WorldWideScience

Sample records for twin mars exploration

  1. Mars Exploration Rover Heat Shield Recontact Analysis

    Science.gov (United States)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  2. Processing of Mars Exploration Rover Imagery for Science and Operations Planning

    Science.gov (United States)

    Alexander, Douglass A.; Deen, Robert G.; Andres, Paul M.; Zamani, Payam; Mortensen, Helen B.; Chen, Amy C.; Cayanan, Michael K.; Hall, Jeffrey R.; Klochko, Vadim S.; Pariser, Oleg; hide

    2006-01-01

    The twin Mars Exploration Rovers (MER) delivered an unprecedented array of image sensors to the Mars surface. These cameras were essential for operations, science, and public engagement. The Multimission Image Processing Laboratory (MIPL) at the Jet Propulsion Laboratory was responsible for the first-order processing of all of the images returned by these cameras. This processing included reconstruction of the original images, systematic and ad hoc generation of a wide variety of products derived from those images, and delivery of the data to a variety of customers, within tight time constraints. A combination of automated and manual processes was developed to meet these requirements, with significant inheritance from prior missions. This paper describes the image products generated by MIPL for MER and the processes used to produce and deliver them.

  3. Astrobiology and the Human Exploration of Mars

    Science.gov (United States)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  4. Cars on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2002-01-01

    Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.

  5. Mars exploration study workshop 2

    Science.gov (United States)

    Duke, Michael B.; Budden, Nancy Ann

    1993-11-01

    A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.

  6. Exploring Mars

    Science.gov (United States)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  7. Low Cost Mars Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey; Calhoun, Philip; Flick, John; Hajos, Gregory; Kolacinski, Richard; Minton, David; Owens, Rachel; Parker, Jennifer

    2003-01-01

    The "Mars Tumbleweed," a rover concept that would utilize surface winds for mobility, is being examined as a low cost complement to the current Mars exploration efforts. Tumbleweeds carrying microinstruments would be driven across the Martian landscape by wind, searching for areas of scientific interest. These rovers, relatively simple, inexpensive, and deployed in large numbers to maximize coverage of the Martian surface, would provide a broad scouting capability to identify specific sites for exploration by more complex rover and lander missions.

  8. Automation &robotics for future Mars exploration

    Science.gov (United States)

    Schulte, W.; von Richter, A.; Bertrand, R.

    2003-04-01

    Automation and Robotics (A&R) are currently considered as a key technology for Mars exploration. initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. Kayser-Threde led the study AROMA (Automation &Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals was to define new developments and to maintain the competitiveness of European industry within this field. We present a summary of the A&R study in respect to a particular system: The Autonomous Research Island (ARI). In the Mars exploration scenario initially a robotic outpost system lands at pre-selected sites in order to search for life forms and water and to analyze the surface, geology and atmosphere. A&R systems, i.e. rovers and autonomous instrument packages, perform a number of missions with scientific and technology development objectives on the surface of Mars as part of preparations for a human exploration mission. In the Robotic Outpost Phase ARI is conceived as an automated lander which can perform in-situ analysis. It consists of a service module and a micro-rover system for local investigations. Such a system is already under investigation and development in other TRP activities. The micro-rover system provides local mobility for in-situ scientific investigations at a given landing or deployment site. In the long run ARI supports also human Mars missions. An astronaut crew would travel larger distances in a pressurized rover on Mars. Whenever interesting features on the surface are identified, the crew would interrupt the travel and perform local investigations. In order to save crew time ARI could be deployed by the astronauts to perform time-consuming investigations as for example in-situ geochemistry analysis of rocks/soil. Later, the crew could recover the research island for refurbishment and deployment at another

  9. Life sciences and Mars exploration

    Science.gov (United States)

    Sulzman, Frank M.; Rummel, John D.; Leveton, Lauren B.; Teeter, Ron

    1990-01-01

    The major life science considerations for Mars exploration missions are discussed. Radiation protection and countermeasures for zero gravity are discussed. Considerations of crew psychological health considerations and life support systems are addressed. Scientific opportunities presented by manned Mars missions are examined.

  10. Science in Exploration: From the Moon to Mars and Back Home to Earth

    Science.gov (United States)

    Garvin, James B.

    2007-01-01

    NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will

  11. Research from the NASA Twins Study and Omics in Support of Mars Missions

    Science.gov (United States)

    Kundrot, C.; Shelhamer, M.; Scott, G.

    2015-01-01

    The NASA Twins Study, NASA's first foray into integrated omic studies in humans, illustrates how an integrated omics approach can be brought to bear on the challenges to human health and performance on a Mars mission. The NASA Twins Study involves US Astronaut Scott Kelly and his identical twin brother, Mark Kelly, a retired US Astronaut. No other opportunity to study a twin pair for a prolonged period with one subject in space and one on the ground is available for the foreseeable future. A team of 10 principal investigators are conducting the Twins Study, examining a very broad range of biological functions including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. A novel aspect of the study is the integrated study of molecular, physiological, cognitive, and microbiological properties. Major sample and data collection from both subjects for this study began approximately six months before Scott Kelly's one year mission on the ISS, continue while Scott Kelly is in flight and will conclude approximately six months after his return to Earth. Mark Kelly will remain on Earth during this study, in a lifestyle unconstrained by this study, thereby providing a measure of normal variation in the properties being studied. An overview of initial results and the future plans will be described as well as the technological and ethical issues raised for spaceflight studies involving omics.

  12. Implementing a Science-driven Mars Exploration Program

    Science.gov (United States)

    Garvin, J. B.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) was developed on the basis of the goals, objectives, investigations, and prioritizations established by the Mars Exploration Payload Analysis Group (as summarized previously by Greeley et al., 2001). The underlying scientific strategy is linked to common threads which include the many roles water has played on and within Mars as a "system". The implementation strategy that has been adopted relies heavily on an ever-sharpening program of reconnaissance, beginning with the legacy of the Mars Global Surveyor, continuing with the multispectral and compositional observations of the Mars Odyssey orbiter, and extending to a first step in surface-based reconnaissance with the 2003 Mars Exploration Rovers. The results of MGS and Odyssey will serve to focus the trade space of localities where the record, for example, of persistent surface water may have been preserved in a mineralogical sense. The 2005 Mars Reconnaissance Orbiter will further downselect the subset of sites on Mars where evidence of depositional patterns and aqueous mineralogies (i.e., diagenetic minerals) are most striking at scales as fine as tens to hundreds of meters. Reconnaissance will move to the surface and shallow subsurface in 2007 with the Mars "Smart Lander" (MSL), at which time an extensive array of mobile scientific exploration tools will be used to examine a locality at 10km traverse scales, ultimately asking scientific questions which can be classed as paleobiological (i.e., life inference). Further orbital reconnaissance may be undertaken in 2009, perhaps involving targeted multi-wavelength SAR imaging, in anticipation of a precisely targeted Mars Sample Return mission as early as 2011. This sequence of core program MEP missions will be amplified by the selection of PI-led SCOUT missions, starting in 2007, and continuing every other Mars launch opportunity.

  13. Science Driven Human Exploration of Mars

    Science.gov (United States)

    McKay, Christopher P.

    2004-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.

  14. Radiation chemistry in exploration of Mars

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2005-01-01

    Problems of exploration of Mars are seldom connected with radiation research. Improvements in such approach, more and more visible, are reported in this paper, written by the present author working on prebiotic chemistry and origins of life on Earth. Objects on Mars subjected to radiation are very different from those on Earth. Density of the Martian atmosphere is by two orders smaller than over Earth and does not protect the surface of Mars from ionizing radiations, contrary to the case of Earth, shielded by the equivalent of ca. 3 meters of concrete. High energy protons from the Sun are diverted magnetically around Earth, and Mars is deprived of that protection. The radiolysis of martian '' air '' (95.3% of carbon dioxide) starts with the formation of CO 2 + , whereas the primary product over Earth is N 2 + ion radical. The lack of water vapor over Mars prevents the formation of many secondary products. The important feature of Martian regolith is the possibility of the presence of hydrated minerals, which could have been formed milliards years ago, when (probably) water was present on Mars. The interface of the atmosphere and the regolith can be the site of many chemical reactions, induced also by intensive UV, which includes part of the vacuum UV. Minerals like sodalite, discovered on Mars can contribute as reagents in many reactions. Conclusions are dedicated to questions of the live organisms connected with exploration of Mars; from microorganisms, comparatively resistant to ionizing radiation, to human beings, considered not to be fit to manned flight, survival on Mars and return to Earth. Pharmaceuticals proposed as radiobiological protection cannot improve the situation. Exploration over the distance of millions of kilometers performed successfully without presence of man, withstands more easily the presence of ionizing radiation. (author)

  15. Applications of Surface Penetrating Radar for Mars Exploration

    Science.gov (United States)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the

  16. International cooperation for Mars exploration and sample return

    Science.gov (United States)

    Levy, Eugene H.; Boynton, William V.; Cameron, A. G. W.; Carr, Michael H.; Kitchell, Jennifer H.; Mazur, Peter; Pace, Norman R.; Prinn, Ronald G.; Solomon, Sean C.; Wasserburg, Gerald J.

    1990-01-01

    The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR.

  17. Planetary Protection Issues in the Human Exploration of Mars

    Science.gov (United States)

    Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

    2005-01-01

    This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

  18. Automation and Robotics for Human Mars Exploration (AROMA)

    Science.gov (United States)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  19. Mars - The relationship of robotic and human elements in the IAA International Exploration of Mars study

    Science.gov (United States)

    Marov, Mikhail YA.; Duke, Michael B.

    1993-01-01

    The roles of human and robotic missions in Mars exploration are defined in the context of the short- and long-term Mars programs. In particular, it is noted that the currently implemented and planned missions to Mars can be regarded as robotic precursor missions to human exploration. Attention is given to factors that must be considered in formulating the rationale for human flights to Mars and future human Mars settlements and justifying costly projects.

  20. NASA's New Mars Exploration Program: The Trajectory of Knowledge

    Science.gov (United States)

    Garvin, James B.; Figueroa, Orlando; Naderi, Firouz M.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."

  1. Mars Exploration Rover Spirit End of Mission Report

    Science.gov (United States)

    Callas, John L.

    2015-01-01

    The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Mars on January 4, 2004, for a prime mission designed to last three months (90 sols). After more than six years operating on the surface of Mars, the last communication received from Spirit occurred on Sol 2210 (March 22, 2010). Following the loss of signal, the Mars Exploration Rover Project radiated over 1400 commands to Mars in an attempt to elicit a response from the rover. Attempts were made utilizing Deep Space Network X-Band and UHF relay via both Mars Odyssey and the Mars Reconnaissance Orbiter. Search and recovery efforts concluded on July 13, 2011. It is the MER project's assessment that Spirit succumbed to the extreme environmental conditions experienced during its fourth winter on Mars. Focusing on the time period from the end of the third Martian winter through the fourth winter and end of recovery activities, this report describes possible explanations for the loss of the vehicle and the extent of recovery efforts that were performed. It offers lessons learned and provides an overall mission summary.

  2. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    Science.gov (United States)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  3. Nuclear technologies for Moon and Mars exploration

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs

  4. A Vision for the Exploration of Mars: Robotic Precursors Followed by Humans to Mars Orbit in 2033

    Science.gov (United States)

    Sellers, Piers J.; Garvin, James B.; Kinney, Anne L.; Amato, Michael J.; White, Nicholas E.

    2012-01-01

    The reformulation of the Mars program gives NASA a rare opportunity to deliver a credible vision in which humans, robots, and advancements in information technology combine to open the deep space frontier to Mars. There is a broad challenge in the reformulation of the Mars exploration program that truly sets the stage for: 'a strategic collaboration between the Science Mission Directorate (SMD), the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Technologist, for the next several decades of exploring Mars'.Any strategy that links all three challenge areas listed into a true long term strategic program necessitates discussion. NASA's SMD and HEOMD should accept the President's challenge and vision by developing an integrated program that will enable a human expedition to Mars orbit in 2033 with the goal of returning samples suitable for addressing the question of whether life exists or ever existed on Mars

  5. Relay Telecommunications for the Coming Decade of Mars Exploration

    Science.gov (United States)

    Edwards, C.; DePaula, R.

    2010-01-01

    Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.

  6. Microbiological cleanliness of the Mars Exploration Rover spacecraft

    Science.gov (United States)

    Newlin, L.; Barengoltz, J.; Chung, S.; Kirschner, L.; Koukol, R.; Morales, F.

    2002-01-01

    Planetary protection for Mars missions is described, and the approach being taken by the Mars Exploration Rover Project is discussed. Specific topics include alcohol wiping, dry heat microbial reduction, microbiological assays, and the Kennedy Space center's PHSF clean room.

  7. Telecommunications and navigation systems design for manned Mars exploration missions

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-06-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  8. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    In Robotic Exploration of the Solar System, Paolo Ulivi and David Harland provide a comprehensive account of the design and managment of deep-space missions, the spacecraft involved - some flown, others not - their instruments, and their scientific results. This third volume in the series covers launches in the period 1997 to 2003 and features: - a chapter entirely devoted to the Cassini-Huygens mission to Saturn; - coverage of planetary missions of the period, including the Deep Space 1 mission and the Stardust and Hayabusa sample returns from comets and asteroids; - extensive coverage of Mars exploration, the failed 1999 missions, Mars Odyssey, Mars Express, and the twin rovers Spirit and Opportunity. The story will continue in Part 4.

  9. Mars exploration program analysis group goal one: determine if life ever arose on Mars.

    Science.gov (United States)

    Hoehler, Tori M; Westall, Frances

    2010-11-01

    The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, "Determine if life ever arose on Mars," has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here.

  10. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  11. Monozygotic twins of different apparent sex

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Yukifumi; Fujino, Nobuyuki; Sato, Yoshiaki; Matsunobu, Akira; Tadokoro, Mamoru [Sagamihara Kyodo Hospital (Japan); Akane, Atsushi [Kansai Medical College, Osaka (Japan); Matsuura, Nobuo; Maeda, Tohru [Kitasato Univ. (Japan); Nakahori, Yutaka; Nakagome, Yasuo [Univ. of Tokyo (Japan)

    1994-10-15

    We report on twins of unlike sex who shared a 45,X/46,X, +mar karyotype. The mar chromosome was found to be Yq- by DNA analysis. Marker studies, including 8 VNTR loci, yielded a probability of monozygosity of 0.99999996. 16 refs., 1 fig., 1 tab.

  12. Robotics and automation in Mars exploration

    Science.gov (United States)

    Bourke, Roger D.; Sturms, Francis M., Jr.; Golombek, Matthew P.; Gamber, R. T.

    1992-01-01

    A new approach to the exploration of Mars is examined which relies on the use of smaller and simpler vehicles. The new strategy involves the following principles: limiting science objectives to retrieval of rock samples from several different but geologically homogeneous areas; making use of emerging microspacecraft technologies to significantly reduce the mass of hardware elements; simplifying missions to the absolutely essential elements; and managing risk through the employment of many identical independent pieces some of which may fail. The emerging technologies and their applications to robotic Mars missions are discussed.

  13. Comparison of Propulsion Options for Human Exploration of Mars

    Science.gov (United States)

    Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.

    2018-01-01

    NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.

  14. Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN)

    Science.gov (United States)

    Murchie, S. L.; Chabot, N. L.; Buczkowski, D.; Arvidson, R. E.; Castillo, J. C.; Peplowski, P. N.; Ernst, C. M.; Rivkin, A.; Eng, D.; Chmielewski, A. B.; Maki, J.; trebi-Ollenu, A.; Ehlmann, B. L.; Spence, H. E.; Horanyi, M.; Klingelhoefer, G.; Christian, J. A.

    2015-12-01

    The Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN) is a NASA Discovery mission proposal to explore the moons of Mars. Previous Mars-focused spacecraft have raised fundamental questions about Mars' moons: What are their origins and compositions? Why do the moons resemble primitive outer solar system D-type objects? How do geologic processes modify their surfaces? MERLIN answers these questions through a combination of orbital and landed measurements, beginning with reconnaissance of Deimos and investigation of the hypothesized Martian dust belts. Orbital reconnaissance of Phobos occurs, followed by low flyovers to characterize a landing site. MERLIN lands on Phobos, conducting a 90-day investigation. Radiation measurements are acquired throughout all mission phases. Phobos' size and mass provide a low-risk landing environment: controlled descent is so slow that the landing is rehearsed, but gravity is high enough that surface operations do not require anchoring. Existing imaging of Phobos reveals low regional slope regions suitable for landing, and provides knowledge for planning orbital and landed investigations. The payload leverages past NASA investments. Orbital imaging is accomplished by a dual multispectral/high-resolution imager rebuilt from MESSENGER/MDIS. Mars' dust environment is measured by the refurbished engineering model of LADEE/LDEX, and the radiation environment by the flight spare of LRO/CRaTER. The landed workspace is characterized by a color stereo imager updated from MER/HazCam. MERLIN's arm deploys landed instrumentation using proven designs from MER, Phoenix, and MSL. Elemental measurements are acquired by a modified version of Rosetta/APXS, and an uncooled gamma-ray spectrometer. Mineralogical measurements are acquired by a microscopic imaging spectrometer developed under MatISSE. MERLIN delivers seminal science traceable to NASA's Strategic Goals and Objectives, Science Plan, and the Decadal Survey. MERLIN's science

  15. Reaching Mars: multi-criteria R&D portfolio selection for Mars exploration technology planning

    Science.gov (United States)

    Smith, J. H.; Dolgin, B. P.; Weisbin, C. R.

    2003-01-01

    The exploration of Mars has been the focus of increasing scientific interest about the planet and its relationship to Earth. A multi-criteria decision-making approach was developed to address the question, Given a Mars program composed of mission concepts dependent on a variety of alternative technology development programs, which combination of technologies would enable missions to maximize science return under a constrained budget?.

  16. Officine Galileo for Mars Exploration

    Science.gov (United States)

    Battistelli, E.; Tacconi, M.

    1999-09-01

    The interest for Mars's exploration is continuously increasing. Officine Galileo is engaged in this endeavor with several programmes. The exobiology is, of course, a stimulating field; presently Officine Galileo is leading a team with Dasa and Tecnospazio, under ESA contract, for the definition of a facility for the search of extinct life on Mars through the detection of indicators of life. The system, to be embarked on a Mars lander, is based on a drill to take rock samples underneath the oxidised soil layer, on a sample preparation and distribution system devoted to condition and bring the sample to a set of analytical instruments to carry out in-situ chemical and mineralogical investigations. The facility benefits of the presence of optical microscope, gas chromatograph, several spectrometers (Raman, Mass, Mossbauer, APX-Ray), and further instruments. In the frame of planetology, Officine Galileo is collaborating with several Principal Investigators to the definition of a set of instruments to be integrated on the Mars 2003 Lander (a NASA-ASI cooperation). A drill (by Tecnospazio), with the main task to collect Mars soil samples for the subsequent storage and return to Earth, will have the capability to perform several soil analyses, e.g. temperature and near infrared reflectivity spectra down to 50 cm depth, surface thermal and electrical conductivity, sounding of electromagnetic properties down to a few hundreds meter, radioactivity. Moreover a kit of instruments for in-situ soil samples analyses if foreseen; it is based on a dust analyser, an IR spectrometer, a thermofluorescence sensor, and a radioactivity analyser. The attention to the Red Planet is growing, in parallel with the findings of present and planned missions. In the following years the technology of Officine Galileo will carry a strong contribution to the science of Mars.

  17. Twin Research and the Arts: Interconnections / Twin Research: Twin Studies of Sexual Orientation; A Historical Biological Twin Gem; GWAS Approach to Who Has Twins / Newsworthy: Twins on College Campuses; 'Brainprint': Personal Identification by Brain Waves.

    Science.gov (United States)

    Segal, Nancy L

    2016-08-01

    The interrelatedness between twin research and the arts is explored via a new play about a famous case. In the 1960s, identical twin David Bruce Reimer was accidentally castrated as an infant during circumcision to correct a urinary problem. The decision to raise him as a girl, and the consequences of that decision, are explored in the new theatrical production of Boy. Other examples of the arts mirroring science, and vice versa, are described. Next, brief reviews and summaries of twin research on sexual orientation, 1860s' knowledge of placental arrangements and twinning mechanisms, and genes underlying multiple birth conception and fertility related measures are provided. This article concludes with a look at twins on college campuses and the identification of individuals by their brain waves. A correction and clarification regarding my article on the Brazilian Twin Registry in the last issue of THG (Segal, 2016) is also provided.

  18. Exploring Genetic and Environmental Effects in Dysphonia: A Twin Study

    Science.gov (United States)

    Simberg, Susanna; Santtila, Pekka; Soveri, Anna; Varjonen, Markus; Sala, Eeva; Sandnabba, N. Kenneth

    2009-01-01

    Purpose: To explore the existence of genetic effects as well as the interaction between potential genetic effects and a voice-demanding occupation on dysphonia. Method: One thousand seven hundred and twenty-eight Finnish twins (555 male; 1,173 female) born between 1961 and 1989 completed a questionnaire concerning vocal symptoms and occupation.…

  19. Low-Latency Teleoperations for Human Exploration and Evolvable Mars Campaign

    Science.gov (United States)

    Lupisella, Mark; Wright, Michael; Arney, Dale; Gershman, Bob; Stillwagen, Fred; Bobskill, Marianne; Johnson, James; Shyface, Hilary; Larman, Kevin; Lewis, Ruthan; hide

    2015-01-01

    NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.

  20. Mars Mapping Technology Brings Main Street to Life

    Science.gov (United States)

    2008-01-01

    The Red Planet has long held a particular hold on the human psyche. From the Roman god of war to Orson Welles infamous Halloween broadcast, our nearest planetary neighbor has been viewed with curiosity, suspicion, and awe. Pictures of Mars from 1965 to the present reveal familiar landscapes while also challenging our perceptions and revising our understanding of the processes at work in planets. Frequent discoveries have forced significant revisions to previous theories. Although Mars shares many familiar features with Earth, such as mountains, plains, valleys, and polar ice, the conditions on Mars can vary wildly from those with which we are familiar. The apparently cold, rocky, and dusty wasteland seen through the eyes of spacecraft and Martian probes hints at a dynamic past of volcanic activity, cataclysmic meteors, and raging waters. New discoveries continue to revise our view of our next-door neighbor, and further exploration is now paving the way for a human sortie to the fourth stone from the Sun. NASA s Mars Exploration Program, a long-term effort of robotic exploration, utilizes wide-angle stereo cameras mounted on NASA s twin robot geologists, the Mars Exploration Rovers (MERs), launched in 2003. The rovers, named "Spirit" and "Opportunity," celebrated 4 Earth years of exploration on January 3, 2008, and have sent back a wealth of information on the terrain and composition of the Martian surface. Their marathon performance has far outlasted the intended 90 days of operation, and the two intrepid explorers promise more images and data.

  1. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  2. Enabling Tethered Exploration on Mars, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Strong science motivations exist for exploring hard to reach terrain on Mars and the leading systems proposed to do so require tethers. While tethers are used...

  3. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  4. RESEARCH ON THE DIGITAL SIMULATION FOR THE WHOLE PROCESS OF MARS EXPLORATION

    Directory of Open Access Journals (Sweden)

    L. Lyu

    2018-05-01

    Full Text Available China has paid considerable attention to space exploration and made great strides in the field. The first Chinese Mars Exploration Mission will be carried out in 2020. Digital simulation has been proved to be an effective and efficient means for planning and deduction in many fields. Thus, it was introduced for the Mars exploration in this paper and key technologies was researched above three aspects. First of all, complicated time-space benchmark was combed to support the interplanetary simulation. Secondly, the multi-resolution pyramid model and indexing strategy were adopted to preprocess the geographical environment data, which ensured the efficiency of data loading, browsing, and querying. Then, the activity objects were abstracted and modelled based on four aspects, including property, ephemeris, geometry, and behavior. Therefore, a digital simulation system, called Sino-Mars, was developed. The architecture of Sino- Mars consists of five layers, including data collection, data processing, scenario modelling, visualization and application layer. Using the Chinese Mars Exploration Mission slated for 2020 as an example, we demonstrated the capabilities of Sino-Mars for data integration, visualization, process deduction, and auxiliary analysis.

  5. Astrobiology, Mars Exploration and Lassen Volcanic National Park

    Science.gov (United States)

    Des Marais, David J.

    2015-01-01

    The search for evidence of life beyond Earth illustrates how the charters of NASA and the National Park Service share common ground. The mission of NPS is to preserve unimpaired the natural and cultural resources of the National Park System for the enjoyment, education and inspiration of this and future generations. NASA's Astrobiology program seeks to understand the origins, evolution and distribution of life in the universe, and it abides by the principles of planetary stewardship, public outreach, and education. We cannot subject planetary exploration destinations to Earthly biological contamination both for ethical reasons and to preserve their scientific value for astrobiology. We respond to the public's interest in the mysteries of life and the cosmos by honoring their desire to participate in the process of discovery. We involve youth in order to motivate career choices in science and technology and to perpetuate space exploration. The search for evidence of past life on Mars illustrates how the missions of NASA and NPS can become synergistic. Volcanic activity occurs on all rocky planets in our Solar System and beyond, and it frequently interacts with water to create hydrothermal systems. On Earth these systems are oases for microbial life. The Mars Exploration Rover Spirit has found evidence of extinct hydrothermal system in Gusev crater, Mars. Lassen Volcanic National Park provides a pristine laboratory for investigating how microorganisms can both thrive and leave evidence of their former presence in hydrothermal systems. NASA scientists, NPS interpretation personnel and teachers can collaborate on field-oriented programs that enhance Mars mission planning, engage students and the public in science and technology, and emphasize the ethics of responsible exploration.

  6. [Adult twins].

    Science.gov (United States)

    Charlemaine, Christiane

    2006-12-31

    This paper explores the deep roots of closeness that twins share in their youngest age and their effect on their destiny at the adult age. Psychologists believe the bond between twins begins in utero and develops throughout the twins' lives. The four patterns of twinship described show that the twin bond is determined by the quality of parenting that twins receive in their infancy and early childhood. Common problems of adult twins bring about difficulties to adapt in a non-twin world. The nature versus nurture controversy has taken on new life focusing on inter-twin differences and the importance of parent-child interaction as fundamental to the growth and development of personality.

  7. (Nearly) Seven Years on Mars: Adventure, Adversity, and Achievements with the NASA Mars Exploration Rovers Spirit and Opportunity

    Science.gov (United States)

    Bell, J. F.; Mars Exploration Rover Science; Engineering Teams

    2010-12-01

    NASA successfully landed twin rovers, Spirit and Opportunity, on Mars in January 2004, in the most ambitious mission of robotic exploration attempted to that time. Each rover is outfitted as a robot field geologist with an impressive array of scientific instruments--cameras, spectrometers, other sensors--designed to investigate the composition and geologic history of two distinctly-different landing sites. The sites were chosen because of their potential to reveal clues about the past history of water and climate on Mars, and thus to provide tests of the hypothesis that the planet may once have been an abode for life. In this presentation I will review the images, spectra, and chemical/mineralogic information that the rover team has been acquiring from the landing sites and along the rovers' 7.7 and 22.7 km traverse paths, respectively. The data and interpretations have been widely shared with the public and the scientific community through web sites, frequent press releases, and scientific publications, and they provide quantitative evidence that liquid water has played a role in the modification of the Martian surface during the earliest part of the planet's history. At the Spirit site in Gusev Crater, the role of water appears to have been relatively minor in general, although the recent discovery of enigmatic hydrated sulfate salt and amorphous silica deposits suggests that locally there may have been significant water-rock interactions, and perhaps even sustained hydrothermal activity. At the Opportunity site in Meridiani Planum, geologic and mineralogic evidence suggests that liquid water was stable at the surface and shallow subsurface for significant periods of early Martian geologic history. An exciting implication from both missions is that localized environments on early Mars may have been "habitable" by some terrestrial standards. As of early September 2010, the rovers had operated for 2210 and 2347 Martian days (sols), respectively, with the Spirit

  8. Strategies for the sustained human exploration of Mars

    Science.gov (United States)

    Landau, Damon Frederick

    A variety of mission scenarios are compared in this thesis to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. Direct, semi-direct, stop-over, semi-cycler, and cycler architectures are examined, and electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems are included in the technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. The primary figure of merit for a mission scenario is the injected mass to low-Earth orbit (IMLEO), though technology readiness levels (TRL) are also included. Several elements in the architecture dimension are explored in more detail. The Earth-Mars semi-cycler architecture is introduced and five families of Earth-Mars semi-cycler trajectories are presented along with optimized itineraries. Optimized cycler trajectories are also presented. In addition to Earth-Mars semi-cycler and cycler trajectories, conjunction-class, free-return, Mars-Earth semi-cycler, and low-thrust trajectories are calculated. Design parameters for optimal DeltaV trajectories are provided over a range of flight times (from 120 to 270 days) and launch years (between 2009 and 2022). Unlike impulsive transfers, the mass-optimal low-thrust trajectory depends strongly on the thrust and specific impulse of the propulsion system. A low-thrust version of the rocket equation is provided where the initial mass or thrust may be minimized by varying the initial acceleration and specific impulse. Planet-centered operations are also examined. A method to rotate a parking orbit about the line of apsides to achieve the proper orientation at departure is discussed, thus coupling the effects of parking-orbit orientation with the interplanetary trajectories. Also, a guidance algorithm for

  9. The Qingdao Twin Registry

    DEFF Research Database (Denmark)

    Duan, Haiping; Ning, Feng; Zhang, Dongfeng

    2013-01-01

    In 1998, the Qingdao Twin Registry was initiated as the main part of the Chinese National Twin Registry. By 2005, a total of 10,655 twin pairs had been recruited. Since then new twin cohorts have been sampled, with one longitudinal cohort of adolescent twins selected to explore determinants of me...

  10. Human exploration and settlement of Mars - The roles of humans and robots

    Science.gov (United States)

    Duke, Michael B.

    1991-01-01

    The scientific objectives and strategies for human settlement on Mars are examined in the context of the Space Exploration Initiative (SEI). An integrated strategy for humans and robots in the exploration and settlement of Mars is examined. Such an effort would feature robotic, telerobotic, and human-supervised robotic phases.

  11. Combining meteorites and missions to explore Mars.

    Science.gov (United States)

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K

    2011-11-29

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young ( 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  12. Observed Mother- and Father-Child Interaction Differences in Families with Medically Assisted Reproduction-Conceived Twins and Singletons.

    Science.gov (United States)

    Anderson, Kayla N; Rueter, Martha A; Connor, Jennifer J; Koh, Bibiana D

    2017-12-01

    Increased medically assisted reproduction (MAR) use to treat infertility has resulted in a growing twin birth rate. Little is known about parent-child relationships for twin relative to singleton children in middle childhood. This study fills this gap by examining parent-child relationships in 57 families with eighty 6- to 12-year-old MAR twin and singleton children using observational data (warm and supportive communication, control, and hostility). Nested ANCOVAs indicate that while mothers exhibit similar interactional behaviors toward twins and singletons, fathers have less optimum behaviors toward twins relative to singletons. Twins displayed less engaged behavior with mothers and fathers relative to singletons. Given the vitality of parent-child relationships for family and child adjustment, future studies should examine determinants and outcomes of twin-singleton relationship differences to bolster twins' and their families' functioning. © 2016 Family Process Institute.

  13. Exploring Anxiety Symptoms in a Large-Scale Twin Study of Children with Autism Spectrum Disorders, Their Co-Twins and Controls

    Science.gov (United States)

    Hallett, Victoria; Ronald, Angelica; Colvert, Emma; Ames, Catherine; Woodhouse, Emma; Lietz, Stephanie; Garnett, Tracy; Gillan, Nicola; Rijsdijk, Fruhling; Scahill, Lawrence; Bolton, Patrick; Happé, Francesca

    2013-01-01

    Background: Although many children with autism spectrum disorders (ASDs) experience difficulties with anxiety, the manifestation of these difficulties remains unresolved. The current study assessed anxiety in a large population-based twin sample, aged 10-15 years. Phenotypic analyses were used to explore anxiety symptoms in children with ASDs,…

  14. Biomedical Aspects of Lunar and Mars Exploration Missions

    Science.gov (United States)

    Charles, John B.

    2006-01-01

    Recent long-range planning for exploration-class missions has emphasized the need for anticipating the medical and human factors aspects of such expeditions. Missions returning Americans to the moon for stays of up to 6 months at a time will provide the opportunity to demonstrate the means to function safely and efficiently on another planet. Details of mission architectures are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mars, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stresses will come from environmental factors such as prolonged exposure to radiation, weightlessness en route to Mars and then back to Earth, and low gravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must be considered. The role of such risk-modifying influences as artificial gravity and improved propulsion technologies to shorten round-trip time will also be discussed. Results of planning for assuring human health and performance will be presented.

  15. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    OpenAIRE

    J. Dong; Z. Sun; W. Rao; Y. Jia; L. Meng; C. Wang; B. Chen

    2017-01-01

    An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achiev...

  16. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-01-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  17. A Novel Approach to Exploring the Mars Polar Caps

    Science.gov (United States)

    Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.

    2000-08-01

    The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.

  18. Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions

    Science.gov (United States)

    Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F.

    2016-01-01

    Phobos is a scientifically significant destination that would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to developing systems relevant to Mars surface missions, Phobos offers engineering, operational, and public engagement opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection and infrastructure development which may include in situ resource utilization (ISRU) to provide liquid oxygen for the Mars Ascent Vehicle (MAV). A human mission to Mars' moons would be preceded by a cargo predeploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion based systems, with the habitat descending to the surface and the PEV remaining in orbit. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-Mars transit and to reach Phobos after insertion in to Mars orbit. The crew would taxi from Mars orbit to Phobos to join with the predeployed systems in a spacecraft that is based on a MAV, dock with and transfer to the PEV in Phobos orbit, and descend in the PEV to the surface habitat. A static Phobos surface habitat was chosen as a baseline architecture, in combination with the PEV that was used to descend from orbit as the main exploration vehicle. The habitat would, however, have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat would utilize deployable EVA support structures that allow astronauts to work

  19. Sports pairs: insights on athletic talent; research reviews: twins with leukemia; parents and twins.

    Science.gov (United States)

    Segal, Nancy L

    2007-06-01

    Twin research exploring genetic and environmental influences on athletic interests and talents is reviewed. Illustrative examples of twin athletes representing a variety of sports activities are presented. This is followed by an overview of twin studies offering critical insights into the onset and progress of leukemia. In the last section, timely events involving twins and parents of twins will be described--each case provides a new look at an old question.

  20. Affordable Exploration of Mars: Recommendations from a Community Workshop on Sustainable Initial Human Missions

    Science.gov (United States)

    Thronson, Harley; Carberry, Chris; Cassady, R. J.; Cooke, Doug; Hopkins, Joshua; Perino, Maria A.; Kirkpatrick, Jim; Raftery, Michael; Westenberg, Artemis; Zucker, Richard

    2013-01-01

    There is a growing consensus that within two decades initial human missions to Mars are affordable under plausible budget assumptions and with sustained international participation. In response to this idea, a distinguished group of experts from the Mars exploration stakeholder communities attended the "Affording Mars" workshop at George Washington University in December, 2013. Participants reviewed and discussed scenarios for affordable and sustainable human and robotic exploration of Mars, the role of the International Space Station over the coming decade as the essential early step toward humans to Mars, possible "bridge" missions in the 2020s, key capabilities required for affordable initial missions, international partnerships, and a usable definition of affordability and sustainability. We report here the findings, observations, and recommendations that were agreed to at that workshop.

  1. Unmanned systems to support the human exploration of Mars

    Science.gov (United States)

    Gage, Douglas W.

    2010-04-01

    Robots and other unmanned systems will play many critical roles in support of a human presence on Mars, including surveying candidate landing sites, locating ice and mineral resources, establishing power and other infrastructure, performing construction tasks, and transporting equipment and supplies. Many of these systems will require much more strength and power than exploration rovers. The presence of humans on Mars will permit proactive maintenance and repair, and allow teleoperation and operator intervention, supporting multiple dynamic levels of autonomy, so the critical challenges to the use of unmanned systems will occur before humans arrive on Mars. Nevertheless, installed communications and navigation infrastructure should be able to support structured and/or repetitive operations (such as excavation, drilling, or construction) within a "familiar" area with an acceptable level of remote operator intervention. This paper discusses some of the factors involved in developing and deploying unmanned systems to make humans' time on Mars safer and more productive, efficient, and enjoyable.

  2. The Exploration of Mars and the Improvement of Living Conditions in Western Asian Countries

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Space is the new frontier. The exploration of a new world, Mars, has been giving people on Earth valuable comparative information about climatic and geological processes occurring here on our home planet. With the Viking 1 and 2, Mars Global Surveyor, Mars Odyssey, Mars Reconnaissance Orbiter, Sojourner, Spirit, Opportunity, Curiosity, etc., spacecrafts, which explored the Red Planet we obtained a great deal information about the extremely arid soil and dry air of Mars in the present, and its watery condition in the distant past. Now there is a decade-long, program of robotic exploration of the martian atmosphere and soil - the 'Mars Surveyor Program', which is a series of small, cheap and fast spacecrafts, carrying very few scientific instruments, to be launched about every two years. Here in this paper, under the principles in the United Nations' Agenda 21, we comment on this new phase of Mars exploration under development, which began in 1996, and its benefits to living conditions in developing countries with desert regions. A peaceful regular research of the arid Mars, will help us to understand much better the dynamics of formation of dry regions here on Earth. We suggest that, if the developing countries participate in that program, they will achieve the scientific understanding to create a practical technology, with which they will acquire ways to future transform their arid areas into a more humid places, and to slow the process of desertification of other regions. This, using their own natural resources and own scientific personnel. That would strongly benefit the living conditions in Western Asian countries, which have many desert regions.

  3. Mars Relay Satellite: Key to Enabling Low-Cost Exploration Missions

    Science.gov (United States)

    Hastrup, R.; Cesarone, R.; Miller, A.

    1993-01-01

    Recently, there has been increasing evidence of a renewed focus on Mars exploration both by NASA and the international community. The thrust of this renewed interest appears to be manifesting itself in numerous low-cost missions employing small, light weight elements, which utilize advanced technologies including integrated microelectronics. A formidable problem facing these low-cost missions is communications with Earth. Providing adequate direct-link performance has very significant impacts on spacecraft power, pointing, mass and overall complexity. Additionally, for elements at or near the surface of Mars, there are serious connectivity constraints, especially at higher latitudes, which lose view of Earth for up to many months at a time. This paper will discuss the role a Mars relay satellite can play in enabling and enhancing low-cost missions to Mars...

  4. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    Directory of Open Access Journals (Sweden)

    J. Dong

    2017-07-01

    Full Text Available An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achieve the scientific investigation of the terrain, soil characteristics, material composition, magnetic field, atmosphere, etc. The landing process is divided into three phases (entry phase, parachute descent phase and powered descent phase, which are full of risks. There exit lots of indefinite parameters and design constrain to affect the selection of the landing sites and phase switch (mortaring the parachute, separating the heat shield and cutting off the parachute. A number of new technologies (disk-gap-band parachute, guidance and navigation, etc. need to be developed. Mars and Earth have gravity and atmosphere conditions that are significantly different from one another. Meaningful environmental conditions cannot be recreated terrestrially on earth. A full-scale flight validation on earth is difficult. Therefore the end-to-end simulation and some critical subsystem test must be considered instead. The challenges above and the corresponding design solutions are introduced in this paper, which can provide reference for the Mars exploration mission.

  5. The Athena Science Payload for the 2003 Mars Exploration Rovers

    Science.gov (United States)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2001-01-01

    The Athena Mars rover payload is a suite of scientific instruments and tools for geologic exploration of the martian surface. It is designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials, including soils, rock surfaces, and rock interiors. (3) Determine the fine-scale textural properties of these materials. Two identical copies of the Athena payload will be flown in 2003 on the two Mars Exploration Rovers. The payload is at a high state of maturity, and first copies of several of the instruments have already been built and tested for flight.

  6. Geology of Mars after the first 40 years of exploration

    International Nuclear Information System (INIS)

    Rossi, Angelo Pio; Van Gasselt, Stephan

    2010-01-01

    The knowledge of Martian geology has increased enormously in the last 40 yr. Several missions orbiting or roving Mars have revolutionized our understanding of its evolution and geological features, which in several ways are similar to Earth, but are extremely different in many respects. The impressive dichotomy between the two Martian hemispheres is most likely linked to its impact cratering history, rather than internal dynamics such as on Earth. Mars' volcanism has been extensive, very long-lived and rather constant in its setting. Water was available in large quantities in the distant past of Mars, when a magnetic field and more vigorous tectonics were active. Exogenic forces have been shaping Martian landscapes and have led to a plethora of landscapes shaped by wind, water and ice. Mars' dynamical behavior continues, with its climatic variation affecting climate and geology until very recent times. This paper tries to summarize major highlights in Mars' Geology, and points to deeper and more extensive sources of important scientific contributions and future exploration. (invited reviews)

  7. Mars Exploration Rovers Propulsive Maneuver Design

    Science.gov (United States)

    Potts, Christopher L.; Raofi, Behzad; Kangas, Julie A.

    2004-01-01

    The Mars Exploration Rovers Spirit and Opportunity successfully landed respectively at Gusev Crater and Meridiani Planum in January 2004. The rovers are essentially robotic geologists, sent on a mission to search for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. In order to conduct NASA's 'follow the water' strategy on opposite sides of the planet Mars, an interplanetary journey of over 300 million miles culminated with historic navigation precision. Rigorous trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites. The propulsive maneuver design challenge was to meet or exceed these requirements while preserving the necessary design margin to accommodate additional project concerns. Landing site flexibility was maintained for both missions after launch, and even after the first trajectory correction maneuver for Spirit. The final targeting strategy was modified to improve delivery performance and reduce risk after revealing constraining trajectory control characteristics. Flight results are examined and summarized for the six trajectory correction maneuvers that were planned for each mission.

  8. NASA Mars Conference

    International Nuclear Information System (INIS)

    Reiber, D.B.

    1988-01-01

    Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space

  9. ISRU in the Context of Future European Human Mars Exploration

    Science.gov (United States)

    Baker, A. M.; Tomatis, C.

    2002-01-01

    ISRU or In-Situ Resource Utilisation is the use of Martian resources to manufacture, typically, life support consumables (e.g. water, oxygen, breathing buffer gases), and propellant for a return journey to Earth. European studies have shown that some 4kg of reaction mass must be launched to LEO to send 1kg payload to Mars orbit, with landing on the Mars surface reducing payload mass still further. This results in very high transportation costs to Mars, and still higher costs for returning payloads to Earth. There is therefore a major incentive to reduce payload mass for any form of Mars return mission (human or otherwise) by generating consumables on the surface. ESA through its GSTP programme has been investigating the system level design of a number of mission elements as potential European contributions to an international human Mars exploration mission intended for the 2020-2030 timeframe. One of these is an ISRU plant, a small chemical factory to convert feedstock brought from Earth (hydrogen), and Martian atmospheric gases (CO2 and trace quantities of nitrogen and argon) into methane and oxygen propellant for Earth return and life support consumables, in advance of the arrival of astronauts. ISRU technology has been the subject of much investigation around the world, but little detailed research or system level studies have been reported in Europe. Furthermore, the potential applicability of European expertise, technology and sub- system studies to Martian ISRU is not well quantified. Study work covered in this paper has compared existing designs (e.g. NASA's Design Reference Mission, DLR and Mars Society studies) with the latest ESA derived requirements for human Mars exploration, and has generated a system level ISRU design. This paper will review and quantify the baseline chemical reactions essential for ISRU, including CO2 collection and purification, Sabatier reduction of CO2 with hydrogen to methane and water, and electrolysis of water in the context of

  10. Scientific Results of the Mars Exploration Rovers Spirit and Opportunity

    Science.gov (United States)

    Banerdt, W. B.

    2006-08-01

    NASA's Mars Exploration Rover project launched two robotic geologists, Spirit and Opportunity, toward Mars in June and July of 2003, reaching Mars the following January. The science objectives for this mission are focused on delineating the geologic history for two locations on Mars, with an emphasis on the history of water. Although they were designed for a 90-day mission, both rovers have lasted more than two years on the surface and each has covered more than four miles while investigating Martian geology. Spirit was targeted to Gusev Crater, a 300-km diameter impact basin that was suspected to be the site of an ancient lake. Initial investigations of the plains in the vicinity of the landing site found no evidence of such a lake, but were instead consistent with unaltered (by water) basaltic plains. But after a 3-km trek to an adjacent range of hills it found a quite different situation, with abundant chemical and morphological evidence for a complex geological history. Opportunity has been exploring Meridiani Planum, which was known from orbital data to contain the mineral hematite, which generally forms in the presence of water. The rocks exposed in Meridiani are highly chemically altered, and appear to have been exposed to significant amounts of water. By descending into the 130-m diameter Endurance Crater, Opportunity was able to analyze a 10-m vertical section of this rock unit, which showed significant gradations in chemistry and morphology.

  11. A robotic exploration mission to Mars and Phobos

    Science.gov (United States)

    Kerr, Justin H.; Defosse, Erin; Ho, Quang; Barriga, Ernisto; Davis, Grant; Mccourt, Steve; Smith, Matt

    1993-01-01

    This report discusses the design of a robotic exploration to Mars and Phobos. It begins with the mission's background and objectives, followed by a detailed explanation of various elements of Project Aeneas, including science, spacecraft, probes, and orbital trajectories. In addition, a description of Argos Space Endeavours, management procedures, and overall project costs are presented. Finally, a list of recommendations for future design activity is included.

  12. Solar discrepancies: Mars exploration and the curious problem of inter-planetary time

    Science.gov (United States)

    Mirmalek, Zara Lenora

    The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support

  13. Exploring Mars: The Ares Payload Service (APS)

    Science.gov (United States)

    Bowen, Justin; Lusignan, Bruce

    1999-08-01

    design notably an improved re-entry cooling system and fueling stability analysis were done this year. More technical detail and a proposed international consortium to develop the SSTO is presented in another session of this year's Mars convention. We believe that there will be no human exploration of Mars based on the Shuttle or Expendable launch vehicles, and no resources available except for a cooperative international program. However, just as the world is learning to cooperate in peacekeeping, we hold out the hope that similar cooperation will develop for Mars exploration. With that in mind, this year we asked the question- "How will the human mission get to Mars if it has to use the SsTO for transportation?"

  14. Exploring Mars: the Ares Payload Service (APS)

    Science.gov (United States)

    Bowen, Justin; Lusignan, Bruce

    1999-01-01

    design notably an improved re-entry cooling system and fueling stability analysis were done this year. More technical detail and a proposed international consortium to develop the SSTO is presented in another session of this year's Mars convention. We believe that there will be no human exploration of Mars based on the Shuttle or Expendable launch vehicles, and no resources available except for a cooperative international program. However, just as the world is learning to cooperate in peacekeeping, we hold out the hope that similar cooperation will develop for Mars exploration. With that in mind, this year we asked the question- "How will the human mission get to Mars if it has to use the SsTO for transportation?"

  15. NASA's strategy for Mars exploration in the 1990s and beyond

    Science.gov (United States)

    Huntress, W. T.; Feeley, T. J.; Boyce, J. M.

    NASA's Office of Space Science is changing its approach to all its missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at NASA's role in the U.S. Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires less U.S. resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs. Our Mars exploration plans, especially the Mars Surveyor program, are a key feature of this new NASA approach to space science. The Mars Surveyor program will be affordable, engaging to the public with global and close-up images of Mars, have high scientific value, employ a distributed risk strategy (two launches per opportunity), and will use significant advanced technologies.

  16. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  17. Musical Interests and Talent: Twin Jazz Musicians and Twin Studies/Twin Research: Loss of a Preterm Multiple; Conjoined Twin Conception; Depression in Fathers of Twins; Twin-to-Twin Transfusion Syndrome/Twin News: High-Achieving Twins; Twin Children of a Tennis Star; Conjoined Twin Separation; Twin Delivery to a Giant Panda.

    Science.gov (United States)

    Segal, Nancy L

    2017-12-01

    Findings from twin studies of musical interests and talent are reviewed as a backdrop to the lives and careers of twin jazz musicians, Peter and Will Anderson. The Anderson twins exemplify many aspects of twin research, namely their matched musical abilities, shared musical interests, and common career. This overview is followed by reviews of studies and case reports of bereavement in families who have lost a preterm multiple birth infant, the conception of conjoined twins following in vitro fertilization (IVF), depression in fathers of twins, and twin-to-twin transfusion incidence in monochorionic-diamniotic IVF twin pairs. Twins highlighted in the media include high-achieving identical female twins with nearly identical academic standing, tennis star Roger Federer's two sets of identical twin children, surgical separation of craniopagus conjoined twins, and the rare delivery of twins to a 23-year-old giant panda.

  18. Carl Sagan and the Exploration of Mars and Venus

    Science.gov (United States)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1997-01-01

    Inspired by childhood readings of books by Edgar Rice Burroughs, Carl Sagan's first interest in planetary science focused on Mars and Venus. Typical of much of his career he was skeptical of early views about these planets. Early in this century it was thought that the Martian wave of darkening, a seasonal albedo change on the planet, was biological in origin. He suggested instead that it was due to massive dust storms, as was later shown to be the case. He was the first to recognize that Mars has huge topography gradients across its surface. During the spacecraft era, as ancient river valleys were found on the planet, he directed studies of Mars' ancient climate. He suggested that changes in the planets orbit were involved in climate shifts on Mars, just as they are on Earth. Carl had an early interest in Venus. Contradictory observations led to a controversy about the surface temperature, and Carl was one of the first to recognize that Venus has a massive greenhouse effect at work warming its surface. His work on radiative transfer led to an algorithm that was extensively used by modelers of the Earth's climate and whose derivatives still dominate the calculation of radiative transfer in planetary atmospheres today. Carl inspired a vast number of young scientists through his enthusiasm for new ideas and discoveries, his skeptical approach, and his boundless energy. I had the privilege to work in Carl's laboratory during the peak of the era of Mars' initial exploration. It was an exciting time, and place. Carl made it a wonderful experience.

  19. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    Science.gov (United States)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  20. Ground Contact Model for Mars Science Laboratory Mission Simulations

    Science.gov (United States)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  1. Storyboard for the Medical System Concept of Operations for Mars Exploration Missions

    Science.gov (United States)

    Antonsen, Eric; Hailey, Melinda; Reyes, David; Rubin, David; Urbina, Michelle

    2017-01-01

    This storyboard conceptualizes one scenario of an integrated medical system during a Mars exploration mission. All content is for illustrative purposes only and neither defines nor implies system design requirement.

  2. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures

    Science.gov (United States)

    2018-01-01

    Abstract Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology—Biosignatures—Coevolution of Earth and life—Mars. Astrobiology 18, 1–27. PMID:29252008

  3. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures.

    Science.gov (United States)

    Cabrol, Nathalie A

    2018-01-01

    Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.

  4. RAT magnet experiment on the Mars Exploration Rovers: Spirit and Opportunity beyond sol 500

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Goetz, Walter; Chan, Marjorie A.

    2011-01-01

    The Rock Abrasion Tool (RAT) magnet experiment on the Mars Exploration Rovers was designed to collect dust from rocks ground by the RAT of the two rovers on the surface of Mars. The dust collected on the magnets is now a mixture of dust from many grindings. Here the new data from the experiment...

  5. Slip Validation and Prediction for Mars Exploration Rovers

    Directory of Open Access Journals (Sweden)

    Jeng Yen

    2008-04-01

    Full Text Available This paper presents a novel technique to validate and predict the rover slips on Martian surface for NASA’s Mars Exploration Rover mission (MER. Different from the traditional approach, the proposed method uses the actual velocity profile of the wheels and the digital elevation map (DEM from the stereo images of the terrain to formulate the equations of motion. The six wheel speed from the empirical encoder data comprises the vehicle's velocity, and the rover motion can be estimated using mixed differential and algebraic equations. Applying the discretization operator to these equations, the full kinematics state of the rover is then resolved by the configuration kinematics solution in the Rover Sequencing and Visualization Program (RSVP. This method, with the proper wheel slip and sliding factors, produces accurate simulation of the Mars Exploration rovers, which have been validated with the earth-testing vehicle. This computational technique has been deployed to the operation of the MER rovers in the extended mission period. Particularly, it yields high quality prediction of the rover motion on high slope areas. The simulated path of the rovers has been validated using the telemetry from the onboard Visual Odometry (VisOdom. Preliminary results indicate that the proposed simulation is very effective in planning the path of the rovers on the high-slope areas.

  6. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures

    Science.gov (United States)

    Cabrol, Nathalie A.

    2018-01-01

    Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration.

  7. Mars Exploration Rovers Landing Dispersion Analysis

    Science.gov (United States)

    Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.

    2004-01-01

    Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.

  8. Is that me or my twin? Lack of self-face recognition advantage in identical twins.

    Directory of Open Access Journals (Sweden)

    Matteo Martini

    Full Text Available Despite the increasing interest in twin studies and the stunning amount of research on face recognition, the ability of adult identical twins to discriminate their own faces from those of their co-twins has been scarcely investigated. One's own face is the most distinctive feature of the bodily self, and people typically show a clear advantage in recognizing their own face even more than other very familiar identities. Given the very high level of resemblance of their faces, monozygotic twins represent a unique model for exploring self-face processing. Herein we examined the ability of monozygotic twins to distinguish their own face from the face of their co-twin and of a highly familiar individual. Results show that twins equally recognize their own face and their twin's face. This lack of self-face advantage was negatively predicted by how much they felt physically similar to their co-twin and by their anxious or avoidant attachment style. We speculate that in monozygotic twins, the visual representation of the self-face overlaps with that of the co-twin. Thus, to distinguish the self from the co-twin, monozygotic twins have to rely much more than control participants on the multisensory integration processes upon which the sense of bodily self is based. Moreover, in keeping with the notion that attachment style influences perception of self and significant others, we propose that the observed self/co-twin confusion may depend upon insecure attachment.

  9. Simulations of the magnetic properties experiment on Mars Exploration Rovers

    International Nuclear Information System (INIS)

    Gunnlaugsson, H. P.; Worm, E. S.; Bertelsen, P.; Goetz, W.; Kinch, K.; Madsen, M. B.; Merrison, J. P.; Nornberg, P.

    2005-01-01

    We present some of the main findings from simulation studies of the Magnetic Properties Experiment on the Mars Exploration Rovers. The results suggest that the dust has formed via mechanical breakdown of surface rocks through the geological history of the planet, and that liquid water need not have played any significant role in the dust formation processes.

  10. Exploring Regolith Depth and Cycling on Mars

    Science.gov (United States)

    Fassett, C.; Needham, D. H.; Watters, W. A.; Hundal, C.

    2017-12-01

    Regolith or loose sediment is ubiquitous on the surface of Mars, but our understanding of how this fragmental layer forms and evolves with time is limited. In particular, how regolith thickness varies spatially on Mars is not well known. A common perspective is to start from the canonical model for lunar regolith, which is not unreasonable, given that both Mars and the Moon are heavily cratered surfaces. However, this lunar-like paradigm is not supported by observations of Mars from recent missions. On Mars, bedrock exposures are more common and bedrock is generally closer to the surface than on the Moon, and the processes modifying the regolith differ substantially on the two bodies. Moreover, boulders on the Moon have much shorter lifetimes than on Mars, so boulders are much less common on the lunar surface. The sediment transport processes infilling craters differs dramatically on these two bodies as well. On Mars, fine-grained sediment is efficiently transported (advectively) by wind and trapped in craters rapidly after they form. Lateral transport of lunar regolith is comparatively inefficient and dominated by slow impact-driven (diffusive) transport of regolith. The goal of this contribution is to discuss observational constraints on Mars' regolith depth, and to place observations into a model for Mars landform evolution and regolith cycle. Our operating hypothesis is that the inter-crater surface on Mars is comparatively starved of fine-grained sediment (compared to the Moon), because transport and trapping of fines in craters out-competes physical weathering. Moreover, thick sedimentary bodies on Mars often get (weakly) cemented and lithified due to interactions with fluids, even in the most recent, Amazonian epoch. This is consistent with what is observed at the MER and MSL landing sites and what is known from the SNC meteorites.

  11. Development and Demonstration of Sustainable Surface Infrastructure for Moon/Mars Exploration

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Picard, Martin

    2011-01-01

    For long-term human exploration of the Moon and Mars to be practical, affordable, and sustainable, future missions must be able to identify and utilize resources at the site of exploration. The ability to characterize, extract, processes, and separate products from local material, known as In-Situ Resource Utilization (ISRU), can provide significant reductions in launch mass, logistics, and development costs while reducing risk through increased mission flexibility and protection as well as increased mission capabilities in the areas of power and transportation. Making mission critical consumables like propellants, fuel cell reagents and life support gases, as well as in-situ crew/hardware protection and energy storage capabilities can significantly enhance robotic and human science and exploration missions, however other mission systems need to be designed to interface with and utilize these in-situ developed products and services from the start or the benefits will be minimized or eliminated. This requires a level of surface and transportation system development coordination not typically utilized during early technology and system development activities. An approach being utilized by the US National Aeronautics and Space Administration and the Canadian Space Agency has been to utilize joint analogue field demonstrations to focus technology development activities to demonstrate and integrate new and potentially game changing. mission critical capabilities that would enable an affordable and sustainable surface infrastructure for lunar and Mars robotic and human exploration. Two analogue field tests performed in November 2008 and February 2010 demonstrated first generation capabilities for lunar resource prospecting, exploration site preparation, and oxygen extraction from regolith while initiating integration with mobility, science, fuel cell power, and propulsion disciplines. A third analogue field test currently planned for June 2012 will continue and expand

  12. Protecting the Planets from Biological Contamination: The Strange Case of Mars Exploration

    Science.gov (United States)

    Rummel, J. D.; Conley, C. A.

    2015-12-01

    and human exploration. Such measures are needed to comply with what is a scientific, legal, and even moral requirement as we move forward to understand the place of Mars in our solar system, and our relationship to both.

  13. Oliver Sacks: Our Correspondence About Twins/Twin Research: Vanishing Twins Syndrome; Discordant Sex in MZ Twins; Pregnancy Outcomes in IVF and ICSI Conceived Twins/Print and Media: Superfetated Twins; Twins Discordant for Smoking; Twins in Fashion; Yale University Twin Hockey Players; Conjoined Twin-Visiting Professor.

    Science.gov (United States)

    Segal, Nancy L

    2017-08-01

    The late neurologist and author, Oliver Sacks, published an insightful 1986 review of Marjorie Wallace's book, The Silent Twins, in the New York Times. Taking exception to his assertion about Sir Francis Galton, I wrote a letter to the Times' editor. The letter was unpublished, but it brought a wonderful response from Sacks himself that is reproduced and examined. Next, brief reviews of twin research concerning the vanishing twin syndrome (VTS), discordant sex in a monozygotic (MZ) twin pair, and multiple pregnancy outcomes from assisted reproductive technology (ART) are presented. This section is followed by popular coverage of superfetated twins, smoking-discordant co-twins, twins in fashion, Yale University twin hockey players, and a visiting professor who was a conjoined twin.

  14. Reared-Apart Chinese Twins: Chance Discovery/Twin-Based Research: Twin Study of Media Use; Twin Relations Over the Life Span; Breast-Feeding Opposite-Sex Twins/Print and Online Media: Twins in Fashion; Second Twin Pair Born to Tennis Star; Twin Primes; Twin Pandas.

    Science.gov (United States)

    Segal, Nancy L

    2017-04-01

    A January 2017 reunion of 10-year-old reared-apart Chinese twin girls was captured live on ABC's morning talk show Good Morning America, and rebroadcast on their evening news program Nightline. The twins' similarities and differences, and their participation in ongoing research will be described. This story is followed by reviews of twin research concerning genetic and environmental influences on media use, twin relations across the lifespan and the breast-feeding of opposite-sex twins. Popular interest items include twins in fashion, the second twin pair born to an internationally renowned tennis star, twin primes and twin pandas.

  15. Mission Operations of the Mars Exploration Rovers

    Science.gov (United States)

    Bass, Deborah; Lauback, Sharon; Mishkin, Andrew; Limonadi, Daniel

    2007-01-01

    A document describes a system of processes involved in planning, commanding, and monitoring operations of the rovers Spirit and Opportunity of the Mars Exploration Rover mission. The system is designed to minimize command turnaround time, given that inherent uncertainties in terrain conditions and in successful completion of planned landed spacecraft motions preclude planning of some spacecraft activities until the results of prior activities are known by the ground-based operations team. The processes are partitioned into those (designated as tactical) that must be tied to the Martian clock and those (designated strategic) that can, without loss, be completed in a more leisurely fashion. The tactical processes include assessment of downlinked data, refinement and validation of activity plans, sequencing of commands, and integration and validation of sequences. Strategic processes include communications planning and generation of long-term activity plans. The primary benefit of this partition is to enable the tactical portion of the team to focus solely on tasks that contribute directly to meeting the deadlines for commanding the rover s each sol (1 sol = 1 Martian day) - achieving a turnaround time of 18 hours or less, while facilitating strategic team interactions with other organizations that do not work on a Mars time schedule.

  16. Twin studies as a model for exploring the aetiology of autoimmune thyroid disease

    DEFF Research Database (Denmark)

    Brix, Thomas Heiberg; Hegedüs, Laszlo

    2012-01-01

    Twins are an important resource for evaluating the relative contribution of genetic and environmental factors in determining a phenotype. During the last decades, a number of twin studies have investigated the aetiology of several phenotypes related to thyroid autoimmunity. Taken together, these ....... Future twin studies should incorporate information on genetic, epigenetic and environmental variation thereby enhancing our ability to quantify the precise effect of specific risk factors......., and biometric twin modelling shows that approximately 75% of the total phenotypic variance in AITD is because of genetic effects. On the other hand, the lack of complete concordance in MZ twin pairs is proof of environmental and/or epigenetic factors also playing an important role. The impact of environmental...

  17. Evolvable Mars Campaign Long Duration Habitation Strategies: Architectural Approaches to Enable Human Exploration Missions

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.

    2015-01-01

    The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion

  18. Fetal growth disorders in twin gestations.

    LENUS (Irish Health Repository)

    Breathnach, Fionnuala M

    2012-06-01

    Twin growth is frequently mismatched. This review serves to explore the pathophysiologic mechanisms that underlie growth aberrations in twin gestations, the prenatal recognition of abnormal twin growth, and the critical importance of stratifying management of abnormal twin growth by chorionicity. Although poor in utero growth of both twins may reflect maternal factors resulting in global uteroplacental dysfunction, discordant twin growth may be attributed to differences in genetic potential between co-twins, placental dysfunction confined to one placenta only, or one placental territory within a shared placenta. In addition, twin-twin transfusion syndrome represents a distinct entity of which discordant growth is a common feature. Discordant growth is recognized as an independent risk factor for adverse perinatal outcome. Intertwin birth weight disparity of 18% or more should be considered to represent a discordance threshold, which serves as an independent risk factor for adverse perinatal outcome. At this cutoff, perinatal morbidity is found to increase both for the larger and the smaller twin within a discordant pair. There remains uncertainty surrounding the sonographic parameters that are most predictive of discordance. Although heightening of fetal surveillance in the face of discordant twin growth follows the principles applied to singleton gestations complicated by fetal growth restriction, the timing of intervention is largely influenced by chorionicity.

  19. Mars Exploration Rovers Launch Performance and TCM-1 Maneuver Design

    Science.gov (United States)

    Kangas, Julie A.; Potts, Christopher L.; Raofi, Behzad

    2004-01-01

    The Mars Exploration Rover (MER) project successfully landed two identical rovers on Mars in order to remotely conduct geologic investigations, including characterization of rocks and soils that may hold clues to past water activity. Two landing sites, Gusev crater and Meridiani Planum, were selected out of nearly 200 candidate sites after balancing science returns and flight system engineering and safety. Precise trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites within the flight system constraints. This paper discusses the expected and achieved launch vehicle performance and the impacts of that performance on the first Trajectory Correction Maneuver (TCM-1) while maintaining targeting flexibility in accommodating additional project concerns about landing site safety and possible in-flight retargeting to alternate landing sites.

  20. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    International Nuclear Information System (INIS)

    Clark, J.S.; Borowski, S.K.; Mcilwain, M.C.; Pellaccio, D.G.

    1992-09-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the next generation of space propulsion systems - the key to space exploration

  1. Data Management for Mars Exploration Rovers

    Science.gov (United States)

    Snyder, Joseph F.; Smyth, David E.

    2004-01-01

    Data Management for the Mars Exploration Rovers (MER) project is a comprehensive system addressing the needs of development, test, and operations phases of the mission. During development of flight software, including the science software, the data management system can be simulated using any POSIX file system. During testing, the on-board file system can be bit compared with files on the ground to verify proper behavior and end-to-end data flows. During mission operations, end-to-end accountability of data products is supported, from science observation concept to data products within the permanent ground repository. Automated and human-in-the-loop ground tools allow decisions regarding retransmitting, re-prioritizing, and deleting data products to be made using higher level information than is available to a protocol-stack approach such as the CCSDS File Delivery Protocol (CFDP).

  2. The 16th International Twin Congress: Highlights from Madrid/Twin Research: Twin Study of Partner Aggression; ABO Incompatibility in Dizygotic Twins; Growth Discordance in a Monoamniotic Twin Pair; Quick Note on Twin Implantation/In the Media: Long-Lost Twins Found; NASA Twin Experiment; Twin Brothers and the Las Vegas Attack; Retired Twin Airline Pilots; Twin Film Clips.

    Science.gov (United States)

    Segal, Nancy L

    2018-02-01

    Highlights from the 16th International Twin Congress, held in Madrid, Spain from November 16-18, 2017, are presented. The Twin Congress, formerly held every three years, now takes place biennially with a single-day meeting organized during the off years. This meeting is the largest gathering of scientific twin researchers, medical personnel, and representatives of multiple birth organizations in the world. This overview is followed by reviews of recent twin research and commentary concerning partner aggression, ABO incompatibility in dizygotic twins, growth discordance in a monoamniotic twin pair and twin implantation. The article closes with summaries of timely topics in the media, namely a father's finding of his long-lost twin children, early results from the NASA twin experiment, twin brothers at the center of the October 2017 Las Vegas attack, retired twin airline pilots, and clips from recent films with twin-based themes.

  3. Mars Drilling Status

    Science.gov (United States)

    Mandell, Humboldt, C., Jr.

    2002-01-01

    This slide presentation reviews the current status of work to explore Mars beneath the surface of planet. One of the objective of this work is to enable further exploration of Mars by humans. One of the requirements for this is to find water on Mars. The presences of water is critical for Human Exploration and a permanent presence on Mars. If water is present beneath the surface it is the best chance of finding life on Mars. The presentation includes a timeline showing the robotic missions, those that have already been on Mars, and planned missions, an explanation of why do we want to drill on Mars, and some of the challenges, Also include are reviews of a missions that would drill 200 and 4,000 to 6,000 meters into the Martian bedrock, and a overview description of the drill. There is a view of some places where we have hopes of finding water.

  4. Neurological impairment in a surviving twin following intrauterine fetal demise of the co-twin: a case study.

    Science.gov (United States)

    Forrester, K R; Keegan, K M; Schmidt, J W

    2013-01-01

    It has been established that twin pregnancies are at an increased risk for complications, including the risk of morbidity or mortality for one or both of the infants. Cerebral palsy and other associated neurological deficits also occur at higher rates in twin pregnancies. This report examines two cases of intrauterine demise of one twin with subsequent survival of the co-twin. In both cases, the surviving infant suffered significant neurological sequelae. Impairments observed in these two cases include multicystic encephalomalacia and periventricular leukomalacia as well as the subsequent development of cerebral palsy. This case study explores the predisposing factors, incidence, pathophysiology, consequences, and future research implications of these findings.

  5. Brazilian Twin Registry: A Bright Future for Twin Studies/Twin Research: Twin Study of Alcohol Consumption and Mortality; Oxygen Uptake in Adolescent Twins/In the News: Superfecundated Twins In Vietnam; Adolescent Twin Relations; Twin and Triplet Co-Workers; A Special Twin Ultrasound; Monozygotic Twins With Different Skin Color; Identical Twin Returns from Space.

    Science.gov (United States)

    Segal, Nancy L

    2016-06-01

    The establishment of the Brazilian Twin Registry for the study of genetic, social, and cultural influences on behavior is one of eleven newly funded projects in the Department of Psychology at the University of São Paulo. These 11 interrelated projects form the core of the university's Center for Applied Research on Well-Being and Human Behavior. An overview of the planned twin research and activities to date is presented. Next, two recent twin studies are reviewed, one on the relationship between alcohol consumption and mortality, and the other on factors affecting maximal oxygen uptake. Twins cited in the media include the first identified superfecundated twins in Vietnam, adolescent twin relations, twins and triplets who work together, monozygotic twins with different skin tones and a co-twin control study that addresses the effects of space travel.

  6. A mars communication constellation for human exploration and network science

    Science.gov (United States)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two

  7. A method to evaluate utility for architectural comparisons for a campaign to explore the surface of Mars

    Science.gov (United States)

    Ward, Eric D.; Webb, Ryan R.; deWeck, Olivier L.

    2016-11-01

    There is a general consensus that Mars is the next high priority destination for human space exploration. There has been no lack of analysis and recommendations for human missions to Mars, including, for example, the NASA Design Reference Architectures and the Mars Direct proposal. These studies and others usually employ the traditional approach of selecting a baseline mission architecture and running individual trade studies. However, this can cause blind spots, as not all combinations are explored. An alternative approach is to holistically analyze the entire architectural trade-space such that all of the possible system interactions are identified and measured. In such a framework, an optimal design is sought by minimizing cost for maximal value. While cost is relatively easy to model for manned spaceflight, value is more difficult to define. In our efforts to develop a surface base architecture for the MIT Mars 2040 project, we explored several methods for quantifying value, including technology development benefits, challenge, and various metrics for measuring scientific return. We developed a science multi-score method that combines astrobiology and geologic research goals, which is weighted by the crew-member hours that can be used for scientific research rather than other activities.

  8. Temperature dependence of twinning activity in random textured cast magnesium

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Farkas, G.; Pilch, Jan; Máthis, K.

    2015-01-01

    Roč. 627, MAR (2015), s. 333-335 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GAP204/12/1360; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : magnesium * acoustic emission * neutron diffraction * deformation twinning * high temperature Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015

  9. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    Science.gov (United States)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  10. Relationship between refractive error and ocular biometrics in twin children: the Guangzhou Twin Eye Study.

    Science.gov (United States)

    Wang, Decai; Liu, Bin; Huang, Shengsong; Huang, Wenyong; He, Mingguang

    2014-09-01

    A cross-sectional study was conducted to explore the relationship between refractive error and ocular biometrics in children from the Guangzhou twin eye study. Twin participants aged 7-15 years were selected from Guangzhou Twin Eye Study. Ocular examinations included visual acuity measurement, ocular motility evaluation, autorefraction under cycloplegia, and anterior segment, media, and fundus examination. Axial length (AL), anterior chamber depth (ACD), and corneal curvature radius were measured using partial coherence laser interferometry. A multivariate linear regression model was used for statistical analysis. Twin children from Guangzhou city showed a decreased spherical equivalent with age, whereas both AL and ACD were increased and corneal curvature radius remained unchanged. When adjusted by age and gender, the data from 77% of twins presenting with spherical equivalent changes indicated that these were caused by predictable variables (R2 = 0.77, P biometrics. Refractive status is largely determined by axial length as the major factor.

  11. A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2).

    Science.gov (United States)

    Rummel, John D; Beaty, David W; Jones, Melissa A; Bakermans, Corien; Barlow, Nadine G; Boston, Penelope J; Chevrier, Vincent F; Clark, Benton C; de Vera, Jean-Pierre P; Gough, Raina V; Hallsworth, John E; Head, James W; Hipkin, Victoria J; Kieft, Thomas L; McEwen, Alfred S; Mellon, Michael T; Mikucki, Jill A; Nicholson, Wayne L; Omelon, Christopher R; Peterson, Ronald; Roden, Eric E; Sherwood Lollar, Barbara; Tanaka, Kenneth L; Viola, Donna; Wray, James J

    2014-11-01

    A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of

  12. Exploring Mars for Evidence of Habitable Environments and Life

    Science.gov (United States)

    DesMarais, David J.

    2014-01-01

    The climate of Mars has been more similar to that of Earth than has the climate of any other planet in our Solar System. But Mars still provides a valuable alternative example of how planetary processes and environments can affect the potential presence of life elsewhere. For example, although Mars also differentiated very early into a core, mantle and crust, it then evolved mostly if not completely without plate tectonics and has lost most of its early atmosphere. The Martian crust has been more stable than that of Earth, thus it has probably preserved a more complete record of its earliest history. Orbital observations determined that near-surface water was once pervasive. Orbiters have identified the following diverse aqueous sedimentary deposits: layered phyllosilicates, phyllosilicates in intracrater fans, plains sediments potentially harboring evaporitic minerals, deep phyllosilicates, carbonate-bearing deposits, intracrater clay-sulfate deposits, Meridiani-type layered deposits, valles-type layered deposits, hydrated silica-bearing deposits, and gypsum plains. These features, together with evidence of more vigorous past geologic activity, indicate that early climates were wetter and perhaps also somewhat warmer. The denser atmosphere that was required for liquid water to be stable on the surface also provided more substantial protection from radiation. Whereas ancient climates might have favored habitable environments at least in some localities, clearly much of the Martian surface for most of its history has been markedly less favorable for life. The combination of dry conditions, oxidizing surface environments and typically low rates of sedimentation are not conducive to the preservation of evidence of ancient environments and any biota. Thus a strategy is required whereby candidate sites are first identified and then characterized for their potential to preserve evidence of past habitable environments. Rovers are then sent to explore the most promising

  13. Advanced Communication and Networking Technologies for Mars Exploration

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research

  14. Do MZ twins have discordant experiences of friendship? A qualitative hypothesis-generating MZ twin differences study

    Science.gov (United States)

    Moran, Nicola; Plomin, Robert

    2017-01-01

    Using a qualitative monozygotic (MZ) twin differences design we explored whether adolescent MZ twins report discordant peer relationships and, if so, whether they perceive them as causes, consequences or correlates of discordant behaviour. We gathered free-response questionnaire data from 497 families and conducted in-depth telephone interviews with 97 of them. Within this dataset n = 112 families (23% of the sample) described discordant peer relationships. Six categories of discordance were identified (peer victimisation, peer rejection, fewer friends, different friends, different attitudes to friendship and dependence on co-twin). Participants described peer relationship discordance arising as a result of chance occurrences, enhanced vulnerability in one twin or discordant behaviour. Consequences of discordant peer relationships were seen as discordance in self-confidence, future plans, social isolation, mental health and interests. In all cases the twin with worse peer experiences was seen as having a worse outcome. Specific hypotheses are presented. PMID:28727730

  15. Recent Accomplishments in Mars Exploration: The Rover Perspective

    Science.gov (United States)

    McLennan, S. M.; McSween, H. Y.

    2018-04-01

    Mobile rovers have revolutionized our understanding of Mars geology by identifying habitable environments and addressing critical questions related to Mars science. Both the advances and limitations of rovers set the scene for Mars Sample Return.

  16. The radiometric performances of the Planetary Fourier Spectrometer for Mars exploration

    Science.gov (United States)

    Palomba, E.; Colangeli, L.; Formisano, V.; Piccioni, G.; Cafaro, N.; Moroz, V.

    1999-04-01

    The Planetary Fourier Spectrometer (PFS) is a Fourier transform interferometer, operating in the range 1.2-45 μm. The instrument, previously included in the payload of the failed mission Mars ‧96, is proposed for the future space mission Mars Express, under study by ESA. The present paper is aimed at presenting the radiometric performances of PFS. The two channels (LW and SW) forming PFS were analysed and characterised in terms of sensitivity and noise equivalent brightness. To cover the wide spectral range of PFS, different blackbodies were used for calibration. The built-in blackbodies, needed for the in-flight calibrations, were also characterised. The results show that the LW channel is comparable with IRIS Mariner 9 in terms of noise equivalent brightness. The SW channel performances, while satisfactorily, could be improved by lowering the sensor operative temperature. A simple model of the Mars radiance is used in order to calculate the signal-to-noise ratio on the spectra in typical observation conditions. The computed signal-to-noise ratio for the LW channel varies between 430 and 40, while for the SW channel it ranges from 150 to 30. The radiometric analyses confirm that PFS performances are compliant with the design requirements of the instrument. PFS is fully validated for future remote exploration of the atmosphere and the surface of Mars.

  17. The Potential Impact of Mars' Atmospheric Dust on Future Human Exploration of the Red Planet

    Science.gov (United States)

    Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.

    2017-12-01

    With the increasing focus by NASA and other space agencies on a crewed mission to Mars in the 2039 time-frame, many Mars-specific environmental factors are now starting to be considered by NASA and other engineering teams. Learning from NASA's Apollo Missions to the Moon, where lunar dust turned out to be a significant challenge to mission and crew safety, attention is now turning to the dust in Mars' atmosphere and regolith. To start the process of identifying possible dust-caused challenges to the human presence on Mars, and thus aid early engineering and mission design efforts, the NASA Engineering and Safety Center (NESC) Robotic Spacecraft Technical Discipline Team organized and conducted a Workshop on the "Dust in Mars' Atmosphere and Its Impact on the Human Exploration of Mars", held at the Lunar and Planetary Institute (LPI), Houston, TX, June 13-15, 2017. The workshop addressed the following general areas: 1. What is known about Mars' dust in terms of its physical and chemical properties, its local and global abundance and composition, and its variability.2. What is the impact of Mars atmospheric dust on human health.3. What is the impact of Mars atmospheric dust on surface mechanical systems (e.g., spacesuits, habitats, mobility systems, etc.). We present the top priority issues identified in the workshop.

  18. Is Mars Sample Return Required Prior to Sending Humans to Mars?

    Science.gov (United States)

    Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles; hide

    2012-01-01

    Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.

  19. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    Science.gov (United States)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  20. Twin-twin transfusion syndrome - diagnosis and prognosis

    Directory of Open Access Journals (Sweden)

    Hajrić-Egić Amira

    2003-01-01

    Full Text Available Twin-twin transfusion syndrome is a serious complication of monozygotic, monochorionic, diamniotic twins resulting from transplacental vascular communications. In this syndrome blood is thought to be shunted from one twin - donor,who develops anaemia,growth retardation and oligoamnios, to the other twin - recipient,who becomes plethoric,macrosomic and develops polyhydroamnios. The incidence of twin-twin transfusion syndrome ranges from 5-15% of all twin pregnancies. If this condition develops in the second trimester, it is usually associated with spontaneous abortion and death of one or both fetuses before viability. Developing the syndrome in the third trimester has better perinatal outcome. Mortality rates ranging from 56%-100%, depending on gestational age and severity of the syndrome. The ultrasound criterias for diagnosis, in this study,were the presence of twins of the same sex with discordant growth, with oligohydroamnios in one twin sac and polyhydroamnios in the other one, one placenta and thin membrane between twins. The present study shows clinical course of 14 cases and value of Doppler ultrasound to analyze the usefulness of umbilical artery blood flow velocimetry for predicting the risk of twin-twin transfusion syndrome. 14 twin pregnancies with twin-twin transfusion syndrome were diagnosed during the last four years period and prospectivelly followed. 9 cases were diagnosed before the completion od 28 weeks of gestation.The mean gestational age was 21,6_+4,2 weeks at diagnosis and 23,2+_3,6 weeks at delivery. 5 cases were diagnosed after 28 weeks of gestation. The mean gestational age in this group was 29,6+_2,1 weeks at diagnosis and 33+_3,3 weeks at delivery. The survival rate in this study was 29%(8/28.9 cases ended in spontaneous abortion between 18th and 27th weeks of pregnancy (table 1 and 5 in premature labor (table 2.There were 7 intrauterine death (5 at admission and 2 few days after admission and 13 neonatal deaths

  1. The USC Adult Twin Cohorts: International Twin Study and California Twin Program.

    Science.gov (United States)

    Cozen, Wendy; Hwang, Amie E; Cockburn, Myles G; Hamilton, Ann S; Zadnick, John; Mack, Thomas M

    2013-02-01

    The study of twin subjects permits the documentation of crude heritability and may promote the identification of specific causal alleles. We believe that at the current time, the chief research advantage of twins as subjects, especially monozygotic twins, is that the commonality of their genetic and cultural identity simplifies the interpretation of biological associations. In order to study genetic and environmental determinants of cancer and chronic diseases, we developed two twin registries, maintained at the University of Southern California: The International Twin Study (ITS) and the California Twin Program (CTP). The ITS is a volunteer registry of twins with cancer and chronic disease consisting of 17,245 twin pairs affected by cancer and chronic disease, respectively, ascertained by advertising in periodicals from 1980-1991. The CTP is a population-based registry of California-born twin pairs ascertained by linking the California birth records to the State Department of Motor Vehicles. Over 51,000 individual California twins representing 36,965 pairs completed and returned 16-page questionnaires. Cancer diagnoses in the California twins are updated by regular linkage to the California Cancer Registry. Over 5,000 cancer patients are represented in the CTP. Twins from both registries have participated extensively in studies of breast cancer, melanoma, lymphoma, multiple sclerosis, systemic lupus erythematosus, diabetes mellitus type 1, mammographic density, smoking, and other traits and conditions.

  2. Technology needs for manned Mars missions

    International Nuclear Information System (INIS)

    Buden, D.; Bartine, D.

    1991-01-01

    As members of the Stafford Synthesis Group, we performed an investigation as to the most expeditious manner to explore Mars. To do this, rationale, objectives, requirements and systems definitions were developed. The objectives include the development of the necessary infrastructure and resources for Mars exploration and performing initial successful exploration of Mars. This will include a transportation system between Mars and Earth, habitats for living on Mars, utilization of Martian resources, and the ability to perform exploration over the entire Martian surface. Using the developed architecture, key technologies were identified. 6 figs., 1 tab

  3. Assessment of Mars Exploration Rover Landing Site Predictions

    Science.gov (United States)

    Golombek, M. P.

    2005-05-01

    Comprehensive analyses of remote sensing data during the 3-year effort to select the Mars Exploration Rover landing sites at Gusev crater and Meridiani Planum correctly predicted the safe and trafficable surfaces explored by the two rovers. Gusev crater was predicted to be a relatively low relief surface that was comparably dusty, but less rocky than the Viking landing sites. Available data for Meridiani Planum indicated a very flat plain composed of basaltic sand to granules and hematite that would look completely unlike any of the existing landing sites with a dark, low albedo surface, little dust and very few rocks. Orbital thermal inertia measurements of 315 J m-2 s-0.5 K-1 at Gusev suggested surfaces dominated by duricrust to cemented soil-like materials or cohesionless sand or granules, which is consistent with observed soil characteristics and measured thermal inertias from the surface. THEMIS thermal inertias along the traverse at Gusev vary from 285 at the landing site to 330 around Bonneville rim and show systematic variations that can be related to the observed increase in rock abundance (5-30%). Meridiani has an orbital bulk inertia of ~200, similar to measured surface inertias that correspond to observed surfaces dominated by 0.2 mm sand size particles. Rock abundance derived from orbital thermal differencing techniques suggested that Meridiani Planum would have very low rock abundance, consistent with the rock free plain traversed by Opportunity. Spirit landed in an 8% orbital rock abundance pixel, consistent with the measured 7% of the surface covered by rocks >0.04 m diameter at the landing site, which is representative of the plains away from craters. The orbital albedo of the Spirit traverse varies from 0.19 to 0.30, consistent with surface measurements in and out of dust devil tracks. Opportunity is the first landing in a low albedo portion of Mars as seen from orbit, which is consistent with the dark, dust-free surface and measured albedos. The

  4. Perinatal hepatic infarction in twin-twin transfusion.

    LENUS (Irish Health Repository)

    O'Sullivan, M J

    2012-02-03

    We report a case of a twin pregnancy which was complicated by a twin-twin transfusion in which the recipient twin was noted to have an intra-abdominal echogenic mass. This twin died at two days of age of hepatic infarction. The donor twin was healthy at birth, at thirty weeks\\' gestation, and did not have any subsequent problems. Fetal intra-abdominal echogenicity may be a marker of hepatic infarction.

  5. The humanation of Mars

    Science.gov (United States)

    David, L. W.

    Early developments related to human excursions to Mars are examined, taking into account plans considered by von Braun, and the 'ambitious goal of a manned flight to Mars by the end of the century', proposed at the launch of Apollo 11. In response to public reaction, plans for manned flights to Mars in the immediate future were given up, and unmanned reconnaissance of Mars was continued. An investigation is conducted concerning the advantages of manned exploration of Mars in comparison to a study by unmanned space probes, and arguments regarding a justification for interplanetary flight to Mars are discussed. Attention is given to the possibility to consider Mars as a 'back-up' planet for preserving earth life, an international Mars expedition as a world peace project, the role of Mars in connection with resource utilization considerations, and questions of exploration ethics.

  6. The Mars Reconnaissance Orbiter Mission: 10 Years of Exploration from Mars Orbit

    Science.gov (United States)

    Johnston, M. Daniel; Zurek, Richard W.

    2016-01-01

    The Mars Reconnaissance Orbiter ( MRO ) entered Mars orbit on March 10, 2006. After five months of aerobraking, a series of propulsive maneuvers were used to establish the desired low -altitude science orbit. The spacecraft has been on station in its 255 x 320 k m, sun -synchronous (approximately 3 am -pm ), primary science orbit since September 2006 performing both scientific and Mars programmatic support functions. This paper will provide a summary of the major achievements of the mission to date and the major flight activities planned for the remainder of its third Extended Mission (EM3). Some of the major flight challenges the flight team has faced are also discussed.

  7. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    International Nuclear Information System (INIS)

    Clark, J.S.; George, J.A.; Gefert, L.P.; Doherty, M.P.; Sefcik, R.J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power

  8. Disease-Concordant Twins Empower Genetic Association Studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Li, Weilong; Vandin, Fabio

    2017-01-01

    and ordinary healthy samples as controls. We examined the power gain of the twin-based design for various scenarios (i.e., cases from monozygotic and dizygotic twin pairs concordant for a disease) and compared the power with the ordinary case-control design with cases collected from the unrelated patient...... concordant for a disease, should confer increased power in genetic association analysis because of their genetic relatedness. We conducted a computer simulation study to explore the power advantage of the disease-concordant twin design, which uses singletons from disease-concordant twin pairs as cases...... population. Simulation was done by assigning various allele frequencies and allelic relative risks for different mode of genetic inheritance. In general, for achieving a power estimate of 80%, the sample sizes needed for dizygotic and monozygotic twin cases were one half and one fourth of the sample size...

  9. Exploring Topsnut-Graphical Passwords by Twin Odd-elegant Trees

    Directory of Open Access Journals (Sweden)

    Wang Hong-yu

    2017-01-01

    Full Text Available Graphical passwords are facing a good opportunity as 2-dimension codes are accepted by many people, since it has been applied in mobile devices, electronic equipments with touch screen, and so on. QR codes can be considered as a type of graphical passwords. Topsnut-graphical password differs from the existing graphical passwords, and has been investigated and developed. In this article, a new type of Topsnut-graphical passwords has been designed by technique of graph theory, called twin odd-elegant labelling. We make the twin odd-elegant graphs for one-key vs two or more locks (conversely, one-lock vs two or more keys. These Topsnut-GPWs show perfect matching characteristics of locks (TOE-lock-models and keys (TOE-key-models. We show examples for testing our methods which can be easily transformed into effective algorithms.

  10. Mars Exploration Study Workshop II. Report of a workshop, Ames Research Center, Moffett Field, CA (USA), 24 - 25 May 1993.

    Science.gov (United States)

    Duke, M. B.; Budden, N. A.

    1993-11-01

    This report, which summarizes the Mars Exploration Study Workshop II, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues.

  11. Scientific results and lessons learned from an integrated crewed Mars exploration simulation at the Rio Tinto Mars analogue site

    Science.gov (United States)

    Orgel, Csilla; Kereszturi, Ákos; Váczi, Tamás; Groemer, Gernot; Sattler, Birgit

    2014-02-01

    Between 15 and 25 April 2011 in the framework of the PolAres programme of the Austrian Space Forum, a five-day field test of the Aouda.X spacesuit simulator was conducted at the Rio Tinto Mars-analogue site in southern Spain. The field crew was supported by a full-scale Mission Control Center (MCC) in Innsbruck, Austria. The field telemetry data were relayed to the MCC, enabling a Remote Science Support (RSS) team to study field data in near-real-time and adjust the flight planning in a flexible manner. We report on the experiences in the field of robotics, geophysics (Ground Penetrating Radar) and geology as well as life sciences in a simulated spaceflight operational environment. Extravehicular Activity (EVA) maps had been prepared using Google Earth and aerial images. The Rio Tinto mining area offers an excellent location for Mars analogue simulations. It is recognised as a terrestrial Mars analogue site because of the presence of jarosite and related sulphates, which have been identified by the NASA Mars Exploration Rover "Opportunity" in the El Capitan region of Meridiani Planum on Mars. The acidic, high ferric-sulphate content water of Rio Tinto is also considered as a possible analogue in astrobiology regarding the analysis of ferric sulphate related biochemical pathways and produced biomarkers. During our Mars simulation, 18 different types of soil and rock samples were collected by the spacesuit tester. The Raman results confirm the presence of minerals expected, such as jarosite, different Fe oxides and oxi-hydroxides, pyrite and complex Mg and Ca sulphates. Eight science experiments were conducted in the field. In this contribution first we list the important findings during the management and realisation of tests, and also a first summary of the scientific results. Based on these experiences suggestions for future analogue work are also summarised. We finish with recommendations for future field missions, including the preparation of the experiments

  12. 6th international conference on Mars polar science and exploration: Conference summary and five top questions

    Science.gov (United States)

    Smith, Isaac B.; Diniega, Serina; Beaty, David W.; Thorsteinsson, Thorsteinn; Becerra, Patricio; Bramson, Ali; Clifford, Stephen M.; Hvidberg, Christine S.; Portyankina, Ganna; Piqueux, Sylvain; Spiga, Aymeric; Titus, Timothy N.

    2018-01-01

    We provide a historical context of the International Conference on Mars Polar Science and Exploration and summarize the proceedings from the 6th iteration of this meeting. In particular, we identify five key Mars polar science questions based primarily on presentations and discussions at the conference and discuss the overlap between some of those questions. We briefly describe the seven scientific field trips that were offered at the conference, which greatly supplemented conference discussion of Mars polar processes and landforms. We end with suggestions for measurements, modeling, and laboratory and field work that were highlighted during conference discussion as necessary steps to address key knowledge gaps.

  13. Photometric Observations of Soils and Rocks at the Mars Exploration Rover Landing Sites

    Science.gov (United States)

    Johnson, J. R.; Arvidson, R. A.; Bell, J. F., III; Farrand, W.; Guinness, E.; Johnson, M.; Herkenhoff, K. E.; Lemmon, M.; Morris, R. V.; Seelos, F., IV

    2005-01-01

    The Panoramic Cameras (Pancam) on the Spirit and Opportunity Mars Exploration Rovers have acquired multispectral reflectance observations of rocks and soils at different incidence, emission, and phase angles that will be used for photometric modeling of surface materials. Phase angle coverage at both sites extends from approx. 0 deg. to approx. 155 deg.

  14. Human Exploration Ethnography of the Haughton-Mars Project, 1998-1999

    Science.gov (United States)

    Clancey, William J.; Swanson, Keith (Technical Monitor)

    1999-01-01

    During the past two field seasons, July 1988 and 1999, we have conducted research about the field practices of scientists and engineers at Haughton Crater on Devon Island in the Canadian Arctic, with the objective of determining how people will live and work on Mars. This broad investigation of field life and work practice, part of the Haughton-Mars Project lead by Pascal Lee, spans social and cognitive anthropology, psychology, and computer science. Our approach involves systematic observation and description of activities, places, and concepts, constituting an ethnography of field science at Haughton. Our focus is on human behaviors-what people do, where, when, with whom, and why. By locating behavior in time and place-in contrast with a purely functional or "task oriented" description of work-we find patterns constituting the choreography of interaction between people, their habitat, and their tools. As such, we view the exploration process in terms of a total system comprising a social organization, facilities, terrain/climate, personal identities, artifacts, and computer tools. Because we are computer scientists seeking to develop new kinds of tools for living and working on Mars, we focus on the existing representational tools (such as documents and measuring devices), learning and improvization (such as use of the internet or informal assistance), and prototype computational systems brought to the field. Our research is based on partnership, by which field scientists and engineers actively contribute to our findings, just as we participate in their work and life.

  15. Exploring Subclinical Phenotypic Features in Twin Pairs Discordant for Cleft Lip and Palate

    DEFF Research Database (Denmark)

    Leslie, Elizabeth J; Carlson, Jenna C; Cooper, Margaret E

    2017-01-01

    OBJECTIVE: Monozygotic twins of an individual with an orofacial cleft have a significantly elevated risk for orofacial cleft compared with the general population, but still the concordance rate for orofacial cleft in monozygotic twins is about 40% to 50%. The goal of this study was to determine w...

  16. Detwinning mechanisms for growth twins in face-centered cubic metals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J., E-mail: wangj6@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, N.; Anderoglu, O. [Department of Mechanical Engineering, Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3123 (United States); Zhang, X., E-mail: zhangx@tamu.edu [Department of Mechanical Engineering, Materials Science and Engineering Program, Texas A and M University, College Station, TX 77843-3123 (United States); Misra, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Huang, J.Y. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Hirth, J.P. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-04-15

    Using in situ transmission electron microscopy, we studied the stability of growth twins. We observed the rapid migration of incoherent twin boundaries (ITBs), indicating that nanotwins are unstable. Topological analysis and atomistic simulations are adopted to explore detwinning mechanisms. The results show that: (i) the detwinning process is accomplished via the collective glide of multiple twinning dislocations that form an ITB; (ii) detwinning can easily occur for thin twins, and the driving force is mainly attributed to a variation of the excess energy of a coherent twin boundary; (iii) shear stresses enable ITBs to migrate easily, causing the motion of coherent twin boundaries; and (iv) the migration velocity depends on stacking fault energy. The results imply that detwinning becomes the dominant deformation mechanism for growth twins of the order of a few nanometers thick.

  17. Accessing Information on the Mars Exploration Rovers Mission

    Science.gov (United States)

    Walton, J. D.; Schreiner, J. A.

    2005-12-01

    In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two

  18. What and how can affect the exploration of Mars

    Science.gov (United States)

    Vidmachenko, A. P.; Morozhenko, A. V.

    2017-05-01

    Going to Mars, astronauts are deprived of the protection of the magnetic field. And for 15 months of flight to Mars and back astronaut will receive maximum permissible for his entire career, a dose of radiation of 1 sievert. And when powerful flash can occur on the sun, the dose of radiation will grow by an order of magnitude and can even kill the crew. The radiation background in the orbit of Mars is more than 2.2 times higher than the radiation background at the Earth's orbital station. The smallest toxic dust on Mars is also can interfere with the colonization of Mars. This dust contains a large number of toxic compounds such as perchlorates, minerals of gypsum, compounds of chromium, fine-grained salts of silicic acid, etc. The listed above factors make forced to think seriously about the possibility of organizing a Mars mission, even in the distant future.

  19. 'Biracial'-Looking Twins: A New Twin Type?/Twin Research: Twins with Cystic Teratomas; Sleep Quality and Body Mass Index; Previable Membrane Rupture/Print and Online Reports: Twins Born to a Sister Surrogate; NASA Twin Study; African-Cosmopolitan Twin Fashion Inspirations; Triplet Hockey Stars.

    Science.gov (United States)

    Segal, Nancy L

    2017-06-01

    Dizygotic (DZ) co-twins born to mothers and fathers from different racial or ethnic backgrounds often resemble one parent much more than the other. As such, these pairs comprise a unique subset of twins for investigating how others' responses to their different looks may affect their personalities and self-esteem. This article describes some of these twin pairs and some challenges of raising them, and suggests ways they may be used in research. Next, recent twin research on cystic teratomas, relations between sleep quality and body mass index, and previable membrane rupture is described. The final section concerns twins, twin studies, and related events in the media, namely: twins born to a sister surrogate, the NASA twin investigation, inspiring African-Cosmopolitan twins in fashion, and triplet Hockey Stars.

  20. Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration

    Science.gov (United States)

    Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  1. Mars Exploration 2003 to 2013 - An Integrated Perspective: Time Sequencing the Missions

    Science.gov (United States)

    Briggs, G.; McKay, C.

    2000-01-01

    The science goals for the Mars exploration program, together with the HEDS precursor environmental and technology needs, serve as a solid starting point for re-planning the program in an orderly way. Most recently, the community has recognized the significance of subsurface sampling as a key component in "following the water". Accessing samples from hundreds and even thousands of meters beneath the surface is a challenge that will call for technology development and for one or more demonstration missions. Recent mission failures and concerns about the complexity of the previously planned MSR missions indicate that, before we are ready to undertake sample return and deep sampling, the Mars exploration program needs to include: 1) technology development missions; and 2) basic landing site assessment missions. These precursor missions should demonstrate the capability for reliable & accurate soft landing and in situ propellant production. The precursor missions will need to carry out close-up site observations, ground-penetrating radar mapping from orbit and conduct seismic surveys. Clearly the programs should be planned as a single, continuous exploration effort. A prudent minimum list of missions, including surface rovers with ranges of more than 10 km, can be derived from the numerous goals and requirements; they can be sequenced in an orderly way to ensure that time is available to feed forward the results of the precursor missions. One such sequence of missions is proposed for the decade beginning in 2003.

  2. Remembering Irving I. Gottesman: Twin Research Colleague and Friend Extraordinaire/Research Studies: Face-Lift Technique Comparison in Identical Twins; Raising Preterm Twins; Fetal Behavior in Dichorionic Twin Pregnancies; Co-Bedding and Stress Reduction in Twins/Public Interest: Identical Co-Twins' Same Day Delivery; Teaching Twins in Bosnia; Twin Auctioneers; Sister, the Play.

    Science.gov (United States)

    Segal, Nancy L

    2016-12-01

    Dr Irving I. Gottesman, a colleague, friend, and long-time member of the International Society of Twin Studies passed away on June 29, 2016. His contributions to twin research and some personal reflections are presented to honor both the man and the memory. This tribute is followed by short reviews of twin research concerning differences between cosmetic surgical techniques, the rearing of preterm twins, behavioral observations of dichorionic fetal twins, and the outcomes of co-bedding twins with reference to stress reduction. Interesting and informative articles in the media describe identical co-twins who delivered infants on the same day, educational policies regarding twins in Bosnia and the United Kingdom, unusual practices of twin auctioneers, and a theatrical production, Sister, featuring identical twins in the leading roles.

  3. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    Science.gov (United States)

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.

  4. A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars)

    Science.gov (United States)

    Davoodi, Faranak

    2013-01-01

    Future missions to Mars that would need a sophisticated lander, hopper, or rover could benefit from the REARM Architecture. The mission concept REARM Architecture is designed to provide unprecedented capabilities for future Mars exploration missions, including human exploration and possible sample-return missions, as a reusable lander, ascend/descend vehicle, refuelable hopper, multiple-location sample-return collector, laboratory, and a cargo system for assets and humans. These could all be possible by adding just a single customized Re-Entry-Hopper-Aero-Space-Craft System, called REARM-spacecraft, and a docking station at the Martian orbit, called REARM-dock. REARM could dramatically decrease the time and the expense required to launch new exploratory missions on Mars by making them less dependent on Earth and by reusing the assets already designed, built, and sent to Mars. REARM would introduce a new class of Mars exploration missions, which could explore much larger expanses of Mars in a much faster fashion and with much more sophisticated lab instruments. The proposed REARM architecture consists of the following subsystems: REARM-dock, REARM-spacecraft, sky-crane, secure-attached-compartment, sample-return container, agile rover, scalable orbital lab, and on-the-road robotic handymen.

  5. Some Strategic Considerations Related to the Potential Use of Water Resource Deposits on Mars by Future Human Explorers

    Science.gov (United States)

    Beaty, D.W.; Mueller, R.P.; Bussey, D.B.; Davis, R.M.; Hays, L.E.; Hoffman, S.J.

    2016-01-01

    A long-term base on Mars, at the center of an "Exploration Zone", would require substantial quantities of in-situ resources. Although water is not the only resource on Mars of potential interest, it stands out as the one that most dominates long-lead strategic planning. It is needed for multiple purposes for various human activities (including our own survival!), and in significant quantities. The absence of viable deposits could make a surface "field station" logistically unsustainable. Therefore, identification of deposits, and development of the technology needed to make use of these deposits, are an important priority in the period leading up to a human mission to Mars. Given our present understanding of Mars, ice and hydrated minerals appear to be the best potential sources for the quantity of water expected to be needed. The methods for their extraction would be different for these two classes of deposits, and at the present time it is unknown which would ultimately be an optimal solution. The deposits themselves would also ultimately have to be judged by certain economics that take into account information about geologic and engineering attributes and the "cost" of obtaining this information. Ultimately much of this information would need to come from precursor missions, which would be essential if utilization of martian is situ water resources is to become a part of human exploration of Mars.

  6. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    Science.gov (United States)

    1999-09-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  7. The Fourth International Network of Twin Registries: Overview from Osaka/Research Reviews: Familial Fraternal Twinning; Twin Study of Masculine Faces; Physical Aggression and Epigenetics; Prenatal Education for Parents of Twins/Current Events: 2016 Guinness Book of World Records; Oldest Living Male Twins; Twins Reunited at Sixty-Nine; Panda Twins; Twins.com.

    Science.gov (United States)

    Segal, Nancy L

    2015-12-01

    The 4th International Network of Twin Registries (INTR) Consortium Meeting took place in Osaka, Japan, September 28-29, 2015. The venue was the Osaka Medical Center for Medical Innovation and Translational Research. An overview of presentations and other activities is provided. Next, 1930s research on familial fraternal twinning, preference for masculine faces, physical aggression and epigenetics, and a prenatal education program for parents of multiples are described. Current twin-related events include the 2016 Guinness Book of World Records (GWR), the oldest living male twins, newly reunited twins, the birth of panda twins and a controversial twin-based website.

  8. The Placenta in Twin-to-Twin Transfusion Syndrome and Twin Anemia Polycythemia Sequence.

    Science.gov (United States)

    Couck, Isabel; Lewi, Liesbeth

    2016-06-01

    Twin-to-twin transfusion syndrome (TTTS) and twin anemia polycythemia sequence (TAPS) are complications unique to monochorionic twin pregnancies and their shared circulation. Both are the result of the transfusion imbalance in the intertwin circulation. TTTS is characterized by an amniotic fluid discordance, whereas in TAPS, there is a severe discordance in hemoglobin levels. The article gives an overview of the typical features of TTTS and TAPS placentas.

  9. MarsVac: Pneumatic Sampling System for Planetary Exploration

    Science.gov (United States)

    Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.

    2008-12-01

    We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.

  10. Antenatal management of twin-twin transfusion syndrome and twin anemia-polycythemia sequence.

    Science.gov (United States)

    Slaghekke, Femke; Zhao, Depeng P; Middeldorp, Johanna M; Klumper, Frans J; Haak, Monique C; Oepkes, Dick; Lopriore, Enrico

    2016-08-01

    Twin-twin transfusion syndrome (TTTS) and twin anemia polycythemia sequence (TAPS) are severe complications in monochorionic twin pregnancies associated with high mortality and morbidity risk if left untreated. Both diseases result from imbalanced inter-twin blood transfusion through placental vascular anastomoses. This review focuses on the differences in antenatal management between TTTS and TAPS. Expert commentary: The optimal management for TTTS is fetoscopic laser coagulation of the vascular anastomoses, preferably using the Solomon technique in which the whole vascular equator is coagulated. The Solomon technique is associated with a reduction of residual anastomosis and a reduction in post-operative complications. The optimal management for TAPS is not clear and includes expectant management, intra-uterine transfusion with or without partial exchange transfusion and fetoscopic laser surgery.

  11. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  12. Mars for Earthlings: an analog approach to Mars in undergraduate education.

    Science.gov (United States)

    Chan, Marjorie; Kahmann-Robinson, Julia

    2014-01-01

    Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html.

  13. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  14. A Possible Twin: The 1960s Twin Study Revisited/Twin Research: Twin-to-Twin Heart Transplantation; Distinguishing Monozygotic Twins; Twin Conceptions via Oocyte Donation; Factors Affecting Craniofacial Traits/In the Media: Triplet Delivery in the UK; Conjoined Twins and the Concept of Self; Colombian Twin Trainers; Skin Grafting to Save an Identical Co-Twin; Lack of Physical Flaws in Dolly the Cloned Sheep; Possible Conjoined Twins of Opposite-Sex; Passing of the Remaining Twin From the World's Longest Separated Pair.

    Science.gov (United States)

    Segal, Nancy L

    2018-04-01

    This article begins with the story of a 51-year-old Los Angeles, California man, Justin Goldberg, whose daughter caught a glimpse of his striking look-alike at a popular market. Many people have so-called doppelgängers, but this occurrence is especially intriguing - the individual in question, born in New York City in the mid-1960s to an unwed mother, was an adoptee placed by the Louise Wise Adoption Agency. This agency, under the guidance of a prominent psychiatrist, decided to place twins in separate homes. Some of these twin children were part of a controversial child development study that was hidden from them and their parents. Next, recent and current twin research on heart transplantation, distinguishing monozygotic co-twins, twin conceptions via oocyte donation and factors affecting craniofacial traits are summarized. The article concludes with highlights on twins in the media, specifically, a triplet delivery in the United Kingdom, self-concept and consciousness in conjoined twins, Colombian twin trainers, skin grafting to save an identical co-twin, lack of physical flaws in Dolly the cloned sheep, possible opposite-sex conjoined twins, and the passing of the remaining twin from the world's longest separated pair.

  15. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    Science.gov (United States)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  16. Preparing for Mars: The Evolvable Mars Campaign 'Proving Ground' Approach

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.; Mueller, Rob P.; Sibille, Laurent; Vangen, Scott; Williams-Byrd, Julie

    2015-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence beyond Low Earth Orbit, we are in the early stages of planning missions within the framework of an Evolvable Mars Campaign. Initial missions would be conducted in near-Earth cis-lunar space and would eventually culminate in extended duration crewed missions on the surface of Mars. To enable such exploration missions, critical technologies and capabilities must be identified, developed, and tested. NASA has followed a principled approach to identify critical capabilities and a "Proving Ground" approach is emerging to address testing needs. The Proving Ground is a period subsequent to current International Space Station activities wherein exploration-enabling capabilities and technologies are developed and the foundation is laid for sustained human presence in space. The Proving Ground domain essentially includes missions beyond Low Earth Orbit that will provide increasing mission capability while reducing technical risks. Proving Ground missions also provide valuable experience with deep space operations and support the transition from "Earth-dependence" to "Earth-independence" required for sustainable space exploration. A Technology Development Assessment Team identified a suite of critical technologies needed to support the cadence of exploration missions. Discussions among mission planners, vehicle developers, subject-matter-experts, and technologists were used to identify a minimum but sufficient set of required technologies and capabilities. Within System Maturation Teams, known challenges were identified and expressed as specific performance gaps in critical capabilities, which were then refined and activities required to close these critical gaps were identified. Analysis was performed to identify test and demonstration opportunities for critical technical capabilities across the Proving Ground spectrum of missions. This suite of critical capabilities is expected to

  17. Human Mars Landing Site and Impacts on Mars Surface Operations

    Science.gov (United States)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  18. Highlights from the 15th International Congress of Twin Studies/Twin Research: Differentiating MZ Co-twins Via SNPs; Mistaken Infant Twin-Singleton Hospital Registration; Narcolepsy With Cataplexy; Hearing Loss and Language Learning/Media Mentions: Broadway Musical Recalls Conjoined Hilton Twins; High Fashion Pair; Twins Turn 102; Insights From a Conjoined Twin Survivor.

    Science.gov (United States)

    Segal, Nancy L

    2015-02-01

    Highlights from the 15th International Congress of Twin Studies are presented. The congress was held November 16-19, 2014 in Budapest, Hungary. This report is followed by summaries of research addressing the differentiation of MZ co-twins by single nucleotide polymorphisms (SNPs), an unusual error in infant twin-singleton hospital registration, twins with childhood-onset narcolepsy with cataplexy, and the parenting effects of hearing loss in one co-twin. Media interest in twins covers a new Broadway musical based on the conjoined twins Violet and Daisy Hilton, male twins becoming famous in fashion, twins who turned 102 and unique insights from a conjoined twin survivor. This article is dedicated to the memory of Elizabeth (Liz) Hamel, DZA twin who met her co-twin for the first time at age seventy-eight years. Liz and her co-twin, Ann Hunt, are listed in the 2015 Guinness Book of Records as the longest separated twins in the world.

  19. An Accelerated Development, Reduced Cost Approach to Lunar/Mars Exploration Using a Modular NTR-Based Space Transportation System

    Science.gov (United States)

    Borowski, S.; Clark, J.; Sefcik, R.; Corban, R.; Alexander, S.

    1995-01-01

    The results of integrated systems and mission studies are presented which quantify the benefits and rationale for developing a common, modular lunar/Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. At present NASA's Exploration Program Office (ExPO) is considering chemical propulsion for an 'early return to the Moon' and NTR propulsion for the more demanding Mars missions to follow. The time and cost to develop these multiple systems are expected to be significant. The Nuclear Propulsion Office (NPO) has examined a variety of lunar and Mars missions and heavy lift launch vehicle (HLLV) options in an effort to determine a 'standardized' set of engine and stage components capable of satisfying a wide range of Space Exploration Initiative (SEI) missions. By using these components in a 'building block' fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured. For NASA's 'First Lunar Outpost' (FLO) mission, an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to translunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.5 m length, and 66 t LH2 capacity. The NTR utilizes a UC-ZrC-graphite 'composite' fuel with a specific impulse (Isp) capability of approximately 900 s and an engine thrust-to-weight ratio of approximately 4.3. By extending the size and LH2 capacity of the lunar NTR stage to approximately 20 m and 96 t, respectively, a single launch Mars cargo vehicle capable of delivering approximately 50 t of surface payload is possible. Three 50 klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle applications would be used to configure the Mars piloted vehicle for a mission as early as 2010. The paper describes the features of the 'common

  20. What We Might Know About Gusev Crater if the Mars Exploration Rover Spirit Mission were Coupled with a Mars Sample Return Mission

    Science.gov (United States)

    Morris, Richard V.

    2008-01-01

    The science instruments on the Mars Exploration Rover (MER) Spirit have provided an enormous amount of chemical and mineralogical data during more than 1450 sols of exploration at Gusev crater. The Moessbauer (MB) instrument identified 10 Fe-bearing phases at Gusev Crater: olivine, pyroxene, ilmenite, chromite, and magnetite as primary igneous phases and nanophase ferric oxide (npOx), goethite, hematite, a ferric sulfate, and pyrite/marcusite as secondary phases. The Miniature Thermal Emission Spectrometer (Mini-TES) identified some of these Fe-bearing phases (olivine and pyroxene), non- Fe-bearing phases (e.g., feldspar), and an amorphous high-SiO2 phase near Home Plate. Chemical data from the Alpha Particle X-Ray Spectrometer (APXS) provided the framework for rock classification, chemical weathering/alteration, and mineralogical constraints. APXS-based mineralogical constraints include normative calculations (with Fe(3+)/FeT from MB), elemental associations, and stoichiometry (e.g., 90% SiO2 implicates opalline silica). If Spirit had cached a set of representative samples and if those samples were returned to the Earth for laboratory analysis, what value is added by Mars Sample return (MSR) over and above the mineralogical and chemical data provided by MER?

  1. Motor Disorder and Anxious and Depressive Symptomatology: A Monozygotic Co-Twin Control Approach

    Science.gov (United States)

    Pearsall-Jones, Jillian G.; Piek, Jan P.; Rigoli, Daniela; Martin, Neilson C.; Levy, Florence

    2011-01-01

    The aim of this study was to investigate the relationship between poor motor ability and anxious and depressive symptomatology in child and adolescent monozygotic twins. The co-twin control design was used to explore these mental health issues in MZ twins concordant and discordant for a motor disorder, and controls. This methodology offers the…

  2. Science Applications of a Multispectral Microscopic Imager for the Astrobiological Exploration of Mars

    Science.gov (United States)

    Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging

  3. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars

    Science.gov (United States)

    Nunez, Jorge; Farmer, Jack; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.

  4. Middleware and Web Services for the Collaborative Information Portal of NASA's Mars Exploration Rovers Mission

    Science.gov (United States)

    Sinderson, Elias; Magapu, Vish; Mak, Ronald

    2004-01-01

    We describe the design and deployment of the middleware for the Collaborative Information Portal (CIP), a mission critical J2EE application developed for NASA's 2003 Mars Exploration Rover mission. CIP enabled mission personnel to access data and images sent back from Mars, staff and event schedules, broadcast messages and clocks displaying various Earth and Mars time zones. We developed the CIP middleware in less than two years time usins cutting-edge technologies, including EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed as a collection of independent, hot-deployable web services, providing secure access to back end file systems and databases. Throughout the middleware we enabled crosscutting capabilities such as runtime service configuration, security, logging and remote monitoring. This paper presents our approach to mitigating the challenges we faced, concluding with a review of the lessons we learned from this project and noting what we'd do differently and why.

  5. Molecular dynamics simulation of albite twinning and pericline twinning in low albite

    International Nuclear Information System (INIS)

    Li, Bin; Knowles, Kevin M

    2013-01-01

    Two twinning laws, the albite law and the pericline law, are the predominant growth twinning modes in triclinic plagioclase feldspars such as low albite, NaAlSi 3 O 8 , in which the aluminum and silicon atoms are in an ordered arrangement on the tetrahedral sites of the aluminosilicate framework. In the terminology used formally to describe deformation twinning in a triclinic lattice, these twin laws can be described as Type I and Type II twin laws, respectively, with the pericline twin law being conjugate to the albite twin law. In this study, twin boundaries have been constructed for low albite according to these two twinning laws and studied by molecular dynamics simulation. The results show that suitably constructed twin boundary models are quite stable for both albite twinning and pericline twinning during molecular dynamics simulation. The calculated twin boundary energy of an albite twin is significantly lower than that of a pericline twin, in accord with the experimental observation that albite twinning is the more commonly observed mode seen in plagioclase feldspars. The results of the molecular dynamics simulations also agree with conclusions from the prior work of Starkey that glide twinning in low albite is not favoured energetically. (paper)

  6. Art for twins: Yorùbá artists and their statues/twin research studies: twins' education and conceptions; diurnal preference; inherited eye diseases; ultrasound counseling when twins are conjoined/popular twin reports: twin sisters (the film); rare pregnancy; diet test; French twins reared apart and reunited.

    Science.gov (United States)

    Segal, Nancy L

    2014-06-01

    The Yorùbá of Nigeria are well known for their high twinning rate and the statues they create to commemorate deceased twins. An impressive collection of this artwork was displayed at the University of California's Fowler Museum in Los Angeles between October 13, 2013 and March 2, 2014. An overview of this exhibit is provided. Next, twin research on maternal education and conception, diurnal preference, inherited eye diseases, and ultrasound counseling for couples with conjoined twins are briefly summarized. This article concludes with a discussion of media-based items related to twins. The topics include an award-winning twin film, a rare pregnancy, a diet test, and the separation and chance reunion of monozygotic female twins.

  7. The Search for Biosignatures on Mars: Using Predictive Geology to Optimize Exploration Targets

    Science.gov (United States)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2011-01-01

    Predicting geologic context from satellite data is a method used on Earth for exploration in areas with limited ground truth. The method can be used to predict facies likely to contain organic-rich shales. Such shales concentrate and preserve organics and are major repositories of organic biosignatures on Earth [1]. Since current surface conditions on Mars are unfavorable for development of abundant life or for preservation of organic remains of past life, the chances are low of encountering organics in surface samples. Thus, focusing martian exploration on sites predicted to contain organic-rich shales would optimize the chances of discovering evidence of life, if it ever existed on that planet.

  8. The Proposed Mars Astrobiology Explorer - Cacher [MAX-C] Rover: First Step in a Potential Sample Return Campaign

    Science.gov (United States)

    Allen, Carlton C.; Beaty, David W.

    2010-01-01

    Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.

  9. Towards Mars — Stratospheric Balloons as Test-Beds for Mars Exploration

    Science.gov (United States)

    Dannenberg, K.

    2018-04-01

    The abstract deals with the possibilities to use stratospheric balloons for Mars science and technology needs, especially with the opportunities offered by the new European infrastructure project HEMERA, recently selected by the European Commission.

  10. Surplus weapons-grade plutonium: a resource for exploring and terraforming Mars

    International Nuclear Information System (INIS)

    Muscatello, A.C.; Houts, M.G.

    1996-01-01

    With the end of the Cold War, greater than 100 metric tons (MT) of weapons-grade plutonium (WGPu) have become surplus to defense needs in the United States and the Former Soviet Union. This paper is a proposal for an option for WGPu disposition, i.e., use of the plutonium as a fuel for nuclear reactors for Mars exploration and eventual terraforming. WGPu was used in nuclear weapons because it has a much smaller critical mass than highly enriched uranium, allowing lighter weapons with consequent longer ranges. Similarly, WGPu reactors would also require smaller amounts of fuel to attain a critical mass, making the reactor much lighter overall and resulting in large savings in launch costs. The greater than 100 MT of WGPu would generate about 1000 billion kilowatt hours of heat energy, much of which could be converted into electricity. The waste heat would also be useful to a Martian outpost or colony. A potential way of getting the WGPu reactors into space is a large gas gun like that being developed at the Lawrence Livermore National Laboratory to orbit materials by achieving high velocity at the surface, greatly reducing launch costs and enhancing reliability. Reactor components would be launched on conventional rockets or space shuttles, the reactor fuel rods would be injected into orbit using the gas gun, and the reactor would be assembled in space. Implementation of this proposal would allow disposition of a serious, expensive problem on earth by removing the WGPu from the planet and simultaneously provide a very large energy resource for Mars exploration and terraforming

  11. Surplus weapons-grade plutonium: a resource for exploring and terraforming Mars

    Energy Technology Data Exchange (ETDEWEB)

    Muscatello, A.C.; Houts, M.G.

    1996-12-31

    With the end of the Cold War, greater than 100 metric tons (MT) of weapons-grade plutonium (WGPu) have become surplus to defense needs in the United States and the Former Soviet Union. This paper is a proposal for an option for WGPu disposition, i.e., use of the plutonium as a fuel for nuclear reactors for Mars exploration and eventual terraforming. WGPu was used in nuclear weapons because it has a much smaller critical mass than highly enriched uranium, allowing lighter weapons with consequent longer ranges. Similarly, WGPu reactors would also require smaller amounts of fuel to attain a critical mass, making the reactor much lighter overall and resulting in large savings in launch costs. The greater than 100 MT of WGPu would generate about 1000 billion kilowatt hours of heat energy, much of which could be converted into electricity. The waste heat would also be useful to a Martian outpost or colony. A potential way of getting the WGPu reactors into space is a large gas gun like that being developed at the Lawrence Livermore National Laboratory to orbit materials by achieving high velocity at the surface, greatly reducing launch costs and enhancing reliability. Reactor components would be launched on conventional rockets or space shuttles, the reactor fuel rods would be injected into orbit using the gas gun, and the reactor would be assembled in space. Implementation of this proposal would allow disposition of a serious, expensive problem on earth by removing the WGPu from the planet and simultaneously provide a very large energy resource for Mars exploration and terraforming.

  12. Exploring the potential of MAR

    International Nuclear Information System (INIS)

    Vanderzalm, Joanne

    2014-01-01

    Despite numerous benefits, the full potential for uptake of MAR for use of treated wastewater and urban stormwater has not been realised. CSIRO is currently leading research to address some of the major impediments to uptake of MAR. These include the clogging of the soil or aquifer matrix, leading to reduced infiltration rates; water quality impacts on the receiving aquifer; and uncertainty regarding the economics of MAR schemes. Field-scale application of MAR through national demonstration projects aims to reduce the uncertainty associated with technical and economic feasibility and facilitate water recycling via the aquifer. Current research in the Managed Aquifer Recharge and Recycling Options (MARRO) project provides two case studies using novel infiltration techniques, soil aquifer treatment (SAT) and infiltration galleries, to recharge treated wastewater for non-potable use. SAT at Alice Springs supplements existing groundwater resources for future irrigation supplies, while an infiltration gallery at Floreat (Western Australia) is evaluating the potential of MAR to sustain groundwater-fed wetlands. These infiltration techniques provide an opportunity to optimise the passive treatment processes and minimise water quality impacts on the receiving groundwater. SAT uses open infiltration basins operated intermittently to create alternate wet and dry cycles and optimise natural treatment processes within the subsurface. Power and Water Corporation's Alice Springs SAT scheme has been in operation since 2008 to prevent overflow of treated wastewater to surface water systems and augment the groundwater resource. Wastewater for recharge to a Quaternary sand and gravel aquifer is treated by stabilisation ponds and dissolved air flotation, with filtration added to the treatment train in late 2013. The scheme commenced as four basins with a total recharge area of 7,640 sq.m, but was increased to allow 600,000 m 3 /year recharge to the current, larger capacity of

  13. Next generation laser-based standoff spectroscopy techniques for Mars exploration.

    Science.gov (United States)

    Gasda, Patrick J; Acosta-Maeda, Tayro E; Lucey, Paul G; Misra, Anupam K; Sharma, Shiv K; Taylor, G Jeffrey

    2015-01-01

    In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.

  14. Therapeutic modalities of twin to twin transfusion syndrome

    Directory of Open Access Journals (Sweden)

    Šulović N.

    2015-01-01

    Full Text Available Twin to twin transfusion syndrome (TTTTS accounts for approximately 10% of monochorionic twin pregnancies and, if left untreated, is associated with high morbidity and mortality rate. A net transfusion of blood flow from one fetus (donor twin to the other (recipient twin via placental vascular anastomoses has been supposed as the major etiology of TTTTS. The donor twin becomes hypovolemic and oliguria, oligohydramnios, and a variable degree of growth restriction develop, whereas the recipient twin manifests polyuria, polyhydramnios, and hydrops in response to hypervolemia. TTTTS can be treated by either serial amniocentesis or selective fetoscopic laser coagulation of the communicating vessels. The rationale for removal of large volumes of amniotic fluid is to prevent preterm delivery secondary to polyhydramnios and to improve fetal circulation by reducing pressure on the chorionic plate. On the other hand, the goal of laser therapy is to occlude vascular anastomoses, thereby interrupting intertwin blood exchange. Although laser treatment is associated with increased survival rate and reduced neurologic complications, compared with amnioreduction, it requires highly specialized centers, whereas serial amniocentesis has the advantage of being performed worldwide. Therefore, the optimal treatment for pregnancies complicated with TTTTS is still controversial.

  15. The effect of chorionicity and twin-to-twin delivery time interval on short-term outcome of the second twin

    DEFF Research Database (Denmark)

    Hjortø, Sofie; Nickelsen, Carsten; Petersen, Janne

    2013-01-01

    Abstract Objectives: To investigate the effect of chorionicity and twin-to-twin delivery time interval on short-term outcome in the second twin. Additionally, to investigate predictors of adverse outcome in both twins. Methods: Data included vaginally delivered twins (≥ 36 weeks) from Copenhagen ...

  16. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    Science.gov (United States)

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  17. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiapeng, E-mail: sun.jiap@gmail.com [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Fang, Liang [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province (China); Ma, Aibin, E-mail: aibin-ma@hhu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Jiang, Jinghua [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Han, Ying [Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, Jilin Province (China); Chen, Huawei [Department of Applied Physics, School of Science, Xi’an Jiaotong University, Xi’an 710049, Shaanxi Province (China); Han, Jing [School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province (China)

    2015-05-14

    The molecular dynamics simulations are performed to explore the fracture behavior and the ductility of the twinned Cu nanowires containing orthogonally oriented growth CTBs due to the uniaxial tensile deformation. The results reveal that, the fracture behavior and the ductility of the twinned nanowires are not related to the length of the nanowires but also intensively related to the twin boundary spacing. When the twin boundary space is changed, the twinned nanowires undergo three distinct failure modes which include ductile fracture, brittle fracture and ductile-to-brittle transition depending on the length of the nanowires. We also find a reduction in the ductility of the twinned nanowires, which is ascribed to the deformation localization induced by the Lomer dislocation and the rapid necking resulted from the twinning partial slipping. Finally, the atomic-level process that occurs during deformation until final fracture are examined in detail, and a new formation mechanism of the Lomer dislocation is observed when a 90° partial dislocation transmits across a coherent twin boundary.

  18. The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Sun, Jiapeng; Fang, Liang; Ma, Aibin; Jiang, Jinghua; Han, Ying; Chen, Huawei; Han, Jing

    2015-01-01

    The molecular dynamics simulations are performed to explore the fracture behavior and the ductility of the twinned Cu nanowires containing orthogonally oriented growth CTBs due to the uniaxial tensile deformation. The results reveal that, the fracture behavior and the ductility of the twinned nanowires are not related to the length of the nanowires but also intensively related to the twin boundary spacing. When the twin boundary space is changed, the twinned nanowires undergo three distinct failure modes which include ductile fracture, brittle fracture and ductile-to-brittle transition depending on the length of the nanowires. We also find a reduction in the ductility of the twinned nanowires, which is ascribed to the deformation localization induced by the Lomer dislocation and the rapid necking resulted from the twinning partial slipping. Finally, the atomic-level process that occurs during deformation until final fracture are examined in detail, and a new formation mechanism of the Lomer dislocation is observed when a 90° partial dislocation transmits across a coherent twin boundary

  19. Japan's exploration of vertical holes and subsurface caverns on the Moon and Mars

    Science.gov (United States)

    Haruyama, J.; Kawano, I.; Kubota, T.; Yoshida, K.; Kawakatsu, Y.; Kato, H.; Otsuki, M.; Watanabe, K.; Nishibori, T.; Yamamoto, Y.; Iwata, T.; Ishigami, G.; Yamada, T. T.

    2013-12-01

    Recently, gigantic vertical holes exceeding several tens of meters in diameter and depth were discovered on the Moon and Mars. Based on high-resolution image data, lunar holes and some Martian pits (called 'holes' hereafter) are probably skylights of subsurface caverns such as lava tubes or magma chambers. We are starting preparations for exploring the caverns through the vertical holes. The holes and subsurface caverns have high potential as resources for scientific studies. Various important geological and mineralogical processes could be uniquely and effectively observed inside these holes and subsurface caverns. The exposed fresh lava layers on the vertical walls of the lunar and Martian holes would provide information on volcanic eruption histories. The lava layers may also provide information on past magnetic fields of the celestial bodies. The regolith layers may be sandwiched between lava layers and may preserve volatile elements including solar wind protons that could be a clue to understanding past solar activities. Water molecules from solar winds or cometary/meteorite impacts may be stored inside the caverns because of mild temperatures there. The fresh lava materials forming the walls and floors of caverns might trap endogenic volatiles from magma eruptions that will be key materials for revealing the formation and early evolution of the Moon and Mars. Furthermore, the Martian subsurface caverns are highly expected to be life cradles where the temperatures are probably stable and that are free from ultra-violet and other cosmic rays that break chemical bonds, thus avoiding polymerization of molecules. Discovering extraterrestrial life and its varieties is one of our ultimate scientific purposes for exploring the lunar and Martian subsurface caverns. In addition to scientific interests, lunar and Martian subsurface caverns are excellent candidates for future lunar bases. We expect such caverns to have high potential due to stable temperatures; absence

  20. Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars

    Science.gov (United States)

    Allen, C.C.; Oehler, D.Z.; Baker, D.M.

    2009-01-01

    Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.

  1. Mud Volcanoes as Exploration Targets on Mars

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2010-01-01

    Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.

  2. Frontiers of Life Sciences: The Human Exploration of the Moon and Mars

    Science.gov (United States)

    North, Regina M.; Pellis, Neal R.

    2005-01-01

    The rapid development of the productive processes after World War II extended human settlements into new ecological niches. Advances in Life Sciences played a decisive role supporting the establishment of human presence in areas of the planet where human life could have not existed otherwise. The evolution of life support systems, and the fabrication of new materials and technologies has enabled humans to inhabit Polar Regions, ocean surfaces and depths; and to leave Earth and occupy Low Earth Orbit. By the end of the 20 th Century, stations in the Antarctic and Arctic, off shore oil platforms, submarines, and space stations had become the ultimate demonstration of human ability to engineer habitats at Earth extreme environments and outer space. As we enter the 21st Century, the next development of human settlements will occur through the exploration of the Moon, Mars, and beyond. The major risks of space exploration derive from long exposure of humans and other life systems to radiation, microgravity, isolation and confinement, dependence on artificial life support systems, and unknown effects (e.g., altered magnetic fields, ultrahigh vacuum on bacteria, fungi, etc.). Countermeasures will require a complete characterization of human and other biological systems adaptation processes. To sustain life in transit and on the surface of the Moon and Mars will require a balance of spacecraft, cargo, astronaut crews, and the use of in situ resources. Limitations on the number of crewmembers, payloads, and the barrenness of the terrain require a novel design for the capabilities needed in transit and at exploration outpost sites. The planned destinations have resources that may be accessed to produce materials, food, shelter, power, and to provide an environment compatible with successful occupation of longterm exploration sites. Once more, the advancements of Life Sciences will be essential for the design of interplanetary voyages and planetary surface operations. This

  3. Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys

    International Nuclear Information System (INIS)

    Wu, Wei; Gao, Yanfei; Li, Nan; Parish, Chad M.; Liu, Wenjun; Liaw, Peter K.; An, Ke

    2016-01-01

    Deformation twinning plays a critical role on improving metals or alloys ductility, especially for hexagonal close-packed materials with low symmetry crystal structure. A rolled Mg alloy was selected as a model system to investigate the extension twinning behaviors and characteristics of parent-twin interactions by nondestructive in situ 3D synchrotron X-ray microbeam diffraction. Besides twinning-detwinning process, the “twinning-like” lattice reorientation process was captured within an individual grain inside a bulk material during the strain reversal. The distributions of parent, twin, and reorientated grains and sub-micron level strain variation across the twin boundary are revealed. A theoretical calculation of the lattice strain confirms that the internal strain distribution in parent and twinned grains correlates with the experimental setup, grain orientation of parent, twin, and surrounding grains, as well as the strain path changes. The study suggests a novel deformation mechanism within the hexagonal close-packed structure that cannot be determined from surface-based characterization methods.

  4. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  5. Genetic and Environmental Effects on Stuttering: A Twin Study from Finland

    Science.gov (United States)

    Rautakoski, Pirkko; Hannus, Therese; Simberg, Susanna; Sandnabba, N. Kenneth; Santtila, Pekka

    2012-01-01

    The present study explored the prevalence of self-reported stuttering in a Finnish twin population and examined the extent to which the variance in liability to stuttering was attributable to genetic and environmental effects. We analyzed data of 1728 Finnish twins, born between 1961 and 1989. The participants were asked to complete a…

  6. Continuing to Build a Community Consensus on the Future of Human Space Flight: Report of the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV)

    Science.gov (United States)

    Thronson, Harley A.; Baker, John; Beaty, David; Carberry, Chris; Craig, Mark; Davis, Richard M.; Drake, Bret G.; Cassady, Joseph; Hays, Lindsay; Hoffman, Stephen J.; hide

    2016-01-01

    To continue to build broadly based consensus on the future of human space exploration, the Fourth Community Workshop on Achievability and Sustainability of Human Exploration of Mars (AM IV), organized by Explore Mars, Inc. and the American Astronautical Society, was held at the Double Tree Inn in Monrovia, CA., December 68, 2016. Approximately 60 invited professionals from the industrial and commercial sectors, academia, and NASA, along with international colleagues, participated in the workshop. These individuals were chosen to be representative of the breadth of interests in astronaut and robotic Mars exploration.

  7. MEDA, The New Instrument for Mars Environment Analysis for the Mars 2020 Mission

    Science.gov (United States)

    Moreno-Alvarez, Jose F.; Pena-Godino, Antonio; Rodriguez-Manfredi, Jose Antonio; Cordoba, Elizabeth; MEDA Team

    2016-08-01

    The Mars 2020 rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Designed to advance high-priority science goals for Mars exploration, the mission will address key questions about the potential for life on Mars. The mission will also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.The Mars Environmental Dynamics Analyzer (MEDA) is an integrated full suite of sensors designed to address the Mars 2020 mission objectives of characterization of dust size and morphology and surface weather measurements.MEDA system consists of one control unit and 10 separated sensor enclosures distributed in different positions along the Mars 2020 rover. MEDA is composed of an ARM-based control computer with its flight software application, two wind sensors including mixed ASICs inside, five air temperature sensors, one sky pointing camera complemented with 16 photo- detectors looking up and around, one thermal infrared sensor using five measurement bands, one relative humidity sensor, one pressure sensor and the harness that interconnects all of them. It is a complex system intended to operate in one of the harshest environments possible, the Mars surface, for many years to come.This will become a short term reality thanks to the combination of a strong international science team driving the science and system requirements working together with a powerful industrial organization to design and build the instrument. The instrument is being built right now, with its Critical Design Review at the end of 2016, and the flight model to be provided in 2018.This paper summarizes the main scientific objective of the MEDA instrument, the links between the Mission and the MEDA science objectives, and the challenging environmental Mars requirements. It will then focus on the engineered definition of the instrument, showing the overall

  8. Simulations of stress-induced twinning and de-twinning: A phase field model

    International Nuclear Information System (INIS)

    Hu Shenyang; Henager, Chuck H.; Chen Longqing

    2010-01-01

    Twinning in certain metals or under certain conditions is a major plastic deformation mode. Here we present a phase field model to describe twin formation and evolution in a polycrystalline fcc metal under loading and unloading. The model assumes that twin nucleation, growth and de-twinning is a process of partial dislocation nucleation and slip on successive habit planes. Stacking fault energies, energy pathways (γ surfaces), critical shear stresses for the formation of stacking faults and dislocation core energies are used to construct the thermodynamic model. The simulation results demonstrate that the model is able to predict the nucleation of twins and partial dislocations, as well as the morphology of the twin nuclei, and to reasonably describe twin growth and interaction. The twin microstructures at grain boundaries are in agreement with experimental observation. It was found that de-twinning occurs during unloading in the simulations, however, a strong dependence of twin structure evolution on loading history was observed.

  9. The Topography of Mars: Understanding the Surface of Mars Through the Mars Orbiter Laser Altimeter

    Science.gov (United States)

    Derby, C. A.; Neumann, G. A.; Sakimoto, S. E.

    2001-12-01

    The Mars Orbiter Laser Altimeter has been orbiting Mars since 1997 and has measured the topography of Mars with a meter of vertical accuracy. This new information has improved our understanding of both the surface and the interior of Mars. The topographic globe and the labeled topographic map of Mars illustrate these new data in a format that can be used in a classroom setting. The map is color shaded to show differences in elevation on Mars, presenting Mars with a different perspective than traditional geological and geographic maps. Through the differences in color, students can see Mars as a three-dimensional surface and will be able to recognize features that are invisible in imagery. The accompanying lesson plans are designed for middle school science students and can be used both to teach information about Mars as a planet and Mars in comparison to Earth, fitting both the solar system unit and the Earth science unit in a middle school curriculum. The lessons are referenced to the National Benchmark standards for students in grades 6-8 and cover topics such as Mars exploration, the Mars Orbiter Laser Altimeter, resolution and powers of 10, gravity, craters, seismic waves and the interior structure of a planet, isostasy, and volcanoes. Each lesson is written in the 5 E format and includes a student content activity and an extension showing current applications of Mars and MOLA data. These activities can be found at http://ltpwww.gsfc.nasa.gov/education/resources.html. Funding for this project was provided by the Maryland Space Grant Consortium and the MOLA Science Team, Goddard Space Flight Center.

  10. Twins and Kindergarten Separation: Divergent Beliefs of Principals, Teachers, Parents, and Twins

    Science.gov (United States)

    Gordon, Lynn Melby

    2015-01-01

    Should principals enforce mandatory separation of twins in kindergarten? Do school separation beliefs of principals differ from those of teachers, parents of twins, and twins themselves? This survey questioned 131 elementary principals, 54 kindergarten teachers, 201 parents of twins, and 112 twins. A majority of principals (71%) believed that…

  11. Twin-twin transfusion syndrome: etiology, severity and rational management

    NARCIS (Netherlands)

    van Gemert, M. J.; Umur, A.; Tijssen, J. G.; Ross, M. G.

    2001-01-01

    The twin-twin transfusion syndrome is a serious complication of monochorionic twin pregnancies. Partly as a result of an inadequate understanding of the pathophysiology of the syndrome, there is a lack of consensus in clinical management. We sought to review the available information on the etiology

  12. The mobility of growth twins synthesized by sputtering: Tailoring the twin thickness

    International Nuclear Information System (INIS)

    Velasco, Leonardo; Hodge, Andrea M.

    2016-01-01

    The current work presents a protean twin thickness contour zone map that illustrates how the nucleation and the mobility of twin boundaries affects the twin thickness of sputtered films. The twin thickness contour zone map can be used as a versatile guide to synthesize fully nanotwinned films with tailored twin thicknesses in materials with a wide range of stacking fault energies. The nucleation and mobility of twin boundaries was studied in four Cu alloys of different compositions (Cu-6wt.%Al, Cu-4wt.%Al, Cu-2wt.%Al, and Cu-10wt.%Ni), having stacking fault energies ranging from 6 mJ/m 2 to 60 mJ/m 2 . The films were synthesized by magnetron sputtering and characterized by transmission electron microscopy, where the twin thickness varied from 2 nm to 35 nm. Our experimental results show that it is possible to control the twin thickness. Three main mechanisms are explained to describe twin nucleation and twin boundary mobility, which are correlated to the interplay of specific sputtering conditions and the deposition temperature.

  13. Conjoined twins: scientific cinema and Pavlovian physiology.

    Science.gov (United States)

    Krementsov, Nikolai

    2015-01-01

    Through the lens of a 1957 documentary film, "Neural and humoral factors in the regulation of bodily functions (research on conjoined twins)," produced by the USSR Academy of Medical Sciences, this essay traces the entwined histories of Soviet physiology, studies of conjoined twins and scientific cinema. It examines the role of Ivan Pavlov and his students, including Leonid Voskresenkii, Dmitrii Fursikov and Petr Anokhin, in the development of "scientific film" as a particular cinematographic genre in Soviet Russia and explores numerous puzzles hidden behind the film's striking visuals. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Red rover: inside the story of robotic space exploration, from genesis to the mars rover curiosity

    CERN Document Server

    Wiens, Roger

    2013-01-01

    In its eerie likeness to Earth, Mars has long captured our imaginations—both as a destination for humankind and as a possible home to extraterrestrial life. It is our twenty-first century New World; its explorers robots, shipped 350 million miles from Earth to uncover the distant planet’s secrets.Its most recent scout is Curiosity—a one-ton, Jeep-sized nuclear-powered space laboratory—which is now roving the Martian surface to determine whether the red planet has ever been physically capable of supporting life. In Red Rover, geochemist Roger Wiens, the principal investigator for the ChemCam laser instrument on the rover and veteran of numerous robotic NASA missions, tells the unlikely story of his involvement in sending sophisticated hardware into space, culminating in the Curiosity rover's amazing journey to Mars.In so doing, Wiens paints the portrait of one of the most exciting scientific stories of our time: the new era of robotic space exploration. Starting with NASA’s introduction of the Discovery...

  15. Mars Gashopper Airplane, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Gas Hopper Airplane, or "gashopper" is a novel concept for propulsion of a robust Mars flight and surface exploration vehicle that utilizes indigenous CO2...

  16. What can in situ ion chromatography offer for Mars exploration?

    Science.gov (United States)

    Shelor, C Phillip; Dasgupta, Purnendu K; Aubrey, Andrew; Davila, Alfonso F; Lee, Michael C; McKay, Christopher P; Liu, Yan; Noell, Aaron C

    2014-07-01

    The successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present. Ion chromatography (IC) is the state-of-the-art technique for soluble ion analysis on Earth and would therefore be the ideal instrument to send to Mars. A flight IC system must necessarily be small, lightweight, low-power, and have low eluent consumption. We demonstrate here a breadboard system that addresses these issues by using capillary IC at low flow rates with an optimized eluent generator and suppressor. A mix of 12 ions known or plausible for the martian soil, including 4 (oxy)chlorine species, has been separated at flow rates ranging from 1 to 10 μL/min, requiring as little as 200 psi at 1.0 μL/min. This allowed the use of pneumatic displacement pumping from a pressurized aluminum eluent reservoir and the elimination of the high-pressure pump entirely (the single heaviest and most energy-intensive component). All ions could be separated and detected effectively from 0.5 to 100 μM, even when millimolar concentrations of perchlorate were present in the same mixtures.

  17. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-09-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  18. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-01-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  19. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  20. Mars Atmosphere Resource Verification INsitu (MARVIN) - In Situ Resource Demonstration for the Mars 2020 Mission

    Science.gov (United States)

    Sanders, Gerald B.; Araghi, Koorosh; Ess, Kim M.; Valencia, Lisa M.; Muscatello, Anthony C.; Calle, Carlos I.; Clark, Larry; Iacomini, Christie

    2014-01-01

    The making of oxygen from resources in the Martian atmosphere, known as In Situ Resource Utilization (ISRU), has the potential to provide substantial benefits for future robotic and human exploration. In particular, the ability to produce oxygen on Mars for use in propulsion, life support, and power systems can provide significant mission benefits such as a reducing launch mass, lander size, and mission and crew risk. To advance ISRU for possible incorporation into future human missions to Mars, NASA proposed including an ISRU instrument on the Mars 2020 rover mission, through an announcement of opportunity (AO). The purpose of the the Mars Atmosphere Resource Verification INsitu or (MARVIN) instrument is to provide the first demonstration on Mars of oxygen production from acquired and stored Martian atmospheric carbon dioxide, as well as take measurements of atmospheric pressure and temperature, and of suspended dust particle sizes and amounts entrained in collected atmosphere gases at different times of the Mars day and year. The hardware performance and environmental data obtained will be critical for future ISRU systems that will reduce the mass of propellants and other consumables launched from Earth for robotic and human exploration, for better understanding of Mars dust and mitigation techniques to improve crew safety, and to help further define Mars global circulation models and better understand the regional atmospheric dynamics on Mars. The technologies selected for MARVIN are also scalable for future robotic sample return and human missions to Mars using ISRU.

  1. Twins and non-twin siblings: different estimates of shared environmental influence in early childhood.

    Science.gov (United States)

    Koeppen-Schomerus, Gesina; Spinath, Frank M; Plomin, Robert

    2003-04-01

    Twin studies typically indicate shared environmental influence for cognitive abilities, especially in early childhood. However, across studies, DZ twin correlations tend to be greater than non-twin sibling correlations, suggesting that twin estimates of shared environment are to some extent specific to twins. We tested this hypothesis in a sample of more than 1800 MZ and 1800 same-sex DZ pairs from the Twins Early Development Study (TEDS), a study of twins born in England and Wales in 1994 and 1995. For this analysis, we obtained comparable data from more than 130 same-sex younger siblings of the twins. Twins and their younger siblings were assessed for language, cognitive abilities and behavior problems by their parents at 2 and 3 years of age. For language and cognitive measures at both 2 and 3 years, but not for behavior problems, estimates of shared environment were more than twice as large for twins as compared to non-twin siblings. We conclude that about half of twin study estimates of shared environment for cognitive abilities in early childhood are specific to twins. Although many possibilities exist for explaining the special shared environment effect for twins, we suggest that cognitive-relevant experiences that are not shared by siblings are shared by twins because they are exactly the same age.

  2. Effect of co-twin gender on neurodevelopmental symptoms: a twin register study.

    Science.gov (United States)

    Eriksson, Jonna Maria; Lundström, Sebastian; Lichtenstein, Paul; Bejerot, Susanne; Eriksson, Elias

    2016-01-01

    Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental disorders thought to have both genetic and environmental causes. It has been hypothesized that exposure to elevated levels of prenatal testosterone is associated with elevated traits of ASD and ADHD. Assuming that testosterone levels from a dizygotic male twin fetus may lead to enhanced testosterone exposure of its co-twins, we aimed to test the prenatal testosterone hypothesis by comparing same-sex with opposite-sex dizygotic twins with respect to neurodevelopmental symptoms. Neuropsychiatric traits were assessed in a population-based twin cohort from the Child and Adolescent Twin Study in Sweden (CATSS). Parental interviews were conducted for 16,312 dizygotic twins, 9 and 12 years old, with the Autism-Tics, ADHD, and other Comorbidities inventory (A-TAC). Girls with a female co-twin had an increased risk of reaching the cut-off score for ADHD compared with girls with a male co-twin. Both boys and girls with a female co-twin displayed a larger number of traits related to attention deficit and repetitive and stereotyped behaviors than those with a male twin. In girls, this also extended to social interaction and the combined measures for ASD and ADHD, however, with small effect sizes. Our results are reverse to what would have been expected from the prenatal testosterone hypothesis but consistent with a previous study of ASD and ADHD traits in dizygotic twins. The seemingly protective effect for girls of having a twin brother may be an effect of parent report bias, but may also be an unexpected effect of sharing the intrauterine environment with a male co-twin.

  3. Mars 2024/2026 Pathfinder Mission: Mars Architectures, Systems, & Technologies for Exploration and Resources

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor...

  4. Attractiveness Differences Between Twins Predicts Evaluations of Self and Co-Twin

    Science.gov (United States)

    Principe, Connor P.; Rosen, Lisa H.; Taylor-Partridge, Teresa; Langlois, Judith H.

    2012-01-01

    One of the most consistent findings in psychology shows that people prefer and make positive attributions about attractive compared with unattractive people. The goal of the current study was to determine the power of attractiveness effects by testing whether these social judgments are made where attractiveness differences are smallest: between twins. Differences in facial attractiveness predicted twins’ evaluations of self and their co-twin (n = 158; 54 male). In twin pairs, the more attractive twin judged their less attractive sibling as less physically attractive, athletic, socially competent, and emotionally stable. The less attractive twin did the reverse. Given that even negligible differences in facial attractiveness predicted self and co-twin attitudes, these results provide the strongest test yet of appearance-based stereotypes. PMID:23467329

  5. Photovoltaic Power for Mars Exploration

    Science.gov (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1997-01-01

    Mars is a challenging environment for the use of solar power. The implications of the low temperatures and low light intensity, solar spectrum modified by dust and changing with time of day and year, indirect sunlight, dust storms, deposited dust, wind, and corrosive peroxide-rich soil are discussed with respect to potential photovoltaic power systems. The power systems addressed include a solar-powered rover vehicle and a human base. High transportation costs dictate high efficiency solar cells or alternatively, a 'thin film' solar cell deposited on a lightweight plastic or thin metal foil.

  6. Genetic and experiential influences on behavior: Twins reunited at seventy-eight years

    Science.gov (United States)

    Segal, Nancy L.; Cortez, Franchesca A.; Zettel-Watson, Laura; Cherry, Barbara J.; Mechanic, Mindy; Munson, Jaimee E.; Velázquez, Jaime M.A.; Reed, Brandon

    2015-01-01

    Twins living in different countries offer opportunities to explore associations between observed differences and experiential effects. This report compared the life histories, cognitive abilities, personality traits, psychomotor skills, medical characteristics, job satisfaction, social support and social relations of dizygotic (DZ) female twins reunited at 78, the world's longest separated set. The twins’ advanced age also enabled a study of how co-twin differences in aging may be associated with current behavioral and social differences. Consistent with previous studies, these dizygotic reared apart (DZA) twins showed discordance across some, but not all, traits. Their different rearing situations and life histories may explain current differences in their responses to meeting their twin. This case highlights the importance of both genetic and rearing factors on behavior, but does not allow firm conclusions regarding the extent to which these sources explain individual developmental differences. However, such data contribute to the growing number of cross-culturally separated twins, generating novel hypotheses that may be assessed using larger samples. PMID:26366029

  7. Cosmology in Mirror Twin Higgs and neutrino masses

    Science.gov (United States)

    Chacko, Zackaria; Craig, Nathaniel; Fox, Patrick J.; Harnik, Roni

    2017-07-01

    We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In these νMTH models, the right-handed neutrinos leave the thermal bath while still relativistic. As the universe expands, these particles eventually become nonrelativistic, and come to dominate the energy density of the universe before decaying. Decays to standard model states are preferred, with the result that the visible sector is left at a higher temperature than the twin sector. Consequently the contribution of the twin sector to the radiation density in the early universe is suppressed, allowing the current bounds on this scenario to be satisfied. However, the energy density in twin radiation remains large enough to be discovered in future cosmic microwave background experiments. In addition, the twin neutrinos are significantly heavier than their standard model counterparts, resulting in a sizable contribution to the overall mass density in neutrinos that can be detected in upcoming experiments designed to probe the large scale structure of the universe.

  8. Past, present, and future life on Mars

    Science.gov (United States)

    McKay, C. P.

    1998-01-01

    Although the Viking results indicated that the surface of Mars is dry and lifeless, there is direct geomorphological evidence that Mars had large amounts of liquid water on its surface in the past. From a biological perspective the existence of liquid water, by itself, motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. The Mars environment 3.5 to 4.0 Gyr ago was comparable to that on the Earth at this time in that both contained liquid water. Life had originated on Earth and reached a fair degree of biological sophistication by 3.5 Gyr ago. To determine if life similarly arose on Mars may require extensive robotic exploration and ultimately human exploration. Intensive exploration of Mars will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research station can obtain its life support requirements directly from the martian environment enabling a high degree of self-sufficiency. In the longer term, it is possible that in the future we might restore a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history.

  9. Flashline Mars Arctic Research Station (FMARS) 2009 Crew Perspectives

    Science.gov (United States)

    Ferrone, Kristine; Cusack, Stacy L.; Garvin, Christy; Kramer, Walter Vernon; Palaia, Joseph E., IV; Shiro, Brian

    2010-01-01

    A crew of six "astronauts" inhabited the Mars Society s Flashline Mars Arctic Research Station (FMARS) for the month of July 2009, conducting a simulated Mars exploration mission. In addition to the various technical achievements during the mission, the crew learned a vast amount about themselves and about human factors relevant to a future mission to Mars. Their experiences, detailed in their own words, show the passion of those with strong commitment to space exploration and detail the human experiences for space explorers including separation from loved ones, interpersonal conflict, dietary considerations, and the exhilaration of surmounting difficult challenges.

  10. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    Science.gov (United States)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  11. Monochorionic twin pregnancies

    NARCIS (Netherlands)

    Hack, K.E.A.

    2008-01-01

    Following widespread application of assisted reproductive technology modalities and the increased age of motherhood, the incidence of twin gestations has increased markedly. Twins are either monozygotic or dizygotic. Dizygotic (i.e. fraternal) twins result from the fertilization of two different

  12. Testing the scalar sector of the twin Higgs model at colliders

    Science.gov (United States)

    Chacko, Zackaria; Kilic, Can; Najjari, Saereh; Verhaaren, Christopher B.

    2018-03-01

    We consider mirror twin Higgs models in which the breaking of the global symmetry is realized linearly. In this scenario, the radial mode in the Higgs potential is present in the spectrum and constitutes a second portal between the twin and SM sectors. We show that a study of the properties of this particle at colliders, when combined with precision measurements of the light Higgs, can be used to overdetermine the form of the scalar potential, thereby confirming that it possesses an enhanced global symmetry as dictated by the twin Higgs mechanism. We find that, although the reach of the LHC for this state is limited, future linear colliders will be able to explore a significant part of the preferred parameter space, allowing the possibility of directly testing the twin Higgs framework.

  13. Estimating twin concordance for bivariate competing risks twin data

    DEFF Research Database (Denmark)

    Scheike, Thomas; Holst, Klaus K.; Hjelmborg, Jacob B.

    2014-01-01

    For twin time-to-event data, we consider different concordance probabilities, such as the casewise concordance that are routinely computed as a measure of the lifetime dependence/correlation for specific diseases. The concordance probability here is the probability that both twins have experience...... events with the competing risk death. We thus aim to quantify the degree of dependence through the casewise concordance function and show a significant genetic component...... the event of interest. Under the assumption that both twins are censored at the same time, we show how to estimate this probability in the presence of right censoring, and as a consequence, we can then estimate the casewise twin concordance. In addition, we can model the magnitude of within pair dependence...... over time, and covariates may be further influential on the marginal risk and dependence structure. We establish the estimators large sample properties and suggest various tests, for example, for inferring familial influence. The method is demonstrated and motivated by specific twin data on cancer...

  14. Modeling acardiac twin pregnancies

    NARCIS (Netherlands)

    de Groot, Rosa; van den Wijngaard, Jeroen P. H. M.; Umur, Asli; Beek, Johan F.; Nikkels, Peter G. J.; van Gemert, Martin J. C.

    2007-01-01

    Acardiac twin pregnancies are a rare but severe complication of monochorionic twinning, where the acardiac twin lacks cardiac function but nevertheless grows during pregnancy because it is perfused by the pump twin through a set of placental arterioarterial and venovenous anastomoses. Because the

  15. One-dimensional pulse-flow modeling of a twin-scroll turbine

    International Nuclear Information System (INIS)

    Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.

    2016-01-01

    This paper presents a revised one-dimensional (1D) pulse flow modeling of twin-scroll turbocharger turbine under pulse flow operating conditions. The proposed methodology in this paper provides further consideration for the turbine partial admission performance during model characterization. This gives rise to significant improvement on the model pulse flow prediction quality compared to the previous model. The results show that a twin-scroll turbine is not operating at full admission throughout the in-phase pulse flow conditions. Instead, they are operating at unequal admission state due to disparity in the magnitude of turbine inlet flow. On the other hand, during out-of-phase pulse flow, a twin-scroll turbine is working at partial admission state for majority of the pulse cycle. An amended mathematical correlation in calculating the twin-scroll turbine partial admission characteristics is also presented in the paper. The impact of its accuracy on the pulse flow model prediction is explored. - Highlights: • Paper presents a 1D modeling for twin-scroll turbine under pulsating flow. • Predicted pulse pressure propagation is in good agreement with experimental data. • A methodology is proposed to consider the turbine partial admission performance. • Prediction shows twin-scroll turbine operates at unequal admission during in-phase flow. • During out-of-phase flow a twin-scroll turbine mainly operates at partial admission.

  16. Mars Surface Mobility Leading to Sustainable Exploration

    Science.gov (United States)

    Linne, Diane L.; Barsi, Stephen J.; Sjauw En Wa, Waldy K.; Landis, Geoffrey A.

    2012-01-01

    A Mars rocket-propelled hopper concept was evaluated for feasibility through analysis and experiments. The approach set forth in this paper is to combine the use of in-situ resources in a new Mars mobility concept that will greatly enhance the science return while providing the first opportunity towards reducing the risk of incorporating ISRU into the critical path for the highly coveted, but currently unaffordable, sample return mission. Experimental tests were performed on a high-pressure, self-throttling gaseous oxygen/methane propulsion system to simulate a two-burn-with-coast hop profile. Analysis of the trajectory, production plant requirements, and vehicle mass indicates that a small hopper vehicle could hop 2 km every 30 days with an initial mass of less than 60 kg. A larger vehicle can hop 15 km every 30 to 60 days with an initial mass of 300 to 430 kg.

  17. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  18. Mars Surface Environmental Issues

    Science.gov (United States)

    Charles, John

    2002-01-01

    Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the

  19. Mars Sample Return Architecture Overview

    Science.gov (United States)

    Edwards, C. D.; Vijendran, S.

    2018-04-01

    NASA and ESA are exploring potential concepts for a Sample Retrieval Lander and Earth Return Orbiter that could return samples planned to be collected and cached by the Mars 2020 rover mission. We provide an overview of the Mars Sample Return architecture.

  20. Personality and birth order in monozygotic twins adopted apart: a test of Sulloway's theory; Research Reviews: twin births and cancer risk in mothers, male sexual dysfunction, twin study of ultimatum game behavior; Human Interest: 'The Land of Twins', twin-like reunion-I, twin-like reunion-II.

    Science.gov (United States)

    Segal, Nancy L

    2008-02-01

    A brief overview of Sulloway's (1996) theory of birth order and personality is presented. A reared apart twin approach for testing his personality findings regarding openness to experience and conscientiousness in first borns and later borns is described. This is followed by summaries of three recent twin studies. The topics include cancer risk in mother of twins, sexual dysfunction in males and responder behavior during ultimatum games. This article concludes with a discussion of twinning rates and rituals among the Yoruba of western Nigeria, and descriptions of two unusual reunions between siblings and twins.

  1. Applications of Intelligent Tutoring Systems to Human-Robotic Exploration of Mars

    Science.gov (United States)

    Clancey, William J.

    2004-01-01

    Space missions with small crews extending over several years with time-delay preventing normal conversations with people on earth will raise many challenges for training. Of special interest are possible three-year missions to Mars, requiring refresher instruction and learning new skills based on unexpected problems with machines and environmental conditions. For example, the crew will be required to monitor and repair more complex life support systems for air and water recycling than we even know how to build today. Highly educated astronauts, often with several doctorate degrees, require a very different mode of interaction than we have developed for school children or even typical college students. Explanation methods may need to differ-using analogies and techniques from different domains-depending on whether the astronaut is an astrophysicist, a pilot, or a geologist.Virtual reality (e.g., for Hubble repair missions) and "integrated" simulations (involving role-playing and emphasizing failure scenarios) are the most common advanced forms of instruction used in space flight today. The emphasis is on collaborative, embodied interaction with the same workstations and tools used in practice (e.g., a cockpit simulator). Otherwise, computerized instructional technology used by NASA is not model-based or tutorial in nature. This discussion will review some of the key instructional methods used at NASA over the past two decades and consider why ITS methods have not been exploited. Some of the problems and opportunities for training for Mars missions are examined, including how using robots in exploration activities will help but raise new training problems. These ideas will be illustrated with examples from the BrahmsVE system in which a browser- based virtual reality display with avatars allows interacting with a distributed multiagent system, in which agents can be people, robots, or software programs. Using BrahmsVE may provide a way for astronauts to interact with

  2. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  3. The nature of pseudo-twinning modes on the basis of a twin classification scheme

    International Nuclear Information System (INIS)

    Singh, Jung B.; Sundararaman, M.; Krishnan, M.

    2011-01-01

    Pseudo-twins can form in ordered structures under high stress conditions. These twins are defined by lattice sites that are at twin positions but are incorrectly occupied by different species of atoms. The present note discusses if it is possible to further classify pseudo-twins into different modes based on the nature of associated twinning elements.

  4. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    Science.gov (United States)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in

  5. Examining Mars with SPICE

    Science.gov (United States)

    Acton, Charles H.; Bachman, Nathaniel J.; Bytof, Jeff A.; Semenov, Boris V.; Taber, William; Turner, F. Scott; Wright, Edward D.

    1999-01-01

    The International Mars Conference highlights the wealth of scientific data now and soon to be acquired from an international armada of Mars-bound robotic spacecraft. Underlying the planning and interpretation of these scientific observations around and upon Mars are ancillary data and associated software needed to deal with trajectories or locations, instrument pointing, timing and Mars cartographic models. The NASA planetary community has adopted the SPICE system of ancillary data standards and allied tools to fill the need for consistent, reliable access to these basic data and a near limitless range of derived parameters. After substantial rapid growth in its formative years, the SPICE system continues to evolve today to meet new needs and improve ease of use. Adaptations to handle landers and rovers were prototyped on the Mars pathfinder mission and will next be used on Mars '01-'05. Incorporation of new methods to readily handle non-inertial reference frames has vastly extended the capability and simplified many computations. A translation of the SPICE Toolkit software suite to the C language has just been announced. To further support cartographic calculations associated with Mars exploration the SPICE developers at JPL have recently been asked by NASA to work with cartographers to develop standards and allied software for storing and accessing control net and shape model data sets; these will be highly integrated with existing SPICE components. NASA specifically supports the widest possible utilization of SPICE capabilities throughout the international space science community. With NASA backing the Russian Space Agency and Russian Academy of Science adopted the SPICE standards for the Mars 96 mission. The SPICE ephemeris component will shortly become the international standard for agencies using the Deep Space Network. U.S. and European scientists hope that ESA will employ SPICE standards on the Mars Express mission. SPICE is an open set of standards, and

  6. A Subjective Assessment of Alternative Mission Architecture Operations Concepts for the Human Exploration of Mars at NASA Using a Three-Dimensional Multi-Criteria Decision Making Model

    Science.gov (United States)

    Tavana, Madjid

    2003-01-01

    The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.

  7. The key to Mars, Titan and beyond?

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1990-01-01

    This paper discusses the use of nuclear rockets using indigenous Mars propellants for future missions to Mars and Titan, which would drastically reduce the mass and cost of the mission while increasing its capability. Special attention is given to the CO2-powered nuclear rocket using indigenous Martian fuel (NIMF) vehicle for hopping around on Mars. If water is available on Mars, it could make a NIMF propellant yielding an exhaust velocity of 3.4 km/sec, good enough to allow a piloted NIMF spacecraft to ascent from the surface of Mars and propel itself directly to LEO; if water is available on Phobos, a NIMF spacecraft could travel to earth orbit and then back to Phobos or Mars without any additional propellant from earth. One of the many exciting missions beyond Mars that will be made possible by NIMF technology is the exploration of Saturn's moon Titan. A small automated NIMF Titan explorer, with foldout wings and a NERVA (Nuclear Engine for Rocket Vehicle Applications) engine, is proposed

  8. Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator

    Science.gov (United States)

    Jandura, Louise

    2004-01-01

    In January 2004, two Mars Exploration Rover spacecraft arrived at Mars. Each safely delivered an identical rover to the Martian surface in a tetrahedral lander encased in airbags. Upon landing, the airbags deflated and three Lander Petal Actuators opened the three deployable Lander side petals enabling the rover to exit the Lander. Approximately nine weeks prior to the scheduled launch of the first spacecraft, one of these mission-critical Lander Petal Actuators exhibited a brake stuck-open failure during its final flight stow at Kennedy Space Center. Residual magnetism was the definitive conclusion from the failure investigation. Although residual magnetism was recognized as an issue in the design, the lack of an appropriately specified lower bound on brake drop-out voltage inhibited the discovery of this problem earlier in the program. In addition, the brakes had more unit-to-unit variation in drop-out voltage than expected, likely due to a larger than expected variation in the magnetic properties of the 15-5 PH stainless steel brake plates. Failure analysis and subsequent rework of two other Lander Petal Actuators with marginal brakes was completed in three weeks, causing no impact to the launch date.

  9. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    Science.gov (United States)

    Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  10. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    Science.gov (United States)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the

  11. Impact of Utilizing Photos and Deimos as Waypoints for Mars Human Surface Missions

    Science.gov (United States)

    Cianciolo, Alicia D.; Brown, Kendall

    2015-01-01

    Phobos and Deimos, the moons of Mars, are interesting exploration destinations that offer extensibility of the Asteroid Redirect Mission (ARM) technologies. Solar Electric Propulsion (SEP), asteroid rendezvous and docking, and surface operations can be used to land on and explore the moons of Mars. The close Mars vicinity of Phobos and Deimos warrant examining them as waypoints, or intermediate staging orbits, for Mars surface missions. This paper outlines the analysis performed to determine the mass impact of using the moons of Mars both as an intermediate staging point for exploration as well as for in-situ recourse utilization, namely propellant, to determine if the moons are viable options to include in the broader Mars surface exploration architecture.

  12. Twin-to-twin transfusion syndrome : from placental anastomoses to long-term outcome

    NARCIS (Netherlands)

    Lopriore, Enrico

    2006-01-01

    Twin-to-twin transfusion syndrome (TTTS) is a severe complication of monochorionic twin pregnancies associated with high perinatal mortality and morbidity rates. Placental vascular anastomoses, almost invariably present in monochorionic placentas, are the essential anatomical substrate for the

  13. Twin RSA

    OpenAIRE

    Lenstra, Arjen K.; Weger, De; Benjamin, M. M.

    2005-01-01

    We introduce Twin RSA, pairs of RSA moduli (n, n+ 2), and formulate several questions related to it. Our main questions are: is Twin RSA secure, and what is it good for? © Springer-Verlag Berlin Heidelberg 2005.

  14. Examining the provisional guidelines for weight gain in twin pregnancies: a retrospective cohort study.

    Science.gov (United States)

    Lutsiv, Olha; Hulman, Adam; Woolcott, Christy; Beyene, Joseph; Giglia, Lucy; Armson, B Anthony; Dodds, Linda; Neupane, Binod; McDonald, Sarah D

    2017-09-29

    Weight gain during pregnancy has an important impact on maternal and neonatal health. Unlike the Institute of Medicine (IOM) recommendations for weight gain in singleton pregnancies, those for twin gestations are termed "provisional", as they are based on limited data. The objectives of this study were to determine the neonatal and maternal outcomes associated with gaining weight below, within and above the IOM provisional guidelines on gestational weight gain in twin pregnancies, and additionally, to explore ranges of gestational weight gain among women who delivered twins at the recommended gestational age and birth weight, and those who did not. A retrospective cohort study of women who gave birth to twins at ≥20 weeks gestation, with a birth weight ≥ 500 g was conducted in Nova Scotia, Canada (2003-2014). Our primary outcome of interest was small for gestational age (gain were used to categorize women as gaining below, within, or above guidelines. We performed traditional regression analyses for maternal outcomes, and to account for the correlated nature of the neonatal outcomes in twins, we used generalized estimating equations (GEE). A total of 1482 twins and 741 mothers were included, of whom 27%, 43%, and 30% gained below, within, and above guidelines, respectively. The incidence of small for gestational age in these three groups was 30%, 21%, and 20%, respectively, and relative to gaining within guidelines, the adjusted odds ratios were 1.44 (95% CI 1.01-2.06) for gaining below and 0.92 (95% CI 0.62-1.36) for gaining above. The gestational weight gain in women who delivered twins at 37-42 weeks with average birth weight ≥ 2500 g and those who delivered twins outside of the recommend ranges were comparable to each other and the IOM recommendations. While gestational weight gain below guidelines for twins was associated with some adverse neonatal outcomes, additional research exploring alternate ranges of gestational weight gain in twin

  15. ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate.

    Science.gov (United States)

    Sun, Xuefei; Qiu, Xiaoqing; Li, Liping; Li, Guangshe

    2008-05-19

    ZnO twin-cones, a new member to the ZnO family, were prepared directly by a solvothermal method using a mixed solution of zinc nitrate and ethanol. The reaction and growth mechanisms of ZnO twin-cones were investigated by X-ray diffraction, UV-visible spectra, infrared and ion trap mass spectra, and transmission electron microscopy. All as-prepared ZnO cones consisted of tiny single crystals with lengths of several micrometers. With prolonging of the reaction time from 1.5 h to 7 days, the twin-cone shape did not change at all, while the lattice parameters increased slightly and the emission peak of photoluminescence shifted from the green region to the near orange region. ZnO twin-cones are also explored as an additive to promote the thermal decomposition of ammonium perchlorate. The variations of photoluminescence spectra and catalytic roles in ammonium perchlorate decomposition were discussed in terms of the defect structure of ZnO twin-cones.

  16. Noctis Landing: A Proposed Landing Site/Exploration Zone for Human Missions to the Surface of Mars

    Science.gov (United States)

    Lee, Pascal; Acedillo, Shannen; Braham, Stephen; Brown, Adrian; Elphic, Richard; Fong, Terry; Glass, Brian; Hoftun, Christopher; Johansen, Brage W.; Lorber, Kira; hide

    2015-01-01

    ) offer many such outcrop options. -­- Identifiable stratigraphic contacts and cross-cutting relationships from which relative ages can be determined. In place and collapsed canyon walls in NL, TC, and IC offer such opportunities. -­- Other types of ROIs include access points to surrounding plateau top areas for longer term regional exploration. A key attribute of the proposed Noctic Landing site is its strategic location to allow the shortest possible surface excusions to Tharsis and Valles Marineris (VM). VM is the feature and region on Mars that exposes the longest record of Mars' geology and evolution through time. Tharsis is the region of Mars that has experienced the longest and most extensive volcanic history, and might still be volcanically active. Some of the youngest lava flows on Mars have been identified on the western flanks of the Tharsis Bulge, i.e., within driving range of future longrange (500 - 1000 km) pressurized rover traverses. The proposed site also contains ROIs that offer the following Resources (incl. Civil Engineering) characteristics: -­- Access to raw material that exhibits the potential to (1) be used as feedstock for water-generating in situ resource utilization (ISRU) processes and (2) yield significant quantities (greater than 100 MT) of water. The raw material is likely in the form of hydrated minerals, and possibly ice/regolith mix. The top of the raw material deposit is at the surface. -­- Access to a region where infrastructure can be emplaced or constructed. This region is less than 5 km from the LS and contains flat, stable terrain. The region exhibits evidence for an abundant source of loose regolith. Several deep pits in the area combined with the availability of sand suggests that some natural terrain features can be adapted for construction purposes. -­- Access to raw material that exhibits the potential to be used as metal feedstock for ISRU and construction purposes. Iron and sulfur-rich mineral surface deposits have been

  17. Austere Human Missions to Mars

    Science.gov (United States)

    Price, Hoppy; Hawkins, Alisa M.; Tadcliffe, Torrey O.

    2009-01-01

    The Design Reference Architecture 5 (DRA 5) is the most recent concept developed by NASA to send humans to Mars in the 2030 time frame using Constellation Program elements. DRA 5 is optimized to meet a specific set of requirements that would provide for a robust exploration program to deliver a new six-person crew at each biennial Mars opportunity and provide for power and infrastructure to maintain a highly capable continuing human presence on Mars. This paper examines an alternate architecture that is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. It is recognized that a mission set using this approach would not meet all the current Constellation Mars mission requirements; however, this 'austere' architecture may represent a minimum mission set that would be acceptable from a science and exploration standpoint. The austere approach is driven by a philosophy of minimizing high risk or high cost technology development and maximizing development and production commonality in order to achieve a program that could be sustained in a flat-funded budget environment. Key features that would enable a lower technology implementation are as follows: using a blunt-body entry vehicle having no deployable decelerators, utilizing aerobraking rather than aerocapture for placing the crewed element into low Mars orbit, avoiding the use of liquid hydrogen with its low temperature and large volume issues, using standard bipropellant propulsion for the landers and ascent vehicle, and using radioisotope surface power systems rather than a nuclear reactor or large area deployable solar arrays. Flat funding within the expected NASA budget for a sustained program could be facilitated by alternating cargo and crew launches for the biennial Mars opportunities. This would result in two assembled vehicles leaving Earth orbit for Mars per Mars opportunity. The first opportunity would send two cargo landers to the Mars surface to

  18. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    Science.gov (United States)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar

  19. Earth – Mars Similarity Criteria for Martian Vehicles

    Directory of Open Access Journals (Sweden)

    Octavian TRIFU

    2010-09-01

    Full Text Available In order to select the most efficient kind of a martian exploring vehicle, the similarity criteria are deduced from the equilibrium movement in the terrestrial and martian conditions. Different invariants have been obtained for the existing (entry capsules, parachutes and rovers and potential martian exploring vehicles (lighter-than-air vehicle, airplane, helicopter and Mars Jumper. These similarity criteria, as non dimensional numbers, allow to quickly compare if such a kind of vehicles can operate in the martian environment, the movement performances, the necessary geometrical dimensions and the power consumption. Following this way of study it was concluded what vehicle is most suitable for the near soil Mars exploration. “Mars Rover” has less power consumption on Mars, but due to the rugged terrain the performances are weak. A vacuumed rigid airship is possible to fly with high performances and endurance on Mars, versus the impossibility of such a machine on the Earth. Due to very low density and the low Reynolds numbers in the Mars atmosphere, the power consumption for the martian airplane or helicopter, is substantial higher. The most efficient vehicle for the Mars exploration it seems to be a machine using the in-situ non-chemical propellants: the 95% CO2 atmosphere and the weak solar radiation. A small compressor, electrically driven by photovoltaics, compresses the gas in a storage tank, in time. If the gas is expanded through a nozzle, sufficient lift and control forces are obtained for a VTOL flight of kilometers over the martian soil, in comparison with tens of meters of the actual Mars rovers.

  20. The Brazilian Twin Registry.

    Science.gov (United States)

    Ferreira, Paulo H; Oliveira, Vinicius C; Junqueira, Daniela R; Cisneros, Lígia C; Ferreira, Lucas C; Murphy, Kate; Ordoñana, Juan R; Hopper, John L; Teixeira-Salmela, Luci F

    2016-12-01

    The Brazilian Twin Registry (BTR) was established in 2013 and has impelled twin research in South America. The main aim of the initiative was to create a resource that would be accessible to the Brazilian scientific community as well as international researchers interested in the investigation of the contribution of genetic and environmental factors in the development of common diseases, phenotypes, and human behavior traits. The BTR is a joint effort between academic and governmental institutions from Brazil and Australia. The collaboration includes the Federal University of Minas Gerais (UFMG) in Brazil, the University of Sydney and University of Melbourne in Australia, the Australian Twin Registry, as well as the research foundations CNPq and CAPES in Brazil. The BTR is a member of the International Network of Twin Registries. Recruitment strategies used to register twins have been through participation in a longitudinal study investigating genetic and environmental factors for low back pain occurrence, and from a variety of sources including media campaigns and social networking. Currently, 291 twins are registered in the BTR, with data on demographics, zygosity, anthropometrics, and health history having been collected from 151 twins using a standardized self-reported questionnaire. Future BTR plans include the registration of thousands of Brazilian twins identified from different sources and collaborate nationally and internationally with other research groups interested on twin studies.

  1. Enumeration of Mars years and seasons since the beginning of telescopic exploration

    Science.gov (United States)

    Piqueux, Sylvain; Byrne, Shane; Titus, Timothy N.; Hansen, Candice J.; Kieffer, Hugh H.

    2015-01-01

    A clarification for the enumeration of Mars Years prior to 1955 is presented, along with a table providing the Julian dates associated with Ls = 0° for Mars Years -183 (beginning of the telescopic study of Mars) to 100. A practical algorithm for computing Ls as a function of the Julian Date is provided. No new science results are presented

  2. Twin Loss: Implications for Counselors Working with Surviving Twins.(practice & Theory)

    Science.gov (United States)

    Withrow, Rebecca; Schwiebert, Valerie L.

    2005-01-01

    Multiple births are becoming increasingly prevalent due to the use of fertility drugs and women choosing to wait until later life to conceive. With the growth in the twin population, little research has been done to investigate the effects on the grief process when 1 twin dies. Counselors must understand the unique experience of twins to formulate…

  3. Solar and wind exergy potentials for Mars

    International Nuclear Information System (INIS)

    Delgado-Bonal, Alfonso; Martín-Torres, F. Javier; Vázquez-Martín, Sandra; Zorzano, María-Paz

    2016-01-01

    The energy requirements of the planetary exploration spacecrafts constrain the lifetime of the missions, their mobility and capabilities, and the number of instruments onboard. They are limiting factors in planetary exploration. Several missions to the surface of Mars have proven the feasibility and success of solar panels as energy source. The analysis of the exergy efficiency of the solar radiation has been carried out successfully on Earth, however, to date, there is not an extensive research regarding the thermodynamic exergy efficiency of in-situ renewable energy sources on Mars. In this paper, we analyse the obtainable energy (exergy) from solar radiation under Martian conditions. For this analysis we have used the surface environmental variables on Mars measured in-situ by the Rover Environmental Monitoring Station onboard the Curiosity rover and from satellite by the Thermal Emission Spectrometer instrument onboard the Mars Global Surveyor satellite mission. We evaluate the exergy efficiency from solar radiation on a global spatial scale using orbital data for a Martian year; and in a one single location in Mars (the Gale crater) but with an appreciable temporal resolution (1 h). Also, we analyse the wind energy as an alternative source of energy for Mars exploration and compare the results with those obtained on Earth. We study the viability of solar and wind energy station for the future exploration of Mars, showing that a small square solar cell of 0.30 m length could maintain a meteorological station on Mars. We conclude that the low density of the atmosphere of Mars is responsible of the low thermal exergy efficiency of solar panels. It also makes the use of wind energy uneffective. Finally, we provide insights for the development of new solar cells on Mars. - Highlights: • We analyse the exergy of solar radiation under Martian environment • Real data from in-situ instruments is used to determine the maximum efficiency of radiation • Wind

  4. Exploration of the Habitability of Mars with the SAM Suite Investigation on the 2009 Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.

    2008-01-01

    The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.

  5. NASA Mars 2020 Rover Mission: New Frontiers in Science

    Science.gov (United States)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  6. Mimicking Mars: a vacuum simulation chamber for testing environmental instrumentation for Mars exploration.

    Science.gov (United States)

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2014-03-01

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10(-6) mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

  7. Needle twins and right-angled twins in minerals: comparison between experiment and theory

    Science.gov (United States)

    Salje, E.K.H.; Buckley, A.; Van Tendeloo, G.; Ishibashi, Y.; Nord, G.L.

    1998-01-01

    Transformation twinning in minerals forms isolated twin walls, intesecting walls with corner junctions, and wedge-shaped twins as elements of hierarchical patterns. When cut perpendicular to the twin walls, the twins have characteristic shapes, right-angled and needle-shaped wall traces, which can be observed by transmission electron microscopy or by optical microscopy. Theoretical geometries of wall shapes recently derived for strain-related systems should hold for most displacive and order-disorder type phase transitions: 1) right-angled twins show curved junctions; 2) needle-shaped twins contain flat wall segments near the needle tip if the elastic behaviour of the mineral is dominated by its anisotroyp; 3) additional bending forces and pinning effects lead to curved walls near the junction that make the needle tip appear more blunt. Bent right-angled twins were analyzed in Gd2(MoO4)3. Linear needle tips were found in WO3, [N(CH3)4]2.ZnBr4 CrAl, BiVO4, GdBa2Cu3O7, and PbZrO. Parabolic tips occur in K2Ba(NO2)4, and GeTe whereas exponential curvatures appear in BaTiO3, KSCN, Pb3(PO4)2, CaTiO3, alkali feldspars, YBa2Cu3O7, and MnAl. The size and shape of the twin microstructure relates to its formation during the phase transition and the subsequent annealing history. The mobility of the twin walls after formation depends not only on the thermal activation but also on the structure of the wall, which may be pinned to impurities on a favorable structural site. Depinnign energies are often large compared with thermal energies for diffusion. This leads to kinetic time scales for twin coarsening that are comparable to geological time scales. Therefore, transformation twins that exhibit needle domains not only indicate that the mineral underwent a structural phase transition but also contain information about its subsequent geological history.

  8. From Mars to Media: The Phoenix Mars Mission and the Challenges of Real-Time, Multimedia Science Communication and Public Education

    Science.gov (United States)

    Buxner, S.; Bitter, C.

    2008-12-01

    Although the Mars Exploration Rovers, Mars Reconnaissance Orbiter, and Mars Odyssey Missions set the standard for science communication and public education about Mars, the Phoenix Mission was presented with robust new communication challenges and opportunities. The new frontier includes Web 2.0, international forums, internal and external blogs, social networking sites, as well as the traditional media and education outlets for communicating science and information. We will explore the highlights and difficulties of managing the 'message from Mars' in our current multimedia saturated world while balancing authentic science discoveries, public expectations, and communication demands. Our goal is to create a more science savvy public and a more communication oriented science community for the future. The key issues are helping the public and our scientists distinguish between information and knowledge and managing the content that connects the two.

  9. Advances in Distributed Operations and Mission Activity Planning for Mars Surface Exploration

    Science.gov (United States)

    Fox, Jason M.; Norris, Jeffrey S.; Powell, Mark W.; Rabe, Kenneth J.; Shams, Khawaja

    2006-01-01

    A centralized mission activity planning system for any long-term mission, such as the Mars Exploration Rover Mission (MER), is completely infeasible due to budget and geographic constraints. A distributed operations system is key to addressing these constraints; therefore, future system and software engineers must focus on the problem of how to provide a secure, reliable, and distributed mission activity planning system. We will explain how Maestro, the next generation mission activity planning system, with its heavy emphasis on portability and distributed operations has been able to meet these design challenges. MER has been an excellent proving ground for Maestro's new approach to distributed operations. The backend that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  10. Psychiatric outcomes of bullying victimization: a study of discordant monozygotic twins.

    Science.gov (United States)

    Silberg, J L; Copeland, W; Linker, J; Moore, A A; Roberson-Nay, R; York, T P

    2016-07-01

    Bullying victimization in childhood is associated with a broad array of serious mental health disturbances, including anxiety, depression, and suicidal ideation and behavior. The key goal of this study was to evaluate whether bullying victimization is a true environmental risk factor for psychiatric disturbance using data from 145 bully-discordant monozygotic (MZ) juvenile twin pairs from the Virginia Twin Study of Adolescent Behavioral Development (VTSABD) and their follow-up into young adulthood. Since MZ twins share an identical genotype and familial environment, a higher rate of psychiatric disturbance in a bullied MZ twin compared to their non-bullied MZ co-twin would be evidence of an environmental impact of bullying victimization. Environmental correlations between being bullied and the different psychiatric traits were estimated by fitting structural equation models to the full sample of MZ and DZ twins (N = 2824). Environmental associations were further explored using the longitudinal data on the bullying-discordant MZ twins. Being bullied was associated with a wide range of psychiatric disorders in both children and young adults. The analysis of data on the MZ-discordant twins supports a genuine environmental impact of bullying victimization on childhood social anxiety [odds ratio (OR) 1.7], separation anxiety (OR 1.9), and young adult suicidal ideation (OR 1.3). There was a shared genetic influence on social anxiety and bullying victimization, consistent with social anxiety being both an antecedent and consequence of being bullied. Bullying victimization in childhood is a significant environmental trauma and should be included in any mental health assessment of children and young adults.

  11. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond

    Science.gov (United States)

    Boston, Penelope Jane

    2016-01-01

    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  12. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  13. Mission to Mars: Plans and concepts for the first manned landing

    Science.gov (United States)

    Oberg, J. E.

    The manned exploration and settlement of Mars is discussed. The topics considered include: the rationale for a manned landing; spaceships and propulsion for getting to Mars; human factors such as psychological stress, the effects of prolonged weightlessness, and radiation dangers; the return from Mars; site selection and relevant criteria; scientific problems that can be studied by landing men on Mars. Also addressed are economic resources of air and water on Mars and their relevance for transportation and mission planning; the exploration and utilization of Phobos and Deimos; cost factors; the possibilities of the Russians' going to Mars; political and social issues; colonies on Mars; and manipulation of the Martian environment to make it more habitable.

  14. Constructing an Educational Mars Simulation

    Science.gov (United States)

    Henke, Stephen A.

    2004-01-01

    January 14th 2004, President George Bush announces his plans to catalyst the space program into a new era of space exploration and discovery. His vision encompasses a robotics program to explore our solar system, a return to the moon, the human exploration of Mars, and to promote international prosperity towards our endeavors. We at NASA now have the task of constructing this vision in a very real timeframe. I have been chosen to begin phase 1 of making this vision a reality. I will be working on creating an Educational Mars Simulation of human exploration of Mars to stimulate interest and involvement with the project from investors and the community. GRC s Computer Services Division (CSD) in collaboration with the Office of Education Programs will be designing models, constructing terrain, and programming this simulation to create a realistic portrayal of human exploration on mars. With recent and past technological breakthroughs in computing, my primary goal can be accomplished with only the aid of 3-4 software packages. Lightwave 3D is the modeling package we have selected to use for the creation of our digital objects. This includes a Mars pressurized rover, rover cockpit, landscape/terrain, and habitat. Once we have the models completed they need textured so Photoshop and Macromedia Fireworks are handy for bringing these objects to life. Before directly importing all of this data into a simulation environment, it is necessary to first render a stunning animation of the desired final product. This animation with represent what we hope to capture out of the simulation and it will include all of the accessories like ray-tracing, fog effects, shadows, anti-aliasing, particle effects, volumetric lighting, and lens flares. Adobe Premier will more than likely be used for video editing and adding ambient noises and music. Lastly, V-Tree is the real-time 3D graphics engine which will facilitate our realistic simulation. Additional information is included in the

  15. Why, from a Life Sciences Perspective, This Mission to Mars?

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Mars may have had water and life early in its history and this make it a key target for robotic and human exploration. Extensive human exploration of Mars will of necessity depend on life support systems that rely on agricultural plants. If current concept for recreating, a biosphere on Mars are implemented this would involve widespread use of plants, particularly species from Arctic and alpine environments.

  16. Mars 2024/2026 Pathfinder Mission: Mars Architectures, Systems, and Technologies for Exploration and Resources Project

    Science.gov (United States)

    Zeitlin, Nancy; Mueller, Robert; Muscatello, Anthony

    2015-01-01

    Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor pathfinder options: Integrated spacecraft/surface infrastructure fluid architecture: propulsion, power, life support center dot Power system feed and propellant scavenging from propulsion system center dot High quality oxygen for life support and EVA Fluid/cryogenic zero-loss transfer and long-term storage center dot Rapid depot-to-rover/spacecraft center dot Slow ISRU plant-to-ascent vehicle Integration of ISRU consumable production center dot Oxygen only from Mars atmosphere carbon dioxide center dot Oxygen, fuel, water, from extraterrestrial soil/regolith Test bed to evaluate long duration life, operations, maintenance on hardware, sensors, and autonomy

  17. Advantages of a Modular Mars Surface Habitat Approach

    Science.gov (United States)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  18. Ventricular strain changes in monochorionic twins with and without twin-to-twin transfusion syndrome.

    Science.gov (United States)

    Taylor-Clarke, Marisa C; Matsui, Hikoro; Roughton, Michael; Wimalasundera, Ruwan C; Gardiner, Helena M

    2013-06-01

    The objective of the study was to investigate whether vector velocity imaging (VVI), a non-Doppler speckle tracking ultrasound technology, is feasible in twin pregnancies and can aid management of twin-twin transfusion syndrome (TTTS). Twenty-seven women pregnant with monochorionic diamniotic twins affected by TTTS and 28 monochorionic pregnancies that did not develop TTTS were included in a prospective case-control study at a fetal medicine center. Fetal echocardiograms were recorded with dummy electrocardiography to retain original frame rates when exported for offline speckle tracking analysis using Syngo-VVI software (Siemens Corp, Munich, Germany). Right and left ventricular (LV) free wall Lagrangian strain was measured from the original coordinates. Within-twin pair ventricular strain differences including relationship to Quintero staging and response to laser therapy for TTTS were analyzed by Wilcoxon signed-rank test. The VVI strain measurements could be analyzed in 182 of 200 TTTS and 96 of 112 non-TTTS control ventricles. Within-pair strain was concordant in non-TTTS controls. Recipient LV strain was reduced at all Quintero stages compared with donors (P < .01). Recipient right ventricular strain was reduced only in stages 3 and 4 (P < .01). Strain improved at a median of 2 weeks following successful laser therapy. Intertwin differences in strain were independent of weight discordance. Recipient LV strain is reduced in stages 1 and 2 TTTS. Within-pair strain discordance may distinguish early TTTS from growth discordance and guide timing of and management following treatment. Copyright © 2013 Mosby, Inc. All rights reserved.

  19. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  20. Twin pregnancy

    DEFF Research Database (Denmark)

    Sperling, Lene; Tabor, A

    2001-01-01

    Determination of chorionicity is one of the most important issues in the management of twin pregnancy. Modern ultrasound equipment has made it possible to accurately assess placentation already in the first trimester with the lambda sign. With regard to prenatal diagnosis, it is important to know...... for clinicians caring for twin pregnancies....

  1. A Case Study in the Mars Landing Site Selection for Science Objects

    Directory of Open Access Journals (Sweden)

    Haingja Seo

    2012-12-01

    Full Text Available It is a crucial matter to select a landing site for landers or rovers in planning the Mars exploration. The landing site must have not only a scientific value as a landing site, but also geographical features to lead a safe landing for Mars probes. In this regard, this study analyzed landing site of Mars probes and rovers in previous studies and discussed the adequacy of the landing site to scientific missions. Moreover, this study also examined domestic studies on the Mars. The frameworks of these studies will guide the selection of exploration sites and a landing site when sending Mars probe to the Mars through our own efforts. Additionally, this paper will be used as the preliminary data for selection of exploration site and a landing site.

  2. Metabolomic and Genomic Markers of Atherosclerosis as Related to Oxidative Stress, Inflammation, and Vascular Function in Twin Astronauts

    Science.gov (United States)

    Lee, Stuart M. C.; Rana, Brinda K.; Stenger, Michael B.; Sears, Dorothy D.; Smith, Scott M.; Zwart, Sara R.; Macias, Brandon R.; Hargans, Alan R.; Sharma, Kumar; De Vivo, Immaculata

    2017-01-01

    BACKGROUND: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and his ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine spaceflight-related atherosclerosis risk that is independent of the confounding factors associated with different genotypes. PURPOSE: The purpose of this investigation was to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we simultaneously assessed gene expression and DNA methylation in leukocytes. HYPOTHESIS: We predict that, compared to the ground-based twin, the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift

  3. Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain)

    2014-03-15

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10{sup −6} mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

  4. Mars Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA’s Mars Exploration Program (MEP) calls for a series of highly ambitious missions over the next decade and beyond. The overall goals of the MEP must be...

  5. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  6. Heritability of Addison's disease and prevalence of associated autoimmunity in a cohort of 112,100 Swedish twins.

    Science.gov (United States)

    Skov, Jakob; Höijer, Jonas; Magnusson, Patrik K E; Ludvigsson, Jonas F; Kämpe, Olle; Bensing, Sophie

    2017-12-01

    The pathophysiology behind autoimmune Addison's disease (AAD) is poorly understood, and the relative influence of genetic and environmental factors remains unclear. In this study, we examined the heritability of AAD and explored disease-associated autoimmune comorbidity among Swedish twins. A population-based longitudinal cohort of 112,100 Swedish twins was used to calculate the heritability of AAD, and to explore co-occurrence of 10 organ-specific autoimmune disorders in twin pairs with AAD. Diagnoses were collected 1964-2012 through linkage to the Swedish National Patient Register. The Swedish Prescribed Drug Register was used for additional diagnostic precision. When available, biobank serum samples were used to ascertain the AAD diagnosis through identification of 21-hydroxylase autoantibodies. We identified 29 twins with AAD. Five out of nine (5/9) monozygotic pairs and zero out of fifteen (0/15) dizygotic pairs were concordant for AAD. The probandwise concordance for monozygotic twins was 0.71 (95% CI 0.40-0.90) and the heritability 0.97 (95% CI 0.88-99). Autoimmune disease patterns of monozygotic twin pairs affected by AAD displayed a higher degree of similarity than those of dizygotic twins, with an incidence rate ratio of 15 (95% CI 1.8-116) on the number of shared autoimmune diagnoses within pairs. The heritability of AAD appears to be very high, emphasizing the need for further research on the genetic etiology of the disease. Monozygotic twin concordance for multiple autoimmune manifestations suggests strong genetic influence on disease specificity in organ-specific autoimmunity.

  7. Overview of the magnetic properties experiments on the Mars Exploration Rovers

    DEFF Research Database (Denmark)

    Madsen, M. B.; Goetz, W.; Bertelsen, P.

    2009-01-01

    , while the weakly magnetic one is bright red. Images returned by the Microscopic Imager reveal the formation of magnetic chains diagnostic of magnetite-rich grains with substantial magnetization (>8 Am-2 kg(-1)). On the basis of Mossbauer spectra the dust contains magnetite, olivine, pyroxene......The Mars Exploration Rovers have accumulated airborne dust on different types of permanent magnets. Images of these magnets document the dynamics of dust capture and removal over time. The strongly magnetic subset of airborne dust appears dark brown to black in Panoramic Camera (Pancam) images......, and nanophase oxides in varying proportions, depending on wind regime and landing site. The dust contains a larger amount of ferric iron (Fe3+/Fe-tot similar to 0.6) than rocks in the Gusev plains (similar to 0.1-0.2) or average Gusev soil (similar to 0.3). Alpha Particle X-Ray Spectrometer data of the dust...

  8. Marital status and twins' health and behavior: an analysis of middle-aged Danish twins

    DEFF Research Database (Denmark)

    Osler, Merete; McGue, Matt; Lund, Rikke

    2008-01-01

    mass index (BMI), depression symptoms, self-rated health, cognitive function, physical activity, smoking, and alcohol intake. RESULTS: Among all 2350 individual twins, men who were divorced/widowed or never married had higher depression scores, lower cognitive test scores, lower physical activity....../widowed twin had higher average depression scores and was more likely to be a smoker. Never married twins had lower physical activity scores and never married male twins had higher BMI and higher depression scores than their married co-twin. CONCLUSION: This study suggests that the relationships of adult...... divorce with depression and smoking in Danish twins are due to the stressful effects of marital dissolution, but that marital differences in other health and behavioral outcomes are most consistent with selection effects related to genetic or rearing environmental factors....

  9. Register-based research on twins

    DEFF Research Database (Denmark)

    Christensen, Kaare; Ohm Kyvik, Kirsten; Holm, Niels V

    2011-01-01

    Introduction: The Danish Twin Registry (DTR) has for more than 50 years been based on surveys and clinical investigations and over the two last decades also on register linkage. Currently these two approaches are merged within Statistics Denmark. Research topics: Here we report on three major...... groups of register-based research in the DTR that used the uniqueness of twinning. First, we focus on the ''long-term prognosis'' of being a twin compared with being a singleton and show that Danish twins have health trajectories in adulthood similar to singletons, which is a result of interest for twins...... illustrate how the co-twin control method in a register setting can be used to control for the effect of rearing environment and genetic factors in studies of the association between exposures and health. CONCLUSION: The spectrum of register-based twin studies is very wide and have changed in accordance...

  10. Ductility improvement by twinning and twin–slip interaction in a Mg-Y alloy

    International Nuclear Information System (INIS)

    Zhou, Na; Zhang, Zhenyan; Jin, Li; Dong, Jie; Chen, Bin; Ding, Wenjiang

    2014-01-01

    Highlights: • A high elongation of ∼33% was achieved for magnesium alloy through common extrusion. • Basal slip and extension twinning are the dominant deformation modes for the high ductility. • Non-basal slip, contraction twinning and twin-slip interaction also contribute to the ductility. - Abstract: An extruded Mg-3.0Y alloy with non-basal texture of 〈42 ¯ 2 ¯ 3〉 component was fabricated by common extrusion and exhibited a high elongation of ∼33%. The deformation modes and microstructure evolution of the extruded Mg-3.0Y alloy during the tensile test at room temperature were investigated to explore the reasons for the high ductility by transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). The results suggested that texture changed from 〈42 ¯ 2 ¯ 3〉 to 〈101 ¯ 0〉 component during the tensile deformation, which is attributed the slip and twinning activity. Basal slip and extension twinning are the dominant deformation modes for the high ductility. Meanwhile, the activation of non-basal slip, contraction twinning and twin–slip interaction also contributes to the good ductility of Mg-3.0Y alloy

  11. Terrestrial Analogs to Mars: NRC Community Panel Decadal Report

    Science.gov (United States)

    Farr, T. G.

    2002-12-01

    A report was completed recently by a Community Panel for the NRC Decadal Study of Solar System Exploration. The desire was for a review of the current state of knowledge and for recommendations for action over the next decade. The topic of this panel, Terrestrial Analogs to Mars, was chosen to bring attention to the need for an increase in analog studies in support of the increased pace of Mars exploration. It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all of these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the overarching science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel considered the issues of data collection and archiving, value of field workshops, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities. Parts of this work were performed under contract to NASA.

  12. A geoethical approach to the geological and astrobiological exploration and research of the Moon and Mars

    Science.gov (United States)

    Martinez-Frias, Jesus; Horneck, Gerda; de La Torre Noetzel, Rosa; Rull, Fernando

    Lunar and Mars exploration and research require not only scientific and technological inter-disciplinary cooperation, but also the consideration of budding ethical and scientific integrity issues. COSPAR's planetary protection policy (in coordination with the United Nations Com-mittee on the Peaceful Uses of Outer Space as well as various other bilateral and multilateral organizations) serves as the consensus standard for biological contamination prevention under the 1967 Outer Space Treaty1 . Space agencies Planetary Protection Policies are mostly consis-tent with the COSPAR policy. Geoethics was formerly promoted in 1991 as a new discipline, involving scientific and societal aspects2 , and its institutionalization was officially established in 2004 with the backing of the Association of Geoscientists for International Development, AGID3 (IUGS/ICSU). Recently, it has been proposed that the integration of geoethical issues in studies on planetary geology and astrobiology would enrich their methodological and con-ceptual character4-6 . The incorporation through geoethics of new questions and approaches associated to the "abiotic world" would involve: 1) extrapolating to space the recently defined and approved IUCN/UNESCO guidelines and recommendations on geodiversity7 as "planetary geodiversity", and 2) widening the classical concept of Planetary Protection, giving an addi-tional "abiotic" dimension to the exploration and research of the Moon and Mars. Given the geological characteristics and planetary evolution of the Moon and Mars, it is obvious that they require tailored geoethical approaches. Some fundamental aspects include, among others: the interrelation with bioethics and organics vs. inorganic contamination in Planetary Protection, the appropriate regulations of some necessary natural disturbances (e.g. on the Moon) dur-ing robotic and manned planetary missions, wilderness/planetary parks8,9 , the correct use of mineralogical and geochemical analytical

  13. Habitable Mars Ascent Vehicle (MAV) Concept. [Mars Ascent Vehicle (MAV) Layout and Configuration: 6-Crew, Habitable, Nested Tank Concept

    Science.gov (United States)

    Dang, Victor; Rucker, Michelle

    2013-01-01

    NASA's ultimate goal is the human exploration of Mars. Among the many difficult aspects of a trip to Mars is the return mission that would transport the astronauts from the Martian surface back into Mars orbit. One possible conceptual design to accomplish this task is a two-stage Mars Ascent Vehicle (MAV). In order to assess this design, a general layout and configuration for the spacecraft must be developed. The objective of my internship was to model a conceptual MAV design to support NASA's latest human Mars mission architecture trade studies, technology prioritization decisions, and mass, cost, and schedule estimates.

  14. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An

  15. 'Endurance' Courtesy of Mars Express

    Science.gov (United States)

    2004-01-01

    NASA's Mars Exploration Rover Opportunity used its panoramic camera to capture this false-color image of the interior of 'Endurance Crater' on the rover's 188th martian day (Aug. 4, 2004). The image data were relayed to Earth by the European Space Agency's Mars Express orbiter. The image was generated from separate frames using the cameras 750-, 530- and 480-nanometer filters.

  16. Birth size and gestational age in opposite-sex twins as compared to same-sex twins

    DEFF Research Database (Denmark)

    Jelenkovic, Aline; Sund, Reijo; Yokoyama, Yoshie

    2018-01-01

    It is well established that boys are born heavier and longer than girls, but it remains unclear whether birth size in twins is affected by the sex of their co-twin. We conducted an individual-based pooled analysis of 21 twin cohorts in 15 countries derived from the COllaborative project of Develo......It is well established that boys are born heavier and longer than girls, but it remains unclear whether birth size in twins is affected by the sex of their co-twin. We conducted an individual-based pooled analysis of 21 twin cohorts in 15 countries derived from the COllaborative project....... In girls, birth size was not associated (5 g birth weight; 95% CI -8 to -18 and -0.089 cm birth length; 95% CI -0.202 to 0.025) with the sex of the co-twin. Gestational age was slightly shorter in boy-boy pairs than in boy-girl and girl-girl pairs. When birth size was standardized by gestational age......, the magnitude of the associations was attenuated in boys, particularly for birth weight. In conclusion, boys with a co-twin sister are heavier and longer at birth than those with a co-twin brother. However, these differences are modest and partly explained by a longer gestation in the presence of a co...

  17. Community Decadal Panel for Terrestrial Analogs to Mars

    Science.gov (United States)

    Barlow, N. G.; Farr, T.; Baker, V. R.; Bridges, N.; Carsey, F.; Duxbury, N.; Gilmore, M. S.; Green, J. R.; Grin, E.; Hansen, V.; Keszthelyi, L.; Lanagan, P.; Lentz, R.; Marinangeli, L.; Morris, P. A.; Ori, G. G.; Paillou, P.; Robinson, C.; Thomson, B.

    2001-11-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites for Mars, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel is considering the following two key questions: (1) How do terrestrial analog studies tie in to the MEPAG science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel is considering the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  18. Life On Mars: Past, Present and Future

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Although the Viking results may indicate that Mars has no life today, there is direct geomorphological evidence that, in the past, Mars had large amounts of liquid water on its surface - possibly due to a thicker atmosphere. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. From studies of the Earth's earliest biosphere we know that by 3.5 Cyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Cyr timeframe. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued

  19. Improving fluid registration through white matter segmentation in a twin study design

    Science.gov (United States)

    Chou, Yi-Yu; Lepore, Natasha; Brun, Caroline; Barysheva, Marina; McMahon, Katie; de Zubicaray, Greig I.; Wright, Margaret J.; Toga, Arthur W.; Thompson, Paul M.

    2010-03-01

    Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.

  20. Neonatal status of twins

    Directory of Open Access Journals (Sweden)

    Božinović Dragica

    2012-01-01

    Full Text Available Multiple pregnancy is a pregnancy where more than one fetus develops simultaneously in the womb, as a result of the ovulation and fertilization of more than one egg. It is relatively rare in humans and represents the rest of the phylogenetic stages. The most common are twins and they indicate the development of two fetuses in the womb. The frequency of twin pregnancies is about 1%. Multiple pregnancies belong to a group of high-risk pregnancies because of the many complications that occur during the pregnancy: higher number of premature deliveries, bleeding, early neonatal complications and higher perinatal morbidity and mortality. Such pregnancies and infants require greater supervision and monitoring. The aim of this study was to determine the percentage of baby twins born at the maternity ward of the General Hospital in Prokuplje and their morbidity and mortality. Data on the total number of deliveries, number of twins, parity and maternal age, gestational age, body weight of twins, method of delivery, Apgar score and perinatal mortality were collected and statistically analyzed by means of retrospective analysis of operative birth and neonatal protocol for 6 years (2005 of 2010. Out of 4527 mothers who gave birth 43 were pairs of twins, or 0.95% of women gave birth to twins. These babies are more likely born by Caesarean section, but delivered with slightly lower birth weight.

  1. Working Group Reports and Presentations: Mars Settlement and Society

    Science.gov (United States)

    McKay, Chris

    2006-01-01

    The long-term implications of space exploration must be considered early in the process. With this in mind, the Mars Settlement and Society Group focused on five key areas: Philosophical Framework, Community Infrastructure and Government, Creating Stakeholders, Human Subsystems, and Habitat Design. The team proposes long and short term goals to support getting to and then staying long-term on Mars. All objectives shared the theme that they should engage, inspire, and educate the public with the intent of fostering stakeholders in the exploration of Mars. The objectives of long-term settlement on Mars should not neglect group dynamics, issues of reproduction, and a strong philosophical framework for the establishment of a society.

  2. Genetic and Environmental Influences on the Mental Health of Children: A Twin Study.

    Science.gov (United States)

    Yin, Ping; Hou, Xiao; Qin, Qing; Deng, Wei; Hu, Hua; Luo, Qinghua; Du, Lian; Qiu, Haitang; Qiu, Tian; Fu, Yixiao; Meng, Huaqing; Li, Tao

    2016-08-01

    The current study explored the influences of genetic and environmental factors on the mental health of twins between ages 6 and 16. A total of 41 monozygotic (MZ) twins and 35 dizygotic twins were recruited. The psychological attributes and environmental information of children were evaluated. A significant correlation was found between twins in the diagnostic categories of any psychiatric disorder and attention deficit/hyperactivity disorder (ADHD)/hyperkinesis based on the Strengths and Difficulties Questionnaire scale in MZ twins. Furthermore, fathers' authoritarian parenting style was positively correlated with the probability of any psychiatric disorders and oppositional/conduct disorders, whereas mothers' authoritative parenting style was negatively correlated with the probability of any psychiatric disorders and ADHD/hyperkinesis. The probability of emotional disorders was negatively correlated with scores on the Stressful Life Events Scale. These results collectively suggest that genetic and environmental elements, such as parental rearing style and stressful life events, may influence children's mental health. [Journal of Psychosocial Nursing and Mental Health Services, 54(8), 29-34.]. Copyright 2016, SLACK Incorporated.

  3. Cohort Profile : The National Academy of Sciences-National Research Council Twin Registry (NAS-NRC Twin Registry)

    NARCIS (Netherlands)

    Gatz, Margaret; Harris, Jennifer R.; Kaprio, Jaakko; McGue, Matt; Smith, Nicholas L.; Snieder, Harold; Spiro, Avron; Butler, David A.

    The National Academy of Sciences-National Research Council Twin Registry (NAS-NRC Twin Registry) is a comprehensive registry of White male twin pairs born in the USA between 1917 and 1927, both of the twins having served in the military. The purpose was medical research and ultimately improved

  4. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  5. Fasting plasma total ghrelin concentrations in monozygotic twins discordant for obesity.

    Science.gov (United States)

    Leskelä, Piia; Ukkola, Olavi; Vartiainen, Johanna; Rönnemaa, Tapani; Kaprio, Jaakko; Bouchard, Claude; Kesäniemi, Y Antero

    2009-02-01

    Ghrelin is a hormone that is involved in the regulation of food intake. Neuronal, endocrine, and genetic factors have been shown to regulate plasma ghrelin levels; but the determinants of fasting ghrelin concentrations are not yet fully understood. The main aim was to explore the roles of adiposity and genetic differences in determining fasting plasma total ghrelin levels. We measured total ghrelin levels in a population of 23 monozygotic twin pairs discordant for obesity. In addition, 2 variants of ghrelin gene, namely, Arg51Gln and Leu72Met, were genotyped in 3 populations of monozygotic twin pairs: 23 obesity-discordant, 43 lean-concordant, and 46 obesity-concordant twin pairs. In discordant twins, lean co-twins had higher fasting plasma total ghrelin levels (950 pg/mL, SD = 328 pg/mL) than obese twins (720 pg/mL, SD = 143 pg/mL; P = .003). Arg51Gln-polymorphism of the ghrelin gene was equally distributed between the twin groups. However, there were significant differences in genotype frequencies at the Leu72Met polymorphism between the discordant and obese-concordant groups (P = .003) and between the discordant and lean-concordant groups (P = .011), but not between the 2 concordant groups. In the discordant group, there were fewer Met carriers (4%) than among the obese (17%) or the lean-concordant groups (15%). Plasma total ghrelin levels are affected by acquired obesity independent of genetic background. The Leu72 allele is particularly common among monozygotic twins discordant for obesity, suggesting that this ghrelin allele is more permissive in the regulation of energy balance. The ghrelin gene may thus play a role in the regulation of variability of body weight, such that Leu72 allele carriers are more prone to weight variability in response to environmental factors.

  6. Writing the History of Space Missions: Rosetta and Mars Express

    Science.gov (United States)

    Coradini, M.; Russo, A.

    2011-10-01

    Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-­-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-­-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-­-1990s as an exemplar of a "flexible mission" that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.

  7. Genetic influences on musical specialization: a twin study on choice of instrument and music genre.

    Science.gov (United States)

    Mosing, Miriam A; Ullén, Fredrik

    2018-05-09

    Though several studies show that genetic factors influence individual differences in musical engagement, aptitude, and achievement, no study to date has investigated whether specialization among musically active individuals in terms of choice of instrument and genre is heritable. Using a large twin cohort, we explored whether individual differences in instrument choice, instrument category, and the type of music individuals engage in can entirely be explained by the environment or are partly due to genetic influences. About 10,000 Swedish twins answered an extensive questionnaire about music-related traits, including information on the instrument and genre they played. Of those, 1259 same-sex twin pairs reported to either play an instrument or sing. We calculated the odds ratios (ORs) for concordance in music choices (if both twins played) comparing identical and nonidentical twin pairs, with significant ORs indicating that identical twins are more likely to engage in the same type of music-related behavior than are nonidentical twins. The results showed that for almost all music-related variables, the odds were significantly higher for identical twins to play the same musical instrument or music genre, suggesting significant genetic influences on such music specialization. Possible interpretations and implications of the findings are discussed. © 2018 New York Academy of Sciences.

  8. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    Science.gov (United States)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  9. The Twins Study: NASA's First Foray into 21st Century Omics Research

    Science.gov (United States)

    Kundrot, C. E.; Shelhamer, M.; Scott, G. B. I.

    2015-01-01

    The full array of 21st century omics-based research methods should be intelligently employed to reduce the health and performance risks that astronauts will be exposed to during exploration missions beyond low Earth Orbit. In March of 2015, US Astronaut Scott Kelly will launch to the International Space Station for a one year mission while his twin brother, Mark Kelly, a retired US Astronaut, remains on the ground. This situation presents an extremely rare flight opportunity to perform an integrated omics-based demonstration pilot study involving identical twin astronauts. A group of 10 principal investigators has been competitively selected, funded, and teamed together to form the Twins Study. A very broad range of biological function are being examined including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. The plans for the Twins Study and an overview of initial results will be described as well as the technological and ethical issues raised for such spaceflight studies. An anticipated outcome of the Twins Study is that it will place NASA on a trajectory of using omics-based information to develop precision countermeasures for individual astronauts.

  10. Monozygotic twins with discordant intestinal rotation

    International Nuclear Information System (INIS)

    Smith, Vance L.; Nwomeh, Benedict C.; Long, Frederick

    2006-01-01

    Previous case reports have suggested a strong concordance of intestinal malrotation among identical twins. This has led to the recommendation that the asymptomatic twin undergo screening when malrotation is discovered in the identical sibling. We present a case of monozygotic twins in which one twin presented with intestinal malrotation with midgut volvulus while the other twin was found to have normal gastrointestinal anatomy. (orig.)

  11. Monozygotic twins with discordant intestinal rotation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Vance L.; Nwomeh, Benedict C. [Ohio State University College of Medicine and Public Health, Department of Pediatric Surgery, Columbus Children' s Hospital, Columbus, OH (United States); Long, Frederick [Ohio State University College of Medicine and Public Health, Department of Radiology, Columbus Children' s Hospital, Columbus, OH (United States)

    2006-04-15

    Previous case reports have suggested a strong concordance of intestinal malrotation among identical twins. This has led to the recommendation that the asymptomatic twin undergo screening when malrotation is discovered in the identical sibling. We present a case of monozygotic twins in which one twin presented with intestinal malrotation with midgut volvulus while the other twin was found to have normal gastrointestinal anatomy. (orig.)

  12. A Computational Discriminability Analysis on Twin Fingerprints

    Science.gov (United States)

    Liu, Yu; Srihari, Sargur N.

    Sharing similar genetic traits makes the investigation of twins an important study in forensics and biometrics. Fingerprints are one of the most commonly found types of forensic evidence. The similarity between twins’ prints is critical establish to the reliability of fingerprint identification. We present a quantitative analysis of the discriminability of twin fingerprints on a new data set (227 pairs of identical twins and fraternal twins) recently collected from a twin population using both level 1 and level 2 features. Although the patterns of minutiae among twins are more similar than in the general population, the similarity of fingerprints of twins is significantly different from that between genuine prints of the same finger. Twins fingerprints are discriminable with a 1.5%~1.7% higher EER than non-twins. And identical twins can be distinguished by examine fingerprint with a slightly higher error rate than fraternal twins.

  13. The utility of twins in developmental cognitive neuroscience research: How twins strengthen the ABCD research design.

    Science.gov (United States)

    Iacono, William G; Heath, Andrew C; Hewitt, John K; Neale, Michael C; Banich, Marie T; Luciana, Monica M; Madden, Pamela A; Barch, Deanna M; Bjork, James M

    2018-08-01

    The ABCD twin study will elucidate the genetic and environmental contributions to a wide range of mental and physical health outcomes in children, including substance use, brain and behavioral development, and their interrelationship. Comparisons within and between monozygotic and dizygotic twin pairs, further powered by multiple assessments, provide information about genetic and environmental contributions to developmental associations, and enable stronger tests of causal hypotheses, than do comparisons involving unrelated children. Thus a sub-study of 800 pairs of same-sex twins was embedded within the overall Adolescent Brain and Cognitive Development (ABCD) design. The ABCD Twin Hub comprises four leading centers for twin research in Minnesota, Colorado, Virginia, and Missouri. Each site is enrolling 200 twin pairs, as well as singletons. The twins are recruited from registries of all twin births in each State during 2006-2008. Singletons at each site are recruited following the same school-based procedures as the rest of the ABCD study. This paper describes the background and rationale for the ABCD twin study, the ascertainment of twin pairs and implementation strategy at each site, and the details of the proposed analytic strategies to quantify genetic and environmental influences and test hypotheses critical to the aims of the ABCD study. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. The Mars Hopper: Development, Simulation and Experimental Validation of a Radioisotope Exploration Probe for the Martian Surface

    Energy Technology Data Exchange (ETDEWEB)

    Nathan D. Jerred; Spencer Cooley; Robert C. O' Brien; Steven D. Howe; James E. O' Brien

    2012-09-01

    An advanced exploration probe has been proposed by the Center for Space Nuclear Research (CSNR) to acquire detailed data from the Martian surface and subsurface, ‘hop’ large distances to multiple sites in short periods of time and perform this task repeatedly. Although several similar flying vehicles have been proposed utilizing various power sources and complex designs, e.g. solar-electric and chemical-based, the CSNR’s Mars Hopper is based on a radioisotope thermal rocket (RTR) concept. The Mars Hopper’s design relies on the high specific energies [J/kg] of radioisotopes and enhances their low specific power [W/kg] through the use of a thermal capacitance material to store thermal energy over time. During operation, the RTR transfers the stored thermal energy to a flowing gas, which is then expanded through a converging-diverging nozzle, producing thrust. Between flights, the platform will have ample time to perform in-depth science at each location while the propellant tanks and thermal capacitor recharge. Recharging the propellant tanks is accomplished by sublimation freezing of the ambient CO2 atmosphere with a cryocooler, followed by heating and pressurization to yield a liquid storage state. The proposed Mars Hopper will undergo a ballistic flight, consuming the propellant in both ascent and descent, and by using multiple hopper platforms, information can be gathered on a global scale, enabling better resource resolution and providing valuable information for a possible Mars sample-return mission. The CSNR, collaborating with the Idaho National Laboratory (INL) and three universities (University of Idaho, Utah State University and Oregon State University), has identified key components and sub-systems necessary for the proposed hopper. Current project activities include the development of a lab-scale prototypic Mars Hopper and test facility, along with computational fluid dynamics (CFD)/thermal-hydraulic models to yield a better understanding of the

  15. Conjoined (Siamese) Twins in Zambia

    African Journals Online (AJOL)

    year-old Zambian multiparous mother gave birth to a set of twins with two heads ... (symmetric or mirror image) but one twin attached with an incomplete foetus is known as hetropagtrs. (asymmetrical). Thoracopagus twins (joined at the chest).

  16. Ferrobielastic twinning in irradiated quartz

    International Nuclear Information System (INIS)

    Shiau, S.M.

    1986-01-01

    Cultured quartz is usually free from electrical twinning; however, it may occur if the seed crystal is twinned or if undue applied forces are exerted on the crystal. Ferrobielastic twinning was studied optically (photoelastic effect) and electrically (piezoelectric effect). At room temperature, twins were perceptible at stresses of about 2.l5 x 10 8 N/m 2 , and crystals switched from their original states to the alternative twin states at stresses about 5.0 x 10 8 N/m 2 (called coercive stress). The decrease in coercive stress with increasing temperature was observed, and these coercive stresses become very low as temperatures reach to 300 0 C. The effects of irradiation on the twinning in quartz were also studied. The presence of defects produced by irradiation was utilized to pin the domain wall motion. Both neutrons and gamma rays were employed. The stress required to nucleate an appreciable volume of twins is about twice as high for irradiated crystals than for those unirradiated. This result demonstrated that the irradiated crystals can tolerate higher stresses. However, the coercive stress for complete switch-over was not much different for irradiated and unirradiated crystals. It appears that the defects caused by irradiation eliminate the initial twinning events but do not affect switch-over

  17. Voice similarity in identical twins.

    Science.gov (United States)

    Van Gysel, W D; Vercammen, J; Debruyne, F

    2001-01-01

    If people are asked to discriminate visually the two individuals of a monozygotic twin (MT), they mostly get into trouble. Does this problem also exist when listening to twin voices? Twenty female and 10 male MT voices were randomly assembled with one "strange" voice to get voice trios. The listeners (10 female students in Speech and Language Pathology) were asked to label the twins (voices 1-2, 1-3 or 2-3) in two conditions: two standard sentences read aloud and a 2.5-second midsection of a sustained /a/. The proportion correctly labelled twins was for female voices 82% and 63% and for male voices 74% and 52% for the sentences and the sustained /a/ respectively, both being significantly greater than chance (33%). The acoustic analysis revealed a high intra-twin correlation for the speaking fundamental frequency (SFF) of the sentences and the fundamental frequency (F0) of the sustained /a/. So the voice pitch could have been a useful characteristic in the perceptual identification of the twins. We conclude that there is a greater perceptual resemblance between the voices of identical twins than between voices without genetic relationship. The identification however is not perfect. The voice pitch possibly contributes to the correct twin identifications.

  18. Efficacy of the Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline in Twin Families (VIPP-Twins): Study protocol for a randomized controlled trial.

    Science.gov (United States)

    Euser, Saskia; Bakermans-Kranenburg, Marian J; van den Bulk, Bianca G; Linting, Mariëlle; Damsteegt, Rani C; Vrijhof, Claudia I; van Wijk, Ilse C; Crone, Eveline A; van IJzendoorn, Marinus H

    2016-06-06

    Intervention programs with the aim of enhancing parenting quality have been found to be differentially effective in decreasing negative child outcomes such as externalizing behavioral problems, resulting in modest overall effect sizes. Here we present the protocol for a randomized controlled trial to examine the efficacy of the Video-feedback Intervention to promote Positive Parenting and Sensitive Discipline for Twin Families (VIPP-Twins) on parenting quality and children's behavioral control and social competence. In addition, we aim to test the differential susceptibility theory; we examine differential efficacy of the intervention based on genetic make-up or temperament for both parents and children. Lastly, we explore neurobiological mechanisms underlying intervention effects on children's developmental outcomes. The original VIPP-SD was adapted for use in families with twins. The VIPP-Twins consists of five biweekly sessions in which the families are visited at home, parent-child interactions are videotaped and parents receive positive feedback on selected video fragments. Families (N = 225) with a same sex twin (mean age = 3.6 years) were recruited to participate in the study. The study consists of four assessments. After two baseline assessments in year 1 and year 2, a random 40 % of the sample will receive the VIPP-Twins program. The first post-test assessment will be carried out one month after the intervention and there will be a long term follow-up assessment two years after the intervention. Measures include observational assessments of parenting and children's social competence and behavioral control, and neurobiological assessments (i.e., hormonal functioning and neural (re-)activity). Results of the study will provide insights in the efficacy of the VIPP-Twins and reveal moderators and mediators of program efficacy. Overall the randomized controlled trial is an experimental test of the differential susceptibility theory. Dutch Trial

  19. Nuclear propulsion - A vital technology for the exploration of Mars and the planets beyond

    Science.gov (United States)

    Borowski, Stanley K.

    1989-01-01

    The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the only other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulse of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class spaceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.

  20. Nuclear propulsion: A vital technology for the exploration of Mars and the planets beyond

    Science.gov (United States)

    Borowski, Stanley K.

    1988-01-01

    The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the olny other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-Earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulse of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class speceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.

  1. Growth curves for twins in Slovenia.

    Science.gov (United States)

    Bricelj, Katja; Blickstein, Isaac; Bržan-Šimenc, Gabrijela; Janša, Vid; Lučovnik, Miha; Verdenik, Ivan; Trojner-Bregar, Andreja; Tul, Nataša

    2017-02-01

    Abnormalities of fetal growth are more common in twins. We introduce the growth curves for monitoring fetal growth in twin pregnancies in Slovenia. Slovenian National Perinatal Information System for the period between 2002 and 2010 was used to calculate birth weight percentiles for all live born twins for each week from 22nd to 40th week. The calculated percentiles of birth weight for all live-born twins in Slovenia served as the basis for drawing 'growth' curves. The calculated growth curves for twins will help accurately diagnose small or large twin fetuses for their gestational age in the native central European population.

  2. Deformation twinning: Influence of strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  3. Eating disorders: from twin studies to candidate genes and beyond

    NARCIS (Netherlands)

    Slof-Op 't Landt, M.C.T.; Furth, E.F. van; Meulenbelt, I.; Slagboom, P.E.; Bartels, M.; Boomsma, D.I.; Bulik, C.M.

    2005-01-01

    Substantial effort has been put into the exploration of the biological background of eating disorders, through family, twin and molecular genetic studies. Family studies have shown that anorexia (AN) and bulimia nervosa (BN) are strongly familial, and that familial etiologic factors appear to be

  4. Fingerprint recognition with identical twin fingerprints.

    Science.gov (United States)

    Tao, Xunqiang; Chen, Xinjian; Yang, Xin; Tian, Jie

    2012-01-01

    Fingerprint recognition with identical twins is a challenging task due to the closest genetics-based relationship existing in the identical twins. Several pioneers have analyzed the similarity between twins' fingerprints. In this work we continue to investigate the topic of the similarity of identical twin fingerprints. Our study was tested based on a large identical twin fingerprint database that contains 83 twin pairs, 4 fingers per individual and six impressions per finger: 3984 (83*2*4*6) images. Compared to the previous work, our contributions are summarized as follows: (1) Two state-of-the-art fingerprint identification methods: P071 and VeriFinger 6.1 were used, rather than one fingerprint identification method in previous studies. (2) Six impressions per finger were captured, rather than just one impression, which makes the genuine distribution of matching scores more realistic. (3) A larger sample (83 pairs) was collected. (4) A novel statistical analysis, which aims at showing the probability distribution of the fingerprint types for the corresponding fingers of identical twins which have same fingerprint type, has been conducted. (5) A novel analysis, which aims at showing which finger from identical twins has higher probability of having same fingerprint type, has been conducted. Our results showed that: (a) A state-of-the-art automatic fingerprint verification system can distinguish identical twins without drastic degradation in performance. (b) The chance that the fingerprints have the same type from identical twins is 0.7440, comparing to 0.3215 from non-identical twins. (c) For the corresponding fingers of identical twins which have same fingerprint type, the probability distribution of five major fingerprint types is similar to the probability distribution for all the fingers' fingerprint type. (d) For each of four fingers of identical twins, the probability of having same fingerprint type is similar.

  5. Fingerprint recognition with identical twin fingerprints.

    Directory of Open Access Journals (Sweden)

    Xunqiang Tao

    Full Text Available Fingerprint recognition with identical twins is a challenging task due to the closest genetics-based relationship existing in the identical twins. Several pioneers have analyzed the similarity between twins' fingerprints. In this work we continue to investigate the topic of the similarity of identical twin fingerprints. Our study was tested based on a large identical twin fingerprint database that contains 83 twin pairs, 4 fingers per individual and six impressions per finger: 3984 (83*2*4*6 images. Compared to the previous work, our contributions are summarized as follows: (1 Two state-of-the-art fingerprint identification methods: P071 and VeriFinger 6.1 were used, rather than one fingerprint identification method in previous studies. (2 Six impressions per finger were captured, rather than just one impression, which makes the genuine distribution of matching scores more realistic. (3 A larger sample (83 pairs was collected. (4 A novel statistical analysis, which aims at showing the probability distribution of the fingerprint types for the corresponding fingers of identical twins which have same fingerprint type, has been conducted. (5 A novel analysis, which aims at showing which finger from identical twins has higher probability of having same fingerprint type, has been conducted. Our results showed that: (a A state-of-the-art automatic fingerprint verification system can distinguish identical twins without drastic degradation in performance. (b The chance that the fingerprints have the same type from identical twins is 0.7440, comparing to 0.3215 from non-identical twins. (c For the corresponding fingers of identical twins which have same fingerprint type, the probability distribution of five major fingerprint types is similar to the probability distribution for all the fingers' fingerprint type. (d For each of four fingers of identical twins, the probability of having same fingerprint type is similar.

  6. The classical twin study and beyond

    NARCIS (Netherlands)

    Boomsma, D.I.; Busjahn, A.; Peltonen, L.

    2002-01-01

    Twin studies have been a valuable source of information about the genetic basis of complex traits. To maximize the potential of twin studies, large, worldwide registers of data on twins and their relatives have been established. Here, we provide an overview of the current resources for twin

  7. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Sumrall, John P.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission today, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. Unlike the Apollo program of the 1960s, this phase of exploration will be a journey, not a race. In 1966, the NASA's budget was 4 percent of federal spending. Today, with 6/10 of 1 percent of the budget, NASA must incrementally develop the vehicles, infrastructure, technology, and organization to accomplish this goal. Fortunately, our knowledge and experience are greater than they were 40 years ago. NASA's goal is a return to the Moon by 2020. The Moon is the first step to America's exploration of Mars. Many questions about the Moon's history and how its history is linked to that of Earth remain even after the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment. The Moon also will serve as a training ground in several respects before embarking on the longer, more perilous trip to Mars. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit on the Ares I and a second launch to orbit the lunar lander and the Earth Departure Stage to send the lander and crew vehicle to the Moon. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on proven hardware and decades of experience derived from

  8. Architectural Design for a Mars Communications and Navigation Orbital Infrastructure

    Science.gov (United States)

    Ceasrone R. J.; Hastrup, R. C.; Bell, D. J.; Roncoli, R. B.; Nelson, K.

    1999-01-01

    The planet Mars has become the focus of an intensive series of missions that span decades of time, a wide array of international agencies and an evolution from robotics to humans. The number of missions to Mars at any one time, and over a period of time, is unprecedented in the annals of space exploration. To meet the operational needs of this exploratory fleet will require the implementation of new architectural concepts for communications and navigation. To this end, NASA's Jet Propulsion Laboratory has begun to define and develop a Mars communications and navigation orbital infrastructure. This architecture will make extensive use of assets at Mars, as well as use of traditional Earth-based assets, such as the Deep Space Network, DSN. Indeed, the total system can be thought of as an extension of DSN nodes and services to the Mars in-situ region. The concept has been likened to the beginnings of an interplanetary Internet that will bring the exploration of Mars right into our living rooms. The paper will begin with a high-level overview of the concept for the Mars communications and navigation infrastructure. Next, the mission requirements will be presented. These will include the relatively near-term needs of robotic landers, rovers, ascent vehicles, balloons, airplanes, and possibly orbiting, arriving and departing spacecraft. Requirements envisioned for the human exploration of Mars will also be described. The important Mars orbit design trades on telecommunications and navigation capabilities will be summarized, and the baseline infrastructure will be described. A roadmap of NASA's plan to evolve this infrastructure over time will be shown. Finally, launch considerations and delivery to Mars will be briefly treated.

  9. Exotic quarks in Twin Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsin-Chia [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Jung, Sunghoon [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); SLAC National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Salvioni, Ennio [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Tsai, Yuhsin [Department of Physics, University of California, Davis,One Shields Avenue, Davis, CA 95616 (United States); Maryland Center for Fundamental Physics,Department of Physics, University of Maryland,College Park, MD 20742 (United States)

    2016-03-14

    The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ∼ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. Depending on the details of the twin sector, the exotic quarks may be probed up to ∼ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.

  10. Searching for Life on Mars Before It Is Too Late.

    Science.gov (United States)

    Fairén, Alberto G; Parro, Victor; Schulze-Makuch, Dirk; Whyte, Lyle

    2017-10-01

    Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions. Key Words: Contamination-Earth Mars-Planetary Protection-Search for life (biosignatures). Astrobiology 17, 962-970.

  11. Twin Higgs Asymmetric Dark Matter.

    Science.gov (United States)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  12. Developing Fabrication Technologies to Provide On Demand Manufacturing for Exploration of the Moon and Mars

    Science.gov (United States)

    Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.

    2006-01-01

    NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.

  13. Attachment to the Romantic Partner and Sibling: Attachment Hierarchies of Twins and Non-Twin Siblings

    Directory of Open Access Journals (Sweden)

    Sascha Schwarz

    2015-12-01

    Full Text Available Previous studies have shown that romantic partners and siblings are important attachment figures. This study compares the attachment to the romantic partner with the attachment to the sibling as a function of the participant’s sibling type among monozygotic (MZ twins, dizygotic (DZ twins, and non-twin (NT siblings. The results show that MZ twins prefer their sibling to their romantic partner whereas DZ twins are equally attached to their sibling and romantic partner. In contrast, NT siblings are more attached to their romantic partner compared to their sibling. These results indicate that genetic relatedness has profound impact on a person’s attachment hierarchy and the relative rank of the romantic partner and the sibling.

  14. Mars MetNet Mission Payload Overview

    Science.gov (United States)

    Harri, A.-M.; Haukka, H.; Alexashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide crucial scientific data about the Martian atmospheric phenomena.

  15. Neurodevelopmental outcome at 2 years in twin-twin transfusion syndrome survivors randomized for the Solomon trial.

    Science.gov (United States)

    van Klink, Jeanine M M; Slaghekke, Femke; Balestriero, Marina A; Scelsa, Barbara; Introvini, Paola; Rustico, Mariangela; Faiola, Stefano; Rijken, Monique; Koopman, Hendrik M; Middeldorp, Johanna M; Oepkes, Dick; Lopriore, Enrico

    2016-01-01

    The preferred treatment for twin-twin transfusion syndrome is fetoscopic laser coagulation of inter-twin vascular anastomoses on the monochorionic placenta. Severe postoperative complications can occur when inter-twin vascular anastomoses remain patent including twin-anemia polycythemia sequence or recurrent twin-twin transfusion syndrome. To minimize the occurrence of residual anastomoses, a modified laser surgery technique, the Solomon technique, was developed in which the entire vascular equator is coagulated. In the Solomon randomized controlled trial (NTR1245), the Solomon technique was associated with a significant reduction in twin-anemia polycythemia sequence and recurrence of twin-twin transfusion syndrome when compared with the standard laser surgery technique. Although a significant improvement in perinatal outcome was shown after the Solomon technique, the clinical importance should also be ascertained with long-term follow-up evaluation of the surviving children. The purpose of this study was to compare the long-term neurodevelopmental outcome in surviving children with twin-twin transfusion syndrome who were included in the Solomon randomized trial and treated with either the Solomon technique or standard laser surgery technique. Routine standardized follow-up evaluation in survivors, at least 2 years after the estimated date of delivery, was performed at 2 of the 5 centers that participated in the Solomon trial: Buzzi Hospital Milan (Italy) and Leiden University Medical Center (The Netherlands). The primary outcome of this follow-up study was survival without long-term neurodevelopmental impairment at age 2 years. Neurodevelopmental impairment was defined as cerebral palsy, cognitive and/or motor development score of neurodevelopmental impairment) was detected in 95 of 141 cases (67%) in the Solomon group and in 99 of 146 cases (68%) in the standard group (P = .92). Neurodevelopmental impairment in long-term survivors who were included for follow

  16. Europe is going to Mars

    Science.gov (United States)

    1999-06-01

    The Agency's Science Programme Committee (SPC) approved Mars Express after ESA's Council, meeting at ministerial level in Brussels on 11 and 12 May, had agreed the level of the science budget for the next 4 years, just enough to make the mission affordable. "Mars Express is a mission of opportunity and we felt we just had to jump in and do it. We are convinced it will produce first-rate science", says Hans Balsiger, SPC chairman. As well as being a first for Europe in Mars exploration, Mars Express will pioneer new, cheaper ways of doing space science missions. "With a total cost of just 150 million euros, Mars Express will be the cheapest Mars mission ever undertaken", says Roger Bonnet, ESA's Director of Science. Mars Express will be launched in June 2003. When it arrives at the red planet six months later, it will begin to search for water and life. Seven instruments, provided by space research institutes throughout Europe, will make observations from the main spacecraft as it orbits the planet. Just before the spacecraft arrives, it will release a small lander, provided by research institutes in the UK, that will journey on to the surface to look for signs of life. The lander is called Beagle 2 after the ship in which Charles Darwin sailed round the world in search of evidence supporting his theory of evolution. But just as Darwin had to raise the money for his trip, so the search is on for public and private finance for Beagle 2. "Beagle 2 is an extremely important element of the mission", says Bonnet. Europe's space scientists have envisaged a mission to Mars for over fifteen years. But limited funding has prevented previous proposals from going ahead. The positioning of the planets in 2003, however, offers a particularly favourable passage to the red planet - an opportunity not to be missed. Mars Express will be joined by an international flotilla of spacecraft that will also be using this opportunity to work together on scientific questions and pave the way

  17. Low twinning rate and seasonal effects on twinning in a fertile population, the Hutterites

    Science.gov (United States)

    Nonaka, K.; Miura, T.; Peter, K.

    1993-09-01

    This paper analyzes from the mid 18th century to 1987 the birth records of the “Dariusleut,” one of the three subgroups of the Hutterite population. The aim of this study is to describe several aspects of the twinning rate in a fertile population. The overall rate of twinning was 0.90%:103 twins among all 11492 maternities. The rate peaked at the 7th birth order and at the maternal age of 40 years and over. Until the mid 19th century when the Hutterites lived in Russia, the twinning rate was higher (1.5%), and it decreased during the migration period in the second half of the 19th century (0.7%). After the group had settled in the USA and Canada, the population maintained a twinning rate of 1.0% until 1965. After 1965 the rate decreased to 0.7%, partly due to a decline in fertility among women aged 30 years and over. There was a significant seasonal variation: the twinning rate decreased to 0.5% in May July compared to 1.2% for the other three seasons during the years up to 1965 ( P<0.01), while more recent mothers did not show such a seasonal variation. The incidence of twin births in this population seems to have been influenced by environmental factors, which would change their effect seasonally and secularly.

  18. An Alternative Humans to Mars Approach: Reducing Mission Mass with Multiple Mars Flyby Trajectories and Minimal Capability Investments

    Science.gov (United States)

    Whitley, Ryan J.; Jedrey, Richard; Landau, Damon; Ocampo, Cesar

    2015-01-01

    Mars flyby trajectories and Earth return trajectories have the potential to enable lower- cost and sustainable human exploration of Mars. Flyby and return trajectories are true minimum energy paths with low to zero post-Earth departure maneuvers. By emplacing the large crew vehicles required for human transit on these paths, the total fuel cost can be reduced. The traditional full-up repeating Earth-Mars-Earth cycler concept requires significant infrastructure, but a Mars only flyby approach minimizes mission mass and maximizes opportunities to build-up missions in a stepwise manner. In this paper multiple strategies for sending a crew of 4 to Mars orbit and back are examined. With pre-emplaced assets in Mars orbit, a transit habitat and a minimally functional Mars taxi, a complete Mars mission can be accomplished in 3 SLS launches and 2 Mars Flyby's, including Orion. While some years are better than others, ample opportunities exist within a given 15-year Earth-Mars alignment cycle. Building up a mission cadence over time, this approach can translate to Mars surface access. Risk reduction, which is always a concern for human missions, is mitigated by the use of flybys with Earth return (some of which are true free returns) capability.

  19. Communications with Mars During Periods of Solar Conjunction: Initial Study Results

    Science.gov (United States)

    Morabito, D.; Hastrup, R.

    2001-07-01

    During the initial phase of the human exploration of Mars, a reliable communications link to and from Earth will be required. The direct link can easily be maintained during most of the 780-day Earth-Mars synodic period. However, during periods in which the direct Earth-Mars link encounters increased intervening charged particles during superior solar conjunctions of Mars, the resultant effects are expected to corrupt the data signals to varying degrees. The purpose of this article is to explore possible strategies, provide recommendations, and identify options for communicating over this link during periods of solar conjunctions. A significant improvement in telemetry data return can be realized by using the higher frequency 32 GHz (Ka-band), which is less susceptible to solar effects. During the era of the onset of probable human exploration of Mars, six superior conjunctions were identified from 2015 to 2026. For five of these six conjunctions, where the signal source is not occulted by the disk of the Sun, continuous communications with Mars should be achievable. Only during the superior conjunction of 2023 is the signal source at Mars expected to lie behind the disk of the Sun for about one day and within two solar radii (0. 5 deg) for about three days.

  20. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  1. Higher Rates of DZ Twinning in a Twenty-First Century Birth Cohort.

    Science.gov (United States)

    Rhea, Sally Ann; Corley, Robin P; Heath, Andrew C; Iacono, William G; Neale, Michael C; Hewitt, John K

    2017-09-01

    The Colorado Twin Registry is a population based registry initiated in 1984 with the involvement of the Colorado Department of Health, Division of Vital Statistics. Recruitment includes birth cohorts several years prior to 1984 and all subsequent years. As part of a recent evaluation of Colorado birth records for the years 2006 through 2008 we became aware of a shifting trend in the proportion of MZ and DZ twins in the Colorado population. Historically (Bulmer 1970 The biology of twinning in man, Clarendon, Oxford) we have expected a 1/3, 1/3, 1/3 ratio of MZ, same-sex DZ and opposite sex DZ twins in Caucasian populations. An excess of MZ pairs in most studies was assumed to be due to selection bias. Somewhat more recently, Hur et al.(1995 Behav Genet 25, 337-340) provided evidence that the DZ twinning rate was falling and that therefore selection bias was not the reason for higher MZ enrollment in most twin studies. They suggested that twin researchers might consider strategies to over-enroll DZ pairs to maximize statistical power. In contrast, we now find that of the 3217 twin births in Colorado from 2006 to 2008 with identified sex information the MZ rate is estimated at only 22%, and we have corroborating reports from other states of similar estimates. These were calculated applying Weinberg's rule which assumes an equal birth rate for same sex and opposite sex DZ pairs so that the proportion of MZ in a sample is the proportion of same sex (MM + FF) minus the proportion of opposite-sex (MF, FM). We explore factors, such as an increase in the proportion of non-Caucasian parents and an increase in average maternal age, which may contribute to this shift.

  2. Maternal feeding practices and fussy eating in toddlerhood: a discordant twin analysis.

    Science.gov (United States)

    Harris, Holly A; Fildes, Alison; Mallan, Kimberley M; Llewellyn, Clare H

    2016-07-13

    Parental feeding practices are thought to play a causal role in shaping a child's fussiness; however, a child-responsive model suggests that feeding practices may develop in response to a child's emerging appetitive characteristics. We used a novel twin study design to test the hypothesis that mothers vary their feeding practices for twin children who differ in their 'food fussiness', in support of a child-responsive model. Participants were mothers and their 16 month old twin children (n = 2026) from Gemini, a British twin birth cohort of children born in 2007. Standardized psychometric measures of maternal 'pressure to eat', 'restriction' and 'instrumental feeding', as well as child 'food fussiness', were completed by mothers. Within-family analyses examined if twin-pair differences in 'food fussiness' were associated with differences in feeding practices using linear regression models. In a subset of twins (n = 247 pairs) who were the most discordant (highest quartile) on 'food fussiness' (difference score ≥ .50), Paired Samples T-test were used to explore the magnitude of differences in feeding practices between twins. Between-family analyses used Complex Samples General Linear Models to examine associations between feeding practices and 'food fussiness'. Within-pair differences in 'food fussiness' were associated with differential 'pressure to eat' and 'instrumental feeding' (ps feeding' were positively associated with 'food fussiness', while 'restriction' was negatively associated with 'food fussiness' (ps feeding practices according to their perceptions of their toddler's emerging fussy eating behavior. Specifically, the fussier toddler is pressured more than their less fussy co-twin, and is more likely to be offered food rewards. Guiding parents on how to respond to fussy eating may be an important aspect of promoting feeding practices that encourage food acceptance.

  3. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration, announced in 2004, calls on NASA to finish constructing the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return to the Moon and go on the Mars. By exploring space, America continues the tradition of great nations who mastered the Earth, air, and sea, and who then enjoyed the benefits of increased commerce and technological advances. The progress being made today is part of the next chapter in America's history of leadership in space. In order to reach the Moon and Mars within the planned timeline and also within the allowable budget, NASA is building upon the best of proven space transportation systems. Journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. What America learns in reaching for the Moon will teach astronauts how to prepare for the first human footprints on Mars. While robotic science may reveal information about the nature of hydrogen on the Moon, it will most likely tale a human being with a rock hammer to find the real truth about the presence of water, a precious natural resource that opens many possibilities for explorers. In this way, the combination of astronauts using a variety of tools and machines provides a special synergy that will vastly improve our understanding of Earth's cosmic neighborhood.

  4. Flashline Mars Arctic Research Station (FMARS) 2009 Expedition Crew Perspectives

    Science.gov (United States)

    Cusack, Stacy; Ferrone, Kristine; Garvin, Christy; Kramer, W. Vernon; Palaia, Joseph, IV; Shiro, Brian

    2009-01-01

    The Flashline Mars Arctic Research Station (FMARS), located on the rim of the Haughton Crater on Devon Island in the Canadian Arctic, is a simulated Mars habitat that provides operational constraints similar to those which will be faced by future human explorers on Mars. In July 2009, a six-member crew inhabited the isolated habitation module and conducted the twelfth FMARS mission. The crew members conducted frequent EVA operations wearing mock space suits to conduct field experiments under realistic Mars-like conditions. Their scientific campaign spanned a wide range of disciplines and included many firsts for Mars analog research. Among these are the first use of a Class IV medical laser during a Mars simulation, helping to relieve crew stress injuries during the mission. Also employed for the first time in a Mars simulation at FMARS, a UAV (Unmanned Aerial Vehicle) was used by the space-suited explorers, aiding them in their search for mineral resources. Sites identified by the UAV were then visited by geologists who conducted physical geologic sampling. For the first time, explorers in spacesuits deployed passive seismic equipment to monitor earthquake activity and characterize the planet's interior. They also conducted the first geophysical electromagnetic survey as analog Mars pioneers to search for water and characterize geological features under the surface. The crew collected hydrated minerals and attempted to produce drinkable water from the rocks. A variety of equipment was field tested as well, including new cameras that automatically geotag photos, data-recording GPS units, a tele-presence rover (operated from Florida), as well as MIT-developed mission planning software. As plans develop to return to the Moon and go on to Mars, analog facilities like FMARS can provide significant benefit to NASA and other organizations as they prepare for robust human space exploration. The authors will present preliminary results from these studies as well as their

  5. Is Cesarean Delivery Preferable in Twin Pregnancies at >=36 Weeks Gestation?

    Science.gov (United States)

    Dong, Yu; Luo, Zhong-Cheng; Yang, Zu-Jing; Chen, Lu; Guo, Yu-Na; Branch, Ware; Zhang, Jun; Huang, Hong

    2016-01-01

    Background The optimal mode of delivery in twin pregnancies remains controversial. A recent randomized trial did not find any benefit of planned cesarean vs. vaginal delivery at 32–38 weeks gestation, but the trial was not powered to detect a moderate effect. We aimed to evaluate the impact of cesarean delivery on perinatal mortality and severe neonatal morbidity in twin pregnancies at ≥32 weeks through a large database exploration approach with the power to detect moderate risk differences. Methods In a retrospective birth cohort study using the U.S. matched multiple births, 1995–2000 (the available largest multiple birth dataset), we compared perinatal outcomes in twins (n = 181,810 pregnancies) delivered at 32–41 weeks gestation without congenital anomalies. The primary outcome was a composite of perinatal death and severe neonatal morbidity. Cox regression was used to estimate the adjusted hazard ratio (aHR) controlling for the propensity to cesarean delivery, fetal characteristics (sex, birth weight, birth weight discordance, same-sex twin or not) and twin-cluster level dependence. Prospective risks were calculated using the fetuses-at-risk denominators. Results The overall rates of the primary outcome were slightly lower in intended cesarean (6.20%) vs. vaginal (6.45%) deliveries. The aHRs of the primary outcome were in favor of vaginal delivery at 32 (aHR = 1.06, p = 0.03) or 33 (aHR = 1.22, pcesarean delivery at 36 (aHR = 0.94, p = 0.004), 37, 38 and 39+ weeks (aHR: 0.72 to 0.78, all pcesarean vs. vaginal deliveries at 36+ weeks of gestation remained when the analyses were restricted to different-sex (dichorionic) twins (aHR = 0.84, 95% CI 0.80–0.88). Conclusion Cesarean delivery may be beneficial for perinatal outcomes overall in twin pregnancies at ≥36 weeks gestation. PMID:27227678

  6. The identical-twin transfusion syndrome: a source of error in estimating IQ resemblance and heritability.

    Science.gov (United States)

    Munsinger, H

    1977-01-01

    Published studies show that among identical twins, lower birthweight is associated with lower adult intelligence. However, no such relation between birthweight and adult IQ exists among fraternal twins. A likely explanation for the association between birthweight and intelligence among identical twins is the identical twin transfusion syndrome which occurs only between some monochorionic identical twin pairs. The IQ scores from separated identical twins were reanalysed to explore the consequences of identical twin transfusion syndrome for IQ resemblance and heritability. Among 129 published cases of identical twin pairs reared apart, 76 pairs contained some birthweight information. The 76 pairs were separated into three classes: 23 pairs in which there was clear evidence of a substantial birthweight differences (indicating the probable existence of the identical twin transfusion syndrome), 27 pairs in which the information on birthweight was ambiguous (?), and 26 pairs in which there was clear evidence that the twins were similar in birthweight. The reanalyses showed: (1) birthweight differences are positively associated with IQ differences in the total sample of separated identical twins; (2) within the group of 23 twin pairs who showed large birthweight differences, there was a positive relation between birthweight differences and IQ differences; (3) when heritability of IQ is estimated for those twins who do not suffer large birthweight differences, the resemblance (and thus, h2/b) of the separated identical twins' IG is 0-95. Given that the average reliability of the individual IQ test is around 0-95, these data suggest that genetic factors and errors of measurement cause the individual differences in IQ among human beings. Because of the identical twin transfusion syndrome, previous studies of MZ twins have underestimated the effect of genetic factors on IQ. An analysis of the IQs for heavier and lighter birthweight twins suggests that the main effect of the

  7. Hydrogeology of Basins on Mars

    Science.gov (United States)

    Arvidson, Raymond E.

    2001-01-01

    This document summarizes the work accomplished under NASA Grant NAG5-3870. Emphasis was put on the development of the FIDO rover, a prototype for the twin-Mers which will be operating on the surface of Mars in 2004, specifically the primary work was the analysis of FIDO field trials. The grantees also analyzed VIKING Lander 1 XRFS and Pathfinder APXS data. Results show that the Viking site chemistry is consistent with an andesite, and the Pathfinder site is consistent with a basaltic andesite. The grantees also worked to demonstrate the capability to simulate annealing methods to apply to the inversion of remote sensing data. They performed an initial analyses of Sojourner engineering telemetry and imaging data. They performed initial analyses of Viking Lander Stereo Images, and of Hematite deposits in Terra Meridiani. They also acquired and analyzed the New Goldstone radar data.

  8. Robots and Humans in Planetary Exploration: Working Together?

    Science.gov (United States)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  9. Twin relationships of 5M modulated martensite in Ni-Mn-Ga alloy

    International Nuclear Information System (INIS)

    Li Zongbin; Zhang Yudong; Esling, Claude; Zhao Xiang; Zuo Liang

    2011-01-01

    Highlights: → We determine orientation relationships of 5M modulated martensite in NiMnGa alloy. → Accurate EBSD mapping is performed using monoclinic superstructure. → Four distinct variants mutually twin-related to each other are revealed. → Three twinning types and full twinning elements are identified. → Twin interfaces do coincide with respective twinning planes. - Abstract: For Ni-Mn-Ga ferromagnetic shape memory alloys, the characteristic features of modulated martensite (including the number/shape of constituent variants, the inter-variant orientation relationship and the geometrical distribution of variant interfaces) determine the attainability of the shape memory effect. In the present work, a comprehensive microstructural and crystallographic investigation has been conducted on a bulk polycrystalline Ni 50 Mn 28 Ga 22 alloy. As a first attempt, the orientation measurements by electron backscatter diffraction (EBSD) - using the precise information on the commensurate 5M modulated monoclinic superstructure (instead of the conventionally simplified non-modulated tetragonal structure) - were successfully performed to identify the crystallographic orientations on an individual basis. Consequently, the morphology of modulated martensite, the orientation relationships between adjacent variants and the characters of twin interfaces were unambiguously determined. With the thus-obtained full-featured image on the configuration of martensitic variants, the possibility of microstructural modification by proper mechanical 'training' was further discussed. This new effort makes it feasible to explore the crystallographic/microstructural correlations in modulated martensite with high statistical reliability, which in turn provides useful guidance for optimizing the microstructure and shape memory performance.

  10. Exploring the Relation between Prenatal and Neonatal Complications and Later Autistic-Like Features in a Representative Community Sample of Twins

    Science.gov (United States)

    Ronald, Angelica; Happe, Francesca; Dworzynski, Katharina; Bolton, Patrick; Plomin, Robert

    2010-01-01

    Prenatal and neonatal events were reported by parents of 13,690 eighteen-month-old twins enrolled in the Twins Early Development Study, a representative community sample born in England and Wales. At ages 7-8, parents and teachers completed questionnaires on social and nonsocial autistic-like features and parents completed the Childhood Asperger…

  11. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  12. 'Twin2twin' an innovative method of empowering midwives to strengthen their professional midwifery organisations.

    Science.gov (United States)

    Cadée, Franka; Perdok, Hilde; Sam, Betty; de Geus, Myrte; Kweekel, Liselotte

    2013-10-01

    midwives need professional support from a national midwifery organisation to be able to provide the services that are by regulatory mechanisms and accreditation expected of them. Not all midwives in the world are united in a professional organisation. The aim of this project was to strengthen the midwifery organisations of Sierra Leone and the Netherlands. During the process of the project it was realised that the development of a platform of exchange at organisational level would be enhanced by introducing personal exchange between individual midwives. In response to this new insight the original project plan was adjusted by incorporating the twin2twin method. twin2twin is a feminist methodology of mutual exchange between twenty pairs of midwives from different organisations (in this case Sierra Leone and the Netherlands). The method can be distinguished by 10 specific steps. It was developed, used and (re)evaluated through focus group discussions, storytelling and written evaluations. twinning of organisations was strengthened by adding a human component to the process. With the use of the 'twin2twin' method, midwives were encouraged to invested in a professional and personal bond with their 'twin sister'. This bond was independent and went beyond the relatively short four year project period. Through personal engagement and mutual exchange of knowledge and skills, midwives empowered each other to build and strengthen their midwifery organisations both in Sierra Leone and the Netherlands. (Empowerment refers to the expansion in people's ability to make strategic life choices in a context where this ability was previously denied to them (Narayan, 2005); organisational empowerment includes processes and structures that enhance members' skills and provides them with the mutual support necessary to effect community level change (Zimmerman, 1995).). despite challenges we are convinced that twin2twin can be of additional benefit for the success of other projects

  13. Survival and sacrifice in Mars exploration what we know from polar expeditions

    CERN Document Server

    Seedhouse, Erik

    2015-01-01

    With current technology, a voyage to Mars and back will take three years. That’s a lot of time for things to go wrong. But sooner or later a commercial enterprise will commit itself to sending humans to Mars. How will the astronauts survive? Some things to consider are: ith current technology, a voyage to Mars and back will take three years. That’s a lot of time for things to go wrong. But sooner or later a commercial enterprise will commit itself to sending humans to Mars. How will the astronauts survive? Some things to consider are: • Who decides what medical resources are used for whom? Who decides what medical resources are used for whom? • What is the relative weight of mission success and the health of the crew? What is the relative weight of mission success and the health of the crew? • Do we allow crewmembers to sacrifi ce their lives for the good of the mission? Do we allow crewmembers to sacrifi ce their lives for the good of the mission? • And what if a crewmember does perish? Do we sto...

  14. Evacuated Airship for Mars Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to overcome some of the limitations of current technologies for Mars exploration and even extend current operational capabilities by introducing the...

  15. Education in Twins and Their Parents Across Birth Cohorts Over 100 years: An Individual-Level Pooled Analysis of 42-Twin Cohorts.

    Science.gov (United States)

    Silventoinen, Karri; Jelenkovic, Aline; Latvala, Antti; Sund, Reijo; Yokoyama, Yoshie; Ullemar, Vilhelmina; Almqvist, Catarina; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth J F; Kandler, Christian; Honda, Chika; Inui, Fujio; Iwatani, Yoshinori; Watanabe, Mikio; Rebato, Esther; Stazi, Maria A; Fagnani, Corrado; Brescianini, Sonia; Hur, Yoon-Mi; Jeong, Hoe-Uk; Cutler, Tessa L; Hopper, John L; Busjahn, Andreas; Saudino, Kimberly J; Ji, Fuling; Ning, Feng; Pang, Zengchang; Rose, Richard J; Koskenvuo, Markku; Heikkilä, Kauko; Cozen, Wendy; Hwang, Amie E; Mack, Thomas M; Siribaddana, Sisira H; Hotopf, Matthew; Sumathipala, Athula; Rijsdijk, Fruhling; Sung, Joohon; Kim, Jina; Lee, Jooyeon; Lee, Sooji; Nelson, Tracy L; Whitfield, Keith E; Tan, Qihua; Zhang, Dongfeng; Llewellyn, Clare H; Fisher, Abigail; Burt, S Alexandra; Klump, Kelly L; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Medland, Sarah E; Martin, Nicholas G; Montgomery, Grant W; Magnusson, Patrik K E; Pedersen, Nancy L; Dahl Aslan, Anna K; Corley, Robin P; Huibregtse, Brooke M; Öncel, Sevgi Y; Aliev, Fazil; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Willemsen, Gonneke; Bartels, Meike; van Beijsterveldt, Catharina E M; Silberg, Judy L; Eaves, Lindon J; Maes, Hermine H; Harris, Jennifer R; Brandt, Ingunn; Nilsen, Thomas S; Rasmussen, Finn; Tynelius, Per; Baker, Laura A; Tuvblad, Catherine; Ordoñana, Juan R; Sánchez-Romera, Juan F; Colodro-Conde, Lucia; Gatz, Margaret; Butler, David A; Lichtenstein, Paul; Goldberg, Jack H; Harden, K Paige; Tucker-Drob, Elliot M; Duncan, Glen E; Buchwald, Dedra; Tarnoki, Adam D; Tarnoki, David L; Franz, Carol E; Kremen, William S; Lyons, Michael J; Maia, José A; Freitas, Duarte L; Turkheimer, Eric; Sørensen, Thorkild I A; Boomsma, Dorret I; Kaprio, Jaakko

    2017-10-01

    Whether monozygotic (MZ) and dizygotic (DZ) twins differ from each other in a variety of phenotypes is important for genetic twin modeling and for inferences made from twin studies in general. We analyzed whether there were differences in individual, maternal and paternal education between MZ and DZ twins in a large pooled dataset. Information was gathered on individual education for 218,362 adult twins from 27 twin cohorts (53% females; 39% MZ twins), and on maternal and paternal education for 147,315 and 143,056 twins respectively, from 28 twin cohorts (52% females; 38% MZ twins). Together, we had information on individual or parental education from 42 twin cohorts representing 19 countries. The original education classifications were transformed to education years and analyzed using linear regression models. Overall, MZ males had 0.26 (95% CI [0.21, 0.31]) years and MZ females 0.17 (95% CI [0.12, 0.21]) years longer education than DZ twins. The zygosity difference became smaller in more recent birth cohorts for both males and females. Parental education was somewhat longer for fathers of DZ twins in cohorts born in 1990-1999 (0.16 years, 95% CI [0.08, 0.25]) and 2000 or later (0.11 years, 95% CI [0.00, 0.22]), compared with fathers of MZ twins. The results show that the years of both individual and parental education are largely similar in MZ and DZ twins. We suggest that the socio-economic differences between MZ and DZ twins are so small that inferences based upon genetic modeling of twin data are not affected.

  16. A Danish Twin Study of Schizophrenia Liability: Investigation from Interviewed Twins for Genetic Links to Affective Psychoses and for Cross-Cohort Comparisons.

    Science.gov (United States)

    Kläning, Ulla; Trumbetta, Susan L; Gottesman, Irving I; Skytthe, Axel; Kyvik, Kirsten O; Bertelsen, Aksel

    2016-03-01

    We studied schizophrenia liability in a Danish population-based sample of 44 twin pairs (13 MZ, 31 DZ, SS plus OS) in order to replicate previous twin study findings using contemporary diagnostic criteria, to examine genetic liability shared between schizophrenia and other disorders, and to explore whether variance in schizophrenia liability attributable to environmental factors may have decreased with successive cohorts exposed to improvements in public health. ICD-10 diagnoses were determined by clinical interview. Although the best-fitting, most parsimonious biometric model of schizophrenia liability specified variance attributable to additive genetic and non-shared environmental factors, this model did not differ significantly from a model that also included non-additive genetic factors, consistent with recent interview-based twin studies. Schizophrenia showed strong genetic links to other psychotic disorders but much less so for the broader category of psychiatric disorders in general. We also observed a marginally significant decline in schizophrenia variance attributable to environmental factors over successive Western European cohorts, consistent perhaps with improvements in diagnosis and in prenatal and perinatal care and with a secular decline in the prevalence of schizophrenia in that region.

  17. Habitat Options to Protect Against Decompression Sickness on Mars

    Science.gov (United States)

    Conkin, J.

    2000-07-01

    Men and women are alive today, although perhaps still in diapers, who will explore the surface of Mars. Two achievable goals to enable this exploration are to use Martian resources, and to provide a safe means for unrestricted access to the surface. A cost-effective approach for Mars exploration is to use the available resources, such as water and atmospheric gases. Nitrogen (N2) and Argon (Ar) in a concentration ratio of 1.68/1.0 are available, and could form the inert gas component of a habitat atmosphere at 8.0, 9.0, or 10.0 pounds per square inch absolute (psia). The habitat and space suit must be designed as an integrated, complementary, system: a comfortable living environment about 85% of the time and a safe working environment about 15% of the time. A goal is to provide a system that permits unrestricted exploration of Mars. However the risk of decompression sickness (DCS) during the extravehicular activity (EVA) in a 3.75 psia suit after exposure to either of the three habitat conditions may limit unrestricted exploration.

  18. Mission Mars India's quest for the red planet

    CERN Document Server

    Lele, Ajey

    2014-01-01

    The objective of the book is to find an answer to the rationale behind the human quest for the Mars exploration. As a comprehensive assessment for this query is undertaken, it is realized that the basic question ‘Why Mars?’ seeks various responses from technological, economic and geopolitical to strategic perspectives. The book is essentially targeted to understand India’s desire to reach Mars. In the process, it also undertakes some implicit questioning of Mars programmes of various other states essentially to facilitate the setting up of the context for an assessment.   The book is divided into two parts: Part I: This covers both science and politics associated with Mars missions in global scenario and discusses the salient features of various Mars Missions undertaken by various countries. Part II: This provides details in regards to India’s Mars Mission.

  19. Cell biology and biotechnology research for exploration of the Moon and Mars

    Science.gov (United States)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to

  20. Mesoscale modeling of the water vapor cycle at Mawrth Vallis: a Mars2020 and ExoMars exploration rovers high-priority landing site

    Science.gov (United States)

    Pla-García, Jorge

    2017-04-01

    . During this transition, there is surface convergence into the rising branch (similar to the inter-tropical convergence zone on Earth), and dual Hadley cells with one circulation in each hemisphere. At this time, the mean surface winds flow from the high latitudes to equator in both hemispheres, providing the possibility for a direct vapor connection [5, 6]. It is likely that transient waves (e.g., storm systems) as well as boundary currents associated with planetary-scale stationary waves could advect and mix water equatorward, along the surface, in opposition to the Hadley Cell. Conclusion: We are studying whether moist air in northern spring/summer makes it to the surface of Mawrth at Ls 90, Ls 140 and Ls 180, three periods with high column abundance of water vapor at mid/high latitudes. The objective is to determine if the circulation (mean or regional) is favorable for the transport of water vapor from the north polar cap to MV where it might activate hygroscopic salts and/or chlorides [7]. Relative humidity at those different seasons is estimated to test for consistency with column abundances derived from orbit observations. If moist air makes it to MV during Ls90, 140 and/or 180, it should be a go-to site due to enhanced habitability implications. References: [1] Pla-García, J., & Rafkin, S. C., 2015: Meteorological predictions for Mars 2020 Exploration Rov-er high-priority landing sites throug MRAMS Mesoscale Modeling. In EGU General Assembly Conference Abstracts (Vol. 17, p. 12605). [2] Rafkin, S. C. R., Haberle, R. M., and T. I. Michaels, 2001: The Mars Regional Atmospheric Modeling System (MRAMS): Model description and selected simulations. Icarus, 151, 228-256. [3] Rafkin, S. C. R., M. R. V. Sta. Maria, and T. I. Michaels, 2002: Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model. Nature, 419, 697-699. [4] Jakosky, B.M., and C.B. Farmer, 1982: The seasonal and global behavior of water vapor in the Mars

  1. A tale of twin Higgs: natural twin two Higgs doublet models

    International Nuclear Information System (INIS)

    Yu, Jiang-Hao

    2016-01-01

    In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit ℤ 2 breaking term. Introducing additional twin Higgs could accommodate spontaneous ℤ 2 breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and ℤ 2 symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit ℤ 2 breaking, radiative ℤ 2 breaking, tadpole-induced ℤ 2 breaking, and quartic-induced ℤ 2 breaking. We investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.

  2. Using Twins to Better Understand Sibling Relationships.

    Science.gov (United States)

    Mark, Katharine M; Pike, Alison; Latham, Rachel M; Oliver, Bonamy R

    2017-03-01

    We compared the nature of the sibling relationship in dyads of varying genetic relatedness, employing a behavioural genetic design to estimate the contribution that genes and the environment have on this familial bond. Two samples were used-the Sisters and Brothers Study consisted of 173 families with two target non-twin children (mean ages = 7.42 and 5.22 years respectively); and the Twins, Family and Behaviour study included 234 families with two target twin children (mean age = 4.70 years). Mothers and fathers reported on their children's relationship with each other, via a postal questionnaire (the Sisters and Brothers Study) or a telephone interview (the Twins, Family and Behaviour study). Contrary to expectations, no mean level differences emerged when monozygotic twin pairs, dizygotic twin pairs, and non-twin pairs were compared on their sibling relationship quality. Behavioural genetic analyses also revealed that the sibling bond was modestly to moderately influenced by the genetic propensities of the children within the dyad, and moderately to substantially influenced by the shared environment common to both siblings. In addition, for sibling negativity, we found evidence of twin-specific environmental influence-dizygotic twins showed more reciprocity than did non-twins. Our findings have repercussions for the broader application of results from future twin-based investigations.

  3. The Influence of Chorion Type on Health Measures at Birth and Dental Development in Australian and Dutch Twins: A Comparative Study

    NARCIS (Netherlands)

    Mihailidis, S.; Bockmann, M.; McConnell, E.; Hughes, T.; van Beijsterveldt, C.E.M.; Boomsma, D.I.; McMaster, M.T.; Townsend, G.

    2015-01-01

    Chorion type may significantly influence the prenatal environment of twins. This study explored the associations between chorion type and gestational age, birth weight, birth length, and the timing of emergence of the first primary tooth in two populations of twins, Australian and Dutch.

  4. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.

    2015-10-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  5. Incidence of spontaneous twin anemia-polycythemia sequence in monochorionic-diamniotic twin pregnancies: Single-center prospective study.

    Science.gov (United States)

    Yokouchi, Tae; Murakoshi, Takeshi; Mishima, Takashi; Yano, Hiroko; Ohashi, Madoka; Suzuki, Takashi; Shinno, Takashi; Matsushita, Mitsuru; Nakayama, Satoru; Torii, Yuichi

    2015-06-01

    The purpose of this study was to prospectively estimate the incidence of spontaneous twin anemia-polycythemia sequence (TAPS) in monochorionic-diamniotic twin pregnancies. We prospectively examined umbilical cord hemoglobin (Hb) and reticulocyte count of consecutive monochorionic-diamniotic twin pregnancies delivered at Seirei Hamamatsu General Hospital from December 2006 to September 2013. We excluded cases of twin-twin transfusion syndrome, intrauterine fetal demise, and missing data (Hb and reticulocyte count missing from the medical record). TAPS was diagnosed using the postnatal criteria of intertwin Hb difference >8.0 g/dL and reticulocyte count ratio >1.7. Acute feto-fetal hemorrhage was defined as Hb difference >7 g/dL and reticulocyte count ratio <1.7. A total of 185 monochorionic-diamniotic twin pregnancies were included in this study. Three fulfilled the diagnostic criteria for postnatal TAPS, and one fulfilled the diagnostic criteria for acute feto-fetal hemorrhage. The incidence of spontaneous TAPS in monochorionic-diamniotic twin pregnancies was 1.6% (3/185) at Seirei Hamamatsu General Hospital. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  6. SUSY meets her twin

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Andrey [Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Département de Physique Théorique and Center for Astroparticle Physics (CAP),Université de Genève,24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel,and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Pokorski, Stefan [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, PL-02-093 Warsaw (Poland); Redigolo, Diego [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,Tel-Aviv 69978 (Israel); Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel); Ziegler, Robert [Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology,Engesserstraße 7, D-76128 Karlsruhe (Germany)

    2017-01-31

    We investigate the general structure of mirror symmetry breaking in the Twin Higgs scenario. We show, using the IR effective theory, that a significant gain in fine tuning can be achieved if the symmetry is broken hardly. We emphasize that weakly coupled UV completions can naturally accommodate this scenario. We analyze SUSY UV completions and present a simple Twin SUSY model with a tuning of around 10% and colored superpartners as heavy as 2 TeV. The collider signatures of general Twin SUSY models are discussed with a focus on the extended Higgs sectors.

  7. From monster to twin reversed arterial perfusion: a history of acardiac twins.

    Science.gov (United States)

    Obladen, Michael

    2010-05-01

    A human being born without heart and head, i.e., the acardius/acranius malformation, has been described since antiquity. Superstition and fear made it a mystical disorder, a sign of God's wrath. The inquisition ruled that acranic infants should not be baptized and located the soul in the brain. Acardia was not associated with twin gestation until the reports of Mery in 1720 and Winslow in 1740. In 1850, Meckel identified the pathogenetic mechanism as reversed perfusion due to large arterio-arterial and veno-venous anastomoses; he believed the heart would fail to develop or arrest during development, and the acardiac fetus would be maintained by arterial perfusion from the pump twin. In 1859, Claudius articulated that after normal initial development, the heart degenerates when reversed flow in the aorta leads to thrombosis. Today, it is assumed that both mechanisms may exist. With the advent of prenatal ultrasound diagnosis and radiofrequency ablation of the acardiac twin's circulation, it became possible to save the pump twin.

  8. Monochorionic twin pregnancies: a systematic approach to ...

    African Journals Online (AJOL)

    Complications unique to these pregnancies include Twin-To-Twin Transfusion Syndrome (TTTS), Twin Polycythaemia Anaemia Sequence (TAPS), Selective Intrauterine Growth Restriction (sIUGR) and death of the co-twin. Adhering to a systematic and objective approach of management, can lead to early recognition and ...

  9. A fundamental parameters approach to calibration of the Mars Exploration Rover Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Campbell, J. L.; Lee, M.; Jones, B. N.; Andrushenko, S. M.; Holmes, N. G.; Maxwell, J. A.; Taylor, S. M.

    2009-04-01

    The detection sensitivities of the Alpha Particle X-ray Spectrometer (APXS) instruments on the Mars Exploration Rovers for a wide range of elements were experimentally determined in 2002 using spectra of geochemical reference materials. A flight spare instrument was similarly calibrated, and the calibration exercise was then continued for this unit with an extended set of geochemical reference materials together with pure elements and simple chemical compounds. The flight spare instrument data are examined in detail here using a newly developed fundamental parameters approach which takes precise account of all the physics inherent in the two X-ray generation techniques involved, namely, X-ray fluorescence and particle-induced X-ray emission. The objectives are to characterize the instrument as fully as possible, to test this new approach, and to determine the accuracy of calibration for major, minor, and trace elements. For some of the lightest elements the resulting calibration exhibits a dependence upon the mineral assemblage of the geological reference material; explanations are suggested for these observations. The results will assist in designing the overall calibration approach for the APXS on the Mars Science Laboratory mission.

  10. Four-dimensional real-time sonographically guided cauterization of the umbilical cord in a case of twin-twin transfusion syndrome.

    Science.gov (United States)

    Timor-Tritsch, Ilan E; Rebarber, Andrei; MacKenzie, Andrew; Caglione, Christopher F; Young, Bruce K

    2003-07-01

    In the past decade, three-dimensional (3D) sonographic technology has matured from a static imaging modality to near-real-time imaging. One of the more notable improvements in this technology has been the speed with which the imaged volume is acquired and displayed. This has enabled the birth of the near-real-time or four-dimensional (4D) sonographic concept. Using the 4D feature of the current 3D sonography machines allows us to follow moving structures, such as fetal motion, in almost real time. Shortly after the emergence of 3D and 4D technology as a clinical imaging tool, its use in guiding needles into structures was explored by other investigators. We present a case in which we used the 4D feature of our sonographic equipment to follow the course and motion of an instrument inserted into the uterus to occlude the umbilical cord of a fetus in a case of twin-twin transfusion syndrome.

  11. Scientific Payload Of The Emirates Mars Mission: Emirates Mars Infrared Spectrometer (Emirs) Overview.

    Science.gov (United States)

    Altunaiji, E. S.; Edwards, C. S.; Christensen, P. R.; Smith, M. D.; Badri, K. M., Sr.

    2017-12-01

    The Emirates Mars Mission (EMM) will launch in 2020 to explore the dynamics in the atmosphere of Mars on a global scale. EMM has three scientific instruments to an improved understanding of circulation and weather in the Martian lower and middle atmosphere. Two of the EMM's instruments, which are the Emirates eXploration Imager (EXI) and Emirates Mars Infrared Spectrometer (EMIRS) will focus on the lower atmosphere observing dust, ice clouds, water vapor and ozone. On the other hand, the third instrument Emirates Mars Ultraviolet Spectrometer (EMUS) will focus on both the thermosphere of the planet and its exosphere. The EMIRS instrument, shown in Figure 1, is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC). It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ µm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beamsplitter and state of the art electronics. This instrument utilizes a 3×3 detector array and a scan mirror to make high-precision infrared radiance measurements over most of a Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere and will capture 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel. After processing through an atmospheric retrieval algorithm, EMIRS will determine the vertical temperature profiles to 50km altitude and measure the column integrated global distribution and abundances of key atmospheric parameters (e.g. dust, water ice (clouds) and water vapor) over the Martian day, seasons and year.

  12. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    Science.gov (United States)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  13. Embedded clays and sulfates in Meridiani Planum, Mars

    NARCIS (Netherlands)

    Flahaut, J.D.; Carter, J.; Poulet, F.; Bibring, J.P.; van Westrenen, W.; Davies, G.R.; Murchie, S.L.

    2014-01-01

    The area of Meridiani Planum on Mars became of particular interest after the detection of coarse-grained, gray hematite, which led to the choice of this region as final landing site for the Mars Exploration Rover Opportunity. Multiple additional minerals have since been detected in the region, both

  14. MARS-OZ - A Design for a Simulated Mars Base in the Australian Outback

    Science.gov (United States)

    Willson, D.; Clarke, J. D. A.; Murphy, G.

    Mars Society Australia has developed the design of a simulated Mars base, MARS-OZ, for deployment in outback Australia. MARS-OZ will provide a platform for a diverse range of Mars analogue research in Australia. The simulated base consists of two mobile modules whose dimensions and shape approximate those of horizontally landed bent biconic spacecraft described in an earlier paper. The modules are designed to support field engineering, robotics, architectural, geological, biological and human factors research at varying levels of simulation fidelity. Non-Mars related research can also be accommodated, for example general field geology and biology, and engineering research associated with sustainable, low impact architecture. Crews of up to eight can be accommodated. In addition to its research function, the base also will serve as a centre of space education and outreach activities. The prime site for the MARS-OZ simulated base is located in the northern Flinders Ranges near Arkaroola in South Australia. This region contains many features that provide useful scientific analogues to known or possible past and present conditions on Mars from both a geological and biological perspective. The features will provide a wealth of study opportunities for crews. The very diverse terrain and regolith materials will provide ideal opportunities to field trial a range of equipment, sensors and exploration strategies. If needed, the prime site can be secured from casual visitors, allowing research into human interaction in isolation. Despite its relative isolation, the site is readily accessible by road and air from major Australian centres. This paper provides description of the configuration, design and construction of the proposed facility, its interior layout, equipment and systems fitouts, a detailed cost estimate, and its deployment. We estimate that the deployment of MARS-OZ could occur within nine months of securing funding.

  15. Change in Depression Symptomatology and Cognitive Function in Twins

    DEFF Research Database (Denmark)

    Petersen, Inge; McGue, Matt; Tan, Qihua

    2016-01-01

    of correlated traits. Here, we have applied twin modeling approaches to shed light on the genetic correlation between both level and change of depression symptomatology and cognitive functioning, and to further explore the bidirectionality of any such correlation using assessments of both phenotypes at two......A complex interrelation exists between change in depression symptomatology and cognitive decline. Studies indicate either that depression is a direct risk factor for cognitive change over time, or vice versa. Longitudinal twin studies provide the possibility to unravel cause and effect......-sectional heritability estimates of approximately 60% for general cognitive abilities and 30% for affective depressive symptoms. There was a considerable decline in the mean cognitive performance over 10 years, whereas the mean affective depression symptoms score was stable and with no genetic contribution to any...

  16. Familial resemblance in religiousness in a secular society: a twin study.

    Science.gov (United States)

    Hvidtjørn, Dorte; Petersen, Inge; Hjelmborg, Jacob; Skytthe, Axel; Christensen, Kaare; Hvidt, Niels C

    2013-04-01

    It is well known that human behavior and individual psychological traits are moderately to substantially heritable. Over the past decade, an increasing number of studies have explored the genetic and environmental influence on religiousness. These studies originate predominantly from countries generally considered more religious than the very secular northern European countries. Comparisons of the results are complicated by diverse definitions of religiousness, but several studies indicate that the influence of the family environment is most predominant in early life, whereas genetic influences increase with age. We performed a population-based twin study of religiousness in a secular society using data from a Web-based survey sent to 6,707 Danish twins born 1970-1989, who were identified in the Danish Twin Registry. We applied Fishman's three conceptual dimensions of religiousness: cognition, practice, and importance. In all polygenic models and biometric analyses, we controlled for gender and age. The study sample comprised 2,237 same sex twins, a response rate of 45%. We found high correlations within both monozygotic and dizygotic twin pairs in most items of religiousness, indicating a large influence from shared environmental factors. Personal religiousness such as praying to God, believing in God, and finding strength and comfort in religion were more influenced by genetic factors than were social forms of religiousness such as church attendance. We found a small tendency for increasing genetic influence with increasing age for some religious items, but not for all.

  17. Mars Mission Specialist

    Science.gov (United States)

    Burton, Bill; Ogden, Kate; Walker, Becky; Bledsoe, Leslie; Hardage, Lauren

    2018-01-01

    For the last several years, the authors have implemented an integrated Mars Colony project for their third-grade classes. Students explored several considerations related to colonizing and inhabiting a new world, including food sources, types of citizens, transportation, and housing design. Nearly everything about the project was open-ended, full…

  18. Searching for Life: The Case for Halobacteria on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    A major objective for NASA exploration of Mars is to determine whether life has existed on Mars in the past, and whether such life on Mars may persist to the present day. On Earth, life exists in all niches in which water exists in liquid form for at least a portion of the year. On Mars, any liquid water would have to be a highly concentrated brine solution. It is likely, therefore, that any present-day Martian microorganisms would be similar to terrestrial halophiles.

  19. Characterizing Blood Metabolomics Profiles Associated with Self-Reported Food Intakes in Female Twins.

    Science.gov (United States)

    Pallister, Tess; Jennings, Amy; Mohney, Robert P; Yarand, Darioush; Mangino, Massimo; Cassidy, Aedin; MacGregor, Alexander; Spector, Tim D; Menni, Cristina

    2016-01-01

    Using dietary biomarkers in nutritional epidemiological studies may better capture exposure and improve the level at which diet-disease associations can be established and explored. Here, we aimed to identify and evaluate reproducibility of novel biomarkers of reported habitual food intake using targeted and non-targeted metabolomic blood profiling in a large twin cohort. Reported intakes of 71 food groups, determined by FFQ, were assessed against 601 fasting blood metabolites in over 3500 adult female twins from the TwinsUK cohort. For each metabolite, linear regression analysis was undertaken in the discovery group (excluding MZ twin pairs discordant [≥1 SD apart] for food group intake) with each food group as a predictor adjusting for age, batch effects, BMI, family relatedness and multiple testing (1.17x10-6 = 0.05/[71 food groups x 601 detected metabolites]). Significant results were then replicated (non-targeted: Pfood groups (Pfood intake for potential use in nutritional epidemiological studies. We compiled our findings into the DietMetab database (http://www.twinsuk.ac.uk/dietmetab-data/), an online tool to investigate our top associations.

  20. A tale of twin Higgs: natural twin two Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jiang-Hao [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts Amherst,710 North Pleasant St., Amherst, MA 01002 (United States)

    2016-12-28

    In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit ℤ{sub 2} breaking term. Introducing additional twin Higgs could accommodate spontaneous ℤ{sub 2} breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and ℤ{sub 2} symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit ℤ{sub 2} breaking, radiative ℤ{sub 2} breaking, tadpole-induced ℤ{sub 2} breaking, and quartic-induced ℤ{sub 2} breaking. We investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.

  1. Demonstration of Critical Systems for Propellant Production on Mars for Science and Exploration Missions

    Science.gov (United States)

    Linne, Diane L.; Gaier, James R.; Zoeckler, Joseph G.; Kolacz, John S.; Wegeng, Robert S.; Rassat, Scot D.; Clark, D. Larry

    2013-01-01

    A Mars hopper has been proposed as a Mars mobility concept that will also demonstrate and advance in-situ resource utilization. The components needed in a Mars propellant production plant have been developed to various levels of technology maturity, but there is little experience with the systems in a Mars environment. Two systems for the acquisition and compression of the thin carbon dioxide atmosphere were designed, assembled, and tested in a Mars environment chamber. A microchannel sorption pump system was able to raise the pressure from 7 Torr to 450 Torr or from 12 Torr to over 700 Torr in two stages. This data now provides information needed to make additional improvements in the sorption pump technology to increase performance, although a system-level analysis might prove that some amount of pre- or post-compression may be a preferred solution. A mini cryofreezer system was also evaluated as an alternative method for carbon dioxide acquisition and compression. Finally, an electrolysis system was tested and successfully demonstrated start-up operation and thermal stability of all components during long-term operation in the chamber.

  2. Simulation and Spacecraft Design: Engineering Mars Landings.

    Science.gov (United States)

    Conway, Erik M

    2015-10-01

    A key issue in history of technology that has received little attention is the use of simulation in engineering design. This article explores the use of both mechanical and numerical simulation in the design of the Mars atmospheric entry phases of the Viking and Mars Pathfinder missions to argue that engineers used both kinds of simulation to develop knowledge of their designs' likely behavior in the poorly known environment of Mars. Each kind of simulation could be used as a warrant of the other's fidelity, in an iterative process of knowledge construction.

  3. Mars Molniya Orbit Atmospheric Resource Mining

    Science.gov (United States)

    Mueller, Robert P.; Braun, Robert D.; Sibille, Laurent; Sforzo, Brandon; Gonyea, Keir; Ali, Hisham

    2016-01-01

    This NIAC (NASA Advanced Innovative Concepts) work will focus on Mars and will build on previous efforts at analyzing atmospheric mining at Earth and the outer solar system. Spacecraft systems concepts will be evaluated and traded, to assess feasibility. However the study will primarily examine the architecture and associated missions to explore the closure, constraints and critical parameters through sensitivity studies. The Mars atmosphere consists of 95.5 percent CO2 gas which can be converted to methane fuel (CH4) and Oxidizer (O2) for chemical rocket propulsion, if hydrogen is transported from electrolyzed water on the Mars surface or from Earth. By using a highly elliptical Mars Molniya style orbit, the CO2 atmosphere can be scooped, ram-compressed and stored while the spacecraft dips into the Mars atmosphere at periapsis. Successive orbits result in additional scooping of CO2 gas, which also serves to aerobrake the spacecraft, resulting in a decaying Molniya orbit.

  4. Preparing for Humans at Mars, MPPG Updates to Strategic Knowledge Gaps and Collaboration with Science Missions

    Science.gov (United States)

    Baker, John; Wargo, Michael J.; Beaty, David

    2013-01-01

    The Mars Program Planning Group (MPPG) was an agency wide effort, chartered in March 2012 by the NASA Associate Administrator for Science, in collaboration with NASA's Associate Administrator for Human Exploration and Operations, the Chief Scientist, and the Chief Technologist. NASA tasked the MPPG to develop foundations for a program-level architecture for robotic exploration of Mars that is consistent with the President's challenge of sending humans to the Mars system in the decade of the 2030s and responsive to the primary scientific goals of the 2011 NRC Decadal Survey for Planetary Science. The Mars Exploration Program Analysis Group (MEPAG) also sponsored a Precursor measurement Strategy Analysis Group (P-SAG) to revisit prior assessments of required precursor measurements for the human exploration of Mars. This paper will discuss the key results of the MPPG and P-SAG efforts to update and refine our understanding of the Strategic Knowledge Gaps (SKGs) required to successfully conduct human Mars missions.

  5. Ties of silence--Family lived experience of selective mutism in identical twins.

    Science.gov (United States)

    Albrigtsen, Vårin; Eskeland, Benedicte; Mæhle, Magne

    2016-04-01

    This article is based on an in-depth interview with a pair of twins diagnosed with selective mutism and their parents 2 years after recovery. Selective mutism (SM) is a rare disorder, and identical twins sharing the condition are extremely rare. The twins developed SM simultaneously during their first year of school. The treatment and follow-up they received for several years are briefly described in this article. The interview explored the children's and their parents' narratives about the origin of the condition, the challenges it entailed in their daily lives, and what they found helpful in the treatment they were offered. In the interview, the children conveyed experiences that even the parents were unaware of and revealed examples of daily life-traumas for which they were unable to obtain support and help. The whole family was trapped in the silence. The twins and their parents emphasized different aspects in terms of what they believed were helpful. The implications of these findings for our understanding and treatment of children with SM are discussed, as well as the potential of service user involvement in child and adolescent mental health research. © The Author(s) 2015.

  6. OHB's Exploration Capabilities Overview Relevant to Mars Sample Return Mission

    Science.gov (United States)

    Jaime, A.; Gerth, I.; Rohrbeck, M.; Scheper, M.

    2018-04-01

    The presentation will give an overview to all the OHB past and current projects that are relevant to the Mars Sample Return (MSR) mission, including some valuable lessons learned applicable to the upcoming MSR mission.

  7. Establishing a Twin Registry in Guinea-Bissau

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Morten; Gomes, Margarida A; Joaquím, Luis C

    2013-01-01

    represent a powerful tool. Though twin studies have been carried out by the Bandim Health Project for more than 30 years, the renewed registry described here was officially established in 2009 and includes both a cohort of newborn twins and a cohort of young and adult twins. Currently more than 1,500 twins...

  8. Anorexia and bulimia nervosa in same-sex and opposite-sex twins: lack of association with twin type in a nationwide study of Finnish twins.

    Science.gov (United States)

    Raevuori, Anu; Kaprio, Jaakko; Hoek, Hans W; Sihvola, Elina; Rissanen, Aila; Keski-Rahkonen, Anna

    2008-12-01

    The authors tested the hypothesis that either prenatal feminization or masculinization hormone influences in utero or later socialization affects the risk for anorexia and bulimia nervosa and disordered eating in members of opposite-sex twin pairs. Finnish twins (N=2,426 women, N=1,962 men with known zygosity) from birth cohorts born 1974-1979 were assessed at age 22 to 28 years with a questionnaire for eating disorder symptoms. Based on the questionnaire screen, women (N=292), men (N=53), and their cotwins were interviewed to assess diagnoses of anorexia nervosa and bulimia nervosa (per DSM-IV and broad criteria). In women from opposite-sex twin pairs, the prevalence of DSM-IV or broad anorexia nervosa was not significantly different than that of women from monozygotic pairs or same-sex dizygotic pairs. Of the five male anorexia nervosa probands, only one was from an opposite-sex twin pair. Bulimia nervosa in men was too rare to be assessed by zygosity; the prevalence of DSM-IV or broad bulimia nervosa did not differ in women from opposite- versus same-sex twin pairs. In both sexes, the overall profile of indicators on eating disorders was rather similar between individuals from opposite- and same-sex pairs. The authors found little evidence that the risk for anorexia nervosa, bulimia nervosa, or disordered eating was associated with zygosity or sex composition of twin pairs, thus making it unlikely that in utero femininization or masculinization or socialization effects of growing up with an opposite-sex twin have a major influence on the later development of eating disorders.

  9. Heteropagus twinning on back -- a case report.

    Science.gov (United States)

    Debnath, Bidyut; Biswas, Sumitra Kumar

    2011-07-01

    Heteropagus twins, also called parasitic twins, are malformation of the foetus where the development of one twin is incomplete. They are attached most commonly to the lower chest and upper abdomen. We report a case of heteropagus twin, where the parasite possessed well-formed limb as well as blind ending intestine. It was attached to the back of the host by a broad pedicle. We take this opportunity to classify areas of confusion prevailing regarding twinning, foetus in foetu, teratoma and caudal duplication.

  10. Time trends in the natural dizygotic twinning rate.

    Science.gov (United States)

    Derom, Catherine; Gielen, Marij; Peeters, Hilde; Frijns, Jean-Pierre; Zeegers, Maurice P A

    2011-08-01

    The natural dizygotic (DZ) twinning rate has been proposed as a reliable and useful measure of human fecundity, if adjusted for maternal age at twin birth. The aim of this study was to analyze age-adjusted trends in natural DZ twinning rates over the past 40 years using data from the 'East Flanders Prospective Twin Survey (EFPTS)'. This study involved 4835 naturally conceived twin pregnancies between 1969 and 2009 from the population-based Belgian 'EFPTS'. Age-adjusted trends in the incidence of natural DZ twin pregnancies were calculated using a generalized linear model with Poisson distribution. Both the natural DZ twinning rates and maternal age at twin birth increased in a linear fashion from 1969 to 2009. When age-adjusted, we found that the trend in the natural DZ twinning rate was stable during the whole time period. According to our population-based data and after age-adjustment, a stable natural DZ twinning rate could be observed over the last four decades. Under the assumption that the spontaneous DZ twinning rate is a sensor of fecundity, this indicates a stable 'high' fecundity for this population.

  11. Why send humans to Mars?

    Science.gov (United States)

    Sagan, Carl

    1991-01-01

    The proposed Space Exploration Initiative (SDI) to launch a manned flight to Mars is examined in the current light of growing constraints in costs and other human requirements. Sharing the huge costs of such a program among a group of nations might become low enough for the project to be feasible. Robotic missions, equipped with enhanced artificial intelligence, appear to be capable of satisfying mission requirements at 10 percent or less, of the cost of a manned flight. Various additional pros and cons are discussed regarding both SDI generally and a Mars mission. It is suggested that R&D projects be pursued that can be better justified and can also contribute to human mission to Mars if eventually a decision to go is made.

  12. Mars extant-life campaign using an approach based on Earth-analog habitats

    Science.gov (United States)

    Palkovic, Lawrence A.; Wilson, Thomas J.

    2005-01-01

    The Mars Robotic Outpost group at JPL has identified sixteen potential momentous discoveries that if found on Mars would alter planning for the future Mars exploration program. This paper details one possible approach to the discovery of and response to the 'momentous discovery'' of extant life on Mars. The approach detailed in this paper, the Mars Extant-Life (MEL) campaign, is a comprehensive and flexible program to find living organisms on Mars by studying Earth-analog habitats of extremophile communities.

  13. Twins with omphalocele in Denmark (1970-1989)

    DEFF Research Database (Denmark)

    Bugge, Merete

    2010-01-01

    Seven pairs of twins, two monozygotic (MZ), two dizygotic (DZ), and three like-sex pairs of unknown zygosity are described. The twin pairs were all discordant for omphalocele except for one pair of conjoined twins. The 8 infants with omphalocele represent 3.1% of the 253 infants with omphalocele......, ascertained in an almost complete nationwide data set of live- and stillborn infants with abdominal wall defects in two decades in Denmark (1970-1989). The occurrence of twins with omphalocele was not significantly different from the occurrence of twins in the Danish population in the same period. To our...... knowledge this is the first report of the occurrence of twins with omphalocele in a systematic nationwide epidemiological study....

  14. Archiving Data From the 2003 Mars Exploration Rover Mission

    Science.gov (United States)

    Arvidson, R. E.

    2002-12-01

    The two Mars Exploration Rovers will touch down on the red planet in January 2004 and each will operate for at least 90 sols, traversing hundreds of meters across the surface and acquiring data from the Athena Science Payload (mast-based multi-spectral, stereo-imaging data and emission spectra; arm-based in-situ Alpha Particle X-Ray (APXS) and Mössbauer Spectroscopy, microscopic imaging, coupled with use of a rock abrasion tool) at a number of locations. In addition, the rovers will acquire science and engineering data along traverses to characterize terrain properties and perhaps be used to dig trenches. An "Analyst's Notebook" concept has been developed to capture, organize, archive and distribute raw and derived data sets and documentation (http://wufs.wustl.edu/rover). The Notebooks will be implemented in ways that will allow users to "playback" the mission, using executed commands to drive animated views of rover activities, and pop-up windows to show why particular observations were acquired, along with displays of raw and derived data products. In addition, the archive will include standard Planetary Data System files and software for processing to higher-level products. The Notebooks will exist both as an online system and as a set of distributable Digital Video Discs or other appropriate media. The Notebooks will be made available through the Planetary Data System within six months after the end of observations for the relevant rovers.

  15. Twin anemia polycythemia sequence

    NARCIS (Netherlands)

    Slaghekke, Femke

    2014-01-01

    In this thesis we describe that Twin Anemia Polycythemia Sequence (TAPS) is a form of chronic feto-fetal transfusion in monochorionic (identical) twins based on a small amount of blood transfusion through very small anastomoses. For the antenatal diagnosis of TAPS, Middle Cerebral Artery – Peak

  16. The Danish Twin Registry

    DEFF Research Database (Denmark)

    Skytthe, Axel; Ohm Kyvik, Kirsten; Vilstrup Holm, Niels

    2011-01-01

    Introduction: The Danish Twin Registry is a unique source for studies of genetic, familial and environmental factors on life events, health conditions and diseases. Content: More than 85,000 twin pairs born 1870-2008 in Denmark. Validity and coverage: Four main ascertainment methods have been emp...

  17. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm.

    Science.gov (United States)

    Bruynseels, Koen; Santoni de Sio, Filippo; van den Hoven, Jeroen

    2018-01-01

    Personalized medicine uses fine grained information on individual persons, to pinpoint deviations from the normal. 'Digital Twins' in engineering provide a conceptual framework to analyze these emerging data-driven health care practices, as well as their conceptual and ethical implications for therapy, preventative care and human enhancement. Digital Twins stand for a specific engineering paradigm, where individual physical artifacts are paired with digital models that dynamically reflects the status of those artifacts. When applied to persons, Digital Twins are an emerging technology that builds on in silico representations of an individual that dynamically reflect molecular status, physiological status and life style over time. We use Digital Twins as the hypothesis that one would be in the possession of very detailed bio-physical and lifestyle information of a person over time. This perspective redefines the concept of 'normality' or 'health,' as a set of patterns that are regular for a particular individual , against the backdrop of patterns observed in the population. This perspective also will impact what is considered therapy and what is enhancement, as can be illustrated with the cases of the 'asymptomatic ill' and life extension via anti-aging medicine. These changes are the consequence of how meaning is derived, in case measurement data is available. Moral distinctions namely may be based on patterns found in these data and the meanings that are grafted on these patterns. Ethical and societal implications of Digital Twins are explored. Digital Twins imply a data-driven approach to health care. This approach has the potential to deliver significant societal benefits, and can function as a social equalizer, by allowing for effective equalizing enhancement interventions. It can as well though be a driver for inequality, given the fact that a Digital Twin might not be an accessible technology for everyone, and given the fact that patterns identified across a

  18. Nature versus nurture: identical twins and bariatric surgery.

    Science.gov (United States)

    Hagedorn, Judith C; Morton, John M

    2007-06-01

    Genetics and environment both play a role in weight maintenance. Twin studies may help clarify the influence of nature vs nurture in weight loss. We present the largest U.S. experience with monozygotic (MZ) twins undergoing bariatric surgery. We retrospectively reviewed the charts of four sets of MZ twins who underwent Roux-en-Y gastric bypass (RYGBP) surgery and laparoscopic adjustable gastric band (LAGB) placement at three different institutions. BMI and co-morbidities were examined pre- and postoperatively, and laboratory values were recorded. All four sets of twins are female, live together, and have similar professions. Twin cohort 1 had near identical weight loss patterns after open RYGBP surgery in 1996 (preop 146/142 kg; 2 years 82/82; and 10 years 108/107). Twin cohort 1 also both underwent cholecystectomies within the first year postoperatively. Twin cohort 2 underwent laparoscopic RYGBP surgery and also required cholecystectomies in the first postoperative year. Cohort 2 also experienced nearly identical weight loss at 1 year (36.7% vs 37.0% BMI loss). Twin cohort 3 underwent LAGB placement with two different surgeons with differing amounts of weight loss at 6 months (6.5% vs 15.7% BMI loss). Finally, twin cohort 4 underwent laparoscopic RYGBP with 2-year BMI loss of 39% vs 34%. In twin cohort 4, the twin who lost less weight lived apart from her twin and extended family, and her weight loss was less than the twin living with her family. Two sets of MZ twins had identical responses to bariatric surgery. The other two sets of identical twins had differential weight loss results, possibly due to differences in surgical approach and social support. While genetics do exert a strong influence on weight loss and maintenance, this case series demonstrates the potential effect of social support and postoperative management upon postoperative weight loss in the presence of identical genetics.

  19. Illustrations of the twin paradox

    International Nuclear Information System (INIS)

    Rebhan, E.

    1985-01-01

    In order to provide a more intuitive understanding of the twin paradox, several illustrations of this are presented. In one of these, each of the twins is equipped with a lamp whose monochromatic light can be observed by the other. In other illustrations the travelling twin uses an Einstein train instead of a space ship, all the cars of the train and all stations along the route of the train being equipped with clocks. (author)

  20. Twins in Ancient Greece: a synopsis.

    Science.gov (United States)

    Malamitsi-Puchner, Ariadne

    2016-01-01

    This brief outline associates twins with several aspects of life in Ancient Greece. In Greek mythology twins caused ambivalent reactions and were believed to have ambivalent feelings for each other. Very often, they were viewed as the representatives of the dualistic nature of the universe. Heteropaternal superfecundation, which dominates in ancient myths, explains on one hand, the god-like qualities and, on the other hand, the mortal nature of many twins. An assumption is presented that legends referring to twins might reflect the territorial expansions of Ancient Greeks in Northern Mediterranean, around the Black Sea, in Asia Minor, as well as North East Africa. In conclusion, in Greek antiquity, twins have been used as transitional figures between myth and reality.

  1. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, K.W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhfer, G.; McEwen, A.; Rice, J.W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity

  2. A concept for NASA's Mars 2016 astrobiology field laboratory.

    Science.gov (United States)

    Beegle, Luther W; Wilson, Michael G; Abilleira, Fernando; Jordan, James F; Wilson, Gregory R

    2007-08-01

    The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.

  3. Twin birth order, birthweight and birthweight discordance: any relationship

    Directory of Open Access Journals (Sweden)

    Onyiriuka A.N.

    2010-12-01

    Full Text Available Background: It is widely believed that in twin pairs, at birth, the first-born weigh more than the second-born but this concept has been challenged. Objective: To assess the truthfulness of this common concept that first-born twins are usually heavier than their second-born siblings at birth. Methods: In a series of 104 sets of live-born twins, the birth weights of first-born twins were compared with those of their second-born siblings, after controlling for gender. Their intra-pair birthweight differences were determined and twin pairs whose birthweight difference was 15% or more were designated as discordant. Results: Twin I was heavier than Twin II in 61.5% of cases while Twin II was heavier than Twin I in 28.9% of cases. Twins I and II had equal birthweights in 9.6% of cases. Comparing the mean birthweight of the first-born-male twin with that of second-born- male twin, it was 2515+427g (95% Confidence Interval, CI=2402-2628 versus 2432 +435g (95% CI=2321-2543 p>0.05. The mean birthweight of first-born-female twin was 2326+445g (95% CI=2214-2439 while that of the second-born-female twin was 2325+501g (95% CI=2197-2453 p>0.05. When the birthweight difference exceeded 750g, the probability that Twin I will be heavier than Twin II was 83.3% (5 of 6. Conclusion: Although the first-born twin was more often heavier than their second-born siblings, either could weigh more or less at birth. The larger the birthweight difference between growth-discordant twin pair, the greater the probability that the heavier twin would be delivered first

  4. Reporting on Strategic Considerations About the Role of Science in Initial Human Missions to Mars

    Science.gov (United States)

    Beaty, David; Bass, Deborah; Thronson, Harley; Hays, Lindsay; Carberry, Chris; Cassady, Joe; Craig, Mark; Duggan, Matt; Drake, Bret; Stern, Jennifer; Zucker, Rick

    2016-07-01

    In December 2015, the "Third Community Workshop on Affording and Sustaining Human Mars Exploration" (AM III) was held, which was designed to provide community recommendations on the potential human exploration of Mars. To facilitate the workshop, we focused on two key questions: 1) From the dual and interrelated perspectives of affordability and sustainability, what are the strengths/challenges of Mars exploration scenarios?; and 2) From the perspective of prioritized scientific objectives for the martian system (the planet's surface or its moons), what are the most enabling capabilities of the different exploration architecture(s) and why? Group discussion over three days resulted in the following findings and observations: 1. NASA's incremental approach to deep-space exploration defines the so-called "Proving Ground," specifically in cis-lunar space, generally occurring in the 2020s and prior to human journeys to Mars. We concluded that there are capabilities directly related to, and on the critical path to, human exploration of Mars that could be developed in cis-lunar space. However, we also concluded that the Proving Ground should best be viewed as a campaign that occurs within a certain timeframe (including activities at Mars), rather than merely occurring at a specific location. 2. The workshop participants agreed that the most valuable purposes of sending humans to the martian system would be accomplished only by surface operations. We concluded that specific benefits, both technical and cost, of sending humans to the Mars system without landing on the martian surface should be assessed in depth. We discussed - although were unable to conclude - whether Mars orbit or Phobos/Deimos as a destination would make sufficient contributions towards humans landing on the martian surface or to answering high-priority science questions (as identified by the Decadal Survey) to justify their associated costs and possible risks. Further study on the value of an orbital

  5. Water and Life on Mars

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Although the Viking results may indicate that Mars has no life today, there is direct geomorphological evidence that, in the past, Mars had large amounts of liquid water on its surface - possibly due to a thicker atmosphere. From a biological perspective the existence of liquid water, by itself motivates the question of the origin of life on Mars. One of the martian meteorites dates back to this early period and may contain evidence consistent with life. From studies of the Earth's earliest biosphere we know that by 3.5 Gyr. ago, life had originated on Earth and reached a fair degree of biological sophistication. Surface activity and erosion on Earth make it difficult to trace the history of life before the 3.5 Gyr timeframe. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils.

  6. Association between the birth of twins and parental divorce.

    Science.gov (United States)

    Jena, Anupam B; Goldman, Dana P; Joyce, Geoffrey

    2011-04-01

    Mothers of multiple births face higher rates of postpartum depression, yet evidence on the marital consequences of multiple births is limited. We examined the association between twin births and parental divorce. We used the 1980 U.S. Census to identify a large sample of mothers with and without twin births. The goal was to estimate multivariate logistic models of the association between birth of twins and divorce adjusting for race, age at marriage and first birth, and college education. We examined whether the association was affected by maternal education, age and sex composition of twins, and family size. Twins at first birth were associated with greater parental divorce compared with singletons (odds ratio, 1.08; 95% confidence interval, 1.01-1.16; absolute risk 13.7% with twins compared with 12.7%; P=.02). The association was statistically greater among mothers not attending college (14.9% with twins compared with 13.3%; P=.01) compared with those with some college (10.4% with twins compared with 10.5%; P=.34); those with children older than 8 years (15.6% with twins compared with 13.5%; P<.01) compared with younger children (10.6% with twins compared with 10.8%; P=.42); and those with at least one twin girl (13.8% with twins compared with 12.6%; P=.03) compared with twin boys (12.1% with twins compared with 12.5%, P=.38). Mothers with four or more children had a larger association between birth of twins and divorce (15.4% for mothers with twins at fourth birth compared with 11.3% for all other mothers with four or more children; P<.01) compared with mothers with twins at first birth (13.7% for twins at first birth compared with 12.7%; P=.02). Health consequences of twin births for children and mothers are well known. Twin births may be associated with longer-term parental divorce. Specific groups, namely mothers not completing college and mothers who already have more children, may be at higher risk. II.

  7. Implementing Strategic Planning Capabilities Within the Mars Relay Operations Service

    Science.gov (United States)

    Hy, Franklin; Gladden, Roy; Allard, Dan; Wallick, Michael

    2011-01-01

    Since the Mars Exploration Rovers (MER), Spirit and Opportunity, began their travels across the Martian surface in January of 2004, orbiting spacecraft such as the Mars 2001 Odyssey orbiter have relayed the majority of their collected scientific and operational data to and from Earth. From the beginning of those missions, it was evident that using orbiters to relay data to and from the surface of Mars was a vastly more efficient communications strategy in terms of power consumption and bandwidth compared to direct-to-Earth means. However, the coordination between the various spacecraft, which are largely managed independently and on differing commanding timelines, has always proven to be a challenge. Until recently, the ground operators of all these spacecraft have coordinated the movement of data through this network using a collection of ad hoc human interfaces and various, independent software tools. The Mars Relay Operations Service (MaROS) has been developed to manage the evolving needs of the Mars relay network, and specifically to standardize and integrate the relay planning and coordination data into a centralized infrastructure. This paper explores the journey of developing the MaROS system, from inception to delivery and acceptance by the Mars mission users.

  8. The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Shterner, Vadim; Timokhina, Ilana B.; Rollett, Anthony D.; Beladi, Hossein

    2018-04-01

    In the current study, the dependence of mechanical twinning on grain orientation and grain boundary characteristics was investigated using quasi in-situ tensile testing. The grains of three main orientations (i.e., , , and parallel to the tensile axis (TA)) and certain characteristics of grain boundaries (i.e., the misorientation angle and the inclination angle between the grain boundary plane normal and the TA) were examined. Among the different orientations, and were the most and the least favored orientations for the formation of mechanical twins, respectively. The orientation was intermediate for twinning. The annealing twin boundaries appeared to be the most favorable grain boundaries for the nucleation of mechanical twinning. No dependence was found for the inclination angle of annealing twin boundaries, but the orientation of grains on either side of the annealing twin boundary exhibited a pronounced effect on the propensity for mechanical twinning. Annealing twin boundaries adjacent to high Taylor factor grains exhibited a pronounced tendency for twinning regardless of their inclination angle. In general, grain orientation has a significant influence on twinning on a specific grain boundary.

  9. The resources of Mars for human settlement

    Science.gov (United States)

    Meyer, Thomas R.; Mckay, Christopher P.

    1989-01-01

    Spacecraft exploration of Marshas shown that the essential resources necessary for life support are present on the Martian surface. The key life-support compounds O2, N2, and H2O are available on Mars. The soil could be used as radiation shielding and could provide many useful industrial and construction materials. Compounds with high chemical energy, such as rocket fuels, can be manufactured in-situ on Mars. Solar power, and possibly wind power, are available and practical on Mars. Preliminary engineering studies indicate that fairly autonomous processes can be designed to extract and stockpile Martian consumables.

  10. Testicular cancer in twins: a meta-analysis.

    Science.gov (United States)

    Neale, R E; Carrière, P; Murphy, M F G; Baade, P D

    2008-01-15

    In a meta-analysis of testicular cancer in twins, twins had a 30% increased risk (estimate 1.31, 95% CI 1.1-1.6), providing indirect support for the hypothesis that in utero hormone variations influence risk of testicular cancer. The summary-estimate for dizygotic twins was 1.3 (1.0-1.7) and for monozygotic or same sex twins 1.4 (1.2-1.8).

  11. The Mid-Atlantic Twin Registry, revisited.

    Science.gov (United States)

    Lilley, Emily C H; Silberg, Judy L

    2013-02-01

    The Mid-Atlantic Twin Registry (MATR) is a population-based registry of more than 56,000 twins primarily born or living in Virginia, North Carolina, and South Carolina. The MATR employs several methods of ascertaining twins, and devotes considerable resources to tracking and maintaining communication with MATR participants. Researchers may utilize the MATR for administration of research services including study recruitment, collection of DNA, archival data set creation, as well as data collection through mailed, phone, or online surveys. In addition, the MATR houses the MATR Repository, with over 1,200 blood samples available for researchers interested in DNA genotyping. For over 35 years MATR twins have participated in research studies with investigators from diverse scientific disciplines and various institutions. These studies, which have resulted in numerous publications, have covered a range of topics, including the human microbiome, developmental psychopathology, depression, anxiety, substance use, epigenetics of aging, children of twins, pre-term birth, social attitudes, seizures, eating disorders, as well as sleep homeostasis. Researchers interested in utilizing twins are encouraged to contact the MATR to discuss potential research opportunities.

  12. Prosocial and self-interested intra-twin pair behavior in monozygotic and dizygotic twins in the early to middle childhood transition.

    Science.gov (United States)

    Yirmiya, Karen; Segal, Nancy L; Bloch, Guy; Knafo-Noam, Ariel

    2018-04-06

    Several related and complementary theoretical frameworks have been proposed to explain the existence of prosocial behavior, despite its potential fitness cost to the individual. These include kin selection theory, proposing that organisms have a propensity to help those to whom they are genetically related, and reciprocity, referring to the benefit of being prosocial, depending on past and future mutual interactions. A useful paradigm to examine prosociality is to compare mean levels of this behavior between monozygotic (MZ) and dizygotic (DZ) twins. Here, we examined the performance of 883 6.5-year-old twins (139 MZ and 302 DZ same-sex 6.5-year-old full twin pairs) in the Differential Productivity Task. In this task, the twins' behaviors were observed under two conditions: working for themselves vs. working for their co-twin. There were no significant differences between the performances of MZ and DZ twins in the prosocial condition of the task. Correlations within the twin dyads were significantly higher in MZ than DZ twins in the self-interested condition. However, similar MZ and DZ correlations were found in the prosocial condition, supporting the role of reciprocity in twins' prosociality towards each other. © 2018 John Wiley & Sons Ltd.

  13. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    Science.gov (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  14. Mars in this century: The Olympia Project

    Science.gov (United States)

    Hyde, Roderick A.; Ishikawa, Muriel Y.; Wood, Lowell L.

    Manned exploration of the inner solar system, typified by a manned expedition of Mars, this side of the indefinite future involves fitting a technical peg into the political hole. If Apollo-level resources are assumed unavailable for such exploratory programs, then non-Apollo means and methods must be employed, involving greater technical and human risks, or else such exploration must be deferred indefinitely. Sketched here is an example of such a relatively high risk alternative, one which could land men on Mars in the next decade, and return them to earth. Two of its key features are a teleoperated rocket fuel generating facility on the lunar surface and an interplanetary mission staging space station at L4, which would serve to enable a continuing solar system exploratory program, with annual mission commencements to points as distant as the Jovian moons. The estimated cost to execute this infrastructure building manned Mars mission is $3 billion, with follow on missions estimated to cost no more than $1 billion each.

  15. 21st century early mission concepts for Mars delivery and earth return

    Science.gov (United States)

    Cruz, Manuel I.; Ilgen, Marc R.

    1990-01-01

    In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.

  16. Genetic influences on variation in female orgasmic function: a twin study

    Science.gov (United States)

    Dunn, Kate M; Cherkas, Lynn F; Spector, Tim D

    2005-01-01

    Orgasmic dysfunction in females is commonly reported in the general population with little consensus on its aetiology. We performed a classical twin study to explore whether there were observable genetic influences on female orgasmic dysfunction. Adult females from the TwinsUK register were sent a confidential survey including questions on sexual problems. Complete responses to the questions on orgasmic dysfunction were obtained from 4037 women consisting of 683 monozygotic and 714 dizygotic pairs of female twins aged between 19 and 83 years. One in three women (32%) reported never or infrequently achieving orgasm during intercourse, with a corresponding figure of 21% during masturbation. A significant genetic influence was seen with an estimated heritability for difficulty reaching orgasm during intercourse of 34% (95% confidence interval 27–40%) and 45% (95% confidence interval 38–52%) for orgasm during masturbation. These results show that the wide variation in orgasmic dysfunction in females has a genetic basis and cannot be attributed solely to cultural influences. These results should stimulate further research into the biological and perhaps evolutionary processes governing female sexual function. PMID:17148182

  17. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Frant, M.; Hecht, M. H.; Kounaves, S. P.; Manatt, K.; Meloy, T. P.; Pike, W. T.; Schubert, W.; West, S.; Wen, X.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry laboratory (WCL). The WCL consists of four identical cells, each of which will evaluate a sample of Martian soil in water to determine conductivity, pH, redox potential, dissolved C02 and 02 levels, and concentrations of many soluble ions including sodium, potassium, magnesium, calcium and the halides. In addition, cyclic voltammetry will be used to evaluate reversible and irreversible oxidants present in the water/soil solution. Anodic stripping voltammetry will be used to measure concentrations of trace metals including lead, copper, and cadmium at ppb levels. Voltammetry is a general electrochemical technique that involves controlling the potential of an electrode while simultaneously measuring the current flowing at that electrode. The WCL experiments will provide information on the corrosivity and reactivity of the Martian soil, as well as on soluble components of the soil which might be toxic to human explorers. They will also guide HEDS scientists in the development of high fidelity Martian soil simulants. In the process of acquiring information relevant to HEDS, the WCL will assess the chemical composition and properties of the salts present in the Martian soil.

  18. Stanford SsTO Mission to Mars: A Realistic, Safe and Cost Effective Approach to Human Mars Exploration Using the Stanford SsTO Launch System

    Science.gov (United States)

    Osborne, Robert D.

    1999-06-01

    In recent years, a lot of time and energy has been spent exploring possible mission scenarios for a human mission to Mars. NASA along with the privately funded Mars Society and a number of universities have come up with many options that could place people on the surface of Mars in a relatively short period of time at a relatively low cost. However, a common theme among all or at least most of these missions is that they require heavy lift vehicles such as the Russian Energia or the NASA proposed Magnum 100MT class vehicle to transport large payloads from the surface of Earth into a staging orbit about Earth. However, there is no current budget or any signs for a future budget to review the Russian Energia, the US made Saturn V, or to design and build a new heavy lift vehicle. However, there is a lot of interest and many companies looking into the possibility of "space planes". These vehicles will have the capability to place a payload into orbit without throwing any parts of the vehicle away. The concept of a space plane is basically that the plane is transported to a given altitude either by it's own power or on the back of another air worthy vehicle before the rocket engines are ignited. From this altitude, a Single Step to Orbit (SsTO) vehicle with a significant payload is possible. This report looks at the possibility of removing the requirement of a heavy lift vehicle by using the Stanford designed Single Step to Orbit.(SsTO) Launch Vehicle. The SsTO would eliminate the need for heavy lift vehicles and actually reduce the cost of the mission because of the very low costs involved with each SSTO launch. Although this scenario may add a small amount of risk assembling transfer vehicles in Earth orbit, it should add no additional risk to the crew.

  19. Clinical Factors Associated With Presentation Change of the Second Twin After Vaginal Delivery of the First Twin.

    Science.gov (United States)

    Panelli, Danielle M; Easter, Sarah Rae; Bibbo, Carolina; Robinson, Julian N; Carusi, Daniela A

    2017-11-01

    To identify clinical factors associated with a change from vertex to nonvertex presentation in the second twin after vaginal birth of the first. We assembled a retrospective cohort of women with viable vertex-vertex twin pregnancies who delivered the presenting twin vaginally. Women whose second twin changed from vertex to nonvertex after vaginal birth of the first were classified as experiencing an intrapartum change in presentation. Characteristics associated with intrapartum presentation change in a univariate analysis with a P value ≤.10 were then evaluated in a multivariate logistic regression model. Four-hundred fifty women met inclusion criteria, of whom 55 (12%) had intrapartum presentation change of the second twin. Women experiencing intrapartum presentation change were more likely to be multiparous (69% compared with 47%, Ppresentation of the second twin between the most recent antepartum ultrasonogram and the ultrasonogram done on admission to labor and delivery (11% compared with 4%, P=.04). In an adjusted analysis, multiparity and gestational age less than 34 weeks were significantly associated with presentation change (adjusted odds ratio [OR] 2.9, 95% CI 1.5-5.6 and adjusted OR 2.6, 95% CI 1.1-5.9, respectively). Women with intrapartum presentation change were more likely to undergo cesarean delivery for their second twin (44% compared with 7%, Ppresentation. Twenty of the 24 (83%) cesarean deliveries performed in the intrapartum presentation change group were done for issues related to malpresentation. Multiparity and gestational age less than 34 weeks are associated with intrapartum presentation change of the second twin.

  20. Seismic exploration for water on Mars

    International Nuclear Information System (INIS)

    Page, T.

    1987-01-01

    It is proposed to soft-land three seismometers in the Utopia-Elysium region and three or more radio controlled explosive charges at nearby sites that can be accurately located by an orbiter. Seismic signatures of timed explosions, to be telemetered to the orbiter, will be used to detect present surface layers, including those saturated by volatiles such as water and/or ice. The Viking Landers included seismometers that showed that at present Mars is seismically quiet, and that the mean crustal thickness at the site is about 14 to 18 km. The new seismic landers must be designed to minimize wind vibration noise, and the landing sites selected so that each is well formed on the regolith, not on rock outcrops or in craters. The explosive charges might be mounted on penetrators aimed at nearby smooth areas. They must be equipped with radio emitters for accurate location and radio receivers for timed detonation

  1. Deformation twinning in irradiated ferritic/martensitic steels

    Science.gov (United States)

    Wang, K.; Dai, Y.; Spätig, P.

    2018-04-01

    Two different ferritic/martensitic steels were tensile tested to gain insight into the mechanisms of embrittlement induced by the combined effects of displacement damage and helium after proton/neutron irradiation in SINQ, the Swiss spallation neutron source. The irradiation conditions were in the range: 15.8-19.8 dpa (displacement per atom) with 1370-1750 appm He at 245-300 °C. All the samples fractured in brittle mode with intergranular or cleavage fracture surfaces when tested at room temperature (RT) or 300 °C. After tensile test, transmission electron microscopy (TEM) was employed to investigate the deformation microstructures. TEM-lamella samples were extracted directly below the intergranular fracture surfaces or cleavage surfaces by using the focused ion beam technique. Deformation twinning was observed in irradiated specimens at high irradiation dose. Only twins with {112} plane were observed in all of the samples. The average thickness of twins is about 40 nm. Twins initiated at the fracture surface, became gradually thinner with distance away from the fracture surface and finally stopped in the matrix. Novel features such as twin-precipitate interactions, twin-grain boundary and/or twin-lath boundary interactions were observed. Twinning bands were seen to be arrested by grain boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of defect free channels, small defect-clusters, dislocation loops and dense small helium bubbles were observed inside twins.

  2. Roentgeno-cephalometric analysis on the twin

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hi Sup; Ahn, Hyung Kyu [College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1972-11-15

    The purpose of this investigation can be sought for studying varients between twin by the cephalometric roentgenog raphic technics. The author have applied Down's, Bjork and Sakamoto's technic and measured in various angulations and length of cephalometric points. The results are as follows; 1. No significantly different data were found between twin. 2. There was no differences between normality and twin.

  3. Use of Geochemistry Data Collected by the Mars Exploration Rover Spirit in Gusev Crater to Teach Geomorphic Zonation through Principal Components Analysis

    Science.gov (United States)

    Rodrigue, Christine M.

    2011-01-01

    This paper presents a laboratory exercise used to teach principal components analysis (PCA) as a means of surface zonation. The lab was built around abundance data for 16 oxides and elements collected by the Mars Exploration Rover Spirit in Gusev Crater between Sol 14 and Sol 470. Students used PCA to reduce 15 of these into 3 components, which,…

  4. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  5. Twin-twin transfusion syndrome: cerebral ischemia is not the only fetal MR imaging finding

    Energy Technology Data Exchange (ETDEWEB)

    Kline-Fath, Beth M. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States); Calvo-Garcia, Maria A.; O' Hara, Sara M.; Racadio, Judy M. [University of Cincinnati Medical Center, Department of Radiology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Crombleholme, Timothy M. [University of Cincinnati Medical Center, Department of Surgery, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2007-01-15

    Twin-twin transfusion syndrome (TTTS) is a complication of monochorionic/diamniotic twin pregnancies. An imbalance of blood flow occurs through placental anastomoses, causing potentially significant morbidity and mortality in both twins. Although the sonographic findings of TTTS are well documented, we believe that MR imaging is a valuable adjunct. We describe the fetal MR imaging findings associated with TTTS. From 2003 to 2005, 37 consecutive MR imaging studies were performed on multiple-gestation pregnancies. Of the 37, 25 were consistent with TTTS, correlated and confirmed by sonographic criteria. MR fetal abnormalities were documented. Cerebral ischemia, which could not be demonstrated by sonography, was delineated well by MR imaging. New findings noted on fetal MR imaging were enlargement of cerebral venous sinuses in both twins, dilatation of the renal collecting system in the recipient, lung lesions in the recipient and cerebral malformations in the donor. MR imaging is an important adjunct in TTTS imaging. Its benefit over sonography is its clear definition of cerebral pathology, which is important for intervention and counseling. The new findings, particularly in the urinary tract and cerebral venous sinuses, also help support the diagnosis of TTTS and might reveal additional consequences of the altered hemodynamics that occur in TTTS. (orig.)

  6. Twin-twin transfusion syndrome: cerebral ischemia is not the only fetal MR imaging finding

    International Nuclear Information System (INIS)

    Kline-Fath, Beth M.; Calvo-Garcia, Maria A.; O'Hara, Sara M.; Racadio, Judy M.; Crombleholme, Timothy M.

    2007-01-01

    Twin-twin transfusion syndrome (TTTS) is a complication of monochorionic/diamniotic twin pregnancies. An imbalance of blood flow occurs through placental anastomoses, causing potentially significant morbidity and mortality in both twins. Although the sonographic findings of TTTS are well documented, we believe that MR imaging is a valuable adjunct. We describe the fetal MR imaging findings associated with TTTS. From 2003 to 2005, 37 consecutive MR imaging studies were performed on multiple-gestation pregnancies. Of the 37, 25 were consistent with TTTS, correlated and confirmed by sonographic criteria. MR fetal abnormalities were documented. Cerebral ischemia, which could not be demonstrated by sonography, was delineated well by MR imaging. New findings noted on fetal MR imaging were enlargement of cerebral venous sinuses in both twins, dilatation of the renal collecting system in the recipient, lung lesions in the recipient and cerebral malformations in the donor. MR imaging is an important adjunct in TTTS imaging. Its benefit over sonography is its clear definition of cerebral pathology, which is important for intervention and counseling. The new findings, particularly in the urinary tract and cerebral venous sinuses, also help support the diagnosis of TTTS and might reveal additional consequences of the altered hemodynamics that occur in TTTS. (orig.)

  7. Contribution of magnetic measurements onboard NetLander to Mars exploration

    DEFF Research Database (Denmark)

    Menvielle, M.; Musmann, G.; Kuhnke, F.

    2000-01-01

    between the environment of the planet and solar radiation, and a secondary source, the electric currents induced in the conductive planet. The continuous recording of the time variations of the magnetic field at the surface of Mars by means of three component magnetometers installed onboard Net...

  8. Non-random X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Wiedemann-Beckwith syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Oestavik, R.E.; Eiklid, K.; Oerstavik, K.H. [Ulleval Univ. Hospital, Oslo (Norway)] [and others

    1995-03-27

    Wiedemann-Beckwith syndrome (WBS) is a syndrome including exomphalos, macroglossia, and generalized overgrowth. The locus has been assigned to 11p15, and genomic imprinting may play a part in the expression of one or more genes involved. Most cases are sporadic. An excess of female monozygotic twins discordant for WBS have been reported, and it has been proposed that this excess could be related to the process of X chromosome inactivation. We have therefore studied X chromosome inactivation in 13-year-old monozygotic twin girls who were discordant for WBS. In addition, both twins had Tourette syndrome. The twins were monochorionic and therefore the result of a late twinning process. This has also been the case in previously reported discordant twin pairs with information on placentation. X chromosome inactivation was determined in DNA from peripheral blood cells by PCR analysis at the androgen receptor locus. The affected twin had a completely skewed X inactivation, where the paternal allele was on the active X chromosome in all cells. The unaffected twin had a moderately skewed X inactivation in the same direction, whereas the mother had a random pattern. Further studies are necessary to establish a possible association between the expression of WBS and X chromosome inactivation. 18 refs., 2 figs., 1 tab.

  9. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    Science.gov (United States)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  10. Urticaria in monozygotic and dizygotic twins

    DEFF Research Database (Denmark)

    Thomsen, Simon Francis; van der Sluis, Sophie; Kyvik, Kirsten Ohm

    2012-01-01

    Aim. To identify risk factors for urticaria, to determine the relative proportion of the susceptibility to urticaria that is due to genetic factors in an adult clinical twin sample, and to further determine whether the genetic susceptibility to urticaria overlaps with the genetic susceptibility...... to atopic diseases. Methods. A total of 256 complete twin pairs and 63 single twins, who were selected from sibships with self-reported asthma via a questionnaire survey of 21,162 adult twins from the Danish Twin Registry, were clinically interviewed about a history of urticaria and examined for atopic...... diseases. Data were analysed with Cox proportional hazards regression and variance components models. Results. A total of 151 individuals (26%) had a history of urticaria, whereas 24 (4%) had had symptoms within the past year. Female sex, HR = 2.09 (1.46-2.99), P = 0.000; hay fever, HR = 1.92 (1...

  11. Twin pregnancy possibly associated with high semen quality

    DEFF Research Database (Denmark)

    Asklund, Camilla; Jensen, Tina Kold; Jørgensen, Niels

    2007-01-01

    BACKGROUND: Recent studies found an association between a long waiting time to pregnancy (TTP) and reduced probability of twinning and a reduced dizygotic (DZ) twinning rate in subfertile men. However, it remains unsolved whether semen quality is associated with twin offspring. We therefore studied...... the semen quality in a group of fathers of naturally conceived twins. METHODS: In this study, 37 fathers of DZ twins and 15 fathers of monozygotic (MZ) twins participated, and 349 normal fertile men served as a reference group. All men delivered a semen sample, underwent a physical examination and completed...... points higher than the reference group (P semen quality than the reference group, which supports...

  12. Bilateral Norrie's disease in identical twins.

    OpenAIRE

    Sukumaran, K

    1991-01-01

    A case of Norrie's disease in an identical twins is reported. No positive family history was obtained. The couple had no other children. The older of the twins died at the age of 9 months of uncertain cause. To the best of my knowledge this is the first case of Norrie's disease reported in Malaysia. And its occurrence in an identical twins is very rare.

  13. Dental twinning anomalies: the nomenclature enigma.

    Science.gov (United States)

    Killian, C M; Croll, T P

    1990-07-01

    Dental twinning results from abnormal events in the embryologic development of teeth. This paper describes the impossibility of assigning precise diagnostic terms, such as germination, fusion, macrodontia, and concrescence, to dental twinning anomalies because the entire course of odontogenesis cannot be witnessed. Traditional nomenclature is reviewed and seven cases that exemplify the principle are presented. Modification of nomenclature to describe dental twinning defects is suggested.

  14. Problem in twin pregnancy: Findings of prenatal sonography and autopsy

    International Nuclear Information System (INIS)

    Kim, Jeong Ah; Cho, Jeong Yeon; Song, Mi Jin; Min, Jee Yeon; Lee, Young Ho; Lee, Hak Jong; Chun, Yi Kyeong; Kim, Yee Jeong; Hong, Sung Ran

    2001-01-01

    Multifetal gestations are high risk pregnancies with higher perinatal morbidity and mortality. Multifetal gestations are subject to unique complications including conjoined twins, twin-to-twin transfusion syndrome (TTTS), acardiac twins, twin embization of co-twin demise and heterotopic pregnancies. Prenatal sonographic diagnosis of types and complications of multifetal gestations is important for antenatal care and prediction of fetal outcome. This study was performed to present the prenatal ultrasonographic findings and pathologic findings of the unique complications of twin pregnancy. Acardia is a lethal anomaly occurring in 1% of monozygotic twin. The acardiac twin has a parasitic existence and depends on the donor (pump) twin for its blood supply via placental anastomoses and retrograde perfusion of umbilical cord. This twin reversed arterial perfusion (TRAP) sequence is a most extreme manifestation on the TTTS. Doppler verification reversed flow in umbilical cord of the acardiac twin confirms the diagnosis.

  15. Anencephaly with incomplete twinning (diprosopus).

    Science.gov (United States)

    Riccardi, V M; Bergmann, C A

    1977-10-01

    A case of diprosopus with anencephaly is presented. It is suggested that such concurrence of neural tube defects and incomplete twinning corroborates the notion that a single pathogenetic mechanism may be common to both neural tube defects and monozygotic twinning.

  16. Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements

    Science.gov (United States)

    Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.

    1999-09-01

    MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.

  17. Development of miniaturized instrumentation for Planetary Exploration and its application to the Mars MetNet Precursor Mission

    Science.gov (United States)

    Guerrero, Hector

    2010-05-01

    In this communication is presented the current development of some miniaturized instruments developed for Lander and Rovers for Planetary exploration. In particular, we present a magnetometer with resolution below 10 nT and mass in the range of 45 g; a sun irradiance spectral sensor with 10 bands (UV-VIS-near IR) and a mass in the range of 75 g. These are being developed for the Finnish, Russian and Spanish MetNet Mars Precursor Mission, to be launched in 2011 within the Phobos Grunt (Sample Return). The magnetometer (at present at EQM level) has two triaxial magnetometers (based on commercial AMR technologies) that operate in gradiometer configuration. Moreover has inside the box there a triaxial accelerometer to get the gravitational orientation of the magnetometer after its deployment. This unit is being designed to operate under the Mars severe conditions (at night) without any thermal conditioning. The sun irradiance spectral irradiance sensor is composed by individual silicon photodiodes with interference filters on each, and collimators to prevent wavelength shifts due to oblique incidence. In order allow discrimination between direct and diffuse ambient light, the photodiodes are deployed on the top and lateral sides of this unit. The instrument is being optimized for deep UV detection, dust optical depth and Phobos transits. The accuracy for detecting some atmospheric gases traces is under study. Besides, INTA is developing optical wireless link technologies modules for operating on Mars at distances over 1 m, to minimize harness, reduce weight and improve Assembly Integration and Test (AIT) tasks. Actual emitter/receiver modules are below 10 g allowing data transmission rates over 1 Mbps.

  18. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  19. The Mars 2020 Rover Mission: EISD Participation in Mission Science and Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A. S.; Ross, A.

    2014-01-01

    The Mars 2020 Rover mission will search for potential biosignatures on the martian surface, use new techniques to search for and identify tracelevel organics, and prepare a cache of samples for potential return to Earth. Identifying trace organic compounds is an important tenet of searching for potential biosignatures. Previous landed missions have experienced difficulty identifying unambiguously martian, unaltered organic compounds, possibly because any organic species have been destroyed on heating in the presence of martian perchlorates and/or other oxidants. The SHERLOC instrument on Mars 2020 will use ultraviolet (UV) fluorescence and Raman spectroscopy to identify trace organic compounds without heating the samples.

  20. Anorexia and Bulimia Nervosa in Same-Sex and Opposite-Sex Twins : Lack of Association With Twin Type in a Nationwide Study of Finnish Twins

    NARCIS (Netherlands)

    Raevuori, Anu; Kaprio, Jaakko; Hoek, Hans W.; Sihvola, Elina; Rissanen, Aila; Keski-Rahkonen, Anna

    2008-01-01

    Objective: The authors tested the hypothesis that either prenatal feminization or masculinization hormone influences in utero or later socialization affects the risk for anorexia and bulimia nervosa and disordered eating in members of opposite-sex twin pairs. Method: Finnish twins (N=2,426 women,

  1. The Gravity Field of Mars From MGS, Mars Odyssey, and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.

    2015-01-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have enabled NASA to conduct reconnaissance and exploration of Mars from orbit for sixteen consecutive years. These radio systems on these spacecraft enabled radio science in orbit around Mars to improve the knowledge of the static structure of the Martian gravitational field. The continuity of the radio tracking data, which cover more than a solar cycle, also provides useful information to characterize the temporal variability of the gravity field, relevant to the planet's internal dynamics and the structure and dynamics of the atmosphere [1]. MGS operated for more than 7 years, between 1999 and 2006, in a frozen sun-synchronous, near-circular, polar orbit with the periapsis at approximately 370 km altitude. ODY and MRO have been orbiting Mars in two separate sun-synchronous orbits at different local times and altitudes. ODY began its mapping phase in 2002 with the periapis at approximately 390 km altitude and 4-5pm Local Solar Time (LST), whereas the MRO science mission started in November 2006 with the periapis at approximately 255 km altitude and 3pm LST. The 16 years of radio tracking data provide useful information on the atmospheric density in the Martian upper atmosphere. We used ODY and MRO radio data to recover the long-term periodicity of the major atmospheric constituents -- CO2, O, and He -- at the orbit altitudes of these two spacecraft [2]. The improved atmospheric model provides a better prediction of the annual and semi-annual variability of the dominant species. Therefore, the inclusion of the recovered model leads to improved orbit determination and an improved gravity field model of Mars with MGS, ODY, and MRO radio tracking data.

  2. Mars MetNet Precursor Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.

    2013-09-01

    We are developing a new kind of planetary exploration mission for Mars in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  3. Hypertensive disorders in twin pregnancy

    NARCIS (Netherlands)

    J.G. Santema (Job); E. Koppelaar (Elin); H.C.S. Wallenburg (Henk)

    1995-01-01

    textabstractObjective: To compare the incidence and severity of pregnancy-induced hypertensive disorders in twin pregnancy and in singleton gestation. Study design: Case-control study in the setting of a University Hospital. Each pregnancy of a consecutive series of 187 twin pregnancies attending

  4. Observations of Crew Dynamics During Mars Analog Simulations

    Science.gov (United States)

    Cusack, Stacy L.

    2009-01-01

    Crewmembers on Mars missions will face new and unique challenges compared to those in close communications proximity to Mission Control centers. Crews on Mars will likely become more autonomous and responsible for their day-to-day planning. These explorers will need to make frequent real time decisions without the assistance of large ground support teams. Ground-centric control will no longer be an option due to the communications delays. As a result of the new decision making model, crew dynamics and leadership styles of future astronauts may become significantly different from the demands of today. As a volunteer for the Mars Society on two Mars analog missions, this presenter will discuss observations made during isolated, surface exploration simulations. The need for careful crew selections, not just based on individual skill sets, but on overall team interactions becomes apparent very quickly when the crew is planning their own days and deciding their own priorities. Even more important is the selection of a Mission Commander who can lead a team of highly skilled individuals with strong and varied opinions in a way that promotes crew consensus, maintains fairness, and prevents unnecessary crew fatigue.

  5. Twin-twin transfusion syndrome: neurodevelopment of infants treated with laser surgery

    Directory of Open Access Journals (Sweden)

    Denise Campos

    2016-04-01

    Full Text Available ABSTRACT Objective To assess the neurodevelopmental functions of survivors of twin-twin transfusion syndrome (TTTS treated by fetoscopic laser coagulation (FLC, during the first year of life, comparing them to a control group; and to verify the influence of specific variables on neurodevelopment. Method This was a prospective, longitudinal study. The sample comprised 33 monochorionic diamniotic twins who underwent FLC for treatment of TTTS and 22 full-term infants of single-fetus pregnancies. Bayley Scales of Infant and Toddler Development Screening Test were used for evaluation. Prenatal, perinatal and postnatal information were obtained. Results There was an increased frequency of infants in the TTTS group with inadequate performance compared to the control group. The identified variables (fetal donor, low economic income and cardiorespiratory disease negatively impacted expressive communication and fine motor skills. Conclusion Although through follow-up is recommended in all TTTS survivors, particular attention is required for the high-risk group as defined in this study.

  6. Concordance for multiple sclerosis in Danish twins

    DEFF Research Database (Denmark)

    Hansen, T; Skytthe, Axel; Stenager, Egon

    2005-01-01

    The occurrence of multiple sclerosis (MS) in twins has not previously been studied in complete nationwide data sets. The existence of almost complete MS and twin registries in Denmark ensures that essentially unbiased samples of MS cases among twins can be obtained. In this population-based study...

  7. Numerical Simulation of Twin Nozzle Injectors

    OpenAIRE

    Milak, Dino

    2015-01-01

    Fuel injectors for marine applications have traditionally utilized nozzles with symmetric equispaced orifice configuration. But in light of the new marine emission legislations the twin nozzle concept has arisen. The twin nozzle differs from the conventional configuration by utilizing two closely spaced orifices to substitute each orifice in the conventional nozzle. Injector manufacturers regard twin nozzle injectors as a promising approach to facilitate stable spray patterns independent of t...

  8. Socio-psycho-historical observation on the twin. Sampling methods and case study of the atomic bomb exposed twins

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S; Satow, Y; Ueoka, Hiroshi; Munaka, M; Kurihara, M [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-07-01

    The so-called ''twin control study'', mainly on the monozygotic twins one of which was A-bomb exposed and the other was non-exposed were carried out. Sampling was conducted utilizing the materials as follows: 1) The survey on casualities of A-bomb exposed families in Hiroshima which was undertaken in 1946. 2) The survey of A-bomb survivors in 1965. 3) A-bomb exposed family survey conducted between 1973 to 1975. 4) Investigations of A-bomb victims exposed in the proximal areas from the hypocenter. From the above mentioned materials 470 pairs were selected, of which 220 were exposed. Among them 172 pairs were twins of the same sex. Female and male pair were also employed. In one case they were exposed, while the others were nonexposed. Two pairs were examined under the following methods: 1) Depth interview to ascertain familial casualities with reference to the family life cycle. 2) Socio-historical research. 3) Motoaki's Jinkaku Shindan Kensa (Modified Rorschach test by H. Motoaki), and T.A.T. test. Results obtained were summarized as follows: 1) Both pairs of twins were of similar appearance and personality traits, and had a strong feeling of companionship for each other. 2) In family relationships, the persons studied were very conscious of the role expectations of elder and younger siblings in the twin pairs. 3) Through depth interviews and projective tests, A-bomb exposed pairs still showed deep psychological stresses, resulting from the A-bomb disaster. 4) Both among the exposed twins and within the nonexposed control group twin siblings had a close feeling of companionship for each other. However, nonexposed twins could not understand the psychological experience of twins who had been subjected to the atomic disaster.

  9. Twinning of Polymer Crystals Suppressed by Entropy

    Directory of Open Access Journals (Sweden)

    Nikos Ch. Karayiannis

    2014-09-01

    Full Text Available We propose an entropic argument as partial explanation of the observed scarcity of twinned structures in crystalline samples of synthetic organic polymeric materials. Polymeric molecules possess a much larger number of conformational degrees of freedom than low molecular weight substances. The preferred conformations of polymer chains in the bulk of a single crystal are often incompatible with the conformations imposed by the symmetry of a growth twin, both at the composition surfaces and in the twin axis. We calculate the differences in conformational entropy between chains in single crystals and chains in twinned crystals, and find that the reduction in chain conformational entropy in the twin is sufficient to make the single crystal the stable thermodynamic phase. The formation of cyclic twins in molecular dynamics simulations of chains of hard spheres must thus be attributed to kinetic factors. In more realistic polymers this entropic contribution to the free energy can be canceled or dominated by nonbonded and torsional energetics.

  10. Pregnancy outcome of monochorionic twins: does amnionicity matter?

    Science.gov (United States)

    Dias, Thiran; Contro, Elena; Thilaganathan, Basky; Khan, Hina; Zanardini, Cristina; Mahsud-Dornan, Samina; Bhide, Amar

    2011-12-01

    To compare the fetal loss rate of monochorionic (MC) twin pregnancies according to their amnionicity. A retrospective review of all MC pregnancy outcomes in a tertiary centre. Pregnancy outcomes were compared for monochorionic monoamniotic (MCMA) versus monochorionic diamniotic (MCDA) pregnancies. 29 MCMA and 117 MCDA twin pregnancies were identified. The overall fetal loss rate was significantly higher in MCMA (23/52, 44.2%) compared to MCDA pregnancies (28/233, 12%, Chi squared = 30.03, p fetal survival rate in MCDA twins were significantly higher than in MCMA twins (Log-rank Chi-squared = 27.9, p fetal losses in some MCMA twins. After exclusion of identifiable causes, the difference in fetal survival was not significant in the two groups (Log-rank chi-squared = 0.373, p = .54). The loss rate for MCMA twins is high and occurs mainly due to discordant congenital abnormality, conjoint twins or twin reversed arterial perfusion (TRAP) sequence. Although the fetal loss rate in MCDA is lower than in MCMA pregnancies, the majority of fetal loss in MCDA pregnancies cannot be predicted at the first scan at presentation. The data of this study questions the widespread policy of a difference in the scheduling of elective delivery for MCMA and MCDA twins.

  11. Risk of epilepsy in opposite-sex and same-sex twins

    DEFF Research Database (Denmark)

    Mao, Yanyan; Ahrenfeldt, Linda Juel; Christensen, Kaare

    2018-01-01

    Background: There is a complex interaction between female and male sex hormones and the risk of epilepsy. Whether prenatal exposure to higher levels of sex hormones affects the development of epilepsy in childhood or later in life is not well known. The sex hormone environment of fetuses may...... be affected by the sex of the co-twin. We estimated the risk of epilepsy for twins with an opposite-sex (OS) co-twin compared with twins with a same-sex (SS) co-twin. Methods: From the Danish Twin Registry, we identified OS female twins (n = 11,078), SS female twins (n = 19,186), OS male twins (n = 11...

  12. Energy storage considerations for a robotic Mars surface sampler

    International Nuclear Information System (INIS)

    O'Donnell, P.M.; Cataldo, R.L.; Gonzalez-Sanabria, O.D.

    1988-01-01

    Manned exploration of Mars is being proposed by the National Commission on Space for the next century. To accomplish this task with minimal resupply cost for extended stay times, use of Mars' resources is essential. Methods must be developed to manufacture or extract water and oxygen from elements indigenous to Mars before they send explorers to the planet. Therefore, they must send precursor surveying equipment to determine Mars' resources to a greater extent than is now known from Viking 1 and Viking 2 data. A 1992 launch is planned for the Mars Observer that will contribute greater mapping resolution and expand the scientific data base. The proposed rover will provide scientists with the necessary information about abundant resources that would guide the required technology development needed to support a manned Mars infrastructure. The actual rover operations plan for both the sample return and extended mission will have a large impact on rover capabilities and the power system supplying power for traversing and scientific instrumentation. POWER SOURCE AND CONVERSION. Several power source/conversion options for the rover have been identified. These include power generation on the lander, Entry Vehicle (EV), Mars Orbiter Vehicle (MOV) and on the rover itself. Power from the lander would require the rover to return to landing site to recharge the energy storage systems, which limits rover excursions to one-half the range of the storage capacity. For on-board rover power, a Radioisotope Thermoelectric Generator (RTG) has been considered with the appropriate energy storage to handle peak power demands

  13. Twin specific risk factors in primary school achievements.

    Science.gov (United States)

    de Zeeuw, Eveline L; van Beijsterveldt, Catherina E M; de Geus, Eco J C; Boomsma, Dorret I

    2012-02-01

    The main aim of this study was to examine twin specific risk factors that influence educational achievement in primary school. We included prenatal factors that are not unique to twins, except for zygosity, but show a higher prevalence in twins than in singletons. In addition, educational achievement was compared between twins and their nontwin siblings in a within-family design. Data were obtained from parents and teachers of approximately 10,000 twins and their nontwin siblings registered with the Netherlands Twin Register. Teachers rated the proficiency of the children on arithmetic, language, reading, and physical education, and reported a national educational achievement test score (CITO). Structural equation modeling showed that gestational age, birth weight, and sex were significant predictors of educational achievement, even after correction for socioeconomic status. Mode of delivery and zygosity did not have an effect, while parental age only influenced arithmetic. Mode of conception, incubator time, and birth complications negatively affected achievement in physical education. The comparison of educational achievement of twins and singletons showed significantly lower ratings on arithmetic, reading, and language in twins, compared to their older siblings, but not compared to their younger siblings. Low gestational age and low birth weight were the most important risk factors for lower educational achievement of twins in primary school. It seems that the differences observed between twins and their nontwin siblings in educational achievement can largely be explained by birth order within the family.

  14. Conjoined twins – role of imaging and recent advances

    Directory of Open Access Journals (Sweden)

    Rishi Philip Mathew

    2017-12-01

    Full Text Available Introduction: Conjoined twins are identical twins with fused bodies, joined in utero. They are rare complications of monochorionic twinning. The purpose of this study is to describe the various types of conjoined twins, the role of imaging and recent advances aiding in their management. Material and methods: This was a twin institutional study involving 3 cases of conjoined twins diagnosed over a period of 6 years from 2010 to 2015. All the 3 cases were identified antenatally by ultrasound. Only one case was further evaluated by MRI. Results: Three cases of conjoined twins (cephalopagus, thoracopagus and omphalopagus were accurately diagnosed on antenatal ultrasound. After detailed counseling of the parents and obtaining written consent, all the three cases of pregnancy were terminated. Delivery of the viable conjoined twins was achieved without any complications to the mothers, and all the three conjoined twins died after a few minutes. Conclusion: Ultrasound enables an early and accurate diagnosis of conjoined twins, which is vital for obstetric management. MRI is reserved for better tissue characterization. Termination of pregnancy when opted, should be done at an early stage as later stages are fraught with problems. Recent advances, such as 3D printing, may aid in surgical pre-planning, thereby enabling successful surgical separation of conjoined twins.

  15. Laying the ghost of twin paradox

    Directory of Open Access Journals (Sweden)

    Popović Marko

    2009-01-01

    Full Text Available Someone's true age is not written in his ID, but in his biomarkers. Aging process is not caused by time passing, but by thermodynamically laws. Entropy, extent of metabolic reaction, and temperature are Lorentz invariant, so these facts make twin paradox impossible because there is no way for one twin to age slower than the other even if the time in his frame is dilated. Entropy is the function of state, not time. So as much as standard thermodynamics concerns, the path between two points in space is equivalent to the path between two states. Whether the point B is reached by moving faster using the longer way (with time dilatation, or slower by using shortcut (without time dilatation, the state of the system after completing the road should be the same. This is supported by the fact that when two twins reach the same space-time point (point B in which the state parameters are the same. If we use entropy as an age parameter, then both twins have the same entropy value and are exactly the same biological age. Therefore, the twin paradox is a logical mistake based on wrong first premise. Bergson symmetry is not necessary any more to explain the impossibility of twin paradox.

  16. The Concordance and Heritability of Type 2 Diabetes in 34,166 Twin Pairs From International Twin Registers

    DEFF Research Database (Denmark)

    Willemsen, G.; Ward, K. J.; Bell, C. G.

    2015-01-01

    studies worldwide need to pool their resources. The Discordant Twin (DISCOTWIN) consortium was established for this goal. Here, we describe the DISCOTWIN Consortium and present an analysis of type 2 diabetes (T2D) data in nearly 35,000 twin pairs. Seven twin cohorts from Europe (Denmark, Finland, Norway...... and medication use, fasting glucose and insulin measures, or medical records. The prevalence of T2D ranged from 2.6% to 12.3% across the cohorts depending on age, body mass index (BMI), and national diabetes prevalence. T2D discordance rate was lower for MZ (5.1%, range 2.9-11.2%) than for same-sex dizygotic (DZ......, the Netherlands, Spain, Sweden, and the United Kingdom) and one from Australia investigated the rate of discordance for T2D in same-sex twin pairs aged 45 years and older. Data were available for 34,166 same-sex twin pairs, of which 13,970 were MZ, with T2D diagnosis based on self-reported diagnosis...

  17. The politics of Mars

    Science.gov (United States)

    Schmitt, Harrison H.

    1986-01-01

    A discussion is presented comparing past and present major accomplishments of the U.S. and the Soviet Union in space. It concludes that the Soviets are presently well ahead of the U.S. in several specific aspects of space accomplishment and speculates that the Soviet strategy is directed towards sending a man to the vicinity of Mars by the end of this century. A major successful multinational space endeavor, INTELSAT, is reviewed and it is suggested that the manned exploration of Mars offers a unique opportunity for another such major international cooperative effort. The current attitude of U.S. leadership and the general public is assessed as uniformed or ambivalent about the perceived threat of Soviet dominance in space.

  18. Peak effect in twinned superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Marchetti, M.C.; Vinokur, V.M.

    1995-01-01

    A sharp maximum in the critical current J c as a function of temperature just below the melting point of the Abrikosov flux lattice has recently been observed in both low- and high-temperature superconductors. This peak effect is strongest in twinned crystals for fields aligned with the twin planes. We propose that this peak signals the breakdown of the collective pinning regime and the crossover to strong pinning of single vortices on the twin boundaries. This crossover is very sharp and can account for the steep drop of the differential resistivity observed in experiments. copyright 1995 The American Physical Society

  19. Conducting Rock Mass Rating for tunnel construction on Mars

    Science.gov (United States)

    Beemer, Heidi D.; Worrells, D. Scott

    2017-10-01

    Mars analogue missions provide researchers, scientists, and engineers the opportunity to establish protocols prior to sending human explorers to another planet. This paper investigated the complexity of a team of simulation astronauts conducting a Rock Mass Rating task during Analogue Mars missions. This study was conducted at the Mars Desert Research Station in Hanksville, UT, during field season 2015/2016 and with crews 167,168, and 169. During the experiment, three-person teams completed a Rock Mass Rating task during a three hour Extra Vehicular Activity on day six of their two-week simulation mission. This geological test is used during design and construction of excavations in rock on Earth. On Mars, this test could be conducted by astronauts to determine suitable rock layers for tunnel construction which would provide explorers a permanent habitat and radiation shielding while living for long periods of time on the surface. The Rock Mass Rating system derives quantitative data for engineering designs that can easily be communicated between engineers and geologists. Conclusions from this research demonstrated that it is feasible for astronauts to conduct the Rock Mass Rating task in a Mars simulated environment. However, it was also concluded that Rock Mass Rating task orientation and training will be required to ensure that accurate results are obtained.

  20. Mars Express en route for the Red Planet

    Science.gov (United States)

    2003-06-01

    The probe, weighing in at 1 120 kg, was built on ESA’s behalf by a European team led by Astrium. It set out on its journey to Mars aboard a Soyuz-Fregat launcher, under Starsem operational management. The launcher lifted off from Baïkonur in Kazakhstan on 2 June at 23.45 local time (17:45 GMT). An interim orbit around the Earth was reached following a first firing of the Fregat upper stage. One hour and thirty-two minutes after lift off the probe was injected into its interplanetary orbit. "Europe is on its way to Mars to stake its claim in the most detailed and complete exploration ever done of the Red Planet. We can be very proud of this and of the speed with which have achieved this goal", said David Southwood, ESA's Director of Science witnessing the launch from Baikonur. Contact with Mars Express has been established by ESOC, ESA’s satellite control centre, located in Darmstadt, Germany. The probe is pointing correctly towards the Sun and has deployed its solar panels. All on-board systems are operating faultlessly. Two days from now, the probe will perform a corrective manœuvre that will place it in a Mars-bound trajectory, while the Fregat stage, trailing behind, will vanish into space - there will be no risk of it crashing into and contaminating the Red Planet. Mars Express will then travel away from Earth at a speed exceeding 30 km/s (3 km/s in relation to the Earth), on a six-month and 400 million kilometre journey through the solar system. Once all payload operations have been checked out, the probe will be largely deactivated. During this period, the spacecraft will contact Earth only once a day. Mid-journey correction of its trajectory is scheduled for September. There in time for Christmas Following reactivation of its systems at the end of November, Mars Express will get ready to release Beagle 2. The 60 kg capsule containing the tiny lander does not incorporate its own propulsion and steering system and will be released into a collision

  1. Effect of twinning plane on superconductor magnetic properties

    International Nuclear Information System (INIS)

    Buzdin, A.I.; Kuptsov, D.A.

    1989-01-01

    Effect of twinning planes on pinning of the Abrikosov vortices in superconductors of the second order with the Ginsburg-Landau parameter, κ >> 1, is considered. The modified Ginsburg-Landau functional, where the effect of superconducting properties improvement near the twinning plane is taken into account by adding the additional δ-function component, is used to descibe superconductivity of twinning plane. Force of interaction of a vortex filament and the twinning plane is calculated. It is shown that in case of the twinning plane opaque to electrons, additional attractive force, being analogous to that occurring in the problem on the surface Been-Livingston barrier, affects the vortex filament. The results can explain anisotropy of vortex pinning observed in the periodic twinning structure in high-temperature superconductors

  2. Musical activity and emotional competence - a twin study.

    Science.gov (United States)

    Theorell, Töres P; Lennartsson, Anna-Karin; Mosing, Miriam A; Ullén, Fredrik

    2014-01-01

    The hypothesis was tested that musical activities may contribute to the prevention of alexithymia. We tested whether musical creative achievement and musical practice are associated with lower alexithymia. 8000 Swedish twins aged 27-54 were studied. Alexithymia was assessed using the Toronto Alexithymia Scale-20. Musical achievement was rated on a 7-graded scale. Participants estimated number of hours of music practice during different ages throughout life. A total life estimation of number of accumulated hours was made. They were also asked about ensemble playing. In addition, twin modelling was used to explore the genetic architecture of the relation between musical practice and alexithymia. Alexithymia was negatively associated with (i) musical creative achievement, (ii) having played a musical instrument as compared to never having played, and - for the subsample of participants that had played an instrument - (iii) total hours of musical training (r = -0.12 in men and -0.10 in women). Ensemble playing added significant variance. Twin modelling showed that alexithymia had a moderate heritability of 36% and that the association with musical practice could be explained by shared genetic influences. Associations between musical training and alexithymia remained significant when controlling for education, depression, and intelligence. Musical achievement and musical practice are associated with lower levels of alexithymia in both men and women. Musical engagement thus appears to be associated with higher emotional competence, although effect sizes are small. The association between musical training and alexithymia appears to be entirely genetically mediated, suggesting genetic pleiotropy.

  3. Twin Pregnancy with Gastroschisis in Both Twins

    Directory of Open Access Journals (Sweden)

    Hui-Fen Kao

    2007-12-01

    Conclusion: The cause of gastroschisis is unknown, although possible exogenous causes have been studied. The diagnosis of gastroschisis in twin pregnancy is always in late gestation. Therefore, maternal serum alpha feto-protein screening and a detailed prenatal ultrasound evaluation are recommended in multifetal pregnancies.

  4. Agriculture on Mars: Soils for Plant Growth

    Science.gov (United States)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  5. The etiology of behavioral problems and competencies in very young twins.

    Science.gov (United States)

    Saudino, Kimberly J; Carter, Alice S; Purper-Ouakil, Diane; Gorwood, Philip

    2008-02-01

    Although genetic and environmental influences on behavior problems in middle childhood and adolescence have been well-studied, little is known about the etiology of behavior problems in very early childhood. The present study explores genetic and environmental contributions to individual differences in behavior problems and competences in an infant-toddler sample of twins. There were 1,950 twin pairs (mean age=23.8 months) who were rated by parents on the Infant-Toddler Social and Emotional Assessment. All four domains (Externalizing, Internalizing, Dysregulation, Competence) and 20 subscales-indices on the Infant-Toddler Social and Emotional Assessment displayed significant heritability. There were also substantial shared environmental influences operating on most of the domains and subscales. Compared with behavior problems, behavioral competencies were less heritable and more influenced by shared environments. (c) 2008 APA, all rights reserved

  6. Finding the team for Mars: a psychological and human factors analysis of a Mars Desert Research Station crew.

    Science.gov (United States)

    Sawyer, Benjamin D; Hancock, P A; Deaton, John; Suedfeld, Peter

    2012-01-01

    A two-week mission in March and April of 2011 sent six team members to the Mars Desert Research Station (MDRS). MDRS, a research facility in the high Utah desert, provides an analogue for the harsh and unusual working conditions that will be faced by men and women who one day explore Mars. During the mission a selection of quantitative and qualitative psychological tests were administered to the international, multidisciplinary team. A selection of the results are presented along with discussion.

  7. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    Science.gov (United States)

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  8. 'Mars-shine'

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] 'Mars-shine' Composite NASA's Mars Exploration Rover Spirit continues to take advantage of favorable solar power conditions to conduct occasional nighttime astronomical observations from the summit region of 'Husband Hill.' Spirit has been observing the martian moons Phobos and Deimos to learn more about their orbits and surface properties. This has included observing eclipses. On Earth, a solar eclipse occurs when the Moon's orbit takes it exactly between the Sun and Earth, casting parts of Earth into shadow. A lunar eclipse occurs when the Earth is exactly between the Sun and the Moon, casting the Moon into shadow and often giving it a ghostly orange-reddish color. This color is created by sunlight reflected through Earth's atmosphere into the shadowed region. The primary difference between terrestrial and martian eclipses is that Mars' moons are too small to completely block the Sun from view during solar eclipses. Recently, Spirit observed a 'lunar' eclipse on Mars. Phobos, the larger of the two martian moons, was photographed while slipping into the shadow of Mars. Jim Bell, the astronomer in charge of the rover's panoramic camera (Pancam), suggested calling it a 'Phobal' eclipse rather than a lunar eclipse as a way of identifying which of the dozens of moons in our solar system was being cast into shadow. With the help of the Jet Propulsion Laboratory's navigation team, the Pancam team planned instructions to Spirit for acquiring the views shown here of Phobos as it entered into a lunar eclipse on the evening of the rover's 639th martian day, or sol (Oct. 20, 2005) on Mars. This image is a time-lapse composite of eight Pancam images of Phobos moving across the martian sky. The entire eclipse lasted more than 26 minutes, but Spirit was able to observe only in the first 15 minutes. During the time closest to the shadow crossing, Spirit's cameras were programmed to take images every 10 seconds. In the first three

  9. Developing the MD Explorer

    Science.gov (United States)

    Howie, Philip V.

    1993-04-01

    The MD Explorer is an eight-seat twin-turbine engine helicopter which is being developed using integrated product definition (IPD) team methodology. New techniques include NOTAR antitorque system for directional control, a composite fuselage, an all-composite bearingless main rotor, and digital cockpit displays. Three-dimensional CAD models are the basis of the entire Explorer design. Solid models provide vendor with design clarification, removing much of the normal drawing interpretation errors.

  10. Temperature dependence of work hardening in sparsely twinning zirconium

    International Nuclear Information System (INIS)

    Singh, Jaiveer; Mahesh, S.; Roy, Shomic; Kumar, Gulshan; Srivastava, D.; Dey, G.K.; Saibaba, N.; Samajdar, I.

    2017-01-01

    Fully recrystallized commercial Zirconium plates were subjected to uniaxial tension. Tests were conducted at different temperatures (123 K - 623 K) and along two plate directions. Both directions were nominally unfavorable for deformation twinning. The effect of the working temperature on crystallographic texture and in-grain misorientation development was insignificant. However, systematic variation in work hardening and in the area fraction and morphology of deformation twins was observed with temperature. At all temperatures, twinning was associated with significant near boundary mesoscopic shear, suggesting a possible linkage with twin nucleation. A binary tree based model of the polycrystal, which explicitly accounts for grain boundary accommodation and implements the phenomenological extended Voce hardening law, was implemented. This model could capture the measured stress-strain response and twin volume fractions accurately. Interestingly, slip and twin system hardness evolution permitted multiplicative decomposition into temperature-dependent, and accumulated strain-dependent parts. Furthermore, under conditions of relatively limited deformation twinning, the work hardening of the slip and twin systems followed two phenomenological laws proposed in the literature for non-twinning single-phase face centered cubic materials.

  11. EBSD characterization of twinning in cold-rolled CP-Ti

    International Nuclear Information System (INIS)

    Li, X.; Duan, Y.L.; Xu, G.F.; Peng, X.Y.; Dai, C.; Zhang, L.G.; Li, Z.

    2013-01-01

    This work presents the use of a mechanical testing system and the electron backscatter diffraction technique to study the mechanical properties and twinning systems of cold-rolled commercial purity titanium, respectively. The dependence of twinning on the matrix orientation is analyzed by the distribution map of Schmid factor. The results showed that the commercial purity titanium experienced strong strain hardening and had excellent formability during rolling. Both the (112 ¯ 2) ¯ 3 ¯ > compressive twins and (101 ¯ 2) ¯ 1 ¯ > tensile twins were dependent on the matrix orientation. The Schmid factor of a grain influenced the activation of a particular twinning system. The specific rolling deformation of commercial purity titanium controlled the number and species of twinning systems and further changed the mechanical properties. - Highlights: • CP-Ti experienced strain hardening and had excellent formability. • Twins were dependent on the matrix orientation. • Schmid factor of a grain influenced the activation of a twinning system. • Rolling deformation controlled twinning systems and mechanical properties

  12. Socio-psycho-historical observation on the twin

    International Nuclear Information System (INIS)

    Watanabe, Shoji; Satow, Yukio; Ueoka, Hiroshi; Munaka, Masaki; Kurihara, Minoru

    1980-01-01

    The so-called ''twin control study'', mainly on the monozygotic twins one of which was A-bomb exposed and the other was non-exposed were carried out. Sampling was conducted utilizing the materials as follows: 1) The survey on casualities of A-bomb exposed families in Hiroshima which was undertaken in 1946. 2) The survey of A-bomb survivors in 1965. 3) A-bomb exposed family survey conducted between 1973 to 1975. 4) Investigations of A-bomb victims exposed in the proximal areas from the hypocenter. From the above mentioned materials 470 pairs were selected, of which 220 were exposed. Among them 172 pairs were twins of the same sex. Female and male pair were also employed. In one case they were exposed, while the others were nonexposed. Two pairs were examined under the following methods: 1) Depth interview to ascertain familial casualities with reference to the family life cycle. 2) Socio-historical research. 3) Motoaki's Jinkaku Shindan Kensa (Modified Rorschach test by H. Motoaki), and T.A.T. test. Results obtained were summarized as follows: 1) Both pairs of twins were similar appearance, and also personality traits, and had a strong feeling of companionship for each other. 2) In family relationships, the persons studied were very conscious of the role expectations of elder and younger siblings in the twin pairs. 3) Through depth interview and projective test, A-bomb exposed pairs still showed deep psychological stresses, resulting from the A-bomb disaster. 4) Both among the exposed twins and within the nonexposed control group twin siblings had a close feeling of companionship for each other. However, nonexposed twins could not understand the psychological experience of twins who had been subjected to the atomic disaster. (author)

  13. Mars rover local navigation and hazard avoidance

    Science.gov (United States)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  14. Postpartum Mental State of Mothers of Twins

    Science.gov (United States)

    Brantmüller, Éva; Gyúró, Mónika; Galgán, Kitti; Pakai, Annamária

    2016-01-01

    Twin birth is a relevant risk factor for postnatal depression (PND). The primary objective of our study is to reveal the prevalence of suspected cases of depression and to identify some background factors among mothers of twins. We applied convenience sampling method within a retrospective, quantitative study among mothers given birth to twins for…

  15. Hydride formation on deformation twin in zirconium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Seong [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Kim, Sung-Dae [Korea Institute of Material Science (KIMS), 797 Changwondaero, Changwon, Gyeongnam, 642-831 (Korea, Republic of); Yoon, Jonghun, E-mail: yooncsmd@gmail.com [Department of Mechanical Engineering, Hanyang University, 1271 Sa3-dong, Sangrok-gu, Ansan-si, Gyeonggi-do, 426-791 (Korea, Republic of)

    2016-12-15

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  16. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  17. Epigenetic differences in monozygotic twins discordant for major depressive disorder.

    Science.gov (United States)

    Malki, K; Koritskaya, E; Harris, F; Bryson, K; Herbster, M; Tosto, M G

    2016-06-14

    Although monozygotic (MZ) twins share the majority of their genetic makeup, they can be phenotypically discordant on several traits and diseases. DNA methylation is an epigenetic mechanism that can be influenced by genetic, environmental and stochastic events and may have an important impact on individual variability. In this study we explored epigenetic differences in peripheral blood samples in three MZ twin studies on major depressive disorder (MDD). Epigenetic data for twin pairs were collected as part of a previous study using 8.1-K-CpG microarrays tagging DNA modification in white blood cells from MZ twins discordant for MDD. Data originated from three geographical regions: UK, Australia and the Netherlands. Ninety-seven MZ pairs (194 individuals) discordant for MDD were included. Different methods to address non independently-and-identically distributed (non-i.i.d.) data were evaluated. Machine-learning methods with feature selection centered on support vector machine and random forest were used to build a classifier to predict cases and controls based on epivariations. The most informative variants were mapped to genes and carried forward for network analysis. A mixture approach using principal component analysis (PCA) and Bayes methods allowed to combine the three studies and to leverage the increased predictive power provided by the larger sample. A machine-learning algorithm with feature reduction classified affected from non-affected twins above chance levels in an independent training-testing design. Network analysis revealed gene networks centered on the PPAR-γ (NR1C3) and C-MYC gene hubs interacting through the AP-1 (c-Jun) transcription factor. PPAR-γ (NR1C3) is a drug target for pioglitazone, which has been shown to reduce depression symptoms in patients with MDD. Using a data-driven approach we were able to overcome challenges of non-i.i.d. data when combining epigenetic studies from MZ twins discordant for MDD. Individually, the studies yielded

  18. New theory for crack-tip twinning in fcc metals

    Science.gov (United States)

    Andric, Predrag; Curtin, W. A.

    2018-04-01

    Dislocation emission from a crack tip is a necessary mechanism for crack tip blunting and toughening. In fcc metals under Mode I loading, a first partial dislocation is emitted, followed either by a trailing partial dislocation ("ductile" behaviour) or a twinning partial dislocation ("quasi-brittle"). The twinning tendency is usually estimated using the Tadmor and Hai extension of the Rice theory. Extensive molecular statics simulations reveal that the predictions of the critical stress intensity factor for crack tip twinning are always systematically lower (20-35%) than observed. Analyses of the energy change during nucleation reveal that twin partial emission is not accompanied by creation of a surface step while emission of the trailing partial creates a step. The absence of the step during twinning motivates a modified model for twinning nucleation that accounts for the fact that nucleation does not occur directly at the crack tip. Predictions of the modified theory are in excellent agreement with all simulations that show twinning. Emission of the trailing partial dislocation, including the step creation, is predicted using a model recently introduced to accurately predict the first partial emission and shows why twinning is preferred. A second mode of twinning is found wherein the crack first advances by cleavage and then emits the twinning partial at the new crack tip; this mode dominates for emission beyond the first twinning partial. These new theories resolve all the discrepancies between the Tadmor twinning analysis and simulations, and have various implications for fracture behaviour and transitions.

  19. Do assisted-reproduction twin pregnancies require additional antenatal care?

    Science.gov (United States)

    Jauniaux, E; Ben-Ami, I; Maymon, R

    2013-02-01

    Iatrogenic twinning has become the main side-effect assisted reproduction treatment. We have evaluated the evidence for additional care that assisted-reproduction twins may require compared with spontaneous twins. Misacarriages are increased in women with tubal problems and after specific treatments. Assisted-reproduction twin pregnancies complicated by a vanishing twin after 8 weeks have an increased risk of preterm delivery and of low and very low birthweight compared with singleton assisted-reproduction pregnancies. Monozygotic twin pregnancies occur at a higher rate after assisted reproduction treatment and are associated with a higher risk of perinatal complications. The incidence of placenta praevia and vasa praevia is increased in assisted-reproduction twin pregnancies. Large cohort studies do not indicate a higher rate of fetal congenital malformations in assisted-reproduction twins. Overall, assisted-reproduction twins in healthy women assisted-reproduction twins is only increased in women with a pre-existing medical condition such as hypertensive disorders and diabetes and most of these risks can be avoided with single-embryo transfer. Following the birth of the first IVF baby, rumours started to spread in both the medical literature and the media about the long-term health effects for children born following assisted reproduction treatment. However, after more than 30 years, the most common complications associated with IVF treatment remain indirect and technical such as the failure of treatment and ovarian hyperstimulation. Iatrogenic twinning has become the main side-effect of assisted reproduction treatment and the increasing number of twin pregnancies, in particular in older women, has generated numerous debates on the need for additional healthcare provision. In this review, we have evaluated the evidence for additional care that assisted-conception twin pregnancies may require compared with spontaneous twin pregnancies. Twin pregnancies are

  20. Dichorionic Diamniotic Twin Pregnancy Discordant for Bladder Exstrophy

    Directory of Open Access Journals (Sweden)

    William Tu

    2009-01-01

    Full Text Available A 38 year-old woman presented with a dichorionic diamniotic twin pregnancy at gestational age of 32 weeks concerning for an abdominal wall mass in one of the twins. Initial ultrasound evaluation was suspicious for an omphalocele, but the affected twin was found to have bladder exstrophy at birth. This illustrates the difficulties of accurate prenatal diagnosis of bladder exstrophy in a twin pregnancy at a late gestation.

  1. A note on twin-singleton differences in asthma

    DEFF Research Database (Denmark)

    Thomsen, Simon Francis; Kyvik, Kirsten Ohm; Backer, Vibeke

    2008-01-01

    Twins constitute a valuable resource for genetic studies of asthma. However, critics argue that twins are 'special' in terms of prenatal environment and upbringing and therefore nonrepresentative. In respect to asthma a small range of studies report differential morbidity in twins compared...... with singletons. We review some of the possible explanations for these findings and conclude that results from twin studies of asthma can be extrapolated to the general population....

  2. Epigenetic Epidemiology of Complex Diseases Using Twins

    DEFF Research Database (Denmark)

    Tan, Qihua

    2013-01-01

    through multiple epigenetic mechanisms. This paper reviews the new developments in using twins to study disease-related epigenetic alterations, links them to lifetime environmental exposure with a focus on the discordant twin design and proposes novel data-analytical approaches with the aim of promoting...... a more efficient use of twins in epigenetic studies of complex human diseases....

  3. Twin Studies of Atopic Dermatitis

    DEFF Research Database (Denmark)

    Elmose, Camilla; Thomsen, Simon Francis

    2015-01-01

    Aim. The aim of this study was to conduct a systematic review of population-based twin studies of (a) the concordance and heritability of AD and (b) the relationship between AD and asthma and, furthermore, to reinterpret findings from previous twin studies in the light of the emerging knowledge a...

  4. Monozygotic twins discordant for ROHHAD phenotype.

    Science.gov (United States)

    Patwari, Pallavi P; Rand, Casey M; Berry-Kravis, Elizabeth M; Ize-Ludlow, Diego; Weese-Mayer, Debra E

    2011-09-01

    Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) falls within a group of pediatric disorders with both respiratory control and autonomic nervous system dysregulation. Children with ROHHAD typically present after 1.5 years of age with rapid weight gain as the initial sign. Subsequently, they develop alveolar hypoventilation, autonomic nervous system dysregulation, and, if untreated, cardiorespiratory arrest. To our knowledge, this is the first report of discordant presentation of ROHHAD in monozygotic twins. Twin girls, born at term, had concordant growth and development until 8 years of age. From 8 to 12 years of age, the affected twin developed features characteristic of ROHHAD including obesity, alveolar hypoventilation, scoliosis, hypothalamic dysfunction (central diabetes insipidus, hypothyroidism, premature pubarche, and growth hormone deficiency), right paraspinal/thoracic ganglioneuroblastoma, seizures, and autonomic dysregulation including altered pain perception, large and sluggishly reactive pupils, hypothermia, and profound bradycardia that required a cardiac pacemaker. Results of genetic testing for PHOX2B (congenital central hypoventilation syndrome disease-defining gene) mutations were negative. With early recognition and conservative management, the affected twin had excellent neurocognitive outcome that matched that of the unaffected twin. The unaffected twin demonstrated rapid weight gain later in age but not development of signs/symptoms consistent with ROHHAD. This discordant twin pair demonstrates key features of ROHHAD including the importance of early recognition (especially hypoventilation), complexity of signs/symptoms and clinical course, and importance of initiating comprehensive, multispecialty care. These cases confound the hypothesis of a monogenic etiology for ROHHAD and indicate alternative etiologies including autoimmune or epigenetic phenomenon or a combination of genetic

  5. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    Science.gov (United States)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  6. Molecular dynamics simulation of deformation twin in rocksalt vanadium nitride

    International Nuclear Information System (INIS)

    Fu, Tao; Peng, Xianghe; Zhao, Yinbo; Li, Tengfei; Li, Qibin; Wang, Zhongchang

    2016-01-01

    We perform molecular dynamics simulation of nano-indentation with a cylindrical indenter to investigate the formation mechanism of deformation twin in vanadium nitride (VN) with a rocksalt structure. We find that the deformation twins occur during the loading stage, and subsequently conduct a systematic analysis of nucleation, propagation and thickening of a deformation twin. We find that the nucleation of a partial dislocation and its propagation to form a stacking fault are premise of deformation twin formation. The sequential nucleation and propagation of partial dislocation on adjacent parallel {111} planes are found to cause the thickening of the deformation twin. Moreover, the deformation twins can exist in VN at room temperature. - Highlights: • MD simulations of indentation are performed to study the deformation twin in VN. • The deformation twins can occur in VN during the loading stage. • The nucleation, propagation and thickening of a deformation twin are analyzed. • The deformation twins can exist in VN at room temperature.

  7. A Rover Mobility Platform with Autonomous Capability to Enable Mars Sample Return

    Science.gov (United States)

    Fulford, P.; Langley, C.; Shaw, A.

    2018-04-01

    The next step in understanding Mars is sample return. In Fall 2016, the CSA conducted an analogue deployment using the Mars Exploration Science Rover. An objective was to demonstrate the maturity of the rover's guidance, navigation, and control.

  8. The Effect of Gamma Radiation on Mars Mineral Matrices: Implications for Perchlorate Formation on Mars

    Science.gov (United States)

    Fox, A. C.; Eigenbrode, J. L.; Pavlov, A.; Lewis, J.

    2017-12-01

    Observations by the Phoenix Wet Chemistry Lab of the Martian surface indicate the presence of perchlorate in high concentrations. Additional observations by the Sample Analysis at Mars and the Viking Landers indirectly support the presence of perchlorate at other localities on Mars. The evidence for perchlorate at several localities on Mars coupled with its detection in Martian meteorite EETA79001 suggests that perchlorate is present globally on Mars. The presence of perchlorate on Mars further complicates the search for organic molecules indicative of past life. While perchlorate is kinetically limited in Martian conditions, the intermediate species associated with its formation or decomposition, such as chlorate or chlorite, could oxidize Martian organic species. As a result, it is vital to understand the mechanism of perchlorate formation on Mars in order to determine its role in the degradation of organics. Here, we explore an alternate mechanism of formation of perchlorate by bombarding Cl-salts and Mars-relevant mineral mixtures with gamma radiation both with and without the presence of liquid water, under vacuum. Previous work has shown that OClO can form from both UV radiation and energetic electrons bombardment of Cl-ices or Cl-salts, which then reacts with either OH- or O-radicals to produce perchlorate. Past research has suggested that liquid water or ice is the source of these hydroxyl and oxygen radicals, which limits the location of perchlorate formation on Mars. We demonstrate that trace amounts of perchlorate are potentially formed in samples containing silica dioxide or iron oxide and Cl-salts both with and without liquid water. Perchlorate was also detected in a portion of samples that were not irradiated, suggesting possible contamination. We did not detect perchlorate in samples that contained sulfate minerals. If perchlorate was formed without liquid water, it is possible that oxide minerals could be a potential source of oxygen radicals

  9. Gene-Environment Interplay in Twin Models

    OpenAIRE

    Verhulst, Brad; Hatemi, Peter K.

    2013-01-01

    In this article, we respond to Shultziner’s critique that argues that identical twins are more alike not because of genetic similarity, but because they select into more similar environments and respond to stimuli in comparable ways, and that these effects bias twin model estimates to such an extent that they are invalid. The essay further argues that the theory and methods that undergird twin models, as well as the empirical studies which rely upon them, are unaware of these potential biases...

  10. Mars One the ultimate reality TV show?

    CERN Document Server

    Seedhouse, Erik

    2017-01-01

    This book dissects the hype and hubris of the Mars One venture. Every aspect of the mission design is scrutinized, from the haphazard selection process to the unproven mission architecture. A controversial project, many professional astronauts consider Mars One a reckless attempt, yet it gained popular attention. This go-to reference guide provides the reader with insights into the myriad issues arising from the project's loss of funding, loss of sponsorship, loss of TV rights. It explains what contributed to an overly optimistic assessment of Mars One's mission-specific technology, and what captivated the public and the many willing candidates despite these flaws. From the author of Survival and Sacrifice in Mars Exploration (2015) among many more books on spacefaring, this is yet another up-to-the-minute account of an emerging player in the private space market from an expert on the subject.

  11. Conjoined twin piglets with duplicated cranial and caudal axes.

    Science.gov (United States)

    McManus, C A; Partlow, G D; Fisher, K R

    1994-06-01

    Twins with doubling of the cranial and caudal poles, yet having a single thorax, are rare. One set of diprosopus, dipygus porcine conjoined twins was studied. In addition to the conjoining anomaly, these twins also exhibited ambiguous internal reproductive features. The twins had two snouts, three eyes, a single thorax, and were duplicated from the umbilicus caudally. Radiography indicated a single vertebral column in the cervical region. The vertebral columns were separate caudally from this point. There was a total of six limbs--one pair of forelimbs and two pairs of hindlimbs. Many medial structures failed to develop in these twins. Medial cranial nerves V-XII were absent or displaced although apparently normal laterally. The medial palates were present but shortened, whereas the medial mandibular rami had folded back on themselves rostrally to form a midline mass between the two chins. Each twin had only one lateral kidney and one lateral testis. Medial scrotal sacs were present but devoid of a testis. There was a midline, "uterine"-like structure which crossed between the twins. However, histological analysis of this structure revealed it to be dysplastic testicular tissue. The relationship between the abnormal reproductive features in these twins and the conjoining is unclear. The anatomy of these twins, in addition to the literature reviewed, illustrates the internal anatomical heterogeneity of grossly similar conjoined twins. A review of the literature also suggests that conjoined twinning may be more common in swine than was previously suspected.

  12. Recurrent twin-twin transfusion syndrome after selective fetoscopic laser photocoagulation: a systematic review of the literature.

    LENUS (Irish Health Repository)

    Walsh, C A

    2012-11-01

    Selective fetoscopic laser photocoagulation (SFLP) is now the treatment of choice for twin-twin transfusion syndrome (TTTS). The incidence of recurrent TTTS following SFLP has been inconsistently reported across different studies. We performed a systematic review of TTTS recurrence following SFLP.

  13. Increased risk of abortion after genetic amniocentesis in twin pregnancies

    DEFF Research Database (Denmark)

    Palle, C; Andersen, J W; Tabor, A

    1983-01-01

    Forty-seven twin pregnancies among 3676 patients who had a genetic amniocentesis between 1973 and 1979, are reported. The detection rate of twins at the time of amniocentesis was 62 per cent. Five (17 per cent) of the 29 women with detected twin pregnancy aborted spontaneously, these are compared...... in at least one sac aborted, while 3 of 20 twin pregnancies with one puncture in each sac aborted (15 per cent). One of 18 (6 per cent) twin pregnancies, where only one sac was punctured, because the twin pregnancies were undetected, aborted. Amniocentesis of both sacs in twin pregnancies seems associated...... with an increased risk of spontaneous abortion. The indications for amniocentesis in twin pregnancies should be critically evaluated....

  14. Drilling on the Moon and Mars: Developing the Science Approach for Subsurface Exploration with Human Crews

    Science.gov (United States)

    Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.

    2010-01-01

    DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the

  15. Astrobiology and the Exploration of Gusev Crater by the Mars Exploration Rover Spirit

    Science.gov (United States)

    DesMarais, I. David

    2005-01-01

    We assess the availability of nutrient elements, energy and liquid water on the plains surrounding Columbia Memorial Station by evaluating data from Spirit in the context of previous Mars missions, Earth-based studies of martian meteorites and studies of microbial communities on Earth that represent potential analogs of martian biota. The compositions of Gusev basalts resemble those of olivine basalts beneath the seabed on Earth that deep drilling has shown to support life. Of particular relevance to biology, phosphate abundances are much greater in Gusev basalts (0.84 +/- 0.07 wt. % P2O5) than in oceanic basalts (typically 0.06 wt. %).

  16. Heritability and Genome-Wide Association Analyses of Serum Uric Acid in Middle and Old-Aged Chinese Twins

    DEFF Research Database (Denmark)

    Wang, Weijing; Zhang, Dongfeng; Xu, Chunsheng

    2018-01-01

    Serum uric acid (SUA), as the end product of purine metabolism, has proven emerging roles in human disorders. Here based on a sample of 379 middle and old-aged Chinese twin pairs, we aimed to explore the magnitude of genetic impact on SUA variation by performing sex-limitation twin modeling analy...... involved in functional genes and regulatory domains that mediate SUA level. Our findings provide clues to further elucidate molecular physiology of SUA homeostasis and identify new diagnostic biomarkers and therapeutic targets for hyperuricemia and gout....

  17. Telecommunications for Mars Rovers and Robotic Mission

    Science.gov (United States)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in-situ science activity on, or just above, the Martian surface.

  18. Telecommunications for Mars Rovers and Robotic Missions

    Science.gov (United States)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in situ science activity on, or just above, the Martian surface.

  19. Volatile and Isotopic Imprints of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.; Conrad, Pamela G.

    2015-01-01

    The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.

  20. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    Science.gov (United States)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  1. Sonographic monitoring of complications and anomalies in twin gestations

    International Nuclear Information System (INIS)

    Coleman, B.G.; Grumbach, K.; Arger, P.H.; Mintz, M.C.; Arenson, R.L.; Mennuti, M.T.; Gabbe, S.G.

    1986-01-01

    One hundred sixty-eight twin gestations were evaluated to assess the role of US in the diagnosis of obstetric complications and anomalies. US revealed the following complications: symptomatic polyhydramnios (eight cases), myomas (seven), placenta previa (three), and abruption (five). Fetal anomalies included twin-twin transfusion syndrome (two), acardiac anomaly (two), chromosomal abnormality (two), anencephaly (one), hydrocephaly (one), and conjoined twins (two). In 26 gestations intrauterine fetal demise or neonatal death involved one or both twins for a total of 42 deaths, constituting a mortality of 12.5%. No maternal deaths occurred. The impact of sonographic monitoring on the obstetric management of twin gestations is emphasized

  2. Mars Exploration Student Data Teams: Building Foundations and Influencing Students to Pursue STEM Careers through Experiences with Authentic Research

    Science.gov (United States)

    Turney, D.; Grigsby, B.; Murchie, S. L.; Buczkowski, D.; Seelos, K. D.; Nair, H.; McGovern, A.; Morgan, F.; Viviano, C. E.; Goudge, T. A.; Thompson, D.

    2013-12-01

    The Mars Exploration Student Data Teams (MESDT) immerses diverse teams of high school and undergraduate students in an authentic research Science, Technology, Engineering and Mathematics (STEM) based experience and allows students to be direct participants in the scientific process by working with scientists to analyze data sets from NASA's Mars program, specifically from the CRISM instrument. MESDT was created by Arizona State University's Mars Education Program, and is funded through NASA's Compact Reconnaissance Imaging Spectrometer for Mars or CRISM, an instrument onboard the Mars Reconnaissance Orbiter (MRO). Students work with teacher mentors and CRISM team members to analyze data, develop hypotheses, conduct research, submit proposals, critique and revise work. All students begin the program with basic Mars curriculum lessons developed by the MESDT education team. This foundation enables the program to be inclusive of all students. Teachers have reported that populations of students with diverse academic needs and abilities have been successful in this program. The use of technology in the classroom allows the MESDT program to successfully reach a nationwide audience and funding provided by NASA's CRISM instrument allows students to participate free of charge. Recent changes to the program incorporate a partnership with United States Geological Survey (USGS) and a CRISM sponsored competitive scholarship for two teams of students to present their work at the annual USGS Planetary Mappers Meeting. Returning MESDT teachers have attributed an increase in student enrollment and interest to this scholarship opportunity. The 2013 USGS Planetary Mappers Meeting was held in Washington DC which provided an opportunity for the students to meet with their Senators at the US Capitol to explain the science work they had done throughout the year as well as the impact that the program had had on their goals for the future. This opportunity extended to the students by the

  3. Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars

    OpenAIRE

    Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Ewing, R. C.; Chipera, S. J.; Yen, A. S.; Bristow, T. F.; Ehlmann, B. L.; Gellert, R.

    2017-01-01

    The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the

  4. Mars MetNet Mission Pressure and Humidity Devices

    Science.gov (United States)

    Haukka, H.; Harri, A.-M.; Schmidt, W.; Genzer, M.; Polkko, J.; Kemppinen, O.; Leinonen, J.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). MetBaro and MetHumi are part of the scientific payload of the MNL. Main scientific goal of both devices is to measure the meteorological phenomena (pressure and humidity) of the Martian atmosphere and complement the previous Mars mission atmospheric measurements (Viking and Phoenix) for better understanding of the Martian atmospheric conditions.

  5. Mars: A Freshmen Year Seminar of Science and Science-fiction

    Science.gov (United States)

    Svec, Michael; Moffett, D. A.; Winiski, M.

    2013-06-01

    "Mars: On the shoulder of giants" is a freshmen year seminar developed collaboratively between the physics, education, and center for teaching and learning. This course focuses on how scientific knowledge is developed through the lens of our changing view of Mars throughout history. Analyses of current studies of Mars are juxtaposed against historical understanding and perceptions of the planet found in scientific and popular literature of the day, as well as the movies. Kim Stanley Robinson’s "Red Mars" provides a unifying story throughout the course complimented by Fredrick Taylor’s "The Scientific Exploration of Mars" and Hartmann’s "A Traveler’s Guide to Mars." Based on the three-years of experience, the authors advocate the use of the speculative science-fiction novel and argue for its use in high school and undergraduate courses including those for science majors. Many of the students who selected this seminar went on to major in science and in subsequent interviews discussed the influence of science fiction on their decision to major in science. Science fiction provided story, science, and speculation that became a rich medium for critical-thinking skills and critical literacy. Student reflections indicated that science fiction served as a reminder of why they study science, a source for imagination, and exploration of science as a human endeavor. Based on this experience, we propose five elements for selecting science-fiction for inclusion in science classes: 1) Provides a deep description of the science content or technologies, 2) Describes science and technologies are plausible or accurate to the time period, 3) Contains a novum or plausible innovation that plays a key element in the speculation, 4) Exploration of the impact on society or humanity, and, 5) Shows science and technology as human endeavors.

  6. Correlating multispectral imaging and compositional data from the Mars Exploration Rovers and implications for Mars Science Laboratory

    Science.gov (United States)

    Anderson, Ryan B.; Bell, James F.

    2013-03-01

    In an effort to infer compositional information about distant targets based on multispectral imaging data, we investigated methods of relating Mars Exploration Rover (MER) Pancam multispectral remote sensing observations to in situ alpha particle X-ray spectrometer (APXS)-derived elemental abundances and Mössbauer (MB)-derived abundances of Fe-bearing phases at the MER field sites in Gusev crater and Meridiani Planum. The majority of the partial correlation coefficients between these data sets were not statistically significant. Restricting the targets to those that were abraded by the rock abrasion tool (RAT) led to improved Pearson’s correlations, most notably between the red-blue ratio (673 nm/434 nm) and Fe3+-bearing phases, but partial correlations were not statistically significant. Partial Least Squares (PLS) calculations relating Pancam 11-color visible to near-IR (VNIR; ∼400-1000 nm) “spectra” to APXS and Mössbauer element or mineral abundances showed generally poor performance, although the presence of compositional outliers led to improved PLS results for data from Meridiani. When the Meridiani PLS model for pyroxene was tested by predicting the pyroxene content of Gusev targets, the results were poor, indicating that the PLS models for Meridiani are not applicable to data from other sites. Soft Independent Modeling of Class Analogy (SIMCA) classification of Gusev crater data showed mixed results. Of the 24 Gusev test regions of interest (ROIs) with known classes, 11 had >30% of the pixels in the ROI classified correctly, while others were mis-classified or unclassified. k-Means clustering of APXS and Mössbauer data was used to assign Meridiani targets to compositional classes. The clustering-derived classes corresponded to meaningful geologic and/or color unit differences, and SIMCA classification using these classes was somewhat successful, with >30% of pixels correctly classified in 9 of the 11 ROIs with known classes. This work shows that

  7. Twinning in Zircon: Not a High-Pressure Phenomenon

    Science.gov (United States)

    Jones, G. A.; Moser, D.; Shieh, S. R.; Barker, I.

    2017-12-01

    Microtwins in zircon are commonly found in shocked terrestrial and extraterrestrial samples and are potentially important for shock history and crater reconstruction. Twinning is easily observed with both the optical microscope and variety of electron beam techniques. Twinning as a deformation mechanism is consistent with the high strain rates generated during impact. No constitutive relationships, or even general limits on the physical conditions required for twinning in zircon are known, however. Present speculation on the critical quantity for twin formation, i.e. 10s of GPa of shock pressure (Moser et al. 2011, Timms et al., 2012), has no basis in the underlying mechanisms of twin nucleation, which are related to the motion of dislocations. This erroneous value is due to conflation of twinning sensu stricto with a phase transformation to reidite. Reidite occurs as twin-like lamellae occupying the {112} planes which are thought to be a mirror plane for twinning. We review the crystallographic theory of twinning in zircon. We then evaulate several theories on the nucleation of twins along with their necessary stresses involved. Our aim is to show that shock microtwins in zircon can be a `low pressure' shock phenomenon. This 'low pressure' hypothesis is supported by natural samples. These zircons are from the lower crust nearly 80 km from the centre of the Vredefort impact structure—the most distal zircon shock microstructures yet found in the lithosphere. Twins are present in 10% of the zircon grains greater than 50 µm in diameter. As an extensive, 'low pressure' phenomenon, twins are an easily recognized and potentially widespread record of Earth's impact history.Moser, D.E., Cupelli, C. L., Barker, I., Flowers, R. M., Mowman, J. R., Wooden, J. and Hart, R. (2011) New zircon shock phenomena and their use for dating and […] analysis of the Vredefort dome, Canadian Journal of Earth Sciences 48(2), 117-139.Timms, N.E., Reddy, S. M., Healy, D., Nemchin, A. A

  8. [Association between obesity and DNA methylation among the 7-16 year-old twins].

    Science.gov (United States)

    Li, C X; Gao, Y; Gao, W J; Yu, C Q; Lyu, J; Lyu, R R; Duan, J L; Sun, Y; Guo, X H; Wang, S F; Zhou, B; Wang, G; Cao, W H; Li, L M

    2018-04-10

    Objective: On whole-genome scale, we tried to explore the correlation between obesity-related traits and DNA methylation sites, based on discordant monozygotic twin pairs. Methods: A total of 90 pairs of 6-17 year-old twins were recruited in Chaoyang district, Yanqing district and Fangshan district in Beijing in 2016. Information on twins was gathered through a self-designed questionnaire and results: from physical examination, including height, weight and waist circumference of the subjects under study. DNA methylation detection was chosen on the Illumina Human Methylation EPIC BeadChip. R 3.3.1 language was used to read the DNA methylation signal under quality control on samples and probes. Ebayes function of empirical Bayes paired moderated t -test was used to identify the differential methylated CpG sites (DMCs). VarFit function of empirical Bayes paired moderated Levene test was used to identify the differentially variables CpG sits (DVCs) in obese and normal groups. Results According to the obesity discordance criteria, we collected 23 pairs of twins (age range 7 to 16 years), including 12 male pairs. A total of 817 471 qualified CpG loci were included in the genome-wide correlation analysis. According to the significance level of FDR set as obesity traits. After multiple testing corrections, no positive sites were found to have associated with obesity. However, results from the correlation analysis demonstrated sites cg05684382 (chr: 12) and cg26188191 (chr: 16) might have played a role in the development of obesity. This study provides a methodologic reference for the studies on discordance twins related problems.

  9. Use of Web 2.0 Technologies for Public Outreach on a Simulated Mars Mission

    Science.gov (United States)

    Ferrone, Kristine; Shiro, Brian; Palaia, Joseph E., IV

    2009-01-01

    Recent advances in social media and internet communications have revolutionized the ways people interact and disseminate information. Astronauts are already taking advantage of these tools by blogging and tweeting from space, and almost all NASA missions now have presences on the major social networking sites. One priotity for future human explorers on Mars will be communicating their experiences to the people back on Earth. During July 2009, a 6-member crew of volunteers carried out a simulated Mars mission at the Flashline Mars Arctic Research Station (FMARS). The Mars Society built the mock Mars habitat in 2000-01 to help develop key knowledge and inspire the public for human Mars exploration. It is located on Devon island about 1600 km from the North Pole within the Arctic Circle. The structure is situated on the rim of Haughton Crater in an environment geologically and biologically analogous to Mars. Living in a habitat, conducting EVAs wearing spacesuits, and observing communication delays with "Earth,"the crew endured restrictions similar to those that will be faced by future human Mars explorers. Throughout the expedition, crewmembers posted daily blog entries, reports, photos, videos, and updates to their website and social media outlets Twitter, Facebook, YouTube, and Picasa Web Albums. During the sixteen EVAs of thier field science research campaign, FMARS crewmembers collected GPS track information and took geotagged photos using GPS-enabled cameras. They combined their traverse GPS tracks with photo location information into KML/KMZ files that website visitors can view in Google Earth.

  10. Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars

    Science.gov (United States)

    Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce

    2014-01-01

    Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using

  11. Late language emergence in 24-month-old twins: heritable and increased risk for late language emergence in twins.

    Science.gov (United States)

    Rice, Mabel L; Zubrick, Stephen R; Taylor, Catherine L; Gayán, Javier; Bontempo, Daniel E

    2014-06-01

    This study investigated the etiology of late language emergence (LLE) in 24-month-old twins, considering possible twinning, zygosity, gender, and heritability effects for vocabulary and grammar phenotypes. A population-based sample of 473 twin pairs participated. Multilevel modeling estimated means and variances of vocabulary and grammar phenotypes, controlling for familiality. Heritability was estimated with DeFries-Fulker regression and variance components models to determine effects of heritability, shared environment, and nonshared environment. Twins had lower average language scores than norms for single-born children, with lower average performance for monozygotic than dizygotic twins and for boys than girls, although gender and zygosity did not interact. Gender did not predict LLE. Significant heritability was detected for vocabulary (0.26) and grammar phenotypes (0.52 and 0.43 for boys and girls, respectively) in the full sample and in the sample selected for LLE (0.42 and 0.44). LLE and the appearance of Word Combinations were also significantly heritable (0.22-0.23). The findings revealed an increased likelihood of LLE in twin toddlers compared with single-born children that is modulated by zygosity and gender differences. Heritability estimates are consistent with previous research for vocabulary and add further suggestion of heritable differences in early grammar acquisition.

  12. The Spread of Substance Use and Delinquency between Adolescent Twins

    Science.gov (United States)

    Laursen, Brett; Hartl, Amy C.; Vitaro, Frank; Brendgen, Mara; Dionne, Ginette; Boivin, Michel

    2017-01-01

    This investigation examines the spread of problem behaviors (substance use and delinquency) between twin siblings. A sample of 628 twins (151 male twin pairs and 163 female twin pairs) drawn from the Quebec Newborn Twin Study completed inventories describing delinquency and substance use at ages 13, 14, and 15. A 3-wave longitudinal actor-partner…

  13. Atopic diseases in twins born after assisted reproduction

    DEFF Research Database (Denmark)

    Jäderberg, Ida; Thomsen, Simon F; Kyvik, Kirsten Ohm

    2012-01-01

    Jäderberg I, Thomsen SF, Kyvik KO, Skytthe A, Backer V. Atopic diseases in twins born after assisted reproduction. Paediatric and Perinatal Epidemiology 2012; 26: 140-145. We examined the risk of atopic diseases in twins born after assisted reproduction. Data on atopic diseases and assisted...... reproduction in 9694 twin pairs, 3-20 years of age, from the Danish Twin Registry were collected via multidisciplinary questionnaires. The risk of atopic diseases in twins born after assisted reproduction was compared with the risk in twins born after spontaneous conception using logistic regression...... and variance components analysis. Children born after assisted reproduction did not have a different risk of atopic outcomes (adjusted odds ratios [95% confidence intervals] for asthma: 0.95 [0.85, 1.07], P = 0.403; hay fever: 1.01 [0.86, 1.18], P = 0.918; and atopic dermatitis: 1.02 [0.81, 1.11], P = 0...

  14. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm

    Directory of Open Access Journals (Sweden)

    Koen Bruynseels

    2018-02-01

    Full Text Available Personalized medicine uses fine grained information on individual persons, to pinpoint deviations from the normal. ‘Digital Twins’ in engineering provide a conceptual framework to analyze these emerging data-driven health care practices, as well as their conceptual and ethical implications for therapy, preventative care and human enhancement. Digital Twins stand for a specific engineering paradigm, where individual physical artifacts are paired with digital models that dynamically reflects the status of those artifacts. When applied to persons, Digital Twins are an emerging technology that builds on in silico representations of an individual that dynamically reflect molecular status, physiological status and life style over time. We use Digital Twins as the hypothesis that one would be in the possession of very detailed bio-physical and lifestyle information of a person over time. This perspective redefines the concept of ‘normality’ or ‘health,’ as a set of patterns that are regular for a particular individual, against the backdrop of patterns observed in the population. This perspective also will impact what is considered therapy and what is enhancement, as can be illustrated with the cases of the ‘asymptomatic ill’ and life extension via anti-aging medicine. These changes are the consequence of how meaning is derived, in case measurement data is available. Moral distinctions namely may be based on patterns found in these data and the meanings that are grafted on these patterns. Ethical and societal implications of Digital Twins are explored. Digital Twins imply a data-driven approach to health care. This approach has the potential to deliver significant societal benefits, and can function as a social equalizer, by allowing for effective equalizing enhancement interventions. It can as well though be a driver for inequality, given the fact that a Digital Twin might not be an accessible technology for everyone, and given the fact

  15. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm

    Science.gov (United States)

    Bruynseels, Koen; Santoni de Sio, Filippo; van den Hoven, Jeroen

    2018-01-01

    Personalized medicine uses fine grained information on individual persons, to pinpoint deviations from the normal. ‘Digital Twins’ in engineering provide a conceptual framework to analyze these emerging data-driven health care practices, as well as their conceptual and ethical implications for therapy, preventative care and human enhancement. Digital Twins stand for a specific engineering paradigm, where individual physical artifacts are paired with digital models that dynamically reflects the status of those artifacts. When applied to persons, Digital Twins are an emerging technology that builds on in silico representations of an individual that dynamically reflect molecular status, physiological status and life style over time. We use Digital Twins as the hypothesis that one would be in the possession of very detailed bio-physical and lifestyle information of a person over time. This perspective redefines the concept of ‘normality’ or ‘health,’ as a set of patterns that are regular for a particular individual, against the backdrop of patterns observed in the population. This perspective also will impact what is considered therapy and what is enhancement, as can be illustrated with the cases of the ‘asymptomatic ill’ and life extension via anti-aging medicine. These changes are the consequence of how meaning is derived, in case measurement data is available. Moral distinctions namely may be based on patterns found in these data and the meanings that are grafted on these patterns. Ethical and societal implications of Digital Twins are explored. Digital Twins imply a data-driven approach to health care. This approach has the potential to deliver significant societal benefits, and can function as a social equalizer, by allowing for effective equalizing enhancement interventions. It can as well though be a driver for inequality, given the fact that a Digital Twin might not be an accessible technology for everyone, and given the fact that patterns

  16. Indigenous Manufacturing realization of TWIN Source

    Science.gov (United States)

    Pandey, R.; Bandyopadhyay, M.; Parmar, D.; Yadav, R.; Tyagi, H.; Soni, J.; Shishangiya, H.; Sudhir Kumar, D.; Shah, S.; Bansal, G.; Pandya, K.; Parmar, K.; Vuppugalla, M.; Gahlaut, A.; Chakraborty, A.

    2017-04-01

    TWIN source is two RF driver based negative ion source that has been planned to bridge the gap between single driver based ROBIN source (currently operational) and eight river based DNB source (to be operated under IN-TF test facility). TWIN source experiments have been planned at IPR keeping the objective of long term domestic fusion programme to gain operational experiences on vacuum immersed multi driver RF based negative ion source. High vacuum compatible components of twin source are designed at IPR keeping an aim on indigenous built in attempt. These components of TWIN source are mainly stainless steel and OFC-Cu. Being high heat flux receiving components, one of the major functional requirements is continuous heat removal via water as cooling medium. Hence for the purpose stainless steel parts are provided with externally milled cooling lines and that shall be covered with a layer of OFC-cu which would be on the receiving side of high heat flux. Manufacturability of twin source components requires joining of these dissimilar materials via process like electrode position, electron beam welding and vacuum brazing. Any of these manufacturing processes shall give a vacuum tight joint having proper joint strength at operating temperature and pressure. Taking the indigenous development effort vacuum brazing (in non-nuclear environment) has been opted for joining of dissimilar materials of twin source being one of the most reliable joining techniques and commercially feasible across the suppliers of country. Manufacturing design improvisation for the components has been done to suit the vacuum brazing process requirement and to ease some of the machining without comprising over the functional and operational requirements. This paper illustrates the details on the indigenous development effort, design improvisation to suits manufacturability, vacuum brazing basics and its procedures for twin source components.

  17. Seasonality in twin birth rates, Denmark, 1936-84.

    Science.gov (United States)

    Bonnelykke, B; Søgaard, J; Nielsen, J

    1987-12-01

    A study was made of seasonality in twin birth rate in Denmark between 1977 and 1984. We studied all twin births (N = 45,550) in all deliveries (N = 3,679,932) during that period. Statistical analysis using a simple harmonic sinusoidal model provided no evidence for seasonality. However, sequential polynomial analysis disclosed a significant fit to a fifth order polynomial curve with peaks in twin birth rates in May-June and December, along with troughs in February and September. A falling trend in twinning rate broke off in Denmark around 1970, and from 1970 to 1984 an increasing trend was found. The results are discussed in terms of possible environmental influences on twinning.

  18. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    Science.gov (United States)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-09-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if

  19. Outcome reporting across randomised trials and observational studies evaluating treatments for Twin-Twin Transfusion Syndrome: a systematic review.

    Science.gov (United States)

    Perry, Helen; Duffy, James M N; Umadia, Ogochukwu; Khalil, Asma

    2018-04-01

    Twin-Twin Transfusion syndrome is associated with significant mortality and morbidity. Potential treatments require robust evaluation. The aim of this study was to evaluate outcome reporting across observational studies and randomised controlled trials assessing treatments for twin-twin transfusion syndrome (TTTS). Cochrane Central Register of Controlled Trials, EMBASE and Medline were searched from inception to August 2016. Observational studies and randomised controlled trials reporting outcomes following a treatment for TTTS in monochorionic-diamniotic twin pregnancies and monochorionic-triamniotic or dichorionic-triamniotic triplet pregnancies were included. We systematically extracted and categorised outcome reporting. Six randomised trials and 94 observational studies, reporting data from 20,071 maternal participants and 3,199 children, were included. Six different treatments were evaluated. Included studies reported sixty-two different outcomes, including 10 fetal, 28 neonatal, 6 early childhood and 18 maternal outcomes. The outcomes were inconsistently reported across trials. For example, when considering offspring mortality, 31 studies (31%) reported live birth, 31 studies (31%) reported intrauterine death, 49 studies (49%) reported neonatal mortality, and 17 studies (17%) reported perinatal mortality. Four studies (4%) reported respiratory distress syndrome. Only 19 (19%) of studies were designed for long-term follow-up and 11 of these studies (11%) reported cerebral palsy. Most studies evaluating treatments for TTTS, have often neglected to report clinically important outcomes, especially neonatal morbidity outcomes. Most studies are not designed for long-term follow-up. The development of a core outcome set could help standardised outcome collection and reporting in Twin-Twin Transfusion syndrome studies. This article is protected by copyright. All rights reserved.

  20. Confined Blood Chimerism in Monochorionic Dizygotic Twins Conceived Spontaneously

    Directory of Open Access Journals (Sweden)

    Takashi Kanda

    2013-05-01

    Full Text Available Traditionally, monochorionicity has been regarded as synonymous with monozygosity. However, several recent cases of monochorionic dizygotic twins have shown that monochorionic twins can be dizygous. We report a rare case of monochorionic diamnionic, gender-discordant twins who were conceived spontaneously. Initially, a monochorionic placenta was diagnosed by ultrasonography at 8 weeks of gestation and then confirmed by pathology after delivery. The twins had different genders. A comparison of cytogenetic analyses using peripheral blood lymphocytes and skin fibroblasts revealed that chimerism was confined to blood cells. We have experienced two cases of monochorionic dizygotic twins since 2003. These cases suggest that monochorionic dizygotic twins are not as rare as previously thought.