WorldWideScience

Sample records for twelve inch rainfall

  1. Risk assessment of K Basin twelve-inch and four-inch drain valve failure from a postulated seismic initiating event

    Energy Technology Data Exchange (ETDEWEB)

    MORGAN, R.G.

    1999-06-23

    The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rate which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. Five four-inch drain valves are located in the north and south loadout pits (NLOP and SLOP), the weasel pit, the technical viewing pit, and the discharge chute pit. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations indicate that only the valve's bonnet and stem are exposed above the basin concrete floor for the twelve-inch drain valve and that much less of the valve's bonnet and stem are exposed above the basin concrete floor for the five four-inch drain valves. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this analysis are to: (1) evaluate the likelihood of damaging the three twelve-inch drain valves located along the north wall of the main basin and the five four-inch drain valves located in the pits from a seismic initiating event, and (2) determine the likelihood of exceeding a specific consequence (initial leak rate) from a damaged valve. The analysis process is a risk-based uncertainty analysis where each variable is modeled using available information and engineering judgement. The uncertainty associated with each variable is represented by a probability distribution (probability density function). Uncertainty exists because of the inherent

  2. Risk assessment of K basin twelve-inch drain valve failure from a postulated seismic initiating event

    Energy Technology Data Exchange (ETDEWEB)

    MORGAN, R.G.

    1999-04-06

    The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rates which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations suggest that only the valve's bonnet and stem are exposed above the basin concrete floor. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this activity are to: (1) evaluate the risk of damaging the three twelve-inch drain valves located along the north wall of the main basin from a seismic initiating event, and (2) determine the associated potential leak rate from a damaged valve.

  3. Risk assessment of K basin twelve-inch drain valve failure from a postulated seismic initiating event

    Energy Technology Data Exchange (ETDEWEB)

    MORGAN, R.G.

    1999-04-06

    The Spent Nuclear Fuel (SNF) Project will transfer metallic SNF from the Hanford 105 K-East and 105 K-West Basins to safe interim storage in the Canister Storage Building in the 200 Area. The initial basis for design, fabrication, installation, and operation of the fuel removal systems was that the basin leak rates which could result from a postulated accident condition would not be excessive relative to reasonable recovery operations. However, an additional potential K Basin water leak path is through the K Basin drain valves. Three twelve-inch drain valves are located in the main basin bays along the north wall. The sumps containing the valves are filled with concrete which covers the drain valve body. Visual observations suggest that only the valve's bonnet and stem are exposed above the basin concrete floor. It was recognized, however, that damage of the drain valve bonnet or stem during a seismic initiating event could provide a potential K Basin water leak path. The objectives of this activity are to: (1) evaluate the risk of damaging the three twelve-inch drain valves located along the north wall of the main basin from a seismic initiating event, and (2) determine the associated potential leak rate from a damaged valve.

  4. First mile, first inch

    CSIR Research Space (South Africa)

    Morris, C

    2007-05-01

    Full Text Available and the computer (First Inch). This will include a range of First mile technologies including WiFi, power line communications (PLCs) and mesh networks and Fist Inch technologies such as IVR, Voice messaging and HLT. 2 1. Objectives The aim of this paper...

  5. 8-inch IBM floppy disk

    CERN Multimedia

    1971-01-01

    The 8-inch floppy disk was a magnetic storage disk for the data introduced commercially by IBM in 1971. It was designed by an IBM team as an inexpensive way to load data into the IBM System / 370. Plus it was a read-only bare disk containing 80 KB of data. The first read-write version was introduced in 1972 by Memorex and could contain 175 KB on 50 tracks (with 8 sectors per track). Other improvements have led to various coatings and increased capacities. Finally, it was surpassed by the mini diskette of 5.25 inches introduced in 1976.

  6. Ten inch Planar Optic Display

    Energy Technology Data Exchange (ETDEWEB)

    Beiser, L. [Beiser (Leo) Inc., Flushing, NY (United States); Veligdan, J. [Brookhaven National Lab., Upton, NY (United States)

    1996-04-01

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  7. Rainfall generation

    Science.gov (United States)

    Sharma, Ashish; Mehrotra, Raj

    This chapter presents an overview of methods for stochastic generation of rainfall at annual to subdaily time scales, at single- to multiple-point locations, and in a changing climatic regime. Stochastic rainfall generators are used to provide inputs for risk assessment of natural or engineering systems that can undergo failure under sustained (high or low) extremes. As a result, generation of rainfall has evolved to provide options that adequately represent such conditions, leading to sequences that exhibit low-frequency variability of a nature similar to the observed rainfall. The chapter consists of three key sections: the first two outlining approaches for rainfall generation using endogenous predictor variables and the third highlighting approaches for generation using exogenous predictors often simulated to represent future climatic conditions. The first section presents approaches for generation of annual and seasonal rainfall and daily rainfall, both at single-point locations and multiple sites, with an emphasis on alternatives that ensure appropriate representation of low-frequency variability in the generated rainfall sequences. The second section highlights advancements in the subdaily rainfall generation procedures including commonly used approaches for daily to subdaily rainfall generation. The final section (generation using exogenous predictors) presents a range of alternatives for stochastic downscaling of rainfall for climate change impact assessments of natural and engineering systems. We conclude the chapter by outlining some of the key challenges that remain to be addressed, especially in generation under climate change conditions, with an emphasis on the importance of incorporating uncertainty present in both measurements and models, in the rainfall sequences that are generated.

  8. Six-Inch Shock Tube Characterization

    Science.gov (United States)

    2016-12-09

    USAARL Report No. 2017-08 Six-Inch Shock Tube Characterization By Michael Chen1,2, J. Trevor McEntire1,3, Miles Garwood1,3, Devyn...2016 - Nov 2016 Six-Inch Shock Tube Characterization N/A N/A N/A N/A N/A N/A Chen, Michael McEntire, J. Trevor Garwood, Miles Gentzyel, Devyn U.S...Auditory Protection and Performance Division (APPD) owns, operates, and maintains a 6-inch inner diameter shock tube to create shock waves in a

  9. The automated Palomar 60 inch telescope

    OpenAIRE

    Cenko, S Bradley; Fox, Derek B.; Moon, Dae-Sik; Harrison, Fiona A.; Kulkarni, S.R.; Henning, John R.; Guzman, C. Dani; Bonati, Marco; Smith, Roger M.; Thicksten, Robert P.; Doyle, Michael W.; Petrie, Hal L.; Gal-Yam, Avishay; Soderberg, Alicia M.; Anagnostou, Nathaniel L.

    2006-01-01

    We have converted the Palomar 60-inch telescope (P60) from a classical night assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since September 2004, is designed for moderately fast (t

  10. The Twelve Hotel, Barna : Video

    OpenAIRE

    Irish Food Channel

    2014-01-01

    Fergus O'Halloran, Managing Director of The Twelve Hotel in Barna in County Galway, talks about his philosophy in running this unique boutique hotel. Reproduced with kind permission from John & Sally McKenna. 3.35 mins

  11. Rainfall and evapotranspiration data for southwest Medina County, Texas, August 2006-December 2009

    Science.gov (United States)

    Slattery, Richard N.; Asquith, William H.; Ockerman, Darwin J.

    2011-01-01

    During August 2006-December 2009, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Fort Worth District, collected rainfall and evapotranspiration data to help characterize the hydrology of the Nueces River Basin, Texas. The USGS installed and operated a station to collect continuous (30-minute interval) rainfall and evapotranspiration data in southwest Medina County approximately 14 miles southwest of D'Hanis, Texas, and 23 miles northwest of Pearsall, Texas. Rainfall data were collected by using an 8-inch tipping bucket raingage. Meteorological and surface-energy flux data used to calculate evapotranspiration were collected by using an extended Open Path Eddy Covariance system from Campbell Scientific, Inc. Data recorded by the system were used to calculate evapotranspiration by using the eddy covariance and Bowen ratio closure methods and to analyze the surface energy budget closure. During August 2006-December 2009 (excluding days of missing record), measured rainfall totaled 86.85 inches. In 2007, 2008, and 2009, annual rainfall totaled 40.98, 12.35, and 27.15 inches, respectively. The largest monthly rainfall total, 12.30 inches, occurred in July 2007. During August 2006-December 2009, evapotranspiration calculated by using the eddy covariance method totaled 69.91 inches. Annual evapotranspiration calculated by using the eddy covariance method totaled 34.62 inches in 2007, 15.24 inches in 2008, and 15.57 inches in 2009. During August 2006-December 2009, evapotranspiration calculated by using the Bowen ratio closure method (the more refined of the two datasets) totaled 68.33 inches. Annual evapotranspiration calculated by using the Bowen ratio closure method totaled 32.49, 15.54, and 15.80 inches in 2007, 2008, and 2009, respectively (excluding days of missing record).

  12. The Automated Palomar 60 Inch Telescope

    Science.gov (United States)

    Cenko, S. Bradley; Fox, Derek B.; Moon, Dae-Sik; Harrison, Fiona A.; Kulkarni, S. R.; Henning, John R.; Guzman, C. Dani; Bonati, Marco; Smith, Roger M.; Thicksten, Robert P.; Doyle, Michael W.; Petrie, Hal L.; Gal-Yam, Avishay; Soderberg, Alicia M.; Anagnostou, Nathaniel L.; Laity, Anastasia C.

    2006-10-01

    We have converted the Palomar 60 inch (1.52 m) telescope from a classic night-assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since 2004 September, is designed for moderately fast (tdesign requirements, hardware and software upgrades, and lessons learned from roboticization. We present an overview of the current system performance as well as plans for future upgrades.

  13. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  14. Size of silicon strip sensor from 6 inch wafer (right) compared to that from a 4 inch wafer (left).

    CERN Multimedia

    Honma, Alan

    1999-01-01

    Silicon strip sensors made from 6 inch wafers will allow for much larger surface area coverage at a reduced cost per unit surface area. A prototype sensor of size 8cm x 11cm made by Hamamatsu from a 6 inch wafer is shown next to a traditional 6cm x 6cm sensor from a 4 inch wafer.

  15. The Automated Palomar 60-Inch Telescope

    CERN Document Server

    Cenko, S B; Moon, D S; Harrison, F A; Kulkarni, S R; Henning, J R; Guzman, C D; Bonati, M; Smith, R M; Thicksten, R P; Doyle, M W; Petrie, H L; Gal-Yam, A; Soderberg, A M; Anagnostou, N L; Laity, A C; Fox, Derek B.; Moon, Dae-Sik; Harrison, Fiona A.; Henning, John R.; Bonati, Marco; Smith, Roger M.; Thicksten, Robert P.; Doyle, Michael W.; Petrie, Hal L.; Gal-Yam, Avishay; Soderberg, Alicia M.; Anagnostou, Nathaniel L.; Laity, Anastasia C.

    2006-01-01

    We have converted the Palomar 60-inch telescope (P60) from a classical night assistant-operated telescope to a fully robotic facility. The automated system, which has been operational since September 2004, is designed for moderately fast (t <~ 3 minutes) and sustained (R <~ 23 mag) observations of gamma-ray burst afterglows and other transient events. Routine queue-scheduled observations can be interrupted in response to electronic notification of transient events. An automated pipeline reduces data in real-time, which is then stored on a searchable web-based archive for ease of distribution. We describe here the design requirements, hardware and software upgrades, and lessons learned from roboticization. We present an overview of the current system performance as well as plans for future upgrades.

  16. Transanal rectopexy - twelve case studies

    Directory of Open Access Journals (Sweden)

    Rubens Henrique Oleques Fernandes

    2012-06-01

    Full Text Available OBJECTIVES: This study analyzed the results of transanal rectopexy and showed the benefits of this surgical technique. METHOD: Twelve patients were submitted to rectopexy between 1997 and 2011. The surgical technique used was transanal rectopexy, where the mesorectum was fixed to the sacrum with nonabsorbable suture. Three patients had been submitted to previous surgery, two by the Delorme technique and one by the Thiersch technique. RESULTS: Postoperative hospital stay ranged from 1 to 4 days. One patient (8.3% had intraoperative hematoma, which was treated with local compression and antibiotics. One patient (8.3% had residual mucosal prolapse, which was resected. Prolapse recurrence was seen in one case (8.3%. Improved incontinence occurred in 75% of patients and one patient reported obstructed evacuation in the first month after surgery. No death occurred. CONCLUSION: Transanal rectopexy is a simple, low cost technique, which has shown good efficacy in rectal prolapse control.OBJETIVO: O presente estudo analisou os resultados da retopexia pela via transanal e expôs os benefícios desta técnica cirúrgica. MÉTODO: Doze pacientes com prolapso foram operados no período de 1997 a 2011. A técnica cirúrgica usada foi a retopexia transanal, onde o mesorreto foi fixado ao sacro com fio inabsorvível. Três pacientes tinham cirurgia prévia, dois pela técnica de Delorme e um pela técnica de Thiersch. RESULTADOS: A permanência hospitalar pós-operatória variou de 1- 4 dias. Uma paciente (8,3% apresentou hematoma transoperatório que foi tratado com compressão local e antibioticoterapia. Um paciente apresentou prolapso mucoso residual (8,3%, que foi ressecado. Houve recidiva da procidência em um caso (8,3%. A melhora da incontinência ocorreu em 75% dos pacientes e uma paciente apresentou bloqueio evacuatório no primeiro mês após a cirurgia. Não houve mortalidade entre os pacientes operados. CONCLUSÃO: A retopexia transanal é uma t

  17. Inspection considerations for holes 0. 040 inch and smaller

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    The accurate inspection of hole size and location for holes smaller than 0.040 inch necessitates several considerations beyond those normally encountered for larger holes. The technical aspects are described herein.

  18. The Six-Inch Lunar Atlas A Pocket Field Guide

    CERN Document Server

    Spain, Don

    2009-01-01

    The Six-Inch Lunar Atlas has been designed specifically for use in the field by lunar observers so it’s perfect for fitting into an observer’s pocket! The author’s own lunar photographs were taken with a 6-inch (150mm) telescope and CCD camera, and closely match the visual appearance of the Moon when viewed through 3-inch to 8-inch telescopes. Each picture is shown oriented "as the Moon really is" when viewed from the northern hemisphere, and is supplemented by exquisite computer sketches that list the main features. Two separate computer sketches are provided to go with each photograph, one oriented to appear as seen through an SCT telescope (e.g. the Meade and Celestron ranges), the other oriented for Newtonian and refracting telescopes. Observers using the various types telescopes will find it extremely helpful to identify lunar features as the human brain is very poor at making "mirror-image" visual translations.

  19. Rainfall simulation in education

    Science.gov (United States)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain

  20. Mythematics Solving the Twelve Labors of Hercules

    CERN Document Server

    Huber, Michael

    2009-01-01

    How might Hercules, the most famous of the Greek heroes, have used mathematics to complete his astonishing Twelve Labors? From conquering the Nemean Lion and cleaning out the Augean Stables, to capturing the Erymanthean Boar and entering the Underworld to defeat the three-headed dog Cerberus, Hercules and his legend are the inspiration for this book of fun and original math puzzles. While Hercules relied on superhuman strength to accomplish the Twelve Labors, Mythematics shows how math could have helped during his quest. How does Hercules defeat the Lernean Hydra and stop its heads from multip

  1. Comparative analysis of twelve Dothideomycete plant pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin; Aerts, Andrea; Salamov, Asaf; Goodwin, Stephen B.; Grigoriev, Igor

    2011-03-11

    The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis

  2. Undergraduate Education with the Rutgers 12-Inch Cyclotron

    Science.gov (United States)

    Koeth, Timothy W.

    The Rutgers 12-Inch Cyclotron is a research grade accelerator dedicated to undergraduate education. From its inception, it has been intended for instruction and has been designed to demonstrate classic beam physics phenomena and provides students hands on experience with accelerator technology. The cyclotron is easily reconfigured, allowing experiments to be designed and performed within one academic semester. Our cyclotron offers students the opportunity to operate an accelerator and directly observe many fundamental beam physics concepts, including axial and radial betatron motion, destructive resonances, weak and azimuthally varying field (AVF) focusing schemes, RF and DEE voltage effects, diagnostic techniques, and perform low energy nuclear reactions. This paper emphasizes the unique beam physics measurements and beam manipulations capable at the Rutgers 12-Inch Cyclotron.

  3. Twelve tips for peer observation of teaching.

    Science.gov (United States)

    Siddiqui, Zarrin Seema; Jonas-Dwyer, Diana; Carr, Sandra E

    2007-05-01

    This paper outlines twelve tips for undertaking peer observation of teaching in medical education, using the peer review model and the experiences of the authors. An accurate understanding of teaching effectiveness is required by individuals, medical schools, and universities to evaluate the learning environment and to substantiate academic and institutional performance. Peer Observation of Teaching is one tool that provides rich, qualitative evidence for teachers, quite different from closed-ended student evaluations. When Peer Observation of Teaching is incorporated into university practice and culture, and is conducted in a mutually respectful and supportive way, it has the potential to facilitate reflective change and growth for teachers.

  4. Spatial Variability of Rainfall

    DEFF Research Database (Denmark)

    Jensen, N.E.; Pedersen, Lisbeth

    2005-01-01

    As a part of a Local Area Weather Radar (LAWR) calibration exercise 15 km south of Århus, Denmark, the variability in accumulated rainfall within a single radar pixel (500 by 500 m) was measured using nine high-resolution rain gauges. The measured values indicate up to a 100% variation between...

  5. The Wageningen Rainfall Simulator

    NARCIS (Netherlands)

    Lassu, Tamas; Seeger, K.M.; Peters, P.D.; Keesstra, S.D.

    2015-01-01

    The set-up and characterisation of an indoor nozzle-type rainfall simulator (RS) at Wageningen University, the Netherlands, are presented. It is equipped with four Lechler nozzles (two nr. 460·788 and two nr. 461·008). The tilting irrigation plot is 6 m long and 2·5 m wide. An electrical pump

  6. Metallurgical Evaluation of the Five-Inch Cylindrical Induction Melter

    Energy Technology Data Exchange (ETDEWEB)

    Imrich, K.J.

    2000-08-15

    A metallurgical evaluation of the 5-inch cylindrical induction melter (CIM) vessel was performed by the Materials Technology Section to evaluate the metallurgical condition after operating for approximately 375 hours at 1400 to 1500 Degrees Celsius during a 2 year period. Results indicate that wall thinning and significant grain growth occurred in the lower portion of the conical section and the drain tube. No through-wall penetrations were found in the cylindrical and conical sections of the CIM vessel and only one leak site was identified in the drain tube. Failure of the drain tube was associated with a localized over heating and intercrystalline fracture.

  7. Combining ability of twelve maize populations

    Directory of Open Access Journals (Sweden)

    Vacaro Elton

    2002-01-01

    Full Text Available Genetic progress depends on germplasm quality and breeding methods. Twelve maize populations and their crosses were evaluated to estimate combining ability and potential to be included as source populations in breeding programs. Plant height, point of insertion of the first ear, number of ears per plant, number of grains per ear, root and stalk lodging and grain yield were studied in two locations in Brazil, during the 1997/98 season. Genotype sum of squares was divided into general (GCA and specific (SCA combining ability. Results indicated the existence of genetic divergence for all traits analyzed, where additive effects were predominant. The high heterosis levels observed, mainly in Xanxerê, suggested the environmental influence on the manifestation of this genetic phenomenon. Populations revealed potential to be used in breeding programs; however, those more intensively submitted to selection could provide larger genetic progress, showing the importance of population improvement for the increment of the heterosis in maize.

  8. The Winter Rainfall of Malaysia

    National Research Council Canada - National Science Library

    Chen, Tsing-Chang; Tsay, Jenq-Dar; Yen, Ming-Cheng; Matsumoto, Jun

    2013-01-01

    .... The major cause of the rainfall maximum of Peninsular Malaysia is cold surge vortices (CSVs) and heavy rainfall/flood (HRF) events propagating from the Philippine area and Borneo. In contrast, the major cause of the rainfall maximum of Borneo is these rain-producing disturbances trapped in Borneo. Disturbances of the former group are formed by the cold sur...

  9. 16 CFR 500.19 - Conversion of SI metric quantities to inch/pound quantities and inch/pound quantities to SI...

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Conversion of SI metric quantities to inch/pound quantities and inch/pound quantities to SI metric quantities. 500.19 Section 500.19 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND EXEMPTIONS UNDER THE FAIR PACKAGING...

  10. Twelve tips for getting your manuscript published.

    Science.gov (United States)

    Cook, David A

    2016-01-01

    The author shares twelve practical tips on how to navigate the process of getting a manuscript published. These tips, which apply to all fields of academic writing, advise that during the initial preparation phase authors should: (1) plan early to get it out the door; (2) address authorship and writing group expectations up front; (3) maintain control of the writing; (4) ensure complete reporting; (5) use electronic reference management software; (6) polish carefully before they submit; (7) select the right journal; and (8) follow journal instructions precisely. Rejection after the first submission is likely, and when this occurs authors should (9) get it back out the door quickly, but first (10) take seriously all reviewer and editor suggestions. Finally, when the invitation comes to revise and resubmit, authors should (11) respond carefully to every reviewer suggestion, even if they disagree, and (12) get input from others as they revise. The author also shares detailed suggestions on the creation of effective tables and figures, and on how to respond to reviewer critiques.

