WorldWideScience

Sample records for twisted magnetic fields

  1. Magnetic Field Twisting by Intergranular Downdrafts

    Science.gov (United States)

    Taroyan, Youra; Williams, Thomas

    2016-10-01

    The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.

  2. Slow twists of solar magnetic flux tubes and the polar magnetic field of the sun

    Science.gov (United States)

    Hollweg, Joseph V.; Lee, Martin A.

    1989-01-01

    The solar wind model of Weber and Davis (1967) is generalized to compute the heliospheric magnetic field resulting from solar rotation or a steady axisymmetric twist including a geometrical expansion which is more rapid than spherical. The calculated increase in the ratio of the toroidal to poloidal field components with heliocentric radial distance r clarifies an expression derived recently by Jokipii and Kota (1989). Magnetic-field components transverse to r do not in general grow to dominate the radial component at large r. The analysis also yields expressions for the Poynting flux associated with the steady twists.

  3. Do the Legs of Magnetic Clouds Contain Twisted Flux-rope Magnetic Fields?

    Science.gov (United States)

    Owens, M. J.

    2016-02-01

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The MC “legs,” which magnetically connect the flux rope to the Sun, are not recognizable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-MC ICMEs.

  4. DO THE LEGS OF MAGNETIC CLOUDS CONTAIN TWISTED FLUX-ROPE MAGNETIC FIELDS?

    Energy Technology Data Exchange (ETDEWEB)

    Owens, M. J. [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)

    2016-02-20

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux rope would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The MC “legs,” which magnetically connect the flux rope to the Sun, are not recognizable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-MC ICMEs.

  5. Relativistic models of magnetars: the twisted-torus magnetic field configuration

    CERN Document Server

    Ciolfi, R; Gualtieri, L; Pons, J A

    2009-01-01

    We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. (2008). Our method is based on the solution of the relativistic Grad-Shafranov equation, to which Maxwell's equations can be reduced in some limit. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted-torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.

  6. Emergence of non-twisted magnetic fields in the Sun: Jets and atmospheric response

    CERN Document Server

    Syntelis, Petros; Gontikakis, Costis; Tsinganos, Kanaris

    2015-01-01

    Aims. We study the emergence of a non-twisted flux tube from the solar interior into the solar atmosphere. We investigate whether the length of the buoyant part of the flux tube (i.e. {\\lambda}) affects the emergence of the field and the dynamics of the evolving magnetic flux system. Methods. We perform three-dimensional (3D), time-dependent, resistive, compressible MHD simulations using the Lare3D code. Results. We find that there are considerable differences in the dynamics of the emergence of a magnetic flux tube when {\\lambda} is varied. In the solar interior, for larger values of {\\lambda}, the rising magnetic field emerges faster and expands more due to its lower magnetic tension. As a result, its field strength decreases and its emergence above the photosphere occurs later than in the smaller {\\lambda} case. However, in both cases, the emerging field at the photosphere becomes unstable in two places, forming two magnetic bipoles that interact dynamically during the evolution of the system. Most of the ...

  7. Do the legs of magnetic clouds contain twisted flux-rope magnetic fields?

    OpenAIRE

    Owens, Mathew

    2016-01-01

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterised primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The tim...

  8. THE EFFECT OF A TWISTED MAGNETIC FIELD ON THE PERIOD RATIO P{sub 1}/P{sub 2} OF NONAXISYMMETRIC MAGNETOHYDRODYNAMIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K. [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Bahari, K., E-mail: KKarami@uok.ac.ir, E-mail: K.Bahari@razi.ac.ir [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2012-10-01

    We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order of magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.

  9. Force-free Field Modeling of Twist and Braiding-induced Magnetic Energy in an Active-region Corona

    Science.gov (United States)

    Thalmann, J. K.; Tiwari, S. K.; Wiegelmann, T.

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (~100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.

  10. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K. [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Tiwari, S. K.; Wiegelmann, T., E-mail: julia.thalmann@uni-graz.at [Max Plank Institute for Solar System Research, Max-Planck-Str. 2, D-37191 Katlenburg-Lindau (Germany)

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (∼100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.

  11. Modelling of Nonthermal Microwave Emission From Twisted Magnetic Loops

    CERN Document Server

    Sharykin, I N

    2016-01-01

    Microwave gyrosynchrotron radio emission generated by nonthermal electrons in twisted magnetic loops is modelled using the recently developed simulation tool GX Simulator. We consider isotropic and anisotropic pitch-angle distributions. The main scope of the work is to understand impact of the magnetic field twisted topology on resulted radio emission maps. We have found that nonthermal electrons inside twisted magnetic loops produce gyrosynchrotron radio emission with peculiar polarization distribution. The polarization sign inversion line is inclined relatively to the axis of the loop. Radio emission source is more compact in the case of less twisted loop, considering anisotropic pitch-angle distribution of nonthermal electrons.

  12. Twisted molecular magnets

    DEFF Research Database (Denmark)

    Inglis, Ross; Milios, Constantinos J.; Jones, Leigh F.

    2012-01-01

    The use of derivatised salicylaldoximes in manganese chemistry has led to the synthesis of a family of approximately fifty hexanuclear ([Mn(III)(6)]) and thirty trinuclear ([Mn(III)(3)]) Single-Molecule Magnets (SMMs). Deliberate, targeted structural distortion of the metallic core afforded family...

  13. Formulation of the twisted-light--matter interaction at the phase singularity: beams with strong magnetic fields

    CERN Document Server

    Quinteiro, G F; Kuhn, T

    2016-01-01

    The formulation of the interaction of matter with singular light fields needs special care. In a recent article [Phys.~Rev.~A {\\bf 91}, 033808 (2015)] we have shown that the Hamiltonian describing the interaction of a twisted light beam having parallel orbital and spin angular momenta with a small object located close to the phase singularity can be expressed only in terms of the electric field of the beam. Here, we complement our studies by providing an interaction Hamiltonian for beams having antiparallel orbital and spin angular momenta. Such beams may exhibit unusually strong magnetic effects. We further extend our formulation to radially and azimuthally polarized beams. The advantages of our formulation are that for all beams the Hamiltonian is written solely in terms of the electric and magnetic fields of the beam and as such it is manifestly gauge-invariant. Furthermore it is intuitive by resembling the well-known expressions in the dipole-electric and dipole-magnetic moment approximations.

  14. Equilibrium shapes of twisted magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, Mihails; Cirulis, Teodors; Cebers, Andrejs [University of Latvia, Zellu 8, LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv

    2009-06-12

    It is shown that ferromagnetic filaments with free and unclamped ends undergo buckling instabilities under the action of twist. Solutions of nonlinear equations describing the buckled shapes are found, and it is shown that the transition to the buckled shape is subcritical if the magnetization is parallel to the field and supercritical when the magnetization of the straight filament is opposite to the external field. Solutions with the localized curvature distribution are found in the case of long filaments. The class of solutions corresponding to helices is described, and the behavior of coiled ferromagnetic and superparamagnetic filaments is compared.

  15. OBSERVATIONS OF A SERIES OF FLARES AND ASSOCIATED JET-LIKE ERUPTIONS DRIVEN BY THE EMERGENCE OF TWISTED MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Kim, Sujin; Cho, Kyung-Suk; Kumar, Pankaj; Kim, Yeon-Han [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Park, Sung-Hong [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, Penteli 15236 (Greece); Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Song, Donguk, E-mail: eklim@kasi.re.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-01-20

    We studied temporal changes of morphological and magnetic properties of a succession of four confined flares followed by an eruptive flare using the high-resolution New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO) and Helioseismic and Magnetic Imager (HMI) magnetograms and Atmospheric Image Assembly (AIA) EUV images provided by the Solar Dynamics Observatory (SDO). From the NST/Hα and the SDO/AIA 304 Å observations we found that each flare developed a jet structure that evolved in a manner similar to evolution of the blowout jet: (1) an inverted-Y-shaped jet appeared and drifted away from its initial position; (2) jets formed a curtain-like structure that consisted of many fine threads accompanied by subsequent brightenings near the footpoints of the fine threads; and finally, (3) the jet showed a twisted structure visible near the flare maximum. Analysis of the HMI data showed that both the negative magnetic flux and the magnetic helicity have been gradually increasing in the positive-polarity region, indicating the continuous injection of magnetic twist before and during the series of flares. Based on these results, we suggest that the continuous emergence of twisted magnetic flux played an important role in producing successive flares and developing a series of blowout jets.

  16. Global Twist of Sunspot Magnetic Fields Obtained from High Resolution Vector Magnetograms

    CERN Document Server

    Tiwari, Sanjiv Kumar; Sankarasubramanian, K

    2009-01-01

    The presence of fine structures in the sunspot vector magnetic fields has been confirmed from Hinode as well as other earlier observations. We studied 43 sunspots based on the data sets taken from ASP/DLSP, Hinode (SOT/SP) and SVM (USO). In this \\emph{Letter}, (i) We introduce the concept of signed shear angle (SSA) for sunspots and establish its importance for non force-free fields. (ii) We find that the sign of global $\\alpha$ (force-free parameter) is well correlated with the global SSA and the photospheric chirality of sunspots. (iii) Local $\\alpha$ patches of opposite signs are present in the umbra of each sunspot. The amplitude of the spatial variation of local $\\alpha$ in the umbra is typically of the order of the global $\\alpha$ of the sunspot. (iv) We find that the local $\\alpha$ is distributed as alternately positive and negative filaments in the penumbra. The amplitude of azimuthal variation of the local $\\alpha$ in the penumbra is approximately an order of magnitude larger than that in the umbra. ...

  17. First 3D Reconstructions of Coronal Loops with the STEREO A+B Spacecraft: IV. Magnetic Modeling with Twisted Force-Free Fields

    CERN Document Server

    Aschwanden, Markus J; Nitta, Nariaki V; Lemen, James R; DeRosa, Marc L; Malanushenko, Anna

    2012-01-01

    The three-dimensional (3D) coordinates of stereoscopically triangulated loops provide strong constraints for magnetic field models of active regions in the solar corona. Here we use STEREO/A and B data from some 500 stereoscopically triangulated loops observed in four active regions (2007 Apr 30, May 9, May 19, Dec 11), together with SOHO/MDI line-of-sight magnetograms. We measure the average misalignment angle between the stereoscopic loops and theoretical magnetic field models, finding a mismatch of $\\mu=19^\\circ-46^\\circ$ for a potential field model, which is reduced to $\\mu=14^\\circ-19^\\circ$ for a non-potential field model parameterized by twist parameters. The residual error is commensurable with stereoscopic measurement errors ($\\mu_{SE} \\approx 8^\\circ-12^\\circ$). We developed a potential field code that deconvolves a line-of-sight magnetogram into three magnetic field components $(B_x, B_y, B_z)$, as well as a non-potential field forward-fitting code that determines the full length of twisted loops (...

  18. Rigidly connected magnetic lines: twisting and winding of magnetic lines

    Science.gov (United States)

    Prasad, G.

    2017-10-01

    The dynamical process of magnetic flux variation in a fluid's stream tube is described by constructing 1+1+ (2) decomposition of the gradient of fluid's 4-velocity. The necessary and sufficient conditions are obtained for a spacelike congruence to be a congruence of rigidly connected spacelike curves. The evolution of magnetic flux in a magnetic tube is explored under the assumptions that magnetic lines are rigidly connected and the chemical potential of the fluid is constant along a magnetic tube. The interplay between magnetic and stream tubes is demonstrated. It is shown that the growth of magnetic energy in a magnetic tube cannot exceed to that of a stream tube. It is found that the proper time variation of twist of magnetic lines is caused by gravitation inside a neutron star if magnetic lines are rigidly connected and charge neutrality condition holds. Helmholtz-like magnetic vorticity flux conservation in a magnetic tube constituted by rigidly connected geodetic magnetic lines is derived under the assumption that the charge neutrality condition holds. It is shown that the winding of frozen-in poloidal magnetic field due to differential rotation requires meridional circulation in an axisymmetric stationary hydromagnetic configuration.

  19. Observations of a Series of Flares and Associated Jet-like Eruptions Driven by the Emergence of Twisted Magnetic Fields

    CERN Document Server

    Lim, Eun-Kyung; Park, Sung-Hong; Kim, Sujin; Cho, Kyung-Suk; Kumar, Pankaj; Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Song, Donguk; Kim, Yeon-Han

    2015-01-01

    We studied temporal changes of morphological and magnetic properties of a succession of four confined flares followed by an eruptive flare using the high-resolution New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO), Helioseismic and Magnetic Imager (HMI) magnetograms and Atmospheric Image Assembly (AIA) EUV images provided by Solar Dynamics Observatory (SDO). From the NST/Halpha and the SDO/AIA~304 A observations we found that each flare developed a jet structure that evolved in a manner similar to evolution of the blowout jet : 1) an inverted-Y shape jet appeared and drifted away from its initial position; 2) jets formed a curtain-like structure that consisted of many fine threads accompanied with subsequent brightenings near the footpoints of the fine threads; and finally 3) the jet showed a twisted structure visible near the flare maximum. Analysis of the HMI data showed that both the negative magnetic flux and the magnetic helicity have been gradually increasing in the positive ...

  20. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    CERN Document Server

    Thalmann, J K; Wiegelmann, T

    2013-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region corona, has been substantiated by high-resolution observations only recently. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. 2013 (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on vector SDO/HMI magnetograms. We deliver estimates of the free magnetic energy associated to a braided coronal structure. Our model results suggest (~100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the active-region corona being heated by field line braiding. We were able to assess the coronal free energy appropriately by using vector field measurements and attribute the lower energy...

  1. On Signatures of Twisted Magnetic Flux Tube Emergence

    CERN Document Server

    Dominguez, Santiago Vargas; Green, Lucie; van Driel-Gesztelyi, Lidia; Hood, Alan

    2011-01-01

    Recent studies of NOAA active region 10953, by Okamoto {\\it et al.} ({\\it Astrophys. J. Lett.} {\\bf 673}, 215, 2008; {\\it Astrophys. J.} {\\bf 697}, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To investigate this scenario, MacTaggart and Hood ({\\it Astrophys. J. Lett.} {\\bf 716}, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures observed by Okamoto {\\it et al.} (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures that can be verified by the observations. The first is an increase in the unsigned magnetic fl...

  2. The Gravitational Field of a Twisted Skyrmion

    CERN Document Server

    Hadi, Miftachul; Husein, Andri

    2015-01-01

    We study nonlinear sigma model, especially Skyrme model without twist and Skyrme model with twist: twisted Skyrme model. Twist term, $mkz$, is indicated in vortex solution. We are interested to construct a space-time containing a string with Lagrangian plus a twist. To add gravity, we replace $\\eta^{\\mu\

  3. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    OpenAIRE

    Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-01-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs,...

  4. Charged Magnetic Brane Correlators and Twisted Virasoro Algebras

    CERN Document Server

    D'Hoker, Eric

    2011-01-01

    Prior work using gauge/gravity duality has established the existence of a quantum critical point in the phase diagram of 3+1-dimensional gauge theories at finite charge density and background magnetic field. The critical theory, obtained by tuning the dimensionless charge density to magnetic field ratio, exhibits nontrivial scaling in its thermodynamic properties, and an associated nontrivial dynamical critical exponent. In the present work, we analytically compute low energy correlation functions in the background of the charged magnetic brane solution to 4+1-dimensional Einstein-Maxwell-Chern-Simons theory, which represents the bulk description of the critical point. Results are obtained for neutral scalar operators, the stress tensor, and the U(1)-current. The theory is found to exhibit a twisted Virasoro algebra, constructed from a linear combination of the original stress tensor and chiral U(1)-current. The effective speed of light in the IR is renormalized downward for one chirality, but not the other, ...

  5. On the twists of interplanetary magnetic flux ropes observed at 1 AU

    CERN Document Server

    Wang, Yuming; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian

    2016-01-01

    Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in-situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably over-estimated by a factor of 2.5. By applying the mod...

  6. Resonant absorption of kink magnetohydrodynamic waves by a magnetic twist in coronal loops

    Science.gov (United States)

    Ebrahimi, Zanyar; Karami, Kayoomars

    2016-10-01

    There is ample evidence of twisted magnetic structures in the solar corona. This motivates us to consider the magnetic twist as the cause of Alfvén frequency continuum in coronal loops, which can support the resonant absorption as a rapid damping mechanism for the observed coronal kink magnetohydrodynamic (MHD) oscillations. We model a coronal loop with a straight cylindrical magnetic flux tube, which has constant but different densities in the interior and exterior regions. The magnetic field is assumed to be constant and aligned with the cylinder axis everywhere except for a thin layer near the boundary of the flux tube, which has an additional small magnetic field twist. Then, we investigate a number of possible instabilities that may arise in our model. In the thin tube thin boundary approximation, we derive the dispersion relation and solve it analytically to obtain the frequencies and damping rates of the fundamental (l = 1) and first/second overtone (l = 2, 3) kink (m = 1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can cause deviations from P1/P2 = 2 and P1/P3 = 3, which are comparable with the observations.

  7. Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour

    Science.gov (United States)

    Prior, C.; Yeates, A. R.

    2016-06-01

    Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a

  8. Direct Measurements of Magnetic Twist in the Solar Corona

    CERN Document Server

    Malanushenko, A; Longcope, D W

    2012-01-01

    In the present work we study evolution of magnetic helicity in the solar corona. We compare the rate of change of a quantity related to the magnetic helicity in the corona to the flux of magnetic helicity through the photosphere and find that the two rates are similar. This gives observational evidence that helicity flux across the photosphere is indeed what drives helicity changes in solar corona during emergence. For the purposes of estimating coronal helicity we neither assume a strictly linear force-free field, nor attempt to construct a non-linear force-free field. For each coronal loop evident in Extreme Ultraviolet (EUV) we find a best-matching line of a linear force-free field and allow the twist parameter alpha to be different for each line. This method was introduced and its applicability was discussed in Malanushenko et. al. (2009). The object of the study is emerging and rapidly rotating AR 9004 over about 80 hours. As a proxy for coronal helicity we use the quantity averaged over many reconstruc...

  9. Resonant absorption of kink MHD waves by magnetic twist in coronal loops

    CERN Document Server

    Ebrahimi, Z

    2015-01-01

    There is ample evidences of twisted magnetic structures in the corona. This motivates us to consider the magnetic twist as the cause of Alfven frequency continuum in coronal loops, which can support the resonant absorption as the rapid damping mechanism for the observed coronal kink MHD oscillations. For a straight cylindrical compressible zero-beta thin flux tube with a magnetic twist in a thin boundary and straight magnetic field in the interior and exterior regions as well as a step-like radial density profile, we derive the dispersion relation and solve it analytically. Consequently, we obtain the frequencies and damping rates of the fundamental (l=1) and first/second overtones (l=2,3) kink (m=1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can achieve deviations from P_1/P_2=2 and P_1/P_3=3 of the same order of magnitude as in the observations.

  10. Structure and deformations of strongly magnetized neutron stars with twisted torus configurations

    CERN Document Server

    Ciolfi, R; Gualtieri, L

    2010-01-01

    We construct general relativistic models of stationary, strongly magnetized neutron stars. The magnetic field configuration, obtained by solving the relativistic Grad-Shafranov equation, is a generalization of the twisted torus model recently proposed in the literature; the stellar deformations induced by the magnetic field are computed by solving the perturbed Einstein's equations; stellar matter is modeled using realistic equations of state. We find that in these configurations the poloidal field dominates over the toroidal field and that, if the magnetic field is sufficiently strong during the first phases of the stellar life, it can produce large deformations.

  11. Numerical simulations of magnetic Kelvin-Helmholtz instability at a twisted solar flux tube

    Science.gov (United States)

    Murawski, K.; Chmielewski, P.; Zaqarashvili, T. V.; Khomenko, E.

    2016-07-01

    The paper aims to study the response of a solar small-scale and weak magnetic flux tube to photospheric twisting motions. We numerically solve three-dimensional ideal magnetohydrodynamic equations to describe the evolution of the perturbation within the initially static flux tube, excited by twists in the azimuthal component of the velocity. These twists produce rotation of the magnetic field lines. Perturbation of magnetic field lines propagates upwardly, driving vertical and azimuthal flow as well as plasma compressions and rarefactions in the form of eddies. We conclude that these eddies result from the sheared azimuthal flow which seeds Kelvin-Helmholtz instability (KHI) between the flux tube and the ambient medium. Numerically obtained properties of the KHI confirm the analytical predictions for the occurrence of the instability.

  12. Magnetic Plasmon Sensing in Twisted Split-Ring Resonators

    Directory of Open Access Journals (Sweden)

    J. X. Cao

    2012-01-01

    Full Text Available We studied the sensing properties of stereo-SRRs metamaterials composed from two twisted split-ring resonators (SRRs. Due to the strong hybridization effect in the system, the polarization state of the transmitted wave is greatly changed at resonances. Since the stereo-SRRs structure is strongly coupled to the surrounding medium, the polarization change of the transmitted waves is quite sensitive to the refractive index change of the environment medium. The polarization ratio PRtran = Ty/Tx is used as sensing parameter and its figure of merit can reach 22.3 at the hybridized magnetic plasmon resonance. The results showed that the stereo-SRRs metamaterial can be applied to optical sensors an or other related field.

  13. Soft magnets from the self-organization of magnetic nanoparticles in twisted liquid crystals.

    Science.gov (United States)

    Matt, Benjamin; Pondman, Kirsten M; Asshoff, Sarah J; Ten Haken, Bennie; Fleury, Benoit; Katsonis, Nathalie

    2014-11-10

    Organizing magnetic nanoparticles into long-range and dynamic assemblies would not only provide new insights into physical phenomena but also open opportunities for a wide spectrum of applications. In particular, a major challenge consists of the development of nanoparticle-based materials for which the remnant magnetization and coercive field can be controlled at room temperature. Our approach consists of promoting the self-organization of magnetic nanoparticles in liquid crystals (LCs). Using liquid crystals as organizing templates allows us to envision the design of tunable self-assemblies of magnetic nanoparticles, because liquid crystals are known to reorganize under a variety of external stimuli. Herein, we show that twisted liquid crystals can be used as efficient anisotropic templates for superparamagnetic nanoparticles and demonstrate the formation of hybrid soft magnets at room temperature.

  14. Helical ${\\alpha}$-dynamos as twisted magnetic flux tubes in Riemannian space

    CERN Document Server

    de Andrade, Garcia

    2007-01-01

    Analytical solution of ${\\alpha}$-dynamo equation representing strongly torsioned helical dynamo is obtained in the thin twisted Riemannian flux tubes approximation. The $\\alpha$ factor possesses a fundamental contribution from torsion which is however weaken in the thin tubes approximation. It is shown that assuming that the poloidal component of the magnetic field is in principle time-independent, the toroidal magnetic field component grows very fast in time, actually it possesses a linear time dependence, while the poloidal component grows under the influence of torsion or twist of the flux tube. The toroidal component decays spatially with as $r^{-2}$ while vorticity may decay as $r^{-5}$ (poloidal component) where r represents the radial distance from the magnetic axis of flux tube. Toroidal component of vorticity decays as $r^{-1}$. In turbulent dynamos unbounded magnetic fields may decay at least as $r^{-3}$.

  15. THE NONLINEAR EVOLUTION OF A TWIST IN A MAGNETIC SHOCKTUBE

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas; Taroyan, Youra [Department of Physics, IMPACS, Aberystwyth University, Aberystwyth (United Kingdom); Fedun, Viktor [Space Systems Laboratory, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield (United Kingdom)

    2016-02-01

    The interaction between a small twist and a horizontal chromospheric shocktube is investigated. The magnetic flux tube is modeled using 1.5-D magnetohydrodynamics. The presence of a supersonic yet sub-Alfvénic flow along the flux tube allows the Alfvénic pulse driven at the photospheric boundary to become trapped and amplified between the stationary shock front and photosphere. The amplification of the twist leads to the formation of slow and fast shocks. The pre-existing stationary shock is destabilized and pushed forward as it merges with the slow shock. The propagating fast shock extracts the kinetic energy of the flow and launches rapid twists of 10–15 km s{sup −1} upon each reflection. A cavity is formed between the slow and fast shocks where the flux tube becomes globally twisted within less than an hour. The resultant highly twisted magnetic flux tube is similar to those prone to kink instabilities, which may be responsible for solar eruptions. The generated torsional flux is calculated.

  16. Formation of Solar Delta Active Regions:Twist and Writhe of Magnetic Ropes

    Institute of Scientific and Technical Information of China (English)

    Hong-Qi Zhang

    2004-01-01

    We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere,the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere,is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) The proposition is that the large-scale delta active regions are formed from contribution by small-scale non-potential magnetic flux bundles generated in the subatmosphere.

  17. Twisted boundary states in c=1 coset conformal field theories

    CERN Document Server

    Ishikawa, H; Ishikawa, Hiroshi; Yamaguchi, Atsushi

    2003-01-01

    We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the diagonal modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n)_1 \\oplus so(2n)_1/so(2n)_2, which is equivalent with the orbifold S^1/\\Z_2. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield the conformal boundary states that preserve only the Virasoro algebra.

  18. Magnetic Field

    DEFF Research Database (Denmark)

    Olsen, Nils

    2015-01-01

    of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...

  19. Structure, Stability, and Evolution of Magnetic Flux Ropes from the Perspective of Magnetic Twist

    CERN Document Server

    Liu, Rui; Titov, Viacheslav S; Chen, Jun; Wang, Yuming; Wang, Haimin; Liu, Chang; Xu, Yan; Wiegelmann, Thomas

    2015-01-01

    We investigate the evolution of NOAA Active Region 11817 during 2013 August 10--12, when it developed a complex field configuration and produced four confined, followed by two eruptive, flares. These C-and-above flares are all associated with a magnetic flux rope (MFR) located along the major polarity inversion line, where shearing and converging photospheric flows are present. Aided by the nonlinear force-free field modeling, we identify the MFR through mapping magnetic connectivities and computing the twist number $\\mathcal{T}_w$ for each individual field line. The MFR is moderately twisted ($|\\mathcal{T}_w| < 2$) and has a well-defined boundary of high squashing factor $Q$. We found that the field line with the extremum $|\\mathcal{T}_w|$ is a reliable proxy of the rope axis, and that the MFR's peak $|\\mathcal{T}_w|$ temporarily increases within half an hour before each flare while it decreases after the flare peak for both confined and eruptive flares. This pre-flare increase in $|\\mathcal{T}_w|$ has li...

  20. Least-Squares Fitting Methods for Estimating the Winding Rate in Twisted Magnetic-Flux Tubes

    CERN Document Server

    Crouch, Ashley D

    2012-01-01

    We investigate least-squares fitting methods for estimating the winding rate of field lines about the axis of twisted magnetic-flux tubes. These methods estimate the winding rate by finding the values for a set of parameters that correspond to the minimum of the discrepancy between magnetic-field measurements and predictions from a twisted flux-tube model. For the flux-tube model used in the fitting, we assume that the magnetic field is static, axisymmetric, and does not vary in the vertical direction. Using error-free, synthetic vector magnetic-field data constructed with models for twisted magnetic-flux tubes, we test the efficacy of fitting methods at recovering the true winding rate. Furthermore, we demonstrate how assumptions built into the flux-tube models used for the fitting influence the accuracy of the winding-rate estimates. We identify the radial variation of the winding rate within the flux tube as one assumption that can have a significant impact on the winding-rate estimates. We show that the e...

  1. Geodesic dynamo chaotic flows and non-Anosov maps in twisted magnetic flux tubes

    CERN Document Server

    de Andrade, Garcia

    2008-01-01

    Recently Tang and Boozer [{\\textbf{Phys. Plasmas (2000)}}], have investigated the anisotropies in magnetic field dynamo evolution, from local Lyapunov exponents, giving rise to a metric tensor, in the Alfven twist in magnetic flux tubes (MFTs). Thiffeault and Boozer [\\textbf{Chaos}(2001)] have investigated the how the vanishing of Riemann curvature constrained the Lyapunov exponential stretching of chaotic flows. In this paper, Tang-Boozer-Thiffeault differential geometric framework is used to investigate effects of twisted magnetic flux tube filled with helical chaotic flows on the Riemann curvature tensor. When Frenet torsion is positive, the Riemann curvature is unstable, while the negative torsion induces an stability when time $t\\to{\\infty}$. This enhances the dynamo action inside the MFTs. The Riemann metric, depends on the radial random flows along the poloidal and toroidal directions. The Anosov flows has been applied by Arnold, Zeldovich, Ruzmaikin and Sokoloff [\\textbf{JETP (1982)}] to build a unifo...

  2. Noncommutative fields and actions of twisted Poincaré algebra

    Science.gov (United States)

    Chaichian, M.; Kulish, P. P.; Tureanu, A.; Zhang, R. B.; Zhang, Xiao

    2008-04-01

    Within the context of the twisted Poincaré algebra, there exists no noncommutative analog of the Minkowski space interpreted as the homogeneous space of the Poincaré group quotiented by the Lorentz group. The usual definition of commutative classical fields as sections of associated vector bundles on the homogeneous space does not generalize to the noncommutative setting, and the twisted Poincaré algebra does not act on noncommutative fields in a canonical way. We make a tentative proposal for the definition of noncommutative classical fields of any spin over the Moyal space, which has the desired representation theoretical properties. We also suggest a way to search for noncommutative Minkowski spaces suitable for studying noncommutative field theory with deformed Poincaré symmetries.

  3. Noncommutative fields and actions of twisted Poincare algebra

    CERN Document Server

    Chaichian, M; Tureanu, A; Zhang, R B; Zhang, Xiao

    2007-01-01

    Within the context of the twisted Poincar\\'e algebra, there exists no noncommutative analogue of the Minkowski space interpreted as the homogeneous space of the Poincar\\'e group quotiented by the Lorentz group. The usual definition of commutative classical fields as sections of associated vector bundles on the homogeneous space does not generalise to the noncommutative setting, and the twisted Poincar\\'e algebra does not act on noncommutative fields in a canonical way. We make a tentative proposal for the definition of noncommutative classical fields of any spin over the Moyal space, which has the desired representation theoretical properties. We also suggest a way to search for noncommutative Minkowski spaces suitable for studying noncommutative field theory with deformed Poincar\\'e symmetries.

  4. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet.

    Science.gov (United States)

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model.

  5. Twist, writhe and energy from the helicity of magnetic perturbed vortex filaments

    OpenAIRE

    de Andrade, Luiz Carlos Garcia

    2007-01-01

    The twist and writhe numbers and magnetic energy of an orthogonally perturbed vortex filaments are obtained from the computation of the magnetic helicity of geodesic and abnormal magnetohydrodynamical (MHD) vortex filament solutions. Twist is computed from a formula recently derived by Berger and Prior [J. Phys. A 39 (2006) 8321] and finally writhe is computed from the theorem that the helicity is proportional to the sum of twist and writhe. The writhe number is proportional to the total tors...

  6. Twist Field as Three String Interaction Vertex in Light Cone String Field Theory

    OpenAIRE

    Kishimoto, Isao; Moriyama, Sanefumi; Teraguchi, Shunsuke

    2006-01-01

    It has been suggested that matrix string theory and light-cone string field theory are closely related. In this paper, we investigate the relation between the twist field, which represents string interactions in matrix string theory, and the three-string interaction vertex in light-cone string field theory carefully. We find that the three-string interaction vertex can reproduce some of the most important OPEs satisfied by the twist field.

  7. Twist Field as Three String Interaction Vertex in Light Cone String Field Theory

    OpenAIRE

    Kishimoto, Isao; Moriyama, Sanefumi; Teraguchi, Shunsuke

    2006-01-01

    It has been suggested that matrix string theory and light-cone string field theory are closely related. In this paper, we investigate the relation between the twist field, which represents string interactions in matrix string theory, and the three-string interaction vertex in light-cone string field theory carefully. We find that the three-string interaction vertex can reproduce some of the most important OPEs satisfied by the twist field.

  8. Turbulent ${\\alpha}$-effect in twisted magnetic flux tubes dynamos in Riemannian space

    CERN Document Server

    de Andrade, Garcia

    2007-01-01

    Analytical solution of first order torsion ${\\alpha}$-effect in twisted magnetic flux tubes representing a flux tube dynamo in Riemannian space is presented. Toroidal and poloidal component of the magnetic field decays as $r^{-1}$, while grow exponentially in time. The rate of speed of the helical dynamo depends upon the value of Frenet curvature of the tube. The $\\alpha$ factor possesses a fundamental contribution from constant torsion tube approximation. It is also assumed that the curvature of the magnetic axis of the tube is constant. Though ${\\alpha}$-effect dynamo equations are rather more complex in Riemann flux tube coordinates, a simple solution assuming force-free magnetic fields is shown to be possible. Dynamo solutions are possible if the dynamo action is able to change the signs of torsion and curvature of the dynamo flux tube simultaneously.

  9. Twisted self-duality for higher spin gauge fields and prepotentials

    CERN Document Server

    Henneaux, Marc; Leonard, Amaury

    2016-01-01

    We show that the equations of motion for (free) integer higher spin gauge fields can be formulated as twisted self-duality conditions on the higher spin curvatures of the spin-$s$ field and its dual. We focus on the case of four spacetime dimensions, but formulate our results in a manner applicable to higher spacetime dimensions. The twisted self-duality conditions are redundant and we exhibit a non-redundant subset of conditions, which have the remarkable property to involve only first-order derivatives with respect to time. This non-redundant subset equates the electric field of the spin-$s$ field (which we define) to the magnetic field of its dual (which we also define), and vice versa. The non-redundant subset of twisted self-duality conditions involve the purely spatial components of the spin-$s$ field and its dual, and also the components of the fields with one zero index. One can get rid of these gauge components by taking the curl of the equations, which does not change their physical content. In this...

  10. Cosmic strings with twisted magnetic flux lines and wound-strings in extra dimensions

    CERN Document Server

    Lake, Matthew

    2012-01-01

    We consider a generalization of the Nielsen-Olesen ansatz, in the abelian-Higgs model, which describes strings with twisted magnetic flux lines in the vortex core. The solution does not possess cylindrical symmetry, which leads to the existence of components of conserved momentum, both around the core-axis and along the length of the string. In addition, we consider a model of F-strings with rotating, geodesic windings in the compact space of the Klebanov-Strassler geometry and determine matching conditions which ensure energy and momentum conservation when loops chop off from the long-string network. We find that the expressions for the constants of motion, which determine the macroscopic string dynamics, can be made to coincide with those for the twisted flux line string, suggesting that extra- dimensional effects for F-strings may be mimicked by field-theoretic structure in topological defects.

  11. Magnetic Twist and Writhe of Active Regions: On the Origin of Deformed Flux Tubes

    CERN Document Server

    Fuentes, M López; Mandrini, C H; Pevtsov, A A; van Driel-Gesztelyi, L

    2014-01-01

    We study the long term evolution of a set of 22 bipolar active regions (ARs) in which the main photospheric polarities are seen to rotate one around the other during several solar rotations. We first show that differential rotation is not at the origin of this large change in the tilt angle. A possible origin of this distortion is the nonlinear development of a kink-instability at the base of the convective zone; this would imply the formation of a non-planar flux tube which, while emerging across the photosphere, would show a rotation of its photospheric polarities as observed. A characteristic of the flux tubes deformed by this mechanism is that their magnetic twist and writhe should have the same sign. From the observed evolution of the tilt of the bipoles, we derive the sign of the writhe of the flux tube forming each AR; while we compute the sign of the twist from transverse field measurements. Comparing the handedness of the magnetic twist and writhe, we find that the presence of kink-unstable flux tube...

  12. Measurements of TRACE 171A Twisting Coronal Loop Fans about a Twisted Magnetic Flux Tube Originating From Below the Photosphere

    Science.gov (United States)

    Nightingale, R. W.; Ma, G.; Ji, E.

    2009-12-01

    In our previous studies of rotating sunspots about their umbral centers over the past decade, we have been measuring the rotation at the photosphere of the cross sections of large, twisted magnetic flux tubes passing through from below. Many such rotating sunspots have been found and reported in the literature and at earlier meetings [e.g., Brown et al., Sol. Phys. 216, 79, 2003; Yan et al., ApJ 682, L65, 2008; Nightingale et al., Fall AGU Mtg. 2007]. Here we are attempting to measure the rotation of 1 million degree K EUV loops seen in TRACE 171A images emerging from what may be a large 6000 deg K magnetic flux tube (invisible at EUV), which may be the extension of the associated rotating sunspot up in the corona, for active region 9114 on August 8 - 10, 2000. These nonpotential EUV loops appear to be attached at their other end to nonrotating opposite polarity magnetic flux regions and also appear to be flipping around like a twisted jump rope that is attached to a wall at one end. In movies of these twisted coronal loop fans the rotation appears obvious, but is difficult to measure, because of the constant motion and change of intensity of the fans, which tend to obscure each other and the apparent tube center. We will show movies over the 3 days of the twisted loop fans, and details and first results of our measurements, which appear to be similar to those previously found for the associated rotating sunspot down at the photosphere. We will discuss how the twisted magnetic flux tube energizes the corona, carrying energy up from beneath the photosphere. This work was supported by NASA under the TRACE contract NAS5-38099.

  13. Magnetic twist: a source and property of space weather

    Directory of Open Access Journals (Sweden)

    Mitra Dhrubaditya

    2012-08-01

    Full Text Available Aim: We present evidence for finite magnetic helicity density in the heliosphere and numerical models thereof, and relate it to the magnetic field properties of the dynamo in the solar convection zone. Methods: We use simulations and solar wind data to compute magnetic helicity either directly from the simulations or indirectly using time series of the skew-symmetric components of the magnetic correlation tensor. Results: We find that the solar dynamo produces negative magnetic helicity at small scales and positive at large scales. However, in the heliosphere these properties are reversed and the magnetic helicity is now positive at small scales and negative at large scales. We explain this by the fact that a negative diffusive magnetic helicity flux corresponds to a positive gradient of magnetic helicity, which leads to a change of sign from negative to positive values at some radius in the northern hemisphere.

  14. The Snake - a Reconnecting Coil in a Twisted Magnetic Flux Tube

    CERN Document Server

    Bicknell, G V; Bicknell, Geoffrey V.; Li, Jianke

    2001-01-01

    We propose that the curious Galactic Center filament known as ``The Snake'' is a twisted giant magnetic flux tube, anchored in rotating molecular clouds. The MHD kink instability generates coils in the tube and subsequent magnetic reconnection injects relativistic electrons. Electrons diffuse away from a coil at an energy-dependent rate producing a flat spectral index at large distances from it. Our fit to the data of \\citet{gray95a} shows that the magnetic field $\\sim 0.4 \\> \\rm mG$ is large compared to the ambient $\\sim 7 \\mu \\> \\rm G$ field, indicating that the flux tube is force-free. If the {\\em relative} level of turbulence in the Snake and the general interstellar medium are similar, then electrons have been diffusing in the Snake for about $3 \\times 10^5 \\> \\rm yr$, comparable to the timescale at which magnetic energy is annihilated in the major kink. Estimates of the magnetic field in the G359.19-0.05 molecular complex are similar to our estimate of the magnetic field in the Snake suggesting a strong...

  15. Observing the release of twist by magnetic reconnection in a solar filament eruption.

    Science.gov (United States)

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-06-16

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist.

  16. Observing the release of twist by magnetic reconnection in a solar filament eruption

    Science.gov (United States)

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-06-01

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist.

  17. Observing the release of twist by magnetic reconnection in a solar filament eruption

    Science.gov (United States)

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-01-01

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist. PMID:27306479

  18. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    CERN Document Server

    Blackman, Eric G

    2014-01-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. H...

  19. Reducing Magnetic Fields Around Power Cables

    Science.gov (United States)

    Sargent, Noel B.; Gitelman, Florida; Pongracz-Bartha, Edward; Spalding, John

    1993-01-01

    Four power conductors arranged symmetrically about fifth grounded conductor. Four current-carrying wires arranged symmetrically around central grounded wire that nominally carries no current. In comparison with other cable configurations, this one results in smaller magnetic fields around cable. Technique for use when size of wires in cable makes twisting impractical.

  20. Magnetic Field Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...

  1. Magnetic fields in spiral galaxies

    Science.gov (United States)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  2. Supersymmetric gauged Double Field Theory: Systematic derivation by virtue of \\textit{Twist}

    CERN Document Server

    Cho, Wonyoung; Jeon, Imtak; Park, Jeong-Hyuck

    2015-01-01

    In a completely systematic and geometric way, we derive maximal and half-maximal supersymmetric gauged double field theories in lower than ten dimensions. To this end, we apply a simple twisting ansatz to the $D=10$ ungauged maximal and half-maximal supersymmetric double field theories constructed previously within the so-called semi-covariant formalism. The twisting ansatz may not satisfy the section condition. Nonetheless, all the features of the semi-covariant formalism, including its complete covariantizability, are still valid after the twist under alternative consistency conditions. The twist allows gaugings as supersymmetry preserving deformations of the $D=10$ untwisted theories after Scherk-Schwarz-type dimensional reductions. The maximal supersymmetric twist requires an extra condition to ensure both the Ramond-Ramond gauge symmetry and the $32$ supersymmetries unbroken.

  3. Cosmological Magnetic Fields

    CERN Document Server

    Kunze, Kerstin E

    2013-01-01

    Magnetic fields are observed on nearly all scales in the universe, from stars and galaxies upto galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early universe and might therefore be able to tell us whether cosmic magnetic fields are of primordial, cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  4. Differential rotation of stretched and twisted thick magnetic flux tube dynamos in Riemannian spaces

    OpenAIRE

    de Andrade, Garcia

    2007-01-01

    The topological mapping between a torus of big radius and a sphere is applied to the Riemannian geometry of a stretched and twisted very thick magnetic flux tube, to obtain spherical dynamos solving the magnetohydrodynamics (MHD) self-induction equation for the magnetic flux tubes undergoing differential (non-uniform) rotation along the tube magnetic axis. Constraints on the shear is also computed. It is shown that when the hypothesis of the convective cyclonic dynamo is used the rotation is ...

  5. Magnetic Field Grid Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...

  6. The Earth's Magnetic Field

    OpenAIRE

    Edda Lína Gunnarsdóttir 1988

    2012-01-01

    The Earth's magnetic field is essential for life on Earth, as we know it, to exist. It forms a magnetic shield around the planet, protecting it from high energy particles and radiation from the Sun, which can cause damage to life, power systems, orbiting satellites, astronauts and spacecrafts. This report contains a general overview of the Earth's magnetic field. The different sources that contribute to the total magnetic field are presented and the diverse variations in the field are describ...

  7. Vector Magnetic Fields, Sub-surface Stresses and Evolution of Magnetic Helicity

    Indian Academy of Sciences (India)

    Richard Canfield; Alexei Pevtsov

    2000-09-01

    Observations of the strength and spatial distribution of vector magnetic fields in active regions have revealed several fundamental properties of the twist of their magnetic fields. First, the handedness of this twist obeys a hemispheric rule: left-handed in the northern hemisphere, right-handed in the southern. Second, the rule is weak; active regions often disobey it. It is statistically valid only in a large ensemble. Third, the rule itself, and the amplitude of the scatter about the rule, are quantitatively consistent with twisting of fields by turbulence as flux tubes buoy up through the convection zone. Fourth, there is considerable spatial variation of twist within active regions. However, relaxation to a linear force-free state, which has been documented amply in laboratory plasmas, is not observed.

  8. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells.

    Science.gov (United States)

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-07-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.

  9. Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2016-11-01

    Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.

  10. Magnetic fields in galaxies

    CERN Document Server

    Beck, Rainer

    2013-01-01

    Most of the visible matter in the Universe is ionized, so that cosmic magnetic fields are quite easy to generate and due to the lack of magnetic monopoles hard to destroy. Magnetic fields have been measured in or around practically all celestial objects, either by in-situ measurements of spacecrafts or by the electromagnetic radiation of embedded cosmic rays, gas or dust. The Earth, the Sun, solar planets, stars, pulsars, the Milky Way, nearby galaxies, more distant (radio) galaxies, quasars and even intergalactic space in clusters of galaxies have significant magnetic fields, and even larger volumes of the Universe may be permeated by "dark" magnetic fields. Information on cosmic magnetic fields has increased enormously as the result of the rapid development of observational methods, especially in radio astronomy. In the Milky Way, a wealth of magnetic phenomena was discovered, which are only partly related to objects visible in other spectral ranges. The large-scale structure of the Milky Way's magnetic fie...

  11. The Juno Magnetic Field Investigation

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...

  12. The First Magnetic Fields

    CERN Document Server

    Widrow, Lawrence M; Schleicher, Dominik; Subramanian, Kandaswamy; Tsagas, Christos G; Treumann, Rudolf A

    2011-01-01

    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early genera...

  13. Organic magnetic field sensor

    Energy Technology Data Exchange (ETDEWEB)

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  14. Heavy Pseudoscalar Twist-3 Distribution Amplitudes within QCD Theory in Background Fields

    CERN Document Server

    Zhong, Tao; Huang, Tao; Fu, Hai-Bing

    2016-01-01

    In this paper, we study the properties of the twist-3 distribution amplitude (DA) of the heavy pseudo-scalars such as $\\eta_c$, $B_c$ and $\\eta_b$. New sum rules for the twist-3 DA moments $\\left_{\\rm HP}$ and $\\left_{\\rm HP}$ up to sixth orders and up to dimension-six condensates are deduced under the framework of the background field theory. Based on the sum rules for the twist-3 DA moments, we construct a new model for the two twist-3 DAs of the heavy pseudo-scalar with the help of the Brodsky-Huang-Lepage prescription. Furthermore, we apply them to the $B_c\\to\\eta_c$ transition form factor ($f^{B_c\\to\\eta_c}_+(q^2)$) within the light-cone sum rules approach, and the results are comparable with other approaches. It has been found that the twist-3 DAs $\\phi^P_{3;\\eta_c}$ and $\\phi^\\sigma_{3;\\eta_c}$ are important for a reliable prediction of $f^{B_c\\to\\eta_c}_+(q^2)$. For example, at the maximum recoil region, we have $f^{B_c\\to\\eta_c}_+(0) = 0.674 \\pm 0.066$, in which those two twist-3 terms provide $\\sim3...

  15. Correlation functions of twist fields from Ward identities in the massive Dirac theory

    Science.gov (United States)

    Doyon, Benjamin; Silk, James

    2011-07-01

    We derive non-linear differential equations for correlation functions of U(1) twist fields in the two-dimensional massive Dirac theory. Primary U(1) twist fields correspond to exponential fields in the sine-Gordon model at the free-fermion point, and it is well-known that their vacuum two-point functions are determined by integrable differential equations. We extend part of this result to more general quantum states (pure or mixed) and to certain descendents, showing that some two-point functions are determined by the sinh-Gordon differential equations whenever there is translation and parity invariance, and the density matrix is the exponential of a bilinear expression in fermions. We use methods involving Ward identities associated to the copy-rotation symmetry in a model with two independent, anti-commuting copies. Such methods were used in the context of the thermally perturbed Ising quantum field theory model. We show that they are applicable to the Dirac theory as well, and we suggest that they are likely to have a much wider applicability to free fermion models in general. Finally, we note that our form-factor study of descendents twist fields combined with a CFT analysis provides a new way of evaluating vacuum expectation values of primary U(1) twist fields: by deriving and solving a recursion relation.

  16. Correlation functions of twist fields from Ward identities in the massive Dirac theory

    Energy Technology Data Exchange (ETDEWEB)

    Doyon, Benjamin [Department of Mathematics, King' s College London, Strand WC2R 2LS (United Kingdom); Silk, James [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

    2011-07-22

    We derive non-linear differential equations for correlation functions of U(1) twist fields in the two-dimensional massive Dirac theory. Primary U(1) twist fields correspond to exponential fields in the sine-Gordon model at the free-fermion point, and it is well-known that their vacuum two-point functions are determined by integrable differential equations. We extend part of this result to more general quantum states (pure or mixed) and to certain descendents, showing that some two-point functions are determined by the sinh-Gordon differential equations whenever there is translation and parity invariance, and the density matrix is the exponential of a bilinear expression in fermions. We use methods involving Ward identities associated to the copy-rotation symmetry in a model with two independent, anti-commuting copies. Such methods were used in the context of the thermally perturbed Ising quantum field theory model. We show that they are applicable to the Dirac theory as well, and we suggest that they are likely to have a much wider applicability to free fermion models in general. Finally, we note that our form-factor study of descendents twist fields combined with a CFT analysis provides a new way of evaluating vacuum expectation values of primary U(1) twist fields: by deriving and solving a recursion relation.

  17. A New Technique For Measuring The Twist Of Photospheric Active Regions Without Recourse To The Force-Free-Field Equation: Reconfirming The Hemispheric Helicity Trend

    Science.gov (United States)

    Nandy, Dibyendu; Calhoun, A.; Windschitl, J.; Canfield, R. C.; Linton, M. G.

    2007-05-01

    The twist component of magnetic helicity in solar active regions is known to be an important indicator of sub-photospheric flux tube dynamics and solar eruptive activity. Traditionally, estimates of the parameter alpha -- appearing in the force-free-field equation -- has been used to infer the twist of photospheric active regions. However, the photosphere is not force-free and this has lead to recent concerns on the validity of using the alpha parameter for determining photospheric active region twist. We have devised a new flux-tube-fitting technique for determining the twist of active regions without recourse to the force-free-field equation. This method assumes that the underlying active region flux system is cylindrically symmetric and uniformly twisted. By using this new technique, on a statistically compelling number of photospheric active region vector magnetograms, we re-confirm the hemispheric helicity rule independent of the force-free-field assumption. This research has been supported in parts by a NASA Living With a Star grant NNG05GE47G. A.C. and J.W. were supported by a NSF Research Experience for Undergraduates grant ATM-0243923 to Montana State University. M.G.L. acknowledges support from NASA and the Office of Naval Research.

  18. Branch point twist field correlators in the massive free Boson theory

    Science.gov (United States)

    Bianchini, Davide; Castro-Alvaredo, Olalla A.

    2016-12-01

    Well-known measures of entanglement in one-dimensional many body quantum systems, such as the entanglement entropy and the logarithmic negativity, may be expressed in terms of the correlation functions of local fields known as branch point twist fields in a replica quantum field theory. In this "replica" approach the computation of measures of entanglement generally involves a mathematically non-trivial analytic continuation in the number of replicas. In this paper we consider two-point functions of twist fields and their analytic continuation in the 1 + 1 dimensional massive (non-compactified) free Boson theory. This is one of the few theories for which all matrix elements of twist fields are known so that we may hope to compute correlation functions very precisely. We study two particular two-point functions which are related to the logarithmic negativity of semi-infinite disjoint intervals and to the entanglement entropy of one interval. We show that our prescription for the analytic continuation yields results which are in full agreement with conformal field theory predictions in the short-distance limit. We provide numerical estimates of universal quantities and their ratios, both in the massless (twist field structure constants) and the massive (expectation values of twist fields) theory. We find that particular ratios are given by divergent form factor expansions. We propose such divergences stem from the presence of logarithmic factors in addition to the expected power-law behaviour of two-point functions at short-distances. Surprisingly, at criticality these corrections give rise to a log ⁡ (log ⁡ ℓ) correction to the entanglement entropy of one interval of length ℓ. This hitherto overlooked result is in agreement with results by Calabrese, Cardy and Tonni and has been independently derived by Blondeau-Fournier and Doyon [25].

  19. Mixed-state form factors of U(1) twist fields in the Dirac theory

    Science.gov (United States)

    Chen, Yixiong

    2016-08-01

    Using the ‘Liouville space’ (the space of operators) of the massive Dirac theory, we define mixed-state form factors of U(1) twist fields. We consider mixed states with density matrices diagonal in the asymptotic particle basis. This includes the thermal Gibbs state as well as all generalized Gibbs ensembles of the Dirac theory. When the mixed state is specialized to a thermal Gibbs state, using a Riemann-Hilbert problem and low-temperature expansion, we obtain finite-temperature form factors of U(1) twist fields. We then propose the expression for form factors of U(1) twist fields in general diagonal mixed states. We verify that these form factors satisfy a system of nonlinear functional differential equations, which is derived from the trace definition of mixed-state form factors. At last, under weak analytic conditions on the eigenvalues of the density matrix, we write down the large distance form factor expansions of two-point correlation functions of these twist fields. Using the relation between the Dirac and Ising models, this provides the large-distance expansion of the Rényi entropy (for integer Rényi parameter) in the Ising model in diagonal mixed states.

  20. Revisiting the Twist-3 Distribution Amplitudes of K Meson Within the QCD Background Field Approach

    Institute of Scientific and Technical Information of China (English)

    钟涛; 吴兴刚; 韩华勇; 廖其力; 付海斌; 方祯云

    2012-01-01

    In the present paper, we investigate the kaon twist-3 distribution amplitudes (DAs)Cp within the QCD background field approach. The SUf (3)-breaking effects are studied in detail under a systematical way, especiaJ1y the sum rules for the moments of are obtained by keeping all the mass terms in the s-quark propagator consistently. After adding all the uncertainties in quadrature, the first two Gegenbauler moments of are a GeV. A detailed discussion on the properties tion parameters moments shows that the higher-order s-quark mass terms can indeed provide sizable contributions. Fhrthermore, based on the newly obtained moments, a model for the kaon twist-3 wavefunction with a better end-point behavior is constructed, which shall be useful for perturbative QCD calculations. As a byproduct, we make a discussion on the properties of the pion twist-3 DAs.

  1. Magnetization reversal in ultrashort magnetic field pulses

    CERN Document Server

    Bauer, M; Fassbender, J; Hillebrands, B

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization ...

  2. Heavy pseudoscalar twist-3 distribution amplitudes within QCD theory in background fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Tao [Henan Normal University, College of Physics and Materials Science, Xinxiang (China); Wu, Xing-Gang [Chongqing University, Department of Physics, Chongqing (China); Huang, Tao [Chinese Academy of Sciences, Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Beijing (China); Fu, Hai-Bing [Guizhou Minzu University, School of Science, Guiyang (China)

    2016-09-15

    In this paper, we study the properties of the twist-3 distribution amplitude (DA) of the heavy pseudoscalars such as η{sub c}, B{sub c}, and η{sub b}. New sum rules for the twist-3 DA moments left angle ξ{sup n}{sub P} right angle {sub HP} and left angle ξ{sup n}{sub σ} right angle {sub HP} up to sixth order and up to dimension-six condensates are deduced under the framework of the background field theory. Based on the sum rules for the twist-3 DA moments, we construct a new model for the two twist-3 DAs of the heavy pseudoscalar with the help of the Brodsky-Huang-Lepage prescription. Furthermore, we apply them to the B{sub c} → η{sub c} transition form factor (f{sub +}{sup B{sub c}→η{sub c}}(q{sup 2})) within the light-cone sum rules approach, and the results are comparable with other approaches. It has been found that the twist-3 DAs φ{sup P}{sub 3;η{sub c}} and φ{sup σ}{sub 3;η{sub c}} are important for a reliable prediction of f{sub +}{sup B{sub c}→η{sub c}}(q{sup 2}). For example, at the maximum recoil region, we have f{sub +}{sup B{sub c}→η{sub c}}(0) = 0.674 ± 0.066, in which those two twist-3 terms provide ∝33 and ∝22% contributions. Also we calculate the branching ratio of the semi-leptonic decay B{sub c} → η{sub c}lν Br(B{sub c} → η{sub c}lν) = (9.31{sup +2.27}{sub -2.01}) x 10{sup -3}. (orig.)

  3. Molecules in Magnetic Fields

    Science.gov (United States)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  4. The Twist Limit for Bipolar Active Regions

    Science.gov (United States)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  5. Branch Point Twist Field Correlators in the Massive Free Boson Theory

    CERN Document Server

    Bianchini, Davide

    2016-01-01

    Well-known measures of entanglement in one-dimensional many body quantum systems, such as the entanglement entropy and the logarithmic negativity, may be expressed in terms of the correlation functions of local fields known as branch point twist fields in a replica quantum field theory. In this "replica" approach the computation of measures of entanglement generally involves a mathematically non-trivial analytic continuation in the number of replicas. In this paper we consider two-point functions of twist fields and their analytic continuation in the 1+1 dimensional massive (non-compactified) free Boson theory. This is one of the few theories for which all matrix elements of twist fields are known so that we may hope to compute correlation functions very precisely. We study two particular two-point functions which are related to the logarithmic negativity of semi-infinite disjoint intervals and to the entanglement entropy of one interval. We show that our prescription for the analytic continuation yields resu...

  6. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  7. Cosmic magnetic fields

    CERN Document Server

    Kronberg, Philipp P

    2016-01-01

    Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.

  8. Some exact computations on the twisted butterfly state in string field theory

    CERN Document Server

    Okawa, Y

    2004-01-01

    The twisted butterfly state solves the equation of motion of vacuum string field theory in the singular limit. The finiteness of the energy density of the solution is an important issue, but possible conformal anomaly resulting from the twisting has prevented us from addressing this problem. We present a description of the twisted regulated butterfly state in terms of a conformal field theory with a vanishing central charge which consists of the ordinary bc ghosts and a matter system with c=26. Various quantities relevant to vacuum string field theory are computed exactly using this description. We find that the energy density of the solution can be finite in the limit, but the finiteness depends on the subleading structure of vacuum string field theory. We further argue, contrary to our previous expectation, that contributions from subleading terms in the kinetic term to the energy density can be of the same order as the contribution from the leading term which consists of the midpoint ghost insertion.

  9. Solar Magnetic Fields

    Indian Academy of Sciences (India)

    J. O. Stenflo

    2008-03-01

    Since the structuring and variability of the Sun and other stars are governed by magnetic fields, much of present-day stellar physics centers around the measurement and understanding of the magnetic fields and their interactions. The Sun, being a prototypical star, plays a unique role in astrophysics, since its proximity allows the fundamental processes to be explored in detail. The PRL anniversary gives us an opportunity to look back at past milestones and try to identify the main unsolved issues that will be addressed in the future.

  10. Twisted Backgrounds, PP-Waves and Nonlocal Field Theories

    CERN Document Server

    Alishahiha, M; Alishahiha, Mohsen; Ganor, Ori J.

    2003-01-01

    We study partially supersymmetric plane-wave like deformations of string theories and M-theory on brane backgrounds. These deformations are dual to nonlocal field theories. We calculate various expectation values of configurations of closed as well as open Wilson loops and Wilson surfaces in those theories. We also discuss the manifestation of the nonlocality structure in the supergravity backgrounds. A plane-wave like deformation of little string theory has also been studied.

  11. Solar Magnetic Fields

    CERN Document Server

    Hood, Alan W

    2011-01-01

    This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulation...

  12. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  13. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  14. ON THE ROTATION OF THE MAGNETIC FIELD ACROSS THE HELIOPAUSE

    Energy Technology Data Exchange (ETDEWEB)

    Opher, M. [Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Drake, J. F., E-mail: mopher@bu.edu [Department of Physics and the Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742-2431 (United States)

    2013-12-01

    Based on the difference between the orientation of the interstellar and the solar magnetic fields, there was an expectation by the community that the magnetic field direction will rotate dramatically across the heliopause (HP). Recently, the Voyager team concluded that Voyager 1 (V1) crossed into interstellar space last year. The question is then why there was no significant rotation in the direction of the magnetic field across the HP. Here we present simulations that reveal that strong rotations in the direction of the magnetic field at the HP at the location of V1 (and Voyager 2) are not expected. The solar magnetic field strongly affects the drapping of the interstellar magnetic field (B {sub ISM}) around the HP. B {sub ISM} twists as it approaches the HP and acquires a strong T component (East-West). The strong increase in the T component occurs where the interstellar flow stagnates in front of the HP. At this same location the N component B{sub N} is significantly reduced. Above and below, the neighboring B {sub ISM} lines also twist into the T direction. This behavior occurs for a wide range of orientations of B {sub ISM}. The angle δ = asin (B{sub N} /B) is small (around 10°-20°), as seen in the observations. Only after some significant distance outside the HP is the direction of the interstellar field distinguishably different from that of the Parker spiral.

  15. Magnetic fields in diffuse media

    CERN Document Server

    Pino, Elisabete; Melioli, Claudio

    2015-01-01

    This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.

  16. Watt loss in three-phase transformers with circular and hexagonal forming contours of twisted spatial magnetic core rods

    Directory of Open Access Journals (Sweden)

    E.A. Avdieieva

    2014-04-01

    Full Text Available For spatial three-phase axial electromagnetic systems with circular and hexagonal cross-section configurations of twisted butt-end magnetic core rods, analytical dependences for optimal geometrical relations determination over the transformer minimum watt loss criterion are obtained, comparative analysis of the systems energy efficiency made.

  17. Coronal Magnetic Field Models

    Science.gov (United States)

    Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete

    2017-09-01

    Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.

  18. Effect of Twisted Fiber Anisotropy in Cardiac Tissue on Ablation with Pulsed Electric Fields

    Science.gov (United States)

    Xie, Fei; Zemlin, Christian W.

    2016-01-01

    Background Ablation of cardiac tissue with pulsed electric fields is a promising alternative to current thermal ablation methods, and it critically depends on the electric field distribution in the heart. Methods We developed a model that incorporates the twisted anisotropy of cardiac tissue and computed the electric field distribution in the tissue. We also performed experiments in rabbit ventricles to validate our model. We find that the model agrees well with the experimentally determined ablation volume if we assume that all tissue that is exposed to a field greater than 3 kV/cm is ablated. In our numerical analysis, we considered how tissue thickness, degree of anisotropy, and electrode configuration affect the geometry of the ablated volume. We considered two electrode configurations: two parallel needles inserted into the myocardium (“penetrating needles” configuration) and one circular electrode each on epi- and endocardium, opposing each other (“epi-endo” configuration). Results For thick tissues (10 mm) and moderate anisotropy ratio (a = 2), we find that the geometry of the ablated volume is almost unaffected by twisted anisotropy, i.e. it is approximately translationally symmetric from epi- to endocardium, for both electrode configurations. Higher anisotropy ratio (a = 10) leads to substantial variation in ablation width across the wall; these variations were more pronounced for the penetrating needle configuration than for the epi-endo configuration. For thinner tissues (4 mm, typical for human atria) and higher anisotropy ratio (a = 10), the epi-endo configuration yielded approximately translationally symmetric ablation volumes, while the penetrating electrodes configuration was much more sensitive to fiber twist. Conclusions These results suggest that the epi-endo configuration will be reliable for ablation of atrial fibrillation, independently of fiber orientation, while the penetrating electrode configuration may experience problems when the

  19. Super-twisting sliding mode control of torque and flux in permanent magnet synchronous machine drives

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2013-01-01

    This paper investigates a permanent magnet synchronous motor drive controlled by a second-order variable structure control technique, known as the super-twisting sliding modes (STSM) control. The STSM controller is designed as a direct torque and flux controller and it works in the stator flux...... reference frame, rather than the rotor frame, as a regular vector control scheme. Another second-order sliding mode controller (SMC) was developed and compared with the STSM controller. Also for comparison, a similar direct torque control scheme based on linear PI controllers was developed and tested....... The tests show that the STSM controller displays very robust behavior, like any SMC, and it works without notable chattering, like the linear PI-based controller. The paper presents theoretical aspects for the STSM control, several design and implementation details, and comparative experimental results...

  20. Magnetic Field Topology in Jets

    Science.gov (United States)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  1. Correlation functions of twist fields from Ward identities in the massive Dirac theory

    CERN Document Server

    Doyon, Benjamin

    2011-01-01

    We derive non-linear differential equations for correlation functions of U(1) twist fields in the two-dimensional massive Dirac theory. Primary U(1) twist fields correspond to exponential fields in the sine-Gordon model at the free-fermion point, and it is well-known that their vacuum two-point functions are determined by integrable differential equations. We extend part of this result to more general quantum states (pure or mixed) and to certain descendents, showing that some two-point functions are determined by the sinh-Gordon differential equations whenever there is translation and parity invariance, and the density matrix is the exponential of a bilinear expression in fermions. We use methods involving Ward identities associated to the copy-rotation symmetry in a model with two independent, anti-commuting copies. Such methods were used in the context of the thermally perturbed Ising quantum field theory model. We show that they are applicable to the Dirac theory as well, and we suggest that they are like...

  2. Magnetic field switchable dry adhesives.

    Science.gov (United States)

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  3. On closed-string twist-field correlators and their open-string descendants

    CERN Document Server

    Anastasopoulos, Pascal; Richter, Robert

    2011-01-01

    In a recent paper we have proposed the possibility that the lightest massive string states could be identified with open strings living at intersections of D-branes forming small angles. In this note, we reconsider the relevant twist-field correlation functions and perform the analysis of the sub-dominant physical poles in the various channels. Our derivation is new in that it is based on the algebraic procedure for the construction of open string models starting from their closed-string `parents' rather than on the stress-tensor method. We also indicate possible generalizations and diverse applications of our approach.

  4. Flares in the Crab Nebula Driven by Untwisting Magnetic Fields

    CERN Document Server

    Sturrock, Peter

    2012-01-01

    The recent discovery of PeV electrons from the Crab nebula, produced on rapid time scales of one day or less with a sharply peaked gamma-ray spectrum without hard X-rays, challenges traditional models of diffusive shock acceleration followed by synchrotron radiation. Here we outline an accleration model involving a DC electric field parallel to the magnetic field in a twisted toroidal field around the pulsar. Sudden developments of resistivity in localized regions of the twisted field are thought to drive the particle acceleration, up to PeV energies, resulting in flares. This model can reproduce the observed time scales of $T \\approx 1$ day, the peak photon energies of $U_{\\Phi,rr} \\approx 1$ MeV, maximum electron energies of $U_{e,rr} \\approx 1$ PeV, and luminosities of $L \\approx 10^{36}$ erg s$^{-1}$.

  5. Limits for primordial magnetic fields

    CERN Document Server

    Caprini, Chiara

    2011-01-01

    A possible explanation for the origin of the magnetic fields observed today in matter structures is that they were generated in the primordial universe. After briefly revising the model of a primordial stochastic magnetic field and sketching the main features of its time evolution in the primordial plasma, we illustrate the current upper bounds on the magnetic field amplitude and spectral index from Cosmic Microwave Background observations and gravitational wave production. We conclude that a primordial magnetic field generated by a non-causal process such as inflation with a red spectrum seems to be favoured as a seed for the magnetic fields observed today in structures.

  6. Superhorizon magnetic fields

    CERN Document Server

    Campanelli, Leonardo

    2015-01-01

    [Abridged] We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wavenumber $k$ evolves, after inflation, according to the values of $k\\eta_e$, $n_{\\mathbf{k}}$, and $\\Omega_k$, where $\\eta_e$ is the conformal time at the end of inflation, $n_{\\mathbf{k}}$ is the number density spectrum of inflation-produced photons, and $\\Omega_k$ is the phase difference between the two Bogolubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that $n_{\\mathbf{k}}^{-1} \\ll |k\\eta_e| \\ll 1$, and three evolutionary scenarios are possible: ($i$) $|\\Omega_k \\mp \\pi| = \\mathcal{O}(1)$, in which case the evolution of the magnetic spectrum $B_k(\\eta)$ is adiabatic, $a^2B_k(\\eta) = \\mbox{const}$, with $a$ being the expansion parameter; ($ii$) $|\\Omega_k \\mp \\pi| \\ll |k\\eta_e|$,...

  7. SCUPOL Magnetic Field Analysis

    CERN Document Server

    Poidevin, Frederick; Kowal, Grzegorz; Pino, Elisabete de Gouveia Dal; Magalhaes, Antonio-Mario

    2013-01-01

    We present an extensive analysis of the 850 microns polarization maps of the SCUPOL Catalog produced by Matthews et al. (2009), focusing exclusively on the molecular clouds and star-forming regions. For the sufficiently sampled regions, we characterize the depolarization properties and the turbulent-to-mean magnetic field ratio of each region. Similar sets of parameters are calculated from 2D synthetic maps of dust emission polarization produced with 3D MHD numerical simulations scaled to the S106, OMC-2/3, W49 and DR21 molecular clouds polarization maps. For these specific regions the turbulent MHD regimes retrieved from the simulations, as described by the turbulent Alfv\\`en and sonic Mach numbers, are consistent within a factor 1 to 2 with the values of the same turbulent regimes estimated from the analysis of Zeeman measurements data provided by Crutcher (1999). Constraints on the values of the inclination angle of the mean magnetic field with respect to the LOS are also given. The values obtained from th...

  8. Revisiting the Pion Leading-Twist Distribution Amplitude within the QCD Background Field Theory

    CERN Document Server

    Zhong, Tao; Wang, Zhi-Gang; Huang, Tao; Fu, Hai-Bing; Han, Hua-Yong

    2014-01-01

    We study the pion leading-twist distribution amplitude (DA) within the framework of SVZ sum rules under the background field theory. To improve the accuracy of the sum rules, we expand both the quark propagator and the vertex $(z\\cdot \\tensor{D})^n$ of the correlator up to dimension-six operators in the background field theory. The sum rules for the pion DA moments are obtained, in which all condensates up to dimension-six have been taken into consideration. Using the sum rules, we obtain $\\left|_{\\rm 1\\;GeV} = 0.338 \\pm 0.032$, $\\left|_{\\rm 1\\;GeV} = 0.211 \\pm 0.030$ and $\\left|_{\\rm 1\\;GeV} = 0.163 \\pm 0.030$. It is shown that the dimension-six condensates shall provide sizable contributions to the pion DA moments. We show that the first Gegenbauer moment of the pion leading-twist DA is $a^\\pi_2|_{\\rm 1\\;GeV} = 0.403 \\pm 0.093$, which is consistent with those obtained in the literature within errors but prefers a larger central value as indicated by lattice QCD predictions.

