WorldWideScience

Sample records for twelve-mode dynamical system

  1. Dynamic mode decomposition for compressive system identification

    Science.gov (United States)

    Bai, Zhe; Kaiser, Eurika; Proctor, Joshua L.; Kutz, J. Nathan; Brunton, Steven L.

    2017-11-01

    Dynamic mode decomposition has emerged as a leading technique to identify spatiotemporal coherent structures from high-dimensional data. In this work, we integrate and unify two recent innovations that extend DMD to systems with actuation and systems with heavily subsampled measurements. When combined, these methods yield a novel framework for compressive system identification, where it is possible to identify a low-order model from limited input-output data and reconstruct the associated full-state dynamic modes with compressed sensing, providing interpretability of the state of the reduced-order model. When full-state data is available, it is possible to dramatically accelerate downstream computations by first compressing the data. We demonstrate this unified framework on simulated data of fluid flow past a pitching airfoil, investigating the effects of sensor noise, different types of measurements (e.g., point sensors, Gaussian random projections, etc.), compression ratios, and different choices of actuation (e.g., localized, broadband, etc.). This example provides a challenging and realistic test-case for the proposed method, and results indicate that the dominant coherent structures and dynamics are well characterized even with heavily subsampled data.

  2. Majorana modes in solid state systems and its dynamics

    Science.gov (United States)

    Zhang, Qi; Wu, Biao

    2018-04-01

    We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.

  3. Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes

    Science.gov (United States)

    Kvaternik, Raymond G.

    2013-01-01

    Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.

  4. Efficacy of the fractional photothermolysis system with dynamic operating mode on acne scars and enlarged facial pores.

    Science.gov (United States)

    Cho, Sung Bin; Lee, Ju Hee; Choi, Moon Jung; Lee, Kyu-Yeop; Oh, Sang Ho

    2009-01-01

    Current treatments for acne scars and enlarged facial pores have shown limited efficacy. To evaluate the efficacy and safety of the fractional photothermolysis system (FPS) with dynamic operating mode on acne scars and enlarged pores. Twelve patients with mild to moderate atrophic acne scars and enlarged pores were included in this study. Three sessions of FPS treatment were performed for acne scars and facial pores monthly. Two blinded dermatologists who compared before and after photos based on a quartile grading scale conducted objective clinical assessments of acne scar- and facial pore-treated areas. We took a biopsy immediately after one treatment with the laser from one of the authors to assess the histologic effects of the laser on facial pores. Follow-up results at 4 months after the last treatment revealed that, of the 12 patients, for acne scars, five demonstrated clinical improvements of 51% to 75% and three demonstrated improvements of 76% to 100%, and for facial pores, five demonstrated moderate clinical improvements of 26% to 50% and three demonstrated improvements of 76% to 100%. Side effects, including pain, post-treatment erythema, and edema, were resolved within 1 week. We suggest that the FPS may provide a new treatment algorithm in some cases with acne scars and enlarged pores. Considering the lack of placebo-controlled, split-face design of our study, optimized, prospective studies should be conducted to fully assess the efficacy of FPS with dynamic operating mode.

  5. Electromechanical Dynamics Simulations of Superconducting LSM Rocket Launcher System in Attractive-Mode

    Science.gov (United States)

    Yoshida, Kinjiro; Hayashi, Kengo; Takami, Hiroshi

    1996-01-01

    Further feasibility study on a superconducting linear synchronous motor (LSM) rocket launcher system is presented on the basis of dynamic simulations of electric power, efficiency and power factor as well as the ascending motions of the launcher and rocket. The advantages of attractive-mode operation are found from comparison with repulsive-mode operation. It is made clear that the LSM rocket launcher system, of which the long-stator is divided optimally into 60 sections according to launcher speeds, can obtain high efficiency and power factor.

  6. Multi-mode vibration control of piping system

    International Nuclear Information System (INIS)

    Minowa, Takeshi; Seto, Kazuto; Iiyama, Fumiya; Sodeyama, Hiroshi

    1999-01-01

    In this paper, dual dynamic absorbers are applied to the piping system in order to control the multiple vibration modes. ANSYS, which is one of the software based on FEM(finite element method), is used for the design of dual dynamic absorbers as well as for the determination of their optimum installing positions. The dual dynamic absorbers designed optimally for controlling the first three vibration modes perform just like a houde damper in higher frequency and have an effect on controlling higher modes. To use this advantage, three dual dynamic absorbers are installed in positions where they influence higher modes, and not only the first three modes of the piping system but also the extensive modes are controlled. Practical experimental study has also been carried out and it is shown that a dual dynamic absorber is suitable for controlling the vibration of the piping system. (author)

  7. Reynolds-number-dependent dynamical transitions on hydrodynamic synchronization modes of externally driven colloids

    Science.gov (United States)

    Oyama, Norihiro; Teshigawara, Kosuke; Molina, John Jairo; Yamamoto, Ryoichi; Taniguchi, Takashi

    2018-03-01

    The collective dynamics of externally driven Np-colloidal systems (1 ≤Np≤4 ) in a confined viscous fluid have been investigated using three-dimensional direct numerical simulations with fully resolved hydrodynamics. The dynamical modes of collective particle motion are studied by changing the particle Reynolds number as determined by the strength of the external driving force and the confining wall distance. For a system with Np=3 , we found that at a critical Reynolds number a dynamical mode transition occurs from the doublet-singlet mode to the triplet mode, which has not been reported experimentally. The dynamical mode transition was analyzed in detail from the following two viewpoints: (1) spectrum analysis of the time evolution of a tagged particle velocity and (2) the relative acceleration of the doublet cluster with respect to the singlet particle. For a system with Np=4 , we found similar dynamical mode transitions from the doublet-singlet-singlet mode to the triplet-singlet mode and further to the quartet mode.

  8. Adaptive Sliding Mode Control of Dynamic Systems Using Double Loop Recurrent Neural Network Structure.

    Science.gov (United States)

    Fei, Juntao; Lu, Cheng

    2018-04-01

    In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.

  9. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    International Nuclear Information System (INIS)

    Mikhlin, Yu V; Perepelkin, N V; Klimenko, A A; Harutyunyan, E

    2012-01-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  10. Dynamic mode decomposition for plasma diagnostics and validation

    Science.gov (United States)

    Taylor, Roy; Kutz, J. Nathan; Morgan, Kyle; Nelson, Brian A.

    2018-05-01

    We demonstrate the application of the Dynamic Mode Decomposition (DMD) for the diagnostic analysis of the nonlinear dynamics of a magnetized plasma in resistive magnetohydrodynamics. The DMD method is an ideal spatio-temporal matrix decomposition that correlates spatial features of computational or experimental data while simultaneously associating the spatial activity with periodic temporal behavior. DMD can produce low-rank, reduced order surrogate models that can be used to reconstruct the state of the system with high fidelity. This allows for a reduction in the computational cost and, at the same time, accurate approximations of the problem, even if the data are sparsely sampled. We demonstrate the use of the method on both numerical and experimental data, showing that it is a successful mathematical architecture for characterizing the helicity injected torus with steady inductive (HIT-SI) magnetohydrodynamics. Importantly, the DMD produces interpretable, dominant mode structures, including a stationary mode consistent with our understanding of a HIT-SI spheromak accompanied by a pair of injector-driven modes. In combination, the 3-mode DMD model produces excellent dynamic reconstructions across the domain of analyzed data.

  11. Operation Modes and Control Schemes for Internet-Based Teleoperation System with Time Delay

    Institute of Scientific and Technical Information of China (English)

    曾庆军; 宋爱国

    2003-01-01

    Teleoperation system plays an important role in executing task under hazard environment. As the computer networks such as the Internet are being used as the communication channel of teleoperation system, varying time delay causes the overall system unstable and reduces the performance of transparency. This paper proposed twelve operation modes with different control schemes for teleoperation on the Internet with time delay. And an optimal operation mode with control scheme was specified for teleoperation with time delay, based on the tradeoff between passivity and transparency properties. It experimentally confirmed the validity of the proposed optimal mode and control scheme by using a simple one DOF master-slave manipulator system.

  12. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul [Stanford University, Stanford, California 94394 (United States); Varian Medical Systems, Palo Alto, California 94304 (United States); Stanford University, Stanford, California 94394 (United States)

    2010-12-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN{>=}125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be {approx}193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was {approx}35 min, while that taken for comprehensive testing was {approx}3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures

  13. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems.

    Science.gov (United States)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-12-01

    To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Failures modes with RPN > or = 125 were recommended to be tested monthly. Failure modes with RPN < 125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be approximately 193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was approximately 35 min, while that taken for comprehensive testing was approximately 3.5 h. FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  14. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    International Nuclear Information System (INIS)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-01-01

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  15. Dynamical instability induced by the zero mode under symmetry breaking external perturbation

    International Nuclear Information System (INIS)

    Takahashi, J.; Nakamura, Y.; Yamanaka, Y.

    2014-01-01

    A complex eigenvalue in the Bogoliubov–de Gennes equations for a stationary Bose-Einstein condensate in the ultracold atomic system indicates the dynamical instability of the system. We also have the modes with zero eigenvalues for the condensate, called the zero modes, which originate from the spontaneous breakdown of symmetries. Although the zero modes are suppressed in many theoretical analyses, we take account of them in this paper and argue that a zero mode can change into one with a pure imaginary eigenvalue by applying a symmetry breaking external perturbation potential. This emergence of a pure imaginary mode adds a new type of scenario of dynamical instability to that characterized by the complex eigenvalue of the usual excitation modes. For illustration, we deal with two one-dimensional homogeneous Bose–Einstein condensate systems with a single dark soliton under a respective perturbation potential, breaking the invariance under translation, to derive pure imaginary modes. - Highlights: • Zero modes are important but ignored in many theories for the cold atomic system. • We discuss the zero mode under symmetry breaking potential in this system. • We consider the zero mode of translational invariance for a single dark soliton. • We show that it turns into an anomalous or pure imaginary mode

  16. Dynamic Analysis and Adaptive Sliding Mode Controller for a Chaotic Fractional Incommensurate Order Financial System

    Science.gov (United States)

    Hajipour, Ahmad; Tavakoli, Hamidreza

    2017-12-01

    In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.

  17. Quantum dynamics through conical intersections in macrosystems: Combining effective modes and time-dependent Hartree

    International Nuclear Information System (INIS)

    Basler, Mathias; Gindensperger, Etienne; Meyer, Hans-Dieter; Cederbaum, Lorenz S.

    2008-01-01

    We address the nonadiabatic quantum dynamics of (macro)systems involving a vast number of nuclear degrees of freedom (modes) in the presence of conical intersections. The macrosystem is first decomposed into a system part carrying a few, strongly coupled modes, and an environment, comprising the remaining modes. By successively transforming the modes of the environment, a hierarchy of effective Hamiltonians for the environment can be constructed. Each effective Hamiltonian depends on a reduced number of effective modes, which carry cumulative effects. The environment is described by a few effective modes augmented by a residual environment. In practice, the effective modes can be added to the system's modes and the quantum dynamics of the entire macrosystem can be accurately calculated on a limited time-interval. For longer times, however, the residual environment plays a role. We investigate the possibility to treat fully quantum mechanically the system plus a few effective environmental modes, augmented by the dynamics of the residual environment treated by the time-dependent Hartree (TDH) approximation. While the TDH approximation is known to fail to correctly reproduce the dynamics in the presence of conical intersections, it is shown that its use on top of the effective-mode formalism leads to much better results. Two numerical examples are presented and discussed; one of them is known to be a critical case for the TDH approximation

  18. Improvement of the reliability graph with general gates to analyze the reliability of dynamic systems that have various operation modes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Ki [Div. of Research Reactor System Design, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); No, Young Gyu; Seong, Poong Hyun [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-04-15

    The safety of nuclear power plants is analyzed by a probabilistic risk assessment, and the fault tree analysis is the most widely used method for a risk assessment with the event tree analysis. One of the well-known disadvantages of the fault tree is that drawing a fault tree for a complex system is a very cumbersome task. Thus, several graphical modeling methods have been proposed for the convenient and intuitive modeling of complex systems. In this paper, the reliability graph with general gates (RGGG) method, one of the intuitive graphical modeling methods based on Bayesian networks, is improved for the reliability analyses of dynamic systems that have various operation modes with time. A reliability matrix is proposed and it is explained how to utilize the reliability matrix in the RGGG for various cases of operation mode changes. The proposed RGGG with a reliability matrix provides a convenient and intuitive modeling of various operation modes of complex systems, and can also be utilized with dynamic nodes that analyze the failure sequences of subcomponents. The combinatorial use of a reliability matrix with dynamic nodes is illustrated through an application to a shutdown cooling system in a nuclear power plant.

  19. Improvement of the reliability graph with general gates to analyze the reliability of dynamic systems that have various operation modes

    International Nuclear Information System (INIS)

    Shin, Seung Ki; No, Young Gyu; Seong, Poong Hyun

    2016-01-01

    The safety of nuclear power plants is analyzed by a probabilistic risk assessment, and the fault tree analysis is the most widely used method for a risk assessment with the event tree analysis. One of the well-known disadvantages of the fault tree is that drawing a fault tree for a complex system is a very cumbersome task. Thus, several graphical modeling methods have been proposed for the convenient and intuitive modeling of complex systems. In this paper, the reliability graph with general gates (RGGG) method, one of the intuitive graphical modeling methods based on Bayesian networks, is improved for the reliability analyses of dynamic systems that have various operation modes with time. A reliability matrix is proposed and it is explained how to utilize the reliability matrix in the RGGG for various cases of operation mode changes. The proposed RGGG with a reliability matrix provides a convenient and intuitive modeling of various operation modes of complex systems, and can also be utilized with dynamic nodes that analyze the failure sequences of subcomponents. The combinatorial use of a reliability matrix with dynamic nodes is illustrated through an application to a shutdown cooling system in a nuclear power plant

  20. ELM Dynamics in TCV H-modes

    Science.gov (United States)

    Degeling, A. W.; Martin, Y. R.; Lister, J. B.; Llobet, X.; Bak, P. E.

    2003-06-01

    TCV (Tokamak à Configuration Variable, R = 0.88 m, a limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma — wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock.

  1. Collective modes in multiband superfluids and superconductors: Multiple dynamical classes

    International Nuclear Information System (INIS)

    Ota, Yukihiro; Machida, Masahiko; Koyama, Tomio; Aoki, Hideo

    2011-01-01

    One important way to characterize the states having a gauge symmetry spontaneously broken over multibands is to look at their collective excitation modes. We find that a three-band system has multiple Leggett modes with significantly different masses, which can be classified into different dynamical classes according to whether multiple interband Josephson currents add or cancel. This provides a way to dynamically characterize multiband superconductivity while the pairing symmetry is a static property.

  2. Component mode synthesis in structural dynamics

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    1993-01-01

    In seismic analysis of Nuclear Reactor Structures and equipments eigen solution requires large computer time. Component mode synthesis is an efficient technique with which one can evaluate dynamic characteristics of a large structure with minimum computer time. Due to this reason it is possible to do a coupled analysis of structure and equipment which takes into account the interaction effects. Basically in this the method large size structure is divided into small substructures and dynamic characteristics of individual substructure are determined. The dynamic characteristics of entire structure are evaluated by synthesising the individual substructure characteristics. Component mode synthesis has been applied in this paper to the analysis of a tall heavy water upgrading tower. Use of fixed interface normal modes, constrained modes, attachment modes in the component mode synthesis using energy principle and using Ritz vectors have been discussed. The validity of this method is established by solving fixed-fixed beam and comparing the results obtained by conventional and classical method. The eigen value problem has been solved using simultaneous iteration method. (author)

  3. Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control

    Science.gov (United States)

    Chen, Syuan-Yi; Gong, Sheng-Sian

    2017-09-01

    This study aims to develop an adaptive high-precision control system for controlling the speed of a vane-type air motor (VAM) pneumatic servo system. In practice, the rotor speed of a VAM depends on the input mass air flow, which can be controlled by the effective orifice area (EOA) of an electronic throttle valve (ETV). As the control variable of a second-order pneumatic system is the integral of the EOA, an observation-based adaptive dynamic sliding-mode control (ADSMC) system is proposed to derive the differential of the control variable, namely, the EOA control signal. In the ADSMC system, a proportional-integral-derivative fuzzy neural network (PIDFNN) observer is used to achieve an ideal dynamic sliding-mode control (DSMC), and a supervisor compensator is designed to eliminate the approximation error. As a result, the ADSMC incorporates the robustness of a DSMC and the online learning ability of a PIDFNN. To ensure the convergence of the tracking error, a Lyapunov-based analytical method is employed to obtain the adaptive algorithms required to tune the control parameters of the online ADSMC system. Finally, our experimental results demonstrate the precision and robustness of the ADSMC system for highly nonlinear and time-varying VAM pneumatic servo systems.

  4. ELM Dynamics in TCV H-modes

    International Nuclear Information System (INIS)

    Degeling, A.W.; Martin, Y.R.; Lister, J.B.; Llobet, X.; Bak, P.E.

    2003-01-01

    TCV (Tokamak a Configuration Variable, R = 0.88 m, a < 0.25 m, BT < 1.54 T) is a highly elongated tokamak, capable of producing limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma -- wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock

  5. Vibrational modes of isolated substitution impurities in twelve compounds AN B8-N with the blende structure

    International Nuclear Information System (INIS)

    Plumelle, Pierre

    1979-01-01

    We have studied a particular point defect, the isolated substitution in twelve compounds CuCl, CuBr, CuI, ZnTe, CdTe, ZnS, ZnSe, GaAs, GaP, InSb, InP and GaSb. The model of the perfect lattice is a rigid ion model with eleven parameters. Infrared localized vibrational modes of impurities are observed in a series of samples. By comparison of these experimental results with the calculated values it is possible to determine the perturbation for each particular case. A relation obtained between a force constant of the perfect crystal and the force constant of the impurity suggests that no change is introduced by the isoelectronic impurities. (author) [fr

  6. The twelve colourful stones

    International Nuclear Information System (INIS)

    Doria, R.M.

    1983-01-01

    A dynamics with twelve colourful stones is created based on the concepts of gauge and colour. It is associated different gauge fields to the same group. A group of gauge invariant Lagrangians is established. A gauge invariant mass term is introduced. The colourful stones physical insight is to be building blocks for quarks and leptons. (Author) [pt

  7. Charge density glass dynamics - Soft potentials and soft modes

    Energy Technology Data Exchange (ETDEWEB)

    Biljakovic, K., E-mail: katica@ifs.hr [Institute of Physics, HR-10001, Zagreb, P.O. Box 304 (Croatia); Staresinic, D., E-mail: damirs@ifs.hr [Institute of Physics, HR-10001, Zagreb, P.O. Box 304 (Croatia); Lasjaunias, J.C., E-mail: jean-claude.lasjaunias@pop3.grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Remenyi, G., E-mail: Gyorgy.Remenyi@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Melin, R., E-mail: Regis.Melin@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Monceau, P., E-mail: pierre.monceau@grenoble.cnrs.fr [Institut Neel, CNRS, BP 166, F-38042, Grenoble, Cedex 9 (France); Sahling, S., E-mail: sven.olaf@gmail.com [Institut fuer Festkoerperphysik, Universitaet Dresden, D-01062, Dresden (Germany)

    2012-06-01

    An universal fingerprint of glasses has been found in low-temperature thermodynamic properties of charge/spin density wave (C/SDW) systems. Deviations from the well-known Debye, elastic continuum prediction for specific heat (flat C{sub p}/T{sup 3} plot) appear as two anomalies; the upturn below 1 K and a broad bump at T{approx}10 K (named Boson peak in glasses). The first one, inherent of localized two level systems within the shalow corrugated phase space, exhibits slow relaxation with the complex dynamics. The second one, 'Boson peak-like peak' was attributed to the pinned mode and incomplete softening of CDW superstructural mode. We discuss similar C{sub p}(T) features found also in incommensurate dielectrics with well documented soft-mode anomalies.

  8. Topology optimization of continuum structure with dynamic constraints using mode identification

    International Nuclear Information System (INIS)

    Li, Jianhongyu; Chen, Shenyan; Huang, Hai

    2015-01-01

    For the problems such as mode exchange and localized modes in topology optimization of continuum structure with dynamic constraints, it is difficult to apply the traditional optimization model which considers fixed order mode frequencies as constraints in optimization calculation. A new optimization model is established, in which the dynamical constraints are changed as frequencies of structural principal vibrations. The order of the principal vibrations is recognized through modal identification in the optimization process, and the constraints are updated to make the optimization calculation execute smoothly. Localized mode elimination techniques are introduced to reduce the localized modes induced by the low density elements, which could improve the optimization efficiency. A new optimization process is designed, which achieves the purpose of overcoming mode exchange problem and localized mode problem at the cost of increasing several structural analyses. Optimization system is developed by using Nastran to perform structural analysis and sensitivity analysis and two-level multipoint approximation algorithm as optimizer. Numerical results verified that the presented method is effective and reasonable.

  9. The Dynamics and Sliding Mode Control of Multiple Cooperative Welding Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Bin Zi

    2012-08-01

    Full Text Available This paper deals with the design, dynamic modelling and sliding mode control of multiple cooperative welding robot manipulators (MWRMs. The MWRMs can handle complex tasks that are difficult or even impossible for a single manipulator. The kinematics and dynamics of the MWRMs are studied on the basis of the Denavit-Hartenberg and Lagrange method. Following that, considering the MWRM system with nonlinear and unknown disturbances, a non-singular terminal sliding mode control strategy is designed. By means of the Lyapunov function, the stability of the controller is proved. Simulation results indicate that the good control performance of the MWRMs is achieved by the non-singular terminal sliding mode controller, which also illustrates the correctness of the dynamic modelling and effectiveness of the proposed control strategy.

  10. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.

    Science.gov (United States)

    Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R

    2015-10-01

    Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.

  11. A Component Mode Synthesis Algorithm for Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part of the mot......A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part...... of the motion of the substructure. The system reduction is based on a component mode synthesis method, where the response of the internal degrees of freedom of the substructure is described as the quasi-static response induced by the boundary degrees of freedom via the constraint modes superimposed...

  12. Non-Markovian reduced dynamics based upon a hierarchical effective-mode representation

    Energy Technology Data Exchange (ETDEWEB)

    Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt (Germany); Martinazzo, Rocco [Dipartimento di Chimica, Universita degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom)

    2012-10-14

    A reduced dynamics representation is introduced which is tailored to a hierarchical, Mori-chain type representation of a bath of harmonic oscillators which are linearly coupled to a subsystem. We consider a spin-boson system where a single effective mode is constructed so as to absorb all system-environment interactions, while the residual bath modes are coupled bilinearly to the primary mode and among each other. Using a cumulant expansion of the memory kernel, correlation functions for the primary mode are obtained, which can be suitably approximated by truncated chains representing the primary-residual mode interactions. A series of reduced-dimensional bath correlation functions is thus obtained, which can be expressed as Fourier-Laplace transforms of spectral densities that are given in truncated continued-fraction form. For a master equation which is second order in the system-bath coupling, the memory kernel is re-expressed in terms of local-in-time equations involving auxiliary densities and auxiliary operators.

  13. Dynamic feedback for multi-mode plasma instabilities

    International Nuclear Information System (INIS)

    Sen, A.K.

    1978-01-01

    Constant feedback, which has been used exclusively, fails to stabilize more than one mode of a plasma instability. It is shown that a suitable dynamic or frequency-dependent feedback can stabilize all modes. Methods are developed in which such a feedback structure can be chosen in terms of its poles and zeros in relation to those of the plasma transfer function in the complex frequency plane. The synthesis procedure for such a feedback structure, in the form of an integrated electronic circuit is also discussed. As an example, a dynamic feedback for multi-mode stabilization of a collisional drift wave instability is developed in detail. (author)

  14. The twelve colourful stones

    International Nuclear Information System (INIS)

    Doria, R.M.

    1984-01-01

    The gauge symmetry is extended. It is associated differents matter and gauge fields to the same group. A group of gauge invariant Lagrangians is established. A gauge invariant mass term is introduced. A massive Yang Mills is obtained. A dynamics with twelve colourful stones is created based on the concepts of gauge and colour. Structures identified as quarks and leptons are generated. A discussion about colour meaning is presented. (Author) [pt

  15. Quantum and classical dynamics of a three-mode absorption refrigerator

    Directory of Open Access Journals (Sweden)

    Stefan Nimmrichter

    2017-12-01

    Full Text Available We study the quantum and classical evolution of a system of three harmonic modes interacting via a trilinear Hamiltonian. With the modes prepared in thermal states of different temperatures, this model describes the working principle of an absorption refrigerator that transfers energy from a cold to a hot environment at the expense of free energy provided by a high-temperature work reservoir. Inspired by a recent experimental realization with trapped ions, we elucidate key features of the coupling Hamiltonian that are relevant for the refrigerator performance. The coherent system dynamics exhibits rapid effective equilibration of the mode energies and correlations, as well as a transient enhancement of the cooling performance at short times. We find that these features can be fully reproduced in a classical framework.

  16. Mode switching control of dual-evaporator air-conditioning systems

    International Nuclear Information System (INIS)

    Lin, J.-L.; Yeh, T.-J.

    2009-01-01

    Modern air-conditioners incorporate variable-speed compressors and variable-opening expansion valves as the actuators for improving cooling performance and energy efficiency. These actuators have to be properly feedback-controlled; otherwise the systems may exhibit even poorer performance than the conventional machines which use fixed-speed compressors and mechanical expansion valves. Particularly for an air-conditioner with multiple evaporators, there are occasions that the machine is operated in a mode that only selected evaporator(s) is(are) turned on, and switching(s) between modes occurs(occur) during the control process. In this case, one needs to have more carefully designed control and switching strategies to ensure the system performance. In this paper, a framework for mode switching control of the dual-evaporator air-conditioning (DEAC) system is proposed. The framework is basically an integration of a controller and a dynamic compensator. The controller, which possesses the flow-distribution capability and assumes both evaporators are on throughout the control process, is intended to provide nominal performance. While mode switching is achieved by varying the reference settings in the controller, the dynamic compensator is used to improve the transient responses immediately after the switching. Experiments indicate that the proposed framework can achieve satisfactory indoor temperature regulation and provide bumpless switching between different modes of operation.

  17. Dynamic behaviour of the high confinement mode of fusion plasmas

    International Nuclear Information System (INIS)

    Zohm, H.

    1995-05-01

    This paper describes the dynamic behaviour of the High Confinement mode (H-mode) of fusion plasmas, which is one of the most promising regimes of enhanced energy confinement in magnetic fusion research. The physics of the H-mode is not yet fully understood, and the detailed behaviour is complex. However, we establish a simple physics picture of the phenomenon. Although a first principles theory of the anomalous transport processes in a fusion plasma has not yet been given, we show that within the picture developed here, it is possible to describe the dynamic behaviour of the H-mode, namely the dynamics of the L-H transition and the occurrence of edge localized modes (ELMs). (orig.)

  18. Quasi-normal modes from non-commutative matrix dynamics

    Science.gov (United States)

    Aprile, Francesco; Sanfilippo, Francesco

    2017-09-01

    We explore similarities between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of N=4 SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS5-Schwarzschild background. We compare the results, and we finda surprising similarity.

  19. Control uncertain Genesio-Tesi chaotic system: Adaptive sliding mode approach

    International Nuclear Information System (INIS)

    Dadras, Sara; Momeni, Hamid Reza

    2009-01-01

    An adaptive sliding mode control (ASMC) technique is introduced in this paper for a chaotic dynamical system (Genesio-Tesi system). Using the sliding mode control technique, a sliding surface is determined and the control law is established. An adaptive sliding mode control law is derived to make the states of the Genesio-Tesi system asymptotically track and regulate the desired state. The designed control scheme can control the uncertain chaotic behaviors to a desired state without oscillating very fast and guarantee the property of asymptotical stability. An illustrative simulation result is given to demonstrate the effectiveness of the proposed adaptive sliding mode control design.

  20. Tearing mode dynamics and sawtooth oscillation in Hall-MHD

    Science.gov (United States)

    Ma, Zhiwei; Zhang, Wei; Wang, Sheng

    2017-10-01

    Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.

  1. Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback

    Science.gov (United States)

    Jaurigue, Lina; Krauskopf, Bernd; Lüdge, Kathy

    2017-11-01

    Passively mode-locked semiconductor lasers are compact, inexpensive sources of short light pulses of high repetition rates. In this work, we investigate the dynamics and bifurcations arising in such a device under the influence of time delayed optical feedback. This laser system is modelled by a system of delay differential equations, which includes delay terms associated with the laser cavity and feedback loop. We make use of specialised path continuation software for delay differential equations to analyse the regime of short feedback delays. Specifically, we consider how the dynamics and bifurcations depend on the pump current of the laser, the feedback strength, and the feedback delay time. We show that an important role is played by resonances between the mode-locking frequencies and the feedback delay time. We find feedback-induced harmonic mode locking and show that a mismatch between the fundamental frequency of the laser and that of the feedback cavity can lead to multi-pulse or quasiperiodic dynamics. The quasiperiodic dynamics exhibit a slow modulation, on the time scale of the gain recovery rate, which results from a beating with the frequency introduced in the associated torus bifurcations and leads to gain competition between multiple pulse trains within the laser cavity. Our results also have implications for the case of large feedback delay times, where a complete bifurcation analysis is not practical. Namely, for increasing delay, there is an ever-increasing degree of multistability between mode-locked solutions due to the frequency pulling effect.

  2. Composite Sliding Mode Control for a Free-Floating Space Rigid-Flexible Coupling Manipulator System

    OpenAIRE

    Congqing, Wang; Pengfei, Wu; Xin, Zhou; Xiwu, Pei

    2013-01-01

    The flexible space manipulator is a highly nonlinear and coupled dynamic system. This paper proposes a novel composite sliding mode control to deal with the vibration suppression and trajectory tracking of a free-floating space rigid-flexible coupling manipulator with a rigid payload. First, the dynamic equations of this system are established by using Lagrange and assumed mode methods and in the meantime this dynamic modelling allows consideration of the modelling errors, the external distur...

  3. Exact decoherence dynamics of a single-mode optical field

    International Nuclear Information System (INIS)

    An, J.-H.; Yeo Ye; Oh, C.H.

    2009-01-01

    We apply the influence-functional method of Feynman and Vernon to the study of a single-mode optical field that interacts with an environment at zero temperature. Using the coherent-state formalism of the path integral, we derive a generalized master equation for the single-mode optical field. Our analysis explicitly shows how non-Markovian effects manifest in the exact decoherence dynamics for different environmental correlation time scales. Remarkably, when these are equal to or greater than the time scale for significant change in the system, the interplay between the backaction-induced coherent oscillation and the dissipative effect of the environment causes the non-Markovian effect to have a significant impact not only on the short-time behavior but also on the long-time steady-state behavior of the system.

  4. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    International Nuclear Information System (INIS)

    Zhang Wei-Ya; Li Yong-Li; Chang Xiao-Yong; Wang Nan

    2013-01-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments. (interdisciplinary physics and related areas of science and technology)

  5. Nonlinear dynamics of a driven mode near marginal stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.; Pekker, M.

    1995-09-01

    The nonlinear dynamics of a linearly unstable mode in a driven kinetic system is investigated to determine scaling of the saturated fields near the instability threshold. To leading order, this problem reduces to solving an integral equation with a temporally nonlocal cubic term. This equation can exhibit a self-similar solution that blows up in a finite time. When the blow-up occurs, higher nonlinearities become important and the mode saturates due to plateau formation arising from particle trapping in the wave. Otherwise, the simplified equation gives a regular solution that leads to a different saturation scaling reflecting the closeness to the instability threshold

  6. Collective Lyapunov modes

    International Nuclear Information System (INIS)

    Takeuchi, Kazumasa A; Chaté, Hugues

    2013-01-01

    We show, using covariant Lyapunov vectors in addition to standard Lyapunov analysis, that there exists a set of collective Lyapunov modes in large chaotic systems exhibiting collective dynamics. Associated with delocalized Lyapunov vectors, they act collectively on the trajectory and hence characterize the instability of its collective dynamics. We further develop, for globally coupled systems, a connection between these collective modes and the Lyapunov modes in the corresponding Perron–Frobenius equation. We thereby address the fundamental question of the effective dimension of collective dynamics and discuss the extensivity of chaos in the presence of collective dynamics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  7. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  8. Sliding mode control on electro-mechanical systems

    Directory of Open Access Journals (Sweden)

    Vadim I. Utkin

    2002-01-01

    Full Text Available The first sliding mode control application may be found in the papers back in the 1930s in Russia. With its versatile yet simple design procedure the methodology is proven to be one of the most powerful solutions for many practical control designs. For the sake of demonstration this paper is oriented towards application aspects of sliding mode control methodology. First the design approach based on the regularization is generalized for mechanical systems. It is shown that stability of zero dynamics should be taken into account when the regular form consists of blocks of second-order equations. Majority of applications in the paper are related to control and estimation methods of automotive industry. New theoretical methods are developed in the context of these studies: sliding made nonlinear observers, observers with binary measurements, parameter estimation in systems with sliding mode control.

  9. Linear dynamical modes as new variables for data-driven ENSO forecast

    Science.gov (United States)

    Gavrilov, Andrey; Seleznev, Aleksei; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander; Kurths, Juergen

    2018-05-01

    A new data-driven model for analysis and prediction of spatially distributed time series is proposed. The model is based on a linear dynamical mode (LDM) decomposition of the observed data which is derived from a recently developed nonlinear dimensionality reduction approach. The key point of this approach is its ability to take into account simple dynamical properties of the observed system by means of revealing the system's dominant time scales. The LDMs are used as new variables for empirical construction of a nonlinear stochastic evolution operator. The method is applied to the sea surface temperature anomaly field in the tropical belt where the El Nino Southern Oscillation (ENSO) is the main mode of variability. The advantage of LDMs versus traditionally used empirical orthogonal function decomposition is demonstrated for this data. Specifically, it is shown that the new model has a competitive ENSO forecast skill in comparison with the other existing ENSO models.

  10. Digital Sliding Mode Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    MITIC, D. B.

    2013-02-01

    Full Text Available The control of anti-lock braking system is a great challenge, because of the nonlinear and complex characteristics of braking dynamics, unknown parameters of vehicle environment and system parameter variations. Using some of robust control methods, such as sliding mode control, can be a right solution for these problems. In this paper, we introduce a novel approach to design of ABS controllers, which is based on digital sliding mode control with only input/output measurements. The relay term of the proposed digital sliding mode control is filtered through digital integrator, reducing the chattering phenomenon in that way, and the additional signal of estimated modelling error is introduced into control algorithm to enhance the system steady-state accuracy. The given solution was verified in real experimental framework and the obtained results were compared with the results of implementation of two other digital sliding mode control algorithms. It is shown that it gives better system response, higher steady-state accuracy and smaller chattering.

  11. A comprehensive spectral theory of zonal-mode dynamics in trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Gatto, R.; Baver, D.A.; Fernandez, E.

    2005-01-01

    A comprehensive, self-consistent theory for spectral dynamics in trapped electron mode (TEM) turbulence offers critical new understanding and insights into zonal-mode physics. This theory shows that 1) zonal mode structure, anisotropy, excitation, and temporal behavior arise at and from the interface of nonlinear advection and linear wave properties; 2) waves induce a marked spectral energy-transfer anisotropy that preferentially drives zonal modes relative to non zonal modes; 3) triplet correlations involving density (as opposed to those involving only flow) mediate the dominant energy transfer at long wavelengths; 4) energy transfer becomes inverse in the presence of wave anisotropy, where otherwise it is forward; 5) zonal-mode excitation is accompanied by excitation of a spectrum of damped eigenmodes, making zonal modes nonlinearly damped; and 6) the combination of anisotropic transfer to zonal modes and their nonlinear damping make this the dominant saturation mechanism for TEM turbulence. This accounts for the reduction of turbulence level by zonal modes, not zonal-flow ExB shearing. (author)

  12. Identification of dominant flow structures in rapidly rotating convection of liquid metals using Dynamic Mode Decomposition

    Science.gov (United States)

    Horn, S.; Schmid, P. J.; Aurnou, J. M.

    2016-12-01

    The Earth's metal core acts as a dynamo whose efficiency in generating and maintaining the magnetic field is essentially determined by the rotation rate and the convective motions occurring in its outer liquid part. For the description of the primary physics in the outer core the idealized system of rotating Rayleigh-Bénard convection is often invoked, with the majority of studies considering only working fluids with Prandtl numbers of Pr ≳ 1. However, liquid metals are characterized by distinctly smaller Prandtl numbers which in turn result in an inherently different type of convection. Here, we will present results from direct numerical simulations of rapidly rotating convection in a fluid with Pr ≈ 0.025 in cylindrical containers and Ekman numbers as low as 5 × 10-6. In this system, the Coriolis force is the source of two types of inertial modes, the so-called wall modes, that also exist at moderate Prandtl numbers, and cylinder-filling oscillatory modes, that are a unique feature of small Prandtl number convection. The obtained flow fields were analyzed using the Dynamic Mode Decomposition (DMD). This technique allows to extract and identify the structures that govern the dynamics of the system as well as their corresponding frequencies. We have investigated both the regime where the flow is purely oscillatory and the regime where wall modes and oscillatory modes co-exist. In the purely oscillatory regime, high and low frequency oscillatory modes characterize the flow. When both types of modes are present, the DMD reveals that the wall-attached modes dominate the flow dynamics. They precess with a relatively low frequency in retrograde direction. Nonetheless, also in this case, high frequency oscillations have a significant contribution.

  13. System Reduction in Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    Abstract A system reduction scheme is devised related to a multibody formulation from which the dynamic response of a wind turbine is determined. In this formulation each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure....... The Ritz bases spanning the reduced system comprises of rigid body modes and some dynamic low-frequency elastic eigenmodes compatible to the kinematic constraints of the related substructure. The high-frequency elastic modes are presumed to cause merely quasi-static displacements, and thus are included...... in the expansion via a quasi-static correction. The results show that by using the derived reduction scheme it is only necessary with 2 dynamical modes for the blade substructure when the remaining modes are treated as quasi-static. Moreover, it is shown that it has little to none effect if the gyroscopic...

  14. Mode dynamics and confinement in the reversed field pinch

    International Nuclear Information System (INIS)

    Brunsell, P.R.; Bergsaker, H.; Brzozowski, J.H.; Cecconello, M.; Drake, J.R.; Malmberg, J.-A.; Scheffel, J.; Schnack, D.D.

    2001-01-01

    Tearing mode dynamics and toroidal plasma flow in the RFP has been experimentally studied in the Extrap T2 device. A toroidally localised, stationary magnetic field perturbation, the 'slinky mode' is formed in nearly all discharges. There is a tendency of increased phase alignment of different toroidal Fourier modes, resulting in higher localised mode amplitudes, with higher magnetic fluctuation level. The fluctuation level increases slightly with increasing plasma current and plasma density. The toroidal plasma flow velocity and the ion temperature has been measured with Doppler spectroscopy. Both the toroidal plasma velocity and the ion temperature clearly increase with I/N. Initial, preliminary experimental results obtained very recently after a complete change of the Extrap T2 front-end system (first wall, shell, TF coil), show that an operational window with mode rotation most likely exists in the rebuilt device, in contrast to the earlier case discussed above. A numerical code DEBSP has been developed to simulate the behaviour of RFP confinement in realistic geometry, including essential transport physics. Resulting scaling laws are presented and compared with results from Extrap T2 and other RFP experiments. (author)

  15. Design Sliding Mode Controller of with Parallel Fuzzy Inference System Compensator to Control of Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Farzin Piltan

    2013-06-01

    Full Text Available Sliding mode controller (SMC is a significant nonlinear controller under condition of partly uncertain dynamic parameters of system. This controller is used to control of highly nonlinear systems especially for robot manipulators, because this controller is a robust and stable. Conversely, pure sliding mode controller is used in many applications; it has two important drawbacks namely; chattering phenomenon, and nonlinear equivalent dynamic formulation in uncertain dynamic parameter. The nonlinear equivalent dynamic formulation problem and chattering phenomenon in uncertain system can be solved by using artificial intelligence theorem. However fuzzy logic controller is used to control complicated nonlinear dynamic systems, but it cannot guarantee stability and robustness.  In this research parallel fuzzy logic theory is used to compensate the system dynamic uncertainty.

  16. Entanglement dynamics in itinerant fermionic and bosonic systems

    Science.gov (United States)

    Pillarishetty, Durganandini

    2017-04-01

    The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.

  17. MODELING AND INVESTIGATION OF ASYNCHRONOUS TWO-MACHINE SYSTEM MODES

    Directory of Open Access Journals (Sweden)

    V. S. Safaryan

    2014-01-01

    Full Text Available The paper considers stationary and transient processes of an asynchronous two-machine system. A mathematical model for investigation of stationary and transient modes, static characteristics and research results of dynamic process pertaining to starting-up the asynchronous two-machine system has been given in paper.

  18. Dynamic rotor mode in antiferromagnetic nanoparticles

    DEFF Research Database (Denmark)

    Lefmann, Kim; Jacobsen, H.; Garde, J.

    2015-01-01

    We present experimental, numerical, and theoretical evidence for an unusual mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8-nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K...

  19. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    Science.gov (United States)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  20. Sliding Mode Control for Mass Moment Aerospace Vehicles Using Dynamic Inversion Approach

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Zhang

    2013-01-01

    Full Text Available The moving mass actuation technique offers significant advantages over conventional aerodynamic control surfaces and reaction control systems, because the actuators are contained entirely within the airframe geometrical envelope. Modeling, control, and simulation of Mass Moment Aerospace Vehicles (MMAV utilizing moving mass actuators are discussed. Dynamics of the MMAV are separated into two parts on the basis of the two time-scale separation theory: the dynamics of fast state and the dynamics of slow state. And then, in order to restrain the system chattering and keep the track performance of the system by considering aerodynamic parameter perturbation, the flight control system is designed for the two subsystems, respectively, utilizing fuzzy sliding mode control approach. The simulation results describe the effectiveness of the proposed autopilot design approach. Meanwhile, the chattering phenomenon that frequently appears in the conventional variable structure systems is also eliminated without deteriorating the system robustness.

  1. Modal and Dynamic Analysis of a Vehicle with Kinetic Dynamic Suspension System

    Directory of Open Access Journals (Sweden)

    Bangji Zhang

    2016-01-01

    Full Text Available A novel kinetic dynamic suspension (KDS system is presented for the cooperative control of the roll and warp motion modes of off-road vehicles. The proposed KDS system consists of two hydraulic cylinders acting on the antiroll bars. Hence, the antiroll bars are not completely replaced by the hydraulic system, but both systems are installed. In this paper, the vibration analysis in terms of natural frequencies of different motion modes in frequency domain for an off-road vehicle equipped with different configurable suspension systems is studied by using the modal analysis method. The dynamic responses of the vehicle with different configurable suspension systems are investigated under different road excitations and maneuvers. The results of the modal and dynamic analysis prove that the KDS system can reduce the roll and articulation motions of the off-road vehicle without adding extra bounce stiffness and deteriorating the ride comfort. Furthermore, the roll stiffness is increased and the warp stiffness is decreased by the KDS system, which could significantly enhance handing performance and off-road capability.

  2. Adaptive Actor-Critic Design-Based Integral Sliding-Mode Control for Partially Unknown Nonlinear Systems With Input Disturbances.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2016-01-01

    This paper is concerned with the problem of integral sliding-mode control for a class of nonlinear systems with input disturbances and unknown nonlinear terms through the adaptive actor-critic (AC) control method. The main objective is to design a sliding-mode control methodology based on the adaptive dynamic programming (ADP) method, so that the closed-loop system with time-varying disturbances is stable and the nearly optimal performance of the sliding-mode dynamics can be guaranteed. In the first step, a neural network (NN)-based observer and a disturbance observer are designed to approximate the unknown nonlinear terms and estimate the input disturbances, respectively. Based on the NN approximations and disturbance estimations, the discontinuous part of the sliding-mode control is constructed to eliminate the effect of the disturbances and attain the expected equivalent sliding-mode dynamics. Then, the ADP method with AC structure is presented to learn the optimal control for the sliding-mode dynamics online. Reconstructed tuning laws are developed to guarantee the stability of the sliding-mode dynamics and the convergence of the weights of critic and actor NNs. Finally, the simulation results are presented to illustrate the effectiveness of the proposed method.

  3. Low-order dynamical system model of a fully developed turbulent channel flow

    Science.gov (United States)

    Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán

    2017-06-01

    A reduced order model of a turbulent channel flow is composed from a direct numerical simulation database hosted at the Johns Hopkins University. Snapshot proper orthogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients through their respective time derivative with a least-squares polynomial fit of terms up to third order. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of basis modes demonstrating that the non-linear mode interactions do not lead to a monotonic decrease in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence kinetic energy but captures only the largest features of the turbulence in the channel flow and is not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable to accurately reproduce Reynolds stresses, and the root-mean-square error of the predicted stresses is as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds intermediate scales to the dynamical system. The difference between the time derivatives of the random coefficients associated with individual modes and their least-squares fit is amplified in the numerical integration leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time to the range of the sampled data and offering the dynamical system new initial conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of the integration time toward a known point along the original trajectories identified through a least-squares projection. Under

  4. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  5. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.

    Science.gov (United States)

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  6. Development and comparison of integrated dynamics control systems with fuzzy logic control and sliding mode control

    International Nuclear Information System (INIS)

    Song, Jeong Hoon

    2013-01-01

    In this study, four integrated dynamics control (IDC) systems abbreviated as IDCB, IDCS, IDCF, and IDCR are developed, evaluated and compared. IDC systems were integrated with brake and steer control systems to enhance lateral stability and handling performance. To construct the IDC systems, a vehicle model with fourteen degrees of freedom, a fuzzy logic controller, and a sliding mode ABS controller were used. They were tested with various steering inputs when excessive full brake pressure or no brake pressure was applied on dry asphalt, wet asphalt, a snow-covered paved road, and a split-µ road. The results showed that an IDC-equipped vehicle improved lateral stability and controllability in every driving condition compared to an ABS-equipped vehicle. Under all road conditions, IDC controllers enabled the yaw rate to follow the reference yaw rate almost perfectly and reduced the body slip angle. On a split-µ road, IDCB, IDCS, IDCF, and IDCR vehicles drove straight ahead with only very small deviations.

  7. Reliability analysis for dynamic configurations of systems with three failure modes

    International Nuclear Information System (INIS)

    Pham, Hoang

    1999-01-01

    Analytical models for computing the reliability of dynamic configurations of systems, such as majority and k-out-of-n, assuming that units and systems are subject to three types of failures: stuck-at-0, stuck-at-1, and stuck-at-x are presented in this paper. Formulas for determining the optimal design policies that maximize the reliability of dynamic k-out-of-n configurations subject to three types of failures are defined. The comparisons of the reliability modeling functions are also obtained. The optimum system size and threshold value k that minimize the expected cost of dynamic k-out-of-n configurations are also determined

  8. Fundamental Dynamical Modes Underlying Human Brain Synchronization

    Directory of Open Access Journals (Sweden)

    Catalina Alvarado-Rojas

    2012-01-01

    Full Text Available Little is known about the long-term dynamics of widely interacting cortical and subcortical networks during the wake-sleep cycle. Using large-scale intracranial recordings of epileptic patients during seizure-free periods, we investigated local- and long-range synchronization between multiple brain regions over several days. For such high-dimensional data, summary information is required for understanding and modelling the underlying dynamics. Here, we suggest that a compact yet useful representation is given by a state space based on the first principal components. Using this representation, we report, with a remarkable similarity across the patients with different locations of electrode placement, that the seemingly complex patterns of brain synchrony during the wake-sleep cycle can be represented by a small number of characteristic dynamic modes. In this space, transitions between behavioral states occur through specific trajectories from one mode to another. These findings suggest that, at a coarse level of temporal resolution, the different brain states are correlated with several dominant synchrony patterns which are successively activated across wake-sleep states.

  9. DYNAMICS MODEL OF MOISTURE IN PAPER INSULATION-TRANSFORMER OIL SYSTEM IN NON-STATIONARY THERMAL MODES OF THE POWER TRANSFORMER

    Directory of Open Access Journals (Sweden)

    V.V. Vasilevskij

    2016-06-01

    Full Text Available Introduction. An important problem in power transformers resource prognosis is the formation of moisture dynamics trends of transformer insulation. Purpose. Increasing the accuracy of power transformer insulation resource assessment based on accounting of moisture dynamics in interrelation with temperature dynamics. Working out of moisture dynamics model in paper insulation-transformer oil system in conjunction with thermodynamic model, load model and technical maintenance model. Methodology. The mathematical models used for describe the moisture dynamics are grounded on nonlinear differential equations. Interrelation moisture dynamics model with thermodynamic, load and technical maintenance models described by UML model. For confirming the adequacy of model used computer simulation. Results. We have implemented the model of moisture dynamics in power transformers insulation in interrelation with other models, which describe the state of power transformer in operation. The proposed model allows us to form detailed trends of moisture dynamics in power transformers insulation basing on monitoring data or power transformers operational factors simulation results. We have performed computer simulation of moisture exchange processes and calculation of transformer insulation resource for different moisture trends. Originality. The offered model takes into account moisture dynamics in power transformers insulation under the influence of changes of the power transformers thermal mode and operational factors. Practical value. The offered model can be used in power transformers monitoring systems for automation of resource assessment of oil-immersed power transformers paper insulation at different phase of lifecycle. Model also can be used for assessment of projected economic efficiency of power transformers exploitation in projected operating conditions.

  10. HOLD MODE BASED DYNAMIC PRIORITY LOAD ADAPTIVE INTERPICONET SCHEDULING FOR BLUETOOTH SCATTERNETS

    Directory of Open Access Journals (Sweden)

    G.S. Mahalakshmi

    2011-09-01

    Full Text Available Scheduling in piconets has emerged as a challenging research area. Interpiconet scheduling focuses on when a bridge is switched among various piconets and how a bridge node communicates with the masters in different piconets. This paper proposes an interpiconet scheduling algorithm named, hold mode based dynamic traffic priority load adaptive scheduling. The bridges are adaptively switched between the piconets according to various traffic loads. The main goal is to maximize the utilization of the bridge by reducing the bridge switch wastes, utilize intelligent decision making algorithm, resolve conflict between the masters, and allow negotiation for bridge utilization in HDPLIS using bridge failure-bridge repair procedure . The Hold mode - dynamic traffic - priority based - load adaptive scheduling reduces the number of bridge switch wastes and hence increases the efficiency of the bridge which results in increased performance of the system.

  11. Statistical dynamic imaging of RI-labeled tracer from list-mode PET data

    International Nuclear Information System (INIS)

    Tanimoto, Michiaki; Kuroda, Yoshihiro; Oshiro, Osamu; Watabe, Hiroshi; Kuroda, Tomohiro

    2009-01-01

    Positron emission tomography (PET) can be used in physiological analysis to illustrate physiological states by visualizing the accumulation of radioisotope (RI)-labeled tracer in specific organs or tissues. PET obtains spatio-temporal statistics in the form of list-mode data. However, conventional imaging techniques, which sum up list-mode data over a given time period, cannot depict detailed temporal dynamics of the RI-labeled tracer. In this study, a spatio-temporal analysis approach was employed to visualize the temporal flow dynamics of RI-labeled tracer from the obtained list-mode data. Experiments to assess the visualization of simulated RI-labeled tracer dynamics as well as RI-labeled tracer dynamics in a vascular phantom showed that the proposed method successfully depicted detailed temporal flow dynamics that could not be visualized using conventional methods. (author)

  12. A Novel Approach to Sliding Mode Control of Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Hongwei Xia

    2013-01-01

    Full Text Available This paper is concerned with the sliding mode control for a class of linear systems with time-varying delays. By utilizing a novel Lyapunov-Krasovskii functional and combining it with the delay fractioning approach as well as the free-weighting matrix technology, a sufficient condition is established such that the resulting sliding mode dynamics is asymptotically stable. Then, a sliding mode controller for reaching motion is synthesized to guarantee that the trajectories of the resulting closed-loop system can be driven onto a prescribed sliding surface and maintained there for all subsequent time. A numerical example is provided to illustrate the effectiveness of the proposed design approach.

  13. Preconditioned dynamic mode decomposition and mode selection algorithms for large datasets using incremental proper orthogonal decomposition

    Science.gov (United States)

    Ohmichi, Yuya

    2017-07-01

    In this letter, we propose a simple and efficient framework of dynamic mode decomposition (DMD) and mode selection for large datasets. The proposed framework explicitly introduces a preconditioning step using an incremental proper orthogonal decomposition (POD) to DMD and mode selection algorithms. By performing the preconditioning step, the DMD and mode selection can be performed with low memory consumption and therefore can be applied to large datasets. Additionally, we propose a simple mode selection algorithm based on a greedy method. The proposed framework is applied to the analysis of three-dimensional flow around a circular cylinder.

  14. Stability of molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2012-01-01

    The existence of a shadow Hamiltonian for discrete classical dynamics, obtained by an asymptotic expansion for a discrete symplectic algorithm, is employed to determine the limit of stability for molecular dynamics (MD) simulations with respect to the time-increment h of the discrete dynamics....... The investigation is based on the stability of the shadow energy, obtained by including the first term in the asymptotic expansion, and on the exact solution of discrete dynamics for a single harmonic mode. The exact solution of discrete dynamics for a harmonic potential with frequency ω gives a criterion...... for the limit of stability h ⩽ 2/ω. Simulations of the Lennard-Jones system and the viscous Kob-Andersen system show that one can use the limit of stability of the shadow energy or the stability criterion for a harmonic mode on the spectrum of instantaneous frequencies to determine the limit of stability of MD...

  15. Nonlinear dynamics of tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.

    1988-01-01

    The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10approx. < napprox. <20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments

  16. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  17. Laser dynamics of asynchronous rational harmonic mode-locked fiber soliton lasers

    International Nuclear Information System (INIS)

    Jyu, Siao-Shan; Jiang, Guo-Hao; Lai, Yinchieh

    2013-01-01

    Laser dynamics of asynchronous rational harmonic mode-locked (ARHM) fiber soliton lasers are investigated in detail. In particular, based on the unique laser dynamics of asynchronous mode-locking, we have developed a new method for determining the effective active modulation strength in situ for ARHM lasers. By measuring the magnitudes of the slowly oscillating pulse timing position and central frequency, the effective phase modulation strength at the multiplication frequency of rational harmonic mode-locking can be accurately inferred. The method can be a very useful tool for developing ARHM fiber lasers. (paper)

  18. Power system dynamics and stability with synchrophasor measurement and power system toolbox

    CERN Document Server

    Sauer, Peter W; Chow, Joe H

    2017-01-01

    This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, a multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances ave been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement ...

  19. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.

    Science.gov (United States)

    Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2017-05-02

    As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.

  20. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.

    Science.gov (United States)

    Feng, Mengkai; Hou, Zhonghuai

    2017-06-28

    We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S 2 (q) with q being the magnitude of wave vector q. D[combining macron] and S 2 (q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f q and relaxation time τ α as functions of the persistence time τ p of self-propulsion, the single particle effective temperature T eff as well as the number density ρ. Consequently, we find the critical density ρ c for given τ p shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ p . We find that T increases with τ p and in the limit τ p → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be

  1. Optimal reduction of flexible dynamic system

    International Nuclear Information System (INIS)

    Jankovic, J.

    1994-01-01

    Dynamic system reduction is basic procedure in various problems of active control synthesis of flexible structures. In this paper is presented direct method for system reduction by explicit extraction of modes included in reduced model form. Criterion for optimal system discrete approximation in synthesis reduced dynamic model is also presented. Subjected method of system decomposition is discussed in relation to the Schur method of solving matrix algebraic Riccati equation as condition for system reduction. By using exposed method procedure of flexible system reduction in addition with corresponding example is presented. Shown procedure is powerful in problems of active control synthesis of flexible system vibrations

  2. Nonlinear Dynamical Modes as a Basis for Short-Term Forecast of Climate Variability

    Science.gov (United States)

    Feigin, A. M.; Mukhin, D.; Gavrilov, A.; Seleznev, A.; Loskutov, E.

    2017-12-01

    We study abilities of data-driven stochastic models constructed by nonlinear dynamical decomposition of spatially distributed data to quantitative (short-term) forecast of climate characteristics. We compare two data processing techniques: (i) widely used empirical orthogonal function approach, and (ii) nonlinear dynamical modes (NDMs) framework [1,2]. We also make comparison of two kinds of the prognostic models: (i) traditional autoregression (linear) model and (ii) model in the form of random ("stochastic") nonlinear dynamical system [3]. We apply all combinations of the above-mentioned data mining techniques and kinds of models to short-term forecasts of climate indices based on sea surface temperature (SST) data. We use NOAA_ERSST_V4 dataset (monthly SST with space resolution 20 × 20) covering the tropical belt and starting from the year 1960. We demonstrate that NDM-based nonlinear model shows better prediction skill versus EOF-based linear and nonlinear models. Finally we discuss capability of NDM-based nonlinear model for long-term (decadal) prediction of climate variability. [1] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J., 2016: Method for reconstructing nonlinear modes with adaptive structure from multidimensional data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(12), 123101. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.

  3. Nonlinear dynamics of tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.

    1987-05-01

    The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10 ≤ n ≤ 20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back-coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments. 13 refs., 21 figs., 1 tab

  4. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.

    Science.gov (United States)

    Sapsis, Themistoklis P; Majda, Andrew J

    2013-08-20

    A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra.

  5. Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein

    International Nuclear Information System (INIS)

    Asafi, M S; Tekpinar, M; Yildirim, A

    2016-01-01

    Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated. (paper)

  6. Experimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configuration

    International Nuclear Information System (INIS)

    Malmberg, Jenny-Ann

    2003-06-01

    It is relatively straightforward to establish equilibrium in magnetically confined plasmas, but the plasma is frequently susceptible to a variety of instabilities that are driven by the free energy in the magnetic field or in the pressure gradient. These unstable modes exhibit effects that affect the particle, momentum and heat confinement properties of the configuration. Studies of the dynamics of several of the most important modes are the subject of this thesis. The studies are carried out on plasmas in the reversed field pinch (RFP) configuration. One phenomenon commonly observed in RFPs is mode wall locking. The localized nature of these phase- and wall locked structures results in localized power loads on the wall which are detrimental for confinement. A detailed study of the wall locked mode phenomenon is performed based on magnetic measurements from three RFP devices. The two possible mechanisms for wall locking are investigated. Locking as a result of tearing modes interacting with a static field error and locking due to the presence of a non-ideal boundary. The characteristics of the wall locked mode are qualitatively similar in a device with a conducting shell system (TPE-RX) compared to a device with a resistive shell (Extrap T2). A theoretical model is used for evaluating the threshold values for wall locking due to eddy currents in the vacuum vessel in these devices. A good correlation with experiment is observed for the conducting shell device. The possibility of successfully sustaining discharges in a resistive shell RFP is introduced in the recently rebuilt device Extrap T2R. Fast spontaneous mode rotation is observed, resulting in low magnetic fluctuations, low loop voltage and improved confinement. Wall locking is rarely observed. The low tearing mode amplitudes allow for the theoretically predicted internal non-resonant on-axis resistive wall modes to be observed. These modes have not previously been distinguished due to the formation of wall

  7. Line-mode browser development days

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    Twelve talented web developers have travelled to CERN from all over the world to recreate a piece of web history: the line-mode browser. See the line-mode browser simulator that they created here. Read more about the birth of the web here.

  8. Parameterizing Coefficients of a POD-Based Dynamical System

    Science.gov (United States)

    Kalb, Virginia L.

    2010-01-01

    A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter

  9. Nonlinear Predictive Sliding Mode Control for Active Suspension System

    Directory of Open Access Journals (Sweden)

    Dazhuang Wang

    2018-01-01

    Full Text Available An active suspension system is important in meeting the requirements of the ride comfort and handling stability for vehicles. In this work, a nonlinear model of active suspension system and a corresponding nonlinear robust predictive sliding mode control are established for the control problem of active suspension. Firstly, a seven-degree-of-freedom active suspension model is established considering the nonlinear effects of springs and dampers; and secondly, the dynamic model is expanded in the time domain, and the corresponding predictive sliding mode control is established. The uncertainties in the controller are approximated by the fuzzy logic system, and the adaptive controller reduces the approximation error to increase the robustness of the control system. Finally, the simulation results show that the ride comfort and handling stability performance of the active suspension system is better than that of the passive suspension system and the Skyhook active suspension. Thus, the system can obviously improve the shock absorption performance of vehicles.

  10. Dynamics of temporally localized states in passively mode-locked semiconductor lasers

    Science.gov (United States)

    Schelte, C.; Javaloyes, J.; Gurevich, S. V.

    2018-05-01

    We study the emergence and the stability of temporally localized structures in the output of a semiconductor laser passively mode locked by a saturable absorber in the long-cavity regime. For large yet realistic values of the linewidth enhancement factor, we disclose the existence of secondary dynamical instabilities where the pulses develop regular and subsequent irregular temporal oscillations. By a detailed bifurcation analysis we show that additional solution branches that consist of multipulse (molecules) solutions exist. We demonstrate that the various solution curves for the single and multipeak pulses can splice and intersect each other via transcritical bifurcations, leading to a complex web of solutions. Our analysis is based on a generic model of mode locking that consists of a time-delayed dynamical system, but also on a much more numerically efficient, yet approximate, partial differential equation. We compare the results of the bifurcation analysis of both models in order to assess up to which point the two approaches are equivalent. We conclude our analysis by the study of the influence of group velocity dispersion, which is only possible in the framework of the partial differential equation model, and we show that it may have a profound impact on the dynamics of the localized states.

  11. Modeling and Dynamic Analysis of Cutterhead Driving System in Tunnel Boring Machine

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2017-01-01

    Full Text Available Failure of cutterhead driving system (CDS of tunnel boring machine (TBM often occurs under shock and vibration conditions. To investigate the dynamic characteristics and reduce system vibration further, an electromechanical coupling model of CDS is established which includes the model of direct torque control (DTC system for three-phase asynchronous motor and purely torsional dynamic model of multistage gear transmission system. The proposed DTC model can provide driving torque just as the practical inverter motor operates so that the influence of motor operating behavior will not be erroneously estimated. Moreover, nonlinear gear meshing factors, such as time-variant mesh stiffness and transmission error, are involved in the dynamic model. Based on the established nonlinear model of CDS, vibration modes can be classified into three types, that is, rigid motion mode, rotational vibration mode, and planet vibration mode. Moreover, dynamic responses under actual driving torque and idealized equivalent torque are compared, which reveals that the ripple of actual driving torque would aggravate vibration of gear transmission system. Influence index of torque ripple is proposed to show that vibration of system increases with torque ripple. This study provides useful guideline for antivibration design and motor control of CDS in TBM.

  12. Resonator modes and mode dynamics for an external cavity-coupled laser array

    Science.gov (United States)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  13. THE ELM SURVEY. II. TWELVE BINARY WHITE DWARF MERGER SYSTEMS

    International Nuclear Information System (INIS)

    Kilic, Mukremin; Brown, Warren R.; Kenyon, S. J.; Prieto, Carlos Allende; Agueeros, M. A.; Heinke, Craig

    2011-01-01

    We describe new radial velocity and X-ray observations of extremely low-mass white dwarfs (ELM WDs, ∼0.2 M sun ) in the Sloan Digital Sky Survey Data Release 4 and the MMT Hypervelocity Star survey. We identify four new short period binaries, including two merger systems. These observations bring the total number of short period binary systems identified in our survey to 20. No main-sequence or neutron star companions are visible in the available optical photometry, radio, and X-ray data. Thus, the companions are most likely WDs. Twelve of these systems will merge within a Hubble time due to gravitational wave radiation. We have now tripled the number of known merging WD systems. We discuss the characteristics of this merger sample and potential links to underluminous supernovae, extreme helium stars, AM CVn systems, and other merger products. We provide new observational tests of the WD mass-period distribution and cooling models for ELM WDs. We also find evidence for a new formation channel for single low-mass WDs through binary mergers of two lower mass objects.

  14. Dynamical stability of the holographic system with two competing orders

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yiqiang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Lan, Shan-Quan [Department of Physics, Beijing Normal University,Beijing 100875 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Science,Beijing 100190 (China); Zhang, Hongbao [Department of Physics, Beijing Normal University,Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)

    2016-01-04

    We investigate the dynamical stability of the holographic system with two order parameters, which exhibits competition and coexistence of condensations. In the linear regime, we have developed the gauge dependent formalism to calculate the quasi-normal modes by gauge fixing, which turns out be considerably convenient. Furthermore, by giving different Gaussian wave packets as perturbations at the initial time, we numerically evolve the full nonlinear system until it arrives at the final equilibrium state. Our results show that the dynamical stability is consistent with the thermodynamical stability. Interestingly, the dynamical evolution, as well as the quasi-normal modes, shows that the relaxation time of this model is generically much longer than the simplest holographic system. We also find that the late time behavior can be well captured by the lowest lying quasi-normal modes except for the non-vanishing order towards the single ordered phase. To our knowledge, this exception is the first counter example to the general belief that the late time behavior towards a final stable state can be captured by the lowest lying quasi-normal modes. In particular, a double relation is found for this exception in certain cases.

  15. An automatic mode-locked system for passively mode-locked fiber laser

    Science.gov (United States)

    Li, Sha; Xu, Jun; Chen, Guoliang; Mei, Li; Yi, Bo

    2013-12-01

    This paper designs and implements one kind of automatic mode-locked system. It can adjust a passively mode-locked fiber laser to keep steady mode-locked states automatically. So the unsteadiness of traditional passively mode-locked fiber laser can be avoided. The system transforms optical signals into electrical pulse signals and sends them into MCU after processing. MCU calculates the frequency of the signals and judges the state of the output based on a quick judgment algorithm. A high-speed comparator is used to check the signals and the comparison voltage can be adjusted to improve the measuring accuracy. Then by controlling two polarization controllers at an angle of 45degrees to each other, MCU extrudes the optical fibers to change the polarization until it gets proper mode-locked output. So the system can continuously monitor the output signal and get it back to mode-locked states quickly and automatically. States of the system can be displayed on the LCD and PC. The parameters of the steady mode-locked states can be stored into an EEPROM so that the system will get into mode-locked states immediately next time. Actual experiments showed that, for a 6.238MHz passively mode-locked fiber lasers, the system can get into steady mode-locked states automatically in less than 90s after starting the system. The expected lock time can be reduced to less than 20s after follow up improvements.

  16. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-07-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory.

  17. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  18. A system dynamics approach to intermodalism at the Port of Lewiston

    Energy Technology Data Exchange (ETDEWEB)

    Sebo, D.

    1996-08-01

    Intermodalism refers to interconnections among modes of transportation, e.g., road, rail, water, and air. Effective intermodal planning must cross boundaries between the public and private sectors as well as transportation modes. The development of an effective and efficient intermodal transportation system requires the identification of barriers to intermodal transportation and the investigation of the impact of proposed changes in infrastructure development, policies, regulations, and planning. A systems approach is necessary to adequately represent the interaction between the sometimes incompatible concerns of all modes and stakeholders. A systems dynamics model of intermodalism at the Port of Lewiston has been developed to highlight leverage points, hidden assumptions, second order effects resulting from feedback loops and system drivers. The purpose of this document is to present the results of the system dynamics model work.

  19. Dynamic fracture initiation in brittle materials under combined mode I/II loading

    International Nuclear Information System (INIS)

    Nakano, M.; Kishida, K.; Yamauchi, Y.; Sogabe, Y.

    1994-01-01

    A new test method has been developed to measure the resistance of dynamic fracture initiation in brittle materials under combined mode I/II loadings. The Brazilian disks with center-cracks have been fractured under oblique impact loadings in diametral-compression. The dynamic stress intensity factors of mode I and II are evaluated from the superposition integrals of the step response functions for the cracked disk. The experimental results are presented to elucidate the influence of loading rate on the combined mode fracture toughness for ceramics and glasses. (orig.)

  20. Comparison of experimental measurements of power MOSFET SEBs in dynamic and static modes

    International Nuclear Information System (INIS)

    Calvel, P.; Peyrotte, C.; Baiget, A.; Stassinopoulos, E.G.

    1991-01-01

    In this paper a study to determine the Single Event Burnout (SEB) sensitivity for burnout of IRF-150 Power MOSFETs in both static and dynamic modes in terms of LET threshold and cross section is described. The dynamic tests were conducted with a power converter which was designed for actual space application. The results were compared with static measurements which were made during the exposure to the heavy ions. The data showed that the dynamic mode was less sensitive than the static by two orders of magnitude in cross section. It was also observed that ions with a range less than 30 microns did not produce destructive burnout in the dynamic mode even when their LET exceeded the threshold value. The extent of physical MOSFET damage in the destructive, dynamic tests appeared to correlate with the ion LET and source-drain voltage

  1. Nonlinear dynamical modes of climate variability: from curves to manifolds

    Science.gov (United States)

    Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander

    2016-04-01

    The necessity of efficient dimensionality reduction methods capturing dynamical properties of the system from observed data is evident. Recent study shows that nonlinear dynamical mode (NDM) expansion is able to solve this problem and provide adequate phase variables in climate data analysis [1]. A single NDM is logical extension of linear spatio-temporal structure (like empirical orthogonal function pattern): it is constructed as nonlinear transformation of hidden scalar time series to the space of observed variables, i. e. projection of observed dataset onto a nonlinear curve. Both the hidden time series and the parameters of the curve are learned simultaneously using Bayesian approach. The only prior information about the hidden signal is the assumption of its smoothness. The optimal nonlinearity degree and smoothness are found using Bayesian evidence technique. In this work we do further extension and look for vector hidden signals instead of scalar with the same smoothness restriction. As a result we resolve multidimensional manifolds instead of sum of curves. The dimension of the hidden manifold is optimized using also Bayesian evidence. The efficiency of the extension is demonstrated on model examples. Results of application to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510

  2. On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system

    Science.gov (United States)

    Hajipour, Ahamad; Hajipour, Mojtaba; Baleanu, Dumitru

    2018-05-01

    This manuscript mainly focuses on the construction, dynamic analysis and control of a new fractional-order financial system. The basic dynamical behaviors of the proposed system are studied such as the equilibrium points and their stability, Lyapunov exponents, bifurcation diagrams, phase portraits of state variables and the intervals of system parameters. It is shown that the system exhibits hyperchaotic behavior for a number of system parameters and fractional-order values. To stabilize the proposed hyperchaotic fractional system with uncertain dynamics and disturbances, an efficient adaptive sliding mode controller technique is developed. Using the proposed technique, two hyperchaotic fractional-order financial systems are also synchronized. Numerical simulations are presented to verify the successful performance of the designed controllers.

  3. Residual mass considerations in modal analysis of large dynamic structural systems

    International Nuclear Information System (INIS)

    Shulman, J.S.; Day, J.P.

    1991-01-01

    Industry guidelines have specified that the seismic evaluation of Moderate and High Hazard Department of Energy (DOE) facilities be accomplished by use of dynamic analysis. The recommended approach is elastic response spectrum dynamic analysis to evaluate the elastic system demand on facility components. The application of modal response spectrum analysis to the seismic evaluation of nuclear facility structures, systems and equipment involves approximations due to limitations on the number of modes typically addressed in the complete dynamic solution. A simplified approach for achieving improved rigor in accounting for responses of the higher frequency modes in a modal response spectrum analysis is demonstrated

  4. Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems

    International Nuclear Information System (INIS)

    Poursamad, Amir; Markazi, Amir H.D.

    2009-01-01

    This paper describes an adaptive fuzzy sliding-mode control algorithm for controlling unknown or uncertain, multi-input multi-output (MIMO), possibly chaotic, dynamical systems. The control approach encompasses a fuzzy system and a robust controller. The fuzzy system is designed to mimic an ideal sliding-mode controller, and the robust controller compensates the difference between the fuzzy controller and the ideal one. The parameters of the fuzzy system, as well as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov sense to guarantee the asymptotic stability and tracking of the controlled system. The effectiveness of the proposed method is shown by applying it to some well-known chaotic systems.

  5. Contribution to the development of a multi-mode measurement system for dynamic neutronic measurements and processing of the related uncertainties

    International Nuclear Information System (INIS)

    Geslot, B.

    2006-11-01

    It is difficult to estimate integral reactor parameters, especially reactivity, in deeply subcritical cores. Indeed the standard neutronic methods have been designed for near critical reactivity levels and they often need a critical reference. This thesis takes part in the research on ADS (Accelerated Driven Systems), for which the multiplication coefficient would be about 0.95. The first part of the thesis deals with the development of the XMODE system. It is a flexible measurement system dedicated to experiments in neutronics. X-MODE is capable of acquiring logical signals particularly in time-stamping mode as well as analogical signals. The second part of the thesis presents a statistical study of the methods used to analyse flux transients. Indeed a lot of methods exist to analyse flux transients and some are little known. Means to estimate characteristics of reactivity estimators are provided, methods compared and recommendations made. Finally, the dynamic measurements of the TRADE program are analysed and discussed. During this program, three subcritical configurations were explored. It appears that pulsed neutron source experiments give reactivity estimations that are much more precise than those obtained from flux transients. (author)

  6. Global fast dynamic terminal sliding mode control for a quadrotor UAV.

    Science.gov (United States)

    Xiong, Jing-Jing; Zhang, Guo-Bao

    2017-01-01

    A control method based on global fast dynamic terminal sliding mode control (TSMC) technique is proposed to design the flight controller for performing the finite-time position and attitude tracking control of a small quadrotor UAV. Firstly, the dynamic model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. Secondly, the dynamic flight controllers of the quadrotor are formulated based on global fast dynamic TSMC, which is able to guarantee that the position and velocity tracking errors of all system state variables converge to zero in finite-time. Moreover, the global fast dynamic TSMC is also able to eliminate the chattering phenomenon caused by the switching control action and realize the high precision performance. In addition, the stabilities of two subsystems are demonstrated by Lyapunov theory, respectively. Lastly, the simulation results are given to illustrate the effectiveness and robustness of the proposed control method in the presence of external disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Quantum dynamics of a Josephson junction driven cavity mode system in the presence of voltage bias noise

    Science.gov (United States)

    Wang, Hui; Blencowe, M. P.; Armour, A. D.; Rimberg, A. J.

    2017-09-01

    We give a semiclassical analysis of the average photon number as well as photon number variance (Fano factor F ) for a Josephson junction (JJ) embedded microwave cavity system, where the JJ is subject to a fluctuating (i.e., noisy) bias voltage with finite dc average. Through the ac Josephson effect, the dc voltage bias drives the effectively nonlinear microwave cavity mode into an amplitude squeezed state (F Armour et al., Phys. Rev. Lett. 111, 247001 (2013), 10.1103/PhysRevLett.111.247001], but bias noise acts to degrade this squeezing. We find that the sensitivity of the Fano factor to bias voltage noise depends qualitatively on which stable fixed point regime the system is in for the corresponding classical nonlinear steady-state dynamics. Furthermore, we show that the impact of voltage bias noise is most significant when the cavity is excited to states with large average photon number.

  8. Nonlinear dynamics of a coherent polariton-biexciton system

    International Nuclear Information System (INIS)

    Nguyen Trung Dan; Vo Tinh

    1994-08-01

    The nonlinear dynamics of a coherent interacting polariton-biexciton system in optically excited semiconductors is investigated. We consider the case when two macroscopically coherent modes - a lower branch polariton and a biexciton existing simultaneously in a direct-gap semiconductor. The conditions for exhibiting optical bistability in stationary regime are obtained. Numerical simulation for the nonlinear dynamics equations of the system is also carried out. (author). 16 refs, 4 figs

  9. Sliding mode control of photoelectric tracking platform based on the inverse system method

    Directory of Open Access Journals (Sweden)

    Yao Zong Chen

    2016-01-01

    Full Text Available In order to improve the photoelectric tracking platform tracking performance, an integral sliding mode control strategy based on inverse system decoupling method is proposed. The electromechanical dynamic model is established based on multi-body system theory and Newton-Euler method. The coupled multi-input multi-output (MIMO nonlinear system is transformed into two pseudo-linear single-input single-output (SISO subsystems based on the inverse system method. An integral sliding mode control scheme is designed for the decoupled pseudo-linear system. In order to eliminate system chattering phenomenon caused by traditional sign function in sliding-mode controller, the sign function is replaced by the Sigmoid function. Simulation results show that the proposed decoupling method and the control strategy can restrain the influences of internal coupling and disturbance effectively, and has better robustness and higher tracking accuracy.

  10. Reactors Dynamic analysis Due to Reactivity of The RSG-Gas at One Line Cooling Mode

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji

    2003-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor power has been determined and steady state and LOFA transient analysis have also been done. To complete those analyses, the reactivity analysis was done by means of a core dynamic and thermal hydraulic code, PARET-ANL. Accident simulation was done. by a ramp reactivity accident due to control rod withdrawal. Reactivity analysis was carried out at two power range i.e. low and high power level, by imposing one line mode reactor protection limits. The results show that technically, the RSG-Gas can be operated safely using one line mode

  11. Failure mode and effects analysis of software-based automation systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Helminen, A.

    2002-08-01

    Failure mode and effects analysis (FMEA) is one of the well-known analysis methods having an established position in the traditional reliability analysis. The purpose of FMEA is to identify possible failure modes of the system components, evaluate their influences on system behaviour and propose proper countermeasures to suppress these effects. The generic nature of FMEA has enabled its wide use in various branches of industry reaching from business management to the design of spaceships. The popularity and diverse use of the analysis method has led to multiple interpretations, practices and standards presenting the same analysis method. FMEA is well understood at the systems and hardware levels, where the potential failure modes usually are known and the task is to analyse their effects on system behaviour. Nowadays, more and more system functions are realised on software level, which has aroused the urge to apply the FMEA methodology also on software based systems. Software failure modes generally are unknown - 'software modules do not fail, they only display incorrect behaviour' - and depend on dynamic behaviour of the application. These facts set special requirements on the FMEA of software based systems and make it difficult to realise. In this report the failure mode and effects analysis is studied for the use of reliability analysis of software-based systems. More precisely, the target system of FMEA is defined to be a safety-critical software-based automation application in a nuclear power plant, implemented on an industrial automation system platform. Through a literature study the report tries to clarify the intriguing questions related to the practical use of software failure mode and effects analysis. The study is a part of the research project 'Programmable Automation System Safety Integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002). In the project various safety assessment methods and tools for

  12. Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective

    Science.gov (United States)

    Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.

    2018-01-01

    Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.

  13. Dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    The temporal dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback is studied experimentally. Different dynamics are observed when different lateral modes are selected. When the feedback mirror is aligned perfectly and high-order modes are selected, in most....... When the feedback mirror is aligned non-perfectly, pulse-package oscillation is observed, for the first time to our knowledge, in a diode laser with long-cavity feedback....... of the cases, the output of the laser shows a periodic oscillation corresponding to a single roundtrip external-cavity loop, but the dynamic behavior disappears in some case; when the zero-order lateral-mode is selected, periodic oscillation corresponding to a double roundtrip external-cavity loop is observed...

  14. Statistical dynamics of ultradiffusion in hierarchical systems

    International Nuclear Information System (INIS)

    Gardner, S.

    1987-01-01

    In many types of disordered systems which exhibit frustration and competition, an ultrametric topology is found to exist in the space of allowable states. This ultrametric topology of states is associated with a hierarchical relaxation process called ultradiffusion. Ultradiffusion occurs in hierarchical non-linear (HNL) dynamical systems when constraints cause large scale, slow modes of motion to be subordinated to small scale, fast modes. Examples of ultradiffusion are found throughout condensed matter physics and critical phenomena (e.g. the states of spin glasses), in biophysics (e.g. the states of Hopfield networks) and in many other fields including layered computing based upon nonlinear dynamics. The statistical dynamics of ultradiffusion can be treated as a random walk on an ultrametric space. For reversible bifurcating ultrametric spaces the evolution equation governing the probability of a particle being found at site i at time t has a highly degenerate transition matrix. This transition matrix has a fractal geometry similar to the replica form proposed for spin glasses. The authors invert this fractal matrix using a recursive quad-tree (QT) method. Possible applications of hierarchical systems to communications and symbolic computing are discussed briefly

  15. Synchronization of a modified Chua's circuit system via adaptive sliding mode control

    International Nuclear Information System (INIS)

    Yan, J.-J.; Lin, J.-S.; Liao, T.-L.

    2008-01-01

    This study addresses the adaptive synchronization of a modified Chua's circuit system with both unknown system parameters and the nonlinearity in the control input. An adaptive switching surface is newly adopted such that it becomes easy to ensure the stability of the error dynamics in the sliding mode. Based on this adaptive switching surface, an adaptive sliding mode controller (ASMC) is derived to guarantee the occurrence of the sliding motion, even when the system is undergoing input nonlinearity. This method can also be easily extended to a general class of Chua's circuits. An illustrative example is given to show the applicability of the proposed ASMC design

  16. Nonlinear analysis of renal autoregulation in rats using principal dynamic modes

    DEFF Research Database (Denmark)

    Marmarelis, V Z; Chon, K H; Holstein-Rathlou, N H

    1999-01-01

    This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing and colle......This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing...... and collected in normotensive and hypertensive rats for two levels of pressure forcing (as measured by the standard deviation of the pressure fluctuation). The PDMs are computed from first-order and second-order kernel estimates obtained from the data via the Laguerre expansion technique. The results...

  17. Characterisation of ictal and interictal states of epilepsy: A system dynamic approach of principal dynamic modes analysis.

    Directory of Open Access Journals (Sweden)

    Zabit Hameed

    Full Text Available Epilepsy is a brain disorder characterised by the recurrent and unpredictable interruptions of normal brain function, called epileptic seizures. The present study attempts to derive new diagnostic indices which may delineate between ictal and interictal states of epilepsy. To achieve this, the nonlinear modeling approach of global principal dynamic modes (PDMs is adopted to examine the functional connectivity of the temporal and frontal lobes with the occipital brain segment using an ensemble of paediatric EEGs having the presence of epileptic seizure. The distinct spectral characteristics of global PDMs are found to be in line with the neural rhythms of brain dynamics. Moreover, we find that the linear trends of associated nonlinear functions (ANFs associated with the 2nd and 4th global PDMs (representing delta, theta and alpha bands of Fp1-F3 may differentiate between ictal and interictal states of epilepsy. These findings suggest that global PDMs and their associated ANFs may offer potential utility as diagnostic neural measures for ictal and interictal states of epilepsy.

  18. Anti-Synchronization of Chaotic Systems via Adaptive Sliding Mode Control

    International Nuclear Information System (INIS)

    Jawaada, Wafaa; Noorani, M. S. M.; Al-Sawalha, M. Mossa

    2012-01-01

    An anti-synchronization scheme is proposed to achieve the anti-synchronization behavior between chaotic systems with fully unknown parameters. A sliding surface and an adaptive sliding mode controller are designed to gain the anti-synchronization. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally numerical results are presented to justify the theoretical analysis

  19. Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes

    Science.gov (United States)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2018-03-01

    This paper addresses the problem of rigid-flexible coupling dynamic modeling and active control of a novel flexible parallel manipulator (PM) with multiple actuation modes. Firstly, based on the flexible multi-body dynamics theory, the rigid-flexible coupling dynamic model (RFDM) of system is developed by virtue of the augmented Lagrangian multipliers approach. For completeness, the mathematical models of permanent magnet synchronous motor (PMSM) and piezoelectric transducer (PZT) are further established and integrated with the RFDM of mechanical system to formulate the electromechanical coupling dynamic model (ECDM). To achieve the trajectory tracking and vibration suppression, a hierarchical compound control strategy is presented. Within this control strategy, the proportional-differential (PD) feedback controller is employed to realize the trajectory tracking of end-effector, while the strain and strain rate feedback (SSRF) controller is developed to restrain the vibration of the flexible links using PZT. Furthermore, the stability of the control algorithm is demonstrated based on the Lyapunov stability theory. Finally, two simulation case studies are performed to illustrate the effectiveness of the proposed approach. The results indicate that, under the redundant actuation mode, the hierarchical compound control strategy can guarantee the flexible PM achieves singularity-free motion and vibration attenuation within task workspace simultaneously. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and efficient controller design of other flexible PMs, especially the emerging ones with multiple actuation modes.

  20. Dynamic Sliding Mode Evolution PWM Controller for a Novel High-Gain Interleaved DC-DC Converter in PV System

    Directory of Open Access Journals (Sweden)

    Taizhou Bei

    2014-01-01

    Full Text Available Considering the disadvantages of the traditional high-gain DC-DC converter such as big size, high voltage stress of switches, and large input current ripple, a novel high-gain interleaved boost converter with coupled-inductor and switched-capacitor was proposed correspondingly and the operation principle together with the steady-state analysis of this converter was also described. Besides, a new control approach-dynamic sliding mode evolution PWM controller (DSME PWM for the novel topological converter based on both dynamic evolution and sliding mode control was also presented. From the simulation results and experimental validation the proposed converter can fulfill high-gain boost, low ripple of both the input current and the output voltage. Furthermore, MPPT technique can be also achieved in a short time by simulation. The efficiency and stability of the converter proposed in this paper can be improved.

  1. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    Science.gov (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  2. Default Mode Dynamics for Global Functional Integration.

    Science.gov (United States)

    Vatansever, Deniz; Menon, David K; Manktelow, Anne E; Sahakian, Barbara J; Stamatakis, Emmanuel A

    2015-11-18

    The default mode network (DMN) has been traditionally assumed to hinder behavioral performance in externally focused, goal-directed paradigms and to provide no active contribution to human cognition. However, recent evidence suggests greater DMN activity in an array of tasks, especially those that involve self-referential and memory-based processing. Although data that robustly demonstrate a comprehensive functional role for DMN remains relatively scarce, the global workspace framework, which implicates the DMN in global information integration for conscious processing, can potentially provide an explanation for the broad range of higher-order paradigms that report DMN involvement. We used graph theoretical measures to assess the contribution of the DMN to global functional connectivity dynamics in 22 healthy volunteers during an fMRI-based n-back working-memory paradigm with parametric increases in difficulty. Our predominant finding is that brain modularity decreases with greater task demands, thus adapting a more global workspace configuration, in direct relation to increases in reaction times to correct responses. Flexible default mode regions dynamically switch community memberships and display significant changes in their nodal participation coefficient and strength, which may reflect the observed whole-brain changes in functional connectivity architecture. These findings have important implications for our understanding of healthy brain function, as they suggest a central role for the DMN in higher cognitive processing. The default mode network (DMN) has been shown to increase its activity during the absence of external stimulation, and hence was historically assumed to disengage during goal-directed tasks. Recent evidence, however, implicates the DMN in self-referential and memory-based processing. We provide robust evidence for this network's active contribution to working memory by revealing dynamic reconfiguration in its interactions with other networks

  3. Hopf bifurcation and chaos from torus breakdown in voltage-mode controlled DC drive systems

    International Nuclear Information System (INIS)

    Dai Dong; Ma Xikui; Zhang Bo; Tse, Chi K.

    2009-01-01

    Period-doubling bifurcation and its route to chaos have been thoroughly investigated in voltage-mode and current-mode controlled DC motor drives under simple proportional control. In this paper, the phenomena of Hopf bifurcation and chaos from torus breakdown in a voltage-mode controlled DC drive system is reported. It has been shown that Hopf bifurcation may occur when the DC drive system adopts a more practical proportional-integral control. The phenomena of period-adding and phase-locking are also observed after the Hopf bifurcation. Furthermore, it is shown that the stable torus can breakdown and chaos emerges afterwards. The work presented in this paper provides more complete information about the dynamical behaviors of DC drive systems.

  4. Dynamics for a two-atom two-mode intensity-dependent Raman coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S., E-mail: vasudha-rnc1@rediffmail.com, E-mail: sudhhasingh@gmail.com; Gilhare, K. [Ranchi University, Department of Physics (India)

    2016-06-15

    We study the quantum dynamics of a two-atom Raman coupled model interacting with a quantized bimodal field with intensity-dependent coupling terms in a lossless cavity. The unitary transformation method used to solve the time-dependent problem also gives the eigensolutions of the interaction Hamiltonian. We study the atomic-population dynamics and dynamics of the photon statistics in the two cavity modes, and present evidence of cooperative effects in the production of antibunching and anticorrelations between the modes. We also investigate the effect of detuning on the evolution of second-order correlation functions and observe that the oscillations become more rapid for large detuning.

  5. Mode and Intermediate Waters in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Gnanadesikan, Anand [Johns Hopkins Univ., Baltimore, MD (United States); Sarmiento, Jorge L. [Princeton Univ., NJ (United States)

    2015-12-22

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  6. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    International Nuclear Information System (INIS)

    Fry-Petit, A. M.; Sheckelton, J. P.; McQueen, T. M.; Rebola, A. F.; Fennie, C. J.; Mourigal, M.; Valentine, M.; Drichko, N.

    2015-01-01

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn 2 Mo 3 O 8 , this approach allows direct assignment of the constrained rotational mode of Mo 3 O 13 clusters and internal modes of MoO 6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems

  7. Dynamics of sustained use and abandonment of clean cooking systems: study protocol for community-based system dynamics modeling.

    Science.gov (United States)

    Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N

    2016-04-26

    More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected

  8. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...... readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%....

  9. Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank

    Directory of Open Access Journals (Sweden)

    Juan Zhao

    2017-12-01

    Full Text Available A physical model and dynamic simulation models of a solar phase-change heat storage heating system with a plate solar collector, phase-change material (PCM storage tank, plate heat exchanger, and auxiliary heat sources were established. A control strategy and numerical models for each of seven different operation modes that cover the entire heating season of the system were developed for the first time. The seven proposed operation modes are Mode 1: free cooling; Mode 2: reservation of heat absorbed by the solar collector in the PCM storage tank when there is no heating demand; Mode 3: direct supply of the heating demand by the solar collector; Mode 4: use of the heat absorbed by the solar collector to meet the heating demands, with the excess heat stored in the PCM storage tank; Mode 5: use of heat stored in the PCM storage tank to meet the heating demands, Mode 6: combined use of heat stored in the PCM storage tank and the auxiliary heating sources to meet the heating demands; and Mode 7: exclusive use of the auxiliary heat sources in order to meet the heating demands. Mathematical models were established for each of the above seven operation modes, taking into consideration the effects of the outdoor meteorological parameters and terminal load on the heating system. The real-time parameters for the entire heating season of the system with respect to the different operation modes can be obtained by solving the simulation models, and used as reference for the optimal design and operation of the actual system.

  10. Quantum coherence dynamics of a three-level atom in a two-mode field

    International Nuclear Information System (INIS)

    Solovarov, N. K.

    2008-01-01

    The correlated dynamics of a three-level atom resonantly coupled to an electromagnetic cavity field is calculated (Λ, V, and L models). A diagrammatic representation of quantum dynamics is proposed for these models. As an example, Λ-atom dynamics is examined to demonstrate how the use of conventional von Neumann's reduction leads to internal decoherence (disentanglement-induced decoherence) and to the absence of atomic coherence under multiphoton excitation. The predicted absence of atomic coherence is inconsistent with characteristics of an experimentally observed atom-photon entangled state. It is shown that the correlated reduction of a composite quantum system proposed in [18] qualitatively predicts the occurrence and evolution of atomic coherence under multiphoton excitation if a seed coherence is introduced into any subsystem (the atom or a cavity mode)

  11. Asymptotic entanglement dynamics phase diagrams for two electromagnetic field modes in a cavity

    International Nuclear Information System (INIS)

    Drumond, R. C.; Souza, L. A. M.; Terra Cunha, M.

    2010-01-01

    We investigate theoretically an open dynamics for two modes of electromagnetic field inside a microwave cavity. The dynamics is Markovian and determined by two types of reservoirs: the ''natural'' reservoirs due to dissipation and temperature of the cavity, and an engineered one, provided by a stream of atoms passing trough the cavity, as devised by Pielawa et al. [Phys. Rev. Lett. 98, 240401 (2007)]. We found that, depending on the reservoir parameters, the system can have distinct ''phases'' for the asymptotic entanglement dynamics: it can disentangle at finite time or it can have persistent entanglement for large times, with the transition between them characterized by the possibility of asymptotical disentanglement. Incidentally, we also discuss the effects of dissipation on the scheme proposed in the above reference for generation of entangled states.

  12. Robust control of an industrial boiler system; a comparison between two approaches: Sliding mode control and H∞ technique

    International Nuclear Information System (INIS)

    Moradi, Hamed; Bakhtiari-Nejad, Firooz; Saffar-Avval, Majid

    2009-01-01

    To achieve a good performance of the utility boiler, dynamic variables such as drum pressure, steam temperature and water level of drum must be controlled. In this paper, a linear time invariant (LTI) model of a boiler system is considered in which the input variables are feed-water and fuel mass rates. However this dynamic model may associate with uncertainties. With considering the uncertainties of the dynamic model, a sliding mode controller is designed. After representation of the uncertain dynamic system in general control configuration and modelling the parametric uncertainties, nominal performance, robust stability and robust performance are analyzed by the concept of structured singular value μ. Using an algorithm for μ-analysis and applying an inversed-base controller, robust stability and nominal performance are guaranteed but robust performance is not satisfied. Finally, an optimal robust controller is designed based on μ-synthesis with DK-iteration algorithm. Both optimal robust and sliding mode controllers guarantee robust performance of the system against the uncertainties and result in desired time responses of the output variables. By applying H ∞ robust control, system tracks the desire reference inputs in a less time and with smoother time responses. However, less control efforts, feedwater and fuel mass rates, are needed when the sliding mode controller is applied.

  13. On-orbit evaluation of the control system/structural mode interactions on OSO-8

    Science.gov (United States)

    Slafer, L. I.

    1980-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. This paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments. The test results have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system, and also verified the approach taken to vehicle and servo ground testing.

  14. A Sliding Mode Control-based on a RBF Neural Network for Deburring Industry Robotic Systems

    OpenAIRE

    Tao, Yong; Zheng, Jiaqi; Lin, Yuanchang

    2016-01-01

    A sliding mode control method based on radial basis function (RBF) neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC) has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network par...

  15. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  16. Stabilizing periodic orbits of chaotic systems using fuzzy adaptive sliding mode control

    Energy Technology Data Exchange (ETDEWEB)

    Layeghi, Hamed [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: layeghi@mech.sharif.edu; Arjmand, Mehdi Tabe [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: arjmand@mech.sharif.edu; Salarieh, Hassan [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Department of Mechanical Engineering, Sharif University of Technology, Center of Excellence in Design, Robotics and Automation, Azadi Avenue, Postal Code 11365-9567 Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu

    2008-08-15

    In this paper by using a combination of fuzzy identification and the sliding mode control a fuzzy adaptive sliding mode scheme is designed to stabilize the unstable periodic orbits of chaotic systems. The chaotic system is assumed to have an affine form x{sup (n)} = f(X) + g(X)u where f and g are unknown functions. Using only the input-output data obtained from the underlying dynamical system, two fuzzy systems are constructed for identification of f and g. Two distinct methods are utilized for fuzzy modeling, the least squares and the gradient descent techniques. Based on the estimated fuzzy models, an adaptive controller, which works through the sliding mode control, is designed to make the system track the desired unstable periodic orbits. The stability analysis of the overall closed loop system is presented in the paper and the effectiveness of the proposed adaptive scheme is numerically investigated. As a case of study, modified Duffing system is selected for applying the proposed method to stabilize its 2{pi} and 4{pi} periodic orbits. Simulation results show the high performance of the method for stabilizing the unstable periodic orbits of unknown chaotic systems.

  17. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    Science.gov (United States)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control

  18. Algorithm for Stabilizing a POD-Based Dynamical System

    Science.gov (United States)

    Kalb, Virginia L.

    2010-01-01

    This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.

  19. A fast dynamic mode in rare earth based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L. Z.; Xue, R. J.; Zhu, Z. G.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Ngai, K. L. [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2016-05-28

    Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β′-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β′-relaxation is about 12RT{sub g} and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed.

  20. Model-based Sliding Mode Controller of Anti-lock Braking System

    Science.gov (United States)

    Zheng, Lin; Luo, Yue-Gang; Kang, Jing; Shi, Zhan-Qun

    2016-05-01

    The anti-lock braking system (ABS) used in automobiles is used to prevent wheel from lockup and to maintain the steering ability and stability. The sliding mode controller is able to control nonlinear system steadily. In this research, a one-wheel dynamic model with ABS control is built up using model-based method. Using the sliding model controller, the simulation results by using Matlab/Simulink show qualified data compared with optimal slip rate. By using this method, the ABS brake efficiency is improved efficiently.

  1. Dynamic hysteretic sensing model of bending-mode Galfenol transducer

    International Nuclear Information System (INIS)

    Cao, Shuying; Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei

    2015-01-01

    A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device

  2. Dynamic hysteretic sensing model of bending-mode Galfenol transducer

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuying, E-mail: shuying-cao@hebut.edu.cn; Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei [Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin 300130 (China)

    2015-05-07

    A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device.

  3. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser

    Science.gov (United States)

    Ryczkowski, P.; Närhi, M.; Billet, C.; Merolla, J.-M.; Genty, G.; Dudley, J. M.

    2018-04-01

    Dissipative solitons are remarkably localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist, and are seen in far-from-equilibrium systems in many fields, including chemistry, biology and physics. There has been particular interest in studying their properties in mode-locked lasers, but experiments have been limited by the inability to track the dynamical soliton evolution in real time. Here, we use simultaneous dispersive Fourier transform and time-lens measurements to completely characterize the spectral and temporal evolution of ultrashort dissipative solitons as their dynamics pass through a transient unstable regime with complex break-up and collisions before stabilization. Further insight is obtained from reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum. These findings show how real-time measurements provide new insights into ultrafast transient dynamics in optics.

  4. Sliding mode control for synchronization of Roessler systems with time delays and its application to secure communication

    International Nuclear Information System (INIS)

    Chen, C-K; Yan, J-J; Liao, T-L

    2007-01-01

    This study is concerned with the chaos synchronization problem of Roessler systems subjected to multiple time delays. Based on the sliding mode control (SMC) technique, we first propose an adaptive switching surface which does not allow for a reduction of system order, as is the case in most SMC schemes. Then both a sliding mode controller and a new sufficient condition are derived to guarantee, respectively, the global hitting of the sliding mode and stability of the equivalent error dynamics in the sliding mode. Thus, the chaos synchronization for Roessler systems with multiple time delays can surely be achieved. Moreover, the proposed scheme is then applied to the secure communication system. Numerical simulations are included to demonstrate the feasibility of the proposed scheme

  5. Dynamics of glassy systems

    International Nuclear Information System (INIS)

    Cugliandolo, Leticia F.

    2003-09-01

    These lecture notes can be read in two ways. The first two Sections contain a review of the phenomenology of several physical systems with slow nonequilibrium dynamics. In the Conclusions we summarize the scenario for this temporal evolution derived from the solution to some solvable models (p spin and the like) that are intimately connected to the mode coupling approach (and similar ones) to super-cooled liquids. At the end we list a number of open problems of great relevance in this context. These Sections can be read independently of the body of the paper where we present some of the basic analytic techniques used to study the out of equilibrium dynamics of classical and quantum models with and without disorder. We start the technical part by briefly discussing the role played by the environment and by introducing and comparing its representation in the equilibrium and dynamic treatment of classical and quantum systems. We next explain the role played by explicit quenched disorder in both approaches. Later on we focus on analytical techniques; we expand on the dynamic functional methods, and the diagrammatic expansions and resummations used to derive macroscopic equations from the microscopic dynamics. We show why the macroscopic dynamic equations for disordered models and those resulting from self-consistent approximations to non-disordered ones coincide. We review some generic properties of dynamic systems evolving out of equilibrium like the modifications of the fluctuation-dissipation theorem, generic scaling forms of the correlation functions, etc. Finally we solve a family of mean-field models. The connection between the dynamic treatment and the analysis of the free-energy landscape of these models is also presented. We use pedagogical examples all along these lectures to illustrate the properties and results. (author)

  6. The dynamical crossover in attractive colloidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Mallamace, Domenico [Dipartimento di Scienze dell’Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T − ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  7. The characteristics of polysaccharides fractions of sunflower obtained in dynamic mode

    International Nuclear Information System (INIS)

    Makhkamov, Kh.K.; Gorshkova, R.M.; Khalikova, S.

    2013-01-01

    Present article describes characteristics of polysaccharides fractions of sunflower obtained in dynamic mode. The decomposition of sunflower pectin was studied by means of continuous fractionation method in dynamic regime. It was found that the process is of extreme nature due to heterogeneity of its macromolecule structure. The additional information on macromolecule structure of sunflower pectin was obtained.

  8. Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system

    Science.gov (United States)

    He, Qiongyi; Ficek, Zbigniew

    2014-02-01

    We study multipartite entanglement, the generation of Einstein-Podolsky-Rosen (EPR) states, and quantum steering in a three-mode optomechanical system composed of an atomic ensemble located inside a single-mode cavity with a movable mirror. The cavity mode is driven by a short laser pulse, has a nonlinear parametric-type interaction with the mirror and a linear beam-splitter-type interaction with the atomic ensemble. There is no direct interaction of the mirror with the atomic ensemble. A threshold effect for the dynamics of the system is found, above which the system works as an amplifier and below which as an attenuator of the output fields. The threshold is determined by the ratio of the coupling strengths of the cavity mode to the mirror and to the atomic ensemble. It is shown that above the threshold, the system effectively behaves as a two-mode system in which a perfect bipartite EPR state can be generated, while it is impossible below the threshold. Furthermore, a fully inseparable tripartite entanglement and even further a genuine tripartite entanglement can be produced above and below the threshold. In addition, we consider quantum steering and examine the monogamy relations that quantify the amount of bipartite steering that can be shared between different modes. It is found that the mirror is more capable for steering of entanglement than the cavity mode. The two-way steering is found between the mirror and the atomic ensemble despite the fact that they are not directly coupled to each other, while it is impossible between the output of cavity mode and the ensemble which are directly coupled to each other.

  9. Fractional-order sliding mode control for a class of uncertain nonlinear systems based on LQR

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2017-03-01

    Full Text Available This article presents a new fractional-order sliding mode control (FOSMC strategy based on a linear-quadratic regulator (LQR for a class of uncertain nonlinear systems. First, input/output feedback linearization is used to linearize the nonlinear system and decouple tracking error dynamics. Second, LQR is designed to ensure that the tracking error dynamics converges to the equilibrium point as soon as possible. Based on LQR, a novel fractional-order sliding surface is introduced. Subsequently, the FOSMC is designed to reject system uncertainties and reduce the magnitude of control chattering. Then, the global stability of the closed-loop control system is analytically proved using Lyapunov stability theory. Finally, a typical single-input single-output system and a typical multi-input multi-output system are simulated to illustrate the effectiveness and advantages of the proposed control strategy. The results of the simulation indicate that the proposed control strategy exhibits excellent performance and robustness with system uncertainties. Compared to conventional integer-order sliding mode control, the high-frequency chattering of the control input is drastically depressed.

  10. Mode decomposition and Lagrangian structures of the flow dynamics in orbitally shaken bioreactors

    Science.gov (United States)

    Weheliye, Weheliye Hashi; Cagney, Neil; Rodriguez, Gregorio; Micheletti, Martina; Ducci, Andrea

    2018-03-01

    In this study, two mode decomposition techniques were applied and compared to assess the flow dynamics in an orbital shaken bioreactor (OSB) of cylindrical geometry and flat bottom: proper orthogonal decomposition and dynamic mode decomposition. Particle Image Velocimetry (PIV) experiments were carried out for different operating conditions including fluid height, h, and shaker rotational speed, N. A detailed flow analysis is provided for conditions when the fluid and vessel motions are in-phase (Fr = 0.23) and out-of-phase (Fr = 0.47). PIV measurements in vertical and horizontal planes were combined to reconstruct low order models of the full 3D flow and to determine its Finite-Time Lyapunov Exponent (FTLE) within OSBs. The combined results from the mode decomposition and the FTLE fields provide a useful insight into the flow dynamics and Lagrangian coherent structures in OSBs and offer a valuable tool to optimise bioprocess design in terms of mixing and cell suspension.

  11. Static contribution of the higher modes in the dynamic response of structures

    International Nuclear Information System (INIS)

    Barbosa, H.J.C.

    1982-03-01

    In the dynamic response of structures by the modal superposition method usually only the lower modes are taken into account and a procedure that could estimate the contribution due to the higher modes without calculating them would be useful. The technique which consists of assuming that the higher modes respond statically is discussed here. Structures subjected to support motion which are analysed by response spectra techniques are considered and some numerical results are presented. (Author) [pt

  12. On the track of gravity modes: study of the dynamics of the solar core

    International Nuclear Information System (INIS)

    Mathur, Savita

    2007-01-01

    This thesis is dedicated to the study of the dynamics of the solar radiative zone through gravity modes. Though the core represents more than 50% of the solar mass, we still do not have an accurate vision of the rotation profile in the very inner part of the Sun. To understand the evolution of stars, we try to put constraints on dynamic processes. Several paths have been followed in this thesis to tackle this issue: solar modeling, the study of a new instrument, observations and inversions of the rotation. The necessity of the detection of gravity modes is driven by the will for a better comprehension of the solar dynamics. With a technological prototype built at the CEA (GOLF-NG), we want to validate a few technical points and prepare the scientific mission which aim will be to detect these gravity modes. We studied first the photodetector and then the whole instrument response. We show the feasibility of the instrument. The observation of the resonance in all the channels proves that it works the way we expected. However, before this mission takes place, the analysis of GOLF data enabled us to detect one gravity-mode candidate as well as the signature of dipole gravity modes. This work benefited from a more theoretical approach on the prediction of gravity-mode frequencies. We show the influence of several physical processes and quantities. Finally, as the dynamical processes in the Sun are not well constrained, we tried to understand the impact of the introduction of one and several gravity modes on the inferred rotation profiles. We also tried to give constraints on the observations so that we could obtain some information on the rotation profile in the core. (author) [fr

  13. In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft

    Science.gov (United States)

    Slafer, L. I.

    1979-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.

  14. Adaptive Backstepping Sliding-Mode Control of the Electronic Throttle System in Modern Automobiles

    Directory of Open Access Journals (Sweden)

    Rui Bai

    2014-01-01

    Full Text Available In modern automobiles, electronic throttle is a DC-motor-driven valve that regulates air inflow into the vehicle’s combustion system. The electronic throttle is increasingly being used in order to improve the vehicle drivability, fuel economy, and emissions. Electronic throttle system has the nonlinear dynamical characteristics with the unknown disturbance and parameters. At first, the dynamical nonlinear model of the electronic throttle is built in this paper. Based on the model and using the backstepping design technique, a new adaptive backstepping sliding-mode controller of the electronic throttle is developed. During the backstepping design process, parameter adaptive law is designed to estimate the unknown parameter, and sliding-mode control term is applied to compensate the unknown disturbance. The proposed controller can make the actual angle of the electronic throttle track its set point with the satisfactory performance. Finally, a computer simulation is performed, and simulation results verify that the proposed control method can achieve favorable tracking performance.

  15. Dynamic model updating based on strain mode shape and natural frequency using hybrid pattern search technique

    Science.gov (United States)

    Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping

    2018-05-01

    Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.

  16. Mixed-Mode Oscillations in Complex-Plasma Instabilities

    International Nuclear Information System (INIS)

    Mikikian, Maxime; Cavarroc, Marjorie; Coueedel, Lenaiec; Tessier, Yves; Boufendi, Laiefa

    2008-01-01

    Instabilities in dusty plasmas are frequent phenomena. We show that some instabilities can be described by mixed-mode oscillations often encountered in chemical systems or neuronal dynamics and studied through dynamical system theories. The time evolution of these instabilities is studied through the change in the associated waveform. Frequency and interspike interval are analyzed and compared to results obtained in other scientific fields concerned by mixed-mode oscillations

  17. An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems

    International Nuclear Information System (INIS)

    Dominguez-Garcia, Alejandro D.; Kassakian, John G.; Schindall, Joel E.; Zinchuk, Jeffrey J.

    2008-01-01

    We propose an integrated methodology for the reliability and dynamic performance analysis of fault-tolerant systems. This methodology uses a behavioral model of the system dynamics, similar to the ones used by control engineers to design the control system, but also incorporates artifacts to model the failure behavior of each component. These artifacts include component failure modes (and associated failure rates) and how those failure modes affect the dynamic behavior of the component. The methodology bases the system evaluation on the analysis of the dynamics of the different configurations the system can reach after component failures occur. For each of the possible system configurations, a performance evaluation of its dynamic behavior is carried out to check whether its properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet system requirements. Markov chains are used to model the stochastic process associated with the different configurations that a system can adopt when failures occur. This methodology not only enables an integrated framework for evaluating dynamic performance and reliability of fault-tolerant systems, but also enables a method for guiding the system design process, and further optimization. To illustrate the methodology, we present a case-study of a lateral-directional flight control system for a fighter aircraft

  18. Analysis of Coherent Phonon Signals by Sparsity-promoting Dynamic Mode Decomposition

    Science.gov (United States)

    Murata, Shin; Aihara, Shingo; Tokuda, Satoru; Iwamitsu, Kazunori; Mizoguchi, Kohji; Akai, Ichiro; Okada, Masato

    2018-05-01

    We propose a method to decompose normal modes in a coherent phonon (CP) signal by sparsity-promoting dynamic mode decomposition. While the CP signals can be modeled as the sum of finite number of damped oscillators, the conventional method such as Fourier transform adopts continuous bases in a frequency domain. Thus, the uncertainty of frequency appears and it is difficult to estimate the initial phase. Moreover, measurement artifacts are imposed on the CP signal and deforms the Fourier spectrum. In contrast, the proposed method can separate the signal from the artifact precisely and can successfully estimate physical properties of the normal modes.

  19. Algorithm of dynamic regulation of a system of duct, for a high accuracy climatic system

    Science.gov (United States)

    Arbatskiy, A. A.; Afonina, G. N.; Glazov, V. S.

    2017-11-01

    Currently, major part of climatic system, are stationary in projected mode only. At the same time, many modern industrial sites, require constant or periodical changes in technological process. That is 80% of the time, the industrial site is not require ventilation system in projected mode and high precision of climatic parameters must maintain. While that not constantly is in use for climatic systems, which use in parallel for different rooms, we will be have a problem for balance of duct system. For this problem, was created the algorithm for quantity regulation, with minimal changes. Dynamic duct system: Developed of parallel control system of air balance, with high precision of climatic parameters. The Algorithm provide a permanent pressure in main duct, in different a flow of air. Therefore, the ending devises air flow have only one parameter for regulation - flaps open area. Precision of regulation increase and the climatic system provide high precision for temperature and humidity (0,5C for temperature, 5% for relative humidity). Result: The research has been made in CFD-system - PHOENICS. Results for velocity of air in duct, for pressure of air in duct for different operation mode, has been obtained. Equation for air valves positions, with different parameters for climate in room’s, has been obtained. Energy saving potential for dynamic duct system, for different types of a rooms, has been calculated.

  20. Dynamic analysis of large structures with uncertain parameters based on coupling component mode synthesis and perturbation method

    Directory of Open Access Journals (Sweden)

    D. Sarsri

    2016-03-01

    Full Text Available This paper presents a methodological approach to compute the stochastic eigenmodes of large FE models with parameter uncertainties based on coupling of second order perturbation method and component mode synthesis methods. Various component mode synthesis methods are used to optimally reduce the size of the model. The statistical first two moments of dynamic response of the reduced system are obtained by the second order perturbation method. Numerical results illustrating the accuracy and efficiency of the proposed coupled methodological procedures for large FE models with uncertain parameters are presented.

  1. Dynamic Data-Driven Reduced-Order Models of Macroscale Quantities for the Prediction of Equilibrium System State for Multiphase Porous Medium Systems

    Science.gov (United States)

    Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.

    2017-12-01

    Microscale simulation of multiphase flow in realistic, highly-resolved porous medium systems of a sufficient size to support macroscale evaluation is computationally demanding. Such approaches can, however, reveal the dynamic, steady, and equilibrium states of a system. We evaluate methods to utilize dynamic data to reduce the cost associated with modeling a steady or equilibrium state. We construct data-driven models using extensions to dynamic mode decomposition (DMD) and its connections to Koopman Operator Theory. DMD and its variants comprise a class of equation-free methods for dimensionality reduction of time-dependent nonlinear dynamical systems. DMD furnishes an explicit reduced representation of system states in terms of spatiotemporally varying modes with time-dependent oscillation frequencies and amplitudes. We use DMD to predict the steady and equilibrium macroscale state of a realistic two-fluid porous medium system imaged using micro-computed tomography (µCT) and simulated using the lattice Boltzmann method (LBM). We apply Koopman DMD to direct numerical simulation data resulting from simulations of multiphase fluid flow through a 1440x1440x4320 section of a full 1600x1600x5280 realization of imaged sandstone. We determine a representative set of system observables via dimensionality reduction techniques including linear and kernel principal component analysis. We demonstrate how this subset of macroscale quantities furnishes a representation of the time-evolution of the system in terms of dynamic modes, and discuss the selection of a subset of DMD modes yielding the optimal reduced model, as well as the time-dependence of the error in the predicted equilibrium value of each macroscale quantity. Finally, we describe how the above procedure, modified to incorporate methods from compressed sensing and random projection techniques, may be used in an online fashion to facilitate adaptive time-stepping and parsimonious storage of system states over time.

  2. Dynamic Confinement of ITER Plasma by O-Mode Driver at Electron Cyclotron Frequency Range

    Science.gov (United States)

    Stefan, V. Alexander

    2009-05-01

    A low B-field side launched electron cyclotron O-Mode driver leads to the dynamic rf confinement, in addition to rf turbulent heating, of ITER plasma. The scaling law for the local energy confinement time τE is evaluated (τE ˜ 3neTe/2Q, where (3/2) neTe is the local plasma thermal energy density and Q is the local rf turbulent heating rate). The dynamics of unstable dissipative trapped particle modes (DTPM) strongly coupled to Trivelpiece-Gould (T-G) modes is studied for gyrotron frequency 170GHz; power˜24 MW CW; and on-axis B-field ˜ 10T. In the case of dynamic stabilization of DTPM turbulence and for the heavily damped T-G modes, the energy confinement time scales as τE˜(I0)-2, whereby I0(W/m^2) is the O-Mode driver irradiance. R. Prater et. al., Nucl. Fusion 48, No 3 (March 2008). E. P. Velikhov, History of the Russian Tokamak and the Tokamak Thermonuclear Fusion Research Worldwide That Led to ITER (Documentary movie; Stefan Studios Int'l, La Jolla, CA, 2008; E. P. Velikhov, V. Stefan.) M N Rosenbluth, Phys. Scr. T2A 104-109 1982 B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).

  3. Investigation of the Dynamics of a Clamped-Clamped Microbeam Near the Third Mode Using a Partial Electrode

    KAUST Repository

    Masri, Karim M.

    2014-08-17

    We present an investigation of the dynamics of a clamped-clamped microbeam excited electrostatically near its third mode. To maximize the response at the third mode, a partial electrode configuration is utilized. A multi-mode Galerkin method is used to develop a reduced order model (ROM) of the beam. A shooting method to find the periodic motion is utilized to generate frequency response curves. The curves show hardenining behavior and dynamic pull-in. We show that the dynamic amplitude of the partial configuration is higher than that of a full electrode configuration. These results are promising for the use of higher-order modes for mass detection and for ultra sensitive resonant sensors.

  4. Investigation of the Dynamics of a Clamped-Clamped Microbeam Near the Third Mode Using a Partial Electrode

    KAUST Repository

    Masri, Karim M.; Younis, Mohammad I.

    2014-01-01

    We present an investigation of the dynamics of a clamped-clamped microbeam excited electrostatically near its third mode. To maximize the response at the third mode, a partial electrode configuration is utilized. A multi-mode Galerkin method is used to develop a reduced order model (ROM) of the beam. A shooting method to find the periodic motion is utilized to generate frequency response curves. The curves show hardenining behavior and dynamic pull-in. We show that the dynamic amplitude of the partial configuration is higher than that of a full electrode configuration. These results are promising for the use of higher-order modes for mass detection and for ultra sensitive resonant sensors.

  5. Derivation of regularized Grad's moment system from kinetic equations: modes, ghosts and non-Markov fluxes

    Science.gov (United States)

    Karlin, Ilya

    2018-04-01

    Derivation of the dynamic correction to Grad's moment system from kinetic equations (regularized Grad's 13 moment system, or R13) is revisited. The R13 distribution function is found as a superposition of eight modes. Three primary modes, known from the previous derivation (Karlin et al. 1998 Phys. Rev. E 57, 1668-1672. (doi:10.1103/PhysRevE.57.1668)), are extended into the nonlinear parameter domain. Three essentially nonlinear modes are identified, and two ghost modes which do not contribute to the R13 fluxes are revealed. The eight-mode structure of the R13 distribution function implies partition of R13 fluxes into two types of contributions: dissipative fluxes (both linear and nonlinear) and nonlinear streamline convective fluxes. Physical interpretation of the latter non-dissipative and non-local in time effect is discussed. A non-perturbative R13-type solution is demonstrated for a simple Lorentz scattering kinetic model. The results of this study clarify the intrinsic structure of the R13 system. This article is part of the theme issue `Hilbert's sixth problem'.

  6. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    Science.gov (United States)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  7. Multi-mode-multi-state quantum dynamics of key five-membered heterocycles: spectroscopy and ultrafast internal conversion

    International Nuclear Information System (INIS)

    Koeppel, H.; Gromov, E.V.; Trofimov, A.B.

    2004-01-01

    The multi-mode and multi-state vibronic interactions in the heterocyclic molecules furan, pyrrole, thiophene and their radical cations are investigated theoretically, employing a linear vibronic coupling scheme. The underlying system parameters are determined from large-scale ab initio computations. Previous time-independent dynamical calculations on the radical cations are extended by wave-packet propagations (using the MCTDH method) confirming the strong nonadiabatic coupling effects. For the singlet excited states of furan and thiophene quantum dynamical calculations are presented which go beyond the two-state approximation frequently applied in the literature. The characteristic spectral structures are well reproduced, especially in the case of furan. The implications of these results on the photochemical reaction dynamics of these species are discussed

  8. A study of reset mode in advanced alarm system simulator

    International Nuclear Information System (INIS)

    Yenn, T. C.; Hwang, S. L.; Huang, F. H.; Yu, A. C.; Hsu, C. C.; Huang, H. W.

    2006-01-01

    An automation function has been widely applied in main control room of nuclear power plants. That leads to a new issue of human-automation interaction, which considers human operational performance in automated systems. In this research is the automation alarm reset in the advanced alarm system (AAS) of Advanced Nuclear Power Plant in Taiwan. Since alarms are very crucial for the understanding of the status of the plant as well as the reset function of alarm system will be changed from fully manual to fully automatic, it is very important to test and evaluate the performance and the effect of reset modes in AAS. The purpose of this paper is to evaluate the impact of the auto-reset alarm system on the plant performance and on operators' preference and task load. To develop a dynamic simulator as an AAS was conducted to compare manual and automatic reset function of alarm system on task performance and subjective ratings of task workload, comprehension, and preference. The simulation includes PCTRAN model and alarm software processing. The final results revealed that, using the auto-reset mode, participants had lower task load index (TLX) on effort in the first test trial and was more satisfied in multiple tasks condition. In contrast, using manual reset mode, participants were more satisfied on alarm handling, monitoring, and decision making. In other words, either reset mode in the study has unique features to assist operator, but is insufficient. The reset function in AAS therefore should be very flexible. Additionally, the experimental results also pointed out that the user interfaces need to be improved. Those experiences will be helpful for human factors verification and validation in the near future. (authors)

  9. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models: Appendices

    Science.gov (United States)

    Coppolino, Robert N.

    2018-01-01

    Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA). (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976). (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.

  10. Two-mode chaos and its synchronization properties

    DEFF Research Database (Denmark)

    Postnov, D E; Shishkin, A V; Sosnovtseva, Olga

    2005-01-01

    Using a simple model with bimodal dynamics, we investigate the intra- and inter-system entrainment of the two different time scales involved in the chaotic oscillations. The transition between mode-locked and mode-unlocked chaos is analyzed for a single system. For coupled oscillators, we...

  11. Systematic design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Hennen, B.A.; Westerhof, E.; De Baar, M.R.; Nuij, P.W.J.M.; Steinbuch, M.

    2012-01-01

    Suppression of tearing modes is essential for the operation of tokamaks. This paper describes the design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak. The two main control tasks of this feedback control system are the radial alignment of electron cyclotron resonance heating and current drive (ECRH/ECCD) with a tearing mode and the stabilization of a mode at a specific width. In order to simulate these control tasks, the time evolution of a tearing mode subject to suppression by ECRH/ECCD and destabilization by a magnetic perturbation field is modelled using the generalized Rutherford equation. The model includes an equilibrium model and an ECRH/ECCD launcher model. The dynamics and static equilibria of this model are analysed. The model is linearized and based on the linearized model, linear feedback controllers are designed and simulated, demonstrating both alignment and width control of tearing modes in TEXTOR. (paper)

  12. Computational Fluid Dynamics (CFD) Simulation of Hypersonic Turbine-Based Combined-Cycle (TBCC) Inlet Mode Transition

    Science.gov (United States)

    Slater, John W.; Saunders, John D.

    2010-01-01

    Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.

  13. Two-mode chaos and its synchronization properties

    DEFF Research Database (Denmark)

    Postnov, D.E.; Shishkin, A.V.; Sosnovtseva, Olga

    2005-01-01

    Using a simple model with bimodal dynamics, we investigate the intra- and inter-system entrainment of the two different time scales involved in the chaotic oscillations. The transition between mode-locked and mode-unlocked chaos is analyzed for a single system. For coupled oscillators, we demonst...

  14. Structural system identification based on variational mode decomposition

    Science.gov (United States)

    Bagheri, Abdollah; Ozbulut, Osman E.; Harris, Devin K.

    2018-03-01

    In this paper, a new structural identification method is proposed to identify the modal properties of engineering structures based on dynamic response decomposition using the variational mode decomposition (VMD). The VMD approach is a decomposition algorithm that has been developed as a means to overcome some of the drawbacks and limitations of the empirical mode decomposition method. The VMD-based modal identification algorithm decomposes the acceleration signal into a series of distinct modal responses and their respective center frequencies, such that when combined their cumulative modal responses reproduce the original acceleration response. The decaying amplitude of the extracted modal responses is then used to identify the modal damping ratios using a linear fitting function on modal response data. Finally, after extracting modal responses from available sensors, the mode shape vector for each of the decomposed modes in the system is identified from all obtained modal response data. To demonstrate the efficiency of the algorithm, a series of numerical, laboratory, and field case studies were evaluated. The laboratory case study utilized the vibration response of a three-story shear frame, whereas the field study leveraged the ambient vibration response of a pedestrian bridge to characterize the modal properties of the structure. The modal properties of the shear frame were computed using analytical approach for a comparison with the experimental modal frequencies. Results from these case studies demonstrated that the proposed method is efficient and accurate in identifying modal data of the structures.

  15. Evaluation on real-time dynamic performance of BDS in PPP, RTK, and INS tightly aided modes

    Science.gov (United States)

    Gao, Zhouzheng; Li, Tuan; Zhang, Hongping; Ge, Maorong; Schuh, Harald

    2018-05-01

    Since China's BeiDou satellite navigation system (BDS) began to provide regional navigation service for Asia-Pacific region after 2012, more new generation BDS satellites have been launched to further expand BDS's coverage to be global. In this contribution, precise positioning models based on BDS and the corresponding mathematical algorithms are presented in detail. Then, an evaluation on BDS's real-time dynamic positioning and navigation performance is presented in Precise Point Positioning (PPP), Real-time Kinematic (RTK), Inertial Navigation System (INS) tightly aided PPP and RTK modes by processing a set of land-borne vehicle experiment data. Results indicate that BDS positioning Root Mean Square (RMS) in north, east, and vertical components are 2.0, 2.7, and 7.6 cm in RTK mode and 7.8, 14.7, and 24.8 cm in PPP mode, which are close to GPS positioning accuracy. Meanwhile, with the help of INS, about 38.8%, 67.5%, and 66.5% improvements can be obtained by using PPP/INS tight-integration mode. Such enhancements in RTK/INS tight-integration mode are 14.1%, 34.0%, and 41.9%. Moreover, the accuracy of velocimetry and attitude determination can be improved to be better than 1 cm/s and 0.1°, respectively. Besides, the continuity and reliability of BDS in both PPP and RTK modes can also be ameliorated significantly by INS during satellite signal missing periods.

  16. Study of spatially extended dynamical systems using probabilistic cellular automata

    International Nuclear Information System (INIS)

    Vanag, Vladimir K

    1999-01-01

    Spatially extended dynamical systems are ubiquitous and include such things as insect and animal populations; complex chemical, technological, and geochemical processes; humanity itself, and much more. It is clearly desirable to have a certain universal tool with which the highly complex behaviour of nonlinear dynamical systems can be analyzed and modelled. For this purpose, cellular automata seem to be good candidates. In the present review, emphasis is placed on the possibilities that various types of probabilistic cellular automata (PCA), such as DSMC (direct simulation Monte Carlo) and LGCA (lattice-gas cellular automata), offer. The methods are primarily designed for modelling spatially extended dynamical systems with inner fluctuations accounted for. For the Willamowskii-Roessler and Oregonator models, PCA applications to the following problems are illustrated: the effect of fluctuations on the dynamics of nonlinear systems; Turing structure formation; the effect of hydrodynamic modes on the behaviour of nonlinear chemical systems (stirring effects); bifurcation changes in the dynamical regimes of complex systems with restricted geometry or low spatial dimension; and the description of chemical systems in microemulsions. (reviews of topical problems)

  17. Dynamics of coupled mode solitons in bursting neural networks

    Science.gov (United States)

    Nfor, N. Oma; Ghomsi, P. Guemkam; Moukam Kakmeni, F. M.

    2018-02-01

    Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation. We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone modes.

  18. Free chattering hybrid sliding mode control for a class of non-linear systems

    DEFF Research Database (Denmark)

    Khooban, Mohammad Hassan; Niknam, Taher; Blaabjerg, Frede

    2016-01-01

    In current study, in order to find the control of general uncertain nonlinear systems, a new optimal hybrid control approach called Optimal General Type II Fuzzy Sliding Mode (OGT2FSM) is presented. In order to estimate unknown nonlinear activities in monitoring dynamic uncertainties, the benefits...... on the same topic, which are an Adaptive Interval Type-2 Fuzzy Logic Controller (AGT2FLC) and Conventional Sliding Mode Controller (CSMC), to assess the efficiency of the suggested controller. The suggested control scheme is finally used to the Electric Vehicles type as a case study. Results of simulation...

  19. Competitive Modes for the Detection of Chaotic Parameter Regimes in the General Chaotic Bilinear System of Lorenz Type

    Science.gov (United States)

    Mallory, Kristina; van Gorder, Robert A.

    We study chaotic behavior of solutions to the bilinear system of Lorenz type developed by Celikovsky and Vanecek [1994] through an application of competitive modes. This bilinear system of Lorenz type is one possible canonical form holding the Lorenz equation as a special case. Using a competitive modes analysis, which is a completely analytical method allowing one to identify parameter regimes for which chaos may occur, we are able to demonstrate a number of parameter regimes which admit a variety of distinct chaotic behaviors. Indeed, we are able to draw some interesting conclusions which relate the behavior of the mode frequencies arising from writing the state variables for the Celikovsky-Vanecek model as coupled oscillators, and the types of emergent chaotic behaviors observed. The competitive modes analysis is particularly useful if all but one of the model parameters are fixed, and the remaining free parameter is used to modify the chaos observed, in a manner analogous to a bifurcation parameter. Through a thorough application of the method, we are able to identify several parameter regimes which give new dynamics (such as specific forms of chaos) which were not observed or studied previously in the Celikovsky-Vanecek model. Therefore, the results demonstrate the advantage of the competitive modes approach for detecting new parameter regimes leading to chaos in third-order dynamical systems.

  20. An improved efficiency of fuzzy sliding mode control of permanent magnet synchronous motor for wind turbine generator pumping system

    International Nuclear Information System (INIS)

    Benchabane, F.; Titaouine, A.; Guettaf, A.; Yahia, K.; Taibi, D.; Bennis, O.

    2012-01-01

    This paper presents an analysis by which the dynamic performances of a permanent magnet synchronous motor (PMSM) motor is controlled through a hysteresis current loop and an outer speed loop with different controllers. The dynamics of the wind turbine pumping drive system with (PI) and a fuzzy sliding mode (FSM) speed controllers are presented. In order to optimize the overall system efficiency, a maximum power point tracker is also used. Simulation is carried out by formatting the mathematical model for wind turbine generator, motor and pump load. The results for such complicated and nonlinear system, with fuzzy sliding mode speed controller show improvement in transient response of the PMSM drive over conventional PI. The effectiveness of the FSM controller is also demonstrated. (author)

  1. Attitude Control System Design for the Solar Dynamics Observatory

    Science.gov (United States)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  2. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems

    International Nuclear Information System (INIS)

    Hoerhammer, C.

    2007-01-01

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  3. Two operating modes for turbocharger system

    International Nuclear Information System (INIS)

    Bayomi, Nazih N.; Abd El-Maksoud, Rafea M.

    2012-01-01

    Highlights: ► A turbocharger system that operates in power assisted mode is introduced. ► The parameters affecting performance of the turbocharger is presented. ► Different operational charts for turbocharger are presented. ► The parametric study is helpful guide to determine turbocharger dimensioning. - Abstract: The present paper introduces a turbocharger system that operates in two different modes according to turbocharging requirements. In the first mode, the turbocharger is operating with power assistance at lower engine speeds where the power of the exhaust gases is insufficient. Thereafter, the second mode is switched leading the compressor and the turbine of the turbocharger to rotate separately for best performance. Analysis is presented to find out the parameters affecting the operation of the turbocharger and their values to achieve enhanced turbocharger performance with high efficient impellers. The parameters studied are based on data of the turbocharger operating conditions and the operational requirements of the engine. The analysis considers the turbocharger system, its turbine and its compressor. The operational charts demonstrate the simulated results for two operating modes. This study is helpful as a guide to determine the turbocharger dimensioning and blade profile assignment without using any given blade dimensional value.

  4. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  5. Studying the dynamical characteristics of pumps in NPP unit auxiliary water system under operational conditions

    International Nuclear Information System (INIS)

    Belyaev, S.G.; Puzanov, A.I.; Belikov, V.P.; Dizik, B.S.

    1990-01-01

    Hydrodynamic loads appearing in the flow-through part of pump aggregates of the system of auxiliary water supply in NPP with variations in the operation modes are investigated. It is shown that during operation of centrifugal pumps the position of the mode on the pump characteristic plot must be controlled. When the mode point exceeds the limits of the working zone it results in a considerable increase of dynamic loads: pressure pulsation and vibration. As the flow rate increase the decrease in dynamic loads is recorded at low frequencies of about 2-4 Hz

  6. Birefringence induced by pp-wave modes in an electromagnetically active dynamic aether

    International Nuclear Information System (INIS)

    Alpin, Timur Yu.; Balakin, Alexander B.

    2017-01-01

    In the framework of the Einstein-Maxwell-aether theory we study the birefringence effect, which can occur in the pp-wave symmetric dynamic aether. The dynamic aether is considered to be a latently birefringent quasi-medium, which displays this hidden property if and only if the aether motion is non-uniform, i.e., when the aether flow is characterized by the non-vanishing expansion, shear, vorticity or acceleration. In accordance with the dynamo-optical scheme of description of the interaction between electromagnetic waves and the dynamic aether, we shall model the susceptibility tensors by the terms linear in the covariant derivative of the aether velocity four-vector. When the pp-wave modes appear in the dynamic aether, we deal with a gravitationally induced degeneracy removal with respect to hidden susceptibility parameters. As a consequence, the phase velocities of electromagnetic waves possessing orthogonal polarizations do not coincide, thus displaying the birefringence effect. Two electromagnetic field configurations are studied in detail: longitudinal and transversal with respect to the aether pp-wave front. For both cases the solutions are found, which reveal anomalies in the electromagnetic response on the action of the pp-wave aether mode. (orig.)

  7. Birefringence induced by pp-wave modes in an electromagnetically active dynamic aether

    Energy Technology Data Exchange (ETDEWEB)

    Alpin, Timur Yu.; Balakin, Alexander B. [Kazan Federal University, Department of General Relativity and Gravitation, Institute of Physics, Kazan (Russian Federation)

    2017-10-15

    In the framework of the Einstein-Maxwell-aether theory we study the birefringence effect, which can occur in the pp-wave symmetric dynamic aether. The dynamic aether is considered to be a latently birefringent quasi-medium, which displays this hidden property if and only if the aether motion is non-uniform, i.e., when the aether flow is characterized by the non-vanishing expansion, shear, vorticity or acceleration. In accordance with the dynamo-optical scheme of description of the interaction between electromagnetic waves and the dynamic aether, we shall model the susceptibility tensors by the terms linear in the covariant derivative of the aether velocity four-vector. When the pp-wave modes appear in the dynamic aether, we deal with a gravitationally induced degeneracy removal with respect to hidden susceptibility parameters. As a consequence, the phase velocities of electromagnetic waves possessing orthogonal polarizations do not coincide, thus displaying the birefringence effect. Two electromagnetic field configurations are studied in detail: longitudinal and transversal with respect to the aether pp-wave front. For both cases the solutions are found, which reveal anomalies in the electromagnetic response on the action of the pp-wave aether mode. (orig.)

  8. Channel estimation in few mode fiber mode division multiplexing transmission system

    Science.gov (United States)

    Hei, Yongqiang; Li, Li; Li, Wentao; Li, Xiaohui; Shi, Guangming

    2018-03-01

    It is abundantly clear that obtaining the channel state information (CSI) is of great importance for the equalization and detection in coherence receivers. However, to the best of the authors' knowledge, in most of the existing literatures, CSI is assumed to be perfectly known at the receiver. So far, few literature discusses the effects of imperfect CSI on MDM system performance caused by channel estimation. Motivated by that, in this paper, the channel estimation in few mode fiber (FMF) mode division multiplexing (MDM) system is investigated, in which two classical channel estimation methods, i.e., least square (LS) method and minimum mean square error (MMSE) method, are discussed with the assumption of the spatially white noise lumped at the receiver side of MDM system. Both the capacity and BER performance of MDM system affected by mode-dependent gain or loss (MDL) with different channel estimation errors have been studied. Simulation results show that the capacity and BER performance can be further deteriorated in MDM system by the channel estimation, and an 1e-3 variance of channel estimation error is acceptable in MDM system with 0-6 dB MDL values.

  9. Fast convergent frequency-domain MIMO equalizer for few-mode fiber communication systems

    Science.gov (United States)

    He, Xuan; Weng, Yi; Wang, Junyi; Pan, Z.

    2018-02-01

    Space division multiplexing using few-mode fibers has been extensively explored to sustain the continuous traffic growth. In few-mode fiber optical systems, both spatial and polarization modes are exploited to transmit parallel channels, thus increasing the overall capacity. However, signals on spatial channels inevitably suffer from the intrinsic inter-modal coupling and large accumulated differential mode group delay (DMGD), which causes spatial modes de-multiplex even harder. Many research articles have demonstrated that frequency domain adaptive multi-input multi-output (MIMO) equalizer can effectively compensate the DMGD and demultiplex the spatial channels with digital signal processing (DSP). However, the large accumulated DMGD usually requires a large number of training blocks for the initial convergence of adaptive MIMO equalizers, which will decrease the overall system efficiency and even degrade the equalizer performance in fast-changing optical channels. Least mean square (LMS) algorithm is always used in MIMO equalization to dynamically demultiplex the spatial signals. We have proposed to use signal power spectral density (PSD) dependent method and noise PSD directed method to improve the convergence speed of adaptive frequency domain LMS algorithm. We also proposed frequency domain recursive least square (RLS) algorithm to further increase the convergence speed of MIMO equalizer at cost of greater hardware complexity. In this paper, we will compare the hardware complexity and convergence speed of signal PSD dependent and noise power directed algorithms against the conventional frequency domain LMS algorithm. In our numerical study of a three-mode 112 Gbit/s PDM-QPSK optical system with 3000 km transmission, the noise PSD directed and signal PSD dependent methods could improve the convergence speed by 48.3% and 36.1% respectively, at cost of 17.2% and 10.7% higher hardware complexity. We will also compare the frequency domain RLS algorithm against

  10. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.

    Science.gov (United States)

    Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A

    2012-03-01

    We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.

  11. Dynamic Tunnel Usability Study: Format Recommendations for Synthetic Vision System Primary Flight Displays

    Science.gov (United States)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.

    2006-01-01

    A usability study evaluating dynamic tunnel concepts has been completed under the Aviation Safety and Security Program, Synthetic Vision Systems Project. The usability study was conducted in the Visual Imaging Simulator for Transport Aircraft Systems (VISTAS) III simulator in the form of questionnaires and pilot-in-the-loop simulation sessions. Twelve commercial pilots participated in the study to determine their preferences via paired comparisons and subjective rankings regarding the color, line thickness and sensitivity of the dynamic tunnel. The results of the study showed that color was not significant in pilot preference paired comparisons or in pilot rankings. Line thickness was significant for both pilot preference paired comparisons and in pilot rankings. The preferred line/halo thickness combination was a line width of 3 pixels and a halo of 4 pixels. Finally, pilots were asked their preference for the current dynamic tunnel compared to a less sensitive dynamic tunnel. The current dynamic tunnel constantly gives feedback to the pilot with regard to path error while the less sensitive tunnel only changes as the path error approaches the edges of the tunnel. The tunnel sensitivity comparison results were not statistically significant.

  12. Tether dynamics and control results for tethered satellite system's initial flight

    Science.gov (United States)

    Chapel, Jim D.; Flanders, Howard

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  13. Mechanical detection and mode shape imaging of vibrational modes of micro and nanomechanical resonators by dynamic force microscopy

    International Nuclear Information System (INIS)

    Paulo, A S; GarcIa-Sanchez, D; Perez-Murano, F; Bachtold, A; Black, J; Bokor, J; Esplandiu, M J; Aguasca, A

    2008-01-01

    We describe a method based on the use of higher order bending modes of the cantilever of a dynamic force microscope to characterize vibrations of micro and nanomechanical resonators at arbitrarily large resonance frequencies. Our method consists on using a particular cantilever eigenmode for standard feedback control in amplitude modulation operation while another mode is used for detecting and imaging the resonator vibration. In addition, the resonating sample device is driven at or near its resonance frequency with a signal modulated in amplitude at a frequency that matches the resonance of the cantilever eigenmode used for vibration detection. In consequence, this cantilever mode is excited with an amplitude proportional to the resonator vibration, which is detected with an external lock-in amplifier. We show two different application examples of this method. In the first one, acoustic wave vibrations of a film bulk acoustic resonator around 1.6 GHz are imaged. In the second example, bending modes of carbon nanotube resonators up to 3.1 GHz are characterized. In both cases, the method provides subnanometer-scale sensitivity and the capability of providing otherwise inaccessible information about mechanical resonance frequencies, vibration amplitude values and mode shapes

  14. Defense against common-mode failures in protection system design

    International Nuclear Information System (INIS)

    Wyman, R.H.; Johnson, G.L.

    1998-01-01

    The introduction of digital instrumentation and control into reactor safety systems creates a heightened concern about common-mode failure. This paper discusses the concern and methods of cope with the concern. Common-mode failures have been a 'fact-of-life' in existing systems. The informal introduction of defense-in-depth and diversity (D-in-D and D) - coupled with the fact that hardware common-mode failures are often distributed in time - has allowed systems to deal with past common-mode failures. However, identical software operating in identical redundant systems presents the potential for simultaneous failure. Consequently, the use of digital systems raises the concern about common-mode failure to a new level. A more methodical approach to mitigating common-mode failure is needed to address these concerns. Purposeful introduction of D-in-D and D has been used as a defense against common-mode failure in reactor protection systems. At least two diverse systems are provided to mitigate any potential initiating event. Additionally, diverse displays and controls are provided to allow the operator to monitor plant status and manually initiate engineered safety features. A special form of common-mode failure analysis called 'defense-in-depth and diversity analysis' has been developed to identify possible common-mode failure vulnerabilities in digital systems. An overview of this analysis technique is provided. (author)

  15. Defense against common-mode failures in protection system design

    International Nuclear Information System (INIS)

    Wyman, R.H.; Johnson, G.L.

    1997-01-01

    The introduction of digital instrumentation and control into reactor safety systems creates a heightened concern about common-mode failure. This paper discusses the concern and methods to cope with the concern. Common-mode failures have been a ''fact-of-life'' in existing systems. The informal introduction of defense-in-depth and diversity (D-in-D ampersand D)-coupled with the fact that hardware common-mode failures are often distributed in time-has allowed systems to deal with past common-mode failures. However, identical software operating in identical redundant systems presents the potential for simultaneous failure. Consequently, the use of digital systems raises the concern about common-mode failure to a new level. A more methodical approach to mitigating common-mode failure is needed to address these concerns. Purposeful introduction of D-in-D ampersand D has been used as a defense against common-mode failure in reactor protection systems. At least two diverse systems are provided to mitigate any potential initiating event. Additionally, diverse displays and controls are provided to allow the operator to monitor plant status and manually initiate engineered safety features. A special form of conimon-mode failure analysis called ''defense-in-depth and diversity analysis'' has been developed to identify possible conimon-mode failure vulnerabilities in digital systems. An overview of this analysis technique is provided

  16. Separate Poles Mode for Large-Capacity HVDC System

    Science.gov (United States)

    Zhu, Lin; Gao, Qin

    2017-05-01

    This paper proposes a novel connection mode, separate poles mode (SPM), for large-capacity HVDC systems. The proposed mode focuses on the core issues of HVDC connection in interconnected power grids and principally aims at increasing effective electric distance between poles, which helps to mitigate the interaction problems between AC system and DC system. Receiving end of bipolar HVDC has been divided into different inverter stations under the mode, and thus significantly alleviates difficulties in power transmission and consumption of receiving-end AC grids. By investigating the changes of multi-feed short-circuit ratio (MISCR), finding that HVDC with SPM shows critical impacts upon itself and other HVDC systems with conventional connection mode, which demonstrates that SPM can make balance between MISCR increase and short-circuit current limit.

  17. System dynamics

    International Nuclear Information System (INIS)

    Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan

    1999-02-01

    This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.

  18. Research tokamak system with multi-mode discharges using inverter power supply

    International Nuclear Information System (INIS)

    Kojima, Hiroki; Kobayashi, Masahiro; Takagi, Makoto; Takamura, Shuichi; Tashiro, Kenji

    1999-01-01

    In Current Sustaining Tokamak in Nagoya university (CSTN)-IV research tokamak system using a compact 40kHz pulse width modulation (PWM) inverter power supply, which is controlled through LabVIEW program, we construct a new tokamak discharge system with multi-mode including a stable alternating current discharge and a high-repetition high-duty one. These discharge modes can be operated continuously for as long as 60sec. The continuous discharge with long duration is able to simulate the important physical and chemical processes of long time discharges in fusion devices, in which the heat load to the wall and the particle balance in the plasma-wall system are crucial topics in order to realize a long pulse fusion reactor, like ITER. Employing ergodic divertor (ED) is one of tools to control the particle balance and the heat load to the wall. In addition, we installed another inverter power supply to generate a rotating magnetic perturbation for dynamic ergodic divertor (DED) with the appropriate measurement system so that we may carry out experiments on heat and particle control with DED at long time operation. (author)

  19. Twelve Theses on Reactive Rules for the Web

    OpenAIRE

    Bry, François; Eckert, Michael

    2006-01-01

    Reactivity, the ability to detect and react to events, is an essential functionality in many information systems. In particular, Web systems such as online marketplaces, adaptive (e.g., recommender) sys- tems, and Web services, react to events such as Web page updates or data posted to a server. This article investigates issues of relevance in designing high-level programming languages dedicated to reactivity on the Web. It presents twelve theses on features desira...

  20. Control of complex dynamics and chaos in distributed parameter systems

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarti, S.; Marek, M.; Ray, W.H. [Univ. of Wisconsin, Madison, WI (United States)

    1995-12-31

    This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in the complex quasi-periodic or chaotic spatiotemporal patterns.

  1. Dynamics of a Dispersion-Managed Passively Mode-Locked Er-Doped Fiber Laser Using Single Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Norihiko Nishizawa

    2015-07-01

    Full Text Available We investigated the dynamics of a dispersion-managed, passively mode-locked, ultrashort-pulse, Er-doped fiber laser using a single-wall carbon nanotube (SWNT device. A numerical model was constructed for analysis of the SWNT fiber laser. The initial process of passive mode-locking, the characteristics of the output pulse, and the dynamics inside the cavity were investigated numerically for soliton, dissipative-soliton, and stretched-pulse mode-locking conditions. The dependencies on the total dispersion and recovery time of the SWNTs were also examined. Numerical results showed similar behavior to experimental results.

  2. Experimental model for neutron scattering in disordered systems: static structure factor determination of mode-softening

    International Nuclear Information System (INIS)

    Siegel, E.

    1982-01-01

    The generalized-disorder collective-boson mode-softening universality-principle (GDCBMSUP) for collective-boson mode dispersion in disordered systems (liquids, quantum liquids, glasses, powders, disordered magnets, plasmas...), a unified qualitative and semi-qualitative and semi-quantitative descriptive prescription for treating the properties of very differently disordered systems, is directly dependent upon a measurement (or calculation) of the static structure factor S(k) determined from a frequency average of the dynamic structure factor S(k,w), a multiple of the inelastic differential neutron scattering cross section d 2 sigma/dwdOMEGA. The prescription for this principle is given and, because of its universal applicability to disordered systems of any type with any type and/or degree of disorder, the neutron scattering determination of S(k) takes on renewed importance

  3. Quantum discord dynamics of two qubits in single-mode cavities

    International Nuclear Information System (INIS)

    Wang Chen; Chen Qing-Hu

    2013-01-01

    The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord. (general)

  4. Second Order Sliding Mode Control Scheme for an Autonomous Underwater Vehicle with Dynamic Region Concept

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2015-01-01

    Full Text Available The main goal in developing closed loop control system for an Autonomous Underwater Vehicle (AUV is to make a robust vehicle from natural and exogenous perturbations such as wind, wave, and ocean currents. However a well-known robust control, for instance, Sliding Mode Controller (SMC, gives a chattering effect and it influences the stability of an AUV. Furthermore, some researchers combined other controls to get better result but it tends to present long computational time and causes large energy consumption. Thus, this paper proposed a Super Twisting Sliding Mode Controller (STSMC with dynamic region concept for an AUV. STSMC or a second order SMC is adopted as a robust controller which is free from chattering effect. Meanwhile, the implementation of dynamic region is useful to reduce the energy usage. As a result, the proposed controller obtains global asymptotic stability which is validated by using Lyapunov-like function. Moreover, some simulations present the efficiency of proposed controller. In conclusion, STSMC with region based control is effective to be applied for the robust tracking of an AUV. It contributes to give a fast response when handling the perturbations, short computational time, and low energy demand.

  5. Enhancement of exergy efficiency in combustion systems using flameless mode

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Exergy efficiency in flameless combustion mode is 13% more than conventional combustion. • The maximum exergy efficiency in flameless combustion mode is achieved when oxidizer contains 10% oxygen. • Exergy destruction of flameless combustion is maximized when CO 2 is used for dilution of oxidizer. - Abstract: An exergitic-based analysis of methane (CH 4 ) conventional and flameless combustion in a lab-scale furnace is performed to determine the rate of pollutant formation and the effective potential of a given amount of fuel in the various combustion modes. The effects of inlet air temperature on exergy efficiency and pollutant formation of conventional combustion in various equivalence ratios are analyzed. The rate of exergy destruction in different conditions of flameless combustion (various equivalence ratios, oxygen concentration in the oxidizer and the effects of diluent) are computed using three-dimensional (3D) computational fluid dynamic (CFD). Fuel consumption reduction and exergy efficiency augmentation are the main positive consequences of using preheated air temperature in conventional combustion, however pollutants especially NO x formation increases dramatically. Low and moderate temperature inside the chamber conducts the flameless combustion system to low level pollutant formation. Fuel consumption and exergy destruction reduce drastically in flameless mode in comparison with conventional combustion. Exergy efficiency of conventional and flameless mode is 75% and 88% respectively in stoichiometric combustion. When CO 2 is used for dilution of oxidizer, chemical exergy increases due to high CO 2 concentration in the combustion products and exergy efficiency reduces around 2% compared to dilution with nitrogen (N 2 ). Since the rate of irreversibilities in combustion systems is very high in combined heat and power (CHP) generation and other industries, application of flameless combustion could be effective in terms of pollutant

  6. Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting

    Science.gov (United States)

    Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James

    2017-04-01

    Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of

  7. Collective dynamics of simple liquids: A mode-coupling description

    Directory of Open Access Journals (Sweden)

    W.Schirmacher

    2008-03-01

    Full Text Available We use the mode-coupling theory (MCT, which has been highly successful in accounting for the anomalous relaxation behaviour near the liquid-to-glass transition, for describing the dynamics of simple (i.e. monatomic liquids away from the glass formation regime. We find that the dynamical structure factor predicted by MCT compares well to experimental findings and results of computer simulations. The memory function exhibits a two-step decay as found frequently in experimental and simulation data. The long-time relaxation regime, in which the relaxation rate strongly depends on the density and is identified as the α relaxation. At high density this process leads the glass instability. The short-time relaxation rate is fairly independent of density.

  8. Real-time tumor ablation simulation based on the dynamic mode decomposition method

    KAUST Repository

    Bourantas, George C.; Ghommem, Mehdi; Kagadis, George C.; Katsanos, Konstantinos H.; Loukopoulos, Vassilios C.; Burganos, Vasilis N.; Nikiforidis, George C.

    2014-01-01

    Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must

  9. Dynamic Parameter Identification of Hydrodynamic Bearing-Rotor System

    Directory of Open Access Journals (Sweden)

    Zhiqiang Song

    2015-01-01

    Full Text Available A new method called modal parameter genetic time domain identification was employed to study the characteristics of the bearing-rotor system. A multifrequency signal decomposition technology to identify the main components of the measured signal and reject the image mode produced by noise has been used. The first- and second-order natural frequency and damping ratios of the shaft system are identified. Furthermore, because of the deficiency of the traditional least square method, a new genetic identification method to identify the bearing dynamic characteristic parameters has been proposed. The method has been effective albeit with few testing points and operation cases. The derivation of oil-film dynamic coefficients could also provide a basis for shaft system natural vibration characteristic and vibration response analysis. Using the identified dynamic coefficients as the supporting condition, the shaft system modal characteristics were studied. The calculated first- and second-order natural frequencies match quite well those obtained from the modal parameter identification. It was proved that the modal parameter and physical parameter identification methods utilized in this paper are reasonable.

  10. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    Science.gov (United States)

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.

  11. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model

    Science.gov (United States)

    Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.

    2000-01-01

    The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.

  12. Resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell reversed-field pinch

    Science.gov (United States)

    Malmberg, J.-A.; Brunsell, P. R.

    2002-01-01

    Observations of resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell (τw=6 ms) reversed field pinch are described. A nonresonant mode (m=1,n=-10) with the same handedness as the internal field grows nearly exponentially with an average growth time of about 2.6 ms (less than 1/2 of the shell time) consistent with linear stability theory. The externally nonresonant unstable modes (m=1,n>0), predicted by linear stability theory, are observed to have only low amplitudes (in the normal low-Θ operation mode of the device). The radial field of the dominant internally resonant tearing modes (m=1,n=-15 to n=-12) remain low due to spontaneous fast mode rotation, corresponding to angular phase velocities up to 280 krad/s. Phase aligned mode structures are observed to rotate toroidally with an average angular velocity of 40 krad/s, in the opposite direction of the plasma current. Toward the end of the discharge, the radial field of the internally resonant modes grows as the modes slow down and become wall-locked, in agreement with nonlinear computations. Fast rotation of the internally resonant modes has been observed only recently and is attributed to a change of the front-end system (vacuum vessel, shell, and TF coil) of the device.

  13. Dynamic performance enhancement of microgrids by advanced sliding mode controller

    Energy Technology Data Exchange (ETDEWEB)

    Sofla, Mohammadhassan Abdollahi [Electrical Engineering and Computer Science Dept., University of Toledo, Ohio (United States); Gharehpetian, Gevorg B. [Electrical Engineering Dept., Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-01-15

    Dynamics are the most important problems in the microgrid operation. In the islanded microgrid, the mismatch of parallel operations of inverters during dynamics can result in the instability. This paper considers severe dynamics which can occur in the microgrid. Microgrid can have different configurations with different load and generation dynamics which are facing voltage disturbances. As a result, microgrid has many uncertainties and is placed in the distribution network where is full of voltage disturbances. Moreover, characteristics of the distribution network and distributed energy resources in the islanded mode make microgrid vulnerable and easily lead to instability. The main aim of this paper is to discuss the suitable mathematical modeling based on microgrid characteristics and to design properly inner controllers to enhance the dynamics of microgrid with uncertain and changing parameters. This paper provides a method for inner controllers of inverter-based distributed energy resources to have a suitable response for different dynamics. Parallel inverters in distribution networks were considered to be controlled by nonlinear robust voltage and current controllers. Theoretical prove beyond simulation results, reveal evidently the effectiveness of the proposed controller. (author)

  14. A robust H∞ control-based hierarchical mode transition control system for plug-in hybrid electric vehicle

    Science.gov (United States)

    Yang, Chao; Jiao, Xiaohong; Li, Liang; Zhang, Yuanbo; Chen, Zheng

    2018-01-01

    To realize a fast and smooth operating mode transition process from electric driving mode to engine-on driving mode, this paper presents a novel robust hierarchical mode transition control method for a plug-in hybrid electric bus (PHEB) with pre-transmission parallel hybrid powertrain. Firstly, the mode transition process is divided into five stages to clearly describe the powertrain dynamics. Based on the dynamics models of powertrain and clutch actuating mechanism, a hierarchical control structure including two robust H∞ controllers in both upper layer and lower layer is proposed. In upper layer, the demand clutch torque can be calculated by a robust H∞controller considering the clutch engaging time and the vehicle jerk. While in lower layer a robust tracking controller with L2-gain is designed to perform the accurate position tracking control, especially when the parameters uncertainties and external disturbance occur in the clutch actuating mechanism. Simulation and hardware-in-the-loop (HIL) test are carried out in a traditional driving condition of PHEB. Results show that the proposed hierarchical control approach can obtain the good control performance: mode transition time is greatly reduced with the acceptable jerk. Meanwhile, the designed control system shows the obvious robustness with the uncertain parameters and disturbance. Therefore, the proposed approach may offer a theoretical reference for the actual vehicle controller.

  15. Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking

    Science.gov (United States)

    Columbo, L. L.; Barbieri, S.; Sirtori, C.; Brambilla, M.

    2018-02-01

    The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions

  16. Supervision and prognosis architecture based on dynamical classification method for the predictive maintenance of dynamical evolving systems

    International Nuclear Information System (INIS)

    Traore, M.; Chammas, A.; Duviella, E.

    2015-01-01

    In this paper, we are concerned by the improvement of the safety, availability and reliability of dynamical systems’ components subjected to slow degradations (slow drifts). We propose an architecture for efficient Predictive Maintenance (PM) according to the real time estimate of the future state of the components. The architecture is built on supervision and prognosis tools. The prognosis method is based on an appropriated supervision technique that consists in drift tracking of the dynamical systems using AUDyC (AUto-adaptive and Dynamical Clustering), that is an auto-adaptive dynamical classifier. Thus, due to the complexity and the dynamical of the considered systems, the Failure Mode Effect and Criticity Analysis (FMECA) is used to identify the key components of the systems. A component is defined as an element of the system that can be impacted by only one failure. A failure of a key component causes a long downtime of the system. From the FMECA, a Fault Tree Analysis (FTA) of the system are built to determine the propagation laws of a failure on the system by using a deductive method. The proposed architecture is implemented for the PM of a thermoregulator. The application on this real system highlights the interests and the performances of the proposed architecture

  17. LQ optimal and reaching law-based sliding modes for inventory management systems

    Science.gov (United States)

    Ignaciuk, Przemysław; Bartoszewicz, Andrzej

    2012-01-01

    In this article, the theory of discrete sliding-mode control is used to design new supply strategies for periodic-review inventory systems. In the considered systems, the stock used to fulfil an unknown, time-varying demand can be replenished from a single supply source or from multiple suppliers procuring orders with different delays. The proposed strategies guarantee that demand is always entirely satisfied from the on-hand stock (yielding the maximum service level), and the warehouse capacity is not exceeded (which eliminates the cost of emergency storage). In contrast to the classical, stochastic approaches, in this article, we focus on optimising the inventory system dynamics. The parameters of the first control strategy are selected by minimising a quadratic cost functional. Next, it is shown how the system dynamical performance can be improved by applying the concept of a reaching law with the appropriately adjusted reaching phase. The stable, nonoscillatory behaviour of the closed-loop system is demonstrated and the properties of the designed controllers are discussed and strictly proved.

  18. Linear and nonlinear dynamics of electron temperature gradient mode in non-Maxwellian plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zakir, U.; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, Islamabad (Pakistan); National Centre for Physics, Islamabad (Pakistan)

    2013-05-15

    The effect of non-Maxwellian distributed ions on electron temperature gradient mode is investigated. The linear dispersion relation of η{sub e}−mode is obtained which shows that the behavior of this mode changes in the presence of superthermal ions. The growth rate of η{sub e}−mode driven linear instability is found and is observed to modify due to nonthermal ions. However, it is found that this leaves the electron energy transport coefficient unchanged. In the nonlinear regime, a dipolar vortex solution is derived which indicates that the dynamic behavior of the vortices changes with the inclusion of kappa distributed ions. The importance of present study with respect to space and laboratory plasmas is also pointed out.

  19. Stabilization of switched nonlinear systems with unstable modes

    CERN Document Server

    Yang, Hao; Cocquempot, Vincent

    2014-01-01

    This book provides its reader with a good understanding of the stabilization of switched nonlinear systems (SNS), systems that are of practical use in diverse situations: design of fault-tolerant systems in space- and aircraft; traffic control; and heat propagation control of semiconductor power chips. The practical background is emphasized throughout the book; interesting practical examples frequently illustrate the theoretical results with aircraft and spacecraft given particular prominence. Stabilization of Switched Nonlinear Systems with Unstable Modes treats several different subclasses of SNS according to the characteristics of the individual system (time-varying and distributed parameters, for example), the state composition of individual modes and the degree and distribution of instability in its various modes. Achievement and maintenance of stability across the system as a whole is bolstered by trading off between individual modes which may be either stable or unstable, or by exploiting areas of part...

  20. System of nuclear power reactor protection using dynamic logic

    International Nuclear Information System (INIS)

    Carvalho, P.V.R. de; Silva, L.C.R.P. da

    1990-01-01

    The aim of this work is the design of a Reactor Protection System (RPS) using dynamic logic as basic circuitry principle. This concept was developed to permit the electronic and eletromagnetic components employment in 'fail-safe' mode applied to automatic shutdown systems. 'Fail-safe' here means that a fail always yields a constant state that leads to a plant shutdown condition. So the normal condition of operation corresponds to an oscillating state response and the fail or abnormal condition to a static one. At present, almost all modern nuclear plant reactor protection systems use dynamic logic, just differing in the kind of technology employed in the construction of the system. In this work we define what technology best fits our necessities, setting out to design a RPS based on this philosophy. (author) [pt

  1. Soliton dynamics in periodic system with different nonlinear media

    International Nuclear Information System (INIS)

    Zabolotskij, A.A.

    2001-01-01

    To analyze pulse dynamics in the optical system consisting of periodic sequence of nonlinear media one uses a composition model covering a model of resonance interaction of light ultrashort pulse with energy transition of medium with regard to pumping of the upper level and quasi-integrable model describing propagation of light field in another medium with cubic nonlinearity and dispersion. One additionally takes account of losses and other types of interaction in the from of perturbation members. On the basis of the method of scattering back problem and perturbation theory one developed a simple method to study peculiarities of soliton evolution in such periodic system. Due to its application one managed to describe different modes of soliton evolution in such a system including chaotic dynamics [ru

  2. Natural Frequencies and Vibrating Modes for a Magnetic Planetary Gear Drive

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2012-01-01

    Full Text Available In this paper, a dynamic model for a magnetic planetary gear drive is proposed. Based on the model, the dynamic equations for the magnetic planetary gear drive are given. From the magnetic meshing forces and torques between the elements for the drive system, the tangent and radial magnetic meshing stiffness is obtained. Using these equations, the natural frequencies and the modes of the magnetic planetary gear drive are investigated. The sensitivity of the natural frequencies to the system parameters is discussed. Results show that the pole pair number and the air gap have obvious effects on the natural frequencies. For the planetary gear number larger than two, the vibrations of the drive system include the torsion mode of the center elements, the translation mode of the center elements, and the planet modes. For the planetary gear number equal to two, the planet mode does not occur, the crown mode and the sun gear mode occur.

  3. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations

    International Nuclear Information System (INIS)

    Seena, Abu; Sung, Hyung Jin

    2011-01-01

    Highlights: ► DMD modes were extracted from two cavity flow data set at Re D = 12,000 and 3000. ► At Re D = 3000, frequencies of boundary layer and shear layer structures coincides. ► Boundary layer structures exceed in size with shear layer structures. ► At Re D = 12,000, structure showed coherence leading to self-sustained oscillations. ► Hydrodynamic resonance occurs if coherence exists in wavenumber and frequency. - Abstract: Self-sustained oscillations in a cavity arise due to the unsteady separation of boundary layers at the leading edge. The dynamic mode decomposition method was employed to analyze the self-sustained oscillations. Two cavity flow data sets, with or without self-sustained oscillations and possessing thin or thick incoming boundary layers (Re D = 12,000 and 3000), were analyzed. The ratios between the cavity depth and the momentum thickness (D/θ) were 40 and 4.5, respectively, and the cavity aspect ratio was L/D = 2. The dynamic modes extracted from the thick boundary layer indicated that the upcoming boundary layer structures and the shear layer structures along the cavity lip line coexisted with coincident frequency space but with different wavenumber space, whereas structures with a thin boundary layer showed complete coherence among the modes to produce self-sustained oscillations. This result suggests that the hydrodynamic resonances that gave rise to the self-sustained oscillations occurred if the upcoming boundary layer structures and the shear layer structures coincided, not only in frequencies, but also in wavenumbers. The influences of the cavity dimensions and incoming momentum thickness on the self-sustained oscillations were examined.

  4. Quasiperiodicity, mode-locking, and universal scaling in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Ecke, R.E.

    1990-01-01

    This major review paper describes research on a model nonlinear dynamical system of small-aspect-ratio Rayleigh-Benard convection in 3 He - 4 He mixtures. The nonlinear effects of mode locking and quasiperiodic behavior are described. Analysis techniques for characterizing the state of the dynamical system include Fourier transforms, Poincare sections, phase differences, transients, multifractal f(∝) spectra and scaling function dynamics. Theoretical results such as the fractal staircase of mode-locked intervals and the Arnold tongues are reproduced in experimental data. New techniques for analyzing scaling dynamics are developed and discussed. This is a tutorial article that introduces the major important concepts in nonlinear dynamics and focuses on experimental problems and techniques. 77 refs

  5. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry I.

    2017-12-08

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  6. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry; Kasimov, Aslan R.

    2018-01-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  7. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry

    2018-03-20

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  8. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet

    International Nuclear Information System (INIS)

    Tedesco, Marco; Alexander, Patrick; Willis, Ian C; Banwell, Alison F; Arnold, Neil S; Hoffman, Matthew J

    2013-01-01

    Supraglacial lake drainage on the Greenland ice sheet opens surface-to-bed connections, reduces basal friction, and temporarily increases ice flow velocities by up to an order of magnitude. Existing field-based observations of lake drainages and their impact on ice dynamics are limited, and focus on one specific draining mechanism. Here, we report and analyse global positioning system measurements of ice velocity and elevation made at five locations surrounding two lakes that drained by different mechanisms and produced different dynamic responses. For the lake that drained slowly (>24 h) by overtopping its basin, delivering water via a channel to a pre-existing moulin, speedup and uplift were less than half those associated with a lake that drained rapidly (∼2 h) through hydrofracturing and the creation of new moulins in the lake bottom. Our results suggest that the mode and associated rate of lake drainage govern the impact on ice dynamics. (letter)

  9. Blume-Capel ferromagnet driven by propagating and standing magnetic field wave: Dynamical modes and nonequilibrium phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Acharyya, Muktish, E-mail: muktish.physics@presiuniv.ac.in; Halder, Ajay, E-mail: ajay.rs@presiuniv.ac.in

    2017-03-15

    The dynamical responses of Blume-Capel (S=1) ferromagnet to the plane propagating (with fixed frequency and wavelength) and standing magnetic field waves are studied separately in two dimensions by extensive Monte Carlo simulation. Depending on the values of temperature, amplitude of the propagating magnetic field and the strength of anisotropy, two different dynamical phases are observed. For a fixed value of anisotropy and the amplitude of the propagating magnetic field, the system undergoes a dynamical phase transition from a driven spin wave propagating phase to a pinned or spin frozen state as the system is cooled down. The time averaged magnetisation over a full cycle of the propagating magnetic field plays the role of the dynamic order parameter. A comprehensive phase diagram is plotted in the plane formed by the amplitude of the propagating wave and the temperature of the system. It is found that the phase boundary shrinks inward as the anisotropy increases. The phase boundary, in the plane described by the strength of the anisotropy and temperature, is also drawn. This phase boundary was observed to shrink inward as the field amplitude increases. - Highlights: • The Blume-Capel ferromagnet in propagating and standing magnetic wave. • Monte Carlo single spin flip Metropolis algorithm is employed. • The dynamical modes are observed. • The nonequilibrium phase transitions are studied. • The phase boundaries are drawn.

  10. Adaptive integral backstepping sliding mode control for opto-electronic tracking system based on modified LuGre friction model

    Science.gov (United States)

    Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin

    2017-12-01

    In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.

  11. Edge ion dynamics in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Burrell, K.H.; Gohil, P.; Kim, J.; Seraydarian, R.P.

    1992-05-01

    The goal of this paper is to present detailed measurements of T i and E r at the plasma edge in L- and H-mode with high spatial resolution in order the study the edge ion dynamics. Of primary interest is the relationship between T i and E r and the behavior of the edge T i profile in H-mode. The principle findings are: there appears to be a threshold temperature for T i required for the transition to occur with T i at the LCFS in the range of 0.2--0.3 keV at the transition; a correlation between the edge E r profile and the edge T i profile has been observed; and values of T i of 2--3 keV within a few cm of the LCFS and of dT i /dr of up to 1 keV/cm are observed in the transport barrier in H-mode, with the scale length for T i being of the order of a poloidal gyroradius

  12. Dynamic Roughness Ratio-Based Framework for Modeling Mixed Mode of Droplet Evaporation.

    Science.gov (United States)

    Gunjan, Madhu Ranjan; Raj, Rishi

    2017-07-18

    The spatiotemporal evolution of an evaporating sessile droplet and its effect on lifetime is crucial to various disciplines of science and technology. Although experimental investigations suggest three distinct modes through which a droplet evaporates, namely, the constant contact radius (CCR), the constant contact angle (CCA), and the mixed, only the CCR and the CCA modes have been modeled reasonably. Here we use experiments with water droplets on flat and micropillared silicon substrates to characterize the mixed mode. We visualize that a perfect CCA mode after the initial CCR mode is an idealization on a flat silicon substrate, and the receding contact line undergoes intermittent but recurring pinning (CCR mode) as it encounters fresh contaminants on the surface. The resulting increase in roughness lowers the contact angle of the droplet during these intermittent CCR modes until the next depinning event, followed by the CCA mode of evaporation. The airborne contaminants in our experiments are mostly loosely adhered to the surface and travel along with the receding contact line. The resulting gradual increase in the apparent roughness and hence the extent of CCR mode over CCA mode forces appreciable decrease in the contact angle observed during the mixed mode of evaporation. Unlike loosely adhered airborne contaminants on flat samples, micropillars act as fixed roughness features. The apparent roughness fluctuates about the mean value as the contact line recedes between pillars. Evaporation on these surfaces exhibits stick-jump motion with a short-duration mixed mode toward the end when the droplet size becomes comparable to the pillar spacing. We incorporate this dynamic roughness into a classical evaporation model to accurately predict the droplet evolution throughout the three modes, for both flat and micropillared silicon surfaces. We believe that this framework can also be extended to model the evaporation of nanofluids and the coffee-ring effect, among

  13. Multi-Mode Electric Actuator Dynamic Modelling for Missile Fin Control

    Directory of Open Access Journals (Sweden)

    Bhimashankar Gurav

    2017-06-01

    Full Text Available Linear first/second order fin direct current (DC actuator model approximations for missile applications are currently limited to angular position and angular velocity state variables. Furthermore, existing literature with detailed DC motor models is decoupled from the application of interest: tail controller missile lateral acceleration (LATAX performance. This paper aims to integrate a generic DC fin actuator model with dual-mode feedforward and feedback control for tail-controlled missiles in conjunction with the autopilot system design. Moreover, the characteristics of the actuator torque information in relation to the aerodynamic fin loading for given missile trim velocities are also provided. The novelty of this paper is the integration of the missile LATAX autopilot states and actuator states including the motor torque, position and angular velocity. The advantage of such an approach is the parametric analysis and suitability of the fin actuator in relation to the missile lateral acceleration dynamic behaviour.

  14. On Application of Second Order Sliding Mode Control to Electro-Hydraulic Systems

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    This paper discusses the application of second order mode controls to hydraulic valve-cylinder drives with a special focus on the limitations resulting from nonlinear dynamic effects in flow control valves. Second order sliding mode algorithms appear highly attractive in the successive...

  15. Twelve Girls' Band' A Modern Miracle of Traditional Music

    Institute of Scientific and Technical Information of China (English)

    YaoZhanxiong

    2004-01-01

    Twelve antique traditional instruments. Twelve spirited, pretty girls. "Twelve Girls' Band" is a traditional instrument orchestra playing well-known folk music in the form of pop. Besides age-old traditional instruments peculiar to China, such as zheng (ancient 21 to 25-stringed plucked instrument), qin (seven-stringed plucked instrument) and erhu (two-stringed Chinese fiddle),

  16. Investigation of a Ball Screw Feed Drive System Based on Dynamic Modeling for Motion Control

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Huang

    2017-06-01

    Full Text Available This paper examines the frequency response relationship between the ball screw nut preload, ball screw torsional stiffness variations and table mass effect for a single-axis feed drive system. Identification for the frequency response of an industrial ball screw drive system is very important for the precision motion when the vibration modes of the system are critical for controller design. In this study, there is translation and rotation modes of a ball screw feed drive system when positioning table is actuated by a servo motor. A lumped dynamic model to study the ball nut preload variation and torsional stiffness of the ball screw drive system is derived first. The mathematical modeling and numerical simulation provide the information of peak frequency response as the different levels of ball nut preload, ball screw torsional stiffness and table mass. The trend of increasing preload will indicate the abrupt peak change in frequency response spectrum analysis in some mode shapes. This study provides an approach to investigate the dynamic frequency response of a ball screw drive system, which provides significant information for better control performance when precise motion control is concerned.

  17. A survey of innovation through duplication in the reduced genomes of twelve parasites.

    Directory of Open Access Journals (Sweden)

    Jeremy D DeBarry

    Full Text Available We characterize the prevalence, distribution, divergence, and putative functions of detectable two-copy paralogs and segmental duplications in the Apicomplexa, a phylum of parasitic protists. Apicomplexans are mostly obligate intracellular parasites responsible for human and animal diseases (e.g. malaria and toxoplasmosis. Gene loss is a major force in the phylum. Genomes are small and protein-encoding gene repertoires are reduced. Despite this genomic streamlining, duplications and gene family amplifications are present. The potential for innovation introduced by duplications is of particular interest. We compared genomes of twelve apicomplexans across four lineages and used orthology and genome cartography to map distributions of duplications against genome architectures. Segmental duplications appear limited to five species. Where present, they correspond to regions enriched for multi-copy and species-specific genes, pointing toward roles in adaptation and innovation. We found a phylum-wide association of duplications with dynamic chromosome regions and syntenic breakpoints. Trends in the distribution of duplicated genes indicate that recent, species-specific duplicates are often tandem while most others have been dispersed by genome rearrangements. These trends show a relationship between genome architecture and gene duplication. Functional analysis reveals: proteases, which are vital to a parasitic lifecycle, to be prominent in putative recent duplications; a pair of paralogous genes in Toxoplasma gondii previously shown to produce the rate-limiting step in dopamine synthesis in mammalian cells, a possible link to the modification of host behavior; and phylum-wide differences in expression and subcellular localization, indicative of modes of divergence. We have uncovered trends in multiple modes of duplicate divergence including sequence, intron content, expression, subcellular localization, and functions of putative recent duplicates that

  18. System-Level Demonstration of a Dynamically Reconfigured Burst-Mode Link Using a Nanosecond Si-Photonic Switch

    DEFF Research Database (Denmark)

    Forencich, Alex; Kamchevska, Valerija; Dupuis, Nicolas

    2018-01-01

    Using a novel FPGA-based network emulator, microsecond-scale packets with 12.5-20-Gb/s data are generated, routed through a nanosecond Si-photonic switch, and received in a fast-locking burst-mode receiver. Error-free links with <382-ns system-level switching are shown....

  19. High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-01-01

    In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics

  20. Dendritic slow dynamics enables localized cortical activity to switch between mobile and immobile modes with noisy background input.

    Directory of Open Access Journals (Sweden)

    Hiroki Kurashige

    Full Text Available Mounting lines of evidence suggest the significant computational ability of a single neuron empowered by active dendritic dynamics. This motivates us to study what functionality can be acquired by a network of such neurons. The present paper studies how such rich single-neuron dendritic dynamics affects the network dynamics, a question which has scarcely been specifically studied to date. We simulate neurons with active dendrites networked locally like cortical pyramidal neurons, and find that naturally arising localized activity--called a bump--can be in two distinct modes, mobile or immobile. The mode can be switched back and forth by transient input to the cortical network. Interestingly, this functionality arises only if each neuron is equipped with the observed slow dendritic dynamics and with in vivo-like noisy background input. If the bump activity is considered to indicate a point of attention in the sensory areas or to indicate a representation of memory in the storage areas of the cortex, this would imply that the flexible mode switching would be of great potential use for the brain as an information processing device. We derive these conclusions using a natural extension of the conventional field model, which is defined by combining two distinct fields, one representing the somatic population and the other representing the dendritic population. With this tool, we analyze the spatial distribution of the degree of after-spike adaptation and explain how we can understand the presence of the two distinct modes and switching between the modes. We also discuss the possible functional impact of this mode-switching ability.

  1. A Sliding Mode Control-Based on a RBF Neural Network for Deburring Industry Robotic Systems

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2016-01-01

    Full Text Available A sliding mode control method based on radial basis function (RBF neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network parameters are derived by a Koski function algorithm to ensure the network convergences and enacts stable control. The simulations and experimental results of the deburring robot system are provided to illustrate the effectiveness of the proposed RBFNN-SMC control method. The advantages of the proposed RBFNN-SMC method are also evaluated by comparing it to existing control schemes.

  2. The role of mechanical boundary conditions in the soft mode dynamics of PbTiO3.

    Science.gov (United States)

    McCash, Kevin; Mani, B K; Chang, C-M; Ponomareva, I

    2014-10-29

    The role of different mechanical boundary conditions in the soft mode dynamics of ferroelectric PbTiO3 is systematically investigated using first-principles-based simulations and analytical model. The change in the soft mode dynamics due to hydrostatic pressure, uniaxial and biaxial stresses and biaxial strains is studied in a wide temperature range. Our computations predict: (i) the existence of Curie-Weiss laws that relate the soft mode frequency to the stress or strain; (ii) a non-trivial temperature evolution of the associated Curie-Weiss constants; (iii) a qualitative difference between the soft mode response to stresses/strains and hydrostatic pressure. The latter finding implies that the Curie-Weiss pressure law commonly used for residual stress estimation may not apply for the cases of uniaxial and biaxial stresses and strains. On the other hand, our systematic study offers a way to eliminate this difficulty through the establishment of Curie-Weiss stress and strain laws. Implications of our predictions for some available experimental data are discussed.

  3. Finite-Time Switched Second-Order Sliding-Mode Control of Nonholonomic Wheeled Mobile Robot Systems

    Directory of Open Access Journals (Sweden)

    Hao Ce

    2018-01-01

    Full Text Available A continuous finite-time robust control method for the trajectory tracking control of a nonholonomic wheeled mobile robot (NWMR is presented in this paper. The proposed approach is composed of conventional sliding-mode control (SMC in the internal loop and modified switched second-order sliding-mode (S-SOSM control in the external loop. Sliding-mode controller is equivalently represented as stabilization of the nominal system without uncertainties. An S-SOSM control algorithm is employed to counteract the impact of state-dependent unmodeled dynamics and time-varying external disturbances, and the unexpected chattering has been attenuated significantly. Particularly, state-space partitioning is constructed to obtain the bounds of uncertainty terms and accomplish different control objectives under different requirements. Simulation and experiment results are used to demonstrate the effectiveness and applicability of the proposed approach.

  4. Skin effect modifications of the Resistive Wall Mode dynamics in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Villone, Fabio, E-mail: villone@unicas.it [Ass. Euratom/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale, Via Di Biasio 43, 03043 Cassino, FR (Italy); Pustovitov, Vladimir D. [Institute of Tokamak Physics, National Research Centre ‘Kurchatov Institute’, Pl. Kurchatova 1, Moscow 123182 (Russian Federation)

    2013-11-22

    We present the first evidence of the skin-effect modification of the Resistive Wall Mode (RWM) dynamics in a tokamak. The computations are performed with the CarMa code, using its unique ability of treating volumetric 3D conducting structures. The results prove that conventional thin-wall models and codes, assuming the thin equivalent wall located on the inner side of a real (thick) wall, may fail to get accurate estimates of RWM growth rates, since the inclusion of the skin effect makes the growth rates always larger than otherwise. The difference is noticeable even for the conventional slow RWMs and becomes substantial for faster modes. Some possible equivalent thin-wall modeling approaches are also discussed.

  5. Topological Coherent Modes in Trapped Bose Gas

    International Nuclear Information System (INIS)

    Yukalov, V.I.; Marzlin, K.-P.; Yukalova, E.P.; Bagnato, V.S.

    2005-01-01

    The report reviews the problem of topological coherent modes, which are nonlinear collective states of Bose-condensed atoms. Such modes can be generated by means of alternating external fields, whose frequencies are in resonance with the transition frequencies between the related modes. The Bose gas with generated topological coherent modes is a collective nonlinear analog of a resonant atom. Such systems exhibit a variety of nontrivial effects, e.g. interference fringes, interference current, mode locking, dynamic transitions, critical phenomena, chaotic motion, harmonic generation, parametric conversion, atomic squeezing, and entanglement production

  6. Active vs. spectator modes in nonadiabatic photodissociation dynamics of the hydroxymethyl radical via the 22A(3s) Rydberg state

    Science.gov (United States)

    Xie, Changjian; Guo, Hua

    2018-01-01

    The choice of the active degrees of freedom (DOFs) is a pivotal issue in a reduced-dimensional model of quantum dynamics when a full-dimensional one is not feasible. Here, several five-dimensional (5D) models are used to investigate the nonadiabatic photodissociation dynamics of the hydroxymethyl (CH2OH) radical, which possesses nine internal DOFs, in its lowest absorption band. A normal-mode based scheme is used to identify the active and spectator modes, and its predictions are confirmed by 5D quantum dynamical calculations. Our results underscore the important role of the CO stretching mode in the photodissociation dynamics of CH2OH, originating from the photo-induced promotion of an electron from the half-occupied π*CO antibonding orbital to a carbon Rydberg orbital.

  7. Shape memory alloys applied to improve rotor-bearing system dynamics - an experimental investigation

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar; Savi, Marcelo A.

    2015-01-01

    passing through critical speeds. In this work, the feasibility of applying shape memory alloys to a rotating system is experimentally investigated. Shape memory alloys can change their stiffness with temperature variations and thus they may change system dynamics. Shape memory alloys also exhibit...... perturbations and mass imbalance responses of the rotor-bearing system at different temperatures and excitation frequencies are carried out to determine the dynamic behaviour of the system. The behaviour and the performance in terms of vibration reduction and system adaptability are compared against a benchmark...... configuration comprised by the same system having steel springs instead of shape memory alloy springs. The experimental results clearly show that the stiffness changes and hysteretic behaviour of the shape memory alloys springs alter system dynamics both in terms of critical speeds and mode shapes. Vibration...

  8. A low dimensional dynamical system for the wall layer

    Science.gov (United States)

    Aubry, N.; Keefe, L. R.

    1987-01-01

    Low dimensional dynamical systems which model a fully developed turbulent wall layer were derived.The model is based on the optimally fast convergent proper orthogonal decomposition, or Karhunen-Loeve expansion. This decomposition provides a set of eigenfunctions which are derived from the autocorrelation tensor at zero time lag. Via Galerkin projection, low dimensional sets of ordinary differential equations in time, for the coefficients of the expansion, were derived from the Navier-Stokes equations. The energy loss to the unresolved modes was modeled by an eddy viscosity representation, analogous to Heisenberg's spectral model. A set of eigenfunctions and eigenvalues were obtained from direct numerical simulation of a plane channel at a Reynolds number of 6600, based on the mean centerline velocity and the channel width flow and compared with previous work done by Herzog. Using the new eigenvalues and eigenfunctions, a new ten dimensional set of ordinary differential equations were derived using five non-zero cross-stream Fourier modes with a periodic length of 377 wall units. The dynamical system was integrated for a range of the eddy viscosity prameter alpha. This work is encouraging.

  9. Chaotic Behavior in a Switched Dynamical System

    Directory of Open Access Journals (Sweden)

    Fatima El Guezar

    2008-01-01

    Full Text Available We present a numerical study of an example of piecewise linear systems that constitute a class of hybrid systems. Precisely, we study the chaotic dynamics of the voltage-mode controlled buck converter circuit in an open loop. By considering the voltage input as a bifurcation parameter, we observe that the obtained simulations show that the buck converter is prone to have subharmonic behavior and chaos. We also present the corresponding bifurcation diagram. Our modeling techniques are based on the new French native modeler and simulator for hybrid systems called Scicos (Scilab connected object simulator which is a Scilab (scientific laboratory package. The followed approach takes into account the hybrid nature of the circuit.

  10. Photovoltaic pumping system - Comparative study analysis between direct and indirect coupling mode

    Science.gov (United States)

    Harrag, Abdelghani; Titraoui, Abdessalem; Bahri, Hamza; Messalti, Sabir

    2017-02-01

    In this paper, P&O algorithm is used in order to improve the performance of photovoltaic water pumping system in both dynamic and static response. The efficiency of the proposed algorithm has been studied successfully using a DC motor-pump powered using controller by thirty six PV modules via DC-DC boost converter derived by a P&O MPPT algorithm. Comparative study results between the direct and indirect modes coupling confirm that the proposed algorithm can effectively improve simultaneously: accuracy, rapidity, ripple and overshoot.

  11. Multi-Objective Dynamic Economic Dispatch of Microgrid Systems Including Vehicle-to-Grid

    Directory of Open Access Journals (Sweden)

    Haitao Liu

    2015-05-01

    Full Text Available Based on the characteristics of electric vehicles (EVs, this paper establishes the load models of EVs under the autonomous charging mode and the coordinated charging and discharging mode. Integrating the EVs into a microgrid system which includes wind turbines (WTs, photovoltaic arrays (PVs, diesel engines (DEs, fuel cells (FCs and a storage battery (BS, this paper establishes multi-objective economic dispatch models of a microgrid, including the lowest operating cost, the least carbon dioxide emissions, and the lowest pollutant treatment cost. After converting the multi-objective functions to a single objective function by using the judgment matrix method, we analyze the dynamic economic dispatch of the microgrid system including vehicle-to-grid (V2G with an improved particle swarm optimization algorithm under different operation control strategies. With the example system, the proposed models and strategies are verified and analyzed. Simulation results show that the microgrid system with EVs under the coordinated charging and discharging mode has better operation economics than the autonomous charging mode. Meanwhile, the greater the load fluctuation is, the higher the operating cost of the microgrid system is.

  12. Mode-coupling of interaction quenched ultracold bosons in periodically driven lattices

    Science.gov (United States)

    Mistakidis, Simeon; Schmelcher, Peter

    2016-05-01

    The out-of-equilibrium dynamics of interaction quenched finite ultracold bosonic ensembles in periodically driven one-dimensional optical lattices is investigated. As a first attempt a brief analysis of the dynamics caused exclusively by the periodically driven lattice is presented and the induced low-lying modes are introduced. It is shown that the periodic driving enforces the bosons in the outer wells to exhibit out-of-phase dipole-like modes, while in the central well the cloud experiences a local-breathing mode. The dynamical behavior of the system is investigated with respect to the driving frequency, revealing a resonant-like behavior of the intra-well dynamics. Subsequently, we drive the system to a highly non-equilibrium state by performing an interaction quench upon the periodically driven lattice. This protocol gives rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result (of the quench) the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Finally, our study reveals that the position of the resonances can be adjusted e.g. via the driving frequency or the atom number manifesting their many-body nature. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  13. Resonant magnetic perturbation effect on tearing mode dynamics

    International Nuclear Information System (INIS)

    Frassinetti, L.; Olofsson, K.E.J.; Brunsell, P.R.; Drake, J.R.

    2010-01-01

    The effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics is experimentally studied in the EXTRAP T2R device. EXTRAP T2R is equipped with a set of sensor coils and active coils connected by a digital controller allowing a feedback control of the magnetic instabilities. The recently upgraded feedback algorithm allows the suppression of all the error field harmonics but keeping a selected harmonic to the desired amplitude, therefore opening the possibility of a clear study of the RMP effect on the corresponding TM. The paper shows that the RMP produces two typical effects: (1) a weak oscillation in the TM amplitude and a modulation in the TM velocity or (2) a strong modulation in the TM amplitude and phase jumps. Moreover, the locking mechanism of a TM to a RMP is studied in detail. It is shown that before the locking, the TM dynamics is characterized by velocity modulation followed by phase jumps. Experimental results are reasonably explained by simulations obtained with a model.

  14. Fully quantum-mechanical dynamic analysis of single-photon transport in a single-mode waveguide coupled to a traveling-wave resonator

    International Nuclear Information System (INIS)

    Hach, Edwin E. III; Elshaari, Ali W.; Preble, Stefan F.

    2010-01-01

    We analyze the dynamics of single-photon transport in a single-mode waveguide coupled to a micro-optical resonator by using a fully quantum-mechanical model. We examine the propagation of a single-photon Gaussian packet through the system under various coupling conditions. We review the theory of single-photon transport phenomena as applied to the system and we develop a discussion on the numerical technique we used to solve for dynamical behavior of the quantized field. To demonstrate our method and to establish robust single-photon results, we study the process of adiabatically lowering or raising the energy of a single photon trapped in an optical resonator under active tuning of the resonator. We show that our fully quantum-mechanical approach reproduces the semiclassical result in the appropriate limit and that the adiabatic invariant has the same form in each case. Finally, we explore the trapping of a single photon in a system of dynamically tuned, coupled optical cavities.

  15. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    Science.gov (United States)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  16. Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Franzosi, Roberto; Penna, Vittorio

    2003-01-01

    The dynamics of the three coupled bosonic wells (trimer) containing N bosons is investigated within a standard (mean-field) semiclassical picture based on the coherent-state method. Various periodic solutions (configured as π-like, dimerlike, and vortex states) representing collective modes are obtained analytically when the fixed points of trimer dynamics are identified on the N=const submanifold in the phase space. Hyperbolic, maximum and minimum points are recognized in the fixed-point set by studying the Hessian signature of the trimer Hamiltonian. The system dynamics in the neighborhood of periodic orbits (associated with fixed points) is studied via numeric integration of trimer motion equations, thus revealing a diffused chaotic behavior (not excluding the presence of regular orbits), macroscopic effects of population inversion, and self-trapping. In particular, the behavior of orbits with initial conditions close to the dimerlike periodic orbits shows how the self-trapping effect of dimerlike integrable subregimes is destroyed by the presence of chaos

  17. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  18. Ion temperature gradient modes in toroidal helical systems

    International Nuclear Information System (INIS)

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  19. Critical Behavior of Light in Mode-Locked Lasers

    Science.gov (United States)

    Weill, Rafi; Rosen, Amir; Gordon, Ariel; Gat, Omri; Fischer, Baruch

    2005-06-01

    Light is shown to exhibit critical and tricritical behavior in passively mode-locked lasers with externally injected pulses. It is a first and unique example of critical phenomena in a one-dimensional many-body light-mode system. The phase diagrams consist of regimes with continuous wave, driven parapulses, spontaneous pulses via mode condensation, and heterogeneous pulses, separated by phase transition lines that terminate with critical or tricritical points. Enhanced non-Gaussian fluctuations and collective dynamics are present at the critical and tricritical points, showing a mode system analog of the critical opalescence phenomenon. The critical exponents are calculated and shown to comply with the mean field theory, which is rigorous in the light system.

  20. 3D Blade Vibration Measurements on an 80 m Diameter Wind Turbine by Using Non-contact Remote Measurement Systems

    Science.gov (United States)

    Ozbek, Muammer; Rixen, Daniel J.

    Non-contact optical measurement systems photogrammetry and laser interferometry are introduced as cost efficient alternatives to the conventional wind turbine/farm monitoring systems that are currently in use. The proposed techniques are proven to provide an accurate measurement of the dynamic behavior of a 2.5 MW—80 m diameter—wind turbine. Several measurements are taken on the test turbine by using 4 CCD cameras and 1 laser vibrometer and the response of the turbine is monitored from a distance of 220 m. The results of the infield tests and the corresponding analyses show that photogrammetry (also can be called as videogrammetry or computer vision technique) enable the 3D deformations of the rotor to be measured at 33 different points simultaneously with an average accuracy of ±25 mm, while the turbine is rotating. Several important turbine modes can also be extracted from the recorded data. Similarly, laser interferometry (used for the parked turbine only) provides very valuable information on the dynamic properties of the turbine structure. Twelve different turbine modes can be identified from the obtained response data.

  1. Nonlinear dynamic response of whole pool multiple spent fuel racks subject to three-dimensional excitations

    International Nuclear Information System (INIS)

    Zhao, Y.; Wilson, P.R.; Stevenson, J.D.

    1995-01-01

    The seismic evaluation of submerged free standing spent fuel storage racks is more complicated than most other nuclear structural systems. When subjected to three dimensional (3-D) floor seismic excitations the dynamic responses of racks in a pool are hydro dynamically coupled with each other, with the fuel assemblies water in gaps. The motion behavior of the racks is significantly different from that observed using a 3D single rack mode. Few seismic analyses using 3-D whole pool multiple rack models are available in the literature. I this paper an analysis was performed for twelve racks using potential theory for the fluid-structure interaction, and using a 3-D whole pool multi-rack finite element model developed herein. The analysis includes the potential nonlinear dynamic behavior of the impact of fuel-rack, rack-rack and rack-pool wall, the tilting or uplift and the frictional sliding of rack supports, and the impact of the rack supports to the pool floor. (author). 12 refs., 7 figs., 1 tab

  2. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I. [Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation); Viktorov, E. A. [National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg (Russian Federation); Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium); Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Abusaa, M. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Arab American University, Jenin, Palestine (Country Unknown); Danckaert, J. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Kolykhalova, E. D. [St. Petersburg State Electrotechnical University “LETI,” St. Petersburg (Russian Federation); Soboleva, K. K. [St. Petersburg State Polytechnical University, St. Petersburg (Russian Federation); Zhukov, A. E. [Academic University, St. Petersburg (Russian Federation); Sibbett, W. [University of St. Andrews, St. Andrews (United Kingdom); Rafailov, E. U. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Erneux, T. [Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium)

    2015-06-29

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.

  3. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    International Nuclear Information System (INIS)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I.; Viktorov, E. A.; Abusaa, M.; Danckaert, J.; Kolykhalova, E. D.; Soboleva, K. K.; Zhukov, A. E.; Sibbett, W.; Rafailov, E. U.; Erneux, T.

    2015-01-01

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes

  4. Observer based on sliding mode variable structure for synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Yin Xunhe; Shan Xiuming; Ren Yong

    2003-01-01

    In the paper an approach, based on the state observer of sliding mode variable structure, is used for synchronizing chaotic systems. It does not require either the computation of the Lyapunov exponents, or the initial conditions belonging to the same basin of attraction as the existed approaches based on the state observer for synchronizing chaotic systems. The approach is more robust against noise and parameter mismatch than the existed approaches based on the state observer for synchronizing chaotic systems, because the former uses variable structure control, which is strong robust with respect to noise and parameter mismatch in the error dynamics, the later uses an appropriate choice of the feedback gain. Two well-known chaotic systems, a chaotic Roessler system and a hyperchaotic Roessler system are considered as illustrative examples to demonstrate the effectiveness of the used approach by numerical simulations

  5. Mode-locking dynamics in a quantum-dash Fabry-Pérot laser diode for packet based clock recovery applications

    NARCIS (Netherlands)

    Maldonado-Basilio, R.; Parra-Cetina, J.; Latkowski, S.; Landais, P.; Calabretta, N.

    2012-01-01

    We experimentally investigate the locking/unlocking dynamics of a mode-locked QDash laser diode for packet-based clock-recovery applications. Results show 20 ns locking times for the passively and externally synchronized mode-locking mechanisms.

  6. Three distinct modes of intron dynamics in the evolution of eukaryotes.

    Science.gov (United States)

    Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V

    2007-07-01

    Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored approximately 3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last approximately 1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron-exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.

  7. Quasi-periodic dynamics in system with multilevel pulse modulated control

    Science.gov (United States)

    Gol'tsov, Yu A.; Kizhuk, A. S.; Rubanov, V. G.

    2018-03-01

    In this paper, the authors describe the transitions from the regular periodic mode to quasiperiodicity that can be observed in a multilevel pulse-width modulated control system for a high-power heating unit. The behavior of such system can be described by a set of two coupled non-autonomous differential equations with discontinuous right-hand sides. The authors reduce the investigation of this system to the studying of a two-dimensional piecewise-smooth map. The authors demonstrate how a closed invariant curve associated with quasiperiodic dynamics can arise from a stable periodic motion through a border-collision bifurcation. The paper also considers a variety of interesting nonlinear phenomena, including phase-locking modes, the coexistence of several stable closed invariant curves, embedded one into the other and with their basins of attraction separated by intervening repelling closed curves.

  8. Dynamical systems

    CERN Document Server

    Sternberg, Shlomo

    2010-01-01

    Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the

  9. Predictive transport modelling of type I ELMy H-mode dynamics using a theory-motivated combined ballooning-peeling model

    International Nuclear Information System (INIS)

    Loennroth, J-S; Parail, V; Dnestrovskij, A; Figarella, C; Garbet, X; Wilson, H

    2004-01-01

    This paper discusses predictive transport simulations of the type I ELMy high confinement mode (H-mode) with a theory-motivated edge localized mode (ELM) model based on linear ballooning and peeling mode stability theory. In the model, a total mode amplitude is calculated as a sum of the individual mode amplitudes given by two separate linear differential equations for the ballooning and peeling mode amplitudes. The ballooning and peeling mode growth rates are represented by mutually analogous terms, which differ from zero upon the violation of a critical pressure gradient and an analytical peeling mode stability criterion, respectively. The damping of the modes due to non-ideal magnetohydrodynamic effects is controlled by a term driving the mode amplitude towards the level of background fluctuations. Coupled to simulations with the JETTO transport code, the model qualitatively reproduces the experimental dynamics of type I ELMy H-mode, including an ELM frequency that increases with the external heating power. The dynamics of individual ELM cycles is studied. Each ELM is usually triggered by a ballooning mode instability. The ballooning phase of the ELM reduces the pressure gradient enough to make the plasma peeling unstable, whereby the ELM continues driven by the peeling mode instability, until the edge current density has been depleted to a stable level. Simulations with current ramp-up and ramp-down are studied as examples of situations in which pure peeling and pure ballooning mode ELMs, respectively, can be obtained. The sensitivity with respect to the ballooning and peeling mode growth rates is investigated. Some consideration is also given to an alternative formulation of the model as well as to a pure peeling model

  10. Model-based dynamic resistive wall mode identification and feedback control in the DIII-D tokamak

    International Nuclear Information System (INIS)

    In, Y.; Kim, J.S.; Edgell, D.H.; Strait, E.J.; Humphreys, D.A.; Walker, M.L.; Jackson, G.L.; Chu, M.S.; Johnson, R.; La Haye, R.J.; Okabayashi, M.; Garofalo, A.M.; Reimerdes, H.

    2006-01-01

    A new model-based dynamic resistive wall mode (RWM) identification and feedback control algorithm has been developed. While the overall RWM structure can be detected by a model-based matched filter in a similar manner to a conventional sensor-based scheme, it is significantly influenced by edge-localized-modes (ELMs). A recent study suggested that such ELM noise might cause the RWM control system to respond in an undesirable way. Thus, an advanced algorithm to discriminate ELMs from RWM has been incorporated into this model-based control scheme, dynamic Kalman filter. Specifically, the DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] resistive vessel wall was modeled in two ways: picture frame model or eigenmode treatment. Based on the picture frame model, the first real-time, closed-loop test results of the Kalman filter algorithms during DIII-D experimental operation are presented. The Kalman filtering scheme was experimentally confirmed to be effective in discriminating ELMs from RWM. As a result, the actuator coils (I-coils) were rarely excited during ELMs, while retaining the sensitivity to RWM. However, finding an optimized set of operating parameters for the control algorithm requires further analysis and design. Meanwhile, a more advanced Kalman filter based on a more accurate eigenmode model has been developed. According to this eigenmode approach, significant improvement in terms of control performance has been predicted, while maintaining good ELM discrimination

  11. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.

    Science.gov (United States)

    Weysser, F; Puertas, A M; Fuchs, M; Voigtmann, Th

    2010-07-01

    We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.

  12. Charging system with galvanic isolation and multiple operating modes

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun; Ransom, Ray M.

    2013-01-08

    Systems and methods are provided for operating a charging system with galvanic isolation adapted for multiple operating modes. A vehicle charging system comprises a DC interface, an AC interface, a first conversion module coupled to the DC interface, and a second conversion module coupled to the AC interface. An isolation module is coupled between the first conversion module and the second conversion module. The isolation module comprises a transformer and a switching element coupled between the transformer and the second conversion module. The transformer and the switching element are cooperatively configured for a plurality of operating modes, wherein each operating mode of the plurality of operating modes corresponds to a respective turns ratio of the transformer.

  13. Automation and instrument control applied to an experimental study of electron transport dynamics in an avalanche mode resistive plater chamber

    International Nuclear Information System (INIS)

    Ridenti, Marco A.; Pascholati, Paulo R.

    2009-01-01

    In this work it is presented a computer based instrumentation system which was developed to perform data acquisition and integrate the control of different devices in an experimental study of electron transport dynamics in an avalanche mode resistive plate chamber detector in the Radiation Technology Center (CTR) at IPEN/CNEN-SP. System control and data acquisition was performed by a computer program called RPCLabOperator written in MatLab environment running on a LeCroy WavePro 7000 digital oscilloscope. (author)

  14. Mixed - mode Operating System for Real - time Performance

    Directory of Open Access Journals (Sweden)

    Hasan M. M.

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUIoperating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based real-time kernel and the non-real-time portion is a Pentium IIIbased system running under Windows NT. It was found that mixed-mode systems performed as good as a typical real-time system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  15. Mixed-mode Operating System for Real-time Performance

    Directory of Open Access Journals (Sweden)

    M.M. Hasan

    2017-11-01

    Full Text Available The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time events. In this research an i8751 microcontroller-based hardware was used to measure the performance of the system in real-time-only as well as non-real-time-only configurations. The real-time portion is an 486DX-40 IBM PC system running under DOS-based realtime kernel and the non-real-time portion is a Pentium III based system running under Windows NT. It was found that mixed-mode systems performed as good as a typical realtime system and in fact, gave many additional benefits such as simplified/modular programming and load tolerance.

  16. Mixed-mode Operating System for Real-time Performance

    OpenAIRE

    M.M. Hasan; S. Sultana; C.K. Foo

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface (GUI) operating system which is typically nonreal-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time...

  17. Mixed - mode Operating System for Real - time Performance

    OpenAIRE

    Hasan M. M.; Sultana S.; Foo C.K.

    2017-01-01

    The purpose of the mixed-mode system research is to handle devices with the accuracy of real-time systems and at the same time, having all the benefits and facilities of a matured Graphic User Interface(GUI)operating system which is typicallynon-real-time. This mixed-mode operating system comprising of a real-time portion and a non-real-time portion was studied and implemented to identify the feasibilities and performances in practical applications (in the context of scheduled the real-time e...

  18. Dynamic Stochastic Superresolution of sparsely observed turbulent systems

    International Nuclear Information System (INIS)

    Branicki, M.; Majda, A.J.

    2013-01-01

    Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically ‘superresolved’ velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum

  19. Sliding mode controller for a photovoltaic pumping system

    Science.gov (United States)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  20. Nonlinear dynamics of toroidal Alfvén eigenmodes in the presence of tearing modes

    Science.gov (United States)

    Zhu, J.; Ma, Z. W.; Wang, S.; Zhang, W.

    2018-04-01

    A hybrid simulation is carried out to study nonlinear dynamics of n  =  1 toroidal Alfvén eigenmodes (TAEs) with the m/n  =  2/1 tearing mode. It is found that the n  =  1 TAE is first excited by isotropic energetic particles at the linear stage and reaches the first steady state due to wave-particle interaction. After the saturation of the n  =  1 TAE, the m/n  =  2/1 tearing mode grows continuously and reaches its steady state due to nonlinear mode-mode coupling, especially, the n  =  0 component plays a very important role in the tearing mode saturation. The results suggest that the enhancement of the tearing mode activity with increase of the resistivity could weaken the TAE frequency chirping through the interaction between the p  =  1 TAE resonance and the p  =  2 tearing mode resonance for passing particles in the phase space, which is opposite to the classical physical picture of the TAE frequency chirping that is enhanced with dissipation increase.

  1. Dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit

    International Nuclear Information System (INIS)

    Thameem Ansari, M.Md.; Velusami, S.

    2010-01-01

    A design of dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit is proposed in this paper. The design methodology of dual mode linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of linguistic hedges and hybrid genetic algorithm-simulated annealing algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically and can speed up the control result to fit the system demand. The hybrid genetic algorithm-simulated annealing algorithm is adopted to search the optimal linguistic hedge combination in the linguistic hedge module. Dual mode concept is also incorporated in the proposed controller because it can improve the system performance. The system with the proposed controller was simulated and the frequency deviation resulting from a step load disturbance is presented. The comparison of the proportional plus integral controller, fuzzy logic controller and the proposed dual mode linguistic hedge fuzzy logic controller shows that, with the application of the proposed controller, the system performance is improved significantly. The proposed controller is also found to be less sensitive to the changes in the parameters of the system and also robust under different operating modes of the hybrid power system.

  2. Fuzzy Backstepping Sliding Mode Control for Mismatched Uncertain System

    Directory of Open Access Journals (Sweden)

    H. Q. Hou

    2014-06-01

    Full Text Available Sliding mode controllers have succeeded in many control problems that the conventional control theories have difficulties to deal with; however it is practically impossible to achieve high-speed switching control. Therefore, in this paper an adaptive fuzzy backstepping sliding mode control scheme is derived for mismatched uncertain systems. Firstly fuzzy sliding mode controller is designed using backstepping method based on the Lyapunov function approach, which is capable of handling mismatched problem. Then fuzzy sliding mode controller is designed using T-S fuzzy model method, it can improve the performance of the control systems and their robustness. Finally this method of control is applied to nonlinear system as a case study; simulation results are also provided the performance of the proposed controller.

  3. Design of the power system for dynamic resonant magnetic perturbation coils on the J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Y.H., E-mail: yhding@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, M.; Rao, B.; Nan, J.Y.; Zeng, W.B.; Zheng, M.Y.; Xu, H.Y.; Zhuang, G.; Pan, Y. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-10-15

    Highlights: ► We introduce the dynamic resonant magnetic perturbation coils system on J-TEXT. ► Details of the design of the power supply system have been presented. ► At DC mode, two antiparallel 6-pulse phase thyristor rectifiers were chosen. ► An AC–DC–AC converter including a series resonant inverter was adopted for AC mode. ► Some engineering testing result was given in this paper. -- Abstract: A set of in-vessel saddle coils has been installed on J-TEXT tokamak. They are proposed for further researches on controlling tearing modes and driving plasma rotation by static and dynamic resonant magnetic perturbations (RMPs). The saddle coils will be energized by DC with the amplitude up to 10 kA, or AC with maximum amplitude up to 5 kA within the frequency range of 1–5 kHz. At DC mode two antiparallel 6-pulse phase thyristor rectifiers are chosen to obtain bidirectional current, while at AC mode an AC–DC–AC converter including a series resonant inverter can generate current of various amplitudes and frequencies. The paper presents the design of the power supply system, based on the definition of the power supply requirements and the feasibility of implementation of the topology and control strategy. Some simulation and experimental results are given in the end.

  4. A novel MUX/DEMUX based on few-mode FBG for mode division multiplexing system

    Science.gov (United States)

    Han, Yueyu; Hu, Guijun

    2016-05-01

    In this paper, a novel mode multiplexer/demultiplexer (MUX/DEMUX) based on few-mode fiber Bragg gratings (FBG) has been proposed. The principle of the MUX/DEMUX based on few-mode FBG has been described in detail, and crosstalk of better than -20 dB is obtained experimentally. Then a 2×2 division multiplexing (MDM) system has been established with the MUX/DEMUX we proposed. The transmission experiment of 2×10 Gbps PRBS has been achieved successfully, which are carried by LP01 mode and LP11 mode, respectively. When the receiver sensitivity is greater than -14 dB m and -10 dB m, the BER can both reach 10-3 for B2B and 10 km transmission, respectively.

  5. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  6. Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method.

    Science.gov (United States)

    Khoo, E H; Ahmed, I; Goh, R S M; Lee, K H; Hung, T G G; Li, E P

    2013-03-11

    The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.

  7. Vehicle Sliding Mode Control with Adaptive Upper Bounds: Static versus Dynamic Allocation to Saturated Tire Forces

    Directory of Open Access Journals (Sweden)

    Ali Tavasoli

    2012-01-01

    Full Text Available Nonlinear vehicle control allocation is achieved through distributing the task of vehicle control among individual tire forces, which are constrained to nonlinear saturation conditions. A high-level sliding mode control with adaptive upper bounds is considered to assess the body yaw moment and lateral force for the vehicle motion. The proposed controller only requires the online adaptation of control gains without acquiring the knowledge of upper bounds on system uncertainties. Static and dynamic control allocation approaches have been formulated to distribute high-level control objectives among the system inputs. For static control allocation, the interior-point method is applied to solve the formulated nonlinear optimization problem. Based on the dynamic control allocation method, a dynamic update law is derived to allocate vehicle control to tire forces. The allocated tire forces are fed into a low-level control module, where the applied torque and active steering angle at each wheel are determined through a slip-ratio controller and an inverse tire model. Computer simulations are used to prove the significant effects of the proposed control allocation methods on improving the stability and handling performance. The advantages and limitations of each method have been discussed, and conclusions have been derived.

  8. Application of Hybrid Dynamical Theory to the Cardiovascular System

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2014-10-14

    In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.

  9. Dynamic behaviors of a broad-area diode laser with lateral-mode-selected external feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    In this paper, we investigate the dynamics of a BAL with lateral-mode selected external feedback experimentally by measuring the far-field profile, intensity noise spectrum and time series of the output beam. The mode-selection is achieved by adjusting a stripe mirror at the pseudo far-field plan...... with a frequency of the single roundtrip external-cavity loop modulated by periodic low-frequency fluctuation. This is the first observation of pulse-package oscillation in a diode laser with long-cavity feedback, to our knowledge....

  10. Research on Sliding Mode Control for Steer-by-Wire System in Forklift

    Directory of Open Access Journals (Sweden)

    Huang Jun-Jie

    2017-01-01

    Full Text Available Aiming at steering stability and wheel angle tracking of steer-by-wire (SBW three wheeled forklift, steering dynamic model and SBW system mathematical model of three wheeled forklift are established. A control strategy for the ideal transmission ratio is introduced based on this model, which ensures forklift steering gain invariant. A sliding mode controller can then be designed based on the bound information of uncertain system parameters, uncertain self-aligning torque, and external disturbances. The results of simulation show the control strategies above can effectively reduce the sideslip angle when the forklift is steering and improve the sensitivity and stability of the steering forklift; at the same time can effectively restrain the parameter perturbation of internal system and external disturbance, which improves the tracking performance of the wheel angle.

  11. A Lower Hybrid Current Drive System for Alcator C-Mod

    International Nuclear Information System (INIS)

    Bernabei, S.; Hosea, J.C.; Loesser, D.; Rushinski, J.; Wilson, J.R.; Bonoli, P.; Grimes, M.; Parker, R.; Porkolab, M.; Terry, D.; Woskov, P.

    2001-01-01

    A Lower Hybrid Current Drive system is being constructed jointly by Plasma Science and Fusion Center (PSFC) and Princeton Plasma Physics Laboratory (PPPL) for installation on the Alcator C-Mod tokamak, with the primary goal of driving plasma current in the outer region of the plasma. The Lower Hybrid (LH) system consists of 3 MW power at 4.6 GHz with a maximum pulse length of 5 seconds. Twelve klystrons will feed an array of 4-vertical and 24-horizontal waveguides mounted in one equatorial port. The coupler will incorporate some compact characteristics of the multijunction power splitting while retaining full control of the toroidal phase. In addition a dynamic phase control system will allow feedback stabilization of MHD modes. The desire to avoid possible waveguide breakdown and the need for compactness have resulted in some innovative technical solution which will be presented

  12. Propagating annular modes

    Science.gov (United States)

    Sheshadri, A.; Plumb, R. A.

    2017-12-01

    The leading "annular mode", defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability, appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. In the troposphere, the leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes propagating anomalies. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. These facts have implications for eddy feedback and the susceptibility of the mode to external perturbations. If one interprets the annular modes as the modes of the system, then simple theory predicts that the response to steady forcing will usually be dominated by AM1 (with the longest time scale). However, such arguments should really be applied to the true modes. Experiments with a simplified GCM show that climate response to perturbations do not necessarily have AM1 structures. Implications of these results for stratosphere-troposphere interactions are explored. The POP

  13. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  14. A Study on Mode Confusions in Adaptive Cruise Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Dae Ryong; Yang, Ji Hyun; Lee, Sang Hun [Kookmin University, Seoul (Korea, Republic of)

    2015-05-15

    Recent development in science and technology has enabled vehicles to be equipped with advanced autonomous functions. ADAS (Advanced Driver Assistance Systems) are examples of such advanced autonomous systems added. Advanced systems have several operational modes and it has been observed that drivers could be unaware of the mode they are in during vehicle operation, which can be a contributing factor of traffic accidents. In this study, possible mode confusions in a simulated environment when vehicles are equipped with an adaptive cruise control system were investigated. The mental model of the system was designed and verified using the formal analysis method. Then, the user interface was designed on the basis of those of the current cruise control systems. A set of human-in-loop experiments was conducted to observe possible mode confusions and redesign the user interface to reduce them. In conclusion, the clarity and transparency of the user interface was proved to be as important as the correctness and compactness of the mental model when reducing mode confusions.

  15. A Study on Mode Confusions in Adaptive Cruise Control Systems

    International Nuclear Information System (INIS)

    Ahn, Dae Ryong; Yang, Ji Hyun; Lee, Sang Hun

    2015-01-01

    Recent development in science and technology has enabled vehicles to be equipped with advanced autonomous functions. ADAS (Advanced Driver Assistance Systems) are examples of such advanced autonomous systems added. Advanced systems have several operational modes and it has been observed that drivers could be unaware of the mode they are in during vehicle operation, which can be a contributing factor of traffic accidents. In this study, possible mode confusions in a simulated environment when vehicles are equipped with an adaptive cruise control system were investigated. The mental model of the system was designed and verified using the formal analysis method. Then, the user interface was designed on the basis of those of the current cruise control systems. A set of human-in-loop experiments was conducted to observe possible mode confusions and redesign the user interface to reduce them. In conclusion, the clarity and transparency of the user interface was proved to be as important as the correctness and compactness of the mental model when reducing mode confusions

  16. Resonance properties of a three-level atom with quantized field modes

    International Nuclear Information System (INIS)

    Yoo, H.I.

    1984-01-01

    A system of one three-level atom and one or two quantized electro-magnetic field modes coupled to each other by the dipole interaction, with the rotating wave approximation is studied. All three atomic configurations, i.e., cascade Lambda- and V-types, are treated simultaneously. The system is treated as closed, i.e., no interaction with the external radiation field modes, to reveal the internal structures and symmetries in the system. The general dynamics of the system are investigated under several distinct initial conditions and their similarities and differences with the dynamics of the Jaynes-Cummings model are revealed. Also investigated is the possibility of so-called coherent trapping of the atom in the quantized field modes in a resonator. An atomic state of coherent trapping exists only for limited cases, and it generally requires the field to be in some special states, depending on the system. The discussion of coherent trapping is extended into a system of M identical three-level atoms. The stability of a coherent-trapping state when fluorescence can take place is discussed. The distinction between a system with resonator field modes and one with ideal laser modes is made clear, and the atomic relaxation to the coherent-trapping atomic state when a Lambda-type atom is irradiated by two ideal laser beams is studied. The experimental prospects to observe the collapse-revival phenomena in the atomic occupation probabilities, which is characteristic of a system with quantized resonator field modes is discussed

  17. Dynamics of Multibody Systems Near Lagrangian Points

    Science.gov (United States)

    Wong, Brian

    This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term

  18. The dependence of the Taylor-Quinney coefficient on the dynamic loading mode

    Science.gov (United States)

    Rittel, D.; Zhang, L. H.; Osovski, S.

    2017-10-01

    The efficiency of the thermomechanical conversion, expressed as the Taylor-Quinney coefficient (TQC) is seldom reported in the literature and generally assumed to be equal to 0.9. Moreover, an eventual dependence of this coefficient on the dynamic loading mode has not been investigated so far. This work presents a systematic characterization of the TQC for seven different metals and alloys loaded in dynamic tension, compression and dominant shear. The results show that the TQC varies greatly with the investigated material, instead of its assumed constant value of 0.9. Likewise, until final collapse of the specimen, the overall temperature rise remains quite modest. Moreover, we clearly observe that for commercially pure Titanium, which exhibits an asymmetric mechanical response in tension and compression, the measured TQC values are mode dependent too. Microstructural characterization reveals profuse twinning in compression and shear, as opposed to tension. Twinning is related to heat generation in accord with previous studies. In addition to reporting a wide database of TQC values, this study reveals a new correlation between the thermomechanical characteristics of a material and its deformation micromechanisms, that should find its way into constitutive models.

  19. The coupled nonlinear dynamics of a lift system

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, Rafael Sánchez, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Picton, Phil, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Su, Huijuan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk [The University of Northampton, School of Science and Technology, Avenue Campus, St George' s Avenue, Northampton (United Kingdom)

    2014-12-10

    Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.

  20. A dynamically adaptive wavelet approach to stochastic computations based on polynomial chaos - capturing all scales of random modes on independent grids

    International Nuclear Information System (INIS)

    Ren Xiaoan; Wu Wenquan; Xanthis, Leonidas S.

    2011-01-01

    Highlights: → New approach for stochastic computations based on polynomial chaos. → Development of dynamically adaptive wavelet multiscale solver using space refinement. → Accurate capture of steep gradients and multiscale features in stochastic problems. → All scales of each random mode are captured on independent grids. → Numerical examples demonstrate the need for different space resolutions per mode. - Abstract: In stochastic computations, or uncertainty quantification methods, the spectral approach based on the polynomial chaos expansion in random space leads to a coupled system of deterministic equations for the coefficients of the expansion. The size of this system increases drastically when the number of independent random variables and/or order of polynomial chaos expansions increases. This is invariably the case for large scale simulations and/or problems involving steep gradients and other multiscale features; such features are variously reflected on each solution component or random/uncertainty mode requiring the development of adaptive methods for their accurate resolution. In this paper we propose a new approach for treating such problems based on a dynamically adaptive wavelet methodology involving space-refinement on physical space that allows all scales of each solution component to be refined independently of the rest. We exemplify this using the convection-diffusion model with random input data and present three numerical examples demonstrating the salient features of the proposed method. Thus we establish a new, elegant and flexible approach for stochastic problems with steep gradients and multiscale features based on polynomial chaos expansions.

  1. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  2. Rotary Mode Core Sample System availability improvement

    International Nuclear Information System (INIS)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D.; Cross, B.T.; Burkes, J.M.; Rogers, A.C.

    1995-01-01

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2

  3. Power system low frequency oscillation mode estimation using wide area measurement systems

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2017-04-01

    Full Text Available Oscillations in power systems are triggered by a wide variety of events. The system damps most of the oscillations, but a few undamped oscillations may remain which may lead to system collapse. Therefore low frequency oscillations inspection is necessary in the context of recent power system operation and control. Ringdown portion of the signal provides rich information of the low frequency oscillatory modes which has been taken into analysis. This paper provides a practical case study in which seven signal processing based techniques i.e. Prony Analysis (PA, Fast Fourier Transform (FFT, S-Transform (ST, Wigner-Ville Distribution (WVD, Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT, Hilbert-Huang Transform (HHT and Matrix Pencil Method (MPM were presented for estimating the low frequency modes in a given ringdown signal. Preprocessing of the signal is done by detrending. The application of the signal processing techniques is illustrated using actual wide area measurement systems (WAMS data collected from four different Phasor Measurement Unit (PMU i.e. Dadri, Vindyachal, Kanpur and Moga which are located near the recent disturbance event at the Northern Grid of India. Simulation results show that the seven signal processing technique (FFT, PA, ST, WVD, ESPRIT, HHT and MPM estimates two common oscillatory frequency modes (0.2, 0.5 from the raw signal. Thus, these seven techniques provide satisfactory performance in determining small frequency modes of the signal without losing its valuable property. Also a comparative study of the seven signal processing techniques has been carried out in order to find the best one. It was found that FFT and ESPRIT gives exact frequency modes as compared to other techniques, so they are recommended for estimation of low frequency modes. Further investigations were also carried out to estimate low frequency oscillatory mode with another case study of Eastern Interconnect Phasor Project

  4. Sliding-Mode Control of PEM Fuel Cells

    CERN Document Server

    Kunusch, Cristian; Mayosky, Miguel

    2012-01-01

    Recent advances in catalysis technologies and new materials make fuel cells an economically appealing and clean energy source with massive market potential in portable devices, home power generation and the automotive industry. Among the more promising fuel-cell technologies are proton exchange membrane fuel cells (PEMFCs). Sliding-Mode Control of PEM Fuel Cells demonstrates the application of higher-order sliding-mode control to PEMFC dynamics. Fuel-cell dynamics are often highly nonlinear and the text shows the advantages of sliding modes in terms of robustness to external disturbance, modelling error and system-parametric disturbance using higher-order control to reduce chattering. Divided into two parts, the book first introduces the theory of fuel cells and sliding-mode control. It begins by contextualising PEMFCs both in terms of their development and within the hydrogen economy and today’s energy production situation as a whole. The reader is then guided through a discussion of fuel-cell operation pr...

  5. A diagnostic expert system for a boiling water reactor using a dynamic model

    International Nuclear Information System (INIS)

    Sonoda, Y.; Kanemoto, S.; Imaruoka, H.

    1990-01-01

    A diagnostic expert system for abnormal disturbances in a BWR (Boiling Water Reactor) plant has been developed. The peculiar feature of this system is a diagnostic method which combines artificial intelligence technique with numerical analysis technique. The system has three diagnostic functions, 1) identification of anomaly position (device or sensor), 2) identification of anomaly mode and 3) identification of anomaly cause. Function 1) is implemented as follows. First, a hypothesis about anomaly propagation paths is built up by qualitative reasoning, using knowledge of causal relations among observed signals. Next, the abnormal device or sensor is found by applying model reference method and fuzzy set theory to test the hypothesis, using knowledge of plant structure and function, heuristic strategy of diagnosis and module type dynamic simulator. This simulator is composed of basic transfer function modules. The simulation model for the testing region is built up automatically, according to the requirement from the diagnostic task. Function 2) means identification of dynamic characteristics for an anomaly. It is realized by tuning model parameters so as to reproduce the abnormal signal behavior using the non-linear programing method. Function 3) derives probable anomaly causes from heuristic rules between anomaly mode and cause. A basic plant dynamic model was built up and adjusted to dynamic characteristics for one BWR plant (1100MWe). In order to verify the diagnostic functions of this system, data for several abnormal events was compiled by modifying this model. The diagnostic functions were proved useful, through the simulated abnormal data

  6. Large Deformation Dynamic Bending of Composite Beams

    Science.gov (United States)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  7. Interaction of feel system and flight control system dynamics on lateral flying qualities

    Science.gov (United States)

    Bailey, R. E.; Knotts, L. H.

    1990-01-01

    An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.

  8. Confinement improvement in H-mode-like plasmas in helical systems

    International Nuclear Information System (INIS)

    Itoh, K.; Sanuki, H.; Itoh, S.; Fukuyama, A.; Yagi, M.

    1993-06-01

    The reduction of the anomalous transport due to the inhomogeneous radial electric field is theoretically studied for toroidal helical plasmas. The self-sustained interchange-mode turbulence is analysed for the system with magnetic shear and magnetic hill. For the system with magnetic well like conventional stellarators, the ballooning mode turbulence is studied. Influence of the radial electric field inhomogeneity on the transport coefficients and fluctuations are quantitatively shown. Unified theory of the transport coefficients in the L-mode and H-mode-like plasmas are presented. (author)

  9. Structure, stability and ELM dynamics of the H-mode pedestal in DIII-D

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Leonard, A.W.; Osborne, T.H.

    2005-01-01

    Experiments are described that have increased understanding of the transport and stability physics that set the H-mode edge pedestal width and height, determine the onset of Type-I edge localized modes (ELMs), and produce the nonlinear dynamics of the ELM perturbation in the pedestal and scrape-off layer (SOL). Predictive models now exist for the n e pedestal profile and the p e height at the onset of Type-I ELMs, and progress has been made toward predictive models of the T e pedestal width and nonlinear ELM evolution. Similarity experiments between DIII-D and JET suggested that neutral penetration physics dominates in the relationship between the width and height of the n e pedestal while plasma physics dominates in setting the T e pedestal width. Measured pedestal conditions including edge current at ELM onset agree with intermediate-n peeling-ballooning (P-B) stability predictions. Midplane ELM dynamics data show the predicted (P-B) structure at ELM onset, large rapid variations of the SOL parameters, and fast radial propagation in later phases, similar to features in nonlinear ELM simulations. (author)

  10. Dynamics of a neural system with a multiscale architecture

    Science.gov (United States)

    Breakspear, Michael; Stam, Cornelis J

    2005-01-01

    The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448

  11. Mode specific dynamics of the H2 + CH3 → H + CH4 reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods

    International Nuclear Information System (INIS)

    Wang, Yan; Li, Jun; Guo, Hua; Chen, Liuyang; Yang, Minghui; Lu, Yunpeng

    2015-01-01

    An eight-dimensional quantum dynamical model is proposed and applied to the title reaction. The reaction probabilities and integral cross sections have been determined for both the ground and excited vibrational states of the two reactants. The results indicate that the H 2 stretching and CH 3 umbrella modes, along with the translational energy, strongly promote the reactivity, while the CH 3 symmetric stretching mode has a negligible effect. The observed mode specificity is confirmed by full-dimensional quasi-classical trajectory calculations. The mode specificity can be interpreted by the recently proposed sudden vector projection model, which attributes the enhancement effects of the reactant modes to their strong couplings with the reaction coordinate at the transition state

  12. Time-optimal thermalization of single-mode Gaussian states

    Science.gov (United States)

    Carlini, Alberto; Mari, Andrea; Giovannetti, Vittorio

    2014-11-01

    We consider the problem of time-optimal control of a continuous bosonic quantum system subject to the action of a Markovian dissipation. In particular, we consider the case of a one-mode Gaussian quantum system prepared in an arbitrary initial state and which relaxes to the steady state due to the action of the dissipative channel. We assume that the unitary part of the dynamics is represented by Gaussian operations which preserve the Gaussian nature of the quantum state, i.e., arbitrary phase rotations, bounded squeezing, and unlimited displacements. In the ideal ansatz of unconstrained quantum control (i.e., when the unitary phase rotations, squeezing, and displacement of the mode can be performed instantaneously), we study how control can be optimized for speeding up the relaxation towards the fixed point of the dynamics and we analytically derive the optimal relaxation time. Our model has potential and interesting applications to the control of modes of electromagnetic radiation and of trapped levitated nanospheres.

  13. System Reduction in Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.; Rubak, Rune

    2007-01-01

    In this paper the system reduction in nonlinear multibody dynamics of wind turbines is investigated for various updating schemes of the moving frame of reference. In one case, the moving frame of reference is updated to a stiff body, relative to which the elastic deformations are fixed at one end....... In the other case, the stiff body motion is defined as the chord line connecting the end points of the beam, and the elastic deformations are simply supported at the end points. The system reduction is performed by discretizing the spatial motion into a set of rigid body modes and linear elastic eigenmodes...

  14. On the accuracy of mode-superposition analysis of linear systems under stochastic agencies

    International Nuclear Information System (INIS)

    Bellomo, M.; Di Paola, M.; La Mendola, L.; Muscolino, G.

    1987-01-01

    This paper deals with the response of linear structures using modal reduction. The MAM (mode acceleration method) correction is extended to stochastic analysis in the stationary case. In this framework the response of the given structure must be described in a probabilistic sense and the spectral moments of the nodal response must be computed in order to obtain a full description of the vibratory stochastic phenomenon. In the deterministic analysis the response is substantially made up of two terms, one of which accounts for the dynamic response due to the lower modes while the second accounts for the contribution due to the higher modes. In stochastic analysis the nodal spectral moments are made up of three terms; the first accounts for the spectral moments of the dynamic response due to the lower modes, the second accounts for the spectral moments of input and the third accounts for the cross-spectral moments between the input and the nodal output. The analysis is applied to a 35-storey building subjected to wind multivariate environments. (orig./HP)

  15. Adaptive Sliding Mode Observer for a Class of Systems

    OpenAIRE

    D.Elleuch; T.Damak

    2010-01-01

    In this paper, the performance of two adaptive observers applied to interconnected systems is studied. The nonlinearity of systems can be written in a fractional form. The first adaptive observer is an adaptive sliding mode observer for a Lipchitz nonlinear system and the second one is an adaptive sliding mode observer having a filtered error as a sliding surface. After comparing their performances throughout the inverted pendulum mounted on a car system, it was shown tha...

  16. Applicability of mode-coupling theory to polyisobutylene: a molecular dynamics simulation study.

    Science.gov (United States)

    Khairy, Y; Alvarez, F; Arbe, A; Colmenero, J

    2013-10-01

    The applicability of Mode Coupling Theory (MCT) to the glass-forming polymer polyisobutylene (PIB) has been explored by using fully atomistic molecular dynamics simulations. MCT predictions for the so-called asymptotic regime have been successfully tested on the dynamic structure factor and the self-correlation function of PIB main-chain carbons calculated from the simulated cell. The factorization theorem and the time-temperature superposition principle are satisfied. A consistent fitting procedure of the simulation data to the MCT asymptotic power-laws predicted for the α-relaxation regime has delivered the dynamic exponents of the theory-in particular, the exponent parameter λ-the critical non-ergodicity parameters, and the critical temperature T(c). The obtained values of λ and T(c) agree, within the uncertainties involved in both studies, with those deduced from depolarized light scattering experiments [A. Kisliuk et al., J. Polym. Sci. Part B: Polym. Phys. 38, 2785 (2000)]. Both, λ and T(c)/T(g) values found for PIB are unusually large with respect to those commonly obtained in low molecular weight systems. Moreover, the high T(c)/T(g) value is compatible with a certain correlation of this parameter with the fragility in Angell's classification. Conversely, the value of λ is close to that reported for real polymers, simulated "realistic" polymers and simple polymer models with intramolecular barriers. In the framework of the MCT, such finding should be the signature of two different mechanisms for the glass-transition in real polymers: intermolecular packing and intramolecular barriers combined with chain connectivity.

  17. Planning "discrete" movements using a continuous system: insights from a dynamic field theory of movement preparation.

    Science.gov (United States)

    Schutte, Anne R; Spencer, John P

    2007-04-01

    The timed-initiation paradigm developed by Ghez and colleagues (1997) has revealed two modes of motor planning: continuous and discrete. Continuous responding occurs when targets are separated by less than 60 degrees of spatial angle, and discrete responding occurs when targets are separated by greater than 60 degrees . Although these two modes are thought to reflect the operation of separable strategic planning systems, a new theory of movement preparation, the Dynamic Field Theory, suggests that two modes emerge flexibly from the same system. Experiment 1 replicated continuous and discrete performance using a task modified to allow for a critical test of the single system view. In Experiment 2, participants were allowed to correct their movements following movement initiation (the standard task does not allow corrections). Results showed continuous planning performance at large and small target separations. These results are consistent with the proposal that the two modes reflect the time-dependent "preshaping" of a single planning system.

  18. Controlling Complex Systems and Developing Dynamic Technology

    Science.gov (United States)

    Avizienis, Audrius Victor

    In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit

  19. Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets

    Science.gov (United States)

    Kaishan, Liu; Huimin, Li

    2017-12-01

    The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.

  20. Mythematics Solving the Twelve Labors of Hercules

    CERN Document Server

    Huber, Michael

    2009-01-01

    How might Hercules, the most famous of the Greek heroes, have used mathematics to complete his astonishing Twelve Labors? From conquering the Nemean Lion and cleaning out the Augean Stables, to capturing the Erymanthean Boar and entering the Underworld to defeat the three-headed dog Cerberus, Hercules and his legend are the inspiration for this book of fun and original math puzzles. While Hercules relied on superhuman strength to accomplish the Twelve Labors, Mythematics shows how math could have helped during his quest. How does Hercules defeat the Lernean Hydra and stop its heads from multip

  1. Dynamical Systems Conference

    CERN Document Server

    Gils, S; Hoveijn, I; Takens, F; Nonlinear Dynamical Systems and Chaos

    1996-01-01

    Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.

  2. Model reduction tools for nonlinear structural dynamics

    NARCIS (Netherlands)

    Slaats, P.M.A.; Jongh, de J.; Sauren, A.A.H.J.

    1995-01-01

    Three mode types are proposed for reducing nonlinear dynamical system equations, resulting from finite element discretizations: tangent modes, modal derivatives, and newly added static modes. Tangent modes are obtained from an eigenvalue problem with a momentary tangent stiffness matrix. Their

  3. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets

    Science.gov (United States)

    Hemati, Maziar S.; Rowley, Clarence W.; Deem, Eric A.; Cattafesta, Louis N.

    2017-08-01

    The dynamic mode decomposition (DMD)—a popular method for performing data-driven Koopman spectral analysis—has gained increased popularity for extracting dynamically meaningful spatiotemporal descriptions of fluid flows from snapshot measurements. Often times, DMD descriptions can be used for predictive purposes as well, which enables informed decision-making based on DMD model forecasts. Despite its widespread use and utility, DMD can fail to yield accurate dynamical descriptions when the measured snapshot data are imprecise due to, e.g., sensor noise. Here, we express DMD as a two-stage algorithm in order to isolate a source of systematic error. We show that DMD's first stage, a subspace projection step, systematically introduces bias errors by processing snapshots asymmetrically. To remove this systematic error, we propose utilizing an augmented snapshot matrix in a subspace projection step, as in problems of total least-squares, in order to account for the error present in all snapshots. The resulting unbiased and noise-aware total DMD (TDMD) formulation reduces to standard DMD in the absence of snapshot errors, while the two-stage perspective generalizes the de-biasing framework to other related methods as well. TDMD's performance is demonstrated in numerical and experimental fluids examples. In particular, in the analysis of time-resolved particle image velocimetry data for a separated flow, TDMD outperforms standard DMD by providing dynamical interpretations that are consistent with alternative analysis techniques. Further, TDMD extracts modes that reveal detailed spatial structures missed by standard DMD.

  4. Dynamic Systems and Control Engineering

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    1994-02-01

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  5. Dynamic Systems and Control Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seok

    1994-02-15

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  6. Governance Modes For Systemic Innovation. Service Development In Mobile Telecommunications

    NARCIS (Netherlands)

    J.C.M. van den Ende (Jan); F.P.H. Jaspers (Ferdinand)

    2004-01-01

    textabstractThis paper focuses on governance modes for systemic innovation projects. The central question is: to what extent does the newness of a system and its components affect the most appropriate governance mode for component development projects? Component development projects can be performed

  7. An Investigation of Digital Instrumentation and Control System Failure Modes

    International Nuclear Information System (INIS)

    Korsah, Kofi; Cetiner, Mustafa Sacit; Muhlheim, Michael David; Poore, Willis P. III

    2010-01-01

    A study sponsored by the Nuclear Regulatory Commission study was conducted to investigate digital instrumentation and control (DI and C) systems and module-level failure modes using a number of databases both in the nuclear and non-nuclear industries. The objectives of the study were to obtain relevant operational experience data to identify generic DI and C system failure modes and failure mechanisms, and to obtain generic insights, with the intent of using results to establish a unified framework for categorizing failure modes and mechanisms. Of the seven databases studied, the Equipment Performance Information Exchange database was found to contain the most useful data relevant to the study. Even so, the general lack of quality relative to the objectives of the study did not allow the development of a unified framework for failure modes and mechanisms of nuclear I and C systems. However, an attempt was made to characterize all the failure modes observed (i.e., without regard to the type of I and C equipment under consideration) into common categories. It was found that all the failure modes identified could be characterized as (a) detectable/preventable before failures, (b) age-related failures, (c) random failures, (d) random/sudden failures, or (e) intermittent failures. The percentage of failure modes characterized as (a) was significant, implying that a significant reduction in system failures could be achieved through improved online monitoring, exhaustive testing prior to installation, adequate configuration control or verification and validation, etc.

  8. Accurate Sliding-Mode Control System Modeling for Buck Converters

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper shows that classical sliding mode theory fails to correctly predict the output impedance of the highly useful sliding mode PID compensated buck converter. The reason for this is identified as the assumption of the sliding variable being held at zero during sliding mode, effectively...... approach also predicts the self-oscillating switching action of the sliding-mode control system correctly. Analytical findings are verified by simulation as well as experimentally in a 10-30V/3A buck converter....

  9. Evolutionary pulsational mode dynamics in nonthermal turbulent viscous astrofluids

    Science.gov (United States)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2017-11-01

    The pulsational mode of gravitational collapse in a partially ionized self-gravitating inhomogeneous viscous nonthermal nonextensive astrofluid in the presence of turbulence pressure is illustratively analyzed. The constitutive thermal species, lighter electrons and ions, are thermostatistically treated with the nonthermal κ-distribution laws. The inertial species, such as identical heavier neutral and charged dust microspheres, are modelled in the turbulent fluid framework. All the possible linear processes responsible for dust-dust collisions are accounted. The Larson logatropic equations of state relating the dust thermal (linear) and turbulence (nonlinear) pressures with dust densities are included. A regular linear normal perturbation analysis (local) over the complex astrocloud ensues in a generalized quartic dispersion relation with unique nature of plasma-dependent multi-parametric coefficients. A numerical standpoint is provided to showcase the basic mode features in a judicious astronomical paradigm. It is shown that both the kinematic viscosity of the dust fluids and nonthermality parameter (kappa, the power-law tail index) of the thermal species act as stabilizing (damping) agent against the gravity; and so forth. The underlying evolutionary microphysics is explored. The significance of redistributing astrofluid material via waveinduced accretion in dynamic nonhomologic structureless cloud collapse leading to hierarchical astrostructure formation is actualized.

  10. Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks

    Science.gov (United States)

    Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2018-04-01

    A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.

  11. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    Science.gov (United States)

    Geist, Eric L.

    2018-04-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  12. Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes

    Science.gov (United States)

    Geist, Eric L.

    2018-02-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  13. Nonlinear dynamic response of cable-suspended systems under swinging and heaving motion

    International Nuclear Information System (INIS)

    Cao, Guohua; Wang, Naige; Wang, Lei; Zhu, Zhencai

    2017-01-01

    In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cablesuspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the differential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also useful to investigate the accuracy and reliability of instruments in future.

  14. Nonlinear dynamic response of cable-suspended systems under swinging and heaving motion

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guohua; Wang, Naige; Wang, Lei; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China)

    2017-07-15

    In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cablesuspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the differential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also useful to investigate the accuracy and reliability of instruments in future.

  15. Variable Structure Disturbance Rejection Control for Nonlinear Uncertain Systems with State and Control Delays via Optimal Sliding Mode Surface Approach

    Directory of Open Access Journals (Sweden)

    Jing Lei

    2013-01-01

    Full Text Available The paper considers the problem of variable structure control for nonlinear systems with uncertainty and time delays under persistent disturbance by using the optimal sliding mode surface approach. Through functional transformation, the original time-delay system is transformed into a delay-free one. The approximating sequence method is applied to solve the nonlinear optimal sliding mode surface problem which is reduced to a linear two-point boundary value problem of approximating sequences. The optimal sliding mode surface is obtained from the convergent solutions by solving a Riccati equation, a Sylvester equation, and the state and adjoint vector differential equations of approximating sequences. Then, the variable structure disturbance rejection control is presented by adopting an exponential trending law, where the state and control memory terms are designed to compensate the state and control delays, a feedforward control term is designed to reject the disturbance, and an adjoint compensator is designed to compensate the effects generated by the nonlinearity and the uncertainty. Furthermore, an observer is constructed to make the feedforward term physically realizable, and thus the dynamical observer-based dynamical variable structure disturbance rejection control law is produced. Finally, simulations are demonstrated to verify the effectiveness of the presented controller and the simplicity of the proposed approach.

  16. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics.

    Science.gov (United States)

    Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman

    2015-03-28

    A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.

  17. THz time domain spectroscopy of biomolecular conformational modes

    International Nuclear Information System (INIS)

    Markelz, Andrea; Whitmire, Scott; Hillebrecht, Jay; Birge, Robert

    2002-01-01

    We discuss the use of terahertz time domain spectroscopy for studies of conformational flexibility and conformational change in biomolecules. Protein structural dynamics are vital to biological function with protein flexibility affecting enzymatic reaction rates and sensory transduction cycling times. Conformational mode dynamics occur on the picosecond timescale and with the collective vibrational modes associated with these large scale structural motions in the 1-100 cm -1 range. We have performed THz time domain spectroscopy (TTDS) of several biomolecular systems to explore the sensitivity of TTDS to distinguish different molecular species, different mutations within a single species and different conformations of a given biomolecule. We compare the measured absorbances to normal mode calculations and find that the TTDS absorbance reflects the density of normal modes determined by molecular mechanics calculations, and is sensitive to both conformation and mutation. These early studies demonstrate some of the advantages and limitations of using TTDS for the study of biomolecules

  18. Rayleigh scattering in few-mode optical fibers.

    Science.gov (United States)

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  19. System reliability analysis using dominant failure modes identified by selective searching technique

    International Nuclear Information System (INIS)

    Kim, Dong-Seok; Ok, Seung-Yong; Song, Junho; Koh, Hyun-Moo

    2013-01-01

    The failure of a redundant structural system is often described by innumerable system failure modes such as combinations or sequences of local failures. An efficient approach is proposed to identify dominant failure modes in the space of random variables, and then perform system reliability analysis to compute the system failure probability. To identify dominant failure modes in the decreasing order of their contributions to the system failure probability, a new simulation-based selective searching technique is developed using a genetic algorithm. The system failure probability is computed by a multi-scale matrix-based system reliability (MSR) method. Lower-scale MSR analyses evaluate the probabilities of the identified failure modes and their statistical dependence. A higher-scale MSR analysis evaluates the system failure probability based on the results of the lower-scale analyses. Three illustrative examples demonstrate the efficiency and accuracy of the approach through comparison with existing methods and Monte Carlo simulations. The results show that the proposed method skillfully identifies the dominant failure modes, including those neglected by existing approaches. The multi-scale MSR method accurately evaluates the system failure probability with statistical dependence fully considered. The decoupling between the failure mode identification and the system reliability evaluation allows for effective applications to larger structural systems

  20. System Dynamics

    Science.gov (United States)

    Morecroft, John

    System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.

  1. Markers of pathological excitability derived from principal dynamic modes of hippocampal neurons

    Science.gov (United States)

    Kang, Eunji E.; Zalay, Osbert C.; Serletis, Demitre; Carlen, Peter L.; Bardakjian, Berj L.

    2012-10-01

    Transformation of principal dynamic modes (PDMs) under epileptogenic conditions was investigated by computing the Volterra kernels in a rodent epilepsy model derived from a mouse whole hippocampal preparation, where epileptogenesis was induced by altering the concentrations of Mg2 + and K+ of the perfusate for different levels of excitability. Both integrating and differentiating PDMs were present in the neuronal dynamics, and both of them increased in absolute magnitude for increased excitability levels. However, the integrating PDMs dominated at all levels of excitability in terms of their relative contributions to the overall response, whereas the dominant frequency responses of the differentiating PDMs were shifted to higher ranges under epileptogenic conditions, from ripple activities (75-200 Hz) to fast ripple activities (200-500 Hz).

  2. Interactive Dynamic-System Simulation

    CERN Document Server

    Korn, Granino A

    2010-01-01

    Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author

  3. Probabilistic risk assessment modeling of digital instrumentation and control systems using two dynamic methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Aldemir, T., E-mail: aldemir.1@osu.ed [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Guarro, S. [ASCA, Inc., 1720 S. Catalina Avenue, Suite 220, Redondo Beach, CA 90277-5501 (United States); Mandelli, D. [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Kirschenbaum, J. [Ohio State University, Department of Computer Science and Engineering, Columbus, OH 43210 (United States); Mangan, L.A. [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Bucci, P. [Ohio State University, Department of Computer Science and Engineering, Columbus, OH 43210 (United States); Yau, M. [ASCA, Inc., 1720 S. Catalina Avenue, Suite 220, Redondo Beach, CA 90277-5501 (United States); Ekici, E. [Ohio State University, Department of Electrical and Computer Engineering, Columbus, OH 43210 (United States); Miller, D.W.; Sun, X. [Ohio State University, Nuclear Engineering Program, Columbus, OH 43210 (United States); Arndt, S.A. [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

    2010-10-15

    The Markov/cell-to-cell mapping technique (CCMT) and the dynamic flowgraph methodology (DFM) are two system logic modeling methodologies that have been proposed to address the dynamic characteristics of digital instrumentation and control (I and C) systems and provide risk-analytical capabilities that supplement those provided by traditional probabilistic risk assessment (PRA) techniques for nuclear power plants. Both methodologies utilize a discrete state, multi-valued logic representation of the digital I and C system. For probabilistic quantification purposes, both techniques require the estimation of the probabilities of basic system failure modes, including digital I and C software failure modes, that appear in the prime implicants identified as contributors to a given system event of interest. As in any other system modeling process, the accuracy and predictive value of the models produced by the two techniques, depend not only on the intrinsic features of the modeling paradigm, but also and to a considerable extent on information and knowledge available to the analyst, concerning the system behavior and operation rules under normal and off-nominal conditions, and the associated controlled/monitored process dynamics. The application of the two methodologies is illustrated using a digital feedwater control system (DFWCS) similar to that of an operating pressurized water reactor. This application was carried out to demonstrate how the use of either technique, or both, can facilitate the updating of an existing nuclear power plant PRA model following an upgrade of the instrumentation and control system from analog to digital. Because of scope limitations, the focus of the demonstration of the methodologies was intentionally limited to aspects of digital I and C system behavior for which probabilistic data was on hand or could be generated within the existing project bounds of time and resources. The data used in the probabilistic quantification portion of the

  4. Revealing spatio-spectral electroencephalographic dynamics of musical mode and tempo perception by independent component analysis.

    Science.gov (United States)

    Lin, Yuan-Pin; Duann, Jeng-Ren; Feng, Wenfeng; Chen, Jyh-Horng; Jung, Tzyy-Ping

    2014-02-28

    Music conveys emotion by manipulating musical structures, particularly musical mode- and tempo-impact. The neural correlates of musical mode and tempo perception revealed by electroencephalography (EEG) have not been adequately addressed in the literature. This study used independent component analysis (ICA) to systematically assess spatio-spectral EEG dynamics associated with the changes of musical mode and tempo. Empirical results showed that music with major mode augmented delta-band activity over the right sensorimotor cortex, suppressed theta activity over the superior parietal cortex, and moderately suppressed beta activity over the medial frontal cortex, compared to minor-mode music, whereas fast-tempo music engaged significant alpha suppression over the right sensorimotor cortex. The resultant EEG brain sources were comparable with previous studies obtained by other neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). In conjunction with advanced dry and mobile EEG technology, the EEG results might facilitate the translation from laboratory-oriented research to real-life applications for music therapy, training and entertainment in naturalistic environments.

  5. Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks.

    Science.gov (United States)

    Kucyi, Aaron; Salomons, Tim V; Davis, Karen D

    2013-11-12

    Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual's tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain-cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual's tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG-DMN structural connectivity and more dynamic resting state PAG-DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks.

  6. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  7. Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation.

    Science.gov (United States)

    Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka

    2012-10-12

    Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.

  8. Multiprocessor system with multiple concurrent modes of execution

    Science.gov (United States)

    Ahn, Daniel; Ceze, Luis H; Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin

    2013-12-31

    A multiprocessor system supports multiple concurrent modes of speculative execution. Speculation identification numbers (IDs) are allocated to speculative threads from a pool of available numbers. The pool is divided into domains, with each domain being assigned to a mode of speculation. Modes of speculation include TM, TLS, and rollback. Allocation of the IDs is carried out with respect to a central state table and using hardware pointers. The IDs are used for writing different versions of speculative results in different ways of a set in a cache memory.

  9. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    Directory of Open Access Journals (Sweden)

    Shahid Ahmed

    2012-02-01

    Full Text Available We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM_{110} type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.

  10. Dynamic modelling of tearing mode stabilization by RF current drive

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.; Gianakon, T.A.; Garbet, X.; Bernabei, S.

    1998-01-01

    The theory of tearing mode stabilization in toroidal plasmas by RF-driven currents that are modulated in phase with the island rotation is investigated. A time scale analysis of the phenomena involved indicates that transient effects, such as finite time response of the driven currents, island rotation during the power pulses, and the inductive response of the plasma, are intrinsically important. A dynamic model of such effects is developed, based on a 3-D Fokker-Planck code coupled to both the electric field diffusion and the island evolution equations. Extensive applications to both Electron Cyclotron and Lower Hybrid current drive in ITER are presented. (author)

  11. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Michael; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

    2012-01-01

    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type RF deflectors: normal- and super-conducting. The compact size of these cavities as compared to the conventional TM 110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.

  12. Molecular Dynamics Insights into Polyamine-DNA Binding Modes: Implications for Cross-Link Selectivity.

    Science.gov (United States)

    Bignon, Emmanuelle; Chan, Chen-Hui; Morell, Christophe; Monari, Antonio; Ravanat, Jean-Luc; Dumont, Elise

    2017-09-18

    Biogenic polyamines, which play a role in DNA condensation and stabilization, are ubiquitous and are found at millimolar concentration in the nucleus of eukaryotic cells. The interaction modes of three polyamines-putrescine (Put), spermine (Spm), and spermidine (Spd)-with a self-complementary 16 base pair (bp) duplex, are investigated by all-atom explicit-solvent molecular dynamics. The length of the amine aliphatic chain leads to a change of the interaction mode from minor groove binding to major groove binding. Through all-atom dynamics, noncovalent interactions that stabilize the polyamine-DNA complex and prefigure the reactivity, leading to the low-barrier formation of deleterious DNA-polyamine cross-links, after one-electron oxidation of a guanine nucleobase, are unraveled. The binding strength is quantified from the obtained trajectories by molecular mechanics generalized Born surface area post-processing (MM-GBSA). The values of binding free energies provide the same affinity order, Putmodes and carbon-nitrogen distances along the series of polyamines illustrate the selectivity towards deleterious DNA-polyamine cross-link formation through the extraction of average approaching distances between the C8 atom of guanines and the ammonium group. These results imply that the formation of DNA-polyamine cross-links involves deprotonation of the guanine radical cation to attack the polyamines, which must be positively charged to lie in the vicinity of the B-helix. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane.

    Science.gov (United States)

    Jeong, Bongwon; Cho, Hanna; Keum, Hohyun; Kim, Seok; Michael McFarland, D; Bergman, Lawrence A; King, William P; Vakakis, Alexander F

    2014-11-21

    Intentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems. In the present work, we employed a transfer-printing assembly technique to reliably integrate a silicon nanomembrane as a nonlinear coupling component onto a linear dynamic system with two discrete microcantilevers. The dynamics of the developed system was modeled analytically and investigated experimentally as the coupling strength was finely tuned via FIB post-processing. The transition from the linear to the nonlinear dynamic regime with gradual change in the coupling strength was experimentally studied. In addition, we observed for the weakly coupled system that oscillation was asynchronous in the vicinity of the resonance, thus exhibiting a nonlinear complex mode. We conjectured that the emergence of this nonlinear complex mode could be attributed to the nonlinear damping arising from the attached nanomembrane.

  14. Two-dimensional liquid chromatography consisting of twelve second-dimension columns for comprehensive analysis of intact proteins.

    Science.gov (United States)

    Ren, Jiangtao; Beckner, Matthew A; Lynch, Kyle B; Chen, Huang; Zhu, Zaifang; Yang, Yu; Chen, Apeng; Qiao, Zhenzhen; Liu, Shaorong; Lu, Joann J

    2018-05-15

    A comprehensive two-dimensional liquid chromatography (LCxLC) system consisting of twelve columns in the second dimension was developed for comprehensive analysis of intact proteins in complex biological samples. The system consisted of an ion-exchange column in the first dimension and the twelve reverse-phase columns in the second dimension; all thirteen columns were monolithic and prepared inside 250 µm i.d. capillaries. These columns were assembled together through the use of three valves and an innovative configuration. The effluent from the first dimension was continuously fractionated and sequentially transferred into the twelve second-dimension columns, while the second-dimension separations were carried out in a series of batches (six columns per batch). This LCxLC system was tested first using standard proteins followed by real-world samples from E. coli. Baseline separation was observed for eleven standard proteins and hundreds of peaks were observed for the real-world sample analysis. Two-dimensional liquid chromatography, often considered as an effective tool for mapping proteins, is seen as laborious and time-consuming when configured offline. Our online LCxLC system with increased second-dimension columns promises to provide a solution to overcome these hindrances. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Sliding-Mode Control to Compensate PVT Variations in Dual Core Systems

    NARCIS (Netherlands)

    Pourshaghaghi, H.R.; Fatemi, S.H.; Pineda de Gyvez, J.

    2012-01-01

    In this paper, we present a novel robust sliding-mode controller for stabilizing supply voltage and clock frequency of dual core processors determined by dynamic voltage and frequency scaling (DVFS) methods in the presence of systematic and random variations. We show that maximum rejection for

  16. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.; Walton, Jay R.; Gorb, Yuliya

    2009-01-01

    interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation

  17. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Science.gov (United States)

    Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras

    2017-11-01

    A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  18. System dynamics with interaction discontinuity

    CERN Document Server

    Luo, Albert C J

    2015-01-01

    This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.

  19. Self-oscillations in dynamic systems a new methodology via two-relay controllers

    CERN Document Server

    Aguilar, Luis T; Fridman, Leonid; Iriarte, Rafael

    2015-01-01

    This monograph presents a simple and efficient two-relay control algorithm for generation of self-excited oscillations of a desired amplitude and frequency in dynamic systems. Developed by the authors, the two-relay controller consists of two relays switched by the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation of periodic motions in underactuated mechanical systems. The first part of the book explains the design procedures for two-relay control using three different methodologies – the describing-function method, Poincaré maps, and the locus-of-a perturbed-relay-system method – and concludes with stability analysis of designed periodic oscillations. Two methods to ensure the robustness of two-relay control algorithms are explored in the second part, one based on the combination of the high-order sliding mode controller and backstepping, and the other on higher-order sliding-modes-based reconstruction of uncertainties and their compensation where...

  20. Use of the dynamic stiffness method to interpret experimental data from a nonlinear system

    Science.gov (United States)

    Tang, Bin; Brennan, M. J.; Gatti, G.

    2018-05-01

    The interpretation of experimental data from nonlinear structures is challenging, primarily because of dependency on types and levels of excitation, and coupling issues with test equipment. In this paper, the use of the dynamic stiffness method, which is commonly used in the analysis of linear systems, is used to interpret the data from a vibration test of a controllable compressed beam structure coupled to a test shaker. For a single mode of the system, this method facilitates the separation of mass, stiffness and damping effects, including nonlinear stiffness effects. It also allows the separation of the dynamics of the shaker from the structure under test. The approach needs to be used with care, and is only suitable if the nonlinear system has a response that is predominantly at the excitation frequency. For the structure under test, the raw experimental data revealed little about the underlying causes of the dynamic behaviour. However, the dynamic stiffness approach allowed the effects due to the nonlinear stiffness to be easily determined.

  1. Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks

    International Nuclear Information System (INIS)

    Han, Seong Ik; Jeong, Chan Se; Yang, Soon Yong

    2012-01-01

    A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme

  2. Robust sliding mode control for uncertain servo system using friction observer and recurrent fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong Ik [Pusan National University, Busan (Korea, Republic of); Jeong, Chan Se; Yang, Soon Yong [University of Ulsan, Ulsan (Korea, Republic of)

    2012-04-15

    A robust positioning control scheme has been developed using friction parameter observer and recurrent fuzzy neural networks based on the sliding mode control. As a dynamic friction model, the LuGre model is adopted for handling friction compensation because it has been known to capture sufficiently the properties of a nonlinear dynamic friction. A developed friction parameter observer has a simple structure and also well estimates friction parameters of the LuGre friction model. In addition, an approximation method for the system uncertainty is developed using recurrent fuzzy neural networks technology to improve the precision positioning degree. Some simulation and experiment provide the verification on the performance of a proposed robust control scheme.

  3. Common mode failures in redundancy systems

    International Nuclear Information System (INIS)

    Watson, I.A.; Edwards, G.T.

    1978-01-01

    Difficulties are experienced in assessing the impact of common mode failures on the reliability of safety systems. The paper first covers the investigation, definition and classification of CMF based on an extensive study of the nature of CMF. This is used as a basis for analysing data from nuclear reactor safety systems and aircraft systems. Design and maintenance errors are shown to be the prdominant cause of CMF. The analysis has laid the grounds for work on relating CMF modelling and defences. (author)

  4. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    Science.gov (United States)

    Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.

    2018-02-01

    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.

  5. A boundary integral method for a dynamic, transient mode I crack problem with viscoelastic cohesive zone

    KAUST Repository

    Leise, Tanya L.

    2009-08-19

    We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.

  6. Free-flying dynamics and control of an astronaut assistant robot based on fuzzy sliding mode algorithm

    Science.gov (United States)

    Gao, Qing; Liu, Jinguo; Tian, Tongtong; Li, Yangmin

    2017-09-01

    Space robots can perform some tasks in harsh environment as assistants of astronauts or substitutions of astronauts. Taking the limited working time and the arduous task of the astronauts in the space station into account, an astronaut assistant robot (AAR-2) applied in the space station is proposed and designed in this paper. The AAR-2 is achieved with some improvements on the basis of AAR-1 which was designed before. It can exploit its position and attitude sensors and control system to free flight or hover in the space cabin. And it also has a definite environmental awareness and artificial intelligence to complete some specified tasks under the control of astronauts or autonomously. In this paper, it mainly analyzes and controls the 6-DOF motion of the AAR-2. Firstly, the system configuration of AAR-2 is specifically described, and the movement principles are analyzed. Secondly, according to the physical model of the AAR-2, the Newton - Euler equation is applied in the preparation of space dynamics model of 6-DOF motion. Then, according to the mathematical model's characteristics which are nonlinear and strong coupling, a dual closed loop position and attitude controller based on fuzzy sliding mode control is proposed and designed. Finally, simulation experiments are appropriate to provide for AAR-2 control system by using Matlab/Simulink. From the simulation results it can be observed that the designed fuzzy sliding mode controller can control the 6-DOF motion of AAR-2 quickly and precisely.

  7. In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  8. In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2015-01-01

    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system.

  9. A Practical Approach to Mode Change in Real-Time Systems

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Ravn, Anders P.; Thomsen, Bent

    We present a contract for consistent mode change in a real-time system for control applications. The contract between the control engineer and the software developer guarantees that when a mode change is signalled, it will occur at a specific instant thereafter, and that the task sets for the modes...

  10. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Directory of Open Access Journals (Sweden)

    Amphawan Angela

    2017-01-01

    Full Text Available A free-space optics mode-wavelength division multiplexing (MWDM system using Laguerre-Gaussian (LG modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  11. Dynamic testing of MFTF containment-vessel structural system

    International Nuclear Information System (INIS)

    Weaver, H.J.; McCallen, D.B.; Eli, M.W.

    1982-01-01

    Dynamic (modal) testing was performed on the Magnetic Fusion Test Facility (MFTF) containment vessel. The seismic design of this vessel was heavily dependent upon the value of structural damping used in the analysis. Typically for welded steel vessels, a value of 2 to 3% of critical is used. However, due to the large mass of the vessel and magnet supported inside, we felt that the interaction between the structure and its foundation would be enhanced. This would result in a larger value of damping because vibrational energy in the structure would be transferred through the foundation into the surrounding soil. The dynamic test performed on this structure (with the magnet in place) confirmed this later theory and resulted in damping values of approximately 4 to 5% for the whole body modes. This report presents a brief description of dynamic testing emphasizing the specific test procedure used on the MFTF-A system. It also presents an interpretation of the damping mechanisms observed (material and geometric) based upon the spatial characteristics of the modal parameters

  12. Effect of dynamical phase on the resonant interaction among tsunami edge wave modes

    Science.gov (United States)

    Geist, Eric L.

    2018-01-01

    Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.

  13. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  14. Topological edge modes in multilayer graphene systems

    KAUST Repository

    Ge, Lixin

    2015-08-10

    Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.

  15. Nonlinear dynamic analysis of flexible multibody systems

    Science.gov (United States)

    Bauchau, Olivier A.; Kang, Nam Kook

    1991-01-01

    Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.

  16. Nonsingular Terminal Sliding Mode Control of Uncertain Second-Order Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Minh-Duc Tran

    2015-01-01

    Full Text Available This paper presents a high-performance nonsingular terminal sliding mode control method for uncertain second-order nonlinear systems. First, a nonsingular terminal sliding mode surface is introduced to eliminate the singularity problem that exists in conventional terminal sliding mode control. By using this method, the system not only can guarantee that the tracking errors reach the reference value in a finite time with high-precision tracking performance but also can overcome the complex-value and the restrictions of the exponent (the exponent should be fractional number with an odd numerator and an odd denominator in traditional terminal sliding mode. Then, in order to eliminate the chattering phenomenon, a super-twisting higher-order nonsingular terminal sliding mode control method is proposed. The stability of the closed-loop system is established using the Lyapunov theory. Finally, simulation results are presented to illustrate the effectiveness of the proposed method.

  17. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  18. Dynamic investigation of mode transition in inductively coupled plasma with a hybrid model

    International Nuclear Information System (INIS)

    Zhao Shuxia; Gao Fei; Wang Younian

    2009-01-01

    Industrial inductively coupled plasma (ICP) sources are always operated in low gas pressure 10-100 mTorr, therefore in order to accurately investigate the mode transition of ICP, we developed our pure fluid model (2009 J. Appl. Phys. 105 083306) into a hybrid fluid/Monte Carlo (MC) model, where the MC part is exploited to take in more dynamic characteristics of electrons and self-consistently calculate the rate coefficients and electron temperature used in the fluid module, and more crucially to study the electron energy distribution function (EEDF) evolution with mode transition. Due to the introduction of the nonlocal property of the electrons at relatively low pressures, the dependences of the plasma density on the coil current, including the mode transitions, are distinctly different at low and high pressures when simulated by this improved hybrid model (HM), while the trends for different pressures obtained from the original pure fluid model (PFM) are the same in all cases. Furthermore, the computed peaks of the electron density profile by the HM shift from the discharge centre in the E mode to the intense inductive field heating area (about half of the radius of the reaction chamber under the dielectric window) in H mode. In addition, the electron temperature profiles of two modes under different pressures simulated by HM are totally higher than the results of PFM. When the pressure is low, there is a minimum exhibited in the bulk plasma of the electron temperature profiles of the E mode, and along with the mode transition the distribution area of low temperature is substantially reduced. Moreover, this phenomenon disappears when the gas pressure is increased. Accompanied by this, the calculated EEDF of the E mode in the low pressure also demonstrates an absolutely dominant low energy electron fraction (about ≤5 eV); while transforming to the H discharge most of the electrons carry an energy of 1-10 eV. The tendencies of the calculated EEDF evolution with

  19. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  20. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    Energy Technology Data Exchange (ETDEWEB)

    Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya; Wang, Enrong [School of Electrical and Automation Engineering, Nanjing Normal University, Jiangsu, 210042 (China)

    2016-08-15

    The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally, a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.

  1. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    Directory of Open Access Journals (Sweden)

    Fuhong Min

    2016-08-01

    Full Text Available The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally, a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.

  2. Sliding mode control for uncertain unified chaotic systems with input nonlinearity

    International Nuclear Information System (INIS)

    Chiang, T.-Y.; Hung, M.-L.; Yan, J.-J.; Yang, Y.-S.; Chang, J.-F.

    2007-01-01

    This paper investigates the stabilization problem for a class of unified chaotic systems subject to uncertainties and input nonlinearity. Using the sliding mode control technique, a robust control law is established which stabilizes the uncertain unified chaotic systems even when the nonlinearity in the actuators is present. A novel adaptive switching surface is introduced to simplify the task of assigning the stability of the closed-loop system in the sliding mode motion. An illustrative example is given to demonstrate the effectiveness of the proposed sliding mode control design

  3. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models

    Science.gov (United States)

    Coppolino, Robert N.

    2018-01-01

    Responses to challenges associated with verification and validation (V&V) of Space Launch System (SLS) structural dynamics models are presented in this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), which has gained acceptance by various principals in the NASA community, defines efficient and accurate FEM modal sensitivity models that are useful in test-analysis correlation and reconciliation and parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), developed to remedy difficulties encountered with the widely used Classical Guyan Reduction (CGR) method, are presented. MGR and HR are particularly relevant for estimation of "body dominant" target modes of shell-type SLS assemblies that have numerous "body", "breathing" and local component constituents. Realities associated with configuration features and "imperfections" cause "body" and "breathing" mode characteristics to mix resulting in a lack of clarity in the understanding and correlation of FEM- and test-derived modal data. (3) Mode Consolidation (MC) is a newly introduced procedure designed to effectively "de-feature" FEM and experimental modes of detailed structural shell assemblies for unambiguous estimation of "body" dominant target modes. Finally, (4) Experimental Mode Verification (EMV) is a procedure that addresses ambiguities associated with experimental modal analysis of complex structural systems. Specifically, EMV directly separates well-defined modal data from spurious and poorly excited modal data employing newly introduced graphical and coherence metrics.

  4. The free energy principle, negative energy modes, and stability

    International Nuclear Information System (INIS)

    Morrison, P.J.; Kotschenreuther, M.

    1990-01-01

    This paper is concerned with instability of equilibria of Hamiltonian, fluid and plasma dynamical systems. Usually the dynamical equilibrium of interest is not the state of thermodynamic equilibrium, and does not correspond to a free energy minimum. The relaxation of this type of equilibrium is conventionally considered to be initiated by linear instability. However, there are many cases where linear instability is not present, but the equilibrium is nonlinearly unstable to arbitrarily small perturbations. This paper is about general free energy expressions for determining the presence of linear or nonlinear instabilities. These expressions are simple and practical, and can be obtained for all equilibria of all ideal fluid and plasma models. By free energy, we mean the energy change upon perturbations of the equilibrium that respect dynamical phase space constraints. This quantity is measured by a self-adjoint quadratic form, called δ 2 F. The free energy can result in instability when δ 2 F is indefinite; i.e. there exist accessible perturbations that lower the free energy of the system. A primary purpose of this paper is to tie together three manifestations of what we will refer to as negative energy modes. The first is the conventional plasma physics notion of negative energy mode that is based on the definition of the energy in a homogeneous dielectric medium. A negative energy mode is a normal mode of the medium (plasma) that possesses negative dielectric energy. The second manifestation occurs in finite degree-of-freedom Hamiltonian normal form theory. The quadratic part of a Hamiltonian in the vicinity of an equilibrium point, which possesses only distinct oscillatory eigenvalues, has an invariant signature. Thus in cases where the quadratic form is indefinite, it is natural to refer to the modes corresponding to the negative signature as negative energy modes

  5. Spectral dynamics of square pulses in passively mode-locked fiber lasers

    Science.gov (United States)

    Semaan, Georges; Komarov, Andrey; Niang, Alioune; Salhi, Mohamed; Sanchez, François

    2018-02-01

    We investigate experimentally and numerically the spectral dynamics of square pulses generated in passively mode-locked fiber lasers under the dissipative soliton resonance. The features of the transition from the single-peak spectral profile to the doublet spectrum with increasing pump power are studied. The used master equation takes into account the gain saturation, the quadratic frequency dispersion of the gain and the refractive index, and the cubic-quintic nonlinearity of the losses and refractive index. Experimental data are obtained for an Er:Yb-doped fiber ring laser. The theoretical and experimental results are in good agreement with each other.

  6. Model-free methods of analyzing domain motions in proteins from simulation : A comparison of normal mode analysis and molecular dynamics simulation of lysozyme

    NARCIS (Netherlands)

    Hayward, S.; Kitao, A.; Berendsen, H.J.C.

    Model-free methods are introduced to determine quantities pertaining to protein domain motions from normal mode analyses and molecular dynamics simulations, For the normal mode analysis, the methods are based on the assumption that in low frequency modes, domain motions can be well approximated by

  7. OOK power model based dynamic error testing for smart electricity meter

    International Nuclear Information System (INIS)

    Wang, Xuewei; Chen, Jingxia; Jia, Xiaolu; Zhu, Meng; Yuan, Ruiming; Jiang, Zhenyu

    2017-01-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%. (paper)

  8. OOK power model based dynamic error testing for smart electricity meter

    Science.gov (United States)

    Wang, Xuewei; Chen, Jingxia; Yuan, Ruiming; Jia, Xiaolu; Zhu, Meng; Jiang, Zhenyu

    2017-02-01

    This paper formulates the dynamic error testing problem for a smart meter, with consideration and investigation of both the testing signal and the dynamic error testing method. To solve the dynamic error testing problems, the paper establishes an on-off-keying (OOK) testing dynamic current model and an OOK testing dynamic load energy (TDLE) model. Then two types of TDLE sequences and three modes of OOK testing dynamic power are proposed. In addition, a novel algorithm, which helps to solve the problem of dynamic electric energy measurement’s traceability, is derived for dynamic errors. Based on the above researches, OOK TDLE sequence generation equipment is developed and a dynamic error testing system is constructed. Using the testing system, five kinds of meters were tested in the three dynamic power modes. The test results show that the dynamic error is closely related to dynamic power mode and the measurement uncertainty is 0.38%.

  9. Contribution to the development of a multi-mode measurement system for dynamic neutronic measurements and processing of the related uncertainties; Contribution au developpement d'un systeme de mesure multimode pour des mesures neutroniques dynamiques et traitement des incertitudes associees

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B

    2006-11-15

    It is difficult to estimate integral reactor parameters, especially reactivity, in deeply subcritical cores. Indeed the standard neutronic methods have been designed for near critical reactivity levels and they often need a critical reference. This thesis takes part in the research on ADS (Accelerated Driven Systems), for which the multiplication coefficient would be about 0.95. The first part of the thesis deals with the development of the XMODE system. It is a flexible measurement system dedicated to experiments in neutronics. X-MODE is capable of acquiring logical signals particularly in time-stamping mode as well as analogical signals. The second part of the thesis presents a statistical study of the methods used to analyse flux transients. Indeed a lot of methods exist to analyse flux transients and some are little known. Means to estimate characteristics of reactivity estimators are provided, methods compared and recommendations made. Finally, the dynamic measurements of the TRADE program are analysed and discussed. During this program, three subcritical configurations were explored. It appears that pulsed neutron source experiments give reactivity estimations that are much more precise than those obtained from flux transients. (author)

  10. Extracting Leading Nonlinear Modes of Changing Climate From Global SST Time Series

    Science.gov (United States)

    Mukhin, D.; Gavrilov, A.; Loskutov, E. M.; Feigin, A. M.; Kurths, J.

    2017-12-01

    Data-driven modeling of climate requires adequate principal variables extracted from observed high-dimensional data. For constructing such variables it is needed to find spatial-temporal patterns explaining a substantial part of the variability and comprising all dynamically related time series from the data. The difficulties of this task rise from the nonlinearity and non-stationarity of the climate dynamical system. The nonlinearity leads to insufficiency of linear methods of data decomposition for separating different processes entangled in the observed time series. On the other hand, various forcings, both anthropogenic and natural, make the dynamics non-stationary, and we should be able to describe the response of the system to such forcings in order to separate the modes explaining the internal variability. The method we present is aimed to overcome both these problems. The method is based on the Nonlinear Dynamical Mode (NDM) decomposition [1,2], but takes into account external forcing signals. An each mode depends on hidden, unknown a priori, time series which, together with external forcing time series, are mapped onto data space. Finding both the hidden signals and the mapping allows us to study the evolution of the modes' structure in changing external conditions and to compare the roles of the internal variability and forcing in the observed behavior. The method is used for extracting of the principal modes of SST variability on inter-annual and multidecadal time scales accounting the external forcings such as CO2, variations of the solar activity and volcanic activity. The structure of the revealed teleconnection patterns as well as their forecast under different CO2 emission scenarios are discussed.[1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016

  11. Dynamics and stabilization of peak current-mode controlled buck converter with constant current load

    International Nuclear Information System (INIS)

    Leng Min-Rui; Zhou Guo-Hua; Zhang Kai-Tun; Li Zhen-Hua

    2015-01-01

    The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. (paper)

  12. Failure Mode and Effect Analysis for Wind Turbine Systems in China

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; N. Soltani, Mohsen

    2017-01-01

    This paper discusses a cost based Failure Mode and Effect Analysis (FMEA) approch for the Wind Turbine (WT) with condition monitoring system in China. Normally, the traditional FMEA uses the Risk Priority Number (RPN) to rank failure modes. But the RPN can be changed with the Condition Monitoring...... Systems (CMS) due to change of the score of detection. The cost of failure mode should also be considered because faults can be detected at an incipient level, and condition-based maintenance can be scheduled. The results show that the proposed failure mode priorities considering their cost consequences...

  13. Three-mode coupling interference patterns in the dynamic structure factor of a relaxor ferroelectric

    Science.gov (United States)

    Manley, M. E.; Abernathy, D. L.; Sahul, R.; Stonaha, P. J.; Budai, J. D.

    2016-09-01

    A longstanding controversy for relaxor ferroelectrics has been the origin of the "waterfall" effect in the phonon dispersion curves, in which low-energy transverse phonons cascade into vertical columns. Originally interpreted as phonons interacting with polar nanoregions (PNRs), it was later explained as an interference effect of coupling damped optic and acoustic phonons. In light of a recently discovered PNR vibrational mode near the "waterfall" wave vector [M. E. Manley, J. W. Lynn, D. L. Abernathy, E. D. Specht, O. Delaire, A. R. Bishop, R. Sahul, and J. D. Budai, Nat. Commun. 5, 3683 (2014), 10.1038/ncomms4683], we have reexamined this feature using neutron scattering on [100]-poled PMN-30%PT [0.6 Pb (M g1 /3N b2 /3 ) O3-0.3 PbTi O3] . We find that the PNR mode couples to both optic and acoustic phonons and that this results in complex patterns in the dynamic structure factor, including intensity pockets and peaks localized in momentum-energy space. These features are fully explained by extending the mode-coupling model to include three coupled damped harmonic oscillators representing the transverse optic, acoustic, and PNR modes.

  14. Thermalization and out-of-equilibrium dynamics in open quantum many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Buchhold, Michael

    2015-06-30

    In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics. As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state. As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermis golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate σ{sup R}=ImΣ{sup R}, determined by the self-energy at equilibrium. However, for long times τ, it also reveals the presence of dynamical slow

  15. Adaptive Control of Non-Minimum Phase Modal Systems Using Residual Mode Filters2. Parts 1 and 2

    Science.gov (United States)

    Balas, Mark J.; Frost, Susan

    2011-01-01

    Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will modify the adaptive controller with a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. This paper will be divided into two parts. Here in Part I we will review the basic adaptive control approach and introduce the primary ideas. In Part II, we will present the RMF methodology and complete the proofs of all our results. Also, we will apply the above theoretical results to a simple flexible structure example to illustrate the behavior with and without the residual mode filter.

  16. Mode Selection Rule for Three-Delay Systems

    Science.gov (United States)

    Takahashi, Kin'ya; Kobayashi, Taizo

    2017-12-01

    We study the mode selection rule for a three-delay system to determine which oscillation mode is first excited by the Hopf bifurcation with increasing control parameter. We use linear stability analysis to detect an oscillating mode excited by the first bifurcation. There are two conditions, relevant and irrelevant conditions, determined by the ratios of three delay times, t1, t2, and tf, where tf is fixed and t1 and t2 are set as 0 < t1 < tf and 0 < t2 < tf. In a neighborhood of the relevant condition defined such that both t1/tf = n1/m1 and t2/tf = n2/m2 are ratios of odd to odd, oscillations nearly equal to the \\tilde{m}th-harmonic mode are excited, where \\tilde{m} is the least common multiple of m1 and m2. In the parameter space (t1,t2), there are irrelevant lines each of which is determined by a rational dependence of t1, t2, and tf, and does not allow any relevant condition. Extremely high order modes are observed along both sides of the irrelevant line. In particular, the line t2 = tf - t1, i.e., a diagonal with a slope of -1, shows the strongest irrelevancy.

  17. Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.

    Science.gov (United States)

    Samelsohn, Gregory; Gruzdev, Eugene

    2008-09-01

    A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.

  18. Presence of mixed modes in red giants in binary systems

    Directory of Open Access Journals (Sweden)

    Themeßl Nathalie

    2017-01-01

    Full Text Available The frequencies of oscillation modes in stars contain valueable information about the stellar properties. In red giants the frequency spectrum also contains mixed modes, with both pressure (p and gravity (g as restoring force, which are key to understanding the physical conditions in the stellar core. We observe a high fraction of red giants in binary systems, for which g-dominated mixed modes are not pronounced. This trend leads us to investigate whether this is specific for binary systems or a more general feature. We do so by comparing the fraction of stars with only p-dominated mixed modes in binaries and in a larger set of stars from the APOKASC sample. We find only p-dominated mixed modes in about 50% of red giants in detached eclipsing binaries compared to about 4% in the large sample. This could indicate that this phenomenon is tightly related to binarity and that the binary fraction in the APOKASC sample is about 8%.

  19. Monitoring Biological Modes in a Bioreactor Process by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Samia Semcheddine

    2015-12-01

    Full Text Available This paper deals with the general framework of fermentation system modeling and monitoring, focusing on the fermentation of Escherichia coli. Our main objective is to develop an algorithm for the online detection of acetate production during the culture of recombinant proteins. The analysis the fermentation process shows that it behaves like a hybrid dynamic system with commutation (since it can be represented by 5 nonlinear models. We present a strategy of fault detection based on residual generation for detecting the different actual biological modes. The residual generation is based on nonlinear analytical redundancy relations. The simulation results show that the several modes that are occulted during the bacteria cultivation can be detected by residuals using a nonlinear dynamic model and a reduced instrumentation.

  20. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    Directory of Open Access Journals (Sweden)

    Guoliang Zhao

    2013-01-01

    Full Text Available This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.

  1. Neoclassical tearing mode stabilization by ECCD in ITER

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.

    2001-01-01

    A dynamic model, based on a 3-D Fokker-Planck code coupled to the island evolution equations, is used to evaluate the feasibility of active control of Neoclassical Tearing modes by Electron Cyclotron Current Drive (ECCD) in International Thermonuclear Experimental Reactor (ITER). The parameters of the present version of ITER, i.e., RTO/RC ITER (IAM option) are used. Both m=3, n=2 and m=2, n=1 modes are considered. It is shown that an Electron Cyclotron wave system at 140 GHz, with toroidally steerable antennas, can stabilize both modes simultaneously if a power ≥30 MW is available

  2. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    International Nuclear Information System (INIS)

    Guo, S.C.; Chu, M.S.

    2002-01-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω -2 <<1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX

  3. High-mode-number ballooning modes in a heliotron/torsatron system: 1, Local magnetic shear

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-05-01

    The characteristics of the local magnetic shear, a quantity associated with high-mode-number ballooning mode stability, are considered in heliotron/torsatron devices that have a large Shafranov shift. The local magnetic shear is shown to vanish even in the stellarator-like region in which the global magnetic shear is positive. The reason for this is that the degree of the local compression of the poloidal magnetic field on the outer side of the torus, which maintains the toroidal force balance, is reduced in the stellarator-like region of global magnetic shear because the global rotational transform in heliotron/torsatron systems is a radially increasing function. This vanishing of the local magnetic shear is a universal property in heliotron/torsatron systems with a large Shafranov shift since it results from toroidal force balance in the stellarator-like global shear regime that is inherent to such systems

  4. Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2017-02-01

    Full Text Available Given that power-split transmission (PST is considered to be a major powertrain technology for hybrid heavy-duty vehicles (HDVs, the development and application of PST in the HDVs make mode shift control an essential aspect of powertrain system design. This paper presents a shift schedule design and torque control strategy for a hybrid HDV with PST during mode shift, intended to reduce the output torque variation and improve the shift quality (SQ. Firstly, detailed dynamic models of the hybrid HDV are developed to analyze the mode shift characteristics. Then, a gear shift schedule calculation method including a dynamic shift schedule and an economic shift schedule is provided. Based on the dynamic models and the designed shift schedule, a mode shift performance simulator is built using MATLAB/Simulink, and simulations are carried out. Through analysis of the dynamic equations, it is seen that the inertia torques of the motor–generator lead to the occurrence of transition torque. To avoid the unwanted transition torque, we use a mode shift control strategy that coordinates the motor–generator torque to compensate for the transition torque. The simulation and experimental results demonstrate that the output torque variation during mode shift is effectively reduced by the proposed control strategy, thereby improving the SQ.

  5. Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover.

    Science.gov (United States)

    Faruque, Imraan; Sean Humbert, J

    2010-05-21

    This paper presents a reduced-order model of longitudinal hovering flight dynamics for dipteran insects. The quasi-steady wing aerodynamics model is extended by including perturbation states from equilibrium and paired with rigid body equations of motion to create a nonlinear simulation of a Drosophila-like insect. Frequency-based system identification tools are used to identify the transfer functions from biologically inspired control inputs to rigid body states. Stability derivatives and a state space linear system describing the dynamics are also identified. The vehicle control requirements are quantified with respect to traditional human pilot handling qualities specification. The heave dynamics are found to be decoupled from the pitch/fore/aft dynamics. The haltere-on system revealed a stabilized system with a slow (heave) and fast subsidence mode, and a stable oscillatory mode. The haltere-off (bare airframe) system revealed a slow (heave) and fast subsidence mode and an unstable oscillatory mode, a modal structure in agreement with CFD studies. The analysis indicates that passive aerodynamic mechanisms contribute to stability, which may help explain how insects are able to achieve stable locomotion on a very small computational budget. Copyright (c) 2010. Published by Elsevier Ltd.

  6. Nonlinear drift tearing mode. Strong mode of excitation and stabilization mechanisms

    International Nuclear Information System (INIS)

    Galeev, A.A.; Zelenyj, L.M.; Kuznetsova, M.M.

    1985-01-01

    A nonlinear theory of magnetic disturbance development in collisionless configurations with magnetic field shear is considered. The instability evolution is investigated with account for the dynamics of ions and potential electric fields which determine the mode stabilization. It has been found that the drift tearing mode possesses metastable properties: in a nonlinear mode even the growth of linearly stable disturbances of the finite amplitude is possible

  7. A robo-pigeon based on an innovative multi-mode telestimulation system.

    Science.gov (United States)

    Yang, Junqing; Huai, Ruituo; Wang, Hui; Lv, Changzhi; Su, Xuecheng

    2015-01-01

    In this paper, we describe a new multi-mode telestimulation system for brain-microstimulation for the navigation of a robo-pigeon, a new type of bio-robot based on Brain-Computer Interface (BCI) techniques. The multi-mode telestimulation system overcomes neuron adaptation that was a key shortcoming of the previous single-mode stimulation by the use of non-steady TTL biphasic pulses accomplished by randomly alternating pulse modes. To improve efficiency, a new behavior model ("virtual fear") is proposed and applied to the robo-pigeon. Unlike the previous "virtual reward" model, the "virtual fear" behavior model does not require special training. The performance and effectiveness of the system to alleviate the adaptation of neurons was verified by a robo-pigeon navigation test, simultaneously confirming the practicality of the "virtual fear" behavioral model.

  8. Mean field dynamics of some open quantum systems.

    Science.gov (United States)

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of [Formula: see text]. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit [Formula: see text], of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  9. Mean field dynamics of some open quantum systems

    Science.gov (United States)

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of √{N }. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit N →∞ , of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  10. Reconsidering the boundary conditions for a dynamic, transient mode I crack problem

    KAUST Repository

    Leise, Tanya

    2008-11-01

    A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem that is important during the time interval immediately following the application of crack face loading. We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration, and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone. Numerical simulations illustrate the resulting approach.

  11. Dynamic wind turbine models in power system simulation tool DIgSILENT

    OpenAIRE

    Hansen, A.D.; Jauch, C.; Sørensen, Poul Ejnar; Iov, F.; Blaabjerg, F.

    2004-01-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create amodel database in different simulation tools. This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The repo...

  12. Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Yundi Chu

    2015-01-01

    Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

  13. Dynamics of a strongly driven two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Salmond, G.L.; Holmes, C.A.; Milburn, G.J.

    2002-01-01

    We consider a two-component Bose-Einstein condensate in two spatially localized modes of a double-well potential, with periodic modulation of the tunnel coupling between the two modes. We treat the driven quantum field using a two-mode expansion and define the quantum dynamics in terms of the Floquet Operator for the time periodic Hamiltonian of the system. It has been shown that the corresponding semiclassical mean-field dynamics can exhibit regions of regular and chaotic motion. We show here that the quantum dynamics can exhibit dynamical tunneling between regions of regular motion, centered on fixed points (resonances) of the semiclassical dynamics

  14. Nonlinear dynamics and control of a vibrating rectangular plate

    Science.gov (United States)

    Shebalin, J. V.

    1983-01-01

    The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.

  15. Truly random dynamics generated by autonomous dynamical systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.

    2001-09-01

    We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that a certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random time-series. Some applications are discussed.

  16. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    Science.gov (United States)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  17. Development of a 10-decade single-mode reactor flux monitoring system

    International Nuclear Information System (INIS)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-01-01

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs

  18. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of...

  19. A Decision Support System to Compare the Transportation Modes in Logistics

    Directory of Open Access Journals (Sweden)

    Eren Özceylan

    2010-06-01

    Full Text Available The selection of an optimal transportation mode is one of the most important factors in supply chain and logistic planning. Furthermore, the selection transportation mode is a complex, multi-criteria decision problem. The decision makers have to face and take attention with a lot of criteria; such as cost, quality, delivery time, safety, accessibility and etc while choosing the best mode. Under these criteria, there must be a selection between motorway, seaway, airway, pipeline, railway and also intermodal modes. Selection the transportation mode is very promising issue because it affects about 60-65 % of total logistic cake. There are some techniques which can be heuristics and logical approaches are used to reach the best option. The analytical hierarchy process (AHP which is one of the mathematical methods can be very useful in involving several decision makers with different conflicting objectives to arrive at a consensus decision. In this paper, the selection of an optimal transportation mode using an AHP-based model was evaluated for logistic activities. To solve this transportation mode selection problem, we developed a decision support system based AHP. By using the developed decision support system, the best transportation modes is determined and discussed.

  20. Decoherence patterns of topological qubits from Majorana modes

    International Nuclear Information System (INIS)

    Ho, Shih-Hao; Chao, Sung-Po; Chou, Chung-Hsien; Lin, Feng-Li

    2014-01-01

    We investigate the decoherence patterns of topological qubits in contact with the environment using a novel way of deriving the open system dynamics, rather than using the Feynman–Vernon approach. Each topological qubit is made up of two Majorana modes of a 1D Kitaev chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of topological qubits which are weakly coupled to fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the case for non-topological qubits—which always decohere completely in all Ohmic-like environments—topological qubits decohere completely in Ohmic and sub-Ohmic environments but not in super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits, though they cannot prevent the qubit states from exhibiting decoherence in sub-Ohmic environments, can prevent thermalization turning the state into a Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments, and the time dependence of concurrence for two topological qubits. (paper)

  1. The dynamics of a neoclassical tearing mode (NTM) influenced by energetic ions on EAST

    International Nuclear Information System (INIS)

    Li, Erzhong; Xu, L; Shi, T; Zhao, H; Liu, Y; Ti, A; Zhang, J; Huang, J; Shen, B; Lin, S; Qian, J; Gong, X; Hu, L; Igochine, V; White, R; Zhu, Y

    2016-01-01

    In the 2014 year’s campaign of experimental advanced superconducting tokamak (EAST), a series of Magnetohydrodynamics (MHD) instabilities were observed as the launching of Neutral Beam Injection (NBI), the most interesting one of which is the neoclassical tearing mode (NTM). Evidence clearly shows that a kink mode present after a strong sawtooth-like (ST-like) crash leaves a perturbation near the location of the magnetic island, providing the initial seed. The interaction of energetic ions makes the magnetic island oscillate both in island width and in rotation frequency. Analysis indicates that the bulk plasma still dominates the dynamics of NTM, and the orbit excursion of energetic ions induces a polarization current and modifies the width and rotation frequency of the neoclassical magnetic island. (paper)

  2. Using dynamic mode decomposition for real-time background/foreground separation in video

    Science.gov (United States)

    Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven; Fu, Xing; Pendergrass, Seth

    2017-06-06

    The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.

  3. Control dynamics of interaction quenched ultracold bosons in periodically driven lattices

    Science.gov (United States)

    Mistakidis, Simeon; Schmelcher, Peter; Group of Fundamental Processes in Quantum Physics Team

    2016-05-01

    The out-of-equilibrium dynamics of ultracold bosons following an interaction quench upon a periodically driven optical lattice is investigated. It is shown that an interaction quench triggers the inter-well tunneling dynamics, while for the intra-well dynamics breathing and cradle-like processes can be generated. In particular, the occurrence of a resonance between the cradle and tunneling modes is revealed. On the other hand, the employed periodic driving enforces the bosons in the mirror wells to oscillate out-of-phase and to exhibit a dipole mode, while in the central well the cloud experiences a breathing mode. The dynamical behaviour of the system is investigated with respect to the driving frequency revealing a resonant behaviour of the intra-well dynamics. To drive the system in a highly non-equilibrium state an interaction quench upon the driving is performed giving rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result of the quench the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  4. What are System Dynamics Insights?

    OpenAIRE

    Stave, K.; Zimmermann, N. S.; Kim, H.

    2016-01-01

    This paper explores the concept of system dynamics insights. In our field, the term “insight” is generally understood to mean dynamic insight, that is, a deep understanding about the relationship between structure and behavior. We argue this is only one aspect of the range of insights possible from system dynamics activities, and describe a broader range of potential system dynamics insights. We also propose an initial framework for discussion that relates different types of system dynamics a...

  5. Failure modes and natural control time for distributed vibrating systems

    International Nuclear Information System (INIS)

    Reid, R.M.

    1994-01-01

    The eigenstructure of the Gram matrix of frequency exponentials is used to study linear vibrating systems of hyperbolic type with distributed control. Using control norm as a practical measure of controllability and the vibrating string as a prototype, it is demonstrated that hyperbolic systems have a natural control time, even when only finitely many modes are excited. For shorter control times there are identifiable control failure modes which can be steered to zero only with very high cost in control norm. Both natural control time and the associated failure modes are constructed for linear fluids, strings, and beams, making note of the essential algorithms and Mathematica code, and displaying results graphically

  6. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    OpenAIRE

    Yang Yang; Chao Wang; Quanrang Zhang; Xiaolong He

    2017-01-01

    Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-dow...

  7. Dynamic model of YGN 3 and 4 steam generators for natural circulation mode

    International Nuclear Information System (INIS)

    Sohn, Jong Joo

    1995-02-01

    A dynamic model for the secondary side of Yonggwang nuclear power plant units 3 and 4 (YGN 3 and 4) steam generator model is developed to improve the accuracy of the present performance analysis code. The new model is based on the one-dimensional three region model to predict the local quality and void fraction distribution along the U-tube length. The local quality concept is used instead of the Wilson bubble rise correlation to simulate the steam generators in the natural circulation mode. The new model can be applicable to the plants in the power operation modes such as load maneuvering transients in which the steam generator internal flow is maintained in the natural circulation mode. To validate the new model, the code predictions are compared with the actual plant data measured for the selected load maneuvering tests performed during the YGN units 3 power ascension test period. The results from the improved model show better agreement with the plant data than those from the present code. Especially, the new model's capability of accurately simulating the steam generator water level behavior during the fast transients such as a large load rejection event is demonstrated

  8. Study on the stability of waterpower-speed control system for hydropower station with upstream and downstream surge chambers based on regulation modes

    International Nuclear Information System (INIS)

    Chen, J P; Yang, J D; Guo, W C; Teng, Y

    2014-01-01

    In allusion to the hydropower station with upstream and downstream surge chambers, a complete mathematical model of waterpower-speed control system that includes pipeline system and turbine regulation system is established under the premise of the breakthrough of Thoma assumption in this paper. The comprehensive transfer functions and free movement equations that characterize the dynamic characteristics of system are derived when the mode of governor is respectively frequency regulation and power regulation. Then according to Routh- Hurwitz theorem, the stability domain that describes the good or bad of stability is drawn in the coordinate system with the relative areas of upstream and downstream surge chambers as abscissa and ordinate respectively. Finally, the effects of Thoma assumption, flow inertia, regulation modes, and governor parameters on the stability of waterpower-speed control system are analyzed by means of stability domain. The following conclusions have been come to: Thoma assumption made the stability worse. The flow inertia T w has unfavorable effect on the stability of the two regulation modes. The stability of power regulation mode is obviously superior to frequency regulation mode under the same condition, but the parametric variation sensibility of the former is inferior to the latter. For the governor parameters, the stability continually gets better with the increase of temporary droop b t and damping device time constant T d , while the stability of frequency regulation would get worse with the increase of temporary droop b t when the damping device time constant T d takes small value. As the increase of permanent droop b p , the stability of power regulation mode gets worse

  9. Non-desired transitions and sliding-mode control of a multi-DOF mechanical system with stick-slip oscillations

    International Nuclear Information System (INIS)

    Navarro-Lopez, Eva M.; Liceaga-Castro, Eduardo

    2009-01-01

    Systems with discontinuous elements exhibit a wide variety of complex phenomena which must be considered in the control design process. A dynamical sliding-mode control is used to avoid different bit sticking problems appearing in conventional vertical oilwell drillstrings. The aim of the control system is to drive the rotary velocities of drillstring components to specified values. A discontinuous lumped-parameter torsional model of four degrees of freedom is considered. This model is more generic than those so far reported in the literature. The closed-loop system dynamics have four discontinuity surfaces. One of these surfaces is introduced in order to accomplish the control goal despite variations of key drilling parameters, such as, the weight on the bit, the top-rotary velocity and friction characteristics. Self-excited bit stick-slip oscillations and sticking phenomena are avoided with the controller here proposed. Moreover, an alternative procedure to investigate the stick-slip motion is presented, it is based on the study of the stability characteristics of the different system equilibria and their relationships to different sliding motions.

  10. Normal-Mode Splitting in a Weakly Coupled Optomechanical System

    Science.gov (United States)

    Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David

    2018-02-01

    Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.

  11. Insights into Dynamic Tuning of Magnetic-Resonant Wireless Power Transfer Receivers Based on Switch-Mode Gyrators

    Directory of Open Access Journals (Sweden)

    Mohamed Saad

    2018-02-01

    Full Text Available Magnetic-resonant wireless power transfer (WPT has become a reliable contactless source of power for a wide range of applications. WPT spans different power levels ranging from low-power implantable devices up to high-power electric vehicles (EV battery charging. The transmission range and efficiency of WPT have been reasonably enhanced by resonating the transmitter and receiver coils at a common frequency. Nevertheless, matching between resonance in the transmitter and receiver is quite cumbersome, particularly in single-transmitter multi-receiver systems. The resonance frequency in transmitter and receiver tank circuits has to be perfectly matched, otherwise power transfer capability is greatly degraded. This paper discusses the mistuning effect of parallel-compensated receivers, and thereof a novel dynamic frequency tuning method and related circuit topology and control is proposed and characterized in the system application. The proposed method is based on the concept of switch-mode gyrator emulating variable lossless inductors oriented to enable self-tunability in WPT receivers.

  12. Comprehensive method of common-mode failure analysis for LMFBR safety systems

    International Nuclear Information System (INIS)

    Unione, A.J.; Ritzman, R.L.; Erdmann, R.C.

    1976-01-01

    A technique is demonstrated which allows the systematic treatment of common-mode failures of safety system performance. The technique uses log analysis in the form of fault and success trees to qualitatively assess the sources of common-mode failure and quantitatively estimate the contribution to the overall risk of system failure. The analysis is applied to the secondary control rod system of an early sized LMFBR

  13. Nonlinearity and disorder: Classification and stability of nonlinear impurity modes

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole

    2001-01-01

    We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...... the case of a power-law nonlinearity in detail. We discuss several scenarios of the instability-induced dynamics of the nonlinear impurity modes, including the mode decay or switching to a new stable state, and collapse at the impurity site....

  14. On the phase between pressure and heat release fluctuations for propane/hydrogen flames and its role in mode transitions

    KAUST Repository

    Hong, Seunghyuck

    2013-12-01

    This paper presents an experimental investigation into mode-transitions observed in a 50-kW, atmospheric pressure, backward-facing step combustor burning lean premixed C3H8/H2 fuel mixtures over a range of equivalence ratios, fuel compositions and preheat temperatures. The combustor exhibits distinct acoustic response and dynamic flame shape (collectively referred to as "dynamic modes") depending on the operating conditions. We simultaneously measure the dynamic pressure and flame chemiluminescence to examine the phase between pressure (p\\') and heat release fluctuations (q\\') in the observed dynamic modes. Results show that the heat release is in phase with the pressure oscillations (θqp≈0) at the onset of a dynamic mode, while as the operating conditions change within the mode, the phase grows until it reaches a critical value θqp=θc, at which the combustor switches to another dynamic mode. According to the classical Rayleigh criterion, this critical phase (θc) should be π/2, whereas our data show that the transition occurs well below this value. A linear acoustic energy balance shows that this critical phase marks the point where acoustic losses across the system boundaries equal the energy addition from the combustion process to the acoustic field. Based on the extended Rayleigh criterion in which the acoustic energy fluxes through the system boundaries as well as the typical Rayleigh source term (p\\'q\\') are included, we derive an extended Rayleigh index defined as Re=θqp/θc, which varies between 0 and 1. This index, plotted against a density-weighted strained consumption speed, indicates that the impact of the operating parameters on the dynamic mode selection of the combustor collapses onto a family of curves, which quantify the state of the combustor within a dynamic mode. At Re=0, the combustor enters a mode, and switches to another as Re approaches 1. The results provide a metric for quantifying the instability margins of fuel

  15. Robust synchronization of chaotic systems via adaptive sliding mode control

    International Nuclear Information System (INIS)

    Yan, J.-J.; Hung, M.-L.; Chiang, T.-Y.; Yang, Y.-S.

    2006-01-01

    This Letter investigates the synchronization problem for a general class of chaotic systems. Using the sliding mode control technique, an adaptive control law is established to guarantee synchronization of the master and slave systems even when unknown parameters and external disturbances are present. In contrast to the previous works, the structure of slave system is simple and need not be identical to the master system. Furthermore, a novel proportional-integral (PI) switching surface is proposed to simplify the task of assigning the performance of the closed-loop error system in sliding mode. An illustrative example of Chua's circuit is given to demonstrate the effectiveness of the proposed synchronization scheme

  16. Letter report seismic shutdown system failure mode and effect analysis

    International Nuclear Information System (INIS)

    KECK, R.D.

    1999-01-01

    The Supply Ventilation System Seismic Shutdown ensures that the 234-52 building supply fans, the dry air process fans and vertical development calciner are shutdown following a seismic event. This evaluates the failure modes and determines the effects of the failure modes

  17. Organizational Modes of Severe Wind-producing Convective Systems over North China

    Science.gov (United States)

    Yang, Xinlin; Sun, Jianhua

    2018-05-01

    Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind (SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events (and their proportions) were cluster cells (35.4%), squall lines (18.4%), nonlinear-shaped systems (17.8%), broken lines (11.6%), individual cells (1.2%), and bow echoes (0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.

  18. Influence of Load Modes on Voltage Stability of Receiving Network at DC/AC System

    Directory of Open Access Journals (Sweden)

    Mao Chizu

    2016-01-01

    Full Text Available This paper analyses influence of load modes on DC/AC system. Because of widespread use of HVDC, DC/AC system become more complex than before and the present modes used in dispatch and planning departments are not fit in simulation anymore. So it is necessary to find load modes accurately reflecting characteristics of the system. For the sake of the voltage stability, commutation failure, etc. the practical example of the receiving network in a large DC/AC system in China is simulated with BPA, and the influence of Classical Load Mode (CLM and Synthesis load model (SLM on simulation results is studies. Furthermore, some important parameters of SLM are varied respectively among an interval to analyse how they affect the system. According to this practical examples, the result is closely related to load modes and their parameters, and SLM is more conservative but more reasonable than the present modes. The consequences indicate that at critical states, micro variation in parameters may give rise to change in simulation results radically. Thus, correct mode and parameters are important to enhance simulation accuracy of DC/AC system and researches on how they affect the system make senses.

  19. Adaptive Protection Scheme for a Distribution System Considering Grid-Connected and Islanded Modes of Operation

    Directory of Open Access Journals (Sweden)

    Yavuz Ates

    2016-05-01

    Full Text Available The renewable energy-based distributed generation (DG implementation in power systems has been an active research area during the last few decades due to several environmental, economic and political factors. Although the integration of DG offers many advantages, several concerns, including protection schemes in systems with the possibility of bi-directional power flow, are raised. Thus, new protection schemes are strongly required in power systems with a significant presence of DG. In this study, an adaptive protection strategy for a distribution system with DG integration is proposed. The proposed strategy considers both grid-connected and islanded operating modes, while the adaptive operation of the protection is dynamically realized considering the availability of DG power production (related to faults or meteorological conditions in each time step. Besides, the modular structure and fast response of the proposed strategy is validated via simulations conducted on the IEEE 13-node test system.

  20. Charge and pairing dynamics in the attractive Hubbard model: Mode coupling and the validity of linear-response theory

    Science.gov (United States)

    Bünemann, Jörg; Seibold, Götz

    2017-12-01

    Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.

  1. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Atul, J.K., E-mail: jkatulphysics@gmail.com [Department of Physics, College of Commerce under Magadh University, Patna 800020 (India); Sarkar, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India); Singh, S.K. [Department of Physics, College of Commerce under Magadh University, Patna 800020 (India)

    2016-04-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.

  2. Nonlinearly coupled dynamics of irregularities in the equatorial electrojet

    International Nuclear Information System (INIS)

    Atul, J.K.; Sarkar, S.; Singh, S.K.

    2016-01-01

    Kinetic wave description is used to study the nonlinear influence of background Farley Buneman (FB) modes on the Gradient Drift (GD) modes in the equatorial electrojet ionosphere. The dominant nonlinearity is mediated through the electron flux term in the governing fluid equation which further invokes a turbulent current into the system. Electron dynamics reveals the modification in electron collision frequency and inhomogeneity scale length. It is seen that the propagation and growth rate of GD modes get modified by the background FB modes. Also, a new quasimode gets excited through the quadratic dispersion relation. Physical significance of coupled dynamics between the participating modes is also discussed. - Highlights: • Nonlinear influence of Farley Buneman mode on the Gradient drift mode, is investigated. • Electron collision frequency and density gradient scale length get modified. • A new quasimode gets excited due to the competition between these modes. • It seems to be important for modelling of Equatorial Electrojet current system.

  3. New information technologies in operative control of modes in regional electrical power systems

    OpenAIRE

    ANDREY D. TEVJASHEV; TATJANA B. TIMOFEEVA

    2003-01-01

    The problem of development of software for management of modes in electrical power systems in connection with casual character of a load in network is considered. The stochastic mathematical model of a system for operating control of modes in regional electrical power systems is offered. The methods for problem solving of operating control and operating planning of operational modes in regional electrical power systems are developed. The application of the developed models and methods will al...

  4. Model reduction for the dynamics and control of large structural systems via neutral network processing direct numerical optimization

    Science.gov (United States)

    Becus, Georges A.; Chan, Alistair K.

    1993-01-01

    Three neural network processing approaches in a direct numerical optimization model reduction scheme are proposed and investigated. Large structural systems, such as large space structures, offer new challenges to both structural dynamicists and control engineers. One such challenge is that of dimensionality. Indeed these distributed parameter systems can be modeled either by infinite dimensional mathematical models (typically partial differential equations) or by high dimensional discrete models (typically finite element models) often exhibiting thousands of vibrational modes usually closely spaced and with little, if any, damping. Clearly, some form of model reduction is in order, especially for the control engineer who can actively control but a few of the modes using system identification based on a limited number of sensors. Inasmuch as the amount of 'control spillover' (in which the control inputs excite the neglected dynamics) and/or 'observation spillover' (where neglected dynamics affect system identification) is to a large extent determined by the choice of particular reduced model (RM), the way in which this model reduction is carried out is often critical.

  5. Dynamical modeling and experiment for an intra-cavity optical parametric oscillator pumped by a Q-switched self-mode-locking laser

    Science.gov (United States)

    Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun

    2016-11-01

    The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.

  6. Spaces of Dynamical Systems

    CERN Document Server

    Pilyugin, Sergei Yu

    2012-01-01

    Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion.In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.

  7. Thermal Equilibrium Dynamic Control Based on DPWM Dual-Mode Modulation of High Power NPC Three-Level Inverter

    Directory of Open Access Journals (Sweden)

    Shi-Zhou Xu

    2016-01-01

    Full Text Available In some special applications of NPC three-level inverters, such as mine hoist, there exist special conditions of overloading during the whole hoisting process and large overload in starting stage, during which the power-loss calculation of power devices and thermal control are important factors affecting the thermal stability of inverters. The principles of SVPWM and DPWM were described in this paper firstly, based on which the dynamic power losses of the two modulations of hoist in single period were calculated. Secondly, a thermal equilibrium dynamic control based on DPMW dual-mode modulation was proposed, which can switch the modulation dynamically according to the change of dynamic power loss to realize dynamic control of power loss and thermal equilibrium of inverter. Finally, simulation and experiment prove the effectiveness of the proposed strategy.

  8. The internal model: A study of the relative contribution of proprioception and visual information to failure detection in dynamic systems. [sensitivity of operators versus monitors to failures

    Science.gov (United States)

    Kessel, C.; Wickens, C. D.

    1978-01-01

    The development of the internal model as it pertains to the detection of step changes in the order of control dynamics is investigated for two modes of participation: whether the subjects are actively controlling those dynamics or are monitoring an autopilot controlling them. A transfer of training design was used to evaluate the relative contribution of proprioception and visual information to the overall accuracy of the internal model. Sixteen subjects either tracked or monitored the system dynamics as a 2-dimensional pursuit display under single task conditions and concurrently with a sub-critical tracking task at two difficulty levels. Detection performance was faster and more accurate in the manual as opposed to the autopilot mode. The concurrent tracking task produced a decrement in detection performance for all conditions though this was more marked for the manual mode. The development of an internal model in the manual mode transferred positively to the automatic mode producing enhanced detection performance. There was no transfer from the internal model developed in the automatic mode to the manual mode.

  9. Understanding the decline and resilience loss of a long-lived social-ecological system: insights from system dynamics

    Directory of Open Access Journals (Sweden)

    Alicia Tenza

    2017-06-01

    Full Text Available Collapse of social-ecological systems (SESs is a common process in human history. Depletion of natural resources, scarcity of human capital, or both, is/are common pathways toward collapse. We use the system dynamics approach to better understand specific problems of small-scale, long-lived SESs. We present a qualitative (or conceptual model using the conceptualization process of the system dynamics approach to study the dynamics of an oasis in Mexico that has witnessed a dramatic transition to decline in recent decades. We used indepth interviews, participant observation, expert opinions, and official statistical data sets to define the boundaries, and structure in a causal loop diagram of our studied system. We described historical trends and showed the reference mode for the main system variables (observed data, and analyzed the expected system behavior according to the system structure. We identified the main drivers that changed the system structure, as well as structural changes, and the effects of these changes on the dynamics, resilience, and vulnerability of this SES. We found that the tendency of this SES toward collapse was triggered by exogenous factors (growth of modern agriculture in nearby valleys, and socio-political relocation, and was maintained by an endogenous structure. These structural changes weakened the resilience of this SES. One of these changes resulted in a long-term maladaptation of the SES, which increased its vulnerability to frequent system disturbances (hurricanes and droughts. The conceptual model developed provides an in-depth qualitative description of the system, with an important amount of qualitative and quantitative information, to establish the structural hypothesis of the observed behavior. Using this qualitative model, the next research steps are to develop a quantitative model to test the qualitative theories, and to explore future scenarios of system resilience for decision-making processes to

  10. Stability of dynamical systems

    CERN Document Server

    Liao, Xiaoxin; Yu, P 0

    2007-01-01

    The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents

  11. Population dynamics of earthworms in relation to soil physico-chemical parameters in agroforestry systems of Mizoram, India.

    Science.gov (United States)

    Lalthanzara, H; Ramanujam, S N; Jha, L K

    2011-09-01

    Earthworm population dynamics was studied in two agroforestry systems in the tropical hilly terrain of Mizoram, north-east India, over a period of 24 months, from July 2002 to June 2004. Two sites of agroforestry situated at Sakawrtuichhun (SKT) and Pachhunga University College (PUC) campus, Aizawl, having pineapple as the main crop, were selected for detail studies on population dynamics. Five of the total twelve species of earthworm reported from the state were recorded in the study sites. The density of earthworm ranged from 6 to 243 ind.m(-2) and biomass from 3.2 - 677.64 g.m(-2) in SKT. Comparatively the density and biomass in PUC, which is at relatively higher altitude were lowerwith a range of 0 to 176 ind.m(-2) and biomass from 0 - 391.36 g.m(-2) respectively. Population dynamics of earthworm was significantly correlated with rainfall and physical characters of the soil. Earthworm biomass was significantly affected by rainfall and moisture content of the soil. The influence of chemical factors was relatively less.

  12. Oliver E. Buckley Condensed Matter Prize: Emergent gravity from interacting Majorana modes

    Science.gov (United States)

    Kitaev, Alexei

    I will describe a concrete many-body Hamiltonian that exhibits some features of a quantum black hole. The Sachdev-Ye-Kitaev model is a system of N >> 1 Majorana modes that are all coupled by random 4-th order terms. The problem admits an approximate dynamic mean field solution. At low temperatures, there is a fluctuating collective mode that corresponds to reparametrization of time. The effective action for this mode is equivalent to dilaton gravity in two space-time dimensions. Some important questions are how to quantize the reparametrization mode in Lorentzian time, include dissipative effects, and understand this system from the quantum information perspective. Supported by the Simons Foundation, Award Number 376205.

  13. Advances and applications in sliding mode control systems

    CERN Document Server

    Zhu, Quanmin

    2015-01-01

    This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.    

  14. A quantum-classical simulation of a multi-surface multi-mode ...

    Indian Academy of Sciences (India)

    Multi surface multi mode quantum dynamics; parallelized quantum classical approach; TDDVR method. 1. ... cal simulation on molecular system is a great cha- llenge for ..... on a multiple core cluster with shared memory using. OpenMP based ...

  15. Mode Dynamics in the Bragg FEL Based on Coupling of Propagating and Trapped Waves

    CERN Document Server

    Ginzburg, N S; Peskov, N Yu; Rozental, R M; Sergeev, A; Zaslavsky, V Yu

    2005-01-01

    A novel Bragg FEL scheme is discussed in which an electron beam synchronously interacts with a propagating wave, and the latter is coupled to a quasi cut-off mode. This coupling is realized by either helical or asimuthally symmetric corrugation of the waveguide walls. The quasi cut-off mode provides feedback in the system leading to self-excitation of the whole system while the efficiency in steady-state regime of generation is almost completely determined by the propagating mode, synchronous to the beam. Analysis based on averaged time domain approach as well as on direct PIC code simulation shows that the efficiency of such a device in the single mode single frequency regime can be rather high. The main advantage of the novel Bragg resonator is provision of higher selectivity over transverse index than traditional scheme of Bragg FEL. The cold microwave testing of the Bragg structure based on coupling of propagating and trapped waves in the Ka band demonstrated a good agreement with theoretical consideratio...

  16. Modeling and sliding mode predictive control of the ultra-supercritical boiler-turbine system with uncertainties and input constraints.

    Science.gov (United States)

    Tian, Zhen; Yuan, Jingqi; Zhang, Xiang; Kong, Lei; Wang, Jingcheng

    2018-05-01

    The coordinated control system (CCS) serves as an important role in load regulation, efficiency optimization and pollutant reduction for coal-fired power plants. The CCS faces with tough challenges, such as the wide-range load variation, various uncertainties and constraints. This paper aims to improve the load tacking ability and robustness for boiler-turbine units under wide-range operation. To capture the key dynamics of the ultra-supercritical boiler-turbine system, a nonlinear control-oriented model is developed based on mechanism analysis and model reduction techniques, which is validated with the history operation data of a real 1000 MW unit. To simultaneously address the issues of uncertainties and input constraints, a discrete-time sliding mode predictive controller (SMPC) is designed with the dual-mode control law. Moreover, the input-to-state stability and robustness of the closed-loop system are proved. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves good tracking performance, disturbance rejection ability and compatibility to input constraints. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Mode 3 knowledge production: Systems and systems theory, clusters and networks

    OpenAIRE

    Carayannis, Elias G.; Campbell, David F. J.; Rehman, Scheherazade S.

    2016-01-01

    With the comprehensive term of "Mode 3," we want to draw a conceptual link between systems and systems theory and want to demonstrate further how this can be applied to knowledge in the next steps. Systems can be understood as being composed of "elements", which are tied together by a "self-rationale". For innovation, often innovation clusters and innovation networks are being regarded as important. By leveraging systems theory for innovation concepts, one can implement references between the...

  18. Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2014-01-01

    Full Text Available This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.

  19. On normal modes in classical Hamiltonian systems

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.

    1983-01-01

    Normal modes of Hamittonian systems that are even and of classical type are characterized as the critical points of a normalized kinetic energy functional on level sets of the potential energy functional. With the aid of this constrained variational formulation the existence of at least one family

  20. Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Yu Jian-Bo

    2011-01-01

    Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface-bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numerical simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the S0 and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch

    International Nuclear Information System (INIS)

    Khari, Safa; Rahmani, Zahra; Rezaie, Behrooz

    2016-01-01

    An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system. In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov’s stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response, and robustness against uncertainties. (paper)

  2. Magnon dark modes and gradient memory.

    Science.gov (United States)

    Zhang, Xufeng; Zou, Chang-Ling; Zhu, Na; Marquardt, Florian; Jiang, Liang; Tang, Hong X

    2015-11-16

    Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories.

  3. Stability of power systems coupled with market dynamics

    Science.gov (United States)

    Meng, Jianping

    This Ph.D. thesis presented here spans two relatively independent topics. The first part, Chapter 2 is self-contained, and is dedicated to studies of new algorithms for power system state estimation. The second part, encompassing the remaining chapters, is dedicated to stability analysis of power system coupled with market dynamics. The first part of this thesis presents improved Newton's methods employing efficient vectorized calculations of higher order derivatives in power system state estimation problems. The improved algorithms are proposed based on an exact Newton's method using the second order terms. By efficiently computing an exact gain matrix, combined with a special optimal multiplier method, the new algorithms show more reliable convergence compared with the existing methods of normal equations, orthogonal decomposition, and Hachtel's sparse tableau. Our methods are able to handle ill-conditioned problems, yet show minimal penalty in computational cost for well-conditioned cases. These claims are illustrated through the standard IEEE 118 and 300 bus test examples. The second part of the thesis focuses on stability analysis of market/power systems. The work presented is motivated by an emerging problem. As the frequency of market based dispatch updates increases, there will inevitably be interaction between the dynamics of markets determining the generator dispatch commands, and the physical response of generators and network interconnections, necessitating the development of stability analysis for such coupled systems. We begin with numeric tests using different market models, with detailed machine/exciter/turbine/governor dynamics, in the New England 39 bus test system. A progression of modeling refinements are introduced, including such non-ideal effects as time delays. Electricity market parameter identification algorithms are also studied based on real time data from the PJM electricity market. Finally our power market model is augmented by optimal

  4. Dynamic Response of Dam-Reservoir Systems: Review and a Semi-Analytical Proposal

    Directory of Open Access Journals (Sweden)

    Paulo Marcelo Vieira Ribeiro

    Full Text Available Abstract This paper presents a review of current techniques employed for dynamic analysis of concrete gravity dams under seismic action. Traditional procedures applied in design bureaus, such as the Pseudo-Static method, often neglect structural dynamic properties, as well as ground amplification effects. A practical alternative arises with the Pseudo-Dynamic method, which considers a simplified spectrum response in the fundamental mode. The authors propose a self-contained development and detailed examples of this latter method, including a comparison with finite element models using transient response of fluid-structure systems. It is verified that application of the traditional procedure should be done carefully and limited to extremely rigid dams. On the other hand, the proposed development is straightforward and in agreement with finite element results for general cases where dam flexibility plays an important role.

  5. Evaluation of failure modes of computerized planning phase of interstitial implants with high dose rate brachytherapy using HFMEA

    International Nuclear Information System (INIS)

    Biazotto, Bruna; Tokarski, Marcio

    2014-01-01

    This paper evaluates the failure modes of the computerized planning step in interstitial implants with high dose rate brachytherapy. The prospective tool of risk management Health Care Failure Mode and Effects Analysis (HFMEA) was used. Twelve subprocesses were identified, and 33 failure modes of which 21 justified new safety actions, and 9 of them were intolerable risks. The method proved itself useful in identifying failure modes, but laborious and subjective in their assessment. The main risks were due to human factors, which require training and commitment of management to their mitigation. (author)

  6. Flow Mode Dependent Partitioning Processes of Preferential Flow Dynamics in Unsaturated Fractures - Findings From Analogue Percolation Experiments

    Science.gov (United States)

    Kordilla, J.; Noffz, T.; Dentz, M.; Sauter, M.

    2017-12-01

    To assess the vulnerability of an aquifer system it is of utmost importance to recognize the high potential for a rapid mass transport offered by ow through unsaturated fracture networks. Numerical models have to reproduce complex effects of gravity-driven flow dynamics to generate accurate predictions of flow and transport. However, the non-linear characteristics of free surface flow dynamics and partitioning behaviour at unsaturated fracture intersections often exceed the capacity of classical volume-effective modelling approaches. Laboratory experiments that manage to isolate single aspects of the mass partitioning process can enhance the understanding of underlying dynamics, which ultimately influence travel time distributions on multiple scales. Our analogue fracture network consists of synthetic cubes with dimensions of 20 x 20 x 20 cm creating simple geometries of a single or a cascade of consecutive horizontal fractures. Gravity-driven free surface flow (droplets; rivulets) is established via a high precision multichannel dispenser at flow rates ranging from 1.5 to 4.5 ml/min. Single-inlet experiments show the influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes and allow to delineate a droplet and rivulet regime. The transition between these regimes exhibits mixed flow characteristics. In addition, multi-inlet setups with constant total infow rates decrease the variance induced by erratic free-surface flow dynamics. We investigate the impacts of variable aperture widths, horizontal offsets of vertical fracture surfaces, and alternating injection methods for both flow regimes. Normalized fracture inflow rates allow to demonstrate and compare the effects of variable geometric features. Firstly, the fracture filling can be described by plug flow. At later stages it transitions into a Washburn-type flow, which we compare to an analytical solution for the case of rivulet flow. Observations show a considerably

  7. Modelling the Effects of Parking Charge and Supply Policy Using System Dynamics Method

    Directory of Open Access Journals (Sweden)

    Zhenyu Mei

    2017-01-01

    Full Text Available Reasonable parking charge and supply policy are essential for the regular operation of the traffic in city center. This paper develops an evaluation model for parking policies using system dynamics. A quantitative study is conducted to examine the effects of parking charge and supply policy on traffic speed. The model, which is composed of three interrelated subsystems, first summarizes the travel cost of each travel mode and then calibrates the travel choice model through the travel mode subsystem. Finally, the subsystem that evaluates the state of traffic forecasts future car speed based on bureau of public roads (BPR function and generates new travel cost until the entire model reaches a steady state. The accuracy of the model is verified in Hangzhou Wulin business district. The related error of predicted speed is only 2.2%. The results indicate that the regular pattern of traffic speed and parking charge can be illustrated using the proposed model based on system dynamics, and the model infers that reducing the parking supply in core area will increase its congestion level and, under certain parking supply conditions, there exists an interval of possible pricing at which the service reaches a level that is fairly stable.

  8. Implementation Of Automatic Wiper Speed Control And Headlight Modes Control Systems Using Fuzzy Logic

    OpenAIRE

    ThetKoKo; ZawMyoTun; Hla Myo Tun

    2015-01-01

    Abstract This research paper describes the design and simulation of the automatic wiper speed and headlight modes controllers using fuzzy logic. This proposed system consists of a fuzzy logic controller to control a cars wiper speed and headlight modes. The automatic wiper system detects the rain and its intensity. And according to the rain intensity the wiper speed is automatically controlled. Headlight modes automatically changes either from low beam mode to high beam mode or form high beam...

  9. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  10. A Practical Approach to Mode Change in Real-Time Systems

    DEFF Research Database (Denmark)

    Søndergaard, Hans; Ravn, Anders Peter; Thomsen, Bent

    We present a contract for consistent mode change in a real-time system for control applications. The contract between the control engineer and the software developer guarantees that when a mode change is signalled, it will occur at a specific instant thereafter, and that the task sets for the mod...

  11. The influence of the Itaipu 60 Hz excitation system and stabilizer in the dynamic performance of the south/southeastern interconnected system

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Filho, Xisto; Gomes, P.; Garos, I. [ELETROBRAS, Rio de Janeiro, RJ (Brazil); Pedroso, A. [Centro de Pesquisas de Energia Eletrica, Rio de Janeiro, RJ (Brazil); Jardim, J.L [FURNAS, Rio de Janeiro, RJ (Brazil); Queiroz, V. [Itaipu Binacional, Foz do Iguacu, PR (Brazil)

    1987-12-31

    This paper presents the main characteristics of Brazilian South/Southeastern interconnected system. Special attention is given to the Itaipu power plant which was considered the main basis for hydro generation expansion in the Brazilian interconnected system for the period 1982/1990. The paper also analyses the flexibility of the Itaipu 60 Hz Power System Stabilizer (PSS) for a more effective contribution to attenuate the dynamic problems, considering its influence not only for local mode oscillations, but also for the inter-area types. 7 refs., 6 figs., 6 tabs.

  12. Magnetization reversal modes in fourfold Co nano-wire systems

    International Nuclear Information System (INIS)

    Blachowicz, T; Ehrmann, A

    2015-01-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities. (paper)

  13. Magnetization reversal modes in fourfold Co nano-wire systems

    Science.gov (United States)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  14. Online probabilistic operational safety assessment of multi-mode engineering systems using Bayesian methods

    International Nuclear Information System (INIS)

    Lin, Yufei; Chen, Maoyin; Zhou, Donghua

    2013-01-01

    In the past decades, engineering systems become more and more complex, and generally work at different operational modes. Since incipient fault can lead to dangerous accidents, it is crucial to develop strategies for online operational safety assessment. However, the existing online assessment methods for multi-mode engineering systems commonly assume that samples are independent, which do not hold for practical cases. This paper proposes a probabilistic framework of online operational safety assessment of multi-mode engineering systems with sample dependency. To begin with, a Gaussian mixture model (GMM) is used to characterize multiple operating modes. Then, based on the definition of safety index (SI), the SI for one single mode is calculated. At last, the Bayesian method is presented to calculate the posterior probabilities belonging to each operating mode with sample dependency. The proposed assessment strategy is applied in two examples: one is the aircraft gas turbine, another is an industrial dryer. Both examples illustrate the efficiency of the proposed method

  15. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  16. The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Breuillard, H.; Le Contel, O.; Chust, T.; Berthomier, M.; Retino, A.; Turner, D. L.; Nakamura, R.; Baumjohann, W.; Cozzani, G.; Catapano, F.; Alexandrova, A.; Mirioni, L.; Graham, D. B.; Argall, M. R.; Fischer, D.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Ahmadi, N.; Burch, J. L.; Torbert, R. B.; Needell, G.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.

    2018-01-01

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ˜100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

  17. Scilab software package for the study of dynamical systems

    Science.gov (United States)

    Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.

    2008-05-01

    This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not

  18. Dynamic performance of a C/C composite finger seal in a tilting mode

    Directory of Open Access Journals (Sweden)

    Hailin ZHAO

    2017-08-01

    Full Text Available The complex operating state of aeroengines has an impact on the performance of finger seals. However, little work has been focused on the issue and the dynamic performance of finger seals is also rarely studied. Therefore, a distributed mass equivalent model considering working conditions is proposed in this paper for solving the existing problems. The effects of the fiber bundle density and the preparation direction of the fiber bundle of a C/C composite on the dynamic performance of a finger seal are investigated in rotor tilt based on the proposed model. The difference between the C/C composite finger seal performances under the rotor precession and nutation tilt cases is also investigated. The results show that the fiber bundle density and the preparation direction of the fiber bundle have an influence on the dynamic performance of the finger seal as rotor tilt is considered, and the dynamic performance of the finger seal is different in the two kinds of tilting modes. In addition, a novel method for design of finger seals is presented based on the contact pressure between finger boots and the rotor. Finger seals with good leakage rates and low wear can be acquired in this method.

  19. Normal mode approach to modelling of feedback stabilization of the resistive wall mode

    International Nuclear Information System (INIS)

    Chu, M.S.; Chance, M.S.; Okabayashi, M.; Glasser, A.H.

    2003-01-01

    Feedback stabilization of the resistive wall mode (RWM) of a plasma in a general feedback configuration is formulated in terms of the normal modes of the plasma-resistive wall system. The growth/damping rates and the eigenfunctions of the normal modes are determined by an extended energy principle for the plasma during its open (feedback) loop operation. A set of equations are derived for the time evolution of these normal modes with currents in the feedback coils. The dynamics of the feedback system is completed by the prescription of the feedback logic. The feasibility of the feedback is evaluated by using the Nyquist diagram method or by solving the characteristic equations. The elements of the characteristic equations are formed from the growth and damping rates of the normal modes, the sensor matrix of the perturbation fluxes detected by the sensor loops, the excitation matrix of the energy input to the normal modes by the external feedback coils, and the feedback logic. (The RWM is also predicted to be excited by an external error field to a large amplitude when it is close to marginal stability.) This formulation has been implemented numerically and applied to the DIII-D tokamak. It is found that feedback with poloidal sensors is much more effective than feedback with radial sensors. Using radial sensors, increasing the number of feedback coils from a central band on the outboard side to include an upper and a lower band can substantially increase the effectiveness of the feedback system. The strength of the RWM that can be stabilized is increased from γτ w = 1 to 30 (γ is the growth rate of the RWM in the absence of feedback and τ w is the resistive wall time constant) Using poloidal sensors, just one central band of feedback coils is sufficient for the stabilization of the RWM with γτ w = 30. (author)

  20. Bushes of vibrational modes for Fermi-Pasta-Ulam chains

    Science.gov (United States)

    Chechin, G. M.; Novikova, N. V.; Abramenko, A. A.

    2002-06-01

    Some exact solutions and multimode invariant submanifolds were found for the Fermi-Pasta-Ulam (FPU)- β model by Poggi and Ruffo [Physica D 103 (1997) 251]. In the present paper we demonstrate how results of such a type can be obtained for an arbitraryN-particle chain with periodic boundary conditions with the aid of our group-theoretical approach [Physica D 117 (1998) 43] based on the concept of bushes of normal modes in mechanical systems with discrete symmetry. The integro-differential equation describing the FPU- α dynamics in the modal space is derived. The loss of stability of the bushes of modes for the FPU- α model, in particular, for the limiting case N→∞ for the dynamical regime with displacement pattern having period twice the lattice spacing ( π-mode) is studied. Our results for the FPU- α chain are compared with those by Poggi and Ruffo for the FPU- β chain.

  1. The role of model dynamics in ensemble Kalman filter performance for chaotic systems

    Science.gov (United States)

    Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.

    2011-01-01

    The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.

  2. Spent nuclear fuel system dynamic stability under normal conditions of transportation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao; Wang, Jy-An John, E-mail: wangja@ornl.gov

    2016-12-15

    Highlights: • A conformational potential effect of fuel assembly contact interaction induced transient shock. • Complex vibration modes and vibration load intensity were observed from fuel assembly system. • The project was able to link the periodic transient shock to spent fuel fatigue strength reduction. - Abstract: In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside the cask during NCT. Dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly. To further evaluate the intensity of contact interaction induced by the local contacts’ impact loading at the spacer grid, detailed models of the actual spring and dimples of the spacer grids were created. The impacts between the fuel rod and springs and dimples were simulated with a 20 g transient shock load. The associated contact interaction intensities, in terms of reaction forces, were estimated from the finite element analyses (FEA) results. The bending moment estimated from the resultant stress on the clad under 20 g transient shock can be used to define the loading in cyclic integrated reversible-bending fatigue tester (CIRFT) vibration testing for the equivalent condition. To estimate the damage potential of the transient shock to the SNF vibration

  3. Stochastic Switching Dynamics

    DEFF Research Database (Denmark)

    Simonsen, Maria

    This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...

  4. Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Roehling, John D.; Coughlin, Daniel R.; Gibbs, John W.; Baldwin, J. Kevin; Mertens, James C.E.; Campbell, Geoffrey H.; Clarke, Amy J.; McKeown, Joseph T.

    2017-01-01

    In situ dynamic transmission electron microscope (DTEM) imaging of Al-Si thin-film alloys was performed to investigate rapid solidification behavior. Solidification of alloys with compositions from 1 to 15 atomic percent Si was imaged during pulsed laser melting and subsequent solidification. Solely α-Al solidification was observed in Al-1Si and Al-3Si alloys, and solely kinetically modified eutectic growth was observed in Al-6Si and Al-9Si alloys. A transition in the solidification mode in eutectic and hypereutectic alloys (Al-12Si and Al-15Si) from nucleated α-Al dendrites at lower solidification velocities to planar eutectic growth at higher solidification velocities was observed, departing from trends previously seen in laser-track melting experiments. Comparisons of the growth modes and corresponding velocities are compared with previous solidification models, and implications regarding the models are discussed.

  5. System dynamic simulation: A new method in social impact assessment (SIA)

    International Nuclear Information System (INIS)

    Karami, Shobeir; Karami, Ezatollah; Buys, Laurie; Drogemuller, Robin

    2017-01-01

    Many complex social questions are difficult to address adequately with conventional methods and techniques, due to the complicated dynamics, and hard to quantify social processes. Despite these difficulties researchers and practitioners have attempted to use conventional methods not only in evaluative modes but also in predictive modes to inform decision making. The effectiveness of SIAs would be increased if they were used to support the project design processes. This requires deliberate use of lessons from retrospective assessments to inform predictive assessments. Social simulations may be a useful tool for developing a predictive SIA method. There have been limited attempts to develop computer simulations that allow social impacts to be explored and understood before implementing development projects. In light of this argument, this paper aims to introduce system dynamic (SD) simulation as a new predictive SIA method in large development projects. We propose the potential value of the SD approach to simulate social impacts of development projects. We use data from the SIA of Gareh-Bygone floodwater spreading project to illustrate the potential of SD simulation in SIA. It was concluded that in comparison to traditional SIA methods SD simulation can integrate quantitative and qualitative inputs from different sources and methods and provides a more effective and dynamic assessment of social impacts for development projects. We recommend future research to investigate the full potential of SD in SIA in comparing different situations and scenarios.

  6. System dynamic simulation: A new method in social impact assessment (SIA)

    Energy Technology Data Exchange (ETDEWEB)

    Karami, Shobeir, E-mail: shobeirkarami@gmail.com [Agricultural Extension and Education, Shiraz University (Iran, Islamic Republic of); Karami, Ezatollah, E-mail: ekarami@shirazu.ac.ir [Agricultural Extension and Education, Shiraz University (Iran, Islamic Republic of); Buys, Laurie, E-mail: l.buys@qut.edu.au [Creative Industries Faculty, School of Design, Queensland University of Technology (Australia); Drogemuller, Robin, E-mail: robin.drogemuller@qut.edu.au [Creative Industries Faculty, School of Design, Queensland University of Technology (Australia)

    2017-01-15

    Many complex social questions are difficult to address adequately with conventional methods and techniques, due to the complicated dynamics, and hard to quantify social processes. Despite these difficulties researchers and practitioners have attempted to use conventional methods not only in evaluative modes but also in predictive modes to inform decision making. The effectiveness of SIAs would be increased if they were used to support the project design processes. This requires deliberate use of lessons from retrospective assessments to inform predictive assessments. Social simulations may be a useful tool for developing a predictive SIA method. There have been limited attempts to develop computer simulations that allow social impacts to be explored and understood before implementing development projects. In light of this argument, this paper aims to introduce system dynamic (SD) simulation as a new predictive SIA method in large development projects. We propose the potential value of the SD approach to simulate social impacts of development projects. We use data from the SIA of Gareh-Bygone floodwater spreading project to illustrate the potential of SD simulation in SIA. It was concluded that in comparison to traditional SIA methods SD simulation can integrate quantitative and qualitative inputs from different sources and methods and provides a more effective and dynamic assessment of social impacts for development projects. We recommend future research to investigate the full potential of SD in SIA in comparing different situations and scenarios.

  7. Plasma dynamics with second and third-harmonic ECRH and access to quasi-stationary ELM-free H-mode on TCV

    International Nuclear Information System (INIS)

    Porte, L.; Coda, S.; Alberti, S.; Arnoux, G.; Blanchard, P.; Bortolon, A.; Fasoli, A.; Goodman, T.P.; Klimanov, Y.; Martin, Y.; Maslov, M.; Scarabosio, A.; Weisen, H.

    2007-01-01

    Intense electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) are employed on the Tokamak a Configuration Variable (TCV) both in second- and third-harmonic X-mode (X2 and X3). The plasma behaviour under such conditions is driven largely by the electron dynamics, motivating extensive studies of the heating and relaxation phenomena governing both the thermal and suprathermal electron populations. In particular, the dynamics of suprathermal electrons are intimately tied to the physics of X2 ECCD. ECRH is also a useful tool for manipulating the electron distribution function in both physical and velocity space. Fundamental studies of the energetic electron dynamics have been performed using periodic, low-duty-cycle bursts of ECRH, with negligible average power injection, and with electron cyclotron emission (ECE). The characteristic times of the dynamical evolution are clearly revealed. Suprathermal electrons have also been shown to affect the absorption of X3 radiation. Thermal electrons play a crucial role in high density plasmas where indirect ion heating can be achieved through ion-electron collisions. In recent experiments ∼ 1.35 MW of vertically launched X3 ECRH was coupled to a diverted ELMy H-mode plasma. In cases where ≥ 1.1 MW of ECRH power was coupled, the discharge was able to transition into a quasi-stationary ELM-free H-mode regime. These H-modes operated at β N ∼ 2, n-bar e /n G approx. 0.25 and had high energy confinement, H IPB98(y,2) up to ∼ 1.6. Despite being purely electron heated and having no net particle source these discharges maintained a density peaking factor (n e,o /(n e ) ∼ 1.6). They also exhibited spontaneous toroidal momentum production in the co-current direction. The momentum production is due to a transport process as there is no external momentum input. This process supports little or no radial gradient of the toroidal velocity

  8. Performance Evaluation of Clock Recovery for Coherent Mode Division Multiplexed Systems

    DEFF Research Database (Denmark)

    Medeiros Diniz, Júlio César; Piels, Molly; Zibar, Darko

    2017-01-01

    The impact of mode mixing and group delay spread on clock tone quality of a 6-mode 32 GBd NRZ-QPSK MDM system is investigated. Even for low group delay spread, strong coupling causes clock tone disappearance....

  9. Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads

    Science.gov (United States)

    Lu, Zheng; Lu, Xilin; Lu, Wensheng; Masri, Sami F.

    2012-04-01

    This paper presents a systematic experimental investigation of the effects of buffered particle dampers attached to a multi-degree-of-freedom (mdof) system under different dynamic loads (free vibration, random excitation as well as real onsite earthquake excitations), and analytical/computational study of such a system. A series of shaking table tests of a three-storey steel frame with the buffered particle damper system are carried out to evaluate the performance and to verify the analysis method. It is shown that buffered particle dampers have good performance in reducing the response of structures under dynamic loads, especially under random excitation case. It can effectively control the fundamental mode of the mdof primary system; however, the control effect for higher modes is variable. It is also shown that, for a specific container geometry, a certain mass ratio leads to more efficient momentum transfer from the primary system to the particles with a better vibration attenuation effect, and that buffered particle dampers have better control effect than the conventional rigid ones. An analytical solution based on the discrete element method is also presented. Comparison between the experimental and computational results shows that reasonably accurate estimates of the response of a primary system can be obtained. Properly designed buffered particle dampers can effectively reduce the response of lightly damped mdof primary system with a small weight penalty, under different dynamic loads.

  10. Nonlinear dynamics non-integrable systems and chaotic dynamics

    CERN Document Server

    Borisov, Alexander

    2017-01-01

    This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.

  11. EFFICIENCY ANALYSIS OF HASHING METHODS FOR FILE SYSTEMS IN USER MODE

    Directory of Open Access Journals (Sweden)

    E. Y. Ivanov

    2013-05-01

    Full Text Available The article deals with characteristics and performance of interaction protocols between virtual file system and file system, their influence on processing power of microkernel operating systems. User mode implementation of ext2 file system for MINIX 3 OS is used to show that in microkernel operating systems file object identification time might increase up to 26 times in comparison with monolithic systems. Therefore, we present efficiency analysis of various hashing methods for file systems, running in user mode. Studies have shown that using hashing methods recommended in this paper it is possible to achieve competitive performance of the considered component of I/O stacks in microkernel and monolithic operating systems.

  12. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Quantum memories with zero-energy Majorana modes and experimental constraints

    Science.gov (United States)

    Ippoliti, Matteo; Rizzi, Matteo; Giovannetti, Vittorio; Mazza, Leonardo

    2016-06-01

    In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero modes only, with particular attention to the scaling with the size of the system and the energy gap. We explicitly discuss the case of a thermal bosonic environment inducing a parity-preserving Markovian dynamics in which the memory fidelity achievable via a read-out of the zero modes decays exponentially in time, independent from system size. We argue, however, that even in the presence of said experimental limitations, the Hamiltonian gap is still beneficial to the storage of information.

  14. Implementation Of Automatic Wiper Speed Control And Headlight Modes Control Systems Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    ThetKoKo

    2015-07-01

    Full Text Available Abstract This research paper describes the design and simulation of the automatic wiper speed and headlight modes controllers using fuzzy logic. This proposed system consists of a fuzzy logic controller to control a cars wiper speed and headlight modes. The automatic wiper system detects the rain and its intensity. And according to the rain intensity the wiper speed is automatically controlled. Headlight modes automatically changes either from low beam mode to high beam mode or form high beam mode to low beam mode depending on the light intensity from the other vehicle coming from the opposite direction. The system comprises of PIC impedance sensor piezoelectric vibration sensor LDR headlamps and a DC motor to accurate the windshield wiper. Piezoelectric sensor is used to detect the rain intensity which is based on the piezoelectric effect. MATLAB software is used to achieve the designed goal.

  15. Introduction to focus issue: Mixed mode oscillations: Experiment, computation, and analysis

    DEFF Research Database (Denmark)

    Brøns, Morten; Kaper, T.J.; Rotstein, H.G.

    2008-01-01

    Mixed mode oscillations ( MMOs ) occur when a dynamical system switches between fast and slow motion and small and large amplitude. MMOs appear in a variety of systems in nature, and may be simple or complex. This focus issue presents a series of articles on theoretical, numerical, and experiment...

  16. Chaos in integrate-and-fire dynamical systems

    International Nuclear Information System (INIS)

    Coombes, S.

    2000-01-01

    Integrate-and-fire (IF) mechanisms are often studied within the context of neural dynamics. From a mathematical perspective they represent a minimal yet biologically realistic model of a spiking neuron. The non-smooth nature of the dynamics leads to extremely rich spike train behavior capable of explaining a variety of biological phenomenon including phase-locked states, mode-locking, bursting and pattern formation. The conditions under which chaotic spike trains may be generated in synaptically interacting networks of neural oscillators is an important open question. Using techniques originally introduced for the study of impact oscillators we develop the notion of a Liapunov exponent for IF systems. In the strong coupling regime a network may undergo a discrete Turing-Hopf bifurcation of the firing times from a synchronous state to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. Away from the bifurcation point these invariant circles may break up. We establish numerically that in this case the largest IF Liapunov exponent becomes positive. Hence, one route to chaos in networks of synaptically coupled IF neurons is via the breakup of invariant circles

  17. Adaptive Sliding Mode Robust Control for Virtual Compound-Axis Servo System

    Directory of Open Access Journals (Sweden)

    Yan Ren

    2013-01-01

    Full Text Available A structure mode of virtual compound-axis servo system is proposed to improve the tracking accuracy of the ordinary optoelectric tracking platform. It is based on the structure and principles of compound-axis servo system. A hybrid position control scheme combining the PD controller and feed-forward controller is used in subsystem to track the tracking error of the main system. This paper analyzes the influences of the equivalent disturbance in main system and proposes an adaptive sliding mode robust control method based on the improved disturbance observer. The sliding mode technique helps this disturbance observer to deal with the uncompensated disturbance in high frequency by making use of the rapid switching control value, which is based on the subtle error of disturbance estimation. Besides, the high-frequency chattering is alleviated effectively in this proposal. The effectiveness of the proposal is confirmed by experiments on optoelectric tracking platform.

  18. Robust synchronization of unified chaotic systems via sliding mode control

    International Nuclear Information System (INIS)

    Yan Junjuh; Yang Yisung; Chiang Tsungying; Chen Chingyuan

    2007-01-01

    This paper investigates the chaos synchronization problem for a class of uncertain master-slave unified chaotic systems. Based on the sliding mode control technique, a robust control scheme is established which guarantees the occurrence of a sliding motion of error states even when the parameter uncertainty and external perturbation are present. Furthermore, a novel proportional-integral (PI) switching surface is introduced for determining the synchronization performance of systems in the sliding mode motion. Simulation results are proposed to demonstrate the effectiveness of the method

  19. Spatiotemporal chaos from bursting dynamics

    International Nuclear Information System (INIS)

    Berenstein, Igal; De Decker, Yannick

    2015-01-01

    In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators

  20. Mixed-mode distribution systems for high average power electron cyclotron heating

    International Nuclear Information System (INIS)

    White, T.L.; Kimrey, H.D.; Bigelow, T.S.

    1984-01-01

    The ELMO Bumpy Torus-Scale (EBT-S) experiment consists of 24 simple magnetic mirrors joined end-to-end to form a torus of closed magnetic field lines. In this paper, we first describe an 80% efficient mixed-mode unpolarized heating system which couples 28-GHz microwave power to the midplane of the 24 EBT-S cavities. The system consists of two radiused bends feeding a quasi-optical mixed-mode toroidal distribution manifold. Balancing power to the 24 cavities is determined by detailed computer ray tracing. A second 28-GHz electron cyclotron heating (ECH) system using a polarized grid high field launcher is described. The launcher penetrates the fundamental ECH resonant surface without a vacuum window with no observable breakdown up to 1 kW/cm 2 (source limited) with 24 kW delivered to the plasma. This system uses the same mixed-mode output as the first system but polarizes the launched power by using a grid of WR42 apertures. The efficiency of this system is 32%, but can be improved by feeding multiple launchers from a separate distribution manifold