  11. Antifouling activity of twelve demosponges from Brazil

    Directory of Open Access Journals (Sweden)

    SM. Ribeiro

    Full Text Available Benthic marine organisms are constantly exposed to fouling, which is harmful to most host species. Thus, the production of secondary metabolites containing antifouling properties is an important ecological advantage for sessile organisms and may also provide leading compounds for the development of antifouling paints. High antifouling potential of sponges has been demonstrated in the Indian and Pacific oceans and in the Caribbean and Mediterranean seas. Brazilian sponges remain understudied concerning antifouling activities. Only two scientific articles reported this activity in sponges of Brazil. The objective of this study was to test crude extracts of twelve species of sponges from Brazil against the attachment of the mussel Perna perna through laboratorial assays, and highlight promising species for future studies. The species Petromica citrina, Amphimedon viridis, Desmapsamma anchorata, Chondrosia sp., Polymastia janeirensis, Tedania ignis, Aplysina fulva, Mycale angulosa, Hymeniacidon heliophila, Dysidea etheria, Tethya rubra, and Tethya maza were frozen and freeze-dried before extraction with acetone or dichloromethane. The crude extract of four species significantly inhibited the attachment of byssus: Tethya rubra (p = 0.0009, Tethya maza (p = 0.0039, Petromica citrina (p = 0.0277, and Hymeniacidon heliophila (p = 0.00003. These species, specially, should be the target of future studies to detail the substances involved in the ability antifouling well as to define its amplitude of action.

  12. Twelve Elastic Constants of Betula platyphylla Suk.

    Institute of Scientific and Technical Information of China (English)

    Wang Liyu; Lu Zhenyou

    2004-01-01

    Wood elastic constants are needed to describe the elastic behaviors of wood and be taken as an important design parameter for wood-based composite materials and structural materials. This paper clarified the relationships between compliance coefficients and engineering elastic constants combined with orthotropic properties of wood, and twelve elastic constants of Betula platyphylla Suk. were measured by electrical strain gauges. Spreading the adhesive quantity cannot be excessive or too little when the strain flakes were glued. If excessive, the glue layer was too thick which would influence the strain flakes' performance, and if too little, glues plastered were not firm, which could not accurately transmit the strain. Wood as an orthotropic material, its modulus of elasticity and poisson's ratios are related by two formulas:μij /Ei =μji /Ej and μij 0.95) between the reciprocal of elastic modulus MOE-1 and the square of the ratio of depth to length (h/l)2, which indicate that shear modulus values measured were reliable by three point bending experiment.

  13. The asymmetry of rainfall process

    Institute of Scientific and Technical Information of China (English)

    YU RuCong; YUAN WeiHua; LI Jian

    2013-01-01

    Using hourly station rain gauge data in the warm season (May-October) during 1961-2006,the climatological features of the evolution of the rainfall process are analyzed by compositing rainfall events centered on the maximum hourly rainfall amount of each event.The results reveal that the rainfall process is asymmetric,which means rainfall events usually reach the maximum in a short period and then experience a relatively longer retreat to the end of the event.The effects of rainfall intensity,duration and peak time,as well as topography,are also considered.It is found that the asymmetry is more obvious in rainfall events with strong intensity and over areas with complex terrain,such as the eastern margin of the Tibetan Plateau,the Hengduan Mountains,and the Yungui Plateau.The asymmetry in short-duration rainfall is more obvious than that in long-duration rainfall,but the regional differences are weaker.The rainfall events that reach the maximum during 14:00-02:00 LST exhibit the strongest asymmetry and those during 08:00-14:00 LST show the weakest asymmetry.The rainfall intensity at the peak time stands out,which means that the rainfall intensity increases and decreases quickly both before and after the peak.These results can improve understanding of the rainfall process and provide metrics for the evaluation of climate models.Moreover,the strong asymmetry of the rainfall process should be highly noted when taking measures to defending against geological hazards,such as collapses,landslides and debris flows throughout southwestern China.

  14. Impact of rainfall spatial variability on Flash Flood Forecasting

    Science.gov (United States)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin

    2014-05-01

    According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is

  15. Seismic fragility test of a 6-inch diameter pipe system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W. P.; Onesto, A. T.; DeVita, V.

    1987-02-01

    This report contains the test results and assessments of seismic fragility tests performed on a 6-inch diameter piping system. The test was funded by the US Nuclear Regulatory Commission (NRC) and conducted by ETEC. The objective of the test was to investigate the ability of a representative nuclear piping system to withstand high level dynamic seismic and other loadings. Levels of loadings achieved during seismic testing were 20 to 30 times larger than normal elastic design evaluations to ASME Level D limits would permit. Based on failure data obtained during seismic and other dynamic testing, it was concluded that nuclear piping systems are inherently able to withstand much larger dynamic seismic loadings than permitted by current design practice criteria or predicted by the probabilistic risk assessment (PRA) methods and several proposed nonlinear methods of failure analysis.

  16. Digital driver for 2-inch LTPS AM-OLED displays

    Institute of Scientific and Technical Information of China (English)

    YIN Sheng; CHENG Shuai; SHEN Liang; ZOU Xue-cheng

    2006-01-01

    For LTPS AM-OLED displays,the spatial variation in the electrical characteristics of polysilicon TFTs will cause non-uniform pixel brightness and poor grayscale accuracy.The technological solution for this problem will open up the larger size application of LTPS AM-OLED displays.In this paper,a digital driver employing a FPGA device is designed to serve 2-inch color LTPS AM-OLED displays with 128×(160×3) resolution.A digital method of simultaneous address-display (SAD) and the digital visual interface (DVI) are introduced in the driving scheme.100% display per.ratio can be obtained.Moving image with 16 grayscales is realized and has good image uniformity.

  17. Leak in spiral weld in a 16 inches gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Fazzini, Pablo G.; Bona, Jeremias de [GIE S.A., Mar del Plata (Argentina); Otegui, Jose L. [University of Mar del Plata (Argentina)

    2009-07-01

    This paper discusses a failure analysis after a leak in the spiral weld of a 16 inches natural gas pipeline, in service since 1974. The leak was the result of the coalescence of two different defects, on each surface of the pipe wall, located in the center of the inner cord of the helical DSAW weld. Fractographic and metallographic studies revealed that the leak was a combination of three conditions. During fabrication of the pipe, segregation in grain boundary grouped in mid weld. During service, these segregations underwent a process of selective galvanic corrosion. One of these volumetric defects coincided with a tubular pore in the outer weld. Pigging of the pipeline in 2005 for cleaning likely contributed to the increase of the leak flow, when eliminating corrosion product plugs. Although these defects are likely to repeat, fracture mechanics shows that a defect of this type is unlikely to cause a blowout. (author)

  18. Heavy ion cocktail beams at the 88 inch Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  19. Affordable Window Insulation with R-10/inch Rating

    Energy Technology Data Exchange (ETDEWEB)

    Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou; Jong Ho Sonn; George Gould; Wendell Rhine

    2004-10-15

    During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanical properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.

  20. Hepatic Angiosarcoma: a Review of Twelve Cases

    Institute of Scientific and Technical Information of China (English)

    Qiang Li; Xishan Hao

    2005-01-01

    OBJECTIVE Hepatic angiosarcoma (HAS), a lethal disease, is the most common sarcoma arising in the liver. Little information about the epidemiology, etiology, diagnosis and management of HAS has been reported. Increased familiarity with this disease will facilitate correct diagnosis and help to improve management of this condition in the future.The objective of this study was to describe cases of hepatic angiosarcoma and to discuss the etiologic, diagnostic, therapeutic features and prognosis of this tumor. This report not only serves to give more evidence of the relationship between hepatic angiosarcoma and carcinogenic exposure, but also demonstrates the key points in different methods of diagnosis and the optimal treatment of hepatic angiosarcoma.METHODS Twelve cases of hepatic angiosareoma were analyzed retrospectively, representing the different character in clinical presentations and laboratory computed tomographical scans; pathological data and treatment are described. Clinical and biologic follow-up was carried out for two years after surgical treatment.RESULTS There were nine men and three women varying in ages from 57 to 71 years with an average of 64.3 years. Ten patientshad a history of exposure to vinyl chloride or thorotrast. Mild or moderate abdominal pain and bloating, abdominal mass and fever were the common clinical presentations. Tumors were visualized by ultrasonography and CT scans in all patients. Biochemical profiles yielded variable results and proved to be of little value in detection or diagnosis. Surgical resection was feasible for each patient who was treated as follows: two wedge resections, six segementectomies and four bisegmentectomies. Five patients received Neoadjuvant chemotherapy postoperatively. The survival rate of those cases was poor. The maximum survival time was fourteen months. The mean survival time for this chemotherapeutic group was 11 months. The difference between the survival time of those treated with an operation

  1. Prototyping 9-inch size PSM mask blanks for 450mm wafer process (2016)

    Science.gov (United States)

    Harashima, Noriyuki; Iso, Hiroyuki; Chishima, Tatsuya

    2016-10-01

    6-inch size (known as 6025QZ) binary Cr mask is widely used in the semiconductor lithography for over 20years. Recently for the 450mm wafer process, high grade 9-inch size mask is expected. For this application, we have studied and developed prototyping 9-inch size PSM KrF and ArF mask blanks. This time we will explain these PSM mask blanks status.

  2. Development of 8-inch Key Processes for Insulated-Gate Bipolar Transistor

    Directory of Open Access Journals (Sweden)

    Guoyou Liu

    2015-09-01

    Full Text Available Based on the construction of the 8-inch fabrication line, advanced process technology of 8-inch wafer, as well as the fourth-generation high-voltage double-diffused metal-oxide semiconductor (DMOS+ insulated-gate bipolar transistor (IGBT technology and the fifth-generation trench gate IGBT technology, have been developed, realizing a great-leap forward technological development for the manufacturing of high-voltage IGBT from 6-inch to 8-inch. The 1600 A/1.7 kV and 1500 A/3.3 kV IGBT modules have been successfully fabricated, qualified, and applied in rail transportation traction system.

  3. Rainfall statistics changes in Sicily

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2013-02-01

    Full Text Available Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles which can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood prone areas.

    In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends while for longer durations the trends are mainly negative.

    Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the non parametric Mann–Kendall test.

    Particularly, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration while daily rainfall properties have been analyzed in term of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations

  4. Rainfall statistics changes in Sicily

    Directory of Open Access Journals (Sweden)

    E. Arnone

    2013-07-01

    Full Text Available Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles that can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood-prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends, while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the nonparametric Mann–Kendall test. In particular, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration, while daily rainfall properties have been analyzed in terms of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for 1 h rainfall

  5. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  6. Rainfall thresholds for forecasting landslides in the Seattle, Washington, area - exceedance and probability

    Science.gov (United States)

    Chleborad, Alan F.; Baum, Rex L.; Godt, Jonathan W.

    2006-01-01

    Empirical rainfall thresholds and related information form a basis for forecasting landslides in the Seattle area. A formula for a cumulative rainfall threshold (CT), P3=3.5-0.67P15, defined by rainfall amounts (in inches) during the last 3 days (72 hours), P3, and the previous 15 days (360 hours), P15, was developed from analysis of historical data for 91 landslides that occurred as part of 3-day events of three or more landslides between 1933 and 1997. Comparison with historical records for 577 landslides (including some used in developing the CT) indicates that the CT captures more than 90 percent of historical landslide events of three or more landslides in 1-day and 3-day periods that were recorded from 1978 to 2003. However, the probability of landslide occurrence on a day when the CT is exceeded at any single rain gage (8.4 percent) is low, and additional criteria are needed to confidently forecast landslide occurrence. Exceedance of a rainfall intensity-duration threshold I=3.257D-1.13, for intensity, I, (inch per hour) and duration, D, (hours), corresponds to a higher probability of landslide occurrence (42 percent at any 3 rain gages or 65 percent at any 10 rain gages), but it predicts fewer landslides. Both thresholds must be used in tandem to forecast landslide occurrence in Seattle.

  7. Lowell Observatory's 24-inch Clark Refractor: Its History and Renovation

    Science.gov (United States)

    Schindler, Kevin; Nye, Ralph; Rosenthal, Peter

    2016-01-01

    In 1895, Percival Lowell hired eminent telescope maker Alvan G. Clark to build a 24-inch refractor. Lowell intended the telescope intitally for observing Mars in support of his controversial theories about life on that planet. Clark finished the telescope within a year and at a cost of $20,000. Lowell and his staff of assistants and astronomers began observing through it on July 23, 1896, setting off a long and productive career for the telescope.While Lowell's Mars studies dominated early work with the Clark, V.M. Slipher by the 1910s was using it to observe planetary rotations and atmospheric compositions. He soon revolutionized spectroscopic studies, gathering excruciatingly long spectra - some in excess of 40 hours - of the so-called white nebula and determining startling radial velocities, evidence of an expanding universe. In the 1960s, scientists and artists teamed up on the Clark and created detailed lunar maps in support of the Apollo program.In recent decades, the Clark has played a central role in the education programs at Lowell, with general public audiences, students, and private groups all taking advantage of this unique resource.With this nearly 120 years of contant use, the Clark had been wearing down in recent years. The telescope was becoming more difficult to move, old electrical wiring in the dome was a fire hazard, and many of the telescope's parts needed to be repaired or replaced.In 2013, Lowell Observatory began a fundraising campaign, collecting $291,000 to cover the cost of dome and telescope renovation. Workers removed the entire telescope mount and tube assembly from the dome, examining every part from tube sections to individuals screws. They also stabilized the dome, adding a water vapor barrier and new outer wall while reinforcing the upper dome. The project lasted from January, 2014 through August, 2015. The facility reopened for daytime tours in September, 2015 and evening viewing the following month.

  8. Modelling rainfall interception in unlogged and logged forest areas of Central Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    C. Asdak

    1998-01-01

    Full Text Available Rainfall interception losses were monitored for twelve months and related to vegetation and rainfall characteristics at the Wanariset Sangai on the upper reaches of the Mentaya river, Central Kalimantan. The rainfall interception losses were quantified for one hectare each of unlogged and logged humid tropical rainforests. The results show that interception loss is higher in the unlogged forest (11% of total gross rainfall than in the logged forest (6%. Interception loss was also simulated by the modified Rutter model and Gash's original and revised models. Both the Rutter and revised Gash models predicted total interception loss over a long period adequately, and resulted in estimates of the interception loss that deviated by 6 to 14% of the measured values, for both the unlogged and logged plots.

  9. Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall

    Science.gov (United States)

    Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.

    2015-12-01

    Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is

  10. Orthopedic stretcher with average-sized person can pass through 18-inch opening

    Science.gov (United States)

    Lothschuetz, F. X.

    1966-01-01

    Modified Robinson stretcher for vertical lifting and carrying, will pass through an opening 18 inches in diameter, while containing a person of average height and weight. A subject 6 feet tall and weighing 200 pounds was lowered and raised out of an 18 inch diameter opening in a tank to test the stretcher.

  11. 16 CFR 460.20 - R-value per inch claims.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false R-value per inch claims. 460.20 Section 460.20 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.20 R-value per inch claims. In labels, fact sheets, ads, or other...

  12. Torque expression of 0.018 and 0.022 inch conventional brackets

    NARCIS (Netherlands)

    Sifakakis, I.; Pandis, N.; Makou, M.; Eliades, T.; Katsaros, C.; Bourauel, C.

    2013-01-01

    The aim of this study was to assess the effect of the moments generated with low- and high-torque brackets. Four different bracket prescription-slot combinations of the same bracket type (Mini Diamond(R) Twin) were evaluated: high-torque 0.018 and 0.022 inch and low-torque 0.018 and 0.022 inch. Thes

  13. Rainfall Characterization In An Arid Area

    OpenAIRE

    Bazaraa, A. S.; Ahmed, Shamim

    1991-01-01

    The objective of this work is to characterize the rainfall in Doha which lies in an arid region. The rainfall data included daily rainfall depth since 1962 and the hyetographs of the individual storms since 1976. The rainfall is characterized by high variability and severe thunderstorms which are of limited geographical extent. Four probability distributions were used to fit the maximum rainfall in 24 hours and the annual rainfall depth. The extreme value distribution was found to have the be...

  14. Torque expression of 0.018 and 0.022 inch conventional brackets.

    Science.gov (United States)

    Sifakakis, Iosif; Pandis, Nikolaos; Makou, Margarita; Eliades, Theodore; Katsaros, Christos; Bourauel, Christoph

    2013-10-01

    The aim of this study was to assess the effect of the moments generated with low- and high-torque brackets. Four different bracket prescription-slot combinations of the same bracket type (Mini Diamond® Twin) were evaluated: high-torque 0.018 and 0.022 inch and low-torque 0.018 and 0.022 inch. These brackets were bonded on identical maxillary acrylic resin models with levelled and aligned teeth and each model was mounted on the orthodontic measurement and simulation system (OMSS). Ten specimens of 0.017 × 0.025 inch and ten 0.019 × 0.025 inch stainless steel archwires (ORMCO) were evaluated in the low- and high-torque 0.018 inch and 0.022 inch brackets, respectively. The wires were ligated with elastomerics into the brackets and each measurement was repeated once after religation. Two-way analysis of variance and t-test were conducted to compare the generated moments between wires at low- and high-torque brackets separately. The maximum moment generated by the 0.017 × 0.025 inch stainless steel archwire in the 0.018 inch brackets at +15 degrees ranged from 14.33 and 12.95 Nmm for the high- and low-torque brackets, respectively. The measured torque in the 0.022 inch brackets with the 0.019 × 0.025 inch stainless steel archwire was 9.32 and 6.48 Nmm, respectively. The recorded differences of maximum moments between the high- and low-torque series were statistically significant. High-torque brackets produced higher moments compared with low-torque brackets. Additionally, in both high- and low-torque configurations, the thicker 0.019 × 0.025 inch steel archwire in the 0.022 inch slot system generated lower moments in comparison with the 0.017 × 0.025 inch steel archwire in the 0.018 inch slot system.

  15. Rainfall erosivity in New Zealand

    Science.gov (United States)

    Klik, Andreas; Haas, Kathrin; Dvorackova, Anna; Fuller, Ian

    2014-05-01

    Rainfall and its kinetic energy expressed by the rainfall erosivity is the main driver of soil erosion processes by water. The Rainfall-Runoff Erosivity Factor (R) of the Revised Universal Soil Loss Equation is one oft he most widely used parameters describing rainfall erosivity. This factor includes the cumulative effects of the many moderate-sized storms as well as the effects oft he occasional severe ones: R quantifies the effect of raindrop impact and reflects the amopunt and rate of runoff associated with the rain. New Zealand is geologically young and not comparable with any other country in the world. Inordinately high rainfall and strong prevailing winds are New Zealand's dominant climatic features. Annual rainfall up to 15000 mm, steep slopes, small catchments and earthquakes are the perfect basis for a high rate of natural and accelerated erosion. Due to the multifacted landscape of New Zealand its location as island between the Pacific and the Tasmanian Sea there is a high gradient in precipitation between North and South Island as well as between West and East Coast. The objective of this study was to determine the R-factor for the different climatic regions in New Zealand, in order to create a rainfall erosivity map. We used rainfall data (breakpoint data in 10-min intervals) from 34 gauging stations for the calcuation of the rainfall erosivity. 15 stations were located on the North Island and 19 stations on the South Island. From these stations, a total of 397 station years with 12710 rainstorms were analyzed. The kinetic energy for each rainfall event was calculated based on the equation by Brown and Foster (1987), using the breakpoint precipitation data for each storm. On average, a mean annual precipitation of 1357 mm was obtained from the 15 observed stations on the North Island. Rainfall distribution throughout the year is relatively even with 22-24% of annual rainfall occurring in spring , fall and winter and 31% in summer. On the South Island

  16. Rainfall variability modelling in Rwanda

    Science.gov (United States)

    Nduwayezu, E.; Kanevski, M.; Jaboyedoff, M.

    2012-04-01

    Support to climate change adaptation is a priority in many International Organisations meetings. But is the international approach for adaptation appropriate with field reality in developing countries? In Rwanda, the main problems will be heavy rain and/or long dry season. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). The spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front » mechanism. The torrential rainfall that occurs every year in Rwanda disturbs the circulation for many days, damages the houses and, more seriously, causes heavy losses of people. All districts are affected by bad weather (heavy rain) but the costs of such events are the highest in mountains districts. The objective of the current research is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical predictions and simulations, machine learning algorithm (different types of neural networks) and GIS. The research will include rainfalls variability mapping and probabilistic analyses of extreme events.

  17. Research on the Fine-Scale Spatial Uniformity of Natural Rainfall and Rainfall from a Rainfall Simulator with a Rotary Platform (RSRP)

    National Research Council Canada - National Science Library

    Bo Liu; Xiaolei Wang; Lihua Shi; Xichuan Liu; Zhaojing Kang; Zhentao Chen

    2017-01-01

    ... and the rainfall uniformity was evaluated using the Christiansen Uniformity Coefficient (CU). Simultaneously, factors influencing the spatial uniformity of natural rainfall, including the average rainfall accumulation (RA...

  18. The preparation of two inch double-sided YBCO thin films

    CERN Document Server

    Liu, X Z; Deng, X W; Zhang, Y; Li, Y R

    2002-01-01

    The preparation of two inch double-sided YBCO thin films by simultaneous sputtering from a single target is reported. The lateral homogeneity of microwave surface resistance of the YBCO thin films, on both sides of the two inch wafer, is characterized by using a Fabry-Perot resonator at 145 GHz and 75 K. Values of microwave surface resistance R sub s (75 K, 145 GHz, 0 T) below 55 m OMEGA were reached over the whole area of YBCO thin films on two inch LaAlO sub 3 wafers. The majority of the wafer area has R sub s (75 K, 145 GHz, 0 T) values in the range of 15 m OMEGA to 40 m OMEGA. The uniformity of R sub s values in the whole two inch wafer is excellent and the properties of YBCO thin films were found to be very similar on both sides of the wafer.

  19. Sting Supported Bell XS-2 in the 9 Inch Supersonic Tunnel

    Science.gov (United States)

    1947-01-01

    A sting supported model of the Bell XS-2 was tested in the 9 Inch Supersonic Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 316.

  20. Stochastic generation of daily rainfall events based on rainfall pattern classification and Copula-based rainfall characteristics simulation

    Science.gov (United States)

    Xu, Y. P.; Gao, C.