  9. Magnetic Fields: Visible and Permanent.

    Science.gov (United States)

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  10. Magnetohydrodynamics of atmospheric transients. IV - Nonplane two-dimensional analyses of energy conversion and magnetic field evolution. [during corona following solar flare

    Science.gov (United States)

    Wu, S. T.; Nakagawa, Y.; Han, S. M.; Dryer, M.

    1982-01-01

    The evolution of the magnetic field and the manner of conversion of thermal energy into different forms in the corona following a solar flare are investigated by means of a nonplane magnetohydrodynamic (MHD) analysis. All three components of magnetic field and velocity are treated in a physically self-consistent manner, with all physical variables as functions of time (t) and two spatial coordinates (r, theta). The difference arising from the initial magnetic field, either twisted (force-free) or non-twisted (potential), is demonstrated. Consideration is given to two initial field topologies (open vs. closed). The results demonstrate that the conversion of magnetic energy is faster for the case of the initially twisted (force-free) field than for the initially untwisted (potential) field. In addition, the twisted field is found to produce a complex structure of the density enhancements.

  11. Closed superstrings in magnetic field instabilities and supersymmetry breaking

    CERN Document Server

    Tseytlin, Arkady A

    1995-01-01

    We consider a 2-parameter class of solvable closed superstring models which `interpolate' between Kaluza-Klein and dilatonic Melvin magnetic flux tube backgrounds. The spectrum of string states has similarities with Landau spectrum for a charged particle in a uniform magnetic field. The presence of spin-dependent `gyromagnetic' interaction implies breaking of supersymmetry and possible existence (for certain values of magnetic parameters) of tachyonic instabilities. We study in detail the simplest example of the Kaluza-Klein Melvin model describing a superstring moving in flat but non-trivial 10-d space containing a 3-d factor which is a `twisted' product of a 2-plane and an internal circle. We also discuss the compact version of this model constructed by `twisting' the product of the two groups in SU(2) x U(1) WZNW theory without changing the local geometry (and thus the central charge). We explain how the supersymmetry is broken by continuous `magnetic' twist parameters and comment on possible implications ...

  12. Reconnection of Magnetic Fields

    Science.gov (United States)

    Birn, J.; Priest, E. R.

    2007-01-01

    Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Büchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.

  13. The $\\rho$-meson longitudinal leading-twist distribution amplitude within QCD background field theory

    CERN Document Server

    Fu, Hai-Bing; Cheng, Wei; Zhong, Tao

    2016-01-01

    We revisit the $\\rho$-meson longitudinal leading-twist distribution amplitude (DA) $\\phi_{2;\\rho}^\\|$ by using the QCD sum rules approach within the background field theory. To improve the accuracy of the sum rules for its moments $\\langle\\xi_{n;\\rho}^\\|\\rangle$, we include the next-to-leading order QCD correction to the perturbative part and keep all non-perturbative condensates up to dimension-six consistently within the background field theory. The first two moments read $\\langle \\xi_{2;\\rho}^\\| \\rangle|_{1{\\rm GeV}} = 0.241(28)$ and $\\langle \\xi_{4;\\rho}^\\| \\rangle|_{1{\\rm GeV}} = 0.108(27)$, indicating a double humped behavior for $\\phi_{2;\\rho}^\\|$ at low $q^2$-region. As an application, we apply them to the $B\\to \\rho $ transition form factors within the QCD light-cone sum rules, which are key components for the decay width $\\Gamma(B\\to \\rho \\ell \

  14. Vestibular stimulation by magnetic fields

    Science.gov (United States)

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  15. Magnetic response to applied electrostatic field in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)

    2014-04-15

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)

  16. Magnetic response to applied electrostatic field in external magnetic field

    CERN Document Server

    Adorno, T C; Shabad, A E

    2014-01-01

    We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to a simple example of a spherically-symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space, the pattern of lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.

  17. Vacuum Structure of Twisted Scalar Field Theories on $M^{D-1} \\otimes S^{1}$

    CERN Document Server

    Hatanaka, H; Ohnishi, K; Sakamoto, M

    2001-01-01

    We study scalar field theories on M^{D-1} \\otimes S^1, which allow to impose twisted boundary conditions for the S^1 direction, in detail and report several interesting properties overlooked so far. One of characteristic features is the appearance of critical radii of the circle S^1. A phase transition can occur at the classical level or can be caused by quantum effects. Radiative corrections can restore broken symmetries or can break symmetries for small radius. A surprising feature is that the translational invariance for the S^1 direction can spontaneously be broken. A particular class of coordinate-dependent vacuum configurations is clarified and the O(N) \\phi^4 model on M^{D-1}\\otimes S^1 is extensively studied, as an illustrative example.

  18. Energy buildup in sheared force-free magnetic fields

    Science.gov (United States)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  19. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  20. Magnetic flux transport and the sun's dipole moment - New twists to the Babcock-Leighton model

    Science.gov (United States)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    1991-01-01

    The mechanisms that give rise to the sun's large-scale poloidal magnetic field are explored in the framework of the Babcock-Leighton (BL) model. It is shown that there are in general two quite distinct contributions to the generation of the 'alpha effect': the first is associated with the axial tilts of the bipolar magnetic regions as they erupt at the surface, while the second arises through the interaction between diffusion and flow as the magnetic flux is dispersed over the surface. The general relationship between flux transport and the BL dynamo is discussed.

  1. The MAVEN Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  2. Exact Zero Vacuum Energy in twisted SU(N) Principal Chiral Field

    CERN Document Server

    Leurent, Sebastien

    2015-01-01

    We present a finite set of equations for twisted PCF model. At the special twist in the root of unity we demonstrate that the vacuum energy is exactly zero at any size L. Also in SU(2) case we numerically calculate the energy of the single particle state with zero rapidity, as a function of L.

  3. Exact zero vacuum energy in twisted SU(N) principal chiral field

    Energy Technology Data Exchange (ETDEWEB)

    Leurent, Sebastien [Univ. de Bourgogne Franche-Comte, Dijon (France). Inst. de Mathematique de Bourgogne; Sobko, Evgeny [DESY, Hamburg (Germany). Theory Group

    2015-11-15

    We present a finite set of equations for twisted PCF model. At the special twist in the root of unity we demonstrate that the vacuum energy is exactly zero at any size L. Also in SU(2) case we numerically calculate the energy of the single particle state with zero rapidity, as a function of L.

  4. Magnetic fields in ring galaxies

    CERN Document Server

    Moss, D; Silchenko, O; Sokoloff, D; Horellou, C; Beck, R

    2016-01-01

    Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling $\\alpha-\\Omega$ galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where th...

  5. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  6. Low Cost Magnetic Field Controller

    CERN Document Server

    Malafronte, Alexandre A

    2005-01-01

    The Physics Institute of the University of São Paulo (IFUSP) is building a continuous wave (cw) racetrack microtron. This machine has several dipole magnets, like the first and second stage recirculators, and a number of smaller ones in the transport line. These magnets must produce very stable magnetic fields to allow the beam to recirculate along very precise orbits and paths. Furthermore, the fields must be reproducible with great accuracy to allow an easier setup of the machine, though the effects of hysteresis tend to jeopardize the reproducibility. If the magnetic field is chosen by setting the current in the coils, temperature effects over the magnet and power supply tend to change the field. This work describes an inexpensive magnetic field controller that allows a direct measure of the magnetic field through an Hall probe. It includes a microcontroller running a feedback algorithm to control the power supply, in order to keep the field stable and reproducible. The controller can also execu...

  7. The Hβ Chromospheric Magnetic Field in a Quiescent Filament

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We observed the line-of-sight magnetic field in the chromosphereandphotosphere of a large quiescent filament on the solar disk on September 6, 2001using the Solar Magnetic Field Telescope in Huairou Solar Observing Station. Thechromospheric and photospheric magnetograms together with Hβ filtergrams of thefilament were examined. The filament was located on the neutral line of the largescale longitudinal magnetic field in the photosphere and the chromosphere. Thelateral feet of the filament .were found to be related to magnetic structures with op-posite polarities. Two small lateral feet are linked to weak parasitic polarity. Thereis a negative magnetic structure in the photosphere under a break of the filament.At the location corresponding to the filament in the chromospheric magnetograms,the magnetic strength is found to be about 40-70 Gauss (measuring error about 39Gauss). The magnetic signal indicates the amplitude and orientation of the internalmagnetic field in the filament. We discuss several possible causes which may pro-duce such a measured signal. A twisted magnetic configuration inside the filamentis suggested .

  8. Resonant magnetic fields from inflation

    CERN Document Server

    Byrnes, Christian T; Jain, Rajeev Kumar; Urban, Federico R

    2012-01-01

    We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of ${\\cal O}(10^{-15}\\, \\Gauss)$ today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.

  9. Static magnetic fields enhance turbulence

    CERN Document Server

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  10. On gl((⌒)2|2)(2)k Current Superalgebra and Twisted Conformal Field Theory

    Institute of Scientific and Technical Information of China (English)

    DING Xiang-Mao; WANG Gui-Dong; WANG Shi-Kun

    2007-01-01

    Motivated by the recently discovered hidden symmetry of the type ∏B Green-Schwarz superstring on certain background, the non-semisimple Kac-Moody twisted superalgebra gl((⌒)2|2)(2)k is investigated by means of the vector coherent state method and boson-fermion realization. The free field realization of the twisted current superalgebra at general level k is constructed. The corresponding Conformal Field Theory (CFT) has zero central charge. According to the classification theory, this CFT is a nonunitary field theory. After projecting out a U(1) factor and an outer automorphism operator, we get the free field representation of psl((⌒)2|2)(2)k, which is the algebra of gl((⌒)2|2)(2)k modulo the Z4-outer automorphism, the CFT has central charge -2.

  11. Origin of cosmic magnetic fields

    Science.gov (United States)

    Rees, M. J.

    2006-06-01

    The first significant cosmic fields, and the seed field for galactic dynamos probably developed after the formation of the first non-linear structures. The history of star formation and the intergalactic medium is controlled, at least in part, by how and when galaxies and their precursors acquired their fields. The amplification of fields behind shocks, and the diffusivity of the magnetic flux, are crucial to the interpretation of radio sources, gamma ray burst afterglows, and other energetic cosmic phenomena. The build-up of magnetic fields is an important aspect of the overall cosmogonic process.

  12. Generalised twisted partition functions

    CERN Document Server

    Petkova, V B

    2001-01-01

    We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.

  13. ρ -meson longitudinal leading-twist distribution amplitude within QCD background field theory

    Science.gov (United States)

    Fu, Hai-Bing; Wu, Xing-Gang; Cheng, Wei; Zhong, Tao

    2016-10-01

    We revisit the ρ -meson longitudinal leading-twist distribution amplitude (DA) ϕ2;ρ ∥ by using the QCD sum rules approach within the background field theory. To improve the accuracy of the sum rules for its moments ⟨ξn;ρ ∥⟩ , we include the next-to-leading order QCD correction to the perturbative part and keep all nonperturbative condensates up to dimension-six consistently within the background field theory. The first two moments read ⟨ξ2;ρ ∥⟩|1 GeV=0.241 (28 ) and ⟨ξ4;ρ ∥⟩|1 GeV=0.109 (10 ) , indicating a double humped behavior for ϕ2;ρ ∥ at small energy scale. As an application, we apply them to the B →ρ transition form factors within the QCD light-cone sum rules, which are key components for the decay width Γ (B →ρ ℓνℓ) . To compare with the world average of Γ (B →ρ ℓνℓ) issued by Particle Data Group, we predict |Vub|=3.1 9-0.62+0.65 , which agrees with the BABAR and Omnès parametrization prediction within errors.

  14. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  15. ISR split-field magnet

    CERN Multimedia

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  16. What Are Electric and Magnetic Fields? (EMF)

    Science.gov (United States)

    ... take for granted. What are electric and magnetic fields? Electric and magnetic fields (EMF) are invisible lines of ... humans. AC electric power produces electric and magnetic fields that create weak electric currents in humans. Being exposed to some kinds ...

  17. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-02-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  18. The Juno Magnetic Field Investigation

    Science.gov (United States)

    Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; hide

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through

  19. Magnetic-Field Hazards Bibliography.

    Science.gov (United States)

    1985-09-01

    produced during pulsed- magnetic-field therapy for non-union of the tibia." Med. Biol. Eng. Comput., Vol. 20, pp. 501-511 (1982). 32. Miller, D. A...Phenum Publishing Co. (1983). 40. Topper, R. F., "Electromagnetic shielding feasibility study," ASD -TDR-63-194 (Armour Research Foundation, Chicago...mammalian cells by strong magnetic fields (1976). 93. Malins, D. C., and Collier, T. K., "Xenobiotic interactions in aquatic organisms-effects on

  20. General relativistic neutron stars with twisted magnetosphere

    CERN Document Server

    Pili, A G; Del Zanna, L

    2014-01-01

    Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided to investigate the effects of different current distributions on the overall magnetic field structure.

  1. Highly-sensitive magnetic field sensor based on fiber ring laser.

    Science.gov (United States)

    Deng, Ming; Liu, Danhui; Huang, Wei; Zhu, Tao

    2016-01-11

    A highly sensitive magnetic field sensor based on a fiber ring laser has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by introducing a rotary apparatus modulated by an external magnetic field into the fiber cavity to twist one section of the fiber. Due to the remarkable birefringence change induced into the laser cavity, the beat frequency generated between two polarizations of the laser is sensitive to the variation of applied magnetic field intensity. Experimental results show that the polarization mode beat frequency linearly shifts with the increment of the magnetic field intensity and the sensitivity reaches up to 7.09 KHz/Oe in the range of 0 - 437 Oe. Therefore, it will be a promising candidate for the weak magnetic field applications including military, hazard forecast and biomedical fields.

  2. Nanometric alternating magnetic field generator.

    Science.gov (United States)

    Espejo, A P; Tejo, F; Vidal-Silva, N; Escrig, J

    2017-07-05

    In this work we introduce an alternating magnetic field generator in a cylindrical nanostructure. This field appears due to the rotation of a magnetic domain wall located at some position, generating a magnetic region that varies its direction of magnetization alternately, thus inducing an alternating magnetic flux in its vicinity. This phenomenon occurs due to the competition between a spin-polarized current and a magnetic field, which allows to control both the angular velocity and the pinning position of the domain wall. As proof of concept, we study the particular case of a diameter-modulated nanowire with a spin-polarized current along its axis and the demagnetizing field produced by its modulation. This inhomogeneous field allows one to control the angular velocity of the domain wall as a function of its position along the nanowire allowing frequencies in the GHz range to be achieved. This generator could be used in telecommunications for devices in the range of radiofrequencies or, following Faraday's induction law, could also induce an electromotive force and be used as a movable alternate voltage source in future nanodevices.

  3. Magnetic Field Generation in Stars

    CERN Document Server

    Ferrario, Lilia; Zrake, Jonathan

    2015-01-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a ...

  4. Indoor localization using magnetic fields

    Science.gov (United States)

    Pathapati Subbu, Kalyan Sasidhar

    Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing

  5. Magnetic Fields in Spiral Galaxies

    CERN Document Server

    Beck, Rainer

    2015-01-01

    Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30\\mu G) and in central starburst regions (50-100\\mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15\\mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the interg...

  6. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  7. Magnetic fields of neutron stars

    CERN Document Server

    Reisenegger, Andreas

    2013-01-01

    Neutron stars contain the strongest magnetic fields known in the Universe. In this paper, I discuss briefly how these magnetic fields are inferred from observations, as well as the evidence for their time-evolution. I show how these extremely strong fields are actually weak in terms of their effects on the stellar structure, as is also the case for magnetic stars on the upper main sequence and magnetic white dwarfs, which have similar total magnetic fluxes. I propose a scenario in which a stable hydromagnetic equilibrium (containing a poloidal and a toroidal field component) is established soon after the birth of the neutron star, aided by the strong compositional stratification of neutron star matter, and this state is slowly eroded by non-ideal magnetohydrodynamic processes such as beta decays and ambipolar diffusion in the core of the star and Hall drift and breaking of the solid in its crust. Over sufficiently long time scales, the fluid in the neutron star core will behave as if it were barotropic, becau...

  8. Magnetic fields during galaxy mergers

    CERN Document Server

    Rodenbeck, Kai

    2016-01-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies, and may have a strong impact on their magnetic fields. We present the first grid-based 3D magneto-hydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employ a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength reported by Drzazga et al. (2011) in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, there is a physical enhancement of t...

  9. Twisted light

    CSIR Research Space (South Africa)

    Forbes, A

    2010-12-01

    Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...

  10. Zero magnetic field type magnetic field sensor. Reijikaigata jikai sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, T.; Ueda, R. (Kyushu Institute of Technology, Fukuoka (Japan))

    1990-11-20

    It is shown in this paper that a new type of sensor with excellent characteristics can be made by demagnetizing the sensor core toward a zero field state and then detecting an unknown field to be detected by the demagnetizing current. The core operates equivalently in a zero magnetic field so that the detection sensitivity is determined by the coil constant including the number of turns of the solenoid for demagnetization required to offset the field to be detected. Therefore the detection sensitivity does not depend on its configuration and magnetization characteristics and does not depend on the temperature. It is thereby considered that these characteristics can largely reduce such problems at present as the aging deterioration of magnetic materials or the quality control accompanied by manufacturing. In addition, the following points have been clarified: (1) The upper limit of the detectable range does not exist in principle. (2) The accuracy of the detection is 0.02% to the full scale 20kA/m. (3) The magnetization property required to the core used as a sensor is that it has a rectangular B-H loop which is as sharp as possible. 14 refs., 13 figs., 2 tabs.

  11. Quasi-quantum groups from Kalb-Ramond fields and magnetic amplitudes for strings on orbifolds

    CERN Document Server

    Jureit, J H

    2006-01-01

    We present the general form of the operators that lift the group action on the twisted sectors of a bosonic string on an orbifold ${\\cal M}/G$, in the presence of a Kalb-Ramond field strength $H$. These operators turn out to generate the quasi-quantum group $D_{\\omega}[G]$, introduced in the context of orbifold conformal field theory by R. Dijkgraaf, V. Pasquier and P. Roche. The 3-cocycle $\\omega$ entering in the definition of $D_{\\omega}[G]$ is related to $H$ by a series of cohomological equations in a tricomplex combining de Rham, Cech and group coboundaries. We construct magnetic amplitudes for the twisted sectors and show that $\\omega=1$ arises as a consistency condition for the orbifold theory. Finally, we recover discrete torsion as an ambiguity in the lift of the group action to twisted sectors, in accordance with previous results presented by E. Sharpe.

  12. Primordial Magnetic Fields and Causality

    CERN Document Server

    Durrer, R; Durrer, Ruth; Caprini, Chiara

    2003-01-01

    In this letter we discuss the implications of causality on a primordial magnetic field. We show that the residual field on large scales is much stronger suppressed than usually assumed and that a helical component is even suppressed even more than the parity even part. We show that due to this strong suppression, even maximal primordial fields generated at the electroweak phase transition can just marginally seed the fields in galaxies and clusters, but they cannot leave any detectable imprint on the cosmic microwave background.

  13. On the Force-Freeness of the Photospheric Sunspot Magnetic Fields as Observed from Hinode (SOT/SP)

    CERN Document Server

    Tiwari, Sanjiv Kumar

    2011-01-01

    A magnetic field is force-free if there is no interaction between the magnetic field and plasma in surrounding atmosphere i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. Computation of various magnetic parameters such as magnetic energy, gradient of twist of sunspot fields and any kind of extrapolations, heavily hinge on the force-free approximation of the photospheric sunspot magnetic fields. Thus it is important to inspect the force-freeness of sunspot fields. The force-freeness of sunspot magnetic fields has been examined earlier by some researchers ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. We use several such vector magnetograms obtained from the Solar Optical Telescope/Spectro-Polarimeter aboard the Hinode. Both necessary and sufficient conditions for force-freeness are examined by checking global and local nature of magnetic forces ...

  14. Magnetic fields around black holes

    Science.gov (United States)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  15. Heavy pseudoscalar twist-3 distribution amplitudes within QCD theory in background fields

    Science.gov (United States)

    Zhong, Tao; Wu, Xing-Gang; Huang, Tao; Fu, Hai-Bing

    2016-09-01

    In this paper, we study the properties of the twist-3 distribution amplitude (DA) of the heavy pseudoscalars such as η _c, B_c, and η _b. New sum rules for the twist-3 DA moments Huang-Lepage prescription. Furthermore, we apply them to the B_c→ η _c transition form factor (f^{B_c→ η _c}_+(q^2)) within the light-cone sum rules approach, and the results are comparable with other approaches. It has been found that the twist-3 DAs φ ^P_{3;η _c} and φ ^σ _{3;η _c} are important for a reliable prediction of f^{B_c→ η _c}_+(q^2). For example, at the maximum recoil region, we have f^{B_c→ η _c}_+(0) = 0.674 ± 0.066, in which those two twist-3 terms provide {˜ }33 and {˜ }22 % contributions. Also we calculate the branching ratio of the semi-leptonic decay B_c → η _c lν as Br(B_c → η _c lν ) = ( 9.31^{+2.27}_{-2.01} ) × 10^{-3}.

  16. Twisted superspace: Non-renormalization and fermionic symmetries in certain (heterotic string inspired) non-supersymmetric field theories

    CERN Document Server

    Nibbelink, Stefan Groot

    2016-01-01

    Inspired by the tachyon-free non-supersymmetric heterotic SO(16)xSO(16) string we consider a special class of non-supersymmetric field theories: Those that can be obtained from supersymmetric field theories by supersymmetry breaking twists. We argue that such theories, like their supersymmetric counter parts, may still possess some fermionic symmetries as left-overs of the super gauge transformations and have special one-loop non-renormalization properties due to holomorphicity. In addition, we extend the supergraph techniques to these theories to calculate some explicit supersymmetry-breaking corrections.

  17. Twisted superspace: Non-renormalization and fermionic symmetries in certain heterotic-string-inspired non-supersymmetric field theories

    Science.gov (United States)

    Groot Nibbelink, Stefan; Parr, Erik

    2016-08-01

    Inspired by the tachyon-free nonsupersymmetric heterotic SO (16 )×SO (16 ) string we consider a special class of nonsupersymmetric field theories: those that can be obtained from supersymmetric field theories by supersymmetry-breaking twists. We argue that such theories, like their supersymmetric counterparts, may still possess some fermionic symmetries as leftovers of the supergauge transformations and have special one-loop nonrenormalization properties due to holomorphicity. In addition, we extend the supergraph techniques to these theories to calculate some explicit supersymmetry-breaking corrections.

  18. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  19. Magnetic Fields of Neutron Stars

    Indian Academy of Sciences (India)

    Sushan Konar

    2017-09-01

    This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.

  20. Magnetic fields in spiral galaxies

    Science.gov (United States)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  1. Primordial Magnetic Fields that Last?

    CERN Document Server

    Carroll, S M; Carroll, Sean M.; Field, George B.

    1998-01-01

    The magnetic fields we observe in galaxies today may have their origins in the very early universe. While a number of mechanisms have been proposed which lead to an appreciable field amplitude at early times, the subsequent evolution of the field is of crucial importance, especially whether the correlation length of the field can grow as large as the size of a protogalaxy. This talk is a report on work in progress, in which we consider the fate of one specific primordial field scenario, driven by pseudoscalar effects near the electroweak phase transition. We argue that such a scenario has a number of attractive features, although it is still uncertain whether a field of appropriate size can survive until late times.

  2. Magnetic Properties of Erbium Gallium Gallate under High Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Zhang Xijuan; Cheng Haiying; Yang Cuihong; Wang Wei

    2004-01-01

    A theoretical investigation on the magnetic properties of rare-earth Er3+ in Er3 Ga5 O12 was reported. The average magnetic moments(M) for applied magnetic field H parallel to the [001 ], [ 100], [ 110], [ 111 ] direction was studied based on the quantum theory. Temperature dependence of the magnetic properties is analyzed for H applied parallel to the [ 100] and [ 111 ] crystallographic directions. The magnetization decreases with increasing temperature,showing good agreement with thermal effect. A strong anisotropy of the magnetization is found under high magnetic field, but when the magnetic field is small, M and H are proportional.

  3. Modeling and analysis of magnetic dipoles in weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The magnetic leakage field distribution resulting from linear defects of a tube sample in the geomagnetic field is modeled according to the magnetic dipole theory.The formula to compute the normal component of the weak magnetic field is deduced based on the spatial distribution of the magnetic dipole.The shape and characteristics of the zero line (an important criterion for magnetic memory testing) of the normal field is analyzed under different longitudinal magnetizations.Results show that the characteristics of the zero line should be considered when the metal magnetic memory testing method is used to find and locate the defect.

  4. Galactic and intergalactic magnetic fields

    CERN Document Server

    Klein, Ulrich

    2014-01-01

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c

  5. Investigation of Force-Freeness of Solar Emerging Magnetic Field via Application of the Virial Theorem to MHD Simulations

    CERN Document Server

    Kang, Jihye

    2014-01-01

    Force-freeness of a solar magnetic field is a key to reconstructing invisible coronal magnetic structure of an emerging flux region on the Sun where active phenomena such as flares and coronal mass ejections frequently occur. We have performed magnetohydrodynamic (MHD) simulations which are adjusted to investigate force-freeness of an emerging magnetic field by using the virial theorem. Our focus is on how the force-free range of an emerging flux region develops and how it depends on the twist of a pre-emerged magnetic field. As an emerging flux region evolves, the upper limit of the force-free range continuously increases while the lower limit is asymptotically reduced to the order of a photospheric pressure scale height above the solar surface. As the twist becomes small the lower limit increases and then seems to be saturated. We also discuss the applicability of the virial theorem to an evolving magnetic structure on the Sun.

  6. The Motion of a Charged Particle on a Riemannian Surface under a Non-Zero Magnetic Field

    Science.gov (United States)

    Castilho, César

    2001-03-01

    In this paper we study the motion of a charged particle on a Riemmanian surface under the influence of a positive magnetic field B. Using Moser's Twist Theorem and ideas from classical pertubation theory we find sufficient conditions to perpetually trap the motion of a particle with a sufficient large charge in a neighborhood of a level set of the magnetic field. The conditions on the level set of the magnetic field that guarantee the trapping are local and hold near all non-degenerate critical local minima or maxima of B. Using symplectic reduction we apply the results of our work to certain S1-invariant magnetic fields on R3.

  7. Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona

    CERN Document Server

    Petrie, G J D

    2007-01-01

    We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex than straight line and ring current fields sometimes used in solar flux rope models. The axial flux in magnetic fields around confined current structures may be affected by the writhe of these current structures such that the field twists preferentially with the same handedness as the writhe. This property of fields around confined current structures with writhe may be relevant to classes of coronal magnetic flux rope, including structures observed to have sigmoidal forms in soft X-rays and prominence magnetic fields. For ex...

  8. Multilongitudinal mode fiber laser for highly-sensitive magnetic field measurement

    Science.gov (United States)

    Deng, Ming; Liu, Danhui

    2016-10-01

    In this paper, a magnetic field sensor based on a multilongitudinal mode fiber laser has been proposed by employing a rotary apparatus modulated by an external magnetic field. Due to the remarkable birefringence change caused by the fiber twist, the polarimetric mode beat frequency (PMBF) of the laser is sensitive to the applied magnetic field intensity. Experimental results show that the PMBF linearly shifts with the variation of the magnetic field intensity and the sensitivity reaches up to 10.4 KHz Oe-1 in the range of 0-270 Oe. Moreover, such a device has the advantages of easy fabrication, low cost and high resolution, offering potentials in the weak magnetic field applications.

  9. Stress Field of Straight Edge Dislocation in Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-long; HU Hai-yun; FAN Tian-you

    2007-01-01

    To study the changes in mechanical properties of materials within magnetic fields and the motion of dislocations,stress fields of dislocation in magnetic field need to be calculated.The straight edge dislocation is of basic importance in various defects.The stress field of straight edge dislocation in an external static magnetic field is determined by the theory of elasticity and electrodynamics according to the Volterra dislocation model for continuous media.This reduces to the known stress field when the magnet field is zero.The results can be used for further study on the strain energy of dislocations and the interactions between dislocations in magnetic fields.

  10. Diagnosis of solar chromospheric magnetic field

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hongqi(张洪起)

    2002-01-01

    This paper discusses the measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic fields. Some questions in the study of the chromospheric magnetic field are also presented.

  11. The HMI Magnetic Field Pipeline

    Science.gov (United States)

    Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team

    2009-05-01

    The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline” products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand” products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request” products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu

  12. A Vorticity-Magnetic Field Dynamo Instability

    OpenAIRE

    1997-01-01

    We generalize the mean field magnetic dynamo to include local evolution of the mean vorticity in addition to the mean magnetic field. The coupled equations exhibit a general mean field dynamo instability that enables the transfer of turbulent energy to the magnetic field and vorticity on larger scales. The growth of the vorticity and magnetic field both require helical turbulence which can be supplied by an underlying global rotation. The dynamo coefficients are derived including the backreac...

  13. Magnetic field of a combined plasma trap

    Science.gov (United States)

    Kotenko, V. G.; Moiseenko, V. E.; Ågren, O.

    2012-06-01

    This paper presents numerical simulations performed on the structure of a magnetic field created by the magnetic system of a combined plasma trap. The magnetic system includes the stellarator-type magnetic system and one of the mirror-type. For the stellarator type magnetic system the numeric model contains a magnetic system of an l=2 torsatron with the coils of an additional toroidal magnetic field. The mirror-type magnetic system element is considered as being single current-carrying turn enveloping the region of existence of closed magnetic surfaces of the torsatron. The calculations indicate the existence of a vast area of the values of the additional magnetic field magnitude and magnetic field of the single turn where, in principle, the implementation of the closed magnetic surface configuration is quite feasible.

  14. ANALYTIC EXPRESSION OF MAGNETIC FIELD DISTRIBUTION OF RECTANGULAR PERMANENT MAGNETS

    Institute of Scientific and Technical Information of China (English)

    苟晓凡; 杨勇; 郑晓静

    2004-01-01

    From the molecular current viewpoint,an analytic expression exactly describing magnetic field distribution of rectangular permanent magnets magnetized sufficiently in one direction was derived from the Biot-Savart's law. This expression is useful not only for the case of one rectangular permanent magnet bulk, but also for that of several rectangular permanent magnet bulks. By using this expression,the relations between magnetic field distribution and the size of rectangular permanent magnets as well as the magnitude of magnetic field and the distance from the point in the space to the top (or bottom) surface of rectangular permanent magnets were discussed in detail. All the calculating results are consistent with experimental ones. For transverse magnetic field which is a main magnetic field of rectangular permanent magnets,in order to describe its distribution,two quantities,one is the uniformity in magnitude and the other is the uniformity in distribution of magnetic field,were defined. Furthermore, the relations between them and the geometric size of the magnet as well as the distance from the surface of permanent magnets were investigated by these formulas. The numerical results show that the geometric size and the distance have a visible influence on the uniformity in magnitude and the uniformity in distribution of the magnetic field.

  15. The $\\epsilon$-expansion of the codimension two twist defect from conformal field theory

    CERN Document Server

    Yamaguchi, Satoshi

    2016-01-01

    We apply the framework of Rychkov-Tan arXiv:1505.00963 to the codimension two twist defect at the Wilson-Fisher fixed point in $4-\\epsilon$ dimensions. We obtain the scaling dimensions of the operators on the defect up to the lowest nontrivial order in the $\\epsilon$-expansion without using Feynman diagram computation. Our results agree with the known results.

  16. The ɛ-expansion of the codimension two twist defect from conformal field theory

    Science.gov (United States)

    Yamaguchi, Satoshi

    2016-09-01

    We apply the framework of Rychkov and Tan [S. Rychkov and Z. M. Tan, J. Phys. A 48, 29FT01 (2015)] to the codimension two twist defect at the Wilson-Fisher fixed point in 4-ɛ dimensions. We obtain the scaling dimensions of the operators on the defect up to the lowest nontrivial order in the ɛ-expansion without using Feynman diagram computation. Our results agree with the known results.

  17. Field and Thermal Characteristics of Magnetizing Fixture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes field modeling and thermal modeling for magnetizing fixture. As the detailed characteristics of magnetizing fixture can be obtained, the efficient design of magnetizer which produce desired magnet will be possible using our modeling. For field modeling finite-element analysis is used as part of the design and analysis process for magnetizing fixture. The thermal modeling method of magnetizing fixture resistor uses multi-lumped model with equivalent thermal resistance and thermal capacitance.

  18. Magnetic fields for fluid motion.

    Science.gov (United States)

    Weston, Melissa C; Gerner, Matthew D; Fritsch, Ingrid

    2010-05-01

    Three forces induced by magnetic fields offer unique control of fluid motion and new opportunities in microfluidics. This article describes magnetoconvective phenomena in terms of the theory and controversy, tuning by redox processes at electrodes, early-stage applications in analytical chemistry, mature applications in disciplines far afield, and future directions for micro total analysis systems. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).

  19. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    CERN Document Server

    Shimizu, T

    2015-01-01

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere, and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconne...

  20. Deformation of Water by a Magnetic Field

    Science.gov (United States)

    Chen, Zijun; Dahlberg, E. Dan

    2011-03-01

    After the discovery that superconducting magnets could levitate diamagnetic objects,1,2 researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields,3-5 which was given the name "The Moses Effect."5 Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary were produced by superconducting magnets.

  1. Resonant spin-flavor precession constraints on the neutrino parameters and the twisting structure of the solar magnetic fields from the solar neutrino data

    Indian Academy of Sciences (India)

    S Dev; Jyoti Dhar Sharma; U C Pandey; S P Sud; B C Chauhan

    2003-07-01

    Resonant spin-flavor precession (RSFP) scenario with twisting solar magnetic fields has been confronted with the solar neutrino data from various ongoing experiments. The anticorrelation apparent in the Homestake solar neutrino data has been taken seriously to constrain ( 2,') parameter space and the twisting profiles of the magnetic field in the convective zone of the Sun. The twisting profiles, thus derived, have been used to calculate the variation of the neutrino detection rates with the solar magnetic activity for the Homestake, Super-Kamiokande and the gallium experiments. It is found that the presence of twisting reduces the degree of anticorrelation in all the solar neutrino experiments. However, the anticorrelation in the Homestake experiment is expected to be more pronounced in this scenario. Moreover, the anticorrelation of the solar neutrino flux emerging from the southern solar hemisphere is expected to be stronger than that for the neutrinos emerging from the northern solar hemispheres.

  2. Passive Magnetic Shielding in Gradient Fields

    CERN Document Server

    Bidinosti, C P

    2013-01-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied. It is found that for concentric cylindrical or spherical shells of high permeability material, higher order multipoles in the magnetic field are shielded progressively better, by a factor related to the order of the multipole. In regard to the design of internal coil systems for the generation of uniform internal fields, we show how one can take advantage of the coupling of the coils to the innermost magnetic shield to further optimize the uniformity of the field. These results demonstrate quantitatively a phenomenon that was previously well-known qualitatively: that the resultant magnetic field within a passively magnetically shielded region can be much more uniform than the applied magnetic field itself. Furthermore we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields clos...

  3. Modeling the structure of magnetic fields in Neutron Stars: from the interior to the magnetosphere

    CERN Document Server

    Bucciantini, N; Del Zanna, L

    2015-01-01

    The phenomenology of the emission of pulsars and magnetars depends dramatically on the structure and properties of their magnetic field. In particular it is believed that the outbursting and flaring activity observed in AXPs and SRGs is strongly related to their internal magnetic field. Recent observations have moreover shown that charges are present in their magnetospheres supporting the idea that their magnetic field is tightly twisted in the vicinity of the star. In principle these objects offer a unique opportunity to investigate physics in a regime beyond what can be obtained in the laboratory. We will discuss the properties of equilibrium models of magnetized neutron stars, and we will show how internal and external currents can be related. These magnetic field configurations will be discussed considering also their stability, relevant for their origin and possibly connected to events like SNe and GRBs. We will also show what kind of deformations they induce in the star, that could lead to emission of g...

  4. Energy Release in Driven Twisted Coronal Loops

    Science.gov (United States)

    Bareford, M. R.; Gordovskyy, M.; Browning, P. K.; Hood, A. W.

    2016-01-01

    We investigate magnetic reconnection in twisted magnetic fluxtubes, representing coronal loops. The main goal is to establish the influence of the field geometry and various thermodynamic effects on the stability of twisted fluxtubes and on the size and distribution of heated regions. In particular, we aim to investigate to what extent the earlier idealised models, based on the initially cylindrically symmetric fluxtubes, are different from more realistic models, including the large-scale curvature, atmospheric stratification, thermal conduction and other effects. In addition, we compare the roles of Ohmic heating and shock heating in energy conversion during magnetic reconnection in twisted loops. The models with straight fluxtubes show similar distribution of heated plasma during the reconnection: it initially forms a helical shape, which subsequently becomes very fragmented. The heating in these models is rather uniformly distributed along fluxtubes. At the same time, the hot plasma regions in curved loops are asymmetric and concentrated close to the loop tops. Large-scale curvature has a destabilising influence: less twist is needed for instability. Footpoint convergence normally delays the instability slightly, although in some cases, converging fluxtubes can be less stable. Finally, introducing a stratified atmosphere gives rise to decaying wave propagation, which has a destabilising effect.

  5. Thermal and non-thermal emission from reconnecting twisted coronal loops

    CERN Document Server

    Pinto, R; Browning, P K; Vilmer, N

    2016-01-01

    Twisted magnetic fields should be ubiquitous in the solar corona. The magnetic energy contained in such twisted fields can be released during solar flares and other explosive phenomena. Reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops, and can be a viable alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. The goal of this study is to investigate the observational signatures of plasma heating and particle acceleration in kink-unstable twisted coronal loops using combination of MHD simulations and test-particle methods. The simulations describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us est...

  6. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  7. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  8. Hybrid Shielding for Magnetic Fields

    Science.gov (United States)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  9. Manifestations of Magnetic Field Inhomogeneities

    Indian Academy of Sciences (India)

    Lawrence Rudnick

    2011-12-01

    Both observations and simulations reveal large inhomogeneities in magnetic field distributions in diffuse plasmas. Incorporating these inhomogeneities into various calculations can significantly change the inferred physical conditions. In extragalactic sources, e.g., these can compromise analyses of spectral ageing, which I will illustrate with some current work on cluster relics. I also briefly re-examine the old issue of how inhomogeneous fields affect particle lifetimes; perhaps not surprisingly, the next generation of radio telescopes are unlikely to find many sources that can extend their lifetimes from putting relativistic electrons into a low-field ‘freezer’. Finally, I preview some new EVLA results on the complex relic in Abell 2256, with implications for the interspersing of its relativistic and thermal plasmas.

  10. Effects of magnetic field on fluidization properties of magnetic pearls

    Institute of Scientific and Technical Information of China (English)

    Maoming Fan; Zhenfu Luo; Yuemin Zhao; Qingru Chen; Daniel Tao; Xiuxiang Tao; Zhenqiang Chen

    2007-01-01

    An experimental study of the influence of external magnetic field on the fluidization behavior of magnetic pearls was carried out. Magnetic pearls are a magnetic form of iron oxide that mainly consists of Fe2O3 which are recovered from a high-volume power plant fly ash from pulverized coal combustion. Due to its abundance, low price and particular physical and chemical properties, magnetic pearls can be used as a heavy medium for minerals or solid waste dry separation based on density difference. This paper introduces the properties of magnetic pearls and compares the performance of magnetic pearls fluidised bed operation with or without an external magnetic field. Experimental results show that an external magnetic field significantly improves the fluidization performance of magnetic pearls such as uniformity and stability.

  11. Interaction between two magnetic dipoles in a uniform magnetic field

    Directory of Open Access Journals (Sweden)

    J. G. Ku

    2016-02-01

    Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  12. Effective magnetic moment of neutrinos in strong magnetic fields

    CERN Document Server

    Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  13. Magnetic field penetration of erosion switch plasmas

    Science.gov (United States)

    Mason, Rodney J.; Jones, Michael E.; Grossmann, John M.; Ottinger, Paul F.

    1988-10-01

    Computer simulations demonstrate that the entrainment (or advection) of magnetic field with the flow of cathode-emitted electrons can constitute a dominant mechanism for the magnetic field penetration of erosion switch plasmas. Cross-field drift in the accelerating electric field near the cathode starts the penetration process. Plasma erosion propagates the point for emission and magnetic field injection along the cathode toward the load-for the possibility of rapid switch opening.

  14. Magnetic field reversals and galactic dynamos

    OpenAIRE

    2012-01-01

    We argue that global magnetic field reversals similar to those observed in the Milky Way occur quite frequently in mean-field galactic dynamo models that have relatively strong, random, seed magnetic fields that are localized in discrete regions. The number of reversals decreases to zero with reduction of the seed strength, efficiency of the galactic dynamo and size of the spots of the seed field. A systematic observational search for magnetic field reversals in a representative sample of spi...

  15. Twist-induced Magnetosphere Reconfiguration for Intermittent Pulsars

    CERN Document Server

    Huang, Lei; Tong, Hao

    2016-01-01

    We propose that the magnetosphere reconfiguration induced by magnetic twists in the closed field line region can account for the mode-switching of intermittent pulsars. We carefully investigate the properties of axisymmetric force-free pulsar magnetospheres with magnetic twists in closed field line region around the polar caps. The magnetosphere with twisted closed lines leads to enhanced spin-down rates. The enhancement in spin-down rate depends on the size of region with twisted closed lines. Typically, it is increased by a factor of $\\sim2$, which is consistent with the intermittent pulsars' spin down behavior during the `off' and `on' states. We find there is a threshold of maximal twist angle $\\Delta\\phi_{\\rm thres}\\sim1$. The magnetosphere is stable only if the closed line twist angle is less than $\\Delta\\phi_{\\rm thres}$. Beyond this value, the magnetosphere becomes unstable and gets untwisted. The spin-down rate would reduce to its off-state value. The quasi-periodicity in spin-down rate change can be...

  16. Near-Field Magnetic Dipole Moment Analysis

    Science.gov (United States)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  17. Magnetic Fields from the Electroweak Phase Transition

    CERN Document Server

    Törnkvist, O

    1998-01-01

    I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.

  18. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  19. Investigation of the Periodic Magnetic Field Modulation in LHC Superconducting Dipoles

    CERN Document Server

    Pugnat, P; Siemko, A

    2002-01-01

    The windings of high-field accelerator magnets are usually made of Rutherford-type superconducting cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. This effect, resulting from quasi-persistent currents, was investigated with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in short models and full-scale prototypes. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. The origin and the impact on the LHC dipoles stability of the non-uniform current redistribution producing such a field modulation are discussed.

  20. Deformation of Water by a Magnetic Field

    Science.gov (United States)

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  1. Exploring Magnetic Fields with a Compass

    Science.gov (United States)

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  2. Biological Effect of Magnetic Field in Mice

    Institute of Scientific and Technical Information of China (English)

    Zhao-Wei ZENG

    2005-01-01

    Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.

  3. The Magnetic Field Effect on Planetary Nebulae

    Institute of Scientific and Technical Information of China (English)

    A. R. Khesali; K. Kokabi

    2006-01-01

    In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.

  4. Magnetic field concentrator for probing optical magnetic metamaterials.

    Science.gov (United States)

    Antosiewicz, Tomasz J; Wróbel, Piotr; Szoplik, Tomasz

    2010-12-06

    Development of all dielectric and plasmonic metamaterials with a tunable optical frequency magnetic response creates a need for new inspection techniques. We propose a method of measuring magnetic responses of such metamaterials within a wide range of optical frequencies with a single probe. A tapered fiber probe with a radially corrugated metal coating concentrates azimuthally polarized light in the near-field into a subwavelength spot the longitudinal magnetic field component which is much stronger than the perpendicular electric one. The active probe may be used in a future scanning near-field magnetic microscope for studies of magnetic responses of subwavelength elementary cells of metamaterials.

  5. Electrolytic tiltmeters inside magnetic fields: Some observations

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J. [CIEMAT, Madrid (Spain); Arce, P. [CIEMAT, Madrid (Spain); Barcala, J.M. [CIEMAT, Madrid (Spain); Calvo, E. [CIEMAT, Madrid (Spain); Ferrando, A. [CIEMAT, Madrid (Spain)]. E-mail: antonio.ferrando@ciemat.es; Josa, M.I. [CIEMAT, Madrid (Spain); Luque, J.M. [CIEMAT, Madrid (Spain); Molinero, A. [CIEMAT, Madrid (Spain); Navarrete, J. [CIEMAT, Madrid (Spain); Oller, J.C. [CIEMAT, Madrid (Spain); Yuste, C. [CIEMAT, Madrid (Spain); Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Garcia-Moral, L.A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gomez, G. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Gonzalez-Sanchez, F.J. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Ruiz-Arbol, P. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Scodellaro, L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain)

    2007-04-21

    We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths.

  6. From Inverse to Delayed Magnetic Catalysis in Strong Magnetic Field

    CERN Document Server

    Mao, Shijun

    2016-01-01

    We study magnetic field effect on chiral phase transition in a Nambu--Jona-Lasinio model. In comparison with mean field approximation containing quarks only, including mesons as quantum fluctuations in the model leads to a transition from inverse to delayed magnetic catalysis at finite temperature and delays the transition at finite baryon chemical potential. The location of the critical end point depends on the the magnetic field non-monotonously.

  7. Magnetic domain-wall motion twisted by nanoscale probe-induced spin transfer

    Science.gov (United States)

    Wang, J.; Xie, L. S.; Wang, C. S.; Zhang, H. Z.; Shu, L.; Bai, J.; Chai, Y. S.; Zhao, X.; Nie, J. C.; Cao, C. B.; Gu, C. Z.; Xiong, C. M.; Sun, Y.; Shi, J.; Salahuddin, S.; Xia, K.; Nan, C. W.; Zhang, J. X.

    2014-12-01

    A method for deterministic control of magnetism using an electrical stimulus is highly desired for the new generation of magnetoelectronic devices. Much effort has been focused on magnetic domain-wall (DW) motion manipulated by a successive injection of spin-polarized current into a magnetic nanostructure. However, an integrant high-threshold current density of 1011˜1012A /m2 inhibits the integration with low-energy-cost technology. Here, we report an approach to manipulate a single magnetic domain wall with a perpendicular anisotropy in a manganite/dielectric/metal capacitor using a probe-induced spin displacement. A spin-transfer torque (STT) occurs in the strongly correlated manganite film during the spin injection into the capacitor from the nanoscale magnetized tip with an ultralow voltage of 0.1 V, where a lower bound of the estimated threshold spin-polarized current density is ˜108A /m2 at the tip/manganite interface. The dynamic of DW motions are analyzed using the Landau-Lifshitz-Gilbert method. This probe-voltage-controlled DW motion, at an ambient condition, demonstrates a critical framework for the fundamental understanding of the manipulation of the nanomagnet systems with low-energy consumption.

  8. The finite element analysis and calculation of axial magnetic transition based on multi-twisting spindle%多倍捻锭子轴向磁力传动计算及其有限元分析

    Institute of Scientific and Technical Information of China (English)

    张智明; 梅顺齐; 肖人彬; 刘青松

    2011-01-01

    多倍捻锭子利用磁场作用力传递转矩,它的结构参数、永磁体分布影响磁力的大小变化,因此需要进行轴向磁力计算.针对轴向磁力传动结构,由经验求解法和等效磁荷原理建立磁力计算数学模型,采用有限元分析软件,通过仿真与计算,探讨磁力线、磁感应强度和磁场强度分布,研究不同计算方法时的磁转矩值,为轴向磁力传动结构优化设计和磁路分布提供依据,具有重要的实际应用价值.%The torque of multi-twisting spindle is transmitted by magnetic field.Calculation of axial magnetic force is necessary because of magnetic force varied with the spindle's structure parameters and permanent magnet distribution.The mathematic model is constructed with the experience solution and the principle of equivalent magnetic charge in view of the structure of axial magnetic transmitting.The ANSYS software is adopted for simulation and calculation of magnetic force to get the distribution of magnetic force linc,magnetic field intensity and magnetic flux intensity.These analysis benefit from the optimize design of axial magnetic transmitting machine and the permanent magnet distributing and is important practical applications.

  9. Dynamic shielding of the magnetic fields

    Directory of Open Access Journals (Sweden)

    RAU, M.

    2010-11-01

    Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.

  10. Field free line magnetic particle imaging

    CERN Document Server

    Erbe, Marlitt

    2014-01-01

    Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of consi

  11. Twisted radio waves and twisted thermodynamics.

    Science.gov (United States)

    Kish, Laszlo B; Nevels, Robert D

    2013-01-01

    We present and analyze a gedanken experiment and show that the assumption that an antenna operating at a single frequency can transmit more than two independent information channels to the far field violates the Second Law of Thermodynamics. Transmission of a large number of channels, each associated with an angular momenta 'twisted wave' mode, to the far field in free space is therefore not possible.

  12. An interplanetary magnetic field enhancement observed by five spacecraft: Deducing the magnetic structure, size and mass

    Science.gov (United States)

    Lai, H.; Russell, C. T.; Delzanno, G.; Angelopoulos, V.

    2012-12-01

    Interplanetary Field Enhancements (IFEs) were discovered almost 30 years ago in the PVO magnetic-field records and attributed to the interaction between solar wind and dust particles from comets or asteroids, but the physics of this interaction remained obscure. Our current understanding is that IFEs result from collisions of small interplanetary bodies that produce electrically charged nanometer-scale dust particles possibly enhanced by tribo-electric charging in the collision. These charged dust particles in turn interact with the magnetized solar wind. Momentum is transferred from the solar wind to the dust cloud via the collective effect of the formation of a magnetic barrier. This momentum transfer accelerates the particles to near the solar wind speed and moves the dust outward through the solar gravitational potential well. Multi-spacecraft observations can help us to determine the speed of the IFE and the orientation of the current sheet. They enable us to reconstruct the pressure profile of an IFE in three dimensions and estimate the mass contained in the IFE. We have done these reconstructions with an IFE observed on March 3, 2011 with Wind, ACE, ARTEMIS P1 and P2 and Geotail. We find that the magnetic field near the center of the IFE is highly twisted indicating a complicated magnetic topology as expected in a plasma-charged dust interaction. The magnetic field and plasma properties during this event distinguish it from a typical flux rope. Based on the statistical results obtained at 1 AU and the assumption that all the IFEs are self-similar, we find that this IFE has a radial scale length several times longer than the cross flow radius and contains a mass of about 108 kg. The rates of collisions expected for objects of this size are consistent with the observed rates of these disturbances.

  13. ON THE SATURATION BEHAVIOUR OF TWISTED NEMATIC LIQUID CRYSTAL CELLS WITH A NONZERO PRETILT ANGLE

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZHI-DONG; YU HUI; LI LI

    2001-01-01

    Equations are obtained for the surface tilt angle and the twist angle of the director in a twisted nematic liquid crystal cell under a high magnetic field. Under a zero pretilt angle, the two equations reduce to those obtained by Sugimura et al.[2,3] This fact has also been demonstrated numerically. With finite field strength and nonzero pretilt angle, no saturation transition exists.

  14. Conformal weights of charged Rényi entropy twist operators for free scalar fields in arbitrary dimensions

    Science.gov (United States)

    Dowker, J. S.

    2016-04-01

    I compute the conformal weights of the twist operators of free scalar fields for charged Rényi entropy in both odd and even dimensions. Explicit expressions can be found, in odd dimensions as a function of the chemical potential in the absence of a conical singularity and thence by images for all integer coverings. This method, developed some time ago, is equivalent, in results, to the replica technique. A review is given. The same method applies for even dimensions but a general form is more immediately available. For no chemical potential, the closed form in the covering order is written in an alternative way related to old trigonometric sums. Some derivatives are obtained. An analytical proof is given of a conjecture made by Bueno, Myers and Witczak-Krempa regarding the relation between the conformal weights and a corner coefficient (a universal quantity) in the Rényi entropy.

  15. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  16. Magnetic Fields and Star Formation

    CERN Document Server

    Van Loo, S; Falle, S A E G

    2012-01-01

    Research performed in the 1950s and 1960s by Leon Mestel on the roles of magnetic fields in star formation established the framework within which he and other key figures have conducted subsequent investigations on the subject. This short tribute to Leon contains a brief summary of some, but not all, of his ground breaking contributions in the area. It also mentions of some of the relevant problems that have received attention in the last few years. The coverage is not comprehensive, and the authors have drawn on their own results more and touched more briefly on those of others than they would in a normal review. Theirs is a personal contribution to the issue honouring Leon, one of the truly great gentlemen, wits, and most insightful of astrophysicists.

  17. DC-based magnetic field controller

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  18. DC-based magnetic field controller

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  19. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  20. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Tetsuya; Watasaki, Masahiro [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Kimura, Yosuke [Kawasaki Heavy Industries, Ltd. Technical Institute System Technology Development Centre 1-1, Kawasaki-cho, Akashi-shi, Hyogo 673-8666 (Japan); Miki, Motohiro; Izumi, Mitsuru, E-mail: ida@hiroshima-cmt.ac.j [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2010-06-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  1. Magnetic field evolution in tidal disruption events

    CERN Document Server

    Bonnerot, Clément; Lodato, Giuseppe; Rossi, Elena M

    2016-01-01

    When a star gets tidally disrupted by a supermassive black hole, its magnetic field is expected to be transmitted to the debris. In this paper, we study this process via smoothed particle magnetohydrodynamical simulations of the disruption and early debris evolution including the stellar magnetic field. As the gas stretches into a stream, we show that the magnetic field evolution is strongly dependent on its orientation with respect to the stretching direction. In particular, an alignment of the field lines with the direction of stretching induces an increase of the magnetic energy. For disruptions happening well within the tidal radius, the star compression causes the magnetic field strength to sharply increase by an order of magnitude at the time of pericentre passage. If the disruption is partial, we find evidence for a dynamo process occurring inside the surviving core due to the formation of vortices. This causes an amplification of the magnetic field strength by a factor of $\\sim 10$. However, this valu...

  2. Synchrotron Applications of High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This workshop aims at discussing the scientific potential of X-ray diffraction and spectroscopy in magnetic fields above 30 T. Pulsed magnetic fields in the range of 30 to 40 T have recently become available at Spring-8 and the ESRF (European synchrotron radiation facility). This document gathers the transparencies of the 6 following presentations: 1) pulsed magnetic fields at ESRF: first results; 2) X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transition and frustrated magnet; 3) R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}: an ideal system to be studied in X-ray under high magnetic field?; 4) high field studies at the Advanced Photon Source: present status and future plans; 5) synchrotron X-ray diffraction studies under extreme conditions; and 6) projects for pulsed and steady high magnetic fields at the ESRF.

  3. Demagnetizing fields in active magnetic regenerators

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also......A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....

  4. New knowledge of the Galactic magnetic fields

    CERN Document Server

    Han, J L

    2009-01-01

    The magnetic fields of our Milky Way galaxy are the main agent for cosmic rays to transport. In the last decade, much new knowledge has been gained from measurements of the Galactic magnetic fields. In the Galactic disk, from the RMs of a large number of newly discovered pulsars, the large-scale magnetic fields along the spiral arms have been delineated in a much larger region than ever before, with alternating directions in the arm and interarm regions. The toroidal fields in the Galactic halo were revealed to have opposite directions below and above the Galactic plane, which is an indication of an A0 mode dynamo operating in the halo. The strength of large-scale fields obtained from pulsar RM data has been found to increase exponentially towards the Galactic center. Compared to the steep Kolmogorov spectrum of magnetic energy at small scales, the large-scale magnetic fields show a shallow broken spatial magnetic energy spectrum.

  5. Behaviour of ferrocholesterics under external magnetic fields

    Science.gov (United States)

    Petrescu, Emil; Motoc, Cornelia

    2001-08-01

    The influence of an external magnetic field on the orientational behaviour of a ferrocholesteric with a positive magnetic anisotropy is investigated. Both the phenomena arising when the field was switched on or switched off are considered. It is found that the field needed for a ferrocholesteric-ferronematic transition BFC↑ is higher when compared to that obtained for the pure cholesteric ( BC↑). A similar result was obtained when estimating the critical field for the homeotropic ferronematic-ferrocholesteric (focal conic) transition, occurring when the magnetic field was decreased or switched off. We found that BFC↓> BC↓. These results are explained when considering that the magnetic moments of the magnetic powder are not oriented parallel to the liquid crystal molecular directors, therefore hindering their orientation under a magnetic field.

  6. Coulomb crystals in the magnetic field

    CERN Document Server

    Baiko, D A

    2009-01-01

    The body-centered cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied using the rigid electron background approximation. The phonon mode spectra are calculated for a wide range of magnetic field strengths and for several orientations of the field in the crystal. The phonon spectra are used to calculate the phonon contribution to the crystal energy, entropy, specific heat, Debye-Waller factor of ions, and the rms ion displacements from the lattice nodes for a broad range of densities, temperatures, chemical compositions, and magnetic fields. Strong magnetic field dramatically alters the properties of quantum crystals. The phonon specific heat increases by many orders of magnitude. The ion displacements from their equilibrium positions become strongly anisotropic. The results can be relevant for dusty plasmas, ion plasmas in Penning traps, and especially for the crust of magnetars (neutron stars with superstrong magnetic fields $B \\gtrsim 10^{14}$ G). The effect of the magnetic ...

  7. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...

  8. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  9. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Science.gov (United States)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  10. Beam Transport in Toroidal Magnetic Field

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  11. Magnetically modified bioсells in constant magnetic field

    Science.gov (United States)

    Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.

  12. Near-zero-field nuclear magnetic resonance

    OpenAIRE

    Ledbetter, Micah; Theis, Thomas; Blanchard, John; Ring, Hattie; Ganssle, Paul; Appelt, Stephan; Bluemich, Bernhard; Pines, Alex; Budker, Dmitry

    2011-01-01

    We investigate nuclear magnetic resonance (NMR) in near-zero-field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J-coupling). This is in stark contrast to the high field case, where heteronuclear J-couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectr...

  13. Minimizing magnetic fields for precision experiments

    CERN Document Server

    Altarev, I; Lins, T; Marino, M G; Nießen, B; Petzoldt, G; Reisner, M; Stuiber, S; Sturm, M; Singh, J T; Taubenheim, B; Rohrer, H K; Schläpfer, U

    2015-01-01

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  14. Magnetic field evolution in tidal disruption events

    Science.gov (United States)

    Bonnerot, Clément; Price, Daniel J.; Lodato, Giuseppe; Rossi, Elena M.

    2017-08-01

    When a star gets tidally disrupted by a supermassive black hole, its magnetic field is expected to pervade its debris. In this paper, we study this process via smoothed particle magnetohydrodynamical simulations of the disruption and early debris evolution including the stellar magnetic field. As the gas stretches into a stream, we show that the magnetic field evolution is strongly dependent on its orientation with respect to the stretching direction. In particular, an alignment of the field lines with the direction of stretching induces an increase of the magnetic energy. For disruptions happening well within the tidal radius, the star compression causes the magnetic field strength to sharply increase by an order of magnitude at the time of pericentre passage. If the disruption is partial, we find evidence for a dynamo process occurring inside the surviving core due to the formation of vortices. This causes an amplification of the magnetic field strength by a factor of ˜10. However, this value represents a lower limit since it increases with numerical resolution. For an initial field strength of 1 G, the magnetic field never becomes dynamically important. Instead, the disruption of a star with a strong 1 MG magnetic field produces a debris stream within which magnetic pressure becomes similar to gas pressure a few tens of hours after disruption. If the remnant of one or multiple partial disruptions is eventually fully disrupted, its magnetic field could be large enough to magnetically power the relativistic jet detected from Swift J1644+57. Magnetized streams could also be significantly thickened by magnetic pressure when it overcomes the confining effect of self-gravity.

  15. Magnetic field screening effect in electroweak model

    CERN Document Server

    Bakry, A; Zhang, P M; Zou, L P

    2014-01-01

    It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.

  16. Numerical Simulation of Level Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to Maxwell electromagnetic field theory and magnetic vector potential integral equation, a mathematical model of LMF (Level Magnetic Field) for EMBR (Electromagnetic brake) was proposed, and the reliable software for LMF calculation was developed. The distribution of magnetic flux density given by numerical simulation shows that the magnetic flux density is greater in the magnet and magnetic leakage is observed in the gap. The magnetic flux density is uniform in horizontal plane and a peak is observed in vertical plane. Furthermore, the effects of electromagnetic and structural parameters on magnetic flux density were discussed. The relationship between magnetic flux, electromagnetic parameters and structural parameters is obtained by dimensional analysis, simulation experiment and least square method.

  17. Rydberg EIT in High Magnetic Field

    Science.gov (United States)

    Ma, Lu; Anderson, David; Miller, Stephanie; Raithel, Georg

    2016-05-01

    We present progress towards an all-optical approach for measurements of strong magnetic fields using electromagnetically induced transparency (EIT) with Rydberg atoms in an atomic vapor. Rydberg EIT spectroscopy is a promising technique for the development of atom-based, calibration- and drift-free technology for high magnetic field sensing. In this effort, Rydberg EIT is employed to spectroscopically investigate the response of Rydberg atoms exposed to strong magnetic fields, in which Rydberg atoms are in the strong-field regime. In our setup, two neodymium block magnets are used to generate fields of about 0.8 Tesla, which strongly perturb the atoms. Information on the field strength and direction is obtained by a comparison of experimental spectra with calculated spectral maps. Investigations of magnetic-field inhomogeneities and other decoherence sources will be discussed.

  18. Optical fibers with composite magnetic coating for magnetic field sensing

    Energy Technology Data Exchange (ETDEWEB)

    Radojevic, V.; Nedeljkovic, D.; Talijan, N. E-mail: ntalijan@elab.tmf.bg.ac.yu; Trifunovic, D.; Aleksic, R

    2004-05-01

    The investigated system for optical fiber sensor was multi-mode optical fiber with magnetic composite coating. Polymer component of composite coating was poly (ethylene-co-vinyl acetate)-EVA, and the magnetic component was powder of SmCo{sub 5} permanent magnet in form of single domain particles. The influence of the applied external magnetic field on the change of intensity of the light signal propagated through optical fiber was investigated.

  19. Optical fibers with composite magnetic coating for magnetic field sensing

    Science.gov (United States)

    Radojevic, V.; Nedeljkovic, D.; Talijan, N.; Trifunovic, D.; Aleksic, R.

    2004-05-01

    The investigated system for optical fiber sensor was multi-mode optical fiber with magnetic composite coating. Polymer component of composite coating was poly (ethylene-co-vinyl acetate)-EVA, and the magnetic component was powder of SmCo5 permanent magnet in form of single domain particles. The influence of the applied external magnetic field on the change of intensity of the light signal propagated through optical fiber was investigated.

  20. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  1. Twisted supergravity and its quantization

    CERN Document Server

    Costello, Kevin

    2016-01-01

    Twisted supergravity is supergravity in a background where the bosonic ghost field takes a non-zero value. This is the supergravity counterpart of the familiar concept of twisting supersymmetric field theories. In this paper, we give conjectural descriptions of type IIA and IIB supergravity in $10$ dimensions. Our conjectural descriptions are in terms of the closed-string field theories associated to certain topological string theories, and we conjecture that these topological string theories are twists of the physical string theories. For type IIB, the results of arXiv:1505.6703 show that our candidate twisted supergravity theory admits a unique quantization in perturbation theory. This is despite the fact that the theories, like the original physical theories, are non-renormalizable. Although we do not prove our conjectures, we amass considerable evidence. We find that our candidates for the twisted supergravity theories contain the residual supersymmetry one would expect. We also prove (using heavily a res...

  2. An Intergalactic Magnetic Field from Quasar Outflows

    CERN Document Server

    Furlanetto, S; Furlanetto, Steven; Loeb, Abraham

    2001-01-01

    Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function magnetic field strength at different redshifts. We find that by a redshift z ~ 3, about 5-80% of the IGM volume is filled by magnetic fields with an energy density > 10% of the mean thermal energy density of a photo-ionized IGM (at ~ 10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the fields observed in these systems without a need for further dynamo amplification.

  3. Twisting formula of epsilon factors

    Indian Academy of Sciences (India)

    SAZZAD ALI BISWAS

    2017-09-01

    For characters of a non-Archimedean local field we have explicit formula for epsilon factors. But in general, we do not have any generalized twisting formula of epsilon factors. In this paper, we give a generalized twisting formula of epsilon factorsvia local Jacobi sums.

  4. Long-period helical structures and twist-grain boundary phases induced by chemical substitution in the Mn1 -x(Co,Rh ) xGe chiral magnet

    Science.gov (United States)

    Martin, N.; Deutsch, M.; Chaboussant, G.; Damay, F.; Bonville, P.; Fomicheva, L. N.; Tsvyashchenko, A. V.; Rössler, U. K.; Mirebeau, I.

    2017-07-01

    We study the evolution of helical magnetism in MnGe chiral magnet upon partial substitution of Mn for 3 d -Co and 4 d -Rh ions. At high doping levels, we observe spin helices with very long periods—more than ten times larger than in the pure compound—and sizable ordered moments. This behavior calls for a change in the energy balance of interactions leading to the stabilization of the observed magnetic structures. Strikingly, neutron scattering unambiguously shows a double periodicity in the observed spectra at x =0.5 and >0.2 for Co- and Rh-doping, respectively. In analogy with observations made in smectic liquid crystals, we suggest that it may reveal the presence of magnetic "twist grain boundary" phases, involving a dense short-range correlated network of magnetic screw dislocations. The dislocation cores are here tentatively described as smooth textures, made of nonradial double-core skyrmions.

  5. MDI Synoptic Charts of Magnetic Field: Interpolation of Polar Fields

    Science.gov (United States)

    Liu, Yang; Hoeksema, J. T.; Zhao, X.; Larson, R. M.

    2007-05-01

    In this poster, we compare various methods for interpolation of polar field for the MDI synoptic charts of magnetic field. By examining the coronal and heliospheric magnetic field computed from the synoptic charts based on a Potential Field Source Surface model (PFSS), and by comparing the heliospheric current sheets and footpoints of open fields with the observations, we conclude that the coronal and heliospheric fields calculated from the synoptic charts are sensitive to the polar field interpolation, and a time-dependent interpolation method using the observed polar fields is the best among the seven methods investigated.

  6. Efficient magnetic fields for supporting toroidal plasmas

    CERN Document Server

    Landreman, Matt

    2016-01-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The properties of curl-free magnetic fields allow magnetic field distributions to be ranked in order of their difficulty of production from a distance. Plasma shapes with low curvature and spectral width may be difficult to support, whereas plasma shapes with sharp edges may be efficiently supported by distant coils. Two measures of difficulty, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally-produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix y...

  7. The Evolution of the Earth's Magnetic Field.

    Science.gov (United States)

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  8. The Physics of Attraction and Repulsion: Magnetism and Magnetic Fields

    Science.gov (United States)

    Nakotte, Heinz

    2001-11-01

    The development of new materials with improved magnetic properties completely changed the modern world in the past decades. Recent progress is predominantly due to a better understanding of magnetism that has gone far beyond compass needles rotating in a magnetic field and bar magnets attracting or repelling each other. New magnetic materials are used to build smaller and smaller read/write heads and hard disks with increased storage capacity, developments that are responsible the revolution in the computer industry. Another example is the field of magnetic levitation that became feasible for commercial applications with the discovery of new superconducting materials, and a prototype train is under development in Japan. In medicine, the development of magnetic resonance imaging (MRI) provides an alternative to other (destructive) radiation techniques.

  9. Assembly of magnetic spheres in strong homogeneous magnetic field

    Science.gov (United States)

    Messina, René; Stanković, Igor

    2017-01-01

    The assembly in two dimensions of spherical magnets in strong magnetic field is addressed theoretically. It is shown that the attraction and assembly of parallel magnetic chains is the result of a delicate interplay of dipole-dipole interactions and short ranged excluded volume correlations. Minimal energy structures are obtained by numerical optimization procedure as well as analytical considerations. For a small number of constitutive magnets Ntot ≤ 26, a straight chain is found to be the ground state. In the regime of larger Ntot ≥ 27, the magnets form two touching chains with equally long tails at both ends. We succeed to identify the transition from two to three touching chains at Ntot = 129. Overall, this study sheds light on the mechanisms of the recently experimentally observed ribbon formation of superparamagnetic colloids via lateral aggregation of magnetic chains in magnetic field (Darras et al., 2016).

  10. Distribution of Helical Properties of Solar Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    Kirill M. Kuzanyan; Victor G. Lamburt; Hong-Qi Zhang; Shu-Dong Bao

    2003-01-01

    We summarize studies of helical properties of solar magnetic fieldssuch as current helicity and twist of magnetic fields in solar active regions (ARs),that are observational tracers of the alpha-effect in the solar convective zone (SCZ).Information on their spatial distribution is obtained by analysis of systematic mag-netographic observations of active regions taken at Huairou Solar Observing Stationof National Astronomical Observatories of Chinese Academy of Sciences. The mainproperty is that the tracers of the alpha-effect are antisymmetric about the solarequator. Identifying longitudinal migration of active regions with their individualrotation rates and taking into account the internal differential rotation law withinthe SCZ known from helioseismology, we deduce the distribution of the effect overdepth. We have found evidence that the alpha-effect changes its value and signnear the bottom of the SCZ, and this is in accord with the theoretical studies andnumerical simulations. We discuss other regularities which can be revealed by fur-ther analysis such as possible dependence on longitude, time, and magnetic fieldstrength, etc.

  11. Evolution of Neutron Star Magnetic Fields

    Indian Academy of Sciences (India)

    Dipankar Bhattacharya

    2002-03-01

    This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced flux expulsion, ohmic evolution of crustal field and diamagnetic screening of the field by accreted plasma, are reviewed.

  12. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Aquino, D. [ERC Incorporated, Air Force Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, CA 93524 (United States); Rinaldi, C., E-mail: carlos.rinaldi@bme.ufl.edu [J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Chemical Engineering, University of Florida, PO Box 116131, Gainesville, FL 32611-6131 (United States)

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given. - Highlights: • Rosensweig's model for SAR was extended to high fields. • The MRSh relaxation equation was used to predict SAR at high fields. • Rotational Brownian dynamics simulations were used to predict SAR. • The results of these models were compared. • Predictions of effect of size and field conditions on SAR are presented.

  13. Two-axis magnetic field sensor

    Science.gov (United States)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  14. Magnetic fields and rotation of spiral galaxies

    CERN Document Server

    Battaner, E; Florido, E

    1998-01-01

    We present a simplified model in which we suggest that two important galactic problems -the magnetic field configuration at large scales and the flat rotation curve- may be simultaneously explained. A highly convective disc produces a high turbulent magnetic diffusion in the vertical direction, stablishing a merging of extragalactic and galactic magnetic fields. The outer disc may then adquire a magnetic energy gradient very close to the gradient required to explain the rotation curve, without the hypothesis of galactic dark matter. Our model predicts symmetries of the galactic field in noticeable agreement with the large scale structure of our galaxy.

  15. Rotating artificial gauge magnetic and electric fields

    CERN Document Server

    Lembessis, V E; Alshamari, S; Siddig, A; Aldossary, O M

    2016-01-01

    We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed

  16. Magnetic fields in Neutron Stars

    CERN Document Server

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  17. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  18. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; Gonzalez, J. F.; Ilyin, I.

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have fai...

  19. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    Shockley, Jeremiah A.

    The Earth's magnetic field has been the bedrock of navigation for centuries. The latest research highlights the uniqueness of magnetic field measurements based on position due to large scale variations as well as localized perturbations. These observable changes in the Earth's magnetic field as a function of position provide distinct information which can be used for navigation. This dissertation describes ground vehicle navigation exploiting variation in Earth's magnetic field using a self-contained navigation system consisting of only a magnetometer and magnetic field maps. In order to achieve navigation, effective calibration enables repeatable magnetic field measurements from different vehicles and facilitates mapping of the observable magnetic field as a function of position. A new modified ellipsoid calibration technique for strapdown magnetometers in large vehicles is described, as well as analysis of position measurement generation comparing a multitude of measurement compositions using existing and newly developed likelihood techniques. Finally, navigation solutions are presented using both a position measurement and direct incorporation of the magnetometer measurements via a particle filter to demonstrate road navigation in three different environments. Emphatically, the results affirm that navigation using magnetic field variation in ground vehicles is viable and achieves adequate performance for road level navigation.

  20. Lattice Planar QED in external magnetic field

    CERN Document Server

    Cea, Paolo; Giudice, Pietro; Papa, Alessandro

    2011-01-01

    We investigate planar Quantum ElectroDynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. Our preliminary results indicate that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak coupling region. We comment on possible implications to the quantum Hall effect in graphene.

  1. Helical Magnetic Fields in AGN Jets

    Indian Academy of Sciences (India)

    Y. J. Chen; G.-Y. Zhao; Z.-Q. Shen

    2014-09-01

    We establish a simple model to describe the helical magnetic fields in AGN jets projected on the sky plane and the line-of-sight. This kind of profile has been detected in the polarimetric VLBI observation of many blazar objects, suggesting the existence of helical magnetic fields in these sources.

  2. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  3. Energy release in driven twisted coronal loops

    CERN Document Server

    Bareford, M R; Browning, P K; Hood, A W

    2015-01-01

    In the present study we investigate magnetic reconnection in twisted magnetic fluxtubes with different initial configurations. In all considered cases, energy release is triggered by the ideal kink instability, which is itself the result of applying footpoint rotation to an initially potential field. The main goal of this work is to establish the influence of the field topology and various thermodynamic effects on the energy release process. Specifically, we investigate convergence of the magnetic field at the loop footpoints, atmospheric stratification, as well as thermal conduction. In all cases, the application of vortical driving at the footpoints of an initally potential field leads to an internal kink instability. With the exception of the curved loop with high footpoint convergence, the global geometry of the loop change little during the simulation. Footpoint convergence, curvature and atmospheric structure clearly influences the rapidity with which a loop achieves instability as well as the size of t...

  4. Magnetic Fields in Stars: Origin and Impact

    CERN Document Server

    Langer, N

    2013-01-01

    Various types of magnetic fields occur in stars: small scale fields, large scale fields, and internal toroidal fields. While the latter may be ubiquitous in stars due to differential rotation, small scale fields (spots) may be associated with envelop convection in all low and high mass stars. The stable large scale fields found in only about 10 per cent of intermediate mass and massive stars may be understood as a consequence of dynamical binary interaction, e.g., the merging of two stars in a binary. We relate these ideas to magnetic fields in white dwarfs and neutron stars, and to their role in core-collapse and thermonuclear supernova explosions.

  5. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  6. Pair annihilation in superstrong magnetic fields

    Science.gov (United States)

    Daugherty, J. K.; Bussard, R. W.

    1980-01-01

    The kinematical and dynamical aspects of the annihilation processes in superstrong magnetic fields are studied. The feasibility and potential significance of detecting from magnetic neutron stars are discussed. The discussion proceeds from the derivation of the fully relativistic differential cross sections and annihilation rates for both one- and two-photon emission from a ground-state gas of electrons and positrons in a static, uniform magnetic field.

  7. Mechanics of magnetic fluid column in strong magnetic fields

    Science.gov (United States)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.

    2017-06-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  8. Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. Part I: Finite Volume Methods

    Science.gov (United States)

    Valori, Gherardo; Pariat, Etienne; Anfinogentov, Sergey; Chen, Feng; Georgoulis, Manolis K.; Guo, Yang; Liu, Yang; Moraitis, Kostas; Thalmann, Julia K.; Yang, Shangbin

    2016-11-01

    Magnetic helicity is a conserved quantity of ideal magneto-hydrodynamics characterized by an inverse turbulent cascade. Accordingly, it is often invoked as one of the basic physical quantities driving the generation and structuring of magnetic fields in a variety of astrophysical and laboratory plasmas. We provide here the first systematic comparison of six existing methods for the estimation of the helicity of magnetic fields known in a finite volume. All such methods are reviewed, benchmarked, and compared with each other, and specifically tested for accuracy and sensitivity to errors. To that purpose, we consider four groups of numerical tests, ranging from solutions of the three-dimensional, force-free equilibrium, to magneto-hydrodynamical numerical simulations. Almost all methods are found to produce the same value of magnetic helicity within few percent in all tests. In the more solar-relevant and realistic of the tests employed here, the simulation of an eruptive flux rope, the spread in the computed values obtained by all but one method is only 3 %, indicating the reliability and mutual consistency of such methods in appropriate parameter ranges. However, methods show differences in the sensitivity to numerical resolution and to errors in the solenoidal property of the input fields. In addition to finite volume methods, we also briefly discuss a method that estimates helicity from the field lines' twist, and one that exploits the field's value at one boundary and a coronal minimal connectivity instead of a pre-defined three-dimensional magnetic-field solution.

  9. Delayed quarkonium formation in a magnetic field

    CERN Document Server

    Suzuki, Kei

    2016-01-01

    Formation time of heavy quarkonia in a homogeneous magnetic field is analyzed by using a phenomenological ansatz of the vector current correlator. Because the existence of a magnetic field mixes vector quarkonia ($J/\\psi$, $\\psi^\\prime$) and their pseudoscalar partners ($\\eta_c$, $\\eta_c^\\prime$), the properties of the quarkonia can be modified through such a spin mixing. This means that the formation time of quarkonia is also changed by the magnetic field. We show the formation time of vector quarkonia is delayed by an idealized constant magnetic field, where the formation time of the excited state becomes longer than that of the ground state. As a more realistic situation in heavy-ion collisions, effects by a time-dependent magnetic field are also discussed.

  10. Structure of magnetic fields in intracluster cavities

    CERN Document Server

    Gourgouliatos, Konstantinos Nektarios; Lyutikov, Maxim

    2010-01-01

    Observations of clusters of galaxies show ubiquitous presence of X-ray cavities, presumably blown by the AGN jets. We consider magnetic field structures of these cavities. Stability requires that they contain both toroidal and poloidal magnetic fields, while realistic configurations should have vanishing magnetic field on the boundary. For axisymmetric configurations embedded in unmagnetized plasma, the continuity of poloidal and toroidal magnetic field components on the surface of the bubble then requires solving the elliptical Grad-Shafranov equation with both Dirichlet and Neumann boundary conditions. This leads to a double eigenvalue problem, relating the pressure gradients and the toroidal magnetic field to the radius of the bubble. We have found fully analytical stable solutions. This result is confirmed by numerical simulation. We present synthetic X-ray images and synchrotron emission profiles and evaluate the rotation measure for radiation traversing the bubble.

  11. Directional solidification of Al-8 wt. %Fe alloy under high magnetic field gradient

    Science.gov (United States)

    Wu, Mingxu; Liu, Tie; Dong, Meng; Sun, Jinmei; Dong, Shulin; Wang, Qiang

    2017-02-01

    We investigated applying a magnetic field (up to 6 T) during directional solidification of a hypereutectic Al-8 wt. %Fe alloy, finding that it dramatically affected the final microstructure. A eutectic area appeared at the top of the samples, and as the magnetic flux density increased, the eutectic area clearly enlarged. In addition, the Al3Fe phase was twisted and fractured, and some phases aggregated and distributed randomly in the samples. We also investigated the volume fraction distribution of the Al3Fe phase, revealing that applying the magnetic field during solidification caused dramatic disorder in the solute and phase distributions. The magnetic force induced by the interaction between the magnetic field gradient and the magnetic materials appeared to be the main reason not only for the occurrence and enlargement of the eutectic area but also for the movement of Fe-enriched zones during directional solidification. Otherwise, the deformation and fracture of the Al3Fe phase, the morphological instability in the interface between the eutectic area and the Al3Fe phase, and the random distribution of the aggregated Al3Fe phase appeared to come from the thermoelectric magnetic force/thermoelectric magnetic convection under the magnetic field.

  12. Probing Magnetic Fields of Early Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    How do magnetic fields form and evolve in early galaxies? A new study has provided some clever observations to help us answer this question.The Puzzle of Growing FieldsDynamo theory is the primary model describing how magnetic fields develop in galaxies. In this picture, magnetic fields start out as weak seed fields that are small and unordered. These fields then become ordered and amplified by large-scale rotation and turbulence in galaxy disks and halos, eventually leading to the magnetic fields we observe in galaxies today.Schematic showinghow to indirectly measure protogalactic magnetic fields. The measured polarization of a background quasar is altered by the fields in a foreground protogalaxy. Click for a closer look! [Farnes et al. 2017/Adolf Schaller/STSCI/NRAO/AUI/NSF]To test this model, we need observations of the magnetic fields in young protogalaxies. Unfortunately, we dont have the sensitivity to be able to measure these fields directly but a team of scientists led by Jamie Farnes (Radboud University in the Netherlands) have come up with a creative alternative.The key is to find early protogalaxies that absorb the light of more distant background objects. If a protogalaxy lies between us and a distant quasar, then magnetic fields of the protogalaxy if present will affect the polarization measurements of the background quasar.Observing Galactic Building BlocksTop: Redshift distribution for the background quasars in the authors sample. Bottom: Redshift distribution for the foreground protogalaxies the authors are exploring. [Farnes et al. 2017]Farnes and collaborators examined two types of foreground protogalaxies: Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). They obtained polarimetric data for a sample of 114 distant quasars with nothing in the foreground (the control sample), 19 quasars with DLAs in the foreground, and 27 quasars with LLSs in the foreground. They then used statistical analysis techniques to draw conclusions about

  13. Formation of magnetically anisotropic composite films at low magnetic fields

    Science.gov (United States)

    Ghazi Zahedi, Maryam; Ennen, Inga; Marchi, Sophie; Barthel, Markus J.; Hütten, Andreas; Athanassiou, Athanassia; Fragouli, Despina

    2017-04-01

    We present a straightforward two-step technique for the fabrication of poly (methyl methacrylate) composites with embedded aligned magnetic chains. First, ferromagnetic microwires are realized in a poly (methyl methacrylate) solution by assembling iron nanoparticles in a methyl methacrylate solution under heat in an external magnetic field of 160 mT. The simultaneous thermal polymerization of the monomer throughout the wires is responsible for their permanent linkage and stability. Next, the polymer solution containing the randomly dispersed microwires is casted on a solid substrate in the presence of a low magnetic field (20–40 mT) which induces the final alignment of the microwires into long magnetic chains upon evaporation of the solvent. We prove that the presence of the nanoparticles assembled in the form of microwires is a key factor for the formation of the anisotropic films under low magnetic fields. In fact, such low fields are not capable of driving and assembling dispersed magnetic nanoparticles in the same type of polymer solutions. Hence, this innovative approach can be utilized for the synthesis of magnetically anisotropic nanocomposite films at low magnetic fields.

  14. Teaching Representation Translations with Magnetic Field Experiments

    Science.gov (United States)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and measurement of the spatial variation of magnetic field components along a line near magnets. We describe the experimental tasks, various difficulties students have throughout, and ways this lab makes even their incorrect predictions better. We suggest that developing lab activities of this nature brings a new dimension to the ways students learn and interact with field concepts.

  15. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; González, J. F.; Ilyin, I.

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims. We re-analyse the available spectropolarimetric material...

  16. Warm inflation in presence of magnetic fields

    CERN Document Server

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-01-01

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.

  17. Twisting Somersault

    CERN Document Server

    Dullin, Holger R

    2015-01-01

    A complete description of twisting somersaults is given using a reduction to a time-dependent Euler equation for non-rigid body dynamics. The central idea is that after reduction the twisting motion is apparent in a body frame, while the somersaulting (rotation about the fixed angular momentum vector in space) is recovered by a combination of dynamic and geometric phase. In the simplest "kick-model" the number of somersaults $m$ and the number of twists $n$ are obtained through a rational rotation number $W = m/n$ of a (rigid) Euler top. This rotation number is obtained by a slight modification of Montgomery's formula [9] for how much the rigid body has rotated. Using the full model with shape changes that take a realistic time we then derive the master twisting-somersault formula: An exact formula that relates the airborne time of the diver, the time spent in various stages of the dive, the numbers $m$ and $n$, the energy in the stages, and the angular momentum by extending a geometric phase formula due to C...

  18. Oliver Twist

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and

  19. Oliver Twist

    NARCIS (Netherlands)

    Dickens, Charles

    2005-01-01

    Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and explo

  20. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  1. Magnetic-field-controlled reconfigurable semiconductor logic.

    Science.gov (United States)

    Joo, Sungjung; Kim, Taeyueb; Shin, Sang Hoon; Lim, Ju Young; Hong, Jinki; Song, Jin Dong; Chang, Joonyeon; Lee, Hyun-Woo; Rhie, Kungwon; Han, Suk Hee; Shin, Kyung-Ho; Johnson, Mark

    2013-02-07

    Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.

  2. Solar Force-free Magnetic Fields

    CERN Document Server

    Wiegelmann, Thomas

    2012-01-01

    The structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces like plasma pressure gradient and gravity can be neglected in the lowest order. This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields) or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relation between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundar...

  3. Magnetic monopole field exposed by electrons

    CERN Document Server

    Béché, A; Van Tendeloo, G; Verbeeck, J

    2013-01-01

    Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...

  4. External-field-free magnetic biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  5. Interplanetary magnetic field and geomagnetic Dst variations.

    Science.gov (United States)

    Patel, V. L.; Desai, U. D.

    1973-01-01

    The interplanetary magnetic field has been shown to influence the ring current field represented by Dst. Explorer 28 hourly magnetic field observations have been used with the hourly Dst values. The moderate geomagnetic storms of 60 gammas and quiet-time fluctuations of 10 to 30 gammas are correlated with the north to south change of the interplanetary field component perpendicular to the ecliptic. This change in the interplanetary field occurs one to three hours earlier than the corresponding change in the Dst field.

  6. Polarized radiation diagnostics of stellar magnetic fields

    Science.gov (United States)

    Mathys, Gautier

    The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the

  7. Scattering in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    David C. Carey

    2002-08-19

    The fixed target program at Fermilab has come to an end. New projects are in the planning stage. Among them is a muon storage ring. Up to the present, all storage rings in high-energy physics have carried stable particles, namely the electron and proton and their antiparticles. The muon is unstable and decays with a mean lifetime of 2.0 x 10{sup -6} sec. Two types of cooling have been used in the past. One is stochastic cooling where an electrode is used to detect the positions of the particles and send a signal to another position across the ring. Through successive applications of this technique, the phase space is ultimately greatly reduced and beams can be made to collide with a useful event rate. The second type of cooling is electron cooling. Here protons and electrons are made to travel together for a short distance. Equipartition causes transfer of transverse energy of the protons to that of the electrons. Neither of these methods is fast enough to allow acceleration of a sufficient number of muons up to maximum energy before they decay. A new method known as ionization cooling has been proposed.[1] The muons are cooled by passing them through a container of liquid hydrogen. The energy loss reduces both transverse and longitudinal momentum. The longitudinal momentum is restored with RF cavities. The net result is to maintain the longitudinal momentum while cooling the transverse momentum. To minimize the total travel distance of the muons the liquid hydrogen is placed inside the focusing solenoids. The question arises as to whether the presence of the solenoids influences the phase space occupied by the muons. After the muon scatters it has transverse momentum. In a constant longitudinal magnetic field the trajectory wraps around the field lines and coincides in momentum and position with a particle which scatters one cycle later. Here we calculate the change in emittance for both a drift space and a solenoid. We find that the presence of the solenoid does

  8. Compact low field magnetic resonance imaging magnet: Design and optimization

    Science.gov (United States)

    Sciandrone, M.; Placidi, G.; Testa, L.; Sotgiu, A.

    2000-03-01

    Magnetic resonance imaging (MRI) is performed with a very large instrument that allows the patient to be inserted into a region of uniform magnetic field. The field is generated either by an electromagnet (resistive or superconductive) or by a permanent magnet. Electromagnets are designed as air cored solenoids of cylindrical symmetry, with an inner bore of 80-100 cm in diameter. In clinical analysis of peripheral regions of the body (legs, arms, foot, knee, etc.) it would be better to adopt much less expensive magnets leaving the most expensive instruments to applications that require the insertion of the patient in the magnet (head, thorax, abdomen, etc.). These "dedicated" apparati could be smaller and based on resistive magnets that are manufactured and operated at very low cost, particularly if they utilize an iron yoke to reduce power requirements. In order to obtain good field uniformity without the use of a set of shimming coils, we propose both particular construction of a dedicated magnet, using four independently controlled pairs of coils, and an optimization-based strategy for computing, a posteriori, the optimal current values. The optimization phase could be viewed as a low-cost shimming procedure for obtaining the desired magnetic field configuration. Some experimental measurements, confirming the effectiveness of the proposed approach (construction and optimization), have also been reported. In particular, it has been shown that the adoption of the proposed optimization based strategy has allowed the achievement of good uniformity of the magnetic field in about one fourth of the magnet length and about one half of its bore. On the basis of the good experimental results, the dedicated magnet can be used for MRI of peripheral regions of the body and for animal experimentation at very low cost.

  9. Hyperfine magnetic fields in substituted Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brzózka, K., E-mail: k.brzozka@uthrad.pl [University of Technology and Humanities in Radom, Department of Physics (Poland); Sovák, P. [P.J. Šafárik University, Institute of Physics (Slovakia); Szumiata, T.; Gawroński, M.; Górka, B. [University of Technology and Humanities in Radom, Department of Physics (Poland)

    2016-12-15

    Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.

  10. Magnetic fields in Local Group dwarf irregulars

    CERN Document Server

    Chyzy, Krzysztof T; Beck, Rainer; Bomans, Dominik J

    2011-01-01

    We clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and what is the role of dwarf galaxies in the magnetization of the Universe. We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100m Effelsberg telescope at 2.64 and 4.85GHz. Magnetic fields in LG dwarfs are three times weaker than in the normal spirals (6muG) are observed only in dwarfs of extreme characteristics while typical LG dwarfs are not suitable objects for efficient supply of magnetic fields to the intergalactic medium.

  11. Magnetic field homogeneity perturbations in finite Halbach dipole magnets.

    Science.gov (United States)

    Turek, Krzysztof; Liszkowski, Piotr

    2014-01-01

    Halbach hollow cylinder dipole magnets of a low or relatively low aspect ratio attract considerable attention due to their applications, among others, in compact NMR and MRI systems for investigating small objects. However, a complete mathematical framework for the analysis of magnetic fields in these magnets has been developed only for their infinitely long precursors. In such a case the analysis is reduced to two-dimensions (2D). The paper details the analysis of the 3D magnetic field in the Halbach dipole cylinders of a finite length. The analysis is based on three equations in which the components of the magnetic flux density Bx, By and Bz are expanded to infinite power series of the radial coordinate r. The zeroth term in the series corresponds to a homogeneous magnetic field Bc, which is perturbed by the higher order terms due to a finite magnet length. This set of equations is supplemented with an equation for the field profile B(z) along the magnet axis, presented for the first time. It is demonstrated that the geometrical factors in the coefficients of particular powers of r, defined by intricate integrals are the coefficients of the Taylor expansion of the homogeneity profile (B(z)-Bc)/Bc. As a consequence, the components of B can be easily calculated with an arbitrary accuracy. In order to describe perturbations of the field due to segmentation, two additional equations are borrowed from the 2D theory. It is shown that the 2D approach to the perturbations generated by the segmentation can be applied to the 3D Halbach structures unless r is not too close to the inner radius of the cylinder ri. The mathematical framework presented in the paper was verified with great precision by computations of B by a highly accurate integration of the magnetostatic Coulomb law and utilized to analyze the inhomogeneity of the magnetic field in the magnet with the accuracy better than 1 ppm.

  12. Instability of strong magnetic field and neutrino magnetic dipole moment

    CERN Document Server

    Lee, Hyun Kyu

    2016-01-01

    Vacuum instability of the strong electromagnetic field has been discussed since long time ago. The instability of the strong electric field due to creation of electron pairs is one of the examples, which is known as Schwinger process. What matters are the coupling of particles to the electromagnetic field and the mass of the particle to be produced. The critical electric field for electrons in the minimal coupling is ~ m^2/e . Spin 1/2 neutral particles but with magnetic dipole moments can interact with the electromagnetic field through Pauli coupling. The instability of the particular vacuum under the strong magnetic field can be formulated as the emergence of imaginary parts of the effective potential. In this talk, the development of the imaginary part in the effective potential as a function of the magnetic field strength is discussed for the configurations of the uniform magnetic field and the inhomogeneous magnetic field. Neutrinos are the lightest particle(if not photon or gluon) in the "standard model...

  13. Computation of magnetic fields in hysteretic media

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A.; Mayergoyz, I.D.; Gomez, R.D.; Burke, E.R. (Univ. of Maryland, College Park, MD (United States))

    1993-11-01

    A newly developed vector Preisach-type model of hysteresis is applied to the computation of static magnetic fields in media with hysteresis. Time stepping technique is used to trace the time evolution of local magnetic fields which form the history of magnetizing process. At each time step, the magnetostatic problem is formulated in terms of an integral equation and an efficient iterative algorithm is employed for solving this problem. The technique has been used to simulate some magnetic recording processes. Sample results of these simulations are given in the paper.

  14. Efficient magnetic fields for supporting toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Landreman, Matt, E-mail: mattland@umd.edu [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-03-15

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.

  15. Quark matter under strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Peres Menezes, Debora [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Laercio Lopes, Luiz [Universidade Federal de Santa Catarina, Depto de Fisica - CFM, Florianopolis, SC (Brazil); Campus VIII, Centro Federal de Educacao Tecnologica de Minas Gerais, Varginha, MG (Brazil)

    2016-02-15

    We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model. (orig.)

  16. Alignment of magnetic uniaxial particles in a magnetic field: Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Golovnia, O.A., E-mail: golovnya@imp.uran.ru [Institute of Metal Physics, Str. S. Kovalevskoy, 18, 620990 Ekaterinburg (Russian Federation); Popov, A.G [Institute of Metal Physics, Str. S. Kovalevskoy, 18, 620990 Ekaterinburg (Russian Federation); Sobolev, A.N. [South Ural State University (National Research University), av. Lenina, 76, 454080 Chelyabinsk (Russian Federation); Hadjipanayis, G.C. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States)

    2014-09-01

    The numerical investigations of the process of alignment of magnetically uniaxial Nd–Fe–B powders in an applied magnetic field were carried out using the discrete element method (DEM). It is shown that magnetic alignment of ensemble of spherical particles provides extremely high degree of alignment, which is achieved in low magnetic fields. A model of formation of anisotropic particles as a combination of spherical particles is suggested. The influence of the shape anisotropy and friction coefficient on the alignment degree was analyzed. The increase in the friction coefficient leads to a decrease in the alignment degree; the simulation results are in qualitative agreement with experimental dependences. It is shown that in magnetic fields higher than 5 T, the calculated field dependences of the alignment degree quantitatively render the experimental data. The increase of about 6% in the alignment degree in the experiments with addition of internal lubricant can be explained by the decrease of 14% in friction coefficient. - Highlights: • We simulate the magnetic alignment of ensemble of Nd–Fe–B spherical uniaxial particles. • Anisotropic particles as a combination of spherical particles are constructed. • Influence of the particle shape anisotropy and friction on the alignment is analyzed. • We compare calculated and experimental data on field dependence of magnetic alignment. • The results render the experimental dependence.

  17. Electric-field guiding of magnetic skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Pramey; Yu, Guoqiang; Amiri, Pedram Khalili; Wang, Kang L.

    2015-10-01

    We theoretically study equilibrium and dynamic properties of nanosized magnetic skyrmions in thin magnetic films with broken inversion symmetry, where an electric field couples to magnetization via spin-orbit coupling. Based on a symmetry-based phenomenology and micromagnetic simulations we show that this electric-field coupling, via renormalizing the micromagnetic energy, modifies the equilibrium properties of the skyrmion. This change, in turn, results in a significant alteration of the current-induced skyrmion motion. Particularly, the speed and direction of the skyrmion can be manipulated by designing a desired energy landscape electrically, which we describe within Thiele's analytical model and demonstrate in micromagnetic simulations including electric-field-controlled magnetic anisotropy. We additionally use this electric-field control to construct gates for controlling skyrmion motion exhibiting a transistorlike and multiplexerlike function. The proposed electric-field effect can thus provide a low-energy electrical knob to extend the reach of information processing with skyrmions.

  18. Magnetic field in the primitive solar nebula

    Science.gov (United States)

    Levy, E. H.

    1978-01-01

    Carbonaceous chondrites have apparently been magnetized in their early history in magnetic fields with intensities of 0.1 to 10 G, but the origin of the magnetizing field has remained obscured. It is suggested that the magnetic field recorded in the remanence of carbonaceous chondrites may have been produced by a self-excited hydromagnetic dynamo in the gaseous preplanetary nebula from which the solar system is thought to have formed. Recently computed models for the evolution of the preplanetary nebula, consisting of turbulent and differentially rotating gaseous disks with characteristic radial scales of several AU, are used to demonstrate the feasibility of this hypothesis. The maximum field intensity that might be realized by the dynamo production process is estimated to be as high as 1 to 10 G, taking into account two dynamical mechanisms that limit the strength of the field (the Coriolis force and ambipolar diffusion).

  19. Magnetic field evolution in neutron stars

    Science.gov (United States)

    Castillo, F.; Reisenegger, A.; Valdivia, J. A.

    2017-07-01

    Neutron stars contain the strongest magnetic fields known in the Universe. Using numerical simulations restricted to axially symmetric geometry, we study the long-term evolution of the magnetic field in the interior of an isolated neutron star under the effect of ambipolar diffusion, i.e. the drift of the magnetic field and the charged particles relative to the neutrons. We model the stellar interior as an electrically neutral fluid composed of neutrons, protons and electrons; these species can be converted into each other by weak interactions (beta decays), suffer binary collisions, and be affected by each other's macroscopic electromagnetic fields. We show that, in the restricted case of pure ambipolar diffusion, neglecting weak interactions, the magnetic fields evolves towards a stable MHD equilibria configuration, in the timescales analytically expected.

  20. Magnetic field induced optical vortex beam rotation

    CERN Document Server

    Shi, Shuai; Zhou, Zhi-Yuan; Li, Yan; Zhang, Wei; Shi, Bao-Sen

    2015-01-01

    Light with orbital angular momentum (OAM) has drawn a great deal of attention for its important applications in the fields of precise optical measurements and high capacity optical communications. Here we adopt a method to study the rotation of a light beam, which is based on magnetic field induced circular birefringence in warm 87Rb atomic vapor. The dependence of the rotation angle to the intensity of the magnetic field makes it appropriate for weak magnetic field measurement. We derive a detail theoretical description that is in well agreement with the experimental observations. The experiment shows here provides a new method for precise measurement of magnetic field intensity and expands the application of OAM-carrying light.

  1. Quantum Electrodynamics in a Uniform Magnetic Field

    CERN Document Server

    Suzuki, J

    2005-01-01

    A systematic formalism for quantum electrodynamics in a classical uniform magnetic field is discussed. The first order radiative correction to the ground state energy of an electron is calculated. This then leads to the anomalous magnetic moment of an electron without divergent integrals. Thorough analyses of this problem are given for the weak magnetic field limit. A new expression for the radiative correction to the ground state energy is obtained. This contains only one integral with an additional summation with respect to each Landau level. The importance of this formalism is also addressed in order to deal with quantum electrodynamics in an intense external field.

  2. Hyperon Stars in Strong Magnetic Fields

    CERN Document Server

    Gomes, R O; Vasconcellos, C A Z

    2013-01-01

    We investigate the effects of strong magnetic fields on the properties of hyperon stars. The matter is described by a hadronic model with parametric coupling. The matter is considered to be at zero temperature, charge neutral, beta-equilibrated, containing the baryonic octet, electrons and muons. The charged particles have their orbital motions Landau-quantized in the presence of strong magnetic fields (SMF). Two parametrisations of a chemical potential dependent static magnetic field are considered, reaching $1-2 \\times 10^{18}\\,G$ in the center of the star. Finally, the Tolman-Oppenheimer-Volkov (TOV) equations are solved to obtain the mass-radius relation and population of the stars.

  3. Magnetic fields from second-order interactions

    CERN Document Server

    Osano, Bob

    2014-01-01

    It is well known that when two types of perturbations interact in cosmological perturbation theory, the interaction may lead to the generation of a third type. In this article we discuss the generation of magnetic fields from such interactions. We determine conditions under which the interaction of a first-order magnetic field with a first-order scalar-or vector-, or tensor-perturbations would lead to the generation of second order magnetic field. The analysis is done in a covariant-index-free approach, but could be done in the standard covariant indexed-approach.

  4. Dissipative charged fluid in a magnetic field

    Directory of Open Access Journals (Sweden)

    Navid Abbasi

    2016-05-01

    Full Text Available We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.

  5. Magnetic fields from second-order interactions

    OpenAIRE

    Osano, Bob

    2014-01-01

    It is well known that when two types of perturbations interact in cosmological perturbation theory, the interaction may lead to the generation of a third type. In this article we discuss the generation of magnetic fields from such interactions. We determine conditions under which the interaction of a first-order magnetic field with a first-order scalar-or vector-, or tensor-perturbations would lead to the generation of second order magnetic field. The analysis is done in a covariant-index-fre...

  6. Magnetic Field Control of Combustion Dynamics

    Science.gov (United States)

    Barmina, I.; Valdmanis, R.; Zake, M.; Kalis, H.; Marinaki, M.; Strautins, U.

    2016-08-01

    Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the flame reaction zone with swirl-enhanced mixing of the axial flow of volatiles with cold air swirl, by cooling the flame reaction zone and by limiting the thermo-chemical conversion of volatiles. Mathematical modelling of magnetic field effect on the formation of the flame dynamics confirms that the electromagnetic force, which is induced by the electric current surrounding the flame, leads to field-enhanced increase of flow vorticity by enhancing mixing of the reactants. The magnetic field effect on the flame temperature and rate of reactions leads to conclusion that field-enhanced increase of the flow vorticity results in flame cooling by limiting the chemical conversion of the reactants.

  7. Magnetic field evolution of accreting neutron stars

    CERN Document Server

    Istomin, Ya N

    2016-01-01

    The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the super conducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of $r$ width, narrowing with the depth, i.e. with increasing of the crust density $\\rho$, $r\\propto \\rho^{-1/4}$. Accordingly, the magnetic field $B$ in the tube increases with the depth, $B\\propto...

  8. Dispersion of Magnetic Fields in Molecular Clouds

    CERN Document Server

    Hildebrand, Roger H; Dotson, Jessie L; Houde, Martin; Vaillancourt, John E

    2008-01-01

    We describe a method for determining the dispersion of magnetic field vectors about local mean fields in turbulent molecular clouds. The method is designed to avoid inaccurate estimates of MHD or turbulent dispersion - and hence to avoid inaccurate estimates of field strengths - due to large-scale, non-turbulent field structure when using the well-known method of Chandrasekhar and Fermi. Our method also provides accurate, independent estimates of the turbulent to mean magnetic field strength ratio. We discuss applications to the molecular clouds Orion, M17, and DR21.

  9. Reversals of the Earth's Magnetic Field

    Science.gov (United States)

    Champion, Duene E.

    J.A. Jacobs of Cambridge University has written a concise, authoritative, and up-todate text on reversals of the earth's magnetic field. Chapter 1 is a concise summary of the basic attributes of the geomagnetic field and its behavior in different time frames. It explains spherical harmonic analysis of the field and presents the history of acquisition of the data that best represent the recent field. Lastly, it includes a short summary of the origin and electrodynamics of the magnetic field, outlining the current theoretical basis for its generation.

  10. Magnetic field considerations in fusion power plant environs

    Energy Technology Data Exchange (ETDEWEB)

    Liemohn, H.B.; Lessor, D.L.; Duane, B.H.

    1976-09-01

    A summary of magnetic field production mechanisms and effects is given. Discussions are included on the following areas: (1) stray magnetic and electric fields from tokamaks, (2) methods for reducing magnetic fields, (3) economics of magnetic field reductions, (4) forces on magnetizable objects near magnetic confinement fusion reactors, (5) electric field transients in tokamaks, (6) attenuation and decay of electromagnetic fields, and (7) magnetic field transients from tokamak malfunctions.

  11. Magnetic fields in early protostellar disk formation

    CERN Document Server

    González-Casanova, Diego F; Lazarian, Alexander

    2016-01-01

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian & Vishniac (1999) model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called "magnetic braking catastrophe". In particular, we provide a detailed study of the dynamics of a 0.5 M$_\\odot$ protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, "reconnection diffusion", removes the magnetic flux from the disk, the other involves the change of the magnetic field's topology, but does not change the a...

  12. Intergalactic Magnetic Fields from Quasar Outflows

    CERN Document Server

    Furlanetto, S; Furlanetto, Steven; Loeb, Abraham

    2001-01-01

    Outflows from quasars inevitably pollute the intergalactic medium (IGM) with magnetic fields. The short-lived activity of a quasar leaves behind an expanding magnetized bubble in the IGM. We model the expansion of the remnant quasar bubbles and calculate their distribution as a function of size and magnetic field strength at different redshifts. We generically find that by a redshift z=3, about 5-20% of the IGM volume is filled by magnetic fields with an energy density >10% of the mean thermal energy density of a photo-ionized IGM (at T=10^4 K). As massive galaxies and X-ray clusters condense out of the magnetized IGM, the adiabatic compression of the magnetic field could result in the field strength observed in these systems without a need for further dynamo amplification. The intergalactic magnetic field could also provide a nonthermal contribution to the pressure of the photo-ionized gas that may account for the claimed discrepancy between the simulated and observed Doppler width distributions of the Ly-al...

  13. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, VI; Sarycheva, L I; Klyukhin, V I; Ball, A; Gaddi, A; Amapane, N; Gerwig, H; Andreev, V; Cure, B; Mulders, M; Loveless, R; Karimaki, V; Popescu, S; Herve, A

    2010-01-01

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  14. Third and higher order NFPA twisted constructions of conformal field theories from lattices

    Energy Technology Data Exchange (ETDEWEB)

    Montague, P.S. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics (DAMTP)

    1995-05-08

    We investigate orbifold constructions of conformal field theories from lattices by no-fixed-point automorphisms (NFPAs) Z{sub p} for p prime, p>2, concentrating on the case p=3. Explicit expressions are given for most of the relevant vertex operators, and we consider the locality relations necessary for these to define a consistent conformal field theory. A relation to constructions of lattices from codes, analogous to that found in earlier work in the p=2 case which led to a generalisation of the triality structure of the Monster module, is also demonstrated. ((orig.)).

  15. Third and higher order NFPA twisted constructions of conformal field theories from lattices

    CERN Document Server

    Montague, P S

    1995-01-01

    We investigate orbifold constructions of conformal field theories from lattices by no-fixed-point automorphisms (NFPA's) Z_p for p prime, p>2 concentrating on the case p=3. Explicit expressions are given for most of the relevant vertex operators, and we consider the locality relations necessary for these to define a consistent conformal field theory. A relation to constructions of lattices from codes, analogous to that found in earlier work in the p=2 case which led to a generalisation of the triality structure of the Monster module, is also demonstrated.

  16. Compact Electric- And Magnetic-Field Sensor

    Science.gov (United States)

    Winterhalter, Daniel; Smith, Edward

    1994-01-01

    Compact sensor measures both electric and magnetic fields. Includes both short electric-field dipole and search-coil magnetometer. Three mounted orthogonally providing triaxial measurements of electromagnetic field at frequencies ranging from near 0 to about 10 kHz.

  17. High Field Pulse Magnets with New Materials

    Science.gov (United States)

    Li, L.; Lesch, B.; Cochran, V. G.; Eyssa, Y.; Tozer, S.; Mielke, C. H.; Rickel, D.; van Sciver, S. W.; Schneider-Muntau, H. J.

    2004-11-01

    High performance pulse magnets using the combination of CuNb conductor and Zylon fiber composite reinforcement with bore sizes of 24, 15 and 10 mm have been designed, manufactured and tested to destruction. The magnets successfully reached the peak fields of 64, 70 and 77.8 T respectively with no destruction. Failures occurred near the end flanges at the layer. The magnet design, manufacturing and testing, and the mode of the failure are described and analyzed.

  18. Twisted baskets.

    Science.gov (United States)

    Hermann, Keith; Pratumyot, Yaowalak; Polen, Shane; Hardin, Alex M; Dalkilic, Erdin; Dastan, Arif; Badjić, Jovica D

    2015-02-23

    A preparative procedure for obtaining a pair of twisted molecular baskets, each comprising a chiral framework with either right ((P)-1syn) or left ((M)-1syn) sense of twist and six ester groups at the rim has been developed and optimized. The racemic (P/M)-1syn can be obtained in three synthetic steps from accessible starting materials. The resolution of (P/M)-1syn is accomplished by its transesterification with (1R,2S,5R)-(-)-menthol in the presence of a Ti(IV) catalyst to give diastereomeric 8(P) and 8(M). It was found that dendritic-like cavitands 8(P) and 8(M), in CD2Cl2, undergo self-inclusion ((1)H NMR spectroscopy) with a menthol moiety occupying the cavity of each host. Importantly, the degree of inclusion of the menthol group was ((1)H NMR spectroscopy) found to be greater in the case of 8(P) than 8(M). Accordingly, it is suggested that different folding characteristic of 8(P) and 8(M) ought to affect the physicochemical characteristics of the hosts to permit their effective separation by column chromatography. The absolute configuration of 8(P)/8(M), encompassing right- and left-handed "cups", was determined with the exciton chirality method and also verified in silico (DFT: B3LYP/TZVP). Finally, the twisted baskets are strongly fluorescent due to three naphthalene chromophores, having a high fluorescence quantum yield within the rigid framework of 8(P)/8(M).

  19. Light Polarization Using Ferrofluids and Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Alberto Tufaile

    2017-01-01

    Full Text Available We are presenting an experimental setup based on polarized light, enabling the visualization of the magnetic field of magnetic assemblies using a Hele-Shaw cell filled with ferrofluids. We have simulated the observed patterns with hypergeometric polynomials.

  20. The magnetic field of zeta Orionis A

    CERN Document Server

    Blazère, A; Tkachenko, A; Bouret, J -C; Rivinius, Th

    2015-01-01

    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the Least-Squares Deconvolution (LSD) technique to extract the magnetic information. We confirm that zeta Ori A is magnetic. We find that the supergiant component zeta Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a per...

  1. Studies of Solar Vector Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Jingxiu

    2011-01-01

    In this article, we report a few advances in the studies based on the solar vector magnetic field observations which were carried out mainly with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station in the 1990s. (1) We developed necessary methodology and concepts in vector magnetogram analysis (Wang et al. 1996). For the first time, we proposed to use the photospheric free magnetic energy to quantify the major flare productivity of solar active regions (ARs), and it had been proved to be the best parameter in representing the major flare activity. (2) We revealed that there was always a dominant sense of magnetic shear in a given AR (Wang 1994), which was taken as the premise of the helicity calculation in ARs; we made the first quantitative estimation of magnetic helicity evolution in ARs (Wang 1996). (3) We identified the first group of evidence of magnetic reconnection in the lower solar atmosphere with vector magnetic field observations and proposed a two-step reconnection flare model to interpret the observed association of flux cancellation and flares (Wang and Shi 1993). Efforts to quantify the major flare productivity of super active regions with vector magnetic field observations have been also taken.

  2. High Field Magnetization of Tb Single Crystals

    DEFF Research Database (Denmark)

    Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker

    1975-01-01

    The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenological...

  3. Determination of the Topology Skeleton of Magnetic Fields in a Solar Active Region

    Institute of Scientific and Technical Information of China (English)

    Hui Zhao; Jing-Xiu Wang; Jun Zhang; Chi-Jie Xiao; Hai-Min Wang

    2008-01-01

    Magnetic topology has been a key to the understanding of magnetic energy re-lease mechanism. Based on observed vector magnetograms, we have determined the three-dimensional (3D) topology skeleton of the magnetic fields in the active region NOAA 10720.The skeleton consists of six 3D magnetic nulls and a network of corresponding spines, fans,and null-null lines. For the first time, we have identified a spiral magnetic null in Sun's corona.The magnetic lines of force twisted around the spine of the null, forming a 'magnetic wreath'with excess of free magnetic energy and resembling observed brightening structures at extra-ultraviolet (EUV) wavebands. We found clear evidence of topology eruptions which are re-ferred to as catastrophic changes of topology skeleton associated with a coronal mass ejection(CME) and an explosive X-ray flare. These results shed new lights on the structural complex-ity and its role in explosive magnetic activity. The concept of flux rope has been widely used in modelling explosive magnetic activity, although their observational identity is rather ob-scure or, at least, lacking of necessary details up to date. We suggest that the magnetic wreath associated with the 3D spiral null is likely an important class of the physical entity of flux ropes.

  4. Magnetar Giant Flares in Multipolar Magnetic Fields --- I. Fully and Partially Open Eruptions of Flux Ropes

    CERN Document Server

    Huang, Lei

    2014-01-01

    We propose a catastrophic eruption model for magnetar's enormous energy release during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium point is reached, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole dominated background...

  5. Zero modes in finite range magnetic fields

    CERN Document Server

    Adam, C; Nash, C

    2000-01-01

    We find a class of Fermion zero modes of Abelian Dirac operators in three dimensional Euclidean space where the gauge potentials and the related magnetic fields are nonzero only in a finite space region.

  6. Axion production from primordial magnetic fields

    Science.gov (United States)

    Kamada, Kohei; Nakai, Yuichiro

    2017-07-01

    Production of axionlike particles (ALPs) by primordial magnetic fields may have significant impacts on cosmology. We discuss the production of ALPs in the presence of the primordial magnetic fields. We find a region of the ALP mass and photon coupling which realizes the observed properties of the dark matter with appropriate initial conditions for the magnetic fields. This region may be interesting in light of recent indications for the 3.5 keV lines from galaxy clusters. For a small axion mass, a region of previously allowed parameter spaces is excluded by overproduction of ALPs as a hot/warm dark matter component. Since the abundance of ALPs strongly depends on the initial conditions of primordial magnetic fields, our results provide implications for scenarios of magnetogenesis.

  7. Compact muon solenoid magnet reaches full field

    CERN Multimedia

    2006-01-01

    Scientist of the U.S. Department of Energy in Fermilab and collaborators of the US/CMS project announced that the world's largest superconducting solenoid magnet has reached full field in tests at CERN. (1 apge)

  8. A Topology for the Penumbral Magnetic Fields

    CERN Document Server

    Almeida, J Sanchez

    2009-01-01

    We describe a scenario for the topology of the magnetic field in penumbrae that accounts for recent observations showing upflows, downflows, and reverse magnetic polarities. According to our conjecture, short narrow magnetic loops fill the penumbral photosphere. Flows along these arched field lines are responsible for both the Evershed effect and the convective transport. This scenario seems to be qualitatively consistent with most existing observations, including the dark cores in penumbral filaments reported by Scharmer et al. Each bright filament with dark core would be a system of two paired convective rolls with the dark core tracing the common lane where the plasma sinks down. The magnetic loops would have a hot footpoint in one of the bright filament and a cold footpoint in the dark core. The scenario fits in most of our theoretical prejudices (siphon flows along field lines, presence of overturning convection, drag of field lines by downdrafts, etc). If the conjecture turns out to be correct, the mild...

  9. Local Magnetic Field Role in Star Formation

    CERN Document Server

    Koch, Patrick M; Ho, Paul T P; Zhang, Qizhou; Girart, Josep M; Chen, Huei-Ru V; Lai, Shih-Ping; Li, Hua-bai; Li, Zhi-Yun; Liu, Hau-Yu B; Padovani, Marco; Qiu, Keping; Rao, Ramprasad; Yen, Hsi-Wei; Frau, Pau; Chen, How-Huan; Ching, Tao-Chung

    2015-01-01

    We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.

  10. Revisiting holographic superconductor with Magnetic Fields

    CERN Document Server

    Momeni, Davood

    2014-01-01

    We study the effect of the bulk magnetic field (charge) on scalar condensation using an analytical approach of matching. An AdS-magnetized black hole solution has been used as a probe solution of normal phase of a strongly coupled condensed matter system on boundary. In the zero temperature limit of the black hole and infinite temperature, we show that there exists a critical magnetic field and so, the Meissner's effect presented. We compare this analytical result with our previous variational approach. By studying the different between heat capacities of the normal and superconducting phases near the critical point, we show that this thermodynamic quantity becomes divergent as the Rutgers formula predicted. Mathematical pole of Rutgers formula gives us a maximum for magnetic field which at this value, the system backs to the normal phase. In zero temperature we investigate exact series solutions of the field equations using an appropriate boundary conditions set. We show that conformal dimension is fixed by ...

  11. A Holographic Bound on Cosmic Magnetic Fields

    CERN Document Server

    McInnes, Brett

    2015-01-01

    Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary) times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark-gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description. We show that holography imposes an upper bound on the intensity of magnetic fields (scaled by the squared temperature) in these circumstances, and that the values expected in some models of cosmic magnetism come close to attaining that bound.

  12. Magnetic Fields in Limb Solar Flares

    Science.gov (United States)

    Lozitsky, V. G.; Lozitska, N. I.; Botygina, O. A.

    2013-02-01

    Two limb solar flares, of 14 July 2005 and 19 July 2012, of importance X1.2 and M7.7, are analyzed at present work. Magnetic field strength in named flares are investigated by Stokes I±V profiles of Hα and D3 HeI lines. There are direct evidences to the magnetic field inhomogeneity in flares, in particular, non-paralelism of bisectors in I+V and I-V profiles. In some flare places, the local maximums of bisectors splitting were found in both lines. If these bisector splittings are interpreted as Zeeman effect manifestation, the following magnetic field strengths reach up to 2200 G in Hα and 1300 G in D3. According to calculations, the observed peculiarities of line profiles may indicate the existence of optically thick emissive small-scale elements with strong magnetic fields and lowered temperature.

  13. Construction of high magnetic field facilities approved

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ On 25 January, the National Development and Reform Commission gave the green light to a proposal to construct high magnetic field facilities for experimental use. The suggestion was jointly submitted by the Ministry of Education and CAS.

  14. The Magnetic Field of Helmholtz Coils

    Science.gov (United States)

    Berridge, H. J. J.

    1975-01-01

    Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

  15. EIT waves and coronal magnetic field diagnostics

    Institute of Scientific and Technical Information of China (English)

    CHEN PengFei

    2009-01-01

    Magnetic field in the solar lower atmosphere can be measured by the use of the Zeeman and Hanle effects. By contrast, the coronal magnetic field well above the solar surface, which directly controls various eruptive phenomena, can not be precisely measured with the traditional techniques. Several attempts are being made to probe the coronal magnetic field, such as force-free extrapolation based on the photospheric magnetograms, gyroresonance radio emissions, and coronal seismology based on MHD waves in the corona. Compared to the waves trapped in the localized coronal loops, EIT waves are the only global-scale wave phenomenon, and thus are the ideal tool for the coronal global seismology. In this paper, we review the observations and modelings of EIT waves, and illustrate how they can be applied to probe the global magnetic field in the corona.

  16. High-Field Superconducting Magnets Supporting PTOLEMY

    Science.gov (United States)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  17. Magnetic Field Amplification in Young Galaxies

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2013-01-01

    The Universe at present is highly magnetized, with fields of the order of a few 10^-5 G and coherence lengths larger than 10 kpc in typical galaxies like the Milky Way. We propose that the magnetic field was amplified to this values already during the formation and the early evolution of the galaxies. Turbulence in young galaxies is driven by accretion as well as by supernova (SN) explosions of the first generation of stars. The small-scale dynamo can convert the turbulent kinetic energy into magnetic energy and amplify very weak primordial magnetic seed fields on short timescales. The amplification takes place in two phases: in the kinematic phase the magnetic field grows exponentially, with the largest growth on the smallest non-resistive scale. In the following non-linear phase the magnetic energy is shifted towards larger scales until the dynamo saturates on the turbulent forcing scale. To describe the amplification of the magnetic field quantitatively we model the microphysics in the interstellar medium ...

  18. Split-Field Magnet facility upgraded

    CERN Multimedia

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  19. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  20. Core Processes: Earth's eccentric magnetic field

    DEFF Research Database (Denmark)

    Finlay, Chris

    2012-01-01

    Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause.......Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause....

  1. Orbit stability in billiards in magnetic field

    CERN Document Server

    Kovács, Z

    1997-01-01

    We study the stability properties of orbits in dispersing billiards in a homogeneous magnetic field by using a modified formalism based on the Bunimovich-Sinai curvature (horocycle method). We identify simple periodic orbits that can be stabilized by the magnetic field in the four-disk model and the square-lattice Lorentz gas. The stable orbits can play a key role in determining the transport properties of these models.

  2. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T., E-mail: shimizu@solar.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-10-15

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  3. Unwinding motion of a twisted active region filament

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  4. Unwinding Motion of a Twisted Active Region Filament

    Science.gov (United States)

    Yan, X. L.; Xue, Z. K.; Liu, J. H.; Kong, D. F.; Xu, C. L.

    2014-12-01

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  5. Magnetic Field Measurement on a Refined Kicker

    CERN Document Server

    Fan, Tai-Ching; Lin, Fu-Yuan

    2005-01-01

    To prepare for the operation of top-up mode and increase the efficiency of injection at storage ring, National Synchrotron Radiation Research Center (NSRRC) has upgraded the kicker magnets and power supply. We have built up a new magnetic field measurement system to test the kicker. This system, including a search coil and a coil loop, can map the field and take the first integral of field automatically. We also simulate the trajectory of electron beam by pulsed wire method of field measurement. We analyze the performance of the kicker system in this paper.

  6. Biological systems in high magnetic field

    Science.gov (United States)

    Yamagishi, A.

    1990-12-01

    Diamagnetic orientation of biological systems have been investigated theoretically and experimentally. Fibrinogen, one of blood proteins, were polymerized in static high magnetic fields up to 8 T. Clotted gels composed of oriented fibrin fibers were obtained even in a field as low as 1 T. Red blood cells (RBC) show full orientation with their plane parallel to the applied field of 4 T. It is confirmed experimentally that the magnetic orientation of RBC is caused by diamagnetic anisotropy. Full orientation is also obtained with blood platelet in a field of 3 T.

  7. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  8. Combustion instability mitigation by magnetic fields

    Science.gov (United States)

    Jocher, Agnes; Pitsch, Heinz; Gomez, Thomas; Bonnety, Jérôme; Legros, Guillaume

    2017-06-01

    The present interdisciplinary study combines electromagnetics and combustion to unveil an original and basic experiment displaying a spontaneous flame instability that is mitigated as the non-premixed sooting flame experiences a magnetic perturbation. This magnetic instability mitigation is reproduced by direct numerical simulations to be further elucidated by a flow stability analysis. A key role in the stabilization process is attributed to the momentum and thermochemistry coupling that the magnetic force, acting mainly on paramagnetic oxygen, contributes to sustain. The spatial local stability analysis based on the numerical simulations shows that the magnetic field tends to reduce the growth rates of small flame perturbations.

  9. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; Duan, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  10. Magnetic Field Apparatus (MFA) Hardware Test

    Science.gov (United States)

    Anderson, Ken; Boody, April; Reed, Dave; Wang, Chung; Stuckey, Bob; Cox, Dave

    1999-01-01

    The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.

  11. Wuhan pulsed high magnetic field center

    OpenAIRE

    Li, Liang; Peng, Tao; Ding, Honfa; Han, Xiaotao; Ding, Tonghai; Chen, Jin; Wang, Junfeng; Xie, Jianfeng; Wang, Shaoliang; DUAN, Xianzhong; Wang, Cheng; Herlach, Fritz; Vanacken, Johan; Pan, Yuan

    2008-01-01

    Wuhan pulsed high magnetic field facility is under development. Magnets of bore sizes from 12 to 34 mm with the peak field in the range of 50 to 80 T have been designed. The pulsed power supplies consists of a 12 MJ, 25 kV capacitor bank and a 100 MVA/100 MJ flywheel pulse generator. A prototype 1 MJ, 25 kV capacitor bank is under construction. Five magnets wound with CuNb wire and copper wire reinforced internally with Zylon fiber composites and externally with stainless steel shells have be...

  12. New electric field in asymmetric magnetic reconnection.

    Science.gov (United States)

    Malakit, K; Shay, M A; Cassak, P A; Ruffolo, D

    2013-09-27

    We present a theory and numerical evidence for the existence of a previously unexplored in-plane electric field in collisionless asymmetric magnetic reconnection. This electric field, dubbed the "Larmor electric field," is associated with finite Larmor radius effects and is distinct from the known Hall electric field. Potentially, it could be an important indicator for the upcoming Magnetospheric Multiscale mission to locate reconnection sites as we expect it to appear on the magnetospheric side, pointing earthward, at the dayside magnetopause reconnection site.

  13. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    Science.gov (United States)

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling.

  14. Where is magnetic anisotropy field pointing to?

    CERN Document Server

    Gutowski, Marek W

    2013-01-01

    The desired result of magnetic anisotropy investigations is the determination of value(s) of various anisotropy constant(s). This is sometimes difficult, especially when the precise knowledge of saturation magnetization is required, as it happens in ferromagnetic resonance (FMR) studies. In such cases we usually resort to `trick' and fit our experimental data to the quantity called \\emph{anisotropy field}, which is strictly proportional to the ratio of the searched anisotropy constant and saturation magnetization. Yet, this quantity is scalar, simply a number, and is therefore of little value for modeling or simulations of the magnetostatic or micromagnetic structures. Here we show how to `translate' the values of magnetic anisotropy constants into the complete vector of magnetic anisotropy field. Our derivation is rigorous and covers the most often encountered cases, from uniaxial to cubic anisotropy.

  15. Bootstrapping the Coronal Magnetic Field with STEREO

    Science.gov (United States)

    Aschwanden, Markus J.

    2010-05-01

    The 3D coronal magnetic field obtained from stereoscopically triangulated loops has been compared with standard photospheric magnetogram extrapolations. We found a large misalignment of 20-40 deg, depending on the complexity of an AR (Sandman et al. 2009; DeRosa et al. 2009). These studies prove that the magnetic field in the photosphere is not force-free and fundamentally cannot reproduce the coronal magnetic field. Bootstrapping with coronal loop 3D geometries are required to improve modeling of the coronal field. Such coronal field bootstrapping methods are currently developed using stereoscopically triangulated loops from STEREO/EUVI and preliminary results show already a significantly reduced misalignment of 10-20 deg.

  16. Critical Magnetic Field Determination of Superconducting Materials

    Energy Technology Data Exchange (ETDEWEB)

    Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  17. Fast Reconnection of Weak Magnetic Fields

    Science.gov (United States)

    Zweibel, Ellen G.

    1998-01-01

    Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids.

  18. Growth of Czochralski silicon under magnetic field

    Institute of Scientific and Technical Information of China (English)

    XU Yuesheng; LIU Caichi; WANG Haiyun; ZHANG Weilian; YANG Qingxin; LI Yangxian; REN Binyan; LIU Fugui

    2004-01-01

    Growth of Czochralski (CZ) silicon crystals under the magnetic field induced by a cusp-shaped permanent magnet of NdFeB has been investigated. It is found that the mass transport in silicon melt was controlled by its diffusion while the magnetic intensity at the edge of a crucible was over 0.15 T. In comparison with the growth of conventional CZ silicon without magnetic field, the resistivity homogeneity of the CZ silicon under the magnetic field was improved. Furthermore, the Marangoni convection which has a significant influence on the control of oxygen concentration was observed on the surface of silicon melt. It is suggested that the crystal growth mechanism in magnetic field was similar to that in micro-gravity if a critical value was reached, named the growth of equivalent micro-gravity. The relationship of the equivalent micro-gravity and the magnetic intensity was derived as g=(v0/veff)g0. Finally, the orders of the equivalent micro-gravity corresponding to two crucibles with characteristic sizes were calculated.

  19. Twists and turns--How we stepped into and had fun in the "boring" lipid field.

    Science.gov (United States)

    Han, Min

    2015-11-01

    Compared to proteins and RNAs, functional specificities associated with structural variations in fatty acids and lipids have been greatly underexplored. This review describes how our lab naively started to work on lipids 14 years ago, and how we have gradually overcome obstacles to address some interesting biological questions by combining genetics with biochemical methods on the nematode Caenorhabditis elegans. Our studies have revealed lipid variants and their metabolic pathways, in specific tissues, impact development and behaviors by regulating specific signaling events. The review also discusses the general research approach, style of lab management, and funding mechanisms that have facilitated the frequent research direction changes in the lab, including the journey into the lipid field.

  20. Reweighting twisted boundary conditions

    CERN Document Server

    Bussone, Andrea; Hansen, Martin; Pica, Claudio

    2015-01-01

    Imposing twisted boundary conditions on the fermionic fields is a procedure extensively used when evaluating, for example, form factors on the lattice. Twisting is usually performed for one flavour and only in the valence, and this causes a breaking of unitarity. In this work we explore the possibility of restoring unitarity through the reweighting method. We first study some properties of the approach at tree level and then we stochastically evaluate ratios of fermionic determinants for different boundary conditions in order to include them in the gauge averages, avoiding in this way the expensive generation of new configurations for each choice of the twisting angle, $\\theta$. As expected the effect of reweighting is negligible in the case of large volumes but it is important when the volumes are small and the twisting angles are large. In particular we find a measurable effect for the plaquette and the pion correlation function in the case of $\\theta=\\pi/2$ in a volume $16\\times 8^3$, and we observe a syst...

  1. Simulating magnetic fields in the Antennae galaxies

    CERN Document Server

    Kotarba, H; Naab, T; Johansson, P H; Dolag, K; Lesch, H

    2009-01-01

    We present self-consistent high-resolution simulations of NGC4038/4039 (the "Antennae galaxies") including star formation, supernova feedback and magnetic fields performed with the N-body/SPH code Gadget, in which hydrodynamics and magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 1 nG to 1 muG. At the time of the best match with the central region of the Antennae system the magnetic field has been amplified by compression and shear flows to an equilibrium field of approximately 10 muG, independent of the initial seed field. This simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of r...

  2. Magnetic Field Transport in Accretion Disks

    Science.gov (United States)

    Jafari, Amir; Vishniac, Ethan

    2017-06-01

    The most plausible theories for launching astrophysical jets rely on strong magnetic fields at the inner parts of some accretion disks. An internal dynamo can in principle generate small scale magnetic fields in situ but generating a large scale field in a disk seems a difficult task in the dynamo theories. In fact, as far as numerous numerical experiments indicate, a dynamo-generated field in general would not be coherent enough over the large length scales of order the disk's radius. Instead, a large scale poloidal field dragged in from the environment, and compressed by the accretion, provides a more promising possibility. The difficulty in the latter picture, however, arises from the reconnection of the radial field component across the mid-plane which annihilates the field faster than it is dragged inward by the accretion. We suggest that a combination of different effects, including magnetic buoyancy and turbulent pumping, is responsible for the vertical transport of the field lines toward the surface of the disk. The radial component of the poloidal field vanishes at the mid-plane, which efficiently impedes reconnection, and grows exponentially toward the surface where it can become much larger than the vertical field component. This allows the poloidal field to be efficiently advected to small radii until the allowed bending angle drops to of order unity, and the field can drive a strong outflow.

  3. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-08-22

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.

  4. Study of marine magnetic field

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.

    (COB) is again both a basic scientific requirement as well at some places is a requirement under the UNCLOS related Legal Continental Shelf demarcation purpose. In the oceanic areas, the marine magnetic studies are one of the essential tools... oceans increased, more and more deviations from this simplified model, such as propagating ridges and overlapping spreading centers were discovered. These observations enabled the study of new aspects of seafloor spreading process beyond the initial...

  5. Magnetic field amplification in turbulent astrophysical plasmas

    CERN Document Server

    Federrath, Christoph

    2016-01-01

    Magnetic fields play an important role in astrophysical accretion discs, and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here I start by reviewing recent advances in the numerical and theoretical modelling of the 'turbulent dynamo', which may explain the origin of galactic and inter-galactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simu...

  6. The Magnetic Field of Solar Spicules

    CERN Document Server

    Centeno, R; Ramos, A Asensio

    2009-01-01

    Determining the magnetic field of solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic, and magnetic structure of the chromosphere. Here we report on magnetic spicule properties in a very quiet region of the off-limb solar atmosphere, as inferred from new spectropolarimetric observations in the HeI 10830 A triplet. We have used a novel inversion code for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects (HAZEL) to interpret the observations. Magnetic fields as strong as 40G were unambiguously detected in a very localized area of the slit, which may represent a possible lower value of the field strength of organized network spicules.

  7. QCD thermodynamics and magnetization in nonzero magnetic field

    CERN Document Server

    Tawfik, Abdel Nasser; Ezzelarab, Nada; Shalaby, Asmaa G

    2016-01-01

    In nonzero magnetic field, the magnetic properties and thermodynamics of the quantum-chromodynamic (QCD) matter is studied in the hadron resonance gas and the Polyakov linear-sigma models and compared with recent lattice calculations. Both models are fairly suited to describe the degrees of freedom in the hadronic phase. The partonic ones are only accessible by the second model. It is found that the QCD matter has paramagnetic properties, which monotonically depend on the temperature and are not affected by the hadron-quark phase-transition. Furthermore, raising the magnetic field strength increases the thermodynamic quantities, especially in the hadronic phase but reduces the critical temperature, i.e. inverse magnetic catalysis.

  8. The magnetic fields of Jupiter and Saturn

    Science.gov (United States)

    Ness, N. F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected.

  9. Evidence for Solar Tether-cutting Magnetic Reconnection from Coronal Field Extrapolations

    CERN Document Server

    Liu, Chang; Lee, Jeongwoo; Wiegelmann, Thomas; Moore, Ronald L; Wang, Haimin

    2013-01-01

    Magnetic reconnection is one of the primary mechanisms for triggering solar eruptive events, but direct observation of its rapid process has been of challenge. In this Letter we present, using a nonlinear force-free field (NLFFF) extrapolation technique, a visualization of field line connectivity changes resulting from tether-cutting reconnection over about 30 minutes during the 2011 February 13 M6.6 flare in NOAA AR 11158. Evidence for the tether-cutting reconnection was first collected through multiwavelength observations and then by the analysis of the field lines traced from positions of four conspicuous flare 1700 A footpoints observed at the event onset. Right before the flare, the four footpoints are located very close to the regions of local maxima of magnetic twist index. Especially, the field lines from the inner two footpoints form two strongly twisted flux bundles (up to ~1.2 turns), which shear past each other and reach out close to the outer two footpoints, respectively. Immediately after the fl...

  10. Measurements of Photospheric and Chromospheric Magnetic Fields

    Science.gov (United States)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2017-09-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  11. Magnetizing a complex plasma without a magnetic field

    CERN Document Server

    Kählert, H; Bonitz, M; Löwen, H; Greiner, F; Piel, A

    2012-01-01

    We propose and demonstrate a concept that mimics the magnetization of the heavy dust particles in a complex plasma while leaving the properties of the light species practically unaffected. It makes use of the frictional coupling between a complex plasma and the neutral gas, which allows to transfer angular momentum from a rotating gas column to a well-controlled rotation of the dust cloud. This induces a Coriolis force that acts exactly as the Lorentz force in a magnetic field. Experimental normal mode measurements for a small dust cluster with four particles show excellent agreement with theoretical predictions for a magnetized plasma.

  12. Magnetic nanoparticles for applications in oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Peeraphatdit, Chorthip [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific

  13. Primordial magnetic fields from the string network

    Science.gov (United States)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2016-08-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.

  14. Lightning Magnetic Field Measurements around Langmuir Laboratory

    Science.gov (United States)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.

    2010-12-01

    In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.

  15. Teaching Representation Translations with Magnetic Field Experiments

    Science.gov (United States)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and…

  16. Galactic magnetic fields and hierarchical galaxy formation

    CERN Document Server

    Rodrigues, Luiz Felippe S; Fletcher, Andrew; Baugh, Carlton

    2015-01-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in the cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulence magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic fields strengths obtained for the satellite and central galaxies populations as well as the typical strength of the large-scale magnetic field in galax...

  17. A deep dynamo generating Mercury's magnetic field.

    Science.gov (United States)

    Christensen, Ulrich R

    2006-12-21

    Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.

  18. Teaching Representation Translations with Magnetic Field Experiments

    Science.gov (United States)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and…

  19. Nonperturbative Physics in a Magnetic Field

    CERN Document Server

    de la Incera, Vivian

    2010-01-01

    Non-Perturbative Quantum Field Theory has played an important role in the study of phenomena where a fermion condensate can appear under certain physical conditions. The familiar phenomenon of electric superconductivity, the color superconductivity of very dense quark matter, and the chiral symmetry breaking of low energy effective chiral theories are all examples of that sort. Often one is interested in the behavior of these systems in the presence of an external magnetic field. In this talk I will outline the effects of an external magnetic field on theories with either fermion-fermion or fermion-antifermion condensates.

  20. Hyperon bulk viscosity in strong magnetic fields

    CERN Document Server

    Sinha, Monika

    2008-01-01

    We study bulk viscosity in neutron star matter including $\\Lambda$ hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving $\\Lambda$ hyperons and the direct Urca (dUrca) process are calculated here. In the presence of a strong magnetic field, bulk viscosity coefficients are enhanced when protons, electrons and muons are populated in their respective zeroth Landau levels compared with the field free cases. The enhancement of bulk viscosity coefficient is larger for the dUrca case.

  1. Opening the cusp. [using magnetic field topology

    Science.gov (United States)

    Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.

    1991-01-01

    This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

  2. String field theory solution corresponding to constant background magnetic field

    CERN Document Server

    Ishibashi, Nobuyuki; Takahashi, Tomohiko

    2016-01-01

    Following the method recently proposed by Erler and Maccaferri, we construct solutions to the equation of motion of Witten's cubic string field theory, which describe constant magnetic field background. We study the boundary condition changing operators relevant to such background and calculate the operator product expansions of them. We obtain solutions whose classical action coincide with the Born-Infeld action.

  3. Magnetic fields of young solar twins

    Science.gov (United States)

    Rosén, L.; Kochukhov, O.; Hackman, T.; Lehtinen, J.

    2016-09-01

    Aims: The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and to understand the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. Methods: We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Results: Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100 Myr to 250 Myr, while there is no significant age dependence of the mean magnetic field strength for stars with ages 250-650 Myr. The spread in the mean field strength between different stars is comparable to the scatter between different observations of individual stars. The meridional field component is weaker than the radial and azimuthal field components in 15 of the 16 magnetic maps. It turns out that 89-97% of the magnetic field energy is contained in l = 1 - 3. There is also no clear trend with age and distribution of field energy into poloidal/toroidal and axisymmetric/non-axisymmetric components within the sample. The two oldest stars in this study show an octupole component that is twice as strong as the quadrupole component. This is only seen in 1 of the 13 maps of the younger stars. One star, χ1 Ori, displays two field polarity switches during almost 5 yr of observations suggesting a magnetic cycle length of 2, 6, or 8 yr. Based on observations made with the HARPSpol instrument on the ESO 3.6 m

  4. Magnetohydrodynamic experiments on cosmic magnetic fields

    CERN Document Server

    Stefani, Frank; Gerbeth, Gunter

    2008-01-01

    It is widely known that cosmic magnetic fields, including the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale liquid sodium facilities in Riga and Karlsruhe. Recently, self-excitation was also obtained in the French "von Karman sodium" (VKS) experiment. An MRI-like mode was found on the background of a turbulent spherical Couette flow at the University of Maryland. Evidence for MRI as the first instability of an hydrodynamica...

  5. Magnetic Field Amplification via Protostellar Disc Dynamos

    CERN Document Server

    Dyda, Sergei; Ustyugova, Galina V; Koldoba, Alexander V; Wasserman, Ira

    2015-01-01

    We model the generation of a magnetic field in a protostellar disc using an \\alpha-dynamo and perform axisymmetric magnetohydrodynamics (MHD) simulations of a T Tauri star. We find that for small values of the dimensionless dynamo parameter $\\alpha_d$ the poloidal field grows exponentially at a rate ${\\sigma} \\propto {\\Omega}_K \\sqrt{\\alpha_d}$ , before saturating to a value $\\propto \\sqrt{\\alpha_d}$ . The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of order $10^{-9} M_{\\odot}/\\rm{yr}$ for T Tauri stars. For large values of $\\alpha_d$ magnetic loops are generated over the entire disc. These quickly come to dominate the disc dynamics and cause the disc to break up due to the magnetic pressure.

  6. A holographic bound on cosmic magnetic fields

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2015-03-01

    Full Text Available Magnetic fields large enough to be observable are ubiquitous in astrophysics, even at extremely large length scales. This has led to the suggestion that such fields are seeded at very early (inflationary times, and subsequently amplified by various processes involving, for example, dynamo effects. Many such mechanisms give rise to extremely large magnetic fields at the end of inflationary reheating, and therefore also during the quark–gluon plasma epoch of the early universe. Such plasmas have a well-known holographic description in terms of a thermal asymptotically AdS black hole. We show that holography imposes an upper bound on the intensity of magnetic fields (≈3.6×1018gauss at the hadronization temperature in these circumstances; this is above, but not far above, the values expected in some models of cosmic magnetogenesis.

  7. Measuring vector magnetic fields in solar prominences

    CERN Document Server

    Suárez, D Orozco; Bueno, J Trujillo

    2012-01-01

    We present spectropolarimetric observations in the He I 1083.0 nm multiplet of a quiescent, hedgerow solar prominence. The data were taken with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope at the Observatorio del Teide (Tenerife; Canary Islands; Spain). The observed He I circular and linear polarization signals are dominated by the Zeeman effect and by atomic level polarization and the Hanle effect, respectively. These observables are sensitive to the strength and orientation of the magnetic field vector at each spatial point of the field of view. We determine the magnetic field vector of the prominence by applying the HAZEL inversion code to the observed Stokes profiles. We briefly discuss the retrieved magnetic field vector configuration.

  8. Magnetic fields during high redshift structure formation

    CERN Document Server

    Schleicher, Dominik R G; Schober, Jennifer; Schmidt, Wolfram; Bovino, Stefano; Federrath, Christoph; Niemeyer, Jens; Banerjee, Robi; Klessen, Ralf S

    2012-01-01

    We explore the amplification of magnetic fields in the high-redshift Universe. For this purpose, we perform high-resolution cosmological simulations following the formation of primordial halos with \\sim10^7 M_solar, revealing the presence of turbulent structures and complex morphologies at resolutions of at least 32 cells per Jeans length. Employing a turbulence subgrid-scale model, we quantify the amount of unresolved turbulence and show that the resulting turbulent viscosity has a significant impact on the gas morphology, suppressing the formation of low-mass clumps. We further demonstrate that such turbulence implies the efficient amplification of magnetic fields via the small-scale dynamo. We discuss the properties of the dynamo in the kinematic and non-linear regime, and explore the resulting magnetic field amplification during primordial star formation. We show that field strengths of \\sim10^{-5} G can be expected at number densities of \\sim5 cm^{-3}.

  9. Inference of magnetic fields in inhomogeneous prominences

    CERN Document Server

    Milic, Ivan; Atanackovic, Olga

    2016-01-01

    Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D...

  10. Nonrelativistic Fermions in Magnetic Fields a Quantum Field Theory Approach

    CERN Document Server

    Espinosa, Olivier R; Lepe, S; Méndez, F

    2001-01-01

    The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that contains all possible regularizations. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2+1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function.

  11. Vector magnetic field in solar polar region

    Institute of Scientific and Technical Information of China (English)

    邓元勇; 汪景秀; 艾国祥

    1999-01-01

    By means of ’deep integration’ observations of a videomagnetograph the vector magnetic field was first systematically measured near the solar south polar region on April 12, 1997 when the Sun was in the minimal phase between the 22nd and 23rd solar cycle. It was found that the polar magnetic field deviated from the normal of solar surface by about 42.2°±3.2°, a stronger magnetic element may have smaller inclination, and that within the polar cap above heliolatitude of 50°, the unsigned and net flux densities were 7.8×10-4 T and -3.4×10-4 T, respectively, and consequently, the unsigned and net fluxes were about 5.5×1022 and -2.5×1022 Mx. The net magnetic flux, which belongs to the large-scale global magnetic field of the Sun, roughly approaches the order of the interplanetary magnetic field (IMF) measured at distance of 1 AU.

  12. Magnetic fields of young solar twins

    CERN Document Server

    Rosén, L; Hackman, T; Lehtinen, J

    2016-01-01

    The goal of this work is to study the magnetic fields of six young solar-analogue stars both individually, and collectively, to search for possible magnetic field trends with age. If such trends are found, they can be used to understand magnetism in the context of stellar evolution of solar-like stars and, the past of the Sun and the solar system. This is also important for the atmospheric evolution of the inner planets, Earth in particular. We used Stokes IV data from two different spectropolarimeters, NARVAL and HARPSpol. The least-squares deconvolution multi-line technique was used to increase the signal-to-noise ratio of the data. We then applied a modern Zeeman-Doppler imaging code in order to reconstruct the magnetic topology of all stars and the brightness distribution of one of our studied stars. Our results show a significant decrease in the magnetic field strength and energy as the stellar age increases from 100Myr to 250Myr while there is no significant age dependence of the mean magnetic field str...

  13. Magnetic fields in Local Group dwarf irregulars

    Science.gov (United States)

    Chyży, K. T.; Weżgowiec, M.; Beck, R.; Bomans, D. J.

    2011-05-01

    Aims: We wish to clarify whether strong magnetic fields can be effectively generated in typically low-mass dwarf galaxies and to assess the role of dwarf galaxies in the magnetization of the Universe. Methods: We performed a search for radio emission and magnetic fields in an unbiased sample of 12 Local Group (LG) irregular and dwarf irregular galaxies with the 100-m Effelsberg telescope at 2.64 GHz. Three galaxies were detected. A higher frequency (4.85 GHz) was used to search for polarized emission in five dwarfs that are the most luminous ones in the infrared domain, of which three were detected. Results: Magnetic fields in LG dwarfs are weak, with a mean value of the total field strength of regulated mainly by the star-formation surface density (with the power-law exponent of 0.30 ± 0.04) or by the gas surface density (with the exponent 0.47 ± 0.09). In addition, we find systematically stronger fields in objects of higher global star-formation rate. The dwarf galaxies follow a similar far-infrared relationship (with a slope of 0.91 ± 0.08) to that determined for high surface brightness spiral galaxies. The magnetic field strength in dwarf galaxies does not correlate with their maximum rotational velocity, indicating that a small-scale rather than a large-scale dynamo process is responsible for producting magnetic fields in dwarfs. If magnetization of the Universe by galactic outflows is coeval with its metal enrichment, we show that more massive objects (such as Lyman break galaxies) can efficiently magnetize the intergalactic medium with a magnetic field strength of about 0.8 nG out to a distance of 160-530 kpc at redshifts 5-3, respectively. Magnetic fields that are several times weaker and shorter magnetization distances are expected for primordial dwarf galaxies. We also predict that most star-forming local dwarfs might have magnetized their surroundings up to a field strength about 0.1 μG within about a 5 kpc distance. Conclusions: Strong magnetic

  14. Berry phase transition in twisted bilayer graphene

    Science.gov (United States)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  15. Near-zero-field nuclear magnetic resonance

    CERN Document Server

    Ledbetter, Micah; Blanchard, John; Ring, Hattie; Ganssle, Paul; Appelt, Stephan; Bluemich, Bernhard; Pines, Alex; Budker, Dmitry

    2011-01-01

    We investigate nuclear magnetic resonance (NMR) in near-zero-field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J-coupling). This is in stark contrast to the high field case, where heteronuclear J-couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with non-trivial spectra.

  16. Near-zero-field nuclear magnetic resonance.

    Science.gov (United States)

    Ledbetter, M P; Theis, T; Blanchard, J W; Ring, H; Ganssle, P; Appelt, S; Blümich, B; Pines, A; Budker, D

    2011-09-02

    We investigate nuclear magnetic resonance (NMR) in near zero field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J coupling). This is in stark contrast to the high-field case, where heteronuclear J couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with nontrivial spectra.

  17. Magnetic Fields in the Interstellar Medium

    Science.gov (United States)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  18. Effects of static magnetic fields on plants.

    Science.gov (United States)

    Kuznetsov, O.

    In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (Δ ≊ HGMF, grad(H2/2) up to 109-1010 Oe2/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing a directional stimulus for plant gravisensing system in microgravity, and causing the roots to react. Such reaction was observed in the video downlink pictures. Unfortunately, the ``Columbia'' tragedy caused loss of the plant material and most of the images, thus preventing us from detailed studies of the results. Currently we are looking for a possibility to repeat this experiment. Therefore, it is very important to understand, what other effects (besides displacing amyloplasts) static magnetic fields with intensities 0 to 2.5104 Oe, and with the size of the area of non-uniformity 10-3 to 1 cm. These effects were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are insignificant. Both theoretical estimations and control experiments confirm, that intracellular magnetophoresis of

  19. Inference of magnetic fields in inhomogeneous prominences

    Science.gov (United States)

    Milić, I.; Faurobert, M.; Atanacković, O.

    2017-01-01

    Context. Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. Aims: We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. Methods: We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D slab model. Results: We find that differences between input and the inferred magnetic field vector are non-negligible. Namely, we almost universally find that the inferred field is weaker and more horizontal than the input field. Conclusions: Spatial inhomogeneities and radiative transfer have a strong effect on scattering line polarization in the optically thick lines. In real-life situations, ignoring these effects could lead to a serious misinterpretation of spectropolarimetric observations of chromospheric objects such as prominences.

  20. Whistler modes with wave magnetic fields exceeding the ambient field.

    Science.gov (United States)

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  1. Dissipation function in a magnetic field (Review)

    Science.gov (United States)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  2. Magnetic Fields and Massive Star Formation

    CERN Document Server

    Zhang, Qizhou; Girart, Josep M; Hauyu,; Liu,; Tang, Ya-Wen; Koch, Patrick M; Li, Zhi-Yun; Keto, Eric; Ho, Paul T P; Rao, Ramprasad; Lai, Shih-Ping; Ching, Tao-Chung; Frau, Pau; Chen, How-Huan; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain; Csengeri, Timea; Juarez, Carmen

    2014-01-01

    Massive stars ($M > 8$ \\msun) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 $\\mu$m obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of $\\lsim$ 0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within $40^\\circ$ of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the ...

  3. Magnetic fields of the outer planets

    Science.gov (United States)

    Connerney, J. E. P.

    1993-01-01

    It is difficult to imagine a group of planetary dynamos more diverse than those visited by the Pioneer and Voyager spacecraft. The magnetic field of Jupiter is large in magnitude and has a dipole axis within 10 deg of its rotation axis, comfortably consistent with the paleomagnetic history of the geodynamo. Saturn's remarkable (zonal harmonic) magnetic field has an axis of symmetry that is indistinguishable from its rotation axis (mush less than 1 deg angular separation); it is also highly antisymmetric with respect to the equator plane. According to one hypothesis, the spin symmetry may arise from the differential rotation of an electrically conducting and stably stratified layer above the dynamo. The magnetic fields of Uranus and Neptune are very much alike, and equally unlike those of the other known magnetized planets. These two planets are characterized by a large dipole tilts (59 deg and 47 deg, respectively) and quadrupole moments (Schmidt-normalized quadrupole/dipole ratio approximately equal 1.0). These properties may be characteristic of dynamo generation in the relatively poorly conducting 'ice' interiors of Uranus and Neptune. Characteristics of these planetary magnetic fields are illustrated using contour maps of the field on the planet's surface and discussed in the context of planetary interiors and dynamo generation.

  4. Cosmic Magnetic Fields: Observations and Prospects

    CERN Document Server

    Beck, Rainer

    2011-01-01

    Synchrotron emission, its polarization and its Faraday rotation at radio frequencies of 0.2-10 GHz are powerful tools to study the strength and structure of cosmic magnetic fields. The observational results are reviewed for spiral, barred and flocculent galaxies, the Milky Way, halos and relics of galaxy clusters, and for the intergalactic medium. Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of cosmic magnetic fields and will help to understand their origin. At low frequencies, LOFAR (10-250 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies and galaxy clusters. Polarization at higher frequencies (1-10 GHz), as observed with the EVLA, ASKAP, MeerKAT, APERTIF and the SKA, will trace magnetic fields in the disks and central regions of nearby galaxies in unprecedented detail. Surveys of Faraday rotation measures of pulsars will map the Milky Way's magnetic field with high precision. All-sky sur...

  5. Magnetic fields in primordial accretion disks

    Science.gov (United States)

    Latif, M. A.; Schleicher, D. R. G.

    2016-01-01

    Magnetic fields are considered a vital ingredient of contemporary star formation and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations and are subsequently amplified by the small-scale dynamo, leading to a strong, tangled magnetic field. We explore how the magnetic field provided by the small-scale dynamo is further amplified via the α-Ω dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop. III star with 10M⊙ and an accretion rate of 10-3M⊙ yr-1, and a supermassive star with 105M⊙ and an accretion rate of 10-1M⊙ yr-1. For the 10M⊙ Pop. III star, we find that coherent magnetic fields can be produced on scales of at least 100 AU, which are sufficient to drive a jet with a luminosity of 100L⊙ and a mass outflow rate of 10-3.7M⊙ yr-1. For the supermassive star, the dynamical timescales in its environment are even shorter, implying smaller orbital timescales and an efficient magnetization out to at least 1000 AU. The jet luminosity corresponds to ~106.0L⊙ and a mass outflow rate of 10-2.1M⊙ yr-1. We expect that the feedback from the supermassive star can have a relevant impact on its host galaxy.

  6. Magnetic Field Strengths in Photodissociation Regions

    CERN Document Server

    Balser, Dana S; Jeyakumar, S; Bania, T M; Montet, Benjamin T; Shitanishi, J A

    2015-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 GHz toward four HII regions with the Green Bank Telescope (GBT) to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi (2007) suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic (MHD) waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B ~ 100-300 micro Gauss in W3 and NGC6334A. Our results for W49 and NGC6334D are less well constrained with total magnetic field strengths between B ~ 200-1000 micro Gauss. HI and OH Zeeman measurements of the line-of-sight magnetic field strength (B_los), taken from the literature, are between a facto...

  7. Magnetic field effect on spoke behaviour

    Science.gov (United States)

    Hnilica, Jaroslav; Slapanska, Marta; Klein, Peter; Vasina, Petr

    2016-09-01

    The investigations of the non-reactive high power impulse magnetron sputtering (HiPIMS) discharge using high-speed camera imaging, optical emission spectroscopy and electrical probes showed that plasma is not homogeneously distributed over the target surface, but it is concentrated in regions of higher local plasma density called spokes rotating above the erosion racetrack. Magnetic field effect on spoke behaviour was studied by high-speed camera imaging in HiPIMS discharge using 3 inch titanium target. An employed camera enabled us to record two successive images in the same pulse with time delay of 3 μs between them, which allowed us to determine the number of spokes, spoke rotation velocity and spoke rotation frequency. The experimental conditions covered pressure range from 0.15 to 5 Pa, discharge current up to 350 A and magnetic fields of 37, 72 and 91 mT. Increase of the magnetic field influenced the number of spokes observed at the same pressure and at the same discharge current. Moreover, the investigation revealed different characteristic spoke shapes depending on the magnetic field strength - both diffusive and triangular shapes were observed for the same target material. The spoke rotation velocity was independent on the magnetic field strength. This research has been financially supported by the Czech Science Foundation in frame of the project 15-00863S.

  8. Reducing blood viscosity with magnetic fields.

    Science.gov (United States)

    Tao, R; Huang, K

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ~1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells' normal function. This technology has much potential for physical therapy.

  9. The Magnetic Field of Planet Earth

    DEFF Research Database (Denmark)

    Hulot, G.; Finlay, Chris; Constable, C. G.

    2010-01-01

    The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks h...... yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole.......The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... observations have been made possible from space, leading to the possibility of observing the Earth’s magnetic field in much more details than was previously possible. The progressive increase in computer power was also crucial, leading to advanced ways of handling and analyzing this considerable corpus of data...

  10. Cosmological Magnetic Fields from Primordial Helical Seeds

    CERN Document Server

    Sigl, G

    2002-01-01

    Most early Universe scenarios predict negligible magnetic fields on cosmological scales if they are unprocessed during subsequent expansion of the Universe. We present a new numerical treatment of the evolution of primordial fields and apply it to weakly helical seeds as they occur in certain early Universe scenarios. We find that initial helicities not much larger than the baryon to photon number can lead to fields of about 10^{-13} Gauss with coherence scales slightly below a kilo-parsec today.

  11. Magnetic Field Observations at Purcell, Oklahoma Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Chi, P. J. [Univ. of California, Los Angeles, CA (United States); Gibson, J. P. [Univ. of Oklahoma, Norman, OK (United States)

    2017-05-01

    The campaign “Magnetic Field Observations at Purcell, Oklahoma” installed a ground-based magnetometer at Purcell’s U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility boundary installation at the Kessler Atmospheric and Ecological Field Station, University of Oklahoma, to measure local magnetic field variations. It is a part of the nine stations of the Mid-continent MAgnetoseismic Chain (McMAC) placed as close to the 330° magnetic longitude as possible. This is the meridian in the world where land covers the greatest continuous range in magnetic latitude. Figure 1 shows the map of the magnetometer stations along the 330th magnetic meridian, including the Purcell (PCEL) station. The main scientific objective of the campaign is to detect the field line resonance (FLR) frequencies of the magnetic field line connected to the Purcell station. This magnetic field line extends from Purcell to the outer space at distances as far as 2 Earth radii (RE). To accurately identify FLR frequencies, however, simultaneous measurements at slightly different latitudes along the same meridian are necessary to allow the use of the cross-phase technique. This consideration explains the arrangement to operate magnetometers at the Americus (AMER) and Richardson (RICH) stations nearby. The measured resonant frequency can infer the plasma mass density along the field line through the method of normal-mode magnetoseismology. The magnetometer at the Purcell station can detect many other types of magnetic field fluctuations associated with the changes in the electric currents in the ionosphere and the magnetosphere, which by large are affected by the solar activity. In other words, the magnetic field data collected by this campaign are also useful for understanding space weather phenomena. The magnetometer was installed at Purcell’s ARM boundary facility in March 27, 2006. The construction of the triaxial fluxgate magnetometer used by the

  12. High-field magnetization in transuranium compound

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, K. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan) and KYOKUGEN, Osaka University, Osaka 560-8531 (Japan)]. E-mail: sugiyama@phys.sci.osaka-u.ac.jp; Nakashima, H. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Aoki, D. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Ikeda, S. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Haga, Y. [Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan); Yamamoto, E. [Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan); Nakamura, A. [Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan); Homma, Y. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Shiokawa, Y. [Institute of Material Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Kindo, K. [Institite of Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581 (Japan); Hagiwara, M. [KYOKUGEN, Osaka University, Osaka 560-8531 (Japan); Onuki, Y. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Advanced Science and Research Centerer, JAEA, Tokai, Ibaraki 319-1195 (Japan)

    2007-03-15

    We measured the high-field magnetization up to 55T and constructed a magnetic phase diagram for a transuranium antiferromagnet NpRhGa{sub 5} with the tetragonal structure. The magnetization at 4.2K for H(parallel) [100] indicates a sharp metamagnetic transition with a step at H{sub c}=26T and saturates above H{sub s}=38T, reaching 0.43{mu}{sub B}/Np. An ordered moment of 0.96{mu}{sub B}/Np at zero field, which was determined from the neutron scattering experiment, is found to be reduced to 0.43{mu}{sub B}/Np at H{sub s}, together with an orientation of the magnetic moment from the (001) plane to the (100) plane.

  13. Mechanism of magnetic field effect in cryptochrome

    CERN Document Server

    Solov'yov, Ilia A

    2011-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...

  14. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  15. MAGNETIC FIELDS IN EARLY PROTOSTELLAR DISK FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    González-Casanova, Diego F.; Lazarian, Alexander [Astronomy Department, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706-1582 (United States); Santos-Lima, Reinaldo, E-mail: casanova@astro.wisc.edu [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão, 1226, São Paulo, SP 05508-090 (Brazil)

    2016-03-10

    We consider formation of accretion disks from a realistically turbulent molecular gas using 3D MHD simulations. In particular, we analyze the effect of the fast turbulent reconnection described by the Lazarian and Vishniac model for the removal of magnetic flux from a disk. With our numerical simulations we demonstrate how the fast reconnection enables protostellar disk formation resolving the so-called “magnetic braking catastrophe.” In particular, we provide a detailed study of the dynamics of a 0.5 M{sub ⊙} protostar and the formation of its disk for up to several thousands years. We measure the evolution of the mass, angular momentum, magnetic field, and turbulence around the star. We consider effects of two processes that strongly affect the magnetic transfer of angular momentum, both of which are based on turbulent reconnection: the first, “reconnection diffusion,” removes the magnetic flux from the disk; the other involves the change of the magnetic field's topology, but does not change the absolute value of the magnetic flux through the disk. We demonstrate that for the first mechanism, turbulence causes a magnetic flux transport outward from the inner disk to the ambient medium, thus decreasing the coupling of the disk to the ambient material. A similar effect is achieved through the change of the magnetic field's topology from a split monopole configuration to a dipole configuration. We explore how both mechanisms prevent the catastrophic loss of disk angular momentum and compare both above turbulent reconnection mechanisms with alternative mechanisms from the literature.

  16. Sintering of Soft Magnetic Material under Microwave Magnetic Field

    Directory of Open Access Journals (Sweden)

    Sadatsugu Takayama

    2012-01-01

    Full Text Available We have developed a simple process for sintering of soft magnetization materials using microwave sintering. The saturated magnetization (Ms of sintered magnetite was 85.6 emu/g, which was as high as 95% of magnetite before heating (90.4 emu/g. On the other hand, the averaged remanence (Mr and coercivity (Hc of the magnetite after heating were 0.17 emu/g and 1.12 Oe under measuring limit of SQUID, respectively. For the sintering process of soft magnetic materials, magnetic fields of microwave have been performed in nitrogen atmosphere. Therefore, a microwave single-mode system operating at a frequency of 2.45 GHz and with a maximum power level of 1.5 kW was used. We can sinter the good soft magnetic material in microwave magnetic field. The sample shrank to 82% theoretical density (TD from 45%TD of green body. The sintered sample was observed the microstructure by TEM and the crystal size was estimated the approximate average size is 10 nm.

  17. Magnetic Linear Birefringence Measurements Using Pulsed Fields

    CERN Document Server

    Berceau, Paul; Battesti, Remy; Rizzo, Carlo

    2011-01-01

    In this paper we present the accomplishment of the further step towards the vacuum magnetic birefringence measurement based on pulsed fields. After describing our BMV experiment, we report the calibration of our apparatus with nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Our best present vacuum sensitivity is 2.1x 10^-19 T^-2 per 5 ms magnetic pulse. We finally discuss the perspectives to reach our final goal.

  18. Magnetic Field and Force Calculations for ATLAS Asymmetrical Structure

    CERN Document Server

    Nessi, Marzio

    2001-01-01

    Magnetic field distortion in the assymetrical ATLAS structure are calculated. Magnetic forces in the system are estimated. 3D magnetic field simulation by the Opera3D code for symmetrical and asymmetrical systems is used.

  19. High magnetic field magnetization of a new triangular lattice antiferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H. D. [Univ. of Tennessee, Knoxville, TN (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-23

    In CsV(MoO4)2, the magnetic V3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO4)2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Will it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V3+ (3d2) ions. Apparently we need higher field to reach 1/3 value or full moment.

  20. Application of a data-driven simulation method to the reconstruction of the coronal magnetic field

    Institute of Scientific and Technical Information of China (English)

    Yu-Liang Fan; Hua-Ning Wang; Han He; Xiao-Shuai Zhu

    2012-01-01

    Ever since the magnetohydrodynamic (MHD) method for extrapolation of the solar coronal magnetic field was first developed to study the dynamic evolution of twisted magnetic flux tubes,it has proven to be efficient in the reconstruction of the solar coronal magnetic field.A recent example is the so-called data-driven simulation method (DDSM),which has been demonstrated to be valid by an application to model analytic solutions such as a force-free equilibrium given by Low and Lou.We use DDSM for the observed magnetograms to reconstruct the magnetic field above an active region.To avoid an unnecessary sensitivity to boundary conditions,we use a classical total variation diminishing Lax-Friedrichs formulation to iteratively compute the full MHD equations.In order to incorporate a magnetogram consistently and stably,the bottom boundary conditions are derived from the characteristic method.In our simulation,we change the tangential fields continually from an initial potential field to the vector magnetogram.In the relaxation,the initial potential field is changed to a nonlinear magnetic field until the MHD equilibrium state is reached.Such a stable equilibrium is expected to be able to represent the solar atmosphere at a specified time.By inputting the magnetograms before and after the X3.4 flare that occurred on 2006 December 13,we find a topological change after comparing the magnetic field before and after the flare.Some discussions are given regarding the change of magnetic configuration and current distribution.Furthermore,we compare the reconstructed field line configuration with the coronal loop observations by XRT onboard Hinode.The comparison shows a relatively good correlation.

  1. Magnetic fields in early-type stars

    CERN Document Server

    Grunhut, Jason H

    2015-01-01

    For several decades we have been cognizant of the presence of magnetic fields in early-type stars, but our understanding of their magnetic properties has recently (over the last decade) expanded due to the new generation of high-resolution spectropolarimeters (ESPaDOnS at CFHT, Narval at TBL, HARPSpol at ESO). The most detailed surface magnetic field maps of intermediate-mass stars have been obtained through Doppler imaging techniques, allowing us to probe the small-scale structure of these stars. Thanks to the effort of large programmes (e.g. the MiMeS project), we have, for the first time, addressed key issues regarding our understanding of the magnetic properties of massive (M > 8 M_sun) stars, whose magnetic fields were only first detected about fifteen years ago. In this proceedings article we review the spectropolarimetric observations and statistics derived in recent years that have formed our general understanding of stellar magnetism in early-type stars. We also discuss how these observations have fu...

  2. Magnetic translation algebra with or without magnetic field

    Science.gov (United States)

    Mudry, Christopher; Chamon, Claudio

    2013-03-01

    The magnetic translation algebra plays an important role in the quantum Hall effect. Murthy and Shankar have shown how to realize this algebra using fermionic bilinears defined on a two-dimensional square lattice. We show that, in any dimension d, it is always possible to close the magnetic translation algebra using fermionic bilinears, be it in the continuum or on the lattice. We also show that these generators are complete in even, but not odd, dimensions, in the sense that any fermionic Hamiltonian in even dimensions that conserves particle number can be represented in terms of the generators of this algebra, whether or not time-reversal symmetry is broken. As an example, we reproduce the f-sum rule of interacting electrons at vanishing magnetic field using this representation. We also show that interactions can significantly change the bare band width of lattice Hamiltonians when represented in terms of the generators of the magnetic translation algebra.

  3. Effect of magnetic field in malaria diagnosis using magnetic nanoparticles

    Science.gov (United States)

    Liu, Quan; Yuen, Clement

    2011-07-01

    The current gold standard method of Malaria diagnosis relies on the blood smears examination. The method is laborintensive, time consuming and requires the expertise for data interpretation. In contrast, Raman scattering from a metabolic byproduct of the malaria parasite (Hemozoin) shows the possibility of rapid and objective diagnosis of malaria. However, hemozoin concentration is usually extremely low especially at the early stage of malaria infection, rendering weak Raman signal. In this work, we propose the sensitive detection of enriched β-hematin, whose spectroscopic properties are equivalent to hemozoin, based on surface enhanced Raman spectroscopy (SERS) by using magnetic nanoparticles. A few orders of magnitude enhancement in the Raman signal of β-hematin can be achieved using magnetic nanoparticles. Furthermore, the effect of magnetic field on SERS enhancement is investigated. Our result demonstrates the potential of SERS using magnetic nanoparticles in the effective detection of hemozoin for malaria diagnosis.

  4. Magnetic resonance signal moment determination using the Earth's magnetic field

    Science.gov (United States)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  5. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  6. The Drift of Dust Grains Induced by Transient Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    华建军; 叶茂福; 王龙

    2003-01-01

    Our experiment shows that the dust grains, suspended on the edge of the sheath of a radio-frequency discharge, undergo a contraction when switching a vertical magnetic field on, and an expansion when switching the magnetic field off. We call this kind of magnetic field "transient magnetic field". A primary analysis is proposed for the phenomenon.

  7. High magnetic field ohmically decoupled non-contact technology

    Science.gov (United States)

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  8. CMB anisotropies from primordial inhomogeneous magnetic fields

    CERN Document Server

    Lewis, A

    2004-01-01

    Primordial inhomogeneous magnetic fields of the right strength can leave a signature on the CMB temperature anisotropy and polarization. Potentially observable contributions to polarization B-modes are generated by vorticity and gravitational waves sourced by the magnetic anisotropic stress. We compute the corresponding CMB transfer functions in detail including the effect of neutrinos. The shear rapidly causes the neutrino anisotropic stress to cancel the stress from the magnetic field, suppressing the production of gravitational waves and vorticity on super-horizon scales after neutrino decoupling. A significant large scale signal from tensor modes can only be produced before neutrino decoupling, and the actual amplitude is somewhat uncertain. Plausible values suggest primordial nearly scale invariant fields of ~ 10^(-10)G today may be observable from their large scale tensor anisotropy. They can be distinguished from primordial gravitational waves by their non-Gaussianity. Vector mode vorticity sources B-m...

  9. Solar Flare Magnetic Fields and Plasmas

    CERN Document Server

    Fisher, George

    2012-01-01

    This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun’s atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun’s magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield.  Dick has been making profound contributions to these areas of research over a long and pro...

  10. Magnetic Catalysis in Graphene Effective Field Theory

    CERN Document Server

    DeTar, Carleton; Zafeiropoulos, Savvas

    2016-01-01

    We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.

  11. Manifestations of the Galactic Center Magnetic Field

    CERN Document Server

    Morris, Mark R

    2014-01-01

    Several independent lines of evidence reveal that a relatively strong and highly ordered magnetic field is present throughout the Galaxy's central molecular zone (CMZ). The field within dense clouds of the central molecular zone is predominantly parallel to the Galactic plane, probably as a result of the strong tidal shear in that region. A second magnetic field system is present outside of clouds, manifested primarily by a population of vertical, synchrotron-emitting filamentary features aligned with the field. Whether or not the strong vertical field is uniform throughout the CMZ remains undetermined, but is a key central issue for the overall energetics and the impact of the field on the Galactic center arena. The interactions between the two field systems are considered, as they are likely to drive some of the activity within the CMZ. As a proxy for other gas-rich galaxies in the local group and beyond, the Galactic center region reveals that magnetic fields are likely to be an important diagnostic, if no...

  12. Holographic fermions in external magnetic fields

    CERN Document Server

    Gubankova, E; Cubrovic, M; Schalm, K; Schijven, P; Zaanen, J

    2011-01-01

    We study the Fermi level structure of 2+1-dimensional strongly interacting electron systems in external magnetic field using the AdS/CFT correspondence. The gravity dual of a finite density fermion system is a Dirac field in the background of the dyonic AdS-Reissner-Nordstrom black hole. In the probe limit the magnetic system can be reduced to the non-magnetic one, with Landau-quantized momenta and rescaled thermodynamical variables. We find that at strong enough magnetic fields, the Fermi surface vanishes and the quasiparticle is lost either through a crossover to conformal regime or through a phase transition to an unstable Fermi surface. In the latter case, the vanishing Fermi velocity at the critical magnetic field triggers the non-Fermi liquid regime with unstable quasiparticles and a change in transport properties of the system. We associate it with a metal-"strange metal" phase transition. Next we compute compute the DC Hall and longitudinal conductivities using the gravity-dressed fermion propagators....

  13. Magnetic field homogeneity for neutron EDM experiment

    Science.gov (United States)

    Anderson, Melissa

    2016-09-01

    The neutron electric dipole moment (nEDM) is an observable which, if non-zero, would violate time-reversal symmetry, and thereby charge-parity symmetry of nature. New sources of CP violation beyond those found in the standard model of particle physics are already tightly constrained by nEDM measurements. Our future nEDM experiment seeks to improve the precision on the nEDM by a factor of 30, using a new ultracold neutron (UCN) source that is being constructed at TRIUMF. Systematic errors in the nEDM experiment are driven by magnetic field inhomogeneity and instability. The goal field inhomogeneity averaged over the experimental measurement cell (order of 1 m) is 1 nT/m, at a total magnetic field of 1 microTesla. This equates to roughly 10-3 homogeneity. A particularly challenging aspect of the design problem is that nearby magnetic materials will also affect the magnetic inhomogeneity, and this must be taken into account in completing the design. This poster will present the design methodology and status of the main coil for the experiment where we use FEA software (COMSOL) to simulate and analyze the magnetic field. Natural Sciences and Engineering Research Council.

  14. Building Magnetic Fields in White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  15. Evolution of Primordial Magnetic Fields: From Generation Till Today

    CERN Document Server

    Kahniashvili, Tina; Tevzadze, Alexander G

    2015-01-01

    In this presentation we summarize our previous results concerning the evolution of primordial magnetic fields with and without helicity during the expansion of the Universe. We address different magnetogenesis scenarios such as inflation, electroweak and QCD phase transitions magnetogenesis. A high Reynolds number in the early Universe ensures strong coupling between magnetic field and fluid motions. After generation the subsequent dynamics of the magnetic field is governed by decaying hydromagnetic turbulence. We claim that primordial magnetic fields can be considered as a seeds for observed magnetic fields in galaxies and clusters. Magnetic field strength bounds obtained in our analysis are consistent with the upper and lower limits of extragalactic magnetic fields.

  16. Reduction of a Ship's Magnetic Field Signatures

    CERN Document Server

    Holmes, John

    2008-01-01

    Decreasing the magnetic field signature of a naval vessel will reduce its susceptibility to detonating naval influence mines and the probability of a submarine being detected by underwater barriers and maritime patrol aircraft. Both passive and active techniques for reducing the magnetic signatures produced by a vessel's ferromagnetism, roll-induced eddy currents, corrosion-related sources, and stray fields are presented. Mathematical models of simple hull shapes are used to predict the levels of signature reduction that might be achieved through the use of alternate construction materials. Al

  17. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  18. In situ characterization of undulator magnetic fields.

    Science.gov (United States)

    Moreno, Thierry; Otero, Edwige; Ohresser, Philippe

    2012-03-01

    A new in situ method is proposed to characterize the peak magnetic fields of undulator sources. The X-ray beam emitted by the HU52 Apple-2 undulator of the DEIMOS beamline of the SOLEIL synchrotron is analyzed using the Bragg diffraction of a Si(111) crystal. Measurements over the undulator gap range in linear horizontal polarization are compared with simulations in order to rebuild the Halbach function linking the undulator gaps to their peak magnetic fields. The method presented also allows information about the electron beam to be obtained.

  19. An Investigation of Perpendicular Gradients of Parallel Electric Field Associated with Magnetic Reconnection

    Science.gov (United States)

    Sturner, A. P.; Ergun, R.; Newman, D. L.; Lapenta, G.

    2014-12-01

    Many observations of particle heating and acceleration throughout the universe have been associated with magnetic reconnection. Generalized Ohm's Law describes how particles move under ideal and non-ideal conditions; however, it is insufficient for describing how the magnetic field itself changes. Initial studies have shown that a curl of a parallel electric field is necessary for reconnection to occur. These analytic studies have demonstrated that perpendicular gradients in the parallel electric field drive a counter-twisting of the magnetic field on either side of the localized parallel electric field. This results in the slippage of magnetic flux tubes and a break down of the 'frozen-in' condition. In this presentation, we analyze results from self-consistent implicit kinetic particle-in-cell simulations. The strongest gradients of parallel electric fields in the simulations are along the separator and not at the X-point. We will present where in the simulation domain the 'frozen-in' condition breaks down and compare it with the location of these gradients, and discuss the implications.

  20. Magnetic fields in primordial accretion disks

    CERN Document Server

    Latif, Muhammad A

    2016-01-01

    Magnetic fields are considered as a vital ingredient of contemporary star formation, and may have been important during the formation of the first stars in the presence of an efficient amplification mechanism. Initial seed fields are provided via plasma fluctuations, and are subsequently amplified by the small-scale dynamo, leading to a strong tangled magnetic field. Here we explore how the magnetic field provided by the small-scale dynamo is further amplified via the $\\alpha-\\Omega$ dynamo in a protostellar disk and assess its implications. For this purpose, we consider two characteristic cases, a typical Pop.~III star with $10$~M$_\\odot$ and an accretion rate of $10^{-3}$~M$_\\odot$~yr$^{-1}$, and a supermassive star with $10^5$~M$_\\odot$ and an accretion rate of $10^{-1}$~M$_\\odot$~yr$^{-1}$. For the $10$~M$_\\odot$ Pop.~III star, we find that coherent magnetic fields can be produced on scales of at least $100$~AU, which are sufficient to drive a jet with a luminosity of $100$~L$_\\odot$ and a mass outflow ra...

  1. High magnetic fields in the USA

    Science.gov (United States)

    Campbell, Laurence J.; Parkin, Don E.; Crow, Jack E.; Schneider-Muntau, Hans J.; Sullivan, Neil S.

    During the past thirty years research using high magnetic fields has technically evolved in the manner, but not the magnitude, of the so-called big science areas of particle physics, plasma physics, neutron scattering, synchrotron light scattering, and astronomy. Starting from the laboratories of individual researchers it moved to a few larger universities, then to centralized national facilities with research and maintenance staffs, and, finally, to joint international ventures to build unique facilities, as illustrated by the subject of this conference. To better understand the nature of this type of research and its societal justification it is helpful to compare it, in general terms, with the aforementioned big-science fields. High magnetic field research differs from particle physics, plasma physics, and astronomy in three respects: (1) it is generic research that cuts across a wide range of scientific disciplines in physics, chemistry, biology, medicine, and engineering; (2) it studies materials and processes that are relevant for a variety of technological applications and it gives insight into biological processes; (3) it has produced, at least, comparably significant results with incomparably smaller resources. Unlike neutron and synchrotron light scattering, which probe matter, high magnetic fields change the thermodynamic state of matter. This change of state is fundamental and independent of other state variables, such as pressure and temperature. After the magnetic field is applied, various techniques are then used to study the new state.

  2. Magnetic field exposure of commercial airline pilots.

    Science.gov (United States)

    Hood; Nicholas; Butler; Lackland; Hoel; Mohr

    2000-10-01

    PURPOSE: Airline pilots are exposed to magnetic fields generated by the aircraft's electrical and electronic systems. The purpose of this study was to directly measure the flight deck magnetic fields to which commercial airline pilots are exposed when flying on different aircraft types over a 75-hour flight-duty month.METHODS: Magentic field measurements were taken using personal dosimeters capable of measuring magnetic fields in the 40-800 Hz frequency range. Dosimeters were carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. The data were analyzed by aircraft type, with statistics based on block hours. Block hours begin when the aircraft departs the gate prior to take off and end when the aircraft returns to the gate after landing.RESULTS: Approximately 1008 block hours were recorded at a sampling rate of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200.CONCLUSIONS: Measured flight deck magnetic field levels were substantially above the 0.8 to 1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure.

  3. Magnetic resonance imaging without field cycling at less than earth's magnetic field

    Science.gov (United States)

    Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min

    2015-03-01

    A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.

  4. Synchronization of magnetic dipole rotation in an ac magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, M; Cebers, A, E-mail: aceb@tesla.sal.lv [University of Latvia, Zellu-8, Riga, LV-1002 (Latvia)

    2011-07-22

    The synchronization of the rotation of magnetic dipoles due to weak dipolar interactions is studied. The set of equations is analyzed by the time averaging technique. It is found that dipoles synchronously oscillate at low applied fields and rotate synchronously at large applied fields. The mean angular velocity of synchronous rotation increases with the field strength and reaches a constant value equal to the angular frequency of the field above the critical value of the field strength. The critical value of the field strength above which the synchronous rotation takes place can be calculated from dimensionless parameters using a model derived from first principles by others. The values thus obtained are in good agreement with the values we obtain from a numerical simulation. Thus, we may conclude that the liquid flow observed in these systems may be caused by synchronized rotations of the dipoles.

  5. Spontaneous magnetic fluctuations in ultrathin magnetic films at zero field

    Science.gov (United States)

    Balk, Andrew; Unguris, John

    2014-03-01

    We use magneto optical Kerr effect (MOKE) microscopy to observe room temperature, zero field magnetic fluctuations in perpendicularly magnetized cobalt films at thicknesses near the in-plane to out-of-plane spin reorientation transition. The magnetic behavior of our films resembles that of collections of superparamagnetic particles, in that globally they exhibit zero net moment, while local areas continually undergo thermal magnetic fluctuations between saturated states of the maze-like domain structure. Unlike superparamagnetic particles, the fluctuations are not constrained by particle boundaries and thus are subject to both exchange and magnetostatic interactions. Due to this we can observe temporal and spatial correlations in the fluctuations. Furthermore, we observe that the fluctuations obey dynamics distinct from field-driven Barkhausen jumps. We also determine scaling exponents of the fluctuations, finding their areas follow a power law distribution (t =1.5), and their temporal noise power spectrum is close to 1/f (a = 1.04). Based on these observations, we discuss these films as possible candidates for exhibiting magnetic self-organized criticality.

  6. Magnetic-field-compensation optical vector magnetometer.

    Science.gov (United States)

    Papoyan, Aram; Shmavonyan, Svetlana; Khanbekyan, Alen; Khanbekyan, Karen; Marinelli, Carmela; Mariotti, Emilio

    2016-02-01

    A concept for an optical magnetometer used for the measurement of magnitude and direction of a magnetic field (B-field) in two orthogonal directions is developed based on double scanning of a B-field to compensate the measured field to zero value, which is monitored by a resonant magneto-optical process in an unshielded atomic vapor cell. Implementation of the technique using the nonlinear Hanle effect on the D2 line of rubidium demonstrates viability and efficiency of the proposed concept. The ways to enhance characteristics of the suggested technique and optimize its performance, as well as the possible extension to three-axis magnetometry, are discussed.

  7. Structure and Stability of Magnetic Fields in Solar Active Region12192 Based on Nonlinear Force-Free Field Modeling

    CERN Document Server

    Inoue, S; Kusano, K

    2016-01-01

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region(AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains multiple-flux-tube system, {\\it e.g.}, a large flux tube, both of whose footpoints are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the later are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the oth...

  8. Anchoring Magnetic Field in Turbulent Molecular Clouds

    CERN Document Server

    Li, Hua-bai; Goodman, Alyssa; Hildebrand, Roger; Novak, Giles

    2009-01-01

    One of the key problems in star formation research is to determine the role of magnetic fields. Starting from the atomic inter-cloud medium (ICM) which has density nH ~ 1 per cubic cm, gas must accumulate from a volume several hundred pc across in order to form a typical molecular cloud. Star formation usually occurs in cloud cores, which have linear sizes below 1 pc and densities nH2 > 10^5 per cubic cm. With current technologies, it is hard to probe magnetic fields at scales lying between the accumulation length and the size of cloud cores, a range corresponds to many levels of turbulent eddy cascade, and many orders of magnitude of density amplification. For field directions detected from the two extremes, however, we show here that a significant correlation is found. Comparing this result with molecular cloud simulations, only the sub-Alfvenic cases result in field orientations consistent with our observations.

  9. The nucleon in a periodic magnetic field

    CERN Document Server

    Agadjanov, Andria; Rusetsky, Akaki

    2016-01-01

    The energy shift of a nucleon in a static periodic magnetic field is evaluated at second order in the external field strength in perturbation theory. It is shown that the measurement of this energy shift on the lattice allows one to determine the unknown subtraction function in the forward doubly-virtual Compton scattering amplitude. The limits of applicability of the obtained formula for the energy shift are discussed.

  10. Anomaly induced effects in a magnetic field

    OpenAIRE

    Antoniadis, Ignatios; Boyarsky, Alexey; Ruchayskiy, Oleg

    2007-01-01

    We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light p...

  11. Magnetic field influence on paramecium motility

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M.F.; Rosen, A.D. (State Univ. of New York, Stony Brook (USA))

    1990-01-01

    The influence of a moderately intense static magnetic field on movement patterns of free swimming Paramecium was studied. When exposed to fields of 0.126 T, these ciliated protozoa exhibited significant reduction in velocity as well as a disorganization of movement pattern. It is suggested that these findings may be explained on the basis of alteration in function of ion specific channels within the cell membrane.

  12. Pulsed-field magnetometry for rock magnetism

    Science.gov (United States)

    Kodama, Kazuto

    2015-07-01

    An improved method is proposed for measuring dynamic magnetizations of bulk volcanic rock samples induced by a pulsed-field of 0.7 T and a duration of 10 ms. The transient magnetization is measured by a sensing system that consists of a pair of inductive differential coils, an analog preamplifier and integrator, and a high-speed digital storage scope. The system was calibrated using a paramagnetic salt (Gd2O3) and was tested to different kinds of volcanic rocks with their magnetic properties well-documented previously. The results were comparable with those measured by a quasi-static method using a vibrating sample magnetometer, although there were small discrepancies in hysteresis parameters suggesting the time-dependence of the magnetic properties. The proposed system provides not only the magnetization over the short interval of a pulse but also the rapid (~3 ms) exponential decay after a pulse. The decay time constant was different among the samples under study, indicating the variations of their magnetic relaxation time. Although the present system is not sensitive enough to characterize varieties of natural samples including sediments, it has the potential as a versatile and convenient tool for rock magnetism.

  13. Laboratory Measurements of Astrophysical Magnetic Fields

    Science.gov (United States)

    Murphy, C. D.; Miniati, F.; Edwards, M.; Mithen, J.; Bell, A. R.; Constantin, C.; Everson, E.; Schaeffer, D.; Niemann, C.; Ravasio, A.; Brambrink, E.; Benuzzi-Mounaix, A.; Koenig, M.; Gregory, C.; Woolsey, N.; Park, H.-S.; Remington, B.; Ryutov, D.; Bingham, R.; Gargate, L.; Spitkovsky, A.; Gregori, G.

    2010-11-01

    It has been proposed that high Mach number collisionless shocks propagating in an initially unmagnetized plasma play a major role in the magnetization of large scale structures in the Universe. A detailed study of the experimental configuration necessary to scale such environments down to laboratory dimensions will be presented. We will show initial results from preliminary experiments conducted at the Phoenix laser (UCLA) and the LULI laser (Ecole Polytechnique) where collisionless shocks are generated by the expansion of exploding foils driven by energetic laser beams. The time evolution of the magnetic field is probed with induction coils placed at 10 cm from the laser focus. We will discuss various mechanisms of magnetic field generation and compare them with the experimental results.

  14. Magnetic fields and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Salsbury Jr., Freddie [Univ. of California, Berkeley, CA (United States)

    1999-02-01

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  15. Heavy meson spectroscopy under strong magnetic field

    CERN Document Server

    Yoshida, Tetsuya

    2016-01-01

    Spectra of the neutral heavy mesons, $\\eta_c(1S,2S)$, $J/psi$, $\\psi(2S)$, $\\eta_b(1S,2S,3S)$, $\\Upsilon(1S,2S,3S)$, $D$, $D^\\ast$, $B$, $B^\\ast$, $B_s$ and $B_s^\\ast$, in a homogeneous magnetic field are analyzed in a potential model of constituent quarks. To obtain anisotropic wave functions and the corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the wave functions for transverse and longitudinal directions in the cylindrical coordinate are expanded by the Gaussian bases separately. Energy level structures in the wide range of magnetic field are obtained and the deformation of the wave functions is shown, which reflects effects of the spin mixing, the Zeeman splitting and quark Landau levels. The contribution from the magnetic catalysis in heavy-light mesons is discussed as a change of the light constituent quark mass.

  16. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Yuhong Fan

    2009-12-01

    Full Text Available Active regions on the solar surface are generally thought to originate from a strong toroidal magnetic field generated by a deep seated solar dynamo mechanism operating at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. Understanding this process of active region flux emergence is therefore a crucial component for the study of the solar cycle dynamo. This article reviews studies with regard to the formation and rise of active region scale magnetic flux tubes in the solar convection zone and their emergence into the solar atmosphere as active regions.

  17. Test particle transport in perturbed magnetic fields in tokamaks

    NARCIS (Netherlands)

    de Rover, M.; Schilham, A.M.R.; Montvai, A.; Cardozo, N. J. L.

    1999-01-01

    Numerical calculations of magnetic field line trajectories in a tokamak are used to investigate the common hypotheses that (i) field lines in a chaotic field make a Gaussian random walk and (ii) that the poloidal component of the magnetic field is uniform in regions with a chaotic magnetic field. Bo

  18. On the Physics of Primordial Magnetic Fields

    CERN Document Server

    Battaner, E

    2000-01-01

    There are at present more then 30 theories about the origin of cosmic magnetic fields at galactic and intergalactic scales. Most of them rely on concepts of elementary particle physics, like phase transitions in the early Universe, string theory and processes during the inflationary epoch. Here we present some more astrophysical arguments to provide some guidance through this large number and variety of models. Especially the fact that the evolution of magnetic fields depends on the spatial coherence scale of the fields leds to some interesting conclusions, which may rule out the majority of the theoretical scenarios. In principle one has to distinguish between the large-scale and small-scale magnetic fields. Large scale fields are defined as those as becoming sub-horizon at that redshift at which the mass energy density becomes equal to the photon energy density, which we name as equality. Small scale fields which are sub-horizon even before equality, i.e. with scales lower than (present) few Mpc cannot surv...

  19. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...

  20. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  1. Magnetic field effects on photosynthetic reactions

    NARCIS (Netherlands)

    Liu, Yan

    2008-01-01

    Although the influence of magnetic fields on the rates and product yields of a host of chemical reactions are well documented and can be understood in the framework of the Radical Pair Mechanism (RPM), it has so far proved impossible to demonstrate convincingly a biological RPM effect. In this work

  2. Passive levitation in alternating magnetic fields

    Science.gov (United States)

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  3. Measurement of the SC magnetic field

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    The 3.5-metre-arm carrying 100 Hall plates used for the measurmeent of the SC magnetic field. The arm rotates in a horizontal plane, its positioning and the data read-out are controlled by an on-line computer.

  4. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  5. Ground Vehicle Navigation Using Magnetic Field Variation

    Science.gov (United States)

    2012-09-13

    using three-axis magnetic field measurements for navigation. While Storms innovative work exposed the ability to navigate using three-axis magnetometer...level of difficulty, Ascher et al. combine a magnetometer with a pair of inertial measurement units, a barometer , and a laser for precise indoor

  6. Magnetic Field Reentrant Superconductivity in Aluminum Nanowires

    Science.gov (United States)

    Bretz-Sullivan, Terence; Goldman, Allen

    Reentrance to the superconducting state through the application of a magnetic field to quasi-one dimensional superconductors driven resistive by current, is counter to the expected properties of superconductors. It was not until recently that a microscopic mechanism explaining the phenomenon was proposed in which superconductivity and phase slip driven dissipation coexist in a non-equilibrium state. Here we present additional results of magnetic field induced reentrance into the superconducting state in quasi-one-dimensional aluminum nanowires with an in-plane magnetic field both transverse to, and along the wire axis. The reentrant behavior is seen in the magnetic field dependence of the I-V characteristic and resistance vs. temperature, and in the wire's magnetoresistance at 450mK. This work was supported by DOE Basic Energy Sciences Grant DE-FG02-02ER46004. Samples were fabricated at the Minnesota Nanofabrication Center. Parts of this work were carried out in the University of Minnesota Characterization Facility, a member of the Materials Research Facilities Network (www.mrfn.org) funded via the NSF MRSEC program.

  7. Compensation-device for a magnetic field

    NARCIS (Netherlands)

    Kruit, P.; Ferreira, J.A.

    2007-01-01

    The invention relates to compensation device for a magnetic field generated through electric traction in a tram or train transport system that comprises an overhead line and rails, the overhead line and rails during operation being live, wherein a predetermined section of the overhead line and rails

  8. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  9. Magnetic fields of the W4 superbubble

    CERN Document Server

    Gao, X Y; Reich, P; Han, J L; Kothes, R

    2015-01-01

    Superbubbles and supershells are the channels for transferring mass and energy from the Galactic disk to the halo. Magnetic fields are believed to play a vital role in their evolution. We study the radio continuum and polarized emission properties of the W4 superbubble to determine its magnetic field strength. New sensitive radio continuum observations were made at 6 cm, 11 cm, and 21 cm. The total intensity measurements were used to derive the radio spectrum of the W4 superbubble. The linear polarization data were analysed to determine the magnetic field properties within the bubble shells. The observations show a multi-shell structure of the W4 superbubble. A flat radio continuum spectrum that stems from optically thin thermal emission is derived from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and considering the filling factor fne , we obtain the thermal electron density ne = 1.0/\\sqrt{fne} (\\pm5%) cm^-3 and the strength of the line-of-sight component of the magnetic field B// = -5.0/\\sq...

  10. Magnetic fields during primordial star formation

    CERN Document Server

    Schleicher, Dominik R G; Banerjee, Robi; Klessen, Ralf S; Federrath, Christoph; Arshakian, Tigran; Beck, Rainer; Spaans, Marco

    2011-01-01

    Recent FERMI observations provide a lower limit of 10^{-15} G for the magnetic field strength in the intergalactic medium (IGM). This is consistent with theoretical expectations based on the Biermann battery effect, which predicts such IGM fields already at redshifts z~10. During gravitational collapse, such magnetic fields can be amplified by compression and by turbulence, giving rise to the small-scale dynamo. On scales below the Jeans length, the eddy turnover timescale is much shorter than the free-fall timescale, so that saturation can be reached during collapse. This scenario has been tested and confirmed with magneto-hydrodynamical simulations following the collapse of a turbulent, weakly magnetized cloud. Based on a spectral analysis, we confirm that turbulence is injected on the Jeans scale. For the power spectrum of the magnetic field, we obtain the Kazantsev slope which is characteristic for the small-scale dynamo. A calculation of the critical length scales for ambipolar diffusion and Ohmic dissip...

  11. Manipulation of molecular structures with magnetic fields

    NARCIS (Netherlands)

    Boamfa, M.I.

    2003-01-01

    The present thesis deals with the use of magnetic fields as a handle to manipulate matter at a molecular level and as a tool to probe molecular properties or inter molecular interactions. The work consists of in situ optical studies of (polymer) liquid crystals and molecular aggregates in high magne

  12. Electro-Mechanical Resonant Magnetic Field Sensor

    CERN Document Server

    Temnykh, A B; Temnykh, Alexander B.; Lovelace, Richard V. E.

    2002-01-01

    We describe a new type of magnetic field sensor which is termed an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore a high Q fundamental mode of frequency $f_1$. An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type using for the elastic element a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001G for an applied magnetic field of $ \\sim 1$G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of $\\sim ...

  13. Primordial magnetic fields from the string network

    CERN Document Server

    Horiguchi, Kouichirou; Sugiyama, Naoshi

    2016-01-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar--, vector-- and tensor--type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as $a^2B(k,z)\\sim4\\times10^{-16}G\\mu/((1+z)/1000)^{4.25}(k/{\\rm Mpc}^{-1})^{3.5}$ Gauss on super-horizon scales, and $a^2B(k,z)\\sim2.4\\times10^{-17}G\\mu/((1+z)/1000)^{3.5}(k/{\\rm Mpc}^{-1})^{2.5}$ Gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, ...

  14. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  15. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  16. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  17. Physics of semiconductors in high magnetic fields

    CERN Document Server

    Miura, Noboru

    2008-01-01

    This book summarizes most of the fundamental physical phenomena which semiconductors and their modulated structures exhibit in high magnetic fields. Readers can learn not only the basic theoretical background but also the present state of the art from the most advanced data in this rapidly growing research area.

  18. Gravimetric Measurement of Magnetic Field Gradient Spatial Distribution

    CERN Document Server

    Arutunian, S G; Egiazarian, S L; Mailian, M R; Sinenko, I G; Sinjavski, A V; Vasiniuk, I E

    1999-01-01

    Magnetic interaction between a weighing sample and an external magnetic field allows to measure characteristics of magnetic field (a sample with known magnetic characteristics), as well as the magnetic properties of a sample (a known magnetic field). Measurement of materials magnetic permeability is a well known application of this method. In this paper we restrict ourselves to the measurement of magnetic field spatial distribution, which was achieved by scanning of samples from known materials along the vertical axis. Field measurements by Hall detector were done to calibrate obtained data. Such measurements are of great interest in some branches of physics, in particular, in accelerator physics, where the quality of magnetic system parts eventually determine the quality of accelerated bunches. Development of a simple and cheep device for measurement of magnetic field spatial distribution is an urgent problem. The developed system for gravimetric measurement of magnetic field gradients partially solves this ...

  19. Uniform Magnetic Field Between Face-to-Face HTS Bulk Magnets Combining Concave and Convex Magnetic Field Distributions

    Science.gov (United States)

    Oka, T.; Takahashi, Y.; Yaginuma, S.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Nakamura, T.

    The authors have been attempting to obtain the uniform magnetic field distribution in the space between the face-to-face HTS bulk magnets. The magnetic poles containing the HTS bulk magnets are usually characterized as non-uniform magnetic field distribution. Since the distributions show the conical or convex shapes, it is difficult to obtain the uniform magnetic field spaces even when the magnetic poles would be placed face-to-face. The authors have modified the shape of the distribution of one-side magnetic pole by attaching an iron plate on the surface, and formed the concave magnetic field distribution on the pole surface. The steep concave or convex distributions at each pole surface change to be flat with increasing distance from the pole surface. After the experimental result recording the best uniformity of 358 ppm by combining the concave and convex field distributions face-to-face, we attempted to simulate the feasible performance in this configuration. In the numerical simulation, the concave field distribution modified by attaching an imaginary spiral coil on the pole surface was coupled with the original convex field. We succeeded in obtaining the best uniformity of 30 ppm at 1.1 T in 4 x 4 mm2x-y plane at 7 mm distant from the pole surface in the gap of 30 mm. This result suggests that the concave and convex magnetic field distributions compensate the field uniformity with each other with keeping the magnetic field strength in the gap, and also suggests the novel compact NMR/MRI devices in the future.

  20. Direct detection of a magnetic field in the innermost regions of an accretion disk.

    Science.gov (United States)

    Donati, Jean-François; Paletou, Fréderic; Bouvier, Jérome; Ferreira, Jonathan

    2005-11-24

    Models predict that magnetic fields play a crucial role in the physics of astrophysical accretion disks and their associated winds and jets. For example, the rotation of the disk twists around the rotation axis the initially vertical magnetic field, which responds by slowing down the plasma in the disk and by causing it to fall towards the central star. The magnetic energy flux produced in this process points away from the disk, pushing the surface plasma outwards, leading to a wind from the disk and sometimes a collimated jet. But these predictions have hitherto not been supported by observations. Here we report the direct detection of the magnetic field in the core of the protostellar accretion disk FU Orionis. The surface field reaches strengths of about 1 kG close to the centre of the disk, and it includes a significant azimuthal component, in good agreement with recent models. But we find that the field is very filamentary and slows down the disk plasma much more than models predict, which may explain why FU Ori fails to collimate its wind into a jet.

  1. Primordial magnetic fields from self-ordering scalar fields

    CERN Document Server

    Horiguchi, Kouichirou; Sekiguchi, Toyokazu; Sugiyama, Naoshi

    2015-01-01

    A symmetry-breaking phase transition in the early universe could have led to the formation of cosmic defects. Because these defects dynamically excite not only scalar and tensor type cosmological perturbations but also vector type ones, they may serve as a source of primordial magnetic fields. In this study, we calculate the time evolution and the spectrum of magnetic fields that are generated by a type of cosmic defects, called global textures, using the non-linear sigma (NLSM) model. Based on the standard cosmological perturbation theory, we show, both analytically and numerically, that a vector-mode relative velocity between photon and baryon fluids is induced by textures, which inevitably leads to the generation of magnetic fields over a wide range of scales. We find that the amplitude of the magnetic fields is given by $B\\sim{10^{-9}}{((1+z)/10^3)^{-2.5}}({v}/{m_{\\rm pl}})^2({k}/{\\rm Mpc^{-1}})^{3.5}/{\\sqrt{N}}$ Gauss in the radiation dominated era for $k\\lesssim 1$ Mpc$^{-1}$, with $v$ being the vacuum ...

  2. Magnetic resonance of field-frozen and zero-field-frozen magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.R. E-mail: anarita@fis.ufg.br; Pelegrini, F.; Neto, K. Skeff; Buske, N.; Morais, P.C. E-mail: pcmor@unb.br

    2004-05-01

    In this study magnetic resonance was used to investigate magnetic fluid samples frozen under zero and non-zero (15 kG) external fields. The magnetite-based sample containing 2x10{sup 17} particle/cm{sup 3} was investigated from 100 to 400 K. Analysis of the temperature dependence of the resonance field revealed bigger magnetic structures in the frozen state than in the liquid phase. Also, differences in the mesoscopic organization in the frozen state may explain the data obtained from samples frozen under zero and non-zero fields.

  3. Introduction to power-frequency electric and magnetic fields.

    OpenAIRE

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conduct...

  4. Measuring the Earth's Magnetic Field in a Laboratory

    Science.gov (United States)

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  5. Collisionless reconnection: magnetic field line interaction

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2012-10-01

    Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  6. Warm Magnetic Field Measurements of LARP HQ Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S; Cheng, D; Deitderich, D; Felice, H; Ferracin, P; Hafalia, R; Joseph, J; Lizarazo, J; Martchevskii, M; Nash, C; Sabbi, G L; Vu, C; Schmalzle, J; Ambrosio, G; Bossert, R; Chlachidze, G; DiMarco, J; Kashikhin, V

    2011-03-28

    The US-LHC Accelerator Research Program is developing and testing a high-gradient quadrupole (HQ) magnet, aiming at demonstrating the feasibility of Nb{sub 3}Sn technologies for the LHC luminosity upgrade. The 1 m long HQ magnet has a 120 mm bore with a conductor-limited gradient of 219 T/m at 1.9 K and a peak field of 15 T. HQ includes accelerator features such as alignment and field quality. Here we present the magnetic measurement results obtained at LBNL with a constant current of 30 A. A 100 mm long circuit-board rotating coil developed by FNAL was used and the induced voltage and flux increment were acquired. The measured b{sub 6} ranges from 0.3 to 0.5 units in the magnet straight section at a reference radius of 21.55 mm. The data reduced from the numerical integration of the raw voltage agree with those from the fast digital integrators.

  7. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    Science.gov (United States)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  8. Vacuum Polarization of Twisted Scalars in a Non-simply Connected Space-time and Its Effects

    Institute of Scientific and Technical Information of China (English)

    吴普训; 余洪伟

    2002-01-01

    The vacuum polarization due to twisted scalar fields is investigated in a non-simply connected space time. It is found that some photon modes acquire an imaginary topological mass, thus travelling at a superluminal speed.Topological bi-refringence is expected for photons propagating perpendicularly to the compactification direction.The effect of a topological photon mass on the static properties of electromagnetic fields is also considered for the cases of both twisted and untwisted scalar fields. Our result shows that in the untwisted case the magnetic field is screened along the radial direction for massive photon modes, while in the twisted case no screening occurs and the magnetic fields merely oscillate.

  9. Acceleration of superparamagnetic particles with magnetic fields

    Science.gov (United States)

    Stange, R.; Lenk, F.; Bley, T.; Boschke, E.

    2017-04-01

    High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations.

  10. Navigation: bat orientation using Earth's magnetic field.

    Science.gov (United States)

    Holland, Richard A; Thorup, Kasper; Vonhof, Maarten J; Cochran, William W; Wikelski, Martin

    2006-12-07

    Bats famously orientate at night by echolocation, but this works over only a short range, and little is known about how they navigate over longer distances. Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark.

  11. Navigation: Bat orientation using Earth's magnetic field

    DEFF Research Database (Denmark)

    Holland, Richard A.; Thorup, Kasper; Vonhof, Maarten J.

    2006-01-01

    Bats famously orientate at night by echolocation 1 , but this works over only a short range, and little is known about how they navigate over longer distances 2 . Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting...... the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark....

  12. The energy budget of stellar magnetic fields

    Science.gov (United States)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Folsom, C. P.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Rosén, L.; Waite, I. A.

    2015-11-01

    Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5 M⊙. We find that the energy contained in toroidal fields has a power-law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5 M⊙ having power indices of 0.72 ± 0.08 and 1.25 ± 0.06, respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the stellar rotation period with fast rotators displaying higher latitude bands than slow rotators. The results in this paper present new constraints for future dynamo studies.

  13. The energy budget of stellar magnetic fields

    CERN Document Server

    See, V; Vidotto, A A; Donati, J -F; Folsom, C P; Saikia, S Boro; Bouvier, J; Fares, R; Gregory, S G; Hussain, G; Jeffers, S V; Marsden, S C; Morin, J; Moutou, C; Nascimento, J D do; Petit, P; Rosen, L; Waite, I A

    2015-01-01

    Spectropolarimetric observations have been used to map stellar magnetic fields, many of which display strong bands of azimuthal fields that are toroidal. A number of explanations have been proposed to explain how such fields might be generated though none are definitive. In this paper, we examine the toroidal fields of a sample of 55 stars with magnetic maps, with masses in the range 0.1-1.5$\\,{\\rm M}_\\odot$. We find that the energy contained in toroidal fields has a power law dependence on the energy contained in poloidal fields. However the power index is not constant across our sample, with stars less and more massive than 0.5$\\,{\\rm M}_\\odot$ having power indices of 0.72$\\pm$0.08 and 1.25$\\pm$0.06 respectively. There is some evidence that these two power laws correspond to stars in the saturated and unsaturated regimes of the rotation-activity relation. Additionally, our sample shows that strong toroidal fields must be generated axisymmetrically. The latitudes at which these bands appear depend on the ste...

  14. Topological insulator in a helicoidal magnetization field

    Science.gov (United States)

    Stagraczyński, S.; Chotorlishvili, L.; Dugaev, V. K.; Jia, C.-L.; Ernst, A.; Komnik, A.; Berakdar, J.

    2016-11-01

    A key feature of topological insulators is the robustness of the electron energy spectrum. At a surface of a topological insulator, the Dirac point is protected by the characteristic symmetry of the system. The breaking of the symmetry opens a gap in the energy spectrum. Therefore, topological insulators are very sensitive to magnetic fields, which can open a gap in the electronic spectrum. Concerning "internal" magnetic effects, for example, the situation with doped magnetic impurities, is not trivial. A single magnetic impurity is not enough to open the band gap, while in the case of a ferromagnetic chain of deposited magnetic impurities the Dirac point is lifted. However, a much more interesting case is when localized magnetic impurities form a chiral spin order. Our first principle density functional theory calculations have shown that this is the case for Fe deposited on the surface of a Bi2Se3 topological insulator. But not only magnetic impurities can form a chiral helicoidal spin texture. An alternative way is to use chiral multiferroics (prototype material is LiCu2O2 ) that induce a proximity effect. The theoretical approach we present here is valid for both cases. We observed that opposite to a ferromagnetically ordered case, a chiral spin order does not destroy the Dirac point. We also observed that the energy gap appears at the edges of the new Brillouin zone. Another interesting result concerns the spin dynamics. We derived an equation for the spin density dynamics with a spin current and relaxation terms. We have shown that the motion of the conductance electron generates a magnetic torque and exerts a certain force on the helicoidal texture.

  15. Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field.

    Science.gov (United States)

    Nakajima, M; Namai, A; Ohkoshi, S; Suemoto, T

    2010-08-16

    We report the first observation of sub-terahertz bulk-magnetization precession, using terahertz time-domain spectroscopy. The magnetization precession in gallium-substituted epsilon-iron oxide nano-ferromagnets under zero magnetic field is induced by the impulsive magnetic field of the THz wave through the gyromagnetic effect. Just at the resonance frequency, the linear to circular polarized wave conversion is realized. This is understood as the free induction decay signal radiated from a rotating magnetic dipole corresponding to the natural resonance. Furthermore, this demonstration reveals that the series of gallium-substituted epsilon-iron oxide nano-ferromagnets is very prospective for magneto-optic devices, which work at room temperature without external magnetic field, in next-generation wireless communication.

  16. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    Science.gov (United States)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  -4.2 kV cm-1  ⩽  E  ⩽  4.2 kV cm-1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  17. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Object, Chinese Academy of Sciences, Kunming 650011 (China)

    2014-04-01

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.

  18. On the origin of cosmic magnetic fields

    Science.gov (United States)

    Kulsrud, Russell M.; Zweibel, Ellen G.

    2008-04-01

    We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies. Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best. In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise. It is generally accepted that seed fields, whose strength is of order 10-20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields. The standard

  19. Magnetic field gradients and their uses in the study of the earth's magnetic field

    Science.gov (United States)

    Harrison, C. G. A.; Southam, J. R.

    1991-01-01

    Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.

  20. Magnetic Fields in a Sample of Nearby Spiral Galaxies

    CERN Document Server

    Van Eck, Cameron; Shukurov, Anvar; Fletcher, Andrew

    2014-01-01

    Both observations and modelling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media (ISM) of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and ISM parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit noticeable degree of correlation, suggesting a universal behaviour of the degree of order in galactic magnetic fields. We also compare the p...