppress both the electrophysiological and behavioral effects of 5-HT2A receptor activation in the mPFC, the present work appears

  14. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    Science.gov (United States)

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  15. Metal-coated optical fibers for high temperature sensing applications

    Science.gov (United States)

    Fidelus, Janusz D.; Wysokiński, Karol; Stańczyk, Tomasz; Kołakowska, Agnieszka; Nasiłowski, Piotr; Lipiński, Stanisław; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2017-10-01

    An novel low-temperature method was used to enhance the corrosion resistance of copper or gold-coated optical fibers. A characterization of the elaborated materials and reports on selected studies such as cyclic temperature tests together with tensile tests is presented. Gold-coated optical fibers are proposed as a component of optical fiber sensors working in oxidizing atmospheres under temperatures exceeding 900 °C.

  16. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  17. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  18. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    . Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light...

  19. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  20. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  1. Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Robson Fleming Ribeiro

    2015-12-01

    Full Text Available A low cost and environmental friendly extrusion process of the Polyacrylonitrile (PAN polymer was viabilized by using the 1,2,3-propanetriol (glycerol as a plasticizer. The characterization of the fibers obtained by this process was the object of study in the present work. The PAN fibers were heat treated in the range of 200 °C to 300 °C, which is the temperature range related to the stabilization/oxidation step. This is a limiting phase during the carbon fiber processing. The characterization of the fibers was made using infrared spectroscopy, thermal analysis and microscopy. TGA revealed that the degradation of the extruded PAN co-VA fibers between 250 °C and 350 °C, corresponded to a 9% weight loss to samples analyzed under oxidizing atmosphere and 18% when the samples were analyzed under inert atmosphere. DSC showed that the exothermic reactions on the extruded PAN co-VA fibers under oxidizing synthetic air was broader and the cyclization started at a lower temperature compared under inert atmosphere. Furthermore, FT-IR analysis correlated with thermal anlysis showed that the stabilization/oxidation process of the extruded PAN fiber were coherent with other works that used PAN fibers obtained by other spinning processes.

  2. Surface modification of lignocellulosic fibers using high-frequency ultrasound

    Science.gov (United States)

    Jayant B. Gadhe; Ram B. Gupta; Thomas Elder

    2005-01-01

    Enzymatic and chemical oxidation of fiber surfaces has been reported in the literature as a method for producing medium density fiberboards without using synthetic adhesives. This work focuses on modifying the surface properties of wood fibers by the generation of free radicals using high-frequency ultrasound. A sonochemical reactor operating at 610 kHz is used to...

  3. Degradabilidade da matéria seca e da fração fibrosa da cana de açúcar tratada com óxido de cálcio Dry matter and fiber fraction degradability of sugar cane treated with calcium oxide

    Directory of Open Access Journals (Sweden)

    Claithiane Oliveira Soares

    2011-06-01

    Full Text Available Objetivou-se avaliar os parâmetros de degradação ruminal da matéria seca, da fibra em detergente neutro e fibra em detergente ácido da cana de açúcar tratada com óxido de cálcio nas doses zero, 1; 2 e 3% (com base na matéria natural. Foram incubados no rúmen de três novilhos por períodos de zero; seis; 12; 24; 48; 72; 96; 120 e 144 horas, sacos de náilon contendo amostras de 2,5g da cana de açúcar tratada com óxido de cálcio. Verificou-se degradabilidade potencial de 80,7% na matéria seca para cana de açúcar tratada com 3% de óxido de cálcio. Os resultados da fração degradável para fibra em detergente neutro e para fibra em detergente ácido no tratamento com 3% de óxido de cálcio foram de 59,7 e 59,9%, respectivamente, enquanto, a cana sem aditivo, apresentou valores de degradação de 44,5% para fibra em detergente neutro e de 39,5% para fibra em detergente ácido. Houve incremento nos parâmetros da degradabilidade da matéria seca da fração “a” de 37,5 vs 46,8% da cana sem aditivo para a cana de açúcar com a dose de 3% de óxido de cálcio. Para a degradabilidade da fibra em detergente ácido foi observado efeito semelhante ao da degradabilidade da fibra em detergente neutro, com valores da fração potencialmente degradável “b” que corresponderam a 64,2 e 68,7%, respectivamente, na dose de 3% de óxido de cálcio.The objective of this work was to evaluate the parameters of ruminal degradation of dry matter, neutral detergent fiber and acid detergent fiber of the sugar cane treated with calcium oxide in the doses of 0; 1; 2 and 3 % (with basis of the natural matter. The samples were incubated in the rumen of three steers for 0; 6; 12; 24; 48; 72; 96; 120 and 144 hours, on nylon bags containing 2.5g of sugar cane treated with calcium oxide. There was 80.7% of potential degradability in dry matter for sugar cane treated with 3% calcium oxide. The results for degradable fraction for neutral detergent

  4. Native lignin for bonding fiber boards - evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica)

    DEFF Research Database (Denmark)

    Felby, Claus; Thygesen, Lisbeth Garbrecht; Sanadi, Anand

    2004-01-01

    indicate that lignin extractives are precipitated on the fiber surfaces. The improved bonding may be related to several factors, linked to a more lignin rich fiber surface, such as surface molecular entanglements and covalent bonding between fibers through cross-linking of radicals. (C) 2004 Published......The auto-adhesion of beech wood (Fagus sylvatica) fibers can be enhanced by a pretreatment of the fibers with a phenol oxidase enzyme. The mechanism of enzymatic catalyzed bonding is linked to the generation of stable radicals in lignin by oxidation. Fiberboards made from laccase-treated fibers...

  5. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles.

    Science.gov (United States)

    Martelly, I; Soulet, L; Bonnavaud, S; Cebrian, J; Gautron, J; Barritault, D

    2000-11-01

    In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.

  6. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  7. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  8. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    Science.gov (United States)

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  9. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  10. Reappraisal of VAChT-Cre: Preference in slow motor neurons innervating type I or IIa muscle fibers.

    Science.gov (United States)

    Misawa, Hidemi; Inomata, Daijiro; Kikuchi, Miseri; Maruyama, Sae; Moriwaki, Yasuhiro; Okuda, Takashi; Nukina, Nobuyuki; Yamanaka, Tomoyuki

    2016-11-01

    VAChT-Cre.Fast and VAChT-Cre.Slow mice selectively express Cre recombinase in approximately one half of postnatal somatic motor neurons. The mouse lines have been used in various studies with selective genetic modifications in adult motor neurons. In the present study, we crossed VAChT-Cre lines with a reporter line, CAG-Syp/tdTomato, in which synaptophysin-tdTomato fusion proteins are efficiently sorted to axon terminals, making it possible to label both cell bodies and axon terminals of motor neurons. In the mice, Syp/tdTomato fluorescence preferentially co-localized with osteopontin, a recently discovered motor neuron marker for slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) types. The fluorescence did not preferentially co-localize with matrix metalloproteinase-9, a marker for fast-twitch fatigable (FF) motor neurons. In the neuromuscular junctions, Syp/tdTomato fluorescence was detected mainly in motor nerve terminals that innervate type I or IIa muscle fibers. These results suggest that the VAChT-Cre lines are Cre-drivers that have selectivity in S and FR motor neurons. In order to avoid confusion, we have changed the mouse line names from VAChT-Cre.Fast and VAChT-Cre.Slow to VAChT-Cre.Early and VAChT-Cre.Late, respectively. The mouse lines will be useful tools to study slow-type motor neurons, in relation to physiology and pathology. © 2016 Wiley Periodicals, Inc.

  11. Fabrication of YBa2Cu3O7-δ superconducting fibers by the sol-gel method

    International Nuclear Information System (INIS)

    Umeda, Tetsu; Kozuka, Hiromitsu; Sakka, Sumio

    1988-01-01

    High-T c superconducting oxide fibers were fabricated by the sol-gel method. An aqueous solution of metal acetates was concentrated to form a viscous sol, from which gel fibers were spun. The gel fibers, 5 to 1,000 μm in diameter, were converted to ceramic fibers by heating to 900 degree C. The fired fibers (T c (onset) of 94 K and T c (end) of 62.2 K) were rough and had porous microstructures

  12. Hansen solubility parameters for a carbon fiber/epoxy composite

    DEFF Research Database (Denmark)

    Launay, Helene; Hansen, Charles M.; Almdal, Kristoffer

    2007-01-01

    In this study, the physical affinity between an epoxy matrix and oxidized, unsized carbon fibers has been evaluated using Hansen solubility (cohesion) parameters (HSP). A strong physical compatibility has been shown, since their respective HSP are close. The use of a glassy carbon substrate...... as a model for unsized carbon fiber has been demonstrated as appropriate for the study of interactions between the materials in composite carbon fiber-epoxy systems. The HSP of glassy carbon are similar to those of carbon fibers and epoxy matrix. (C) 2007 Elsevier Ltd. All rights reserved....

  13. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  14. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  15. Nanostructured sapphire optical fiber for sensing in harsh environments

    Science.gov (United States)

    Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry

    2017-05-01

    We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.

  16. Fiber optics in adverse environments

    International Nuclear Information System (INIS)

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations

  17. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  18. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  19. Shaped fiber composites

    Science.gov (United States)

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  20. Advances in Fiber Lasers

    National Research Council Canada - National Science Library

    Morse, T

    1999-01-01

    Most of the time of this contract has been devoted toward improvements in optical fiber lasers and toward gathering experience to improve our program in high power, cladding pumped optical fiber lasers...

  1. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  2. Superlattice Microstructured Optical Fiber

    Science.gov (United States)

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  3. High-fiber foods

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000193.htm High-fiber foods To use the sharing features on this page, ... Read food labels carefully to see how much fiber they have. Choose foods that have higher amounts of fiber, such as ...

  4. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  5. Fiber Singular Optics

    OpenAIRE

    A. V. Volyar

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin – orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  6. Interfacial enhancement of carbon fiber/nylon 12 composites by grafting nylon 6 to the surface of carbon fiber

    Science.gov (United States)

    Hui, Chen; Qingyu, Cai; Jing, Wu; Xiaohong, Xia; Hongbo, Liu; Zhanjun, Luo

    2018-05-01

    Nylon 6 (PA6) grafted onto carbon fiber (CF) after chemical oxidation treatment was in an attempt to reinforce the mechanical properties of carbon fiber composites. Scanning electronic microscopy (SEM), Fourier transform infrared analysis (FT-IR), X-ray photoelectron spectroscope (XPS) and thermogravimetric analysis (TG) were selected to characterize carbon fibers with different surface treated. Experimental results showed that PA6 was grafted uniformly on the fiber surface through the anionic polymerization. A large number of functional groups were introduced to the fiber surface and the surface roughness was increased. After grafting PA6 on the oxidized carbon fibers, it played an important role on improving the interfacial adhesion between the fibers and the matrix by improving PA12 wettability, increasing chemical bonding and mechanical interlocking. Compared with the desized CF composites, the tensile strength of PA6-CF/PA12 composites was increased by 30.8% from 53.9 MPa to 70.2 MPa. All results indicated that grafting PA6 onto carbon fiber surface was an effective method to enhance the mechanical strength of carbon fiber/nylon 12 composites.

  7. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Halder, A.; Chattopadhyay, R.; Majumder, S.; Paul, M. C.; Das, S.; Bhadra, S. K., E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India); Bysakh, S.; Unnikrishnan, M. [Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India)

    2015-01-05

    An efficient visible fluorescent optical fiber embedded with silver nanoclusters (Ag-NCs) having size ∼1 nm, uniformly distributed in alumina-silica composite core glass, is reported. Fibers are fabricated in a repetitive controlled way through modified chemical vapour deposition process associated with solution doping technique. Fibers are drawn from the transparent preforms by conventional fiber drawing process. Structural characteristics of the doped fibers are studied using transmission electron microscopy and electron probe micro analysis. The oxidation state of Ag within Ag-NCs is investigated by X-ray photo electron spectroscopy. The observed significant fluorescence of the metal clusters in fabricated fibers is correlated with electronic model. The experimentally observed size dependent absorption of the metal clusters in fabricated fibers is explained with the help of reported results calculated by ab-initio density functional theory. These optical fibers may open up an opportunity of realizing tunable wavelength fiber laser without the help of rare earth elements.

  8. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    Science.gov (United States)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  9. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  10. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  11. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  12. Effects of concurrent training on oxidative capacity in rat gastrocnemius muscle

    NARCIS (Netherlands)

    Furrer, R.; Bravenboer, N.; Kos, D.; Lips, P.; de Haan, A.; Jaspers, R.T.

    2013-01-01

    PURPOSE: Training for improvement of oxidative capacity of muscle fibers may be attenuated when concurrently training for peak power. However, because of fiber type-specific recruitment, such attenuation may only account for high-oxidative muscle fibers. Here, we investigate the effects of

  13. Carbon fiber content measurement in composite

    Science.gov (United States)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  14. Electrically and hybrid-induced muscle activations: effects of muscle size and fiber type

    Directory of Open Access Journals (Sweden)

    Kelly Stratton

    2016-07-01

    Full Text Available The effect of three electrical stimulation (ES frequencies (10, 35, and 50 Hz on two muscle groups with different proportions of fast and slow twitch fibers (abductor pollicis brevis (APB and vastus lateralis (VL was explored. We evaluated the acute muscles’ responses individually and during hybrid activations (ES superimposed by voluntary activations. Surface electromyography (sEMG and force measurements were evaluated as outcomes. Ten healthy adults (mean age: 24.4 ± 2.5 years participated after signing an informed consent form approved by the university Institutional Review Board. Protocols were developed to: 1 compare EMG activities during each frequency for each muscle when generating 25% Maximum Voluntary Contraction (MVC force, and 2 compare EMG activities during each frequency when additional voluntary activation was superimposed over ES-induced 25% MVC to reach 50% and 75% MVC. Empirical mode decomposition (EMD was utilized to separate ES artifacts from voluntary muscle activation. For both muscles, higher stimulation frequency (35 and 50Hz induced higher electrical output detected at 25% of MVC, suggesting more recruitment with higher frequencies. Hybrid activation generated proportionally less electrical activity than ES alone. ES and voluntary activations appear to generate two different modes of muscle recruitment. ES may provoke muscle strength by activating more fatiguing fast acting fibers, but voluntary activation elicits more muscle coordination. Therefore, during the hybrid activation, less electrical activity may be detected due to recruitment of more fatigue-resistant deeper muscle fibers, not reachable by surface EMG.

  15. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles.

    Science.gov (United States)

    Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini

    2015-08-19

    Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.

  16. Swimming, swarming, twitching, and chemotactic responses of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 in the presence of cadmium.

    Science.gov (United States)

    Shamim, Saba; Rehman, Abdul; Qazi, Mahmood Hussain

    2014-04-01

    To use of microorganisms for bioremediation purposes, the study of their motility behavior toward metals is essential. In the present study, Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 were used as cadmium (Cd)-resistant and -sensitive bacteria, respectively, to evaluate the effects of Cd on their motility behaviors. Potassium morpholinopropane sulfonate (MOPS) buffer was used to observe the motility behavior of both isolates. Movement of mt2 was less in MOPS buffer compared with CH34, likely reflecting the mono-flagellated nature of mt2 and the peritrichous nature of CH34. The swimming, swarming, twitching, and chemotaxis behaviors of mt2 were greater in the presence of glucose than that of Cd. mt2 exhibited negative motility behaviors when exposed to Cd, but the opposite effect was seen in CH34. Cd was found to be a chemorepellent for mt2 but a chemoattractant for CH34, suggesting that CH34 is a potential candidate for metal (Cd) bioremediation.

  17. Dysregulated corticostriatal activity in open-field behavior and the head-twitch response induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine.

    Science.gov (United States)

    Rangel-Barajas, Claudia; Estrada-Sánchez, Ana María; Barton, Scott J; Luedtke, Robert R; Rebec, George V

    2017-02-01

    The substituted amphetamine, 2,5-dimethoxy-4-iodoamphetamine (DOI), is a hallucinogen that has been used to model a variety of psychiatric conditions. Here, we studied the effect of DOI on neural activity recorded simultaneously in the primary motor cortex (M1) and dorsal striatum of freely behaving FvB/N mice. DOI significantly decreased the firing rate of individually isolated neurons in M1 and dorsal striatum relative to pre-drug baseline. It also induced a bursting pattern of activity by increasing both the number of spikes within a burst and burst duration. In addition, DOI increased coincident firing between simultaneously recorded neuron pairs within the striatum and between M1 and dorsal striatum. Local field potential (LFP) activity also increased in coherence between M1 and dorsal striatum after DOI in the low frequency gamma band (30-50 Hz), while corticostriatal coherence in delta, theta, alpha, and beta activity decreased. We also assessed corticostriatal LFP activity in relation to the DOI-induced head-twitch response (HTR), a readily identifiable behavior used to assess potential treatments for the conditions it models. The HTR was associated with increased delta and decreased theta power in both M1 and dorsal striatum. Together, our results suggest that DOI dysregulates corticostriatal communication and that the HTR is associated with this dysregulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Immunohistochemical evidence for expression of fast-twitch type sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) in German shepherd dogs with dilated cardiomyopathy myocardium.

    Science.gov (United States)

    Summerfield, Nuala; Peters, Mary E; Hercock, Carol A; Mobasheri, Ali; Young, Iain S

    2010-04-01

    Dilated cardiomyopathy (DCM) is one of the most common acquired canine heart diseases. It is particularly common in large and giant breed dogs. Although a great deal is known about the clinical progression and manifestations of the disease, the underlying cellular and molecular mechanisms remain poorly understood. One widely held belief is that calcium-handling abnormalities are critically involved in the disease process. This study investigates the changes in expression of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) isoforms in DCM myocardium from German shepherd dogs. Affected tissue samples were obtained from German shepherd dogs with DCM, euthanized for intractable congestive heart failure while normal myocardial tissue samples were obtained from German shepherd dogs, euthanized for non-cardiovascular reasons. Tissue microarrays containing normal and DCM myocardium samples were prepared, immunostained with SERCA1 and SERCA2 antibodies and analyzed. We were able to demonstrate, for the first time, that while there is little change in the expression of the cardiac isoform (SERCA2), there is clear expression of the fast-twitch skeletal muscle isoform SERCA1 in the myocardium of dogs diagnosed with DCM. We propose that SERCA1 expression is evidence of a natural adaptive response to the impaired Ca2+ handling thought to occur in German shepherd dogs with DCM and heart failure. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Carbon fiber on polyimide ultra-microelectrodes

    Science.gov (United States)

    Gillis, Winthrop F.; Lissandrello, Charles A.; Shen, Jun; Pearre, Ben W.; Mertiri, Alket; Deku, Felix; Cogan, Stuart; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Otchy, Timothy M.; Gardner, Timothy J.

    2018-02-01

    Objective. Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. Approach. Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. Main results. Spontaneous multiunit activity and stimulation-evoked compound responses with SNR  >10 and  >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. Significance. Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated

  20. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  1. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  2. Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Mengjie; Wang, Shubin; Yu, Yalin; Feng, Qihang; Yang, Jiping; Zhang, Boming

    2017-01-01

    Highlights: • Carboxyl functionalized CF is acquired by simple chemical oxidation method. • These CF have preserved the tensile strength, better electrochemical properties. • The presence of H_3PO_4 prevented the turbostratic carbon from over-oxidization. • There CF can be used as anodes of multifunctional structural battery. • The preservation and improvement is result from the hindered over-oxidization. - Abstract: Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical properties were acquired through a simple chemical oxidation method, and the proposed underlying mechanism was verified. The surface of carboxyl functionalizing carbon fibers is necessary in acquiring functional groups on the surface of carbon fibers to further improve the thermal, electrical or mechanical properties of the fibers. Functionalization should preserve the tensile strength and electrochemical properties of carbon fibers, because the anodes of structural batteries need to have high strength and electrochemical properties. Functionalized with mixed H_2SO_4/HNO_3 considerably reduced the tensile strength of carbon fibers. By contrast, the appearance of H_3PO_4 preserved the tensile strength of functionalized carbon fibers, reduced the dispersion level of tensile strength values, and effectively increased the concentration of functional acid groups on the surface of carbon fibers. The presence of phosphoric acid hindered the over-oxidation of turbostratic carbon, and consequently preserved the tensile strength of carbon fibers. The increased proportion of turbostratic carbon on the surface of carbon fibers concurrently enhanced the electrochemical properties of carbon fibers.

  3. Second generation PMR polyimide/fiber composites

    Science.gov (United States)

    Cavano, P. J.

    1979-01-01

    A second generation polymerization monomeric reactants (PMR) polyimdes matrix system (PMR 2) was characterized in both neat resin and composite form with two different graphite fiber reinforcements. Three different formulated molecular weight levels of laboratory prepared PMR 2 were examined, in addition to a purchased experimental fully formulated PMR 2 precurser solution. Isothermal aging of graphite fibers, neat resin samples and composite specimens in air at 316 C were investigated. Humidity exposures at 65 C and 97 percent relative humidity were conducted for both neat resin and composites for eight day periods. Anaerobic char of neat resin and fire testing of composites were conducted with PMR 15, PMR 2, and an epoxy system. Composites were fire tested on a burner rig developed for this program. Results indicate that neat PMR 2 resins exhibit excellent isothermal resistance and that PMR 2 composite properties appear to be influenced by the thermo-oxidative stability of the reinforcing fiber.

  4. Surface modification of carbon fibers and its effect on the fiber–matrix interaction of UHMWPE based composites

    International Nuclear Information System (INIS)

    Chukov, D.I.; Stepashkin, A.A.; Gorshenkov, M.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.

    2014-01-01

    Highlights: • Both chemical and thermal treatments of UKN 5000 carbon fibers allow one to obtain well-developed surface. • The changes of structure and properties of VMN-4 fibers after both thermal and chemical oxidation are insignificant due to more perfect initial structure of these fibers. • The oxidative treatment of carbon fibers allows one to improve the interfacial interaction in the UHMWPE-based composites. • The oxidative treatment of the fibers allows one to a triple increase of Young’s modulus of the modified fibers reinforced UHMWPE composites. -- Abstract: The PAN-based carbon fibers (CF) were subjected to thermal and chemical oxidation under various conditions. The variation in the surface morphology of carbon fibers after surface treatment was analyzed by scanning electron microscopy (SEM). It was found that the tensile strength of carbon fibers changed after surface modification. The interaction between the fibers and the matrix OF ultra-high molecular weight polyethylene (UHMWPE) was characterized by the Young modulus of produced composites. It was shown that the Young modulus of composites reinforced with modified carbon fibers was significantly higher than that of composites reinforced with non-modified fibers

  5. UiO-66-NH2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Lee, Dennis T; Zhao, Junjie; Oldham, Christopher J; Peterson, Gregory W; Parsons, Gregory N

    2017-12-27

    Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles show promising performance for many future applications. In particular, Zr-based UiO-66-family MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents (CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation mechanism of Zr-based MOFs on different metal oxides and how product performance is affected are not well understood. Herein, we provide new insight into how different inorganic nucleation films (i.e., Al 2 O 3 , ZnO, or TiO 2 ) conformally coated on polypropylene (PP) nonwoven textiles via atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield of UiO-66-NH 2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, we find that TiO 2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate (DMNP) with t 1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. Interestingly, compared to ALD TiO 2 and Al 2 O 3 , ALD ZnO induces a larger MOF yield in solution and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical instability of the ZnO layer under MOF formation condition, leading to Zn 2+ ions that promote further homogeneous MOF growth. Insights presented here improve understanding of compatibility between active MOF materials and substrate surfaces, which we believe will help advanced MOF composite materials for a variety of useful functions.

  6. Fiber optics in SHIVA

    International Nuclear Information System (INIS)

    Severyn, J.; Parker, J.

    1978-01-01

    SHIVA is a twenty arm laser which is controlled with a network of fifty computers, interconnected with digital fiber optic links. Three different fiber optic systems employed on the Shiva laser will be described. Two of the systems are for digital communications, one at 9600 baud and the other at 1 megabaud. The third system uses fiber optics to distribute diagnostic triggers with subnanosecond jitter

  7. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  8. Investigation of passive and active silica-tin oxide nanostructured optical fibers fabricated by " inverse dip-coating " and " powder in tube " method based on the chemical sol-gel process and laser emission

    OpenAIRE

    Granger , Geoffroy; Restoin , Christine; Roy , Philippe; Jamier , Raphaël; Rougier , Sébastien; Duclere , Jean-René; Lecomte , André; Dauliat , Romain; Blondy , Jean-Marc

    2015-01-01

    International audience; This paper presents a study of original nanostructured optical fibers based on the SiO 2-SnO 2-(Yb 3+) system. Two different processes have been developed and compared: the sol-gel chemical method associated to the " inverse dip-coating " (IDC) and the " powder in tube " (PIT) process. The microstructural and optical properties of the fibers are studied according to the concentration of SnO 2. X-Ray Diffraction as well as Transmission Electron Microscopy studies show t...

  9. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  10. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  11. USDA Flax fiber utilization research

    Science.gov (United States)

    The United States is pursuing natural fibers as sustainable, environmentally friendly sources for a variety of industrial applications. Flax (Linum usitatissimum L.) fiber offers many possibilities towards this goal. Research on flax fiber production, processing, and standards development is urgen...

  12. Ultrafine PBI fibers and yarns

    Science.gov (United States)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  13. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle.

    Science.gov (United States)

    Kanzaki, Keita; Watanabe, Daiki; Kuratani, Mai; Yamada, Takashi; Matsunaga, Satoshi; Wada, Masanobu

    2017-02-01

    The aim of this study was to examine the in vivo effects of eccentric contraction (ECC) on calpain-dependent proteolysis of Ca 2+ -regulatory proteins and force production in fast-twitch skeletal muscles. Rat extensor digitorum longus muscles were exposed to 200 repeated ECC in situ and excised immediately [recovery 0 (REC0)] or 3 days [recovery 3 (REC3)] after cessation of ECC. Calpain inhibitor (CI)-treated rats were intraperitoneally injected with MDL-28170 before ECC and during REC3. Tetanic force was markedly reduced at REC0 and remained reduced at REC3. CI treatment ameliorated the ECC-induced force decline but only at REC3. No evidence was found for proteolysis of dihydropyridine receptor (DHPR), junctophilin (JP)1, JP2, ryanodine receptor (RyR), sarcoplasmic reticulum Ca 2+ -ATPase (SERCA)1a, or junctional face protein-45 at REC0. At REC3, ECC resulted in decreases in DHPR, JP1, JP2, RyR, and SERCA1a. CI treatment prevented the decreases in DHPR, JP1, and JP2, whereas it had little effect on RyR and SERCA1a. These findings suggest that DHPR, JP1, and JP2, but not RyR and SERCA1a, undergo calpain-dependent proteolysis in in vivo muscles subjected to ECC and that impaired function of DHPR and/or JP might cause prolonged force deficits with ECC. NEW & NOTEWORTHY Calpain-dependent proteolysis is one of the contributing factors to muscle damage that occurs with eccentric contraction (ECC). It is unclear, however, whether calpains account for proteolysis of Ca 2+ -regulatory proteins in in vivo muscles subjected to ECC. Here, we provide evidence that dihydropyridine receptor and junctophilin, but not ryanodine receptor and sarcoplasmic reticulum Ca 2+ -ATPase, undergo calpain-dependent proteolysis. Copyright © 2017 the American Physiological Society.

  14. Caracterização das fibras musculares do músculo Semitendinosus de bezerros mestiços Angus-Nelore recebendo somatotropina bovina recombinante (rbST até a desmama Characterization of Semitendinosus muscle fibers in pre-weaning Angus-Nellore crossbred calves receiving recombinant bovine somatotropin (rbST

    Directory of Open Access Journals (Sweden)

    Rafael da Costa Cervieri

    2005-06-01

    (217 days: eighteen calves received 1.4 mg/kg of rbST (Boostin® every 14 days and eighteen control calves received saline solution. Muscle samples were taken at 117 trough biopsy and at 217 days old when five animals from each treatment were slaughtered. The rbST-treated calves had greater fast-twich-glycolytic (FG fiber diameter than control ones at 117 days and tended to have great diameter at 217 days. No differences in fast-twich- glycolytic-oxidative (FOG and slow-twich-oxidative (SO diameter and FG, FOG and SO percentage distribution were observed at 117 and 217 days. Despite the rbST treatment, there was a significant enlarge in SO and FOG fibers diameter, a tendency for increase in FG fibers diameter, an increase in SO and reduction in FG percentage distribution from 117 to 217 days. The somatotropin administration caused a greater hypertrophy of the white fast twitch muscle fibers in creep fed bull calves, but did not affect the percentage distribution of semitendinosus muscle fibers.

  15. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  16. Multimode optical fiber

    Science.gov (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  17. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  18. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  19. Ways to Boost Fiber

    Science.gov (United States)

    ... can help to lower cholesterol. Third, it helps prevent constipation and diverticulosis. And fourth, adequate fiber from food ... is similar to a new sponge; it needs water to plump up pass smoothly. If you ... or constipation. Before you reach for the fiber supplements, consider ...

  20. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  1. Facility for continuous CVD coating of ceramic fibers

    International Nuclear Information System (INIS)

    Moore, A.W.

    1992-01-01

    The development of new and improved ceramic fibers has spurred the development and application of ceramic composites with improved strength, strength/weight ratio, toughness, and durability at increasingly high temperatures. For many systems, the ceramic fibers can be used without modification because their properties are adequate for the chosen application. However, in order to take maximum advantage of the fiber properties, it is often necessary to coat the ceramic fibers with materials of different composition and properties. Examples include (1) boron nitride coatings on a ceramic fiber, such as Nicalon silicon carbide, to prevent reaction with the ceramic matrix during fabrication and to enhance fiber pullout and increase toughness when the ceramic composite is subjected to stress; (2) boron nitride coatings on ceramic yarns, such as Nicalon for use as thermal insulation panels in an aerodynamic environment, to reduce abrasion of the Nicalon and to inhibit the oxidation of free carbon contained within the Nicalon; and (3) ceramic coatings on carbon yarns and carbon-carbon composites to permit use of these high-strength, high-temperature materials in oxidizing environments at very high temperatures. This paper describes a pilot-plant-sized CVD facility for continuous coating of ceramic fibers and some of the results obtained so far with this equipment

  2. Electrospun V2O5 composite fibers: Synthesis, characterization and ammonia sensing properties

    International Nuclear Information System (INIS)

    Modafferi, V.; Trocino, S.; Donato, A.; Panzera, G.; Neri, G.

    2013-01-01

    In the present work, vanadium oxide (V 2 O 5 ) fibers have been investigated for monitoring ammonia (NH 3 ) at ppb levels in air. A simple sol gel-based electrospinning process has been applied for the synthesis of vanadium oxide/polyvinyl acetate (PVAc) and vanadium oxide/polyvinylpyrrolidone (PVP) composite fibers. Composite fibers doped with platinum (Pt) have been also prepared. The pure and Pt-doped metal oxide phase has been subsequently obtained by removing the polymer binder at high temperature in air. The samples have been widely studied to characterize their morphological and microstructural properties by X-Ray Diffraction, Fourier Transform InfraRed spectroscopy, X-ray Photoelectron Spectroscopy, and Scanning Electron Microscopy investigations. The application of the produced fibers in highly sensitive ammonia resistive sensors has been demonstrated. The influence of the nature of polymer binder and platinum addition on the sensing performances of the V 2 O 5 fibers has been investigated and discussed.V 2 O 5 fibers produced by using PVP as a polymer binder have shown higher sensitivity toward ammonia at ppb concentrations than fibers obtained with PVAc. Pt-doped samples have shown a lower response compared to un-doped samples. - Highlights: • Synthesis of vanadium oxide composite fibers by electrospinning • Physical and chemical characterization of prepared samples • Investigation of the sensing properties to ppb concentrations of ammonia in air

  3. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  4. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  5. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  6. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  7. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  8. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  9. Shape-engineerable composite fibers and their supercapacitor application

    Science.gov (United States)

    Kim, Kang Min; Lee, Jae Ah; Sim, Hyeon Jun; Kim, Kyung-Ah; Jalili, Rouhollah; Spinks, Geoffrey M.; Kim, Seon Jeong

    2016-01-01

    Due to excellent electrical and mechanical properties of carbon nano materials, it is of great interest to fabricate flexible, high conductive, and shape engineered carbon based fibers. As part of these approaches, hollow, twist, ribbon, and other various shapes of carbon based fibers have been researched for various functionality and application. In this paper, we suggest simple and effective method to control the fiber shape. We fabricate the three different shapes of hollow, twisted, and ribbon shaped fibers from wet spun giant graphene oxide (GGO)/single walled-nanotubes (SWNTs)/poly(vinyl alcohol) (PVA) gels. Each shaped fibers exhibit different mechanical properties. The average specific strengthes of the hollow, twist, and ribbon fibers presented here are 126.5, 106.9, and 38.0 MPa while strain are 9.3, 13.5, and 5%, respectively. Especially, the ribbon fiber shows high electrical conductivity (524 +/- 64 S cm-1) and areal capacitance (2.38 mF cm-2).Due to excellent electrical and mechanical properties of carbon nano materials, it is of great interest to fabricate flexible, high conductive, and shape engineered carbon based fibers. As part of these approaches, hollow, twist, ribbon, and other various shapes of carbon based fibers have been researched for various functionality and application. In this paper, we suggest simple and effective method to control the fiber shape. We fabricate the three different shapes of hollow, twisted, and ribbon shaped fibers from wet spun giant graphene oxide (GGO)/single walled-nanotubes (SWNTs)/poly(vinyl alcohol) (PVA) gels. Each shaped fibers exhibit different mechanical properties. The average specific strengthes of the hollow, twist, and ribbon fibers presented here are 126.5, 106.9, and 38.0 MPa while strain are 9.3, 13.5, and 5%, respectively. Especially, the ribbon fiber shows high electrical conductivity (524 +/- 64 S cm-1) and areal capacitance (2.38 mF cm-2). Electronic supplementary information (ESI) available

  10. Influence of thermal treatment on porosity formation on carbon fiber from textile PAN

    Directory of Open Access Journals (Sweden)

    Jossano Saldanha Marcuzzo

    2012-01-01

    Full Text Available Activated carbon fibers (ACFs are known as an excellent adsorbent material due to their particular characteristics such as their high speed adsorption rate and for being easy to handle. The ACFs are commercially manufactured from carbon fibers (CF which receive an additional activation process and can be produced from celluloses, phenolic resin, pitch and Polyacrylonitrile (PAN. In the present work, the oxidized 5.0 dtex textile PAN fiber was carbonized to CFs formation. During the carbonization process in different heating rates, the topographic features changes on fibers were monitored in order to determine the best carbonization condition for CFs production to be used as raw material for ACF. Different heating rates and maximum temperature of treatment were tested and the results indicated that it is possible to produce poorly activated carbon fiber, directly from oxidized textile PAN fiber, by one single step production process.

  11. Influence of thermal treatment on porosity formation on carbon fiber from textile PAN

    Directory of Open Access Journals (Sweden)

    Jossano Saldanha Marcuzzo

    2013-02-01

    Full Text Available Activated carbon fibers (ACFs are known as an excellent adsorbent material due to their particular characteristics such as their high speed adsorption rate and for being easy to handle. The ACFs are commercially manufactured from carbon fibers (CF which receive an additional activation process and can be produced from celluloses, phenolic resin, pitch and Polyacrylonitrile (PAN. In the present work, the oxidized 5.0 dtex textile PAN fiber was carbonized to CFs formation. During the carbonization process in different heating rates, the topographic features changes on fibers were monitored in order to determine the best carbonization condition for CFs production to be used as raw material for ACF. Different heating rates and maximum temperature of treatment were tested and the results indicated that it is possible to produce poorly activated carbon fiber, directly from oxidized textile PAN fiber, by one single step production process.

  12. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    Science.gov (United States)

    Barjasteh, Ehsan

    New applications of fiber-reinforced polymer composites (FRPCs) are arising in non-traditional sectors of industry, such as civil infrastructure, automotive, and power distribution. For example, composites are being used in place of steel to support high-voltage overhead conductors. In this application, conductive strands of aluminum are wrapped around a solid composite rod comprised of unidirectional carbon and glass fibers in an epoxy matrix, which is commercially called ACCC conductor. Composite-core conductors such as these are expected to eventually replace conventional steel-reinforced conductors because of the reduced sag at high temperatures, lower weight, higher ampacity, and reduced line losses. Despite the considerable advantages in mechanical performance, long-term durability of composite conductors is a major concern, as overhead conductors are expected to retain properties (with minimal maintenance) over a service life that spans multiple decades. These concerns stem from the uncertain effects of long-term environmental exposure, which includes temperature, moisture, radiation, and aggressive chemicals, all of which can be exacerbated by cyclic loads. In general, the mechanical and physical properties of polymer composites are adversely affected by such environmental factors. Consequently, the ability to forecast changes in material properties as a function of environmental exposure, particularly bulk mechanical properties, which are affected by the integrity of fiber-matrix interfaces, is required to design for extended service lives. Polymer composites are susceptible to oxidative degradation at high temperatures approaching but not quite reaching the glass transition temperature ( Tg). Although the fibers are stable at such temperatures, the matrix and especially the fiber-matrix interface can undergo degradation that affects the physical and mechanical properties of the structure over time. Therefore, as a first step, the thermal aging of an

  13. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study.

    Science.gov (United States)

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Kinouchi, Nao; Kawakami, Emi; Tanne, Kazuo; Langenbach, Geerling E J; Tanaka, Eiji

    2010-06-01

    The development of the craniofacial system occurs, among other reasons, as a response to functional needs. In particular, the deficiency of the proper masticatory stimulus affects the growth. The purpose of this study was to relate alterations of muscle activity during postnatal development to adaptational changes in the muscle fibers. Fourteen 21-day-old Wistar strain male rats were randomly divided into two groups and fed on either a solid (hard-diet group) or a powder (soft-diet group) diet for 63 days. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time), the total burst number and their average length exceeding specified levels of the peak activity (5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of fibers by means of immunohistochemical staining and their cross-sectional area was measured. All muscle fibers were identified as slow type I and fast type IIA, IIX or IIB (respectively, with increasing twitch contraction speed and fatigability). At lower activity levels (exceeding 5% of the peak activity), the duty time of the anterior belly of the digastric muscle was significantly higher in the soft-diet group than in the hard-diet group (P fast transition of muscle fiber was shown in only the superficial masseter muscle. Therefore, the reduction in the amount of powerful muscle contractions could be important for the slow-to-fast transition of the myosin heavy chain isoform in muscle fibers.

  14. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fiber Pulling Apparatus

    Science.gov (United States)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1998-01-01

    The fiber optics industry has grown into a multi-billion marketplace that will continue to grow into the 21st century. Optical fiber communications is currently dominated by silica glass technology. Successful efforts to improve upon the low loss transmission characteristics of silica fibers have propelled the technology into the forefront of the communications industry. However, reaching the theoretical transmission capability of silica fiber through improved processing has still left a few application areas in which other fiber systems can provide an influential role due to specific characteristics of high theoretical transmission in the 2 - 3 micron wavelength region. One of the other major materials used for optical fibers is the systems based upon Heavy Metal Fluoride Glass (HMFG). Commercial interest is driven primarily by the potential for low loss repeaterless infrared fibers. An example of the major communications marketplace which would benefit from the long distance repeaterless capability of infrared fibers is the submarine cables which link the continents. When considering commercial interests, optical fiber systems provide a healthy industrial position which continues to expand. Major investments in the systems used for optical fiber communications have continued to increase each year and are predicted to continue well into the next century. Estimates of 8.5% compounded annually are predicted through 1999 for the North American market and 1 1 % worldwide. The growth for the optical fiber cable itself is expected to continue between 44 and 50 per cent of the optical fiber communications budget through 1999. The total budget in 1999 world-wide is expected to be in the neighborhood of $9 billion. Another survey predicts that long haul telecommunications represents 15% of a world-wide fiber optics market in 1998. The actual amount allotted to cable was not specified. However, another market research had predicted that the cable costs alone represents more

  16. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  17. Production process of a new cellulosic fiber with antimicrobial properties.

    Science.gov (United States)

    Zikeli, Stefan

    2006-01-01

    The Lyocell process (system: cellulose-water-N-methylmorpholine oxide) of Zimmer AG offers special advantages for the production of cellulose fibers. The process excels by dissolving the most diverse cellulose types as these are optimally adjusted to the process by applying different pretreatment methods. Based on this stable process, Zimmer AG's objective is to impart to the Lyocell fiber additional value to improve quality of life and thus to tap new markets for the product. Thanks to the specific incorporation of seaweed, the process allows to produce cellulose Lyocell fibers with additional and new features. They are activated in a further step - by specific charging with metal ions - in order to obtain antibacterial properties. The favorable textile properties of fibers produced by the Lyocell process are not adversely affected by the incorporation of seaweed material or by activation to obtain an antibacterial fiber so that current textile products can be made from the fibers thus produced. The antibacterial effect is achieved by metal ion activation of the Lyocell fibers with incorporated seaweed, which contrasts with the antibacterial fibers known so far. Antibacterial fibers produced by conventional methods are in part only surface finished with antibacterially active chemicals or else they are produced by incorporating organic substances with antibacterial and fungicidal effects. Being made from cellulose, the antibacterial Lyocell fiber Sea Cell Active as the basis for quality textiles exhibits a special wear comfort compared to synthetic fibers with antibacterial properties and effects. This justifies the conclusion that the Zimmer Lyocell process provides genuine value added and that it is a springboard for further applications.

  18. Optical fiber spectrophotometer

    International Nuclear Information System (INIS)

    Zhuang Weixin; Tian Guocheng; Ye Guoan; Zhou Zhihong; Cheng Weiwei; Huang Lifeng; Liu Suying; Tang Yanji; Hu Jingxin; Zhao Yonggang

    1998-12-01

    A method called 'Two Arm's Photo out and Electricity Send-back' is introduced. UV-365 UV/VIS/NIR spectrophotometer has been reequipped by this way with 5 meters long optical fiber. Another method called 'One Arm's Photo out and Photo Send-back' is also introduced. λ 19 UV/VIS/NIR spectrophotometer has been reequipped by this way with 10 meters long optical fiber. Optical fiber spectrophotometer can work as its main set. So it is particularly applicable to radio activity work

  19. Chemistry Research of Optical Fibers.

    Science.gov (United States)

    1982-09-27

    BROADENING IN OPTICAL FIBERS Herbert B. Rosenstock* Naval Research Laboratory Washington, DC 20375 ABSTRACT A light pulse transmitted through a fiber...Marcatili, Marcuse , and Personick, "Dispersion Properties of Fibers" (Ch. 4 in "Optical Fiber Telecommunications," S. E. Miller and A. C. Chynoweth, eds

  20. Characterization of electrospun lignin based carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri [School of Engineering, Thornbrough Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada); Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, N1G 2W1, Ontario (Canada)

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  1. Characterization of electrospun lignin based carbon fibers

    International Nuclear Information System (INIS)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-01-01

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 – 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5 µm and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31 W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems

  2. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat.

    Science.gov (United States)

    Murphy, Robyn M; Larkins, Noni T; Mollica, Janelle P; Beard, Nicole A; Lamb, Graham D

    2009-01-15

    Whilst calsequestrin (CSQ) is widely recognized as the primary Ca2+ buffer in the sarcoplasmic reticulum (SR) in skeletal muscle fibres, its total buffering capacity and importance have come into question. This study quantified the absolute amount of CSQ isoform 1 (CSQ1, the primary isoform) present in rat extensor digitorum longus (EDL) and soleus fibres, and related this to their endogenous and maximal SR Ca2+ content. Using Western blotting, the entire constituents of minute samples of muscle homogenates or segments of individual muscle fibres were compared with known amounts of purified CSQ1. The fidelity of the analysis was proven by examining the relative signal intensity when mixing muscle samples and purified CSQ1. The CSQ1 contents of EDL fibres, almost exclusively type II fibres, and soleus type I fibres [SOL (I)] were, respectively, 36 +/- 2 and 10 +/- 1 micromol (l fibre volume)(-1), quantitatively accounting for the maximal SR Ca2+ content of each. Soleus type II [SOL (II)] fibres (approximately 20% of soleus fibres) had an intermediate amount of CSQ1. Every SOL (I) fibre examined also contained some CSQ isoform 2 (CSQ2), which was absent in every EDL and other type II fibre except for trace amounts in one case. Every EDL and other type II fibre had a high density of SERCA1, the fast-twitch muscle sarco(endo)plasmic reticulum Ca2+-ATPase isoform, whereas there was virtually no SERCA1 in any SOL (I) fibre. Maximal SR Ca2+ content measured in skinned fibres increased with CSQ1 content, and the ratio of endogenous to maximal Ca2+ content was inversely correlated with CSQ1 content. The relative SR Ca2+ content that could be maintained in resting cytoplasmic conditions was found to be much lower in EDL fibres than in SOL (I) fibres (approximately 20 versus >60%). Leakage of Ca2+ from the SR in EDL fibres could be substantially reduced with a SR Ca2+ pump blocker and increased by adding creatine to buffer cytoplasmic [ADP] at a higher level, both results

  3. Robust fiber clustering of cerebral fiber bundles in white matter

    Science.gov (United States)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  4. Preparation of Electrospun Polymer Fibers Using a Copper Wire Electrode in a Capillary Tube

    Science.gov (United States)

    Shinbo, Kazunari; Onozuka, Shintaro; Hoshino, Rikiya; Mizuno, Yoshinori; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao

    2010-04-01

    Polymer fibers were prepared by an electrospinning method utilizing a copper wire electrode in a capillary tube. The morphology of electrospun poly(vinyl alcohol) (PVA) fibers was observed, and was found to be dependent on the wire electrode tip position in the capillary tube, the concentration of the polymer solution, the distance between the electrodes, and the applied voltage. By using the wire electrode, the experimental setup is simple and the distance between the electrodes and the applied voltage can be easily reduced. Furthermore, the preparation of poly(3-hexylthiophene) (P3HT) fibers was carried out. P3HT fibers were successfully prepared by mixing poly(ethylene oxide) (PEO) in P3HT solution. Orientation control was also carried out by depositing the fibers on a rotating collector electrode, and the alignment of the P3HT:PEO fibers was confirmed. Anisotropy of the optical absorption spectra was also observed for the aligned fibers.

  5. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  6. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  7. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  8. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  9. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  10. Robust Fiber Coatings

    National Research Council Canada - National Science Library

    Goettler, Richard

    2002-01-01

    The highly desired ceramic matrix composite is the one in which the high strength and strain-to-failure is achieved through judicious selection of a fiber coating that can survive the high-temperature...

  11. Fiber Optic Bragg Gratings

    National Research Council Canada - National Science Library

    Battiato, James

    1998-01-01

    Coupled mode theory was used to model reflection fiber gratings. The effects of experimental parameters on grating characteristics were modeled for both uniform and non-uniform grating profiles using this approach...

  12. Cerenkov fiber sampling calorimeters

    International Nuclear Information System (INIS)

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R.; Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W.; Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E.

    1994-01-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1 degree--7 degree). The 7 λ deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented

  13. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water

    International Nuclear Information System (INIS)

    Bai, Yongping; Wang, Zhi; Feng, Liqun

    2010-01-01

    The carbon fibers in carbon fibers reinforced epoxy resin composites were recovered in oxygen in supercritical water at 30 ± 1 MPa and 440 ± 10 o C. The microstructure of the recovered carbon fibers was observed using scanning electron microscopy (SEM) and atom force microscopy (AFM). The results revealed that the clean carbon fibers were recovered and had higher tensile strength relative to the virgin carbon fibers when the decomposition rate was above 85 wt.%, although the recovered carbon fibers have clean surface, the epoxy resin on the surface of the recovered carbon fibers was readily observed. As the decomposition rate increased to above 96 wt.%, no epoxy resin was observed on the surface of the carbon fibers and the oxidation of the recovered carbon fibers was readily measured by X-ray photoelectron spectroscopy (XPS) analysis. The carbon fibers were ideally recovered and have original strength when the decomposition rates were between 94 and 97 wt.%. This study clearly showed the oxygen in supercritical water is a promising way for recycling the carbon fibers in carbon fibers reinforced resin composites.

  14. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  15. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. (Argonne National Lab., IL (United States))

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  16. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  17. FIBER OPTIC LIGHTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Munir BATUR

    2013-01-01

    Full Text Available Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target place. Fiber optic systems, are nowadays widely used in energy transmission control systems, medicine, industry and lighting. The basics of the system is, movement of light from one point to another point in fiber cable with reflections. Fiber optic lighting systems are quite secure than other lighting systems and have flexibility for realizing many different designs. This situation makes fiber optics an alternative for other lighting systems. Fiber optic lighting systems usage is increasing day-by-day in our life. In this article, these systems are discussed in detail.

  18. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  19. Ionizing radiation detector using multimode optical fibers

    International Nuclear Information System (INIS)

    Suter, J.J.; Poret, J.C.; Rosen, M.; Rifkind, J.M.

    1993-01-01

    An optical ionizing radiation detector, based on the attenuation of 850-nm light in 50/125-μm multimode fibers, is described. The detector is especially well suited for application on spacecraft because of its small design. The detection element consists of a section of coiled fibers that has been designed to strip higher-order optical modes. Cylindrical radiation shields with atomic numbers ranging from Z = 13 (aluminum too) Z = 82 (lead) were placed around the ionizing radiation detector so that the effectiveness of the detector could be measured. By exposing the shields and the detector to 1.25-MeV cobalt 60 radiation, the mass attenuation coefficients of the shields were measured. The detector is based on the phenomenon that radiation creates optical color centers in glass fibers. Electron spin resonance spectroscopy performed on the 50/125-μm fibers showed the presence of germanium oxide and phosphorus-based color centers. The intensity of these centers is directly related to the accumulated gamma radiation

  20. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  1. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  2. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  3. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    International Nuclear Information System (INIS)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-01-01

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  4. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  5. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  6. Optical fiber stripper positioning apparatus

    Science.gov (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  7. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  8. Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    Science.gov (United States)

    A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...

  9. Natural Fiber Composites: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-03-07

    The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

  10. Enhanced radiation resistant fiber optics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures

  11. Fiber-optic technology review

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 μm and development of wavelengths multiplexers for simultaneous system operation at several wavelengths

  12. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  13. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  14. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  15. Graphene fiber: a new trend in carbon fibers

    OpenAIRE

    Zhen Xu; Chao Gao

    2015-01-01

    New fibers with increased strength and rich functionalities have been untiringly pursued by materials researchers. In recent years, graphene fiber has arisen as a new carbonaceous fiber with high expectations in terms of mechanical and functional performance. In this review, we elucidated the concept of sprouted graphene fibers, including strategies for their fabrication and their basic structural attributes. We examine the rapid advances in the promotion of mechanical/functional properties o...

  16. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  17. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  18. Femtosecond Fiber Lasers

    Science.gov (United States)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  19. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  20. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S.; Bush, I.J.; Davis, P.G.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  1. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian (μrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  2. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  3. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  4. K3-fibered Calabi-Yau threefolds II, singular fibers

    OpenAIRE

    Hunt, Bruce

    1999-01-01

    In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.

  5. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  6. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  7. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  8. Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.

    Science.gov (United States)

    Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei

    2018-01-31

    Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.

  9. Similar mitochondrial activation kinetics in wild-type and creatine kinase-deficient fast-twitch muscle indicate significant Pi control of respiration

    NARCIS (Netherlands)

    Jeneson, J.A.L.; Veld, ter F.; Schmitz, J.P.J.; Meyer, R.A.; Hilbers, P.A.J.; Nicolay, K.

    2011-01-01

    Past simulations of oxidative ATP metabolism in skeletal muscle have predicted that elimination of the creatine kinase (CK) reaction should result in dramatically faster oxygen consumption dynamics during transitions in ATP turnover rate. This hypothesis was investigated. Oxygen consumption of

  10. Silicon photonics for multicore fiber communication

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices.......We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices....

  11. Alternative Dietary Fiber Sources in Companion Animal Nutrition

    Directory of Open Access Journals (Sweden)

    George C. Fahey, Jr.

    2013-08-01

    Full Text Available The US has a pet population of approximately 70 million dogs and 74 million cats. Humans have developed a strong emotional bond with companion animals. As a consequence, pet owners seek ways to improve health, quality of life and longevity of their pets. Advances in canine and feline nutrition have contributed to improved longevity and well-being. Dietary fibers have gained renewed interest in the pet food industry, due to their important role in affecting laxation and stool quality. More recently, because of increased awareness of the beneficial effects of dietary fibers in health, as well as the popularity of functional foods and holistic and natural diets, alternative and novel carbohydrates have become widespread in human and pet nutrition. Fiber sources from cereal grains, whole grains and fruits have received increasing attention by the pet food industry and pet owners. While limited scientific information is available on the nutritional and nutraceutical properties of alternative fiber sources, studies indicate that corn fiber is an efficacious fiber source for pets, showing no detrimental effects on palatability or nutrient digestibility, while lowering the glycemic response in adult dogs. Fruit fiber and pomaces have good water-binding properties, which may be advantageous in wet pet food production, where a greater water content is required, along with low water activity and a firm texture of the final product. Rice bran is a palatable fiber source for dogs and may be an economical alternative to prebiotic supplementation of pet foods. However, it increases the dietary requirement of taurine in cats. Barley up to 40% in a dry extruded diet is well tolerated by adult dogs. In addition, consumption of complex carbohydrates has shown a protective effect on cardiovascular disease and oxidative stress. Alternative fiber sources are suitable ingredients for pet foods. They have been shown to be nutritionally adequate and to have potential

  12. Alternative dietary fiber sources in companion animal nutrition.

    Science.gov (United States)

    de Godoy, Maria R C; Kerr, Katherine R; Fahey, George C

    2013-08-06

    The US has a pet population of approximately 70 million dogs and 74 million cats. Humans have developed a strong emotional bond with companion animals. As a consequence, pet owners seek ways to improve health, quality of life and longevity of their pets. Advances in canine and feline nutrition have contributed to improved longevity and well-being. Dietary fibers have gained renewed interest in the pet food industry, due to their important role in affecting laxation and stool quality. More recently, because of increased awareness of the beneficial effects of dietary fibers in health, as well as the popularity of functional foods and holistic and natural diets, alternative and novel carbohydrates have become widespread in human and pet nutrition. Fiber sources from cereal grains, whole grains and fruits have received increasing attention by the pet food industry and pet owners. While limited scientific information is available on the nutritional and nutraceutical properties of alternative fiber sources, studies indicate that corn fiber is an efficacious fiber source for pets, showing no detrimental effects on palatability or nutrient digestibility, while lowering the glycemic response in adult dogs. Fruit fiber and pomaces have good water-binding properties, which may be advantageous in wet pet food production, where a greater water content is required, along with low water activity and a firm texture of the final product. Rice bran is a palatable fiber source for dogs and may be an economical alternative to prebiotic supplementation of pet foods. However, it increases the dietary requirement of taurine in cats. Barley up to 40% in a dry extruded diet is well tolerated by adult dogs. In addition, consumption of complex carbohydrates has shown a protective effect on cardiovascular disease and oxidative stress. Alternative fiber sources are suitable ingredients for pet foods. They have been shown to be nutritionally adequate and to have potential nutraceutical

  13. Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lu, Ke-Miao; Lee, Wen-Jhy; Liu, Shih-Hsien; Lin, Ta-Chang

    2014-01-01

    Highlights: • Non-oxidative and oxidative torrefaction of biomass is studied. • Two fibrous biomasses and two ligneous biomasses are tested. • SEM observations of four biomasses are provided. • Fibrous biomass is more sensitive to O 2 concentration than ligneous biomass. • The performance of non-oxidative torrefaction is better than that of oxidative torrefaction. - Abstract: Oxidative torrefaction is a method to reduce the operating cost of upgrading biomass. To understand the potential of oxidative torrefaction and its impact on the internal structure of biomass, non-oxidative and oxidative torrefaction of two fibrous biomass materials (oil palm fiber and coconut fiber) and two ligneous ones (eucalyptus and Cryptomeria japonica) at 300 °C for 1 h are studied and compared with each other. Scanning electron microscope (SEM) observations are also performed to explore the impact of torrefaction atmosphere on the lignocellulosic structure of biomass. The results indicate that the fibrous biomass is more sensitive to O 2 concentration than the ligneous biomass. In oxidative torrefaction, an increase in O 2 concentration decreases the solid yield. The energy yield is linearly proportional to the solid yield, which is opposite to the behavior of non-oxidative torrefaction. The performance of non-oxidative torrefaction is better than that of oxidative torrefaction. As a whole, ligneous biomass can be torrefied in oxidative environments at lower O 2 concentrations, whereas fibrous biomass is more suitable for non-oxidative torrefaction

  14. Fiber-optic seismic sensor

    International Nuclear Information System (INIS)

    Finch, G. W.; Udd, E.

    1985-01-01

    A vibration sensor is constructed by providing two preferably matched coils of fiber-optic material. When the sensor experiences vibration, a differential pressure is exerted on the two fiber coils. The differential pressure results in a variation in the relative optical path lengths between the two fibers so that light beams transmitted through the two fibers are differently delayed, the phase difference therebetween being a detectable indication of the vibration applied to the sensor

  15. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  16. Electrical Properties of Electrospun Sb-Doped Tin Oxide Nanofibers

    International Nuclear Information System (INIS)

    Leon-Brito, Neliza; Melendez, Anamaris; Ramos, Idalia; Pinto, Nicholas J; Santiago-Aviles, Jorge J

    2007-01-01

    Transparent and conducting tin oxide fibers are of considerable interest for solar energy conversion, sensors and in various electrode applications. Appropriate doping can further enhance the conductivity of the fibers without loosing optical transparency. Undoped and antimony-doped tin oxide fibers have been synthesized by our group in previous work using electrospinning and metallorganic decomposition techniques. The undoped tin oxide fibers were obtained using a mixture of pure tin oxide sol made from tin (IV) chloride : water : propanol : isopropanol at a molar ratio of 1:9:9:6, and a viscous solution made from poly(ethylene oxide) (PEO) and chloroform at a ratio of 200 mg PEO/10 mL chloroform. In this work, antimony doped fibers were obtained by adding a dopant solution of antimony trichloride and isopropanol at a ratio of 2.2812 g antimony trichloride/10 ml isopropanol to the original tin oxide precursor solution. The Sb concentration in the precursor solution is 1.5%. After deposition, the fibers were sintered 600deg. C in air for two hours. The electrical conductivity of single fibers measured at room temperature increases by up to three orders of magnitude when compared to undoped fibers prepared using the same method. The resistivity change as a function of the annealing temperature can be attributed to the thermally activated formation of a nearly stoichoimetric solid. The resistivity of the fibers changes monotonically with temperature from 714Ω-cm at 2 K to 0.1Ω-cm at 300 K. In the temperature range from 2 to 8 K the fibers have a positive magnetoresistance (MR) with the highest value of 155 % at 2 K and ±9 T. At temperatures of 10 and 12 K the sign of MR changes to negative values for low magnetic fields and positive for high magnetic fields. For higher temperatures (15 K and above) the MR becomes negative and its magnitude decreases with temperature

  17. In-fiber integrated Michelson interferometer.

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing

    2006-09-15

    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  18. Transient attenuation in optical fibers

    International Nuclear Information System (INIS)

    Hopkins, A.A.; Kelly, R.E.; Looney, L.D.; Lyons, P.B.

    1984-01-01

    Low and high energy pulsed electron beams were used to generate radiation-induced transient attenuation in high-OH, Suprasil core, PCS fibers, demonstrating the energy dependence of the radiation damage and recovery mechanisms. A radiation resistant low-OH fiber was studied and its performance contrasted to that of high-OH materials. Several fibers with differing core compositions were also studied

  19. Fiber Optics and Library Technology.

    Science.gov (United States)

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  20. Water-core Fresnel fiber

    NARCIS (Netherlands)

    Martelli, C.; Canning, J.; Lyytikainen, K.; Groothoff, N.

    2005-01-01

    A water core photonic crystal Fresnel fiber exploiting a hole distribution on zone plates of a cylindrical waveguide was developed and characterized. This fiber has similar guiding properties as the pristine air-hole guiding fiber although a large loss edge ~900nm is observed indicating that the

  1. Optical fibers for FTTH application

    Science.gov (United States)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  2. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  3. Thermal properties of Fiber ropes

    DEFF Research Database (Denmark)

    Bossolini, Elena; Nielsen, Ole Wennerberg; Oland, Espen

    There is a trend within the oil and gas market to shift from steel wire ropes to fiber ropes for lifting, hoisting and mooring applications. The cost of fiber ropes is about 2-3 times that of steel wire ropes, but the natural buoyancy of fiber ropes reduces the overall weight resulting in smaller...

  4. Shedding Light on Fiber Optics.

    Science.gov (United States)

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  5. Fabrication of Optical Fiber Devices

    Science.gov (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  6. Microstructured Fibers: Design and Applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes

    2006-01-01

    Holey fibers, in which airholes are introduced in the cladding region and extended in the axial direction of the fiber, have been known since the early days of silica waveguide research. Early work demonstrated the first low-loss fibers, which featured very small silica cores held in air by thin...

  7. Illustrative white matter fiber bundles

    NARCIS (Netherlands)

    Otten, R.J.G.; Vilanova, A.; Wetering, van de H.M.M.

    2010-01-01

    Diffusion Tensor Imaging (DTI) has made feasible the visualization of the fibrous structure of the brain whitematter. In the last decades, several fiber-tracking methods have been developed to reconstruct the fiber tracts fromDTI data. Usually these fiber tracts are shown individually based on some

  8. Production of Low Cost Carbon-Fiber through Energy Optimization of Stabilization Process

    Directory of Open Access Journals (Sweden)

    Gelayol Golkarnarenji

    2018-03-01

    Full Text Available To produce high quality and low cost carbon fiber-based composites, the optimization of the production process of carbon fiber and its properties is one of the main keys. The stabilization process is the most important step in carbon fiber production that consumes a large amount of energy and its optimization can reduce the cost to a large extent. In this study, two intelligent optimization techniques, namely Support Vector Regression (SVR and Artificial Neural Network (ANN, were studied and compared, with a limited dataset obtained to predict physical property (density of oxidative stabilized PAN fiber (OPF in the second zone of a stabilization oven within a carbon fiber production line. The results were then used to optimize the energy consumption in the process. The case study can be beneficial to chemical industries involving carbon fiber manufacturing, for assessing and optimizing different stabilization process conditions at large.

  9. Response of mef2 Gene of Slow and Fast Twitch Muscles of Wistar Male Rats to One Bout of Resistance Exercise

    Directory of Open Access Journals (Sweden)

    M Fathi

    2016-11-01

    Full Text Available Introduction: Myocyte Enhancer Factor 2 (mef2 gene relates with multiple myogenic transcriptional factors that induces activation Muscle-specific genes. MEF2 contributes in muscular cells development and differentiation as well as in fibers transition in response to stimulants. Therefore, the aim of this study was to evaluate the effect of one bout of resistance exercise (RE on mef2 gene expression in fast and slow skeletal muscles of Wistar male rats. Methods: For this experimental study, 15 rats from Pasteur Institute were prepared and housed under natural conditions (temperature, light/dark (12:12 cycle, with ad libitum access to food and water and then randomly divided assigned to RE (n=10 and control groups (n=5; the RE group performed one RE session. 3 and 6 hours following, the rats were anaesthetized and sacrificed, then the soleus and Extensor digitorum longus (EDL muscles were removed. determine mef2 gene expression rate, the Quantitative Real time RT-PCR was used. Data were analyzed by one sample and independent samples t test. Results: In EDL muscle, in response to one RE session, the mef2 gene expression increased non significantly at 3 hour (p=0/093 and increased significantly (p=/008 at 6 hour after exercise, but in soleus muscle, the mef2 gene expression decreased significantly at 3 hour (p=0/01, and at 6 hour after RE session there was no observed significant change (p=0.247. Conclusion: Mef2 expression gene is differently changes in muscle fibers, which are likely associated with changes in fiber type in response to resistance exercise.

  10. Bluebonnet Fiber Collages

    Science.gov (United States)

    Sterling, Joan

    2009-01-01

    This article presents a lesson that uses stitching and applique techniques to create a fiber collage in which every child is successful with high-quality work. This lesson was inspired by Tomie dePaola's "The Legend of the Bluebonnet." The back cover had a lovely illustration of the bluebonnet flower the author thought would translate easily to a…

  11. The dentate mossy fibers

    DEFF Research Database (Denmark)

    Blaabjerg, Morten; Zimmer, Jens

    2007-01-01

    Hippocampal mossy fibers are the axons of the dentate granule cells and project to hippocampal CA3 pyramidal cells and mossy cells of the dentate hilus (CA4) as well as a number of interneurons in the two areas. Besides their role in hippocampal function, studies of which are still evolving...

  12. Optical Fiber Protection

    Science.gov (United States)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  13. Optical Fiber Spectroscopy

    Science.gov (United States)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  14. Fiber and Your Child

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, artichoke hearts, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  15. Electromagnetic wave absorption properties of composites with ultrafine hollow magnetic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jin Woo [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Lee, Sang Bok; Kim, Jin Bong; Lee, Sang Kwan [Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Park, O Ok, E-mail: oopark@kaist.ac.kr [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 50-1, Sang-ri, Hyeongpung-myeon, Dalseong-gun, Daegu 711-873 (Korea, Republic of)

    2014-06-01

    Ultrafine hollow magnetic fibers were prepared by electroless plating using hydrolyzed polyester fiber as a sacrificial substrate. These hollow fibers can be served for lightweight and efficient electromagnetic (EM) absorbing materials. As observed from SEM and EDS analysis, hollow structures consisting of Ni inner layer and Fe or Fe–Co outer layer were obtained. By introducing Co onto Fe, oxidation of the Fe layer was successfully prevented making it possible to enhance the complex permeability compared to a case in which only Fe was used. Polymeric composites containing the hollow fibers with different weight fractions and fiber lengths were prepared by a simple mixing process. The electromagnetic wave properties of the composites were measured by a vector network analyzer and it was found that the hollow magnetic fibers show a clear resonance peak of the complex permittivity around the X-band range (8–12 GHz) and the resonance frequency strongly depends on the fiber concentration and length. A possible explanation for the unique resonance is that the hollow fibers possess relatively low electrical conductivity and a long mean free path due to their oxidized phase and hollow structure. The calculated EM wave absorption with the measured EM wave properties showed that the composite containing 30 wt% hollow Ni/Fe–Co (7:3) fibers in length of 180 μm exhibited multiple absorbance peaks resulting in a broad absorption bandwidth of 4.2 GHz. It is obvious that this multiple absorbance is attributed to the resonance characteristic of the composite. - Highlights: • The ultrafine hollow fibers consist of inner Ni layer (∼100 nm) and outer Fe or Fe–Co layer (500–700 nm). • Composites with the fibers show a high permittivity as well as permeability at low weight fractions (10–30 wt%). • The composites show a permittivity resonance and the resonance frequency can be controlled by fiber content and length. • The composite absorber exhibits a double

  16. Improved Optical Fiber Chemical Sensors

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  17. Solid fiber Z-pinches

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1989-01-01

    One- and two-dimensional magnetohydrodynamic computations have been performed to study the behavior of solid deuterium fiber Z-pinch experiments performed at Los Alamos and the Naval Research Laboratory. The computations use a tabulated atomic data base and ''cold-start'' initial conditions. The computations predict that the solid fiber persists longer in existing experiments than previously expected and that the discharge actually consists of a relatively low-density, hot plasma which has been ablated from the fiber. The computations exhibit m = 0 behavior in the hot, exterior plasma prior to complete ablation of the solid fiber. The m = 0 behavior enhances the fiber ablation rate. 10 refs., 5 figs

  18. Introduction to optical fiber sensors

    International Nuclear Information System (INIS)

    Moukdad, S.

    1991-01-01

    Optical fiber sensors have many advantages over other types of sensors, for example: Low weight, immunity from EMI, electrical isolation, chemical passivity, and high sensitivity. In this seminar, a brief explanation of the optical fiber sensors, their use, and their advantages will be given. After, a description of the main optical fiber sensor components will be presented. Principles of some kinds of optical fiber sensors will be presented, and the principle of the fiber-optic rotation sensor and its realization will be discussed in some details, as well as its main applications. (author). 5 refs, 8 figs, 2 tabs

  19. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    OpenAIRE

    Choi, Jeong-Il; Lee, Bang

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  20. High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion

    Science.gov (United States)

    Sun, Jingfeng; Zhao, Feng; Yao, Yue; Jin, Zhen; Liu, Xu; Huang, Yudong

    2017-08-01

    Most of the surface modification technologies for carbon fibers, no matter in laboratory scale or for commercial manufacture, are accompanied by a simultaneous decrease in tensile strength. In this paper, a feasible and high efficient strategy for carbon fiber treatment which could obviously improve both tensile strength and interfacial adhesion was proposed. Continuously moving carbon fibers were treated with atmospheric helium plasma for 1 min, followed by a 5 min pyrolytic carbon deposition using ethanol as precursor at 800 °C. The effects of the new approach were characterized by SEM, AFM, nanoindentation, XPS, Raman, wettability analysis, single fiber tensile strength testing and single fiber pull-out testing. After modification, pyrolytic carbon coating was deposited on the fiber surface uniformly, and the roughness and surface energy increased significantly. The single fiber tensile testing results indicate that the resulting fiber strength increased 15.7%, rising from 3.13 to 3.62 GPa. Meanwhile, the interfacial shear strength of its epoxy composites increased from 65.3 to 83.5 MPa. The comparative studies of carbon fibers modified with commercial anodic oxidation and sizing were also carried out. The results demonstrate that the new method can be utilized in the carbon fiber manufacture process and is more efficient than the traditional approaches.