    2016-12-01

    To deal with the problem of having no or insufficiently long rainfall record, developing a stochastic rainfall model is very essential. This study first proposed a stochastic model of daily rainfall events based on classification and simulation of different rainfall patterns, and copula-based joint simulation of rainfall characteristics. Compared with current stochastic rainfall models, this new model not only keeps the dependence structure of rainfall characteristics by using copula functions, but also takes various rainfall patterns that may cause different hydrological responses to watershed into consideration. In order to determine the appropriate number of representative rainfall patterns in an objective way, we also introduced clustering validation measures to the stochastic model. Afterwards, the developed stochastic rainfall model is applied to 39 gauged meteorological stations in Zhejiang province, East China, and is then extended to ungauged stations for validation by applying the self-organizing map (SOM) method. The final results show that the 39 stations can be classified into seven regions that further fall into three categories based on rainfall generation mechanisms, i.e., plum-rain control region, typhoon-rain control region and typhoon-plum-rain compatible region. Rainfall patterns of each station can be classified into five or six types based on clustering validation measures. This study shows that the stochastic rainfall model is robust and can be applied to both gauged and ungauged stations for generating long rainfall record.

  1. The twelve dimensional super (2+2)-brane

    CERN Document Server

    Hewson, S F

    1996-01-01

    We discuss supersymmetry in twelve dimensions and present a covariant supersymmetric action for a brane with worldsheet signature (2,2), called a super (2+2)-brane, propagating in the osp(64,12) superspace. This superspace is explicitly constructed, and is trivial in the sense that the spinorial part is a trivial bundle over spacetime, unlike the twisted superspace of usual Poincare supersymmetry. For consistency, it is necessary to take a projection of the superspace. This is the same as the projection required for worldvolume supersymmetry. Upon compactification of this superspace, a torsion is naturally introduced and we produce the membrane and type IIB string actions in 11 and 10 dimensional Minkowski spacetimes. In addition, the compactification of the twelve dimensional supersymmetry algebra produces the correct algebras for these theories, including central charges. These considerations thus give the type IIB string and M-theory a single twelve dimensional origin.

  2. Alcoholics anonymous and other twelve-step programs in recovery.

    Science.gov (United States)

    Detar, D Todd

    2011-03-01

    Recovery is a new way of life for many patients; a life without substances to alter their moods but with a major change improving the physical, psychological, and emotional stability with improved overall health outcomes. The Twelve Steps of the Alcoholics Anonymous (AA) are the foundation of the AA, describing both the necessary actions and the spiritual basis for the recovery program of the AA. The Twelve Steps of the AA provide a structure for which a patient with alcoholism may turn for an answer to their problem of alcohol use, abuse, or dependence. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Chapman Conference on Rainfall Fields

    Science.gov (United States)

    Gupta, V. K.

    The Chapman Conference on Rainfall Fields, sponsored by AGU, was the first of its kind; it was devoted to strengthening scientific interaction between the North American and Latin American geophysics communities. It was hosted by Universidad Simon Bolivar and Instituto Internacional de Estudios Avanzados, in Caracas, Venezuela, during March 24-27, 1986. A total of 36 scientists from Latin America, the United States, Canada, and Europe participated. The conference, which was convened by I. Rodriguez-Iturbe (Universidad Simon Bolivar) and V. K. Gupta (University of Mississippi, University), brought together hydrologists, meteorologists, and mathematicians/statisticians in the name of enhancing an interdisciplinary focus on rainfall research.

  4. Rainfall simulation for environmental application

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, D.S.; Abner, C.H.; Mann, L.K.

    1977-08-01

    Rain simulation systems have been designed for field and greenhouse studies which have the capability of reproducing the physical and chemical characteristics of natural rainfall. The systems permit the simulation of variations in rainfall and droplet size similar to that of natural precipitation. The systems are completely automatic and programmable, allowing unattended operation for periods of up to one week, and have been used to expose not only vegetation but also soils and engineering materials, making them versatile tools for studies involving simulated precipitation.

  5. The strong coupling regime of twelve flavors QCD

    NARCIS (Netherlands)

    Silva, Tiago Nunes da; Pallante, Elisabetta

    2012-01-01

    We summarize the results recently reported in Ref.[1] [A. Deuzeman, M.P. Lombardo, T. Nunes da Silva and E. Pallante,"The bulk transition of QCD with twelve flavors and the role of improvement"] for the SU(3) gauge theory with Nf=12 fundamental flavors, and we add some numerical evidence and theoret

  6. EFFORTS Technical annex for the twelve month progress report

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Eriksen, Morten; Thomas christensen, Thomas Vennick;

    The present report is documentation for the work carried out at DTU during the second year of project activity. The report describes the work completed by DTU in general as well as on the active sub-tasks within materials properties, friction modelling and physical modelling, over the last twelve...

  7. Human Evolution in Science Textbooks from Twelve Different Countries

    Science.gov (United States)

    Quessada, Marie-Pierre; Clement, Pierre; Oerke, Britta; Valente, Adriana

    2008-01-01

    What kinds of images of human beings illustrate human evolution in school textbooks? A comparison between the textbooks of eighteen different countries (twelve European countries and six non-European countries) was attempted. In six countries (Algeria, Malta, Morocco, Mozambique, Portugal, and Tunisia), we did not find any chapter on the topic of…

  8. Bibliography of Spanish Materials for Students, Grades Seven through Twelve.

    Science.gov (United States)

    California State Dept. of Education, Sacramento.

    This annotated bibliography of Spanish materials for students in grades seven through twelve is divided into the following categories: (1) Art, Drama, Music, and Poetry; (2) Books in Series; (3) Culture; (4) Dictionaries and Encyclopedias; (5) Literature; (6) Mathematics; (7) Physical Education, Health, and Recreation; (8) Reading and Language…

  9. Research on the Fine-Scale Spatial Uniformity of Natural Rainfall and Rainfall from a Rainfall Simulator with a Rotary Platform (RSRP)

    OpenAIRE

    Bo Liu; Xiaolei Wang; Lihua Shi; Xichuan Liu; Zhaojing Kang; Zhentao Chen

    2017-01-01

    Abstract: The accurate production of a rainfall environment similar to natural rainfall by a rainfall simulator (RS) is a crucial and challenging task in rainfall instrument testing or calibration. Although the spatial uniformity of rainfall accumulation is a key parameter of an RS, the spatial uniformity comparison between simulated rainfall and natural rainfall, and the spatial uniformity improvements for an RS are scant in the literature. In this study, a fine-scale natural rainfall experi...

  10. Where do forests influence rainfall?

    Science.gov (United States)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  11. Development of gamma spectroscopy employing NaI(Tl) detector 3 inch x 3 inch and readout electronic of flash-ADC/FPGA-based technology

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Vo Hong [HCMC-National Univ., Hochiminh City (Viet Nam). Inst. of Nuclear Physics; Ton Duc Thang Univ., Ho Chi Minh City (Viet Nam). Div. of Nuclear Physics; Hung, Nguyen Quoc [HCMC-National Univ., Hochiminh City (Viet Nam). Inst. of Nuclear Physics; Khai, Bui Tuan [Osaka Univ. (Japan). Dept. of Physics

    2015-05-15

    n this article the development of a gamma spectroscopy system is described using a scintillation detector NaI(Tl) of 3 inch x 3 inch. The readout electronic for the spectroscopy is built from the fast analog-digital conversion of Flash Analog-Digital Converter (Flash-ADC) 250 MHz - 8 bits resolution, and the embedded Field-Programmable Gate Array (FPGA) technology. The embedded VHSIC Hardware Description Language (VHDL) code for FPGA is built in such a way that it works as a multi channel analyser (MCA) with 4096 Digital Charge Integration (DCI) channels. A pulse generator with frequency varying from Hz up to 12 kHz is used to evaluate the time response of the system. Two standard radioisotope sources of {sup 133}Ba and {sup 152}Eu with multi gamma energies ranging from several tens keV to MeV are used to evaluate the linearity and energy resolution of the system.

  12. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert

    Science.gov (United States)

    Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.

    2016-01-01

    Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling

  13. Comparison of TOPMODEL streamflow simulations using NEXRAD-based and measured rainfall data, McTier Creek watershed, South Carolina

    Science.gov (United States)

    Feaster, Toby D.; Westcott, Nancy E.; Hudson, Robert J.M.; Conrads, Paul A.; Bradley, Paul M.

    2012-01-01

    Rainfall is an important forcing function in most watershed models. As part of a previous investigation to assess interactions among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations in the Edisto River Basin, the topography-based hydrological model (TOPMODEL) was applied in the McTier Creek watershed in Aiken County, South Carolina. Measured rainfall data from six National Weather Service (NWS) Cooperative (COOP) stations surrounding the McTier Creek watershed were used to calibrate the McTier Creek TOPMODEL. Since the 1990s, the next generation weather radar (NEXRAD) has provided rainfall estimates at a finer spatial and temporal resolution than the NWS COOP network. For this investigation, NEXRAD-based rainfall data were generated at the NWS COOP stations and compared with measured rainfall data for the period June 13, 2007, to September 30, 2009. Likewise, these NEXRAD-based rainfall data were used with TOPMODEL to simulate streamflow in the McTier Creek watershed and then compared with the simulations made using measured rainfall data. NEXRAD-based rainfall data for non-zero rainfall days were lower than measured rainfall data at all six NWS COOP locations. The total number of concurrent days for which both measured and NEXRAD-based data were available at the COOP stations ranged from 501 to 833, the number of non-zero days ranged from 139 to 209, and the total difference in rainfall ranged from -1.3 to -21.6 inches. With the calibrated TOPMODEL, simulations using NEXRAD-based rainfall data and those using measured rainfall data produce similar results with respect to matching the timing and shape of the hydrographs. Comparison of the bias, which is the mean of the residuals between observed and simulated streamflow, however, reveals that simulations using NEXRAD-based rainfall tended to underpredict streamflow overall. Given that the total NEXRAD-based rainfall data for the simulation period is lower than the

  14. Stochastic modelling of daily rainfall sequences

    NARCIS (Netherlands)

    Buishand, T.A.

    1977-01-01

    Rainfall series of different climatic regions were analysed with the aim of generating daily rainfall sequences. A survey of the data is given in I, 1. When analysing daily rainfall sequences one must be aware of the following points:
    a. Seasonality. Because of seasonal variation

  15. Comparision of Incidental Reflection From Containerized Maintenance/Housekeeping Solutions and One Inch of Water

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Bryan Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); MacQuigg, Michael Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wysong, Andrew Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-15

    This document addresses the incidental reflector reactivity worth of containerized maintenance/housekeeping fluids for use in PF-4 at Los Alamos National Laboratory (LANL). The intent of the document is to analyze containerized maintenance/housekeeping fluids which will be analyzed as water that may be present under normal conditions of an operation. The reactivity worth is compared to the reactivity worth due to I-inch of close-fitting 4n water reflection and I-inch of close-fitting radial water reflection. Both have been used to bound incidental reflection by 2-liter bottles in criticality safety evaluations. The conclusion is that, when the maintenance/housekeeping fluids are containerized the reactivity increase from a configuration which is bounding of normal conditions (up to eight bottles modeled with 2-liters of solution at varying diameter) is bound by I-inch of close fitting 4n water relection.

  16. Twelve Theses on Reactive Rules for the Web

    OpenAIRE

    Bry, François; Eckert, Michael

    2007-01-01

    Reactivity, the ability to detect and react to events, is an essential functionality in many information systems. In particular, Web systems such as online marketplaces, adaptive (e.g., recommender) sys- tems, and Web services, react to events such as Web page updates or data posted to a server. This article investigates issues of relevance in designing high-level programming languages dedicated to reactivity on the Web. It presents twelve theses on features desira...

  17. Spatial variability and rainfall characteristics of Kerala

    Indian Academy of Sciences (India)

    Anu Simon; K Mohankumar

    2004-06-01

    Geographical regions of covariability in precipitation over the Kerala state are exposed using factor analysis. The results suggest that Kerala can be divided into three unique rainfall regions, each region having a similar covariance structure of annual rainfall. Stations north of 10°N (north Kerala) fall into one group and they receive more rainfall than stations south of 10°N (south Kerala). Group I stations receive more than 65% of the annual rainfall during the south-west monsoon period, whereas stations falling in Group II receive 25-30% of annual rainfall during the pre-monsoon and the north-east monsoon periods. The meteorology of Kerala is profoundly influenced by its orographical features, however it is difficult to make out a direct relationship between elevation and rainfall. Local features of the state as reflected in the rainfall distribution are also clearly brought out by the study.

  18. Full scale ambient water flow tests of a 10-inch emergency release coupling for LNG transfer

    NARCIS (Netherlands)

    Putte, L.J. van der; Webber, T.; Bokhorst, E. van; Revell, C.

    2016-01-01

    For LNG transfer in ship-to-ship and ship-to-shore configurations emergency release couplings (F.RC) in combination with loading arms and multi-composite hoses are applied In view of a demand for increasing transfer flow rates in offshore LNG applications a 10-inch ERC has been developed intended fo

  19. Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, M.A.; Ahle, L.; Bleuel, D.L.; Bernstein, L.; Braquest, B.R.; Cerny, J.; Heilbronn, L.H.; Jewett, C.C.; Thompson, I.; Wilson, B.

    2007-07-31

    Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum neutrons from deuteron breakup are under development for a variety of applications.

  20. Development and Verification of 3000Rpm 48Inch Integral Shroud Blade for Steam Turbine

    Science.gov (United States)

    Kaneko, Yasutomo; Mori, Kazushi; Ohyama, Hiroharu

    The 3000rpm 48inch blade for steam turbine was developed as one of the new standard series of LP end blades. The new LP end blades are characterized by the ISB (Integral Shroud Blade) structure. In the ISB structure, blades are continuously coupled by blade untwist due to centrifugal force when the blades rotate at high speed. Therefore, the number of the resonant vibration modes can be reduced by virtue of the vibration characteristics of the circumferentially continuous blades, and the resonant stress can be decreased due to the additional friction damping generated at shrouds and stubs. In order to develop the 3000rpm 48inch blade, the latest analysis methods to predict the vibration characteristics of the ISB structure were applied, after confirming their validity to the blade design. Moreover, the verification tests such as rotational vibration tests and model turbine tests were carried out in the shop to confirm the reliability of the developed blade. As the final verification test, the field test of the actual steam turbine was carried out in the site during the trial operation, and the vibration stress of the 3000rpm 48inch blade was measured by use of telemetry system. In the field test, the vibratory stress of the blade was measured under various operating conditions for more than one month. This paper first presents the up-to-date design technology applied to the design of the 3000rpm 48inch blade. In the second place, the results of the various verification tests carried out in the shop are presented as well as their procedure. Lastly, the results of the final verification tests of 3000rpm 48inch blade carried out in the site are presented.

  1. The twelve theses: a call to a new reformation

    Directory of Open Access Journals (Sweden)

    John Shelby Spong

    2015-03-01

    Full Text Available With every discovery emerging from the world of science over the last 500 years concerning the origins of the universe and of life itself, the traditional explanations offered by the Christian Church appeared to be more and more dated and irrelevant.  Christian leaders, unable to embrace the knowledge revolution seemed to believe  that the only way to save Christianity was not to disturb the old patterns either by listening to, much less by entertaining the new knowledge. I tried to articulate this challenge in a book entitled: Why Christianity Must Change or Die, published in 1998.  In that book I examined in detail the issues that I was convinced Christianity must address. Shortly after that book was published I reduced its content to twelve theses, which I attached in Luther-like fashion to the great doors on the Chapel of Mansfield College at Oxford University in the United Kingdom. I then mailed copies of those Twelve Theses to every acknowledged Christian leader of the world. It was an attempt to call them into a debate on the real issues that I was certain the Christian Church now faced.  I framed my twelve theses in the boldest, most provocative language possible, designed primarily to elicit response and debate. I welcome responses from Christians everywhere.  I claim no expertise or certainty in developing answers, but I am quite confident that I do understand the problems we are facing as Christians who are seeking to relate to the 21st century.

  2. Calibration of a 7.6 cm x 7.6 cm (3 inch x 3 inch) Sodium Iodide Gamma Ray Spectrometer for Air Kerma Rate

    Energy Technology Data Exchange (ETDEWEB)

    Grasty, R.L.; Walters, B.R.B.; Hovgaard, J.; LaMarre, J.R

    2001-07-01

    An experimental procedure is described for converting a gamma ray spectral measurement from a 7.6 cm x 7.6 cm (3 inch x 3 inch) sodium iodide (NaI) detector to air kerma rate. The calibration procedure involves measuring the energy deposited in the detector using 10 radioactive sources of known activity covering an energy range from 60 keV to 1836 keV. For each of the 10 sources, gamma ray spectra were measured with the source at different angles to the detector axis. The total energy deposited in the detector for the ten sources was confirmed by Monte Carlo calculations. The spectra measured at different angles were combined to produce a spectrum that would represent a homogeneous semi-infinite source of radiation. The resultant spectrum was then subdivided into 10 energy regions. Based on the known air kerma rates due to the sources, a calibration coefficient was calculated for each of the 10 energy regions. These calibration coefficients could then be used to convert the energy deposited in the 10 regions of an unknown spectrum to air kerma rate. The calibration procedure was confirmed by comparing the results from the detector with those from calibrated collimated beams of {sup 137}Cs and {sup 60}Co. A comparison of measurements using a calibrated pressurised ionisation chamber with those from a similar NaI spectrometer in Finland provided additional confirmation of the calibration procedure. (author)

  3. Urban rainfall estimation employing commercial microwave links

    Science.gov (United States)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  4. An Analysis of Thermally-Related Surface Rainfall Budgets Associated with Convective and Stratiform Rainfall

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yushu; Xiaofan LI

    2011-01-01

    Both water vapor and heat processes play key roles in producing surface rainfall.While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been investigated in previous studies,the thermal effects on rainfall are analyzed in this study using a series of two-dimensional equilibrium cloud-resolving model experiments forced by zonally-uniform,constant,large-scale zonal wind and zero large-scale vertical velocity.The analysis of thermally-related surface rainfall budget reveals that the model domain mean surface rain rate is primarily associated with the mean infrared cooling rate.Convective rainfall and transport of hydrometeor concentration from convective regions to raining stratiform regions corresponds to the heat divergence over convective regions,whereas stratiform rainfall corresponds to the transport of hydrometeor concentration from convective regions and heat divergence over raining stratiform regions.The heat divergence over convective regions is mainly balanced by the heat convergence over rainfall-free regions,which is,in turn,offset by the radiative cooling over rainfall-free regions.The sensitivity experiments of rainfall to the effects of sea surface temperature and cloud radiative and microphysical processes show that the sea surface temperature and cloud processes affect convective rainfall through the changes in infrared cooling rate over rainfall-free regions and transport rate of heat from convective regions to rainfall-free regions.

  5. The all-year rainfall region of South Africa: Satellite rainfall-estimate perspective

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2012-09-01

    Full Text Available Climate predictability and variability studies over South Africa typically focus on the summer rainfall region and to a lesser extent on the winter rainfall region. The all-year rainfall region of South Africa, a narrow strip located along the Cape...

  6. The impacts of the Indian summer rainfall on North China summer rainfall

    Science.gov (United States)

    Wu, Renguang; Jiao, Yang

    2017-05-01

    Previous studies have indicated a connection between interannual variations of the Indian and North China summer rainfall. An atmospheric circulation wave pattern over the mid-latitude Asia plays an important role in the connection. The present study compares the influence of the above-normal and below-normal Indian summer rainfall on the North China summer rainfall variations. Composite analysis shows that the mid-latitude Asian atmospheric circulation and the North China rainfall anomalies during summer tend to be anti-symmetric in above-normal and below-normal Indian rainfall years. Analysis indicates that the Indian-North China summer rainfall relation tends to be stronger when larger Indian rainfall anomaly occurs during a higher mean rainfall period. The observed long-term change in the Indian-North China summer rainfall relationship cannot be explained by the impact of the El Niño-Southern Oscillation (ENSO). The present study evaluates the Indian-North China summer rainfall relationship in climate models. Analysis shows that the Indian-North China summer rainfall relationship differs largely among different climate models and among different simulations of a specific model. The relationship also displays obvious temporal variations in both individual and ensemble mean model simulations. This suggests an important role of the atmospheric internal variability in the change of the Indian-North China summer rainfall relationship.

  7. The 6-foot-4-inch Wind Tunnel at the Washington Navy Yard

    Science.gov (United States)

    Desmond, G L; Mccrary, J A

    1935-01-01

    The 6-foot-4-inch wind tunnel and its auxiliary equipment has proven itself capable of continuous and reliable output of data. The real value of the tunnel will increase as experience is gained in checking the observed tunnel performance against full-scale performance. Such has been the case of the 8- by 8-foot tunnel, and for that reason the comparison in the calibration tests have been presented.

  8. IMPACT TESTING OF MATERIALS USING AN EIGHT-INCH AIR GUN AND COMPUTER REDUCTION OF DATA

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, L. F.

    1973-10-01

    A mechanical shock actuator has been converted into an air gun capable of firing 8-inch-·diameter (20.32 cm) projectiles to velocities exceeding 1000 fps (304.8 m/ s). This new capability has been used to study the effect of impact velocity upon the energy.absorbed by crushable materials. Shockpulse data is reduced by computer techniques and test results are displayed in either tabular or graphic format by use of the C DC 6600 Calcomp plotter.

  9. Twelve tips for teaching medical students with dyslexia.

    Science.gov (United States)

    Shaw, Sebastian Charles Keith; Anderson, John Leeds

    2017-07-01

    Dyslexia is a common learning difficulty. As a result of SS' own experiences as a medical student with dyslexia, we have been researching and teaching on this topic for the past two years. Here, we present twelve tips for teaching medical students with dyslexia. These are gathered from our personal experiences and research, discussions with other educators, and wider literature on the topic. This article aims to shed some light on dyslexia, and also to make practical suggestions. Teaching students with dyslexia should not be a daunting experience. Small changes to existing methods, at minor effort, can make a difference - for example, adding pastel colors to slide backgrounds or avoiding Serif fonts. These tips can help educators gain more insight into dyslexia and incorporate small, beneficial adaptations into their teaching.

  10. Antibacterial activities of extracts from twelve Centaurea species from Turkey

    Directory of Open Access Journals (Sweden)

    Tekeli Yener

    2011-01-01

    Full Text Available Members of the genus Centaurea (Asteraceae have been used in traditional plant-based medicine. The methanol extracts of twelve Centaurea species, of which five are endemic to Turkey flora, were screened for antibacterial activity against four bacteria (Escherichia coli, Bacillus cereus, Salmonella enteritidis, Staphylococcus aureus. The antibacterial activity was evaluated by the microdilution method and the minimum inhibition concentrations (MIC of the extracts were determined. C. cariensis subsp. microlepis exhibited an antimicrobial effect on all tested microorganisms. The extracts from eight Centaurea species (C. balsamita, C. calolepis, C. cariensis subsp. maculiceps, C. cariensis subsp. microlepis, C. kotschyi var. kotschyi, C. solstitialis subsp. solstitialis, C. urvillei subsp. urvillei and C. virgata possessed antibacterial activity against several of the tested microorganisms.

  11. Twelve tips on how to compile a medical educator's portfolio.

    Science.gov (United States)

    Dalton, Claudia Lucy; Wilson, Anthony; Agius, Steven

    2017-09-17

    Medical education is an expanding area of specialist interest for medical professionals. Whilst most doctors will be familiar with the compilation of clinical portfolios for scrutiny of their clinical practice and provision of public accountability, teaching portfolios used specifically to gather and demonstrate medical education activity remain uncommon in many non-academic settings. For aspiring and early career medical educators in particular, their value should not be underestimated. Such a medical educator's portfolio (MEP) is a unique compendium of evidence that is invaluable for appraisal, revalidation, and promotion. It can stimulate and provide direction for professional development, and is a rich source for personal reflection and learning. We recommend that all new and aspiring medical educators prepare an MEP, and suggest twelve tips on how to skillfully compile one.

  12. Spectroscopy of twelve Type Ia supernovae at intermediate redshift

    CERN Document Server

    Balland, C; Pain, R; Walton, N A; Amanullah, R; Astier, Pierre; Ellis, Richard S; Fabbro, S; Goobar, A; Hardin, D; Hook, I M; Irwin, M J; McMahon, R M; Mendez, J M; Ruiz-Lapuente, P; Sainton, G; Schahmaneche, K; Stanishev, V

    2005-01-01

    We present spectra of twelve Type Ia supernovae obtained in 1999 at the William Herschel Telescope and the Nordic Optical Telescope during a search for Type Ia supernovae (SN Ia) at intermediate redshift. The spectra range from z=0.178 to z=0.493, including five high signal-to-noise ratio SN Ia spectra in the still largely unexplored range 0.15 < z < 0.3. Most of the spectra were obtained before or around restframe B-band maximum light. None of them shows the peculiar spectral features found in low-redshift over- or under-luminous SN Ia. Expansion velocities of characteristic spectral absorption features such as SiII at 6355 angs., SII at 5640 angs. and CaII at 3945 angs. are found consistent with their low-z SN Ia counterparts.

  13. Hydrologic response in karstic-ridge wetlands to rainfall and evapotranspiration, central Florida, 2001-2003

    Science.gov (United States)

    Knowles, Leel; Phelps, G.G.; Kinnaman, Sandra L.; German, Edward R.

    2005-01-01

    though rainfall was far above average during the study, wetland evaporation volumetrically exceeded rainfall. Ground-water inflow was effective in partially offsetting the negative residual between rainfall and evaporation, thus adding to wetland storage. Ground-water inflow was most common at both wetlands when rainfall continued for days or weeks, or during a week with more than about 2.5 inches of rainfall. Large decreases in wetland storage were associated with large negative fluxes of evaporation and ground-water exchange. The response of wetland water levels to rainfall showed a strong and similar relation at both study sites; however, the greater variability in the relation of wetland water-level change to rainfall at higher rainfall rates indicated that hydrologic processes other than rainfall became more important in the response of the wetland. Changes in wetland water levels seemed to be related more to vertical gradients than to lateral gradients. The largest wetland water-level rises were associated mostly with lower vertical gradients, when vertical head differences were below the 18-month average; however, at the Lyonia large wetland, extremely large lateral gradients toward the wetland during late June 2002 may have contributed to substantial gains in wetland water. During the remainder of the study, wetland water-level rises were associated mostly with decreasing vertical gradients and highly variable lateral gradients. Conversely, wetland water-level decreases were associated mostly with increasing vertical gradients and lateral gradients away from the wetland, particularly during the dry season. The potential for lateral ground-water exchange with the wetlands varied substantially more than that for vertical exchange. Potential for vertical losses of wetland water to ground water was highest during a dry period from December 2001 to June 2002, during the wet season of 2002, and for several months into the following dry season. Lateral he

  14. Electron beam welding of 8-inch thick 2-1/4 Cr-1 Mo. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Charles M.

    1980-08-01

    Electron beam welding procedures were developed and used to make sound welds in 8-inch thick 2-1/4 Cr-1 Mo in the horizontal position. A two-pass technique, one pass from each side, was developed for welding the 8-inch thickness. Techniques for eliminating various weld defects were developed. It was learned that the beam oscillation conditions strongly influenced welding performance. Procedures were developed for hard and soft vacuum operation, but hard vacuum was preferred. Procedures for starting and stopping the welding sequence were developed, along with a repair technique involving re-welding over a plug filled hole. The joint fit-up requirements were determined: a joint mismatch of 3/4 in. was welded, and a joint gap opening of 0.100 in. was welded without alteration of the welding procedure. It was shown that it is not necessary to demagnetize the material for successful welding, but that a special magnetic shield may be needed to protect the electron beam from stray magnetic fields. A demonstration weld failed to meet the NDE requirements of the ASME Boiler and Pressure Vessel Code due to poor base metal quality which adversely affected weld performance. The mechanical properties (hardness, strength, ductility, and impact), and the microstructure of electron beam welded 8-inch thick SA387 Grade 22 Class 2 were determined and appeared to be adequate.

  15. Mapping monthly rainfall erosivity in Europe

    DEFF Research Database (Denmark)

    Ballabio, C; Meusburger, K; Klik, A

    2017-01-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and...

  16. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...... necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall...... estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...

  17. Modelling persistence in annual Australia point rainfall

    Directory of Open Access Journals (Sweden)

    J. P. Whiting

    2003-01-01

    Full Text Available Annual rainfall time series for Sydney from 1859 to 1999 is analysed. Clear evidence of nonstationarity is presented, but substantial evidence for persistence or hidden states is more elusive. A test of the hypothesis that a hidden state Markov model reduces to a mixture distribution is presented. There is strong evidence of a correlation between the annual rainfall and climate indices. Strong evidence of persistence of one of these indices, the Pacific Decadal Oscillation (PDO, is presented together with a demonstration that this is better modelled by fractional differencing than by a hidden state Markov model. It is shown that conditioning the logarithm of rainfall on PDO, the Southern Oscillation index (SOI, and their interaction provides realistic simulation of rainfall that matches observed statistics. Similar simulation models are presented for Brisbane, Melbourne and Perth. Keywords: Hydrological persistence,hidden state Markov models, fractional differencing, PDO, SOI, Australian rainfall

  18. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions

    Directory of Open Access Journals (Sweden)

    S. Yin

    2015-05-01

    Full Text Available Rainfall erosivity is the power of rainfall to cause soil erosion by water. The rainfall erosivity index for a rainfall event, EI30, is calculated from the total kinetic energy and maximum 30 min intensity of individual events. However, these data are often unavailable in many areas of the world. The purpose of this study was to develop models that relate more commonly available rainfall data resolutions, such as daily or monthly totals, to rainfall erosivity. Eleven stations with one-minute temporal resolution rainfall data collected from 1961 through 2000 in the eastern water-erosion areas of China were used to develop and calibrate 21 models. Seven independent stations, also with one-minute data, were utilized to validate those models, together with 20 previously published equations. Results showed that models in this study performed better or similar to models from previous research to estimate rainfall erosivity for these data. Prediction capabilities, as determined using symmetric mean absolute percentage errors and Nash–Sutcliffe model efficiency coefficients, were demonstrated for the 41 models including those for estimating erosivity at event, daily, monthly, yearly, average monthly and average annual time scales. Prediction capabilities were generally better using higher resolution rainfall data as inputs. For example, models with rainfall amount and maximum 60 min rainfall amount as inputs performed better than models with rainfall amount and maximum daily rainfall amount, which performed better than those with only rainfall amount. Recommendations are made for choosing the appropriate estimation equation, which depend on objectives and data availability.

  19. Heavy daily-rainfall characteristics over the Gauteng Province

    African Journals Online (AJOL)

    2009-02-09

    Feb 9, 2009 ... Department of Geography, Geoinformatics and Meteorology, Geography Building 2-12, University of .... An example of heavy rainfall 'climatology' in the scientific .... rainfall stations in the calculation of the area-average rainfall.

  20. Topographic relationships for design rainfalls over Australia

    Science.gov (United States)

    Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.

    2016-02-01

    Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as

  1. Rainfall Simulation: methods, research questions and challenges

    Science.gov (United States)

    Ries, J. B.; Iserloh, T.

    2012-04-01

    In erosion research, rainfall simulations are used for the improvement of process knowledge as well as in the field for the assessment of overland flow generation, infiltration, and erosion rates. In all these fields of research, rainfall experiments have become an indispensable part of the research methods. In this context, small portable rainfall simulators with small test-plot sizes of one square-meter or even less, and devices of low weight and water consumption are in demand. Accordingly, devices with manageable technical effort like nozzle-type simulators seem to prevail against larger simulators. The reasons are obvious: lower costs and less time consumption needed for mounting enable a higher repetition rate. Regarding the high number of research questions, of different fields of application, and not least also due to the great technical creativity of our research staff, a large number of different experimental setups is available. Each of the devices produces a different rainfall, leading to different kinetic energy amounts influencing the soil surface and accordingly, producing different erosion results. Hence, important questions contain the definition, the comparability, the measurement and the simulation of natural rainfall and the problem of comparability in general. Another important discussion topic will be the finding of an agreement on an appropriate calibration method for the simulated rainfalls, in order to enable a comparison of the results of different rainfall simulator set-ups. In most of the publications, only the following "nice" sentence can be read: "Our rainfall simulator generates a rainfall spectrum that is similar to natural rainfall!". The most substantial and critical properties of a simulated rainfall are the drop-size distribution, the fall velocities of the drops, and the spatial distribution of the rainfall on the plot-area. In a comparison of the most important methods, the Laser Distrometer turned out to be the most up

  2. Heavy rainfall equations for Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Álvaro José Back

    2011-12-01

    Full Text Available Knowledge of intensity-duration-frequency (IDF relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.

  3. Twelve novel Atm mutations identified in Chinese ataxia telangiectasia patients.

    Science.gov (United States)

    Huang, Yu; Yang, Lu; Wang, Jianchun; Yang, Fan; Xiao, Ying; Xia, Rongjun; Yuan, Xianhou; Yan, Mingshan

    2013-09-01

    Ataxia telangiectasia (A-T) is an autosomal recessive disease characterized mainly by progressive cerebellar ataxia, oculocutaneous telangiectasia, and immunodeficiency. This disease is caused by mutations of the ataxia telangiectasia mutated (Atm) gene. More than 500 Atm mutations that are responsible for A-T have been identified so far. However, there have been very few A-T cases reported in China, and only two Chinese A-T patients have undergone Atm gene analysis. In order to systemically investigate A-T in China and map their Atm mutation spectrum, we recruited eight Chinese A-T patients from six unrelated families nationwide. Using direct sequencing of genomic DNA and the multiplex ligation-dependent probe amplification, we identified twelve pathogenic Atm mutations, including one missense, four nonsense, five frameshift, one splicing, and one large genomic deletion. All the Atm mutations we identified were novel, and no homozygous mutation and founder-effect mutation were found. These results suggest that Atm mutations in Chinese populations are diverse and distinct largely from those in other ethnic areas.

  4. Oral papillary squamous cell carcinoma in twelve dogs.

    Science.gov (United States)

    Nemec, A; Murphy, B G; Jordan, R C; Kass, P H; Verstraete, F J M

    2014-01-01

    Papillary squamous cell carcinoma (PSCC) is a distinct histological subtype of oral squamous cell carcinoma (SCC), described in both dogs and man. In dogs, PSCC has long been considered a malignant oral tumour of very young animals, but it has recently been reported to occur in adult dogs as well. The aim of this study was to describe the major clinicopathological characteristics of canine oral PSCC (COPSCC). Twelve dogs diagnosed with COPSCC were included in this retrospective study (1990-2012). The majority (75%) of the dogs were >6 years of age (median age 9 years). All tumours were derived from the gingiva of dentate jaws, with 66.7% affecting the rostral aspects of the jaws. The gross appearance of the lesions varied, with one having an intraosseous component only. The majority (91.7%) of the tumours were advanced lesions (T2 and T3), but no local or distant metastases were noted. Microscopically, two patterns were seen: (1) invasion of bone forming a cup-shaped indentation in the bone or a deeply cavitating cyst within the bone (cavitating pattern), (2) histologically malignant growth, but lack of apparent bone invasion (non-cavitating pattern). The microscopical appearance corresponded to imaging findings in a majority of cases, with cavitating forms presenting with a cyst-like pattern of bone loss or an expansile mass on imaging and non-cavitating forms showing an infiltrative pattern of bone destruction on imaging. These features suggest two distinct biological behaviours of COPSCC.

  5. Sensitivity and growth of twelve Elatior begonia cultivars to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Reinert, R.A.; Nelson, P.V.

    1979-12-01

    Twelve cultivars of Elatior begonia (Begonia X hiemalis Fotsch.) were exposed to O/sub 3/ at 25 and 50 pphM. The 'Schwabenland' group, 'Whisper 'O' Pink', and 'Improved Krefeld Orange' were the most sensitive, whereas 'Ballerina', 'Mikkell Limelight', and 'Turo' were the least sensitive. 'Rennaisance', 'Heirloom' 'Nixe', and 'Fantasy' were intermediate in sensitivity. The dry weight of foliage (stems plus leaves) of 9 cultivars exposed to O/sub 3/ was significantly less than that of control plants. Ozone at 25 and 50 pphM inhibited flower growth (including peduncles) and development in 4 and 8 of the 12 cultivars, respectively. Differences in flower weight ranged from 43 to 105% of the control at 25 pphM and from 25 to 98% of the control at 50 pphM, depending on cultivar. 1 table.

  6. Twelve tips for designing and running longitudinal integrated clerkships.

    Science.gov (United States)

    Ellaway, Rachel; Graves, Lisa; Berry, Sue; Myhre, Doug; Cummings, Beth-Ann; Konkin, Jill

    2013-12-01

    Longitudinal integrated clerkships (LICs) involve learners spending an extended time in a clinical setting (or a variety of interlinked clinical settings) where their clinical learning opportunities are interwoven through continuities of patient contact and care, continuities of assessment and supervision, and continuities of clinical and cultural learning. Our twelve tips are grounded in the lived experiences of designing, implementing, maintaining, and evaluating LICs, and in the extant literature on LICs. We consider: general issues (anticipated benefits and challenges associated with starting and running an LIC); logistical issues (how long each longitudinal experience should last, where it will take place, the number of learners who can be accommodated); and integration issues (how the LIC interfaces with the rest of the program, and the need for evaluation that aligns with the dynamics of the LIC model). Although this paper is primarily aimed at those who are considering setting up an LIC in their own institutions or who are already running an LIC we also offer our recommendations as a reflection on the broader dynamics of medical education and on the priorities and issues we all face in designing and running educational programs.

  7. Commercializing Government-sponsored Innovations: Twelve Successful Buildings Case Studies

    Science.gov (United States)

    Brown, M. A.; Berry, L. G.; Goel, R. K.

    1989-01-01

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies.

  8. The strong coupling regime of twelve flavors QCD

    CERN Document Server

    da Silva, Tiago Nunes

    2012-01-01

    We summarize the results recently reported in Ref.[1] [A. Deuzeman, M.P. Lombardo, T. Nunes da Silva and E. Pallante,"The bulk transition of QCD with twelve flavors and the role of improvement"] for the SU(3) gauge theory with Nf=12 fundamental flavors, and we add some numerical evidence and theoretical discussion. In particular, we study the nature of the bulk transition that separates a chirally broken phase at strong coupling from a chirally restored phase at weak coupling. When a non-improved action is used, a rapid crossover is observed at small bare quark masses. Our results confirm a first order nature for this transition, in agreement with previous results we obtained using an improved action. As shown in Ref.[1], when improvement of the action is used, the transition is preceded by a second rapid crossover at weaker coupling and an exotic phase emerges, where chiral symmetry is not yet broken. This can be explained [1] by the non hermiticity of the improved lattice Transfer matrix, arising from the c...

  9. Spatial Coherence of Tropical Rainfall

    Science.gov (United States)

    Ratan, Ram; Venugopal, V.; Sukhatme, Jai; Murtugudde, Raghu

    2014-05-01

    We characterise the spatial coherence of tropical rain and its wet spells from observations (TRMM) and assess if models (CMIP5) are able to reproduce the observed features. Based on 15 years (1998-2012) of TRMM 3B42 (V7) 1-degree, daily rainfall, we estimate the spatial decorrelation scale (e-folding distance) of rain at each location in the tropics. A ratio of zonal to meridional spatial scales clearly illustrates that while rain patterns tend to be anisotropic (ratio of 4) over tropical ocean regions (particularly over Pacific ITCZ); over land regions, rain tends to be mostly isotropic. This contrast between ocean and land appears to be reasonably well captured by CMIP5 models, although the anisotropy (ratio) over ocean is much higher than in observations. A very curious behaviour in observations is the presence of a coherent band of spatial decorrelation lengths straddling the equator, in the East Pacific, reminiscent of a double ITCZ that some models tend to simulate. A similar analysis of wet spells of different durations suggests that the decorrelation scale is largely independent of the duration of wet spell.

  10. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia

    Indian Academy of Sciences (India)

    Olaniya Olusegun Mayowa; Sahar Hadi Pour; Shamsuddin Shahid; Morteza Mohsenipour; Sobri Bin Harun; Arien Heryansyah; Tarmizi Ismail

    2015-12-01

    The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfallrelated extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971–2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann–Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.

  11. Rainfall Variability, Drought Characterization, and Efficacy of Rainfall Data Reconstruction: Case of Eastern Kenya

    Directory of Open Access Journals (Sweden)

    M. Oscar Kisaka

    2015-01-01

    Full Text Available This study examined the extent of seasonal rainfall variability, drought occurrence, and the efficacy of interpolation techniques in eastern Kenya. Analyses of rainfall variability utilized rainfall anomaly index, coefficients of variance, and probability analyses. Spline, Kriging, and inverse distance weighting interpolation techniques were assessed using daily rainfall data and digital elevation model using ArcGIS. Validation of these interpolation methods was evaluated by comparing the modelled/generated rainfall values and the observed daily rainfall data using root mean square errors and mean absolute errors statistics. Results showed 90% chance of below cropping threshold rainfall (500 mm exceeding 258.1 mm during short rains in Embu for one year return period. Rainfall variability was found to be high in seasonal amounts (CV = 0.56, 0.47, and 0.59 and in number of rainy days (CV = 0.88, 0.49, and 0.53 in Machang’a, Kiritiri, and Kindaruma, respectively. Monthly rainfall variability was found to be equally high during April and November (CV = 0.48, 0.49, and 0.76 with high probabilities (0.67 of droughts exceeding 15 days in Machang’a and Kindaruma. Dry-spell probabilities within growing months were high, (91%, 93%, 81%, and 60% in Kiambere, Kindaruma, Machang’a, and Embu, respectively. Kriging interpolation method emerged as the most appropriate geostatistical interpolation technique suitable for spatial rainfall maps generation for the study region.

  12. A point rainfall model and rainfall intensity-duration-frequency analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Chul-Sang; Jung, Kwang-Sik [Korea University, Jochiwon(Korea); Kim, Nam-Won [Korea Institute of Construction Technology, Koyang(Korea)

    2001-12-31

    This study proposes a theoretical methodology for deriving a rainfall intensity-duration-frequency(I-D-F) curve using a simple rectangular pulses Poisson process model. As the I-D-F curve derived by considering the model structure is dependent on the rainfall model parameters estimated using the observed first and second order statistics, it becomes less sensitive to the unusual rainfall events than that derived using the annual maxima rainfall series. This study has been applied to the rainfall data at Seoul and Incheon stations to check its applicability by comparing the two I-D-F curves from the model and the data. The results obtained are as followed. (1) As the duration becomes longer, the overlap probability increases significantly. However, its contribution to the rainfall intensity decreases a little. (2) When considering the overlap of each rainfall event, especially for large duration and return period, we could see obvious increases of rainfall intensity. This result is normal as the rainfall intensity is calculated by considering both the overlap probability and return period. Also, the overlap effect for Seoul station is found much higher than that for Incheon station, which is mainly due to the different overlap probabilities calculated using different rainfall model parameter sets. (3) As the rectangular pulses Poisson processes model used in this study cannot consider the clustering characteristics of rainfall, the derived I-D-F curves show less rainfall intensities than those from the annual maxima series. However, overall pattern of both I-D-F curves are found very similar, and the difference is believed to be overcome by use of a rainfall model with the clustering consideration. (author). 14 refs., 6 tabs., 2 figs.

  13. Physical simulation of urban rainfall infiltration

    Institute of Scientific and Technical Information of China (English)

    LI Jie; ZENG Bing; WANG Yan-xia; SHEN Lei

    2008-01-01

    To meet the demand of urban rainwater integrated management, we designed and complemented a physical simulation experimental system of urban rainfall infiltration regulation parameters. We discuss the feasibility of quantitative regulations of urban underlying surface rainfall infiltration conditions and a practical application of a simulated experimental system. In a comprehensive analysis of the composition of an effective rainwater harvesting system and selection of water storage material, we simulated the major parameters of an experimental area rainfall, soil moisture and water storage capacity by providing an effective regulation of the experimental area runoff coefficient, obtained from basic data.

  14. Detecting Rainfall Onset Using Sky Images

    CERN Document Server

    Dev, Soumyabrata; Lee, Yee Hui; Winkler, Stefan

    2016-01-01

    Ground-based sky cameras (popularly known as Whole Sky Imagers) are increasingly used now-a-days for continuous monitoring of the atmosphere. These imagers have higher temporal and spatial resolutions compared to conventional satellite images. In this paper, we use ground-based sky cameras to detect the onset of rainfall. These images contain additional information about cloud coverage and movement and are therefore useful for accurate rainfall nowcast. We validate our results using rain gauge measurement recordings and achieve an accuracy of 89% for correct detection of rainfall onset.

  15. High-Volume Production of Lightweight, Multi-Junction Solar Cells Using 6-inch GaAs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed Phase II program, we will transition MicroLink's 6-inch epitaxial lift-off (ELO) solar cell fabrication process into a manufacturing platform capable...

  16. Project Waiver of American Iron and Steel Requirements to the Napa Sanitation District for 24-Inch Diameter Butterfly Valves

    Science.gov (United States)

    Waiver approval by EPA pursuant to the American Iron and Steel Requirements of the Clean Water Act Section 608 to the Napa Sanitation District in California for the purchase of 24-inch butterfly valves.

  17. First thin AC-coupled silicon strip sensors on 8-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, T., E-mail: thomas.bergauer@oeaw.ac.at [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Dragicevic, M.; König, A. [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Hacker, J.; Bartl, U. [Infineon Technologies Austria AG, Siemensstrasse 2, 9500 Villach (Austria)

    2016-09-11

    The Institute of High Energy Physics (HEPHY) in Vienna and the semiconductor manufacturer Infineon Technologies Austria AG developed a production process for planar AC-coupled silicon strip sensors manufactured on 200 μm thick 8-inch p-type wafers. In late 2015, the first wafers were delivered featuring the world's largest AC-coupled silicon strip sensors. Detailed electrical measurements were carried out at HEPHY, where single strip and global parameters were measured. Mechanical studies were conducted and the long-term behavior was investigated using a climate chamber. Furthermore, the electrical properties of various test structures were investigated to validate the quality of the manufacturing process.

  18. First thin AC-coupled silicon strip sensors on 8-inch wafers

    Science.gov (United States)

    Bergauer, T.; Dragicevic, M.; König, A.; Hacker, J.; Bartl, U.

    2016-09-01

    The Institute of High Energy Physics (HEPHY) in Vienna and the semiconductor manufacturer Infineon Technologies Austria AG developed a production process for planar AC-coupled silicon strip sensors manufactured on 200 μm thick 8-inch p-type wafers. In late 2015, the first wafers were delivered featuring the world's largest AC-coupled silicon strip sensors. Detailed electrical measurements were carried out at HEPHY, where single strip and global parameters were measured. Mechanical studies were conducted and the long-term behavior was investigated using a climate chamber. Furthermore, the electrical properties of various test structures were investigated to validate the quality of the manufacturing process.

  19. Write strategies for multiterabit per square inch scanned-probe phase-change memories

    Science.gov (United States)

    Wright, C. D.; Shah, P.; Wang, Lei; Aziz, M. M.; Sebastian, A.; Pozidis, H.

    2010-10-01

    A mark-length write strategy for multiterabit per square inch scanned-probe memories is described that promises to increase the achievable user density by at least 50%, and potentially up to 100% or more, over conventional approaches. The viability of the write strategy has been demonstrated by experimental scanning probe write/read measurements on phase-change (GeSbTe) media. The advantages offered by adopting mark-length recording are likely to be equally applicable to other forms of scanned probe storage.

  20. Characterization of the ETEL D784UKFLB 11 inch Photomultiplier Tube

    CERN Document Server

    Barros, N; Kimmelman, B; Klein, J R; Moore, E; Nguyen, J; Stavreva, K; Svoboda, R

    2015-01-01

    Water Cherenkov and scintillator detectors are a critical tool for neutrino physics.Their large size, low threshold, and low operational cost make them excellent detectors for long baseline neutrino oscillations, proton decay, supernova and solar neutrinos, double beta decay, and ultra-high energy astrophysical neutrinos. Proposals for a new generation of large detectors rely on the availability of large format, fast, cost-effective photomultiplier tubes. The Electron Tubes Enterprises, Ltd (ETEL) D784KFLB 11 inch Photomultiplier Tube has been developed for large neutrino detectors. We have measured the timing characteristics, relative efficiency, and magnetic field sensitivity of the first fifteen prototypes.

  1. Research on the Fine-Scale Spatial Uniformity of Natural Rainfall and Rainfall from a Rainfall Simulator with a Rotary Platform (RSRP

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2017-06-01

    Full Text Available Abstract: The accurate production of a rainfall environment similar to natural rainfall by a rainfall simulator (RS is a crucial and challenging task in rainfall instrument testing or calibration. Although the spatial uniformity of rainfall accumulation is a key parameter of an RS, the spatial uniformity comparison between simulated rainfall and natural rainfall, and the spatial uniformity improvements for an RS are scant in the literature. In this study, a fine-scale natural rainfall experiment was studied using the same testing methods of an RS and the rainfall uniformity was evaluated using the Christiansen Uniformity Coefficient (CU. Simultaneously, factors influencing the spatial uniformity of natural rainfall, including the average rainfall accumulation (RA, the deviation of RA, and the area of the test zone, were analyzed. The results successfully reproduced some of the behaviors observed in natural rainfall experiments, showing that CU is dependent on these parameters. Based on these studies, we developed a rainfall simulator with a rotary platform (RSRP and found that although spatial uniformity of the RSRP was greatly improved using an appropriate rotary speed, it was not consistent with the spatial uniformity of natural rainfall. Furthermore, we tested four tipping-bucket rain gauges using this imperfect RSRP, and found that the RSRP might acquire the instrumental errors associated with RA for a tested rainfall instrument.

  2. Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall severity

    Science.gov (United States)

    Destro, Elisa; Marra, Francesco; Nikolopoulos, Efthymios; Zoccatelli, Davide; Creutin, Jean-Dominique; Borga, Marco

    2016-04-01

    Forecasting the occurrence of landslides and debris flows (collectively termed 'debris flows' hereinafter) is fundamental for issuing hazard warnings, and focuses largely on rainfall as a triggering agent. Debris flow forecasting relies very often on the identification of combinations of depth and duration of rainfall - rainfall thresholds - that trigger widespread debris flows. Rainfall estimation errors related to the sparse nature of raingauge data are enhanced in case of convective rainfall events characterized by limited spatial extent. Such errors have been shown to cause underestimation of the rainfall thresholds and, thus, less efficient forecasts of debris flows occurrence. This work examines the spatial organization of debris flows-triggering rainfall around the debris flow initiation points using high-resolution, carefully corrected radar data for a set of short duration (debris-flow triggering rainfall events that occurred in the study area between 2005 and 2014. The selected events are among the most severe in the region during this period and triggered a total of 99 debris flows that caused significant damage to people and infrastructures. We show that the spatial rainfall organisation depends on the severity (measured via the estimated return time-RT) of the debris flow-triggering rainfall. For more frequent events (RTdebris flow location coincides with a local minimum, whereas for less frequent events (RT>20 yrs) the triggering rainfall presents a local peak corresponding to the debris flow initiation point. Dependence of these features on rainfall duration is quite limited. The characteristics of the spatial rainfall organisation are exploited to understand the performances and results of three different rainfall interpolation techniques: nearest neighbour (NN), inverse distance weighting (IDW) and ordinary kriging (OK). We show that the features of the spatial organization of the debris flow triggering rainfall explain the biases in the

  3. MBE growth of Sb-based bulk nBn infrared photodetector structures on 6-inch GaSb substrates

    Science.gov (United States)

    Liu, Amy W. K.; Lubyshev, Dmitri; Qiu, Yueming; Fastenau, Joel M.; Wu, Ying; Furlong, Mark J.; Tybjerg, Marius; Martinez, Rebecca J.; Mowbray, Andrew; Smith, Brian

    2015-06-01

    The GaSb-based 6.1 Å lattice constant family of materials and heterostructures provides rich bandgap engineering possibilities and have received considerable attention for their potential and demonstrated performance in infrared (IR) detection and imaging applications. Mid-wave and long-wave IR photodetectors are progressing toward commercial manufacturing applications. To succeed, they must move from research laboratory settings to general semiconductor production, and high-quality GaSb-based epitaxial wafers with diameter larger than the current standard 3-inch are highly desirable. 4-inch GaSb substrates have been in production for a couple of years and are now commercially available. Recently, epi-ready GaSb substrates with diameter in excess of 6-inch were successfully produced. In this work, we report on the MBE (Molecular Beam Epitaxy) growth of generic MWIR bulk nBn photodetectors on 6-inch diameter GaSb substrates. The surface morphology, optical and structural quality of the epiwafers as evaluated by atomic force microscopy (AFM), Nomarski microscopy, low temperature photoluminescence (PL) spectroscopy, and high-resolution x-ray diffraction (XRD) will be discussed. Current density versus voltage (J-V) and photoresponsivity measurements from large-area mesa diode fabricated will also be reported. Material and device properties of these 6-inch epiwafers will be compared to similar structures grown on commercially available 4-inch diameter GaSb substrates.

  4. The Synthesis and Antitumor Activity of Twelve Galloyl Glucosides

    Directory of Open Access Journals (Sweden)

    Chang-Wei Li

    2015-01-01

    Full Text Available Twelve galloyl glucosides 1–12, showing diverse substitution patterns with two or three galloyl groups, were synthesized using commercially available, low-cost D-glucose and gallic acid as starting materials. Among them, three compounds, methyl 3,6-di-O-galloyl-α-D-glucopyranoside (9, ethyl 2,3-di-O-galloyl-α-D-glucopyranoside (11 and ethyl 2,3-di-O-galloyl-β-D-glucopyranoside (12, are new compounds and other six, 1,6-di-O-galloyl-β-D-glucopyranose (1, 1,4,6-tri-O-galloyl-β-D-glucopyranose (2, 1,2-di-O-galloyl-β-D-glucopyranose (3, 1,3-di-O-galloyl-β-D-glucopyranose (4, 1,2,3-tri-O-galloyl-α-D-glucopyranose (6 and methyl 3,4,6-tri-O-galloyl-α-D-glucopyranoside (10, were synthesized for the first time in the present study. In in vitro MTT assay, 1–12 inhibited human cancer K562, HL-60 and HeLa cells with inhibition rates ranging from 64.2% to 92.9% at 100 μg/mL, and their IC50 values were determined to be varied in 17.2–124.7 μM on the tested three human cancer cell lines. In addition, compounds 1–12 inhibited murine sarcoma S180 cells with inhibition rates ranging from 38.7% to 52.8% at 100 μg/mL in the in vitro MTT assay, and in vivo antitumor activity of 1 and 2 was also detected in murine sarcoma S180 tumor-bearing Kunming mice using taxol as positive control.

  5. [Twelve years of working of Brazzaville cancer registry].

    Science.gov (United States)

    Nsondé Malanda, Judith; Nkoua Mbon, Jean Bernard; Bambara, Augustin Tozoula; Ibara, Gérard; Minga, Benoît; Nkoua Epala, Brice; Gombé Mbalawa, Charles

    2013-02-01

    The Brazzaville cancer registry was created in 1996 with the support of the International Agency Research against Cancer (IARC) which is located in Lyon, France. The Brazzaville cancer registry is a registry which is based on population which records new cancer cases occurring in Brazzaville by using Canreg 4.0 Software. Its aim is to supply useful information to fight against cancer to physicians and to decision makers. We conducted this study whose target was to determine the incidence of cancer in Brazzaville during twelve years, from January 1st, 1998 to December 31, 2009. During that period 6,048 new cancer cases were recorded: 3,377 women (55.8%), 2,384 men (39.4%), and 287 children (4.8%) from 0 to 14 years old with an annual average of 504 cases. Middle age to the patient's diagnosis was 49.5 years in female sex and 505.5 years old for male sex. The incidence rate of cancers in Brazzaville was 39.8 or 100.000 inhabitants per year and by sex we observed 49 to female sex and 35.2 for male sex. The first cancers localizations observed to women were in order of frequency: breast, cervix uterine, liver ovaries, hematopoietic system, to men : liver, prostate, hematopoietic system, colon and stomach; to children : retina, kidney, hematopoietic system, liver and bones. These rates are the basis to know the burden of cancer among all pathologies of Brazzaville and the achievement of a national cancer control program.

  6. Hyperinsulinism and hyperammonemia syndrome: report of twelve unrelated patients.

    Science.gov (United States)

    De Lonlay, P; Benelli, C; Fouque, F; Ganguly, A; Aral, B; Dionisi-Vici, C; Touati, G; Heinrichs, C; Rabier, D; Kamoun, P; Robert, J J; Stanley, C; Saudubray, J M

    2001-09-01

    Hyperinsulinism and hyperammonemia syndrome has been reported as a cause of moderately severe hyperinsulinism with diffuse involvement of the pancreas. The disorder is caused by gain of function mutations in the GLUD1 gene, resulting in a decreased inhibitory effect of guanosine triphosphate on the glutamate dehydrogenase (GDH) enzyme. Twelve unrelated patients (six males, six females) with hyperinsulinism and hyperammonemia syndrome have been investigated. The phenotypes were clinically heterogeneous, with neonatal and infancy-onset hypoglycemia and variable responsiveness to medical (diazoxide) and dietary (leucine-restricted diet) treatment. Hyperammonemia (90-200 micromol/L, normal carbamylglutamate administration. The patients had mean basal GDH activity (18.3 +/- 0.9 nmol/min/mg protein) not different from controls (17.9 +/- 1.8 nmol/min/mg protein) in cultured lymphoblasts. The sensitivity of GDH activity to inhibition by guanosine triphosphate was reduced in all patient lymphoblast cultures (IC(50), or concentrations required for 50% inhibition of GDH activity, ranging from 140 to 580 nM, compared with control IC(50) value of 83 +/- 1.0 nmol/L). The allosteric effect of ADP was within the normal range. The activating effect of leucine on GDH activity varied among the patients, with a significant decrease of sensitivity that was correlated with the negative clinical response to a leucine-restricted diet in plasma glucose levels in four patients. Molecular studies were performed in 11 patients. Heterozygous mutations were localized in the antenna region (four patients in exon 11, two patients in exon 12) as well as in the guanosine triphosphate binding site (two patients in exon 6, two patients in exon 7) of the GLUD1 gene. No mutation has been found in one patient after sequencing the exons 5-13 of the gene.

  7. Commercializing government-sponsored innovations: Twelve successful buildings case studies

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Berry, L.G.; Goel, R.K.

    1989-01-01

    This report examines the commercialization and use of R and D results funded by DOE's Office of Buildings and Community Systems (OBCS), an office that is dedicated to improving the energy efficiency of the nation's buildings. Three goals guided the research described in this report: to improve understanding of the factors that hinder or facilitate the transfer of OBCS R and D results, to determine which technology transfer strategies are most effective and under what circumstances each is appropriate, and to document the market penetration and energy savings achieved by successfully-commercialized innovations that have received OBCS support. Twelve successfully-commercialized innovations are discussed here. The methodology employed involved a review of the literature, interviews with innovation program managers and industry personnel, and data collection from secondary sources. Six generic technology transfer strategies are also described. Of these, contracting R and D to industrial partners is found to be the most commonly used strategy in our case studies. The market penetration achieved to date by the innovations studied ranges from less than 1% to 100%. For the three innovations with the highest predicted levels of energy savings (i.e., the flame retention head oil burner, low-E windows, and solid-state ballasts), combined cumulative savings by the year 2000 are likely to approach 2 quads. To date the energy savings for these three innovations have been about 0.2 quads. Our case studies illustrate the important role federal agencies can play in commercializing new technologies. 27 refs., 21 figs., 4 tabs.

  8. Drought Index Analizes With Rainfall Patern Indicators Use SPI Method (Case Study Bangga Watershed

    Directory of Open Access Journals (Sweden)

    Beti Mayasari

    2017-05-01

    Full Text Available Irregular weather and climate changes caused by El – Nino effect drought in some areas, including in Indonesia. The location of this study lies in the Bangga watershed. The purpose of this study was to determine rainfall patterns, drought level, the worst drought that occurred and the prediction for the future. One method for analysis of drought is using SPI (Standardized Precipitation Index. This method aims to calculate the value of a drought index that would indicate the level of the existing drought in a region. Data used are monthly rainfall from two station for 23 years (year 1993-2015. After analyzing the drought, the projection made with software Makesens 1.0. The study results showed that the worst drought in Bangga watershed occurred in April 2015 with drought index -3516 for one monthly SPI, -2815 for three monthly SPI, -3254 for six monthly SPI, -2171 for nine monthly SPI, and - 2922 for twelve 12 monthly SPI. Once projected until 2050, generally Bangga watershed experiencing dry conditions with the worst drought in July with a value of -3.83 for one monthly SPI, -3.65 for three monthly SPI, -3.44 for six monthly SPI, -2.6 for nine monthly SPI and -2.32 for twelve monthly SPI.

  9. Rainfall mechanisms for the dominant rainfall mode over Zimbabwe relative to ENSO and/or IODZM.

    Science.gov (United States)

    Manatsa, Desmond; Mukwada, Geoffrey

    2012-01-01

    Zimbabwe's homogeneous precipitation regions are investigated by means of principal component analysis (PCA) with regard to the underlying processes related to ENSO and/or Indian Ocean Dipole zonal mode (IODZM). Station standardized precipitation index rather than direct rainfall values represent the data matrix used in the PCA. The results indicate that the country's rainfall is highly homogeneous and is dominantly described by the first principal mode (PC1). This leading PC can be used to represent the major rainfall patterns affecting the country, both spatially and temporarily. The current practice of subdividing the country into the two seasonal rainfall forecast zones becomes irrelevant. Partial correlation analysis shows that PC1 is linked more to the IODZM than to the traditional ENSO which predominantly demonstrates insignificant association with PC1. The pure IODZM composite is linked to the most intense rainfall suppression mechanisms, while the pure El Niño composite is linked to rainfall enhancing mechanisms.

  10. Maximum daily rainfall in South Korea

    Indian Academy of Sciences (India)

    Saralees Nadarajah; Dongseok Choi

    2007-08-01

    Annual maxima of daily rainfall for the years 1961–2001 are modeled for five locations in South Korea (chosen to give a good geographical representation of the country). The generalized extreme value distribution is fitted to data from each location to describe the extremes of rainfall and to predict its future behavior. We find evidence to suggest that the Gumbel distribution provides the most reasonable model for four of the five locations considered. We explore the possibility of trends in the data but find no evidence suggesting trends. We derive estimates of 10, 50, 100, 1000, 5000, 10,000, 50,000 and 100,000 year return levels for daily rainfall and describe how they vary with the locations. This paper provides the first application of extreme value distributions to rainfall data from South Korea.

  11. RAINFALL EROSIVITY IN SOUTHEASTERN NIGERIA *Ezemonye ...

    African Journals Online (AJOL)

    Osondu

    2011-10-13

    Oct 13, 2011 ... annual total amount, and frequency of fall, kinetic energy and ... annual rainfall increases from the northern frontier of the region ... Nigeria Meteorological Agency, Lagos for the ..... Estimation for Australia's Tropics. Aust. J. Soil.

  12. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    As noted by the Bureau of Meteorology, Canada, to examine whether such ... their local climate, a threshold considered extreme in one part of Australia could be ... (extreme frequency); the average intensity of rainfall from extreme events.

  13. Rainfall Fields: Estimation, Analysis, and Prediction

    Science.gov (United States)

    The problem of predicting rainfall and its characteristics has always been one of overriding concern for both hydrologists and meteorologists. Yet, for decades the two disciplines have pursued its solution using radically different techniques and communicating relatively little about recent advances in understanding rainfall processes, new technology, and improvements in predictive skill.Meteorologists tend to publish in journals that deal almost exclusively with atmospheric processes, while hydrologists prefer media which focus on the Earth's surface and below. Meteorologists tend to concentrate on developing and improving numerical hydrodynamical models of the atmospheric processes that generate rainfall. Their approach is essentially to solve an initial value problem where the observed three-dimensional state of the atmosphere is input to the model and the rainfall is one of the output parameters.

  14. Statistical Testing of Dynamically Downscaled Rainfall Data for the East Coast of Australia

    Science.gov (United States)

    Parana Manage, Nadeeka; Lockart, Natalie; Willgoose, Garry; Kuczera, George

    2015-04-01

    This study performs a validation of statistical properties of downscaled climate data, concentrating on the rainfall which is required for hydrology predictions used in reservoir simulations. The data sets used in this study have been produced by the NARCliM (NSW/ACT Regional Climate Modelling) project which provides a dynamically downscaled climate dataset for South-East Australia at 10km resolution. NARCliM has used three configurations of the Weather Research Forecasting Regional Climate Model and four different GCMs (MIROC-medres 3.2, ECHAM5, CCCMA 3.1 and CSIRO mk3.0) from CMIP3 to perform twelve ensembles of simulations for current and future climates. Additionally to the GCM-driven simulations, three control run simulations driven by the NCEP/NCAR reanalysis for the entire period of 1950-2009 has also been performed by the project. The validation has been performed in the Upper Hunter region of Australia which is a semi-arid to arid region 200 kilometres North-West of Sydney. The analysis used the time series of downscaled rainfall data and ground based measurements for selected Bureau of Meteorology rainfall stations within the study area. The initial testing of the gridded rainfall was focused on the autoregressive characteristics of time series because the reservoir performance depends on long-term average runoffs. A correlation analysis was performed for fortnightly, monthly and annual averaged time resolutions showing a good statistical match between reanalysis and ground truth. The spatial variation of the statistics of gridded rainfall series were calculated and plotted at the catchment scale. The spatial correlation analysis shows a poor agreement between NARCliM data and ground truth at each time resolution. However, the spatial variability plots show a strong link between the statistics and orography at the catchment scale.

  15. Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework

    Science.gov (United States)

    Hasan, Mohammad Mahadi; Sharma, Ashish; Mariethoz, Gregoire; Johnson, Fiona; Seed, Alan

    2016-11-01

    While the value of correcting raw radar rainfall estimates using simultaneous ground rainfall observations is well known, approaches that use the complete record of both gauge and radar measurements to provide improved rainfall estimates are much less common. We present here two new approaches for estimating radar rainfall that are designed to address known limitations in radar rainfall products by using a relatively long history of radar reflectivity and ground rainfall observations. The first of these two approaches is a radar rainfall estimation algorithm that is nonparametric by construction. Compared to the traditional gauge adjusted parametric relationship between reflectivity (Z) and ground rainfall (R), the suggested new approach is based on a nonparametric radar rainfall estimation method (NPR) derived using the conditional probability distribution of reflectivity and gauge rainfall. The NPR method is applied to the densely gauged Sydney Terrey Hills radar network, where it reduces the RMSE in rainfall estimates by 10%, with improvements observed at 90% of the gauges. The second of the two approaches is a method to merge radar and spatially interpolated gauge measurements. The two sources of information are combined using a dynamic combinatorial algorithm with weights that vary in both space and time. The weight for any specific period is calculated based on the error covariance matrix that is formulated from the radar and spatially interpolated rainfall errors of similar reflectivity periods in a cross-validation setting. The combination method reduces the RMSE by about 20% compared to the traditional Z-R relationship method, and improves estimates compared to spatially interpolated point measurements in sparsely gauged areas.

  16. A new alignment procedure for the South African Astronomical Observatory's 74-inch telescope

    Science.gov (United States)

    Crause, Lisa A.; Booth, John A.; Doss, David; Loubser, Egan; O'Connor, James E.; Sass, Craig; Sickafoose, Amanda A.; Worters, Hannah L.

    2016-07-01

    Considerable effort has gone into improving the performance and reliability of the SAAO's 74-inch telescope. This included replacing the telescope encoders, refining the pointing model and increasing the telescope throughput. The latter involved re-aluminising the primary and formulating a procedure to ensure optimal alignment of the telescope mirrors. To this end, we developed the necessary hardware and techniques to ensure that such alignment is achieved and maintained, particularly following re-aluminising of the mirrors. In essence, the procedure involves: placing a Taylor Hobson Alignment Telescope on the mechanical rotation axis of the 74-inch (which we define to be the optical axis, since the Cassegrain instruments attach to the associated turntable), then adjusting the tip/tilt of the secondary mirror to get it onto that axis and, lastly, adjusting the tip/tilt of the primary mirror to eliminate coma. An eyepiece (or wavefront camera) is installed at the Cassegrain port for this final step since comatic star images indicate the need to tip/tilt the primary mirror to align it to the secondary. Tuning out any brightness gradients seen in an out-of-focus image of a bright star may also be used for feedback when adjusting the tip/tilt of the primary mirror to null coma.

  17. Separation Efficiency of Nagar Parker China Clay Using Two Inch Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Abdul Ghani Pathan

    2013-01-01

    Full Text Available Performance efficiency of two inch hydrocyclone has been investigated, using the Nagar Parker china clay. Raw china clay was initially washed with tap water and -75 ?m size fraction was separated through wet sieving. Washed china clay of -75 ?m was used as feed sample in hydrocyclone tests. Solids concentration in slurry was kept as 2.5%. 45 tests were conducted with different combinations of pressure, vortex finder and spigot. Three sizes of spigot viz. 3.2, 2.2 and 1.5mm and three sizes of vortex finder viz. 7.00, 5.5 and 3.00mm were used. Hydrocyclone rig was operated at five different pressures viz. 20, 30, 40, 50 and 60 psi in conjunction with various combinations of vortex finder and spigot. Laser light scattering technique was used for particle size analysis of O/F (Overflow and U/F (Underflow products. Separation efficiency of the hydrocyclone, for various combinations of Vortex Finder, Spigot and operating pressure, was determined for two size fractions, i.e. less than ten micron and less than twenty micron, present in O/F and U/F products. From the results it was concluded that the best separation efficiency of 2 inch hydrocyclone is achieved by using the vortex finder of 7.0mm size and spigot of 1.5mm size. It was also concluded that the separation efficiency of the hydrocyclone decreases by increasing the pressure.

  18. Artist autonomy in a digital era: The case of Nine Inch Nails

    Directory of Open Access Journals (Sweden)

    Steven C. Brown

    2012-09-01

    Full Text Available A 2009 presentation by Michael Masnick (CEO and founder of insight company Floor64 entitled ‘How Trent Reznor and Nine Inch Nails represent the Future of the Music Business’ brought the success of the business models employed by Reznor in distributing Nine Inch Nails’ music into the spotlight. The present review provides a comprehensive timeline of the band circa 2005-2010, evaluating the success of the distribution methods employed in accordance with Masnick’s (2009 proposed business model of connecting with fans and providing them with a reason to buy. The model is conceptualised in the wider context in which Reznor’s distribution methods take place (including a brief consideration of Radiohead’s much cited pay-what-you- want model, addressing the perceived gaps in the model by exploring the involvement of musical preferences; age and consumer purchasing behavior and fan worship. Implications are discussed concerning the applicability of the model for new and emerging bands.

  19. Structural reinforcement of a {theta}16 inches tee made during operation with composite material

    Energy Technology Data Exchange (ETDEWEB)

    Beim, Andre [Tresca Engenharia Ltda., Sao Paulo, SP (Brazil); Vilani, Eduardo Cesar [Rust Engenharia Ltda., Diadema, SP (Brazil)

    2009-07-01

    An industrial installation went through a turnaround to increase capacity. A tie-in line had to be made for this, and a 16 inches diameter branch was required to be made on an existing 16 inches pipe. The joining of these elements resulted in a 'tee' that was supposed to receive a reinforcement plate. This reinforcement plate was not installed before the plant start-up. Code calculations and a finite element stress analysis showed that reinforcement was necessary. The only viable solution was the application of a composite material reinforcement, designed to substitute the missing reinforcement plate, and reduce the stresses to allowable levels. A new finite element stress analysis was made to determine the required thickness of this reinforcement. The first part of this work shows the results of the finite element stress analysis. Figures with stress contours of the analyses show the results. The second part shows the details of the installation of the reinforcement, which was made during normal operation of the plant. Pictures illustrate the main steps of the installation procedure. (author)

  20. Weather radar rainfall data in urban hydrology

    Science.gov (United States)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, Marie-Claire; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter

    2017-03-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological applications. The paper also reviews how the focus in urban hydrology research has shifted over the last decade to fields such as climate change impacts, resilience of urban areas to hydrological extremes, and online prediction/warning systems. It is discussed how radar rainfall data can add value to the aforementioned emerging fields in current and future applications, but also to the analysis of integrated water systems.

  1. Humidity Profiles' Effect On The Relationship Between Ice Scattering And Rainfall In Microwave Rainfall Retrievals

    Science.gov (United States)

    Petkovic, V.; Kummerow, C. D.

    2013-12-01

    Currently, satellite microwave rainfall retrievals base their algorithm on an observed global average of the relationship between high frequency brightness temperature (Tb) depression and rainfall rate. This makes them very sensitive to differences in the ratio of ice to liquid in the cloud, resulting in regional biases of rainfall estimates. To address this problem we investigate how the environmental conditions that precede raining systems influence the ice to rainfall relationship. The vertical profile of humidity was found to be a key variable in predicting this ratio. We found that dry over moist air conditions are favorable for developing intense, well organized systems such as MCSs in West Africa and the Sahel, characterized by strong Tb depressions and amounts of ice aloft significantly above the globally observed average value. As a consequence, microwave retrieval algorithms misinterpret these systems assigning them unrealistically high rainfall rates. The opposite is true in the Amazon region, where observed raining systems exhibit very little ice while producing high rainfall rates. These regional differences correspond well with a map of radar to radiometer biases of rainfall. Deeper understanding of the influence of environmental conditions on this ice to rain ratio provides a foundation for mapping a global ice-scattering to rainfall rate relationship that will improve satellite microwave rainfall retrievals and our understanding of cloud microphysics globally.

  2. Satellite-based estimation of rainfall erosivity for Africa

    NARCIS (Netherlands)

    Vrieling, A.; Sterk, G.; Jong, S.M. de

    2010-01-01

    Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energy determines the erosivity and is in turn greatly dependent on rainfall intensity. Attempts for its large-scale mapping are rare. Most are based on interpolation of erosivity values derived from rain gauge data.

  3. Remote sensing of rainfall for debris-flow hazard assessment

    Science.gov (United States)

    Wieczorek, G.F.; Coe, J.A.; Godt, J.W.; ,

    2003-01-01

    Recent advances in remote sensing of rainfall provide more detailed temporal and spatial data on rainfall distribution. Four case studies of abundant debris flows over relatively small areas triggered during intense rainstorms are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. Three examples with rainfall estimates from National Weather Service Doppler radar and one example with rainfall estimates from infrared imagery from a National Oceanic and Atmospheric Administration satellite are compared with ground-based measurements of rainfall and with landslide distribution. The advantages and limitations of using remote sensing of rainfall for landslide hazard analysis are discussed. ?? 2003 Millpress,.

  4. Temporal Variation of Rainfall Intensity, Rainfall Partitioning and its Correlation with Meteorological Elements of Eastern India

    Science.gov (United States)

    Tripathi, P.; Chaturvedi, A.

    2007-07-01

    Rainfall plays a vital role in Indian agriculture hence economy of the country, but very crucial and risky due to its erratic/ unpredictable behavior and uneven distribution. Since monsoonal vagaries in eastern India are very frequent hence involve a great risk in Argil. Production and quality of atmosphere at desired level. Though prediction of onset of monsoon with total quantum of rainfall is available through different agencies but still not accurate and not in consonance of observed behavior. Therefore, surface weather data of meteorological elements needs to be critically examined for prediction of onset of monsoon, rainfall rate and its variability with space and time and strategy to cope the uncertainty of risk (drought and flood etc) needs to be evolved. In the present study an analysis of rainfall of Eastern India (Eastern U.P., Bihar and Jharkhand) has been made for rainfall partitioning, rate of rainfall and its variation with space and time. A location specific six parameter model were developed with multiple correlation technique to predict the medium and long range rainfall forecast and found 65% accurate for long range and 79% accurate to medium range. This will not only help to predict the accurate rainfall but also provides a clue for assessment of quality of rainfall under different aerosol levels of atmosphere which ultimately led to link designers with radio wave propagation. In addition, correlation of physical variables of atmosphere like vapor pressure deficit, dew point and relative humidity were also made with quantum of rainfall, rate of rainfall and its quantitative characteristics in the study area as to understand the mechanism behavior of atmosphere for space research.

  5. Exploring the relationship between malaria, rainfall intermittency, and spatial variation in rainfall seasonality

    Science.gov (United States)

    Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.

    2014-12-01

    Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results

  6. A multiplier-based method of generating stochastic areal rainfall from point rainfalls

    Science.gov (United States)

    Ndiritu, J. G.

    Catchment modelling for water resources assessment is still mainly based on rain gauge measurements as these are more easily available and cover longer periods than radar and satellite-based measurements. Rain gauges however measure the rain falling on an extremely small proportion of the catchment and the areal rainfall obtained from these point measurements are consequently substantially uncertain. These uncertainties in areal rainfall estimation are generally ignored and the need to assess their impact on catchment modelling and water resources assessment is therefore imperative. A method that stochastically generates daily areal rainfall from point rainfall using multiplicative perturbations as a means of dealing with these uncertainties is developed and tested on the Berg catchment in the Western Cape of South Africa. The differences in areal rainfall obtained by alternately omitting some of the rain gauges are used to obtain a population of plausible multiplicative perturbations. Upper bounds on the applicable perturbations are set to prevent the generation of unrealistically large rainfall and to obtain unbiased stochastic rainfall. The perturbations within the set bounds are then fitted into probability density functions to stochastically generate the perturbations to impose on areal rainfall. By using 100 randomly-initialized calibrations of the AWBM catchment model and Sequent Peak Analysis, the effects of incorporating areal rainfall uncertainties on storage-yield-reliability analysis are assessed. Incorporating rainfall uncertainty is found to reduce the required storage by up to 20%. Rainfall uncertainty also increases flow-duration variability considerably and reduces the median flow-duration values by an average of about 20%.

  7. Extreme Rainfall Impacts in Fractured Permeable Catchments

    Science.gov (United States)

    Ireson, A. M.; Butler, A. P.

    2009-12-01

    Serious groundwater flooding events have occurred on Chalk catchments in both the UK and north west Europe in the last decade, causing substantial amounts of disruption and economic damage. These fractured, permeable catchments are characterized by low surface runoff, high baseflow indices and strongly attenuated streamflow hydrographs. They have a general resilience to drought and pluvial/fluvial flooding. The small pore size of the Chalk matrix (~ 1 µm) exerts a high suction, such that dynamic storage is primarily due to the fractures, and amounts to ~ 1% of the total volume. As a result, under sustained rainfall the water table can rise up to exceptional levels leading to surface water emergence from springs and valleys. Floodwater may slowly drain with the topography, or, in localized depressions, it may simply pond until the groundwater levels decline. In winter 2000/1, a sequence of individually unexceptional rainfall events over several months led to large scale flooding in the Pang catchment, Berkshire, UK. By contrast, an extreme rainfall event on 20th July 2007 in the same catchment caused a very rapid response at the water table, but due to the antecedent conditions did not lead to flooding. The objective of this study is to quantify how the water table in a fractured permeable catchment responds to different types of rainfall, and the implications of this for groundwater flooding. We make use of measurements from the Pang catchment, including: rainfall (tipping bucket gauges); actual evaporation (eddy flux correlation); soil water content (profile probes and neutron probes); near surface matric potential (tensiometers and equitensiometers); deep (>10m) matric potential (deep jacking tensiometers); and water table elevation (piezometers). Conventional treatment of recharge in Chalk aquifers considers a fixed bypass component of rainfall, normally 15%, to account for the role of the fractures. However, interpretation of the field data suggest three modes

  8. FDG gamma camera PET equipped with one inch crystal and XCT. Assessment of myocardial viability

    Energy Technology Data Exchange (ETDEWEB)

    Beheshti, M. [Dept. of Nuclear Medicine, Medical Univ., General Hospital of Vienna (Austria); Dept. of Nuclear Medicine and Endocrinology, PET CT Centre, St. Vincent' s Hospital, Linz (Austria); Khorsand, A.; Graf, S. [Dept. of Cardiology, Medical Univ., General Hospital of Vienna (Austria); Dobrozemsky, G. [Dept. of Nuclear Medicine, Medical Univ. of Innsbruck (Austria); Oezer, S.; Kletter, K.; Dudczak, R. [Dept. of Nuclear Medicine, Medical Univ., General Hospital of Vienna (Austria); Pirich, C. [Dept. of Nuclear Medicine und Endocrinology, Paracelsus Private Medical Univ., SALK, Salzburg (Austria)

    2006-07-01

    Metabolic imaging with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) is actually considered as the best method to detect and quantitatively assess myocordial tissue viability. The aim of this study was to investigate the accuracy of FDG gamma camera positron emission tomography (GCPET) imaging equipped with one inch NaI crystals in comparison to FDG dedicated PET (dPET) imaging as a ''gold standard'' in phantom and clinical studies. Patients, methods: nineteen patients with coronary artery disease (CAD) underwent both imaging modalities. Phantom and clinical GCPET imaging were performed with a dual-headed, coincidence based gamma camera equipped with 1 inch thick NaI crystals and an X-ray tube (XCT) for attenuation correction (AC), as well as with a dedicated PET scanner with AC. {sup 99m}Tc tetrofosmin single-photon emission tomography (SPET) studies were performed for assessment of myocardial perfusion, with AC. Results: phantom studies showed a significant relation in segmental activity between FDG imaging with AC using GCPET and dPET (r = 0.91, p < 0.001). In clinical studies with AC correlation coefficients of mean segmental FDG uptake and regional defect size were r = 0.87 (p < 0.0001) and r = 0.83 (p < 0.0001), respectively. In regional analysis close agreement was even found in the most attenuated regions of the heart if AC was used in GCPET imaging. The overall agreement for detection of viable myocardium was 81% between FDG-dPET (AC) and FDG-GCPET (AC) and 74% between FDG-dPET (AC) and FDG-GCPET (NC). Conclusions: suggests that the assessment of myocardial metabolism by means of FDG is feasible with a coincidence based gamma camera equipped with 1 inch thick NaI crystal if AC is performed. The results reveal a close concordance and agreement between FDG-dPET (AC) and FDG-GCPET (AC) as compared to FDG-GCPET (NC). (orig.)

  9. Changes in rainfall seasonality in the tropics

    Science.gov (United States)

    Feng, X.; Porporato, A. M.; Rodriguez-Iturbe, I.

    2012-12-01

    Climate change has altered not only the overall magnitude of rainfall but also their seasonal distribution and interannual variability across the world. Such changes in the rainfall regimes will be most keenly felt in arid and semiarid regions, where the availability and timing of water are key factors controlling biogeochemical cycles, primary productivity, and phenology, in addition to regulating regional agricultural production and economic output. Nevertheless, due to the inherent complexity of the signals, a comprehensive framework to understand seasonal rainfall profiles across multiple timescales and geographical regions is still lacking. Here, we formulate a global measure of seasonality and investigate changes in the seasonal rainfall regime across the tropics in the past century. The seasonality index, which captures the effects of both the magnitude and concentration of the rainy season, is highest in the northeast region of Brazil, western and central Africa, northern Australia, and parts of the Caribbean and Southeast Asia (the seasonally dry tropics). Further decomposing rainfall seasonality into its magnitude, duration, and timing components using spectral techniques and information theory, we find marked increase in the interannual variability of seasonality over most of the dry tropics, implying increasing uncertainty in the intensity, duration, and arrival of seasonal rainfall over the past century. We also show that such increase in variability has occurred in conjunction with shifts in the seasonal timing and changes in its overall magnitude. Thus, it is importance to place the analysis of rainfall regimes in these regions into a seasonal context that is most relevant to local ecological and social processes. These changes, if sustained into the next century, will portend significant shifts in the timing of plant activities and ecosystem composition and distribution, with consequences for water and carbon cycling and water resource management in

  10. Modeling the Distribution of Rainfall Intensity using Hourly Data

    OpenAIRE

    Salisu Dan'azumi; Supiah Shamsudin; Azmi Aris

    2010-01-01

    Problem statement: Design of storm water best management practices to control runoff and water pollution can be achieved if a prior knowledge of the distribution of rainfall characteristics is known. Rainfall intensity, particularly in tropical climate, plays a major role in the design of runoff conveyance and erosion control systems. This study is aimed to explore the statistical distribution of rainfall intensity for Peninsular Malaysia using hourly rainfall data. Approach: Hourly rainfall ...

  11. An Experiment in Humanistic Management within Community College District Twelve, Centralia/Olympia, Washington.

    Science.gov (United States)

    Miller, Dale A.; Hurley, John A.

    Community College District Twelve, a multi-college district serving a two-county area in southwestern Washington, has attempted to incorporate at administrative levels many of the humanistic, process-oriented principles of management discussed by Maslow and Maccoby. A concept of the ideal leadership style for District Twelve guides the selection…

  12. O morfema INCH e a alternância causativo-incoativa em PB

    Directory of Open Access Journals (Sweden)

    Maria José de Oliveira

    2015-07-01

    Full Text Available O objetivo deste artigo é investigar as propriedades sintáticas e semânticas dos verbos que participam de estruturas causativas em português brasileiro (doravante PB, mais especificamente os verbos incoativos (ou verbos de mudança. Para tanto, a presente proposta pauta-se em estudos recentes sobre a derivação desses verbos, realizados por Alboiu & Barrie (2005. Assumo com estes autores que o morfema INCH (incoativo, quando se conecta a uma raiz acategorial libera a alternância. Ademais, proponho que o evento resultante dessa operação é um evento autossustentável. (KIPARSKY, 1997.

  13. Dark Bursts in the Swift Era: The Palomar 60 inch-Swift Early Optical Afterglow Catalog

    CERN Document Server

    Cenko, S B; Harrison, F A; Fox, D B; Kulkarni, S R; Kasliwal, M M; Ofek, E O; Rau, A; Gal-Yam, A; Frail, D A; Moon, D -S

    2008-01-01

    We present multi-color optical observations of long-duration gamma-ray bursts (GRBs) made over a three year period with the robotic Palomar 60 inch telescope (P60). Our sample consists of all 29 events discovered by Swift for which P60 began observations less than one hour after the burst trigger. We were able to recover 80% of the optical afterglows from this prompt sample, and we attribute this high efficiency to our red coverage. Like Melandri et al. (2008), we find that a significant fraction (~ 50%) of Swift events show a suppression of the optical flux with regards to the X-ray emission (so-called "dark" bursts). Our multi-color photometry demonstrates this is likely due in large part to extinction in the host galaxy. We argue that previous studies, by selecting only the brightest and best-sampled optical afterglows, have significantly underestimated the amount of dust present in typical GRB environments.

  14. Testing of one-inch UF{sub 6} cylinder valves under simulated fire conditions

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Accurate computational models which predict the behavior of UF{sub 6} cylinders exposed to fires are required to validate existing firefighting and emergency response procedures. Since the cylinder valve is a factor in the containment provided by the UF{sub 6} cylinder, its behavior under fire conditions has been a necessary assumption in the development of such models. Consequently, test data is needed to substantiate these assumptions. Several studies cited in this document provide data related to the behavior of a 1-inch UF{sub 6} cylinder valve in fire situations. To acquire additional data, a series of tests were conducted at the Paducah Gaseous Diffusion Plant (PGDP) under a unique set of test conditions. This document describes this testing and the resulting data.

  15. Role of Borna Disease Virus in neuropsychiatric illnesses : Are we inching closer ?

    Directory of Open Access Journals (Sweden)

    Thakur R

    2009-01-01

    Full Text Available The biological cause of psychiatric illnesses continues to be under intense scrutiny. Among the various neurotropic viruses, Borna disease virus (BDV is another virus that preferentially targets the neurons of the limbic system and has been shown to be associated with behavioural abnormalities. Presence of various BDV markers, including viral RNA, in patients with affective and mood disorders have triggered ongoing debate worldwide regarding its aetiopathogenic relationship. This article analyses its current state of knowledge and recent advances in diagnosis in order to prove or refute the association of BDV in causation of human neuropsychiatric disorders. This emerging viral causative association of behavioural disorders, which seems to be inching closer, has implication not only for a paradigm shift in the treatment and management of neuropsychiatric illnesses but also has an important impact on the public health systems.

  16. Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall return period

    Science.gov (United States)

    Destro, Elisa; Marra, Francesco; Nikolopoulos, Efthymios I.; Zoccatelli, Davide; Creutin, Jean Dominique; Borga, Marco

    2017-02-01

    Forecasting the occurrence of debris flows is fundamental for issuing hazard warnings, and often focuses on rainfall as a triggering agent and on the use of empirical rainfall thresholds based on rain gauge observations. A recognized component of the uncertainty associated with the use of rainfall thresholds is related to the sampling of strongly varying rainfall variability with sparse rain gauge networks. In this work we examine the spatial distribution of rainfall depth in areas up to 10 km from the debris flow initiation points as a function of return period, and we exploit this information to analyze the errors expected in the estimation of debris flow triggering rainfall when rain gauge data are used. In particular, we investigate the impact of rain gauge density and of the use of different interpolation methods. High-resolution, adjusted radar rainfall estimates, representing the best available spatially-distributed rainfall estimates at the debris flows initiation point and in the surrounding area, are sampled by stochastically generated rain gauge networks characterized by varying densities. Debris flow triggering rainfall is estimated by means of three rainfall interpolation methods: nearest neighbor, inverse distance weighting and ordinary kriging. On average, triggering rainfall shows a local peak corresponding to the debris flow initiation point, with a decay of rainfall with distance which increases with the return period of the triggering rainfall. Interpolation of the stochastically generated rain gauge measurements leads to an underestimation of the triggering rainfall that, irrespective of the interpolation methods, increases with the return period and decreases with the rain gauge density. For small return period events and high rain gauge density, the differences among the methods are minor. With increasing the return period and decreasing the rain gauge density, the nearest neighbor method is less biased, because it makes use only of the

  17. Production of high intensity {sup 48}Ca for the 88-Inch Cyclotron and other updates

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M., E-mail: jybenitez@lbl.gov; Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Franzen, K. Y. [Mevion Medical Systems, 300 Foster St., Littleton, Massachusetts 01460 (United States)

    2014-02-15

    Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity {sup 48}Ca{sup 11+} beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 eμA of {sup 48}Ca{sup 11+} beam current was impressive. The consumption of {sup 48}Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 pμA of {sup 48}Ca{sup 11+}, with a VENUS output beam current of 219 eμA. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

  18. Production of high intensity 48Ca for the 88-Inch Cyclotron and other updates

    Science.gov (United States)

    Benitez, J. Y.; Franzen, K. Y.; Hodgkinson, A.; Lyneis, C. M.; Strohmeier, M.; Thullier, T.; Todd, D.; Xie, D.

    2014-02-01

    Recently the Versatile ECR for NUclear Science (VENUS) ion source was engaged in a 60-day long campaign to deliver high intensity 48Ca11+ beam to the 88-Inch Cyclotron. As the first long term use of VENUS for multi-week heavy-element research, new methods were developed to maximize oven to target efficiency. First, the tuning parameters of VENUS for injection into the cyclotron proved to be very different than those used to tune VENUS for maximum beam output of the desired charge state immediately following its bending magnet. Second, helium with no oxygen support gas was used to maximize the efficiency. The performance of VENUS and its low temperature oven used to produce the stable requested 75 eμA of 48Ca11+ beam current was impressive. The consumption of 48Ca in VENUS using the low temperature oven was checked roughly weekly, and was found to be on average 0.27 mg/h with an ionization efficiency into the 11+ charge state of 5.0%. No degradation in performance was noted over time. In addition, with the successful operation of VENUS the 88-Inch cyclotron was able to extract a record 2 pμA of 48Ca11+, with a VENUS output beam current of 219 eμA. The paper describes the characteristics of the VENUS tune used for maximum transport efficiency into the cyclotron as well as ongoing efforts to improve the transport efficiency from VENUS into the cyclotron. In addition, we briefly present details regarding the recent successful repair of the cryostat vacuum system.

  19. Rainfall variability and seasonality in northern Bangladesh

    Science.gov (United States)

    Bari, Sheikh Hefzul; Hussain, Md. Manjurul; Husna, Noor-E.-Ashmaul

    2016-05-01

    This paper aimed at the analysis of rainfall seasonality and variability for the northern part of South-Asian country, Bangladesh. The coefficient of variability was used to determine the variability of rainfall. While rainfall seasonality index (SI ) and mean individual seasonality index ( overline{SI_i} ) were used to identify seasonal contrast. We also applied Mann-Kendall trend test and sequential Mann-Kendall test to determine the trend in seasonality. The lowest variability was found for monsoon among the four seasons whereas winter has the highest variability. Observed variability has a decreasing tendency from the northwest region towards the northeast region. The mean individual seasonality index (0.815378 to 0.977228) indicates that rainfall in Bangladesh is "markedly seasonal with a long dry season." It was found that the length of the dry period is lower at the northeastern part of northern Bangladesh. Trend analysis results show no significant change in the seasonality of rainfall in this region. Regression analysis of overline{SI_i} and SI, and longitude and mean individual seasonality index show a significant linear correlation for this area.

  20. Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response

    Directory of Open Access Journals (Sweden)

    D. Zoccatelli

    2011-12-01

    Full Text Available This paper describes a set of spatial rainfall statistics (termed "spatial moments of catchment rainfall" quantifying the dependence existing between spatial rainfall organisation, basin morphology and runoff response. These statistics describe the spatial rainfall organisation in terms of concentration and dispersion statistics as a function of the distance measured along the flow routing coordinate. The introduction of these statistics permits derivation of a simple relationship for the quantification of catchment-scale storm velocity. The concept of the catchment-scale storm velocity takes into account the role of relative catchment orientation and morphology with respect to storm motion and kinematics. The paper illustrates the derivation of the statistics from an analytical framework recently proposed in literature and explains the conceptual meaning of the statistics by applying them to five extreme flash floods occurred in various European regions in the period 2002–2007. High resolution radar rainfall fields and a distributed hydrologic model are employed to examine how effective are these statistics in describing the degree of spatial rainfall organisation which is important for runoff modelling. This is obtained by quantifying the effects of neglecting the spatial rainfall variability on flood modelling, with a focus on runoff timing. The size of the study catchments ranges between 36 to 982 km2. The analysis reported here shows that the spatial moments of catchment rainfall can be effectively employed to isolate and describe the features of rainfall spatial organization which have significant impact on runoff simulation. These statistics provide useful information on what space-time scales rainfall has to be monitored, given certain catchment and flood characteristics, and what are the effects of space-time aggregation on flood response modeling.

  1. Rainfall intensity-duration conditions for mass movements in Taiwan

    Science.gov (United States)

    Chen, Chi-Wen; Saito, Hitoshi; Oguchi, Takashi

    2015-12-01

    Mass movements caused by rainfall events in Taiwan are analyzed during a 7-year period from 2006 to 2012. Data from the Taiwan Soil and Water Conservation Bureau reports were compiled for 263 mass movement events, including 156 landslides, 91 debris flows, and 16 events with both landslides and debris flows. Rainfall totals for each site location were obtained from interpolated rain gauge data. The rainfall intensity-duration ( I-D) relationship was examined to establish a rainfall threshold for mass movements using random sampling: I = 18.10(±2.67) D -0.17(±0.04), where I is mean rainfall intensity (mm/h) and D is the time (h) between the beginning of a rainfall event and the resulting mass movement. Significant differences were found between rainfall intensities and thresholds for landslides and debris flows. For short-duration rainfall events, higher mean rainfall intensities were required to trigger debris flows. In contrast, for long-duration rainfall events, similar mean rainfall intensities triggered both landslides and debris flows. Mean rainfall intensity was rescaled by mean annual precipitation (MAP) to define a new threshold: I MAP = 0.0060(±0.0009) D -0.17(±0.04), where I MAP is rescaled rainfall intensity and MAP is the minimum for mountainous areas in Taiwan (3000 mm). Although the I-D threshold for Taiwan is high, the I MAP -D threshold for Taiwan tends to be low relative to other areas around the world. Our results indicate that Taiwan is highly prone to rainfall-induced mass movements. This study also shows that most mass movements occur in high rainfall-intensity periods, but some events occur before or after the rainfall peak. Both antecedent and peak rainfall play important roles in triggering landslides, whereas debris flow occurrence is more related to peak rainfall than antecedent rainfall.

  2. Intermittent rainfall in dynamic multimedia fate modeling.

    Science.gov (United States)

    Hertwich, E G

    2001-03-01

    It has been shown that steady-state multimedia models (level III fugacity models) lead to a substantial underestimate of air concentrations for chemicals with a low Henry's law constant (H multimedia models are used to estimate the spatial range or inhalation exposure. A dynamic model of pollutant fate is developed for conditions of intermittent rainfall to calculate the time profile of pollutant concentrations in different environmental compartments. The model utilizes a new, mathematically efficient approach to dynamic multimedia fate modeling that is based on the convolution of solutions to the initial conditions problem. For the first time, this approach is applied to intermittent conditions. The investigation indicates that the time-averaged pollutant concentrations under intermittent rainfall can be approximated by the appropriately weighted average of steady-state concentrations under conditions with and without rainfall.

  3. Critical Phenomena of Rainfall in Ecuador

    Science.gov (United States)

    Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.

    2014-02-01

    Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).

  4. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  5. W1J00 and W2J00: Results of the Observations made with the Six-inch Transit Circle 1977-1982 AND Results of Pole-to-Pole Observations made with the Six-inch and Seven-inch Transit Circles 1985-1996

    CERN Document Server

    Rafferty, T J; Urban, S E

    2016-01-01

    The astronomical results contained in this publication represent a continuation of previous work of the United States Naval Observatory Six-inch and Seven-inch transit circles. The results are also the last from United States Naval Observatory transit circles, since those instruments are no longer in service. For the W1J00, we present the results of observations made with the Six-inch Transit Circle in Washington, D.C., between September 1977 and July 1982. The catalog, called W1J00, contains mean positions of 7267 stars, all but five are north of -30 degrees declination, and 4383 observations of solar system objects. Positions of stars are for mean epoch of observation, on equator and equinox J2000.0. Positions of solar system objects are apparent places. Error estimates are about 100 mas per coordinate for the majority of stars. For the W2J00, we present the results of observations made with the Six-inch Transit Circle in Washington, D.C. and the Seven-inch Transit Circle at the Black Birch station near Ble...

  6. Monitoring Niger River Floods from satellite Rainfall Estimates : overall skill and rainfall uncertainty propagation.

    Science.gov (United States)

    Gosset, Marielle; Casse, Claire; Peugeot, christophe; boone, aaron; pedinotti, vanessa

    2015-04-01

    Global measurement of rainfall offers new opportunity for hydrological monitoring, especially for some of the largest Tropical river where the rain gauge network is sparse and radar is not available. Member of the GPM constellation, the new French-Indian satellite Mission Megha-Tropiques (MT) dedicated to the water and energy budget in the tropical atmosphere contributes to a better monitoring of rainfall in the inter-tropical zone. As part of this mission, research is developed on the use of satellite rainfall products for hydrological research or operational application such as flood monitoring. A key issue for such applications is how to account for rainfall products biases and uncertainties, and how to propagate them into the end user models ? Another important question is how to choose the best space-time resolution for the rainfall forcing, given that both model performances and rain-product uncertainties are resolution dependent. This paper analyses the potential of satellite rainfall products combined with hydrological modeling to monitor the Niger river floods in the city of Niamey, Niger. A dramatic increase of these floods has been observed in the last decades. The study focuses on the 125000 km2 area in the vicinity of Niamey, where local runoff is responsible for the most extreme floods recorded in recent years. Several rainfall products are tested as forcing to the SURFEX-TRIP hydrological simulations. Differences in terms of rainfall amount, number of rainy days, spatial extension of the rainfall events and frequency distribution of the rain rates are found among the products. Their impacts on the simulated outflow is analyzed. The simulations based on the Real time estimates produce an excess in the discharge. For flood prediction, the problem can be overcome by a prior adjustment of the products - as done here with probability matching - or by analysing the simulated discharge in terms of percentile or anomaly. All tested products exhibit some

  7. Weak linkage between the heaviest rainfall and tallest storms.

    Science.gov (United States)

    Hamada, Atsushi; Takayabu, Yukari N; Liu, Chuntao; Zipser, Edward J

    2015-02-24

    Conventionally, the heaviest rainfall has been linked to the tallest, most intense convective storms. However, the global picture of the linkage between extreme rainfall and convection remains unclear. Here we analyse an 11-year record of spaceborne precipitation radar observations and establish that a relatively small fraction of extreme convective events produces extreme rainfall rates in any region of the tropics and subtropics. Robust differences between extreme rainfall and convective events are found in the rainfall characteristics and environmental conditions, irrespective of region; most extreme rainfall events are characterized by less intense convection with intense radar echoes not extending to extremely high altitudes. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Our results demonstrate that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection.

  8. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  9. Entropy of stable seasonal rainfall distribution in Kelantan

    Science.gov (United States)

    Azman, Muhammad Az-zuhri; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Radi, Noor Fadhilah Ahmad

    2017-05-01

    Investigating the rainfall variability is vital for any planning and management in many fields related to water resources. Climate change can gives an impact of water availability and may aggravate water scarcity in the future. Two statistics measurements which have been used by many researchers to measure the rainfall variability are variance and coefficient of variation. However, these two measurements are insufficient since rainfall distribution in Malaysia especially in the East Coast of Peninsular Malaysia is not symmetric instead it is positively skewed. In this study, the entropy concept is used as a tool to measure the seasonal rainfall variability in Kelantan and ten rainfall stations were selected. In previous studies, entropy of stable rainfall (ESR) and apportionment entropy (AE) were used to describe the rainfall amount variability during years for Australian rainfall data. In this study, the entropy of stable seasonal rainfall (ESSR) is suggested to model rainfall amount variability during northeast monsoon (NEM) and southwest monsoon (SWM) seasons in Kelantan. The ESSR is defined to measure the long-term average seasonal rainfall amount variability within a given year (1960-2012). On the other hand, the AE measures the rainfall amounts variability across the months. The results of ESSR and AE values show that stations in east coastline are more variable as compared to other stations inland for Kelantan rainfall. The contour maps of ESSR for Kelantan rainfall stations are also presented.

  10. Highway Capacity Loss Induced by Rainfall

    Directory of Open Access Journals (Sweden)

    Hashim Mohammed Alhassan

    2011-01-01

    Full Text Available The effect of rainfall on capacity reduction on highways has been investigated. Traffic data was generated for both wet and dry conditions. The data analysis showed that the highway section studied was operating in free flow region. A 2.7% capacity loss was obtained for the road. It is argued that no traffic instability could arise from this situation if the state of traffic remains in the free flow regime. However, in the event of the coincidence of fixed bottlenecks and rainfall, instabilities arising from that could lead to further capacity loss.

  11. Using CHIRPS Rainfall Dataset to detect rainfall trends in West Africa

    Science.gov (United States)

    Blakeley, S. L.; Husak, G. J.

    2016-12-01

    In West Africa, agriculture is often rain-fed, subjecting agricultural productivity and food availability to climate variability. Agricultural conditions will change as warming temperatures increase evaporative demand, and with a growing population dependent on the food supply, farmers will become more reliant on improved adaptation strategies. Development of such adaptation strategies will need to consider West African rainfall trends to remain relevant in a changing climate. Here, using the CHIRPS rainfall product (provided by the Climate Hazards Group at UC Santa Barbara), I examine trends in West African rainfall variability. My analysis will focus on seasonal rainfall totals, the structure of the rainy season, and the distribution of rainfall. I then use farmer-identified drought years to take an in-depth analysis of intra-seasonal rainfall irregularities. I will also examine other datasets such as potential evapotranspiration (PET) data, other remotely sensed rainfall data, rain gauge data in specific locations, and remotely sensed vegetation data. Farmer bad year data will also be used to isolate "bad" year markers in these additional datasets to provide benchmarks for identification in the future of problematic rainy seasons.

  12. Rainfall Simulator Experiments to Investigate Macropore Impacts on Hillslope Hydrological Response

    Directory of Open Access Journals (Sweden)

    Yvonne Smit

    2016-11-01

    Full Text Available Understanding hillslope runoff response to intense rainfall is an important topic in hydrology, and is key to correct prediction of extreme stream flow, erosion and landslides. Although it is known that preferential flow processes activated by macropores are an important phenomena in understanding runoff processes inside a hillslope, hydrological models have generally not embraced the concept of an extra parameter that represents ‘macropores’ because of the complexity of the phenomenon. Therefore, it is relevant to investigate the influence of macropores on runoff processes in an experimental small artificial hillslope. Here, we report on a controlled experiment where we could isolate the influence of macropores without the need for assumptions regarding their characteristics. Two identical hillslopes were designed, of which one was filled with artificial macropores. Twelve artificial rainfall events were applied to the two hillslopes and results of drainage and soil moisture were investigated. After the experiments, it could be concluded that the influence of macropores on runoff processes was minimal. The S90 sand used for this research caused runoff to respond fast to rainfall, leading to little or no development of saturation near the macropores. In addition, soil moisture data showed a large amount of pendular water in the hillslopes, which implies that the soil has a low air entry value, and, in combination with the lack of vertical flow, could have caused the pressure difference between the matrix and the macropores to vanish sooner and result in equilibrium being reached in a relatively short time. Nevertheless, a better outline is given to determine a correct sand type for these types of experiments and, by using drainage recession analysis to investigate the influences of macropores on runoff, heterogeneity in rainfall intensity can be overcome. This study is a good point of reference to start future experiments from concerning

  13. The impact of alcoholics anonymous on other substance abuse-related twelve-step programs.

    Science.gov (United States)

    Laudet, Alexandre B

    2008-01-01

    This chapter explores the influence of the AA model on self-help fellowships addressing problems of drug dependence. Fellowships that have adapted the twelve-step recovery model to other substances of abuse are reviewed; next similarities and differences between AA and drug-recovery twelve-step organizations are examined; finally, we present empirical findings on patterns of attendance and perceptions of AA and Narcotics Anonymous (NA) among polydrug-dependent populations, many of whom are cross-addicted to alcohol. Future directions in twelve-step research are noted in closing.

  14. Lead-Free Double-Base Propellant for the 2.75 Inch Rocket Motor

    Science.gov (United States)

    Magill, B. T.; Nauflett, G. W.; Furrow, K. W.

    2000-01-01

    The current MK 66 2.75 inch Rocket Motor double-base propellant contains the lead-based ballistic modifier LC-12-15 to achieve the desired plateau and mesa burning rate characteristics. The use of lead compounds poses a concern for the environment and for personal safety due to the metal's toxic nature when introduced into the atmosphere by propellant manufacture, rocket motor firing, and disposal. Copper beta-resorcylate (copper 2,4-di-hydroxy-benzoate) was successfully used in propellant as a simple modifier in the mid 1970's. This and other compounds have also been mixed with lead salts to obtain more beneficial ballistic results. Synthesized complexes of lead and copper compounds soon replaced the mixtures. The complexes incorporate the lead, copper lack of organic liquids, which allows for easier propellant processing. About ten years ago, the Indian Head Division, Naval Surface Warfare Center (NSWC), initiated an effort to develop a lead-free propellant for use in missile systems. Several lead-free propellant candidate formulations were developed. About five years ago, NSWC, in conjunction with Alliant Techsystems, Radford Army Ammunition Plant, continued ballistic modifier investigations. A four component ballistic modifier system without lead for double-base propellants that provide adequate plateau and mesa burn rate characteristics was developed and patented. The ballistic modifier's system contains bismuth subsalicylate, 1.5 percent; copper salicylate, 1.0 percent, copper stannate, 0.77 percent; and carbon black, 0.1 percent. Action time and impulse data obtained through multiple static firings indicate that the new lead-free double-base propellant, while not a match for NOSIH-AA-2, will be a very suitable replacement in the 2.75 inch Rocket Motor. Accelerated aging of the double-base propellant containing the lead-free ballistic modifier showed that it had a much higher rate of stabilizer depletion than the AA-2. A comprehensive study showed that an

  15. Characterizing rainfall in the Tenerife island

    Science.gov (United States)

    Díez-Sierra, Javier; del Jesus, Manuel; Losada Rodriguez, Inigo

    2017-04-01

    In many locations, rainfall data are collected through networks of meteorological stations. The data collection process is nowadays automated in many places, leading to the development of big databases of rainfall data covering extensive areas of territory. However, managers, decision makers and engineering consultants tend not to extract most of the information contained in these databases due to the lack of specific software tools for their exploitation. Here we present the modeling and development effort put in place in the Tenerife island in order to develop MENSEI-L, a software tool capable of automatically analyzing a complete rainfall database to simplify the extraction of information from observations. MENSEI-L makes use of weather type information derived from atmospheric conditions to separate the complete time series into homogeneous groups where statistical distributions are fitted. Normal and extreme regimes are obtained in this manner. MENSEI-L is also able to complete missing data in the time series and to generate synthetic stations by using Kriging techniques. These techniques also serve to generate the spatial regimes of precipitation, both normal and extreme ones. MENSEI-L makes use of weather type information to also provide a stochastic three-day probability forecast for rainfall.

  16. Rainfall erosivity in Brazil: A Review

    Science.gov (United States)

    In this paper, we review the erosivity studies conducted in Brazil to verify the quality and representativeness of the results generated and to provide a greater understanding of the rainfall erosivity (R-factor) in Brazil. We searched the ISI Web of Science, Scopus, SciELO, and Google Scholar datab...

  17. Determinants of southeast Ethiopia seasonal rainfall

    Science.gov (United States)

    Jury, Mark R.

    2016-12-01

    The bi-modal climate of SE Ethiopia shares attributes with East Africa, notably that El Niño enhances rainfall, particularly in Sep-Nov season. In this study SE Ethiopia's continuous and seasonal rainfall relationships to global climate are studied to extend our knowledge of its determinants and predictability. A statistical forecast algorithm for the Sep-Nov short rains accounts for 54% of variance in 1980-2010. The Apr-Jun predictors include South Atlantic sea surface temperature, east Indian Ocean sea level air pressure and China upper zonal wind. Cooling in the South Atlantic coincides with a strengthened sub-tropical anticyclone, and later to changes in low level winds that bring orographic convection to SE Ethiopia. The slower El Niño-Southern Oscillation (ENSO) interacts with the faster Indian Ocean Dipole (IOD), but both signals mature too late for direct use in statistical prediction of Sep-Nov rainfall. Composite differences of the upper divergent circulation exhibit a global wave-2 pattern consistent with satellite-observed convection. One key feature is a zonal gradient in upper velocity potential over the Indian Ocean corresponding with a zonal atmospheric circulation. One outcome of this research is useful forecasts of SE Ethiopia Sep-Nov rainfall that will assist in agricultural planning.

  18. Water Conservation Education with a Rainfall Simulator.

    Science.gov (United States)

    Kok, Hans; Kessen, Shelly

    1997-01-01

    Describes a program in which a rainfall simulator was used to promote water conservation by showing water infiltration, water runoff, and soil erosion. The demonstrations provided a good background for the discussion of issues such as water conservation, crop rotation, and conservation tillage practices. The program raised awareness of…

  19. Coping with rainfall variability in northern Tanzania

    DEFF Research Database (Denmark)

    Trærup, Sara Lærke Meltofte

    2012-01-01

    This chapter explores a potential relationship between rainfall data and household self-reported harvest shocks and local (spatial) variability of harvest shocks and coping strategies based on a survey of 2700 rural households in the Kagera region of northern Tanzania. In addition, correlations...

  20. Preliminary study on mechanics-based rainfall kinetic energy

    Directory of Open Access Journals (Sweden)

    Yuan Jiuqin Ms.

    2014-09-01

    Full Text Available A raindrop impact power observation system was employed to observe the real-time raindrop impact power during a rainfall event and to analyze the corresponding rainfall characteristics. The experiments were conducted at different simulated rainfall intensities. As rainfall intensity increased, the observed impact power increased linearly indicating the power observation system would be satisfactory for characterizing rainfall erosivity. Momentum is the product of mass and velocity (Momentum=MV, which is related to the observed impact power value. Since there is no significant difference between momentum and impact power, observed impact power can represent momentum for different rainfall intensities. The relationship between momentum and the observed impact power provides a convenient way to calculate rainfall kinetic energy. The value of rainfall kinetic energy based on the observed impact power was higher than the classic rainfall kinetic energy. The rainfall impact power based kinetic energy and the classic rainfall kinetic energy showed linear correlation, which indicates that the raindrop impact power observation system can characterize rainfall kinetic energy. The article establishes a preliminary way to calculate rainfall kinetic energy by using the real-time observed momentum, providing a foundation for replacing the traditional methods for estimating kinetic energy of rainstorms.

  1. Probabilistic forecasts based on radar rainfall uncertainty

    Science.gov (United States)

    Liguori, S.; Rico-Ramirez, M. A.

    2012-04-01

    The potential advantages resulting from integrating weather radar rainfall estimates in hydro-meteorological forecasting systems is limited by the inherent uncertainty affecting radar rainfall measurements, which is due to various sources of error [1-3]. The improvement of quality control and correction techniques is recognized to play a role for the future improvement of radar-based flow predictions. However, the knowledge of the uncertainty affecting radar rainfall data can also be effectively used to build a hydro-meteorological forecasting system in a probabilistic framework. This work discusses the results of the implementation of a novel probabilistic forecasting system developed to improve ensemble predictions over a small urban area located in the North of England. An ensemble of radar rainfall fields can be determined as the sum of a deterministic component and a perturbation field, the latter being informed by the knowledge of the spatial-temporal characteristics of the radar error assessed with reference to rain-gauges measurements. This approach is similar to the REAL system [4] developed for use in the Southern-Alps. The radar uncertainty estimate can then be propagated with a nowcasting model, used to extrapolate an ensemble of radar rainfall forecasts, which can ultimately drive hydrological ensemble predictions. A radar ensemble generator has been calibrated using radar rainfall data made available from the UK Met Office after applying post-processing and corrections algorithms [5-6]. One hour rainfall accumulations from 235 rain gauges recorded for the year 2007 have provided the reference to determine the radar error. Statistics describing the spatial characteristics of the error (i.e. mean and covariance) have been computed off-line at gauges location, along with the parameters describing the error temporal correlation. A system has then been set up to impose the space-time error properties to stochastic perturbations, generated in real-time at

  2. Deforestation alters rainfall: a myth or reality

    Science.gov (United States)

    Hanif, M. F.; Mustafa, M. R.; Hashim, A. M.; Yusof, K. W.

    2016-06-01

    To cope with the issue of food safety and human shelter, natural landscape has gone through a number of alterations. In the coming future, the expansion of urban land and agricultural farms will likely disrupt the natural environment. Researchers have claimed that land use change may become the most serious issue of the current century. Thus, it is necessary to understand the consequences of land use change on the climatic variables, e.g., rainfall. This study investigated the impact of deforestation on local rainfall. An integrated methodology was adopted to achieve the objectives. Above ground biomass was considered as the indicator of forest areas. Time series data of a Moderate Resolution Imaging Spectroradiometer (MODIS) sensor were obtained for the year of 2000, 2005, and 2010. Rainfall data were collected from the Department of Irrigation and Drainage, Malaysia. The MODIS time series data were classified and four major classes were developed based on the Normalised Difference Vegetation Index (NDVI) ranges. The results of the classification showed that water, and urban and agricultural lands have increased in their area by 2, 3, and 6%, respectively. On the other hand, the area of forest has decreased 10% collectively from 2000 to 2010. The results of NDVI and rainfall data were analysed by using a linear regression analysis. The results showed a significant relationship at a 90% confidence interval between rainfall and deforestation (t = 1.92, p = 0.06). The results of this study may provide information about the consequences of land use on the climate on the local scale.

  3. An Atlantic influence on Amazon rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Zeng, Ning [University of Maryland, Earth System Science Interdisciplinary Center, College Park, MD (United States); University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States)

    2010-02-15

    Rainfall variability over the Amazon basin has often been linked to variations in Pacific sea surface temperature (SST), and in particular, to the El Nino/Southern Oscillation (ENSO). However, only a fraction of Amazon rainfall variability can be explained by ENSO. Building upon the recent work of Zeng (Environ Res Lett 3:014002, 2008), here we provide further evidence for an influence on Amazon rainfall from the tropical Atlantic Ocean. The strength of the North Atlantic influence is found to be comparable to the better-known Pacific ENSO connection. The tropical South Atlantic Ocean also shows some influence during the wet-to-dry season transition period. The Atlantic influence is through changes in the north-south divergent circulation and the movement of the ITCZ following warm SST. Therefore, it is strongest in the southern part of the Amazon basin during the Amazon's dry season (July-October). In contrast, the ENSO related teleconnection is through anomalous east-west Walker circulation with largely concentrated in the eastern (lower) Amazon. This ENSO connection is seasonally locked to boreal winter. A complication due to the influence of ENSO on Atlantic SST causes an apparent North Atlantic SST lag of Amazon rainfall. Removing ENSO from North Atlantic SST via linear regression resolves this causality problem in that the residual Atlantic variability correlates well and is in phase with the Amazon rainfall. A strong Atlantic influence during boreal summer and autumn is particularly significant in terms of the impact on the hydro-ecosystem which is most vulnerable during the dry season, as highlighted by the severe 2005 Amazon drought. Such findings have implications for both seasonal-interannual climate prediction and understanding the longer-term changes of the Amazon rainforest. (orig.)

  4. McAlester Army Ammunition Plant (MCAAP) 40- by 44-Inch Wooden Pallet MIL-STD-1660 Tests

    Science.gov (United States)

    1997-07-01

    and Engineering Center (ARDEC) to conduct MIL- STD -1660 tests on a 40- by 44-inch wooden pallet (oak) manufactured by MCAAP. This report contains test...results with the pallets provided meeting MIL- STD -1660, Design Criteria for Ammunition Unit Loads, requirements.

  5. Evaluation of the Viewsonic P817 4 x 3 Aspect Ratio, 21-Inch Diagonal Color CRT Monitor

    Science.gov (United States)

    2000-05-01

    The Viewsonic P817 21 inch monitor (20" viewable area; the selling price is 1600) is a color monitor with image quality and features that make it an excellent candidate display device for NIMA Imagery Exploitation Capability workstations. Based on results of our evaluation, NIDL certifies the Viewsonic P817 color monitor as being suitable for IEC workstations. NIDL rates this color monitor as a "B" (meets IEC requirements) for the Image Analyst and Cartographer applications. The "B" ratings, rather than "A", results from a slightly high halation value, and from a somewhat low, but typical of color monitors, stereo extinction ratio. In a light ambient, the monitor is calculated to achieve 158:1 dynamic range with 3 fc illumination, and 60:1 with 10 fc illumination falling onto the screen. NIDL evaluated the Sun/Sony 24 inch color monitor, gave it an "A" for its performance, and recommended its use for imagery analysts. We based this recommendation on its measured performance, analysts' preference for the 24 inch size with its greater area, and on its reliability. The Viewsonic P817 monitor is a very good color monitor, but the 24 inch Sony performs better in a number of areas but at a somewhat higher price.

  6. Recent development on the realization of a 1-inch VSiPMT prototype

    Science.gov (United States)

    Barbato, F. C. T.; Barbarino, G.; Campajola, L.; Di Capua, F.; Mollo, C. M.; Valentini, A.; Vivolo, D.

    2017-03-01

    The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design for a revolutionary hybrid photodetector. The idea, born with the purpose to use a SiPM for large detection volumes, consists in replacing the classical dynode chain with a SiPM. In this configuration, we match the large sensitive area of a photocathode with the performances of the SiPM technology, which therefore acts like an electron detector and so like a current amplifier. The excellent photon counting capability, fast response, low power consumption and great stability are among the most attractive features of the VSiPMT. In order to realize such a device we first studied the feasibility of this detector both from theoretical and experimental point of view, by implementing a Geant4-based simulation and studying the response of a special non-windowed MPPC by Hamamatsu with an electron beam. Thanks to this result Hamamatsu realized two VSiPMT industrial prototypes with a photocathode of 3mm diameter. We present the progress on the realization of a 1-inch prototype and the preliminary tests we are performing on it.

  7. Analysis investigation for continuous and discrete athermal bondings on an eight-inch reflective mirror

    Science.gov (United States)

    Chan, Chia-Yen; You, Zhen-Ting; Chen, Yi-Cheng; Huang, Ting-Ming

    2016-10-01

    Effects of continuous and discrete bondings with an RTV glue (DOW CORNING® 6-1104) on an eight-inch reflective mirror have been carried out numerically. The finite element analysis and Zernike polynomial fitting are applied to the whole process. Under the integrated optomechanical analysis, the comparison of the optical aberrations, equivalent stresses and natural frequencies with various bondline thicknesses under the self-weight loading and temperature difference has also been investigated. The separated thermal and gravity effects on PV values with various bondline thicknesses for the discrete bonding are studied. It is found that the thermal effect has absolute influence than the gravity effect since the latter approaches zero for all bondline thicknesses. Besides, the simulation results have been verified by the analytical solution. It can be concluded that in the design of the bondline thickness, the bonding method and the temperature range should be considered simultaneously to reduce the temperature-induced stress and aberration and to increase the natural frequency.

  8. Performance of new 8-inch photomultiplier tube used for the Tibet muon-detector array

    CERN Document Server

    Huang, Ying Zhangm Jing; Zhai, Liu-Ming; Chen, Xu; Hu, Xiao-Bin; Lin, Yu-Hui; Zhang, Xue-Yao; Feng, Cun-Feng; Jia, Huan-Yu; Zhou, Xun-Xiu; Dan-Zen, Luo-bu; Chen, Tian-Lu; Laba, Ci-Ren; Mao-Yuan,; Gao, Qi; Zha-xi, Ci-ren

    2016-01-01

    A new hybrid experiment has been constructed to measure the chemical composition of cosmic rays around the "knee" in the wide energy range by the Tibet AS$\\gamma$ collaboration at Tibet, China, since 2014. They consist of a high-energy air-shower-core array (YAC-II), a high-density air-shower array (Tibet-III) and a large underground water-Cherenkov muon-detector array (MD). In order to obtain the primary proton, helium and iron spectra and their "knee" positions in the energy range lower than $10^{16}$ eV, each of PMTs equipped to the MD cell is required to measure the number of photons capable of covering a wide dynamic range of 100 - $10^{6}$ photoelectrons (PEs) according to Monte Carlo simulations. In this paper, we firstly compare the characteristic features between R5912-PMT made by Japan Hamamatsu and CR365-PMT made by Beijing Hamamatsu. This is the first comparison between R5912-PMT and CR365-PMT. If there exists no serious difference, we will then add two 8-inch-in-diameter PMTs to meet our requirem...

  9. Characterization of Large Volume 3.5 x 8 inches LaBr3:Ce Detectors

    CERN Document Server

    Giaz, A; Riboldi, S; Camera, F; Blasi, N; Boiano, C; Bracco, A; Brambilla, S; Ceruti, S; Coelli, S; Crespi, F C L; Csatlòs, M; Frega, S; Gulyàs, J; Krasznahorkay, A; Lodetti, S; Million, B; Owens, A; Quarati, F; Stuhl, L; Wieland, O

    2013-01-01

    The properties of large volume cylindrical 3.5 x 8 inches (89 mm x 203 mm) LaBr3:Ce scintillation detectors coupled to the Hamamatsu R10233-100SEL photo-multiplier tube were investigated. These crystals are among the largest ones ever produced and still need to be fully characterized to determine how these detectors can be utilized and in which applications. We tested the detectors using monochromatic gamma-ray sources and in-beam reactions producing gamma rays up to 22.6 MeV; we acquired PMT signal pulses and calculated detector energy resolution and response linearity as a function of gamma-ray energy. Two different voltage dividers were coupled to the Hamamatsu R10233-100SEL PMT: the Hamamatsu E1198-26, based on straightforward resistive network design, and the LABRVD, specifically designed for our large volume LaBr3:Ce scintillation detectors, which also includes active semiconductor devices. Because of the extremely high light yield of LaBr3:Ce crystals we observed that, depending on the choice of PMT, v...

  10. Development of the Software for 30 inch Telescope Control System at KHAO

    Science.gov (United States)

    Mun, B.-S.; Kim, S.-J.; Jang, M.; Min, S.-W.; Seol, K.-H.; Moon, K.-S.

    2006-12-01

    Even though 30inch optical telescope at Kyung Hee Astronomy Observatory has been used to produce a series of scientific achievements since its first light in 1992, numerous difficulties in the operation of the telescope have hindered the precise observations needed for further researches. Since the currently used PC-TCS (Personal Computer based Telescope Control system) software based on ISA-bus type is outdated, it doesn't have a user friendly interface and make it impossible to scale. Also accumulated errors which are generated by discordance from input and output signals into a motion controller required new control system. Thus we have improved the telescope control system by updating software and modifying mechanical parts. We applied a new BLDC (brushless DC) servo motor system to the mechanical parts of the telescope and developed a control software using Visual Basic 6.0. As a result, we could achieve a high accuracy in controlling of the telescope and use the userfriendly GUI (Graphic User Interface).

  11. Satellite-rainfall estimation for identification of rainfall thresholds used for landslide/debris flow prediction

    Science.gov (United States)

    Maggioni, Viviana; Nikolopoulos, Efthymios I.; Marra, Francesco; Destro, Elisa; Borga, Marco

    2016-04-01

    Rainfall-induced landslides and debris flows pose a significant and widespread hazard, resulting in a large number of casualties and enormous economic damages worldwide. Rainfall thresholds are often used to identify the local or regional rainfall conditions that, when reached or exceeded, are likely to result in landslides or debris flows. Rain gauge data are the typical source of information for the definition of these rainfall thresholds. However, in-situ observations over mountainous areas, where these hazards mainly occur, are very sparse or inexistent. Therefore identification and use of gauge-based rainfall thresholds is impossible in many landslide prone areas over the globe. The vast advancements in satellite-based precipitation estimation over the last couple of decades have lead to the creation of a number of global precipitation datasets at various spatiotemporal resolutions. Although several investigations have shown that these datasets can be associated with considerable uncertainty, they provide the only source of precipitation information over many areas around the globe. Therefore it is important to assess their performance in the context of landslide/debris flow prediction and investigate how we can potentially benefit from the information they provide. In this work, we evaluate the performance of three widely used quasi-global satellite precipitation products (3B42v7, PERSIANN and CMORPH) for the identification of rainfall threshold for landslide/debris flow triggering. Products are available at 0.25deg/3h resolution. The study region is focused over the Upper Adige river basin, northern Italy where a detailed database of more than 400 identified debris flows (during period 2000-2015) and a raingauge network of 95 stations, is available. Rain-gauge based rainfall thresholds are compared against satellite-based thresholds to evaluate strengths and limitations in using satellite precipitation estimates for defining rainfall thresholds. Analysis of

  12. General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity

    Directory of Open Access Journals (Sweden)

    Han Soo Lee

    2015-04-01

    Full Text Available The relationships between observed rainfall, El Niño/Southern Oscillation (ENSO and sea surface temperature (SST variations in the Pacific and Indian Oceans were analyzed using a 1° latitude–longitude grid over Indonesia. The Global Summary of the Day rainfall records provide 26 years of rainfall data (January 1985 to August 2010 for 23 stations throughout the Indonesian islands. The ENSO and SST variations were calculated using the Multivariate ENSO Index (MEI, the Pacific Decadal Oscillation (PDO, NINO1 + 2, NINO3, NINO3.4, NINO4, the Dipole Mode Index (DMI for the Indian Ocean Dipole (IOD, and Indian Ocean Basin-wide (IOBW index. The results show that the rainfall in the southern Sumatra and southern Java Islands, which face the Indian Ocean, was positively correlated with the negative IOD, whereas the rainfall in northwestern Sumatra was positively correlated with the positive IOD. In eastern Indonesia, the rainfall was positively correlated with La Niña. The PDO index was also strongly correlated with the rainfall in this region. In central Indonesia, seasonal variations due to monsoons are predominant, and the rainfall exhibited strong negative and positive correlations with the MEI and NINO.WEST, respectively, indicating that high rainfall occurred during strong La Niña episodes. The highly negative and positive correlations with the MEI and NINO.WEST, respectively, in central Indonesia led us to analyze the impacts of Indonesian seas on the rainfall in the region. Using four synoptic-scale scenarios, we investigated the relative residence time of Indonesian seawater along the pathways associated with the Pacific-Indian hydraulic head difference. The results show that when both the western Pacific and eastern Indian Oceans are warm (positive NINO.WEST and negative DMI, the rainfall intensity over central Indonesia is strongest. This increase is explained by the relationship between the residence time of Indonesian seawater and the

  13. CLINICAL APPLICATION OF “TWELVE WELL-POINTS” IN EMERGENCY TREATMENT

    Institute of Scientific and Technical Information of China (English)

    段功保

    2000-01-01

    In many years' clinical practice, I used blood-letting method of “Twelve Well-points” to treat emergencies as coma, syncope, acute infantile convulsion, wind-stroke syndrome, hysteria, epilepsy, etc. and have achieved immediate results.

  14. Application of the rainfall infiltration breakthrough (RIB) model for ...

    African Journals Online (AJOL)

    Application of the rainfall infiltration breakthrough (RIB) model for groundwater ... Correlation analysis between rainfall and observed WLF data at daily scale and ... data are more realistic than those for daily data, when using long time series.

  15. Summer monsoon rainfall prediction for India - Some new ideas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Present methods of forecasting of mean Indian rainfall for summer monsoon season are critically examined. Considering the wide variations in mean seasonal rainfalls (more than 5 to less than 400 cm) and crops in various regions of India...

  16. Scale-wise evolution of rainfall probability density functions fingerprints the rainfall generation mechanism

    Science.gov (United States)

    Molini, Annalisa; Katul, Gabriel; Porporato, Amilcare

    2010-05-01

    Possible linkages between climatic fluctuations in rainfall at low frequencies and local intensity fluctuations within single storms is now receiving significant attention in climate change research. To progress on a narrower scope of this problem, the cross-scale probabilistic structure of rainfall intensity records collected over time scales ranging from hours to decades at sites dominated by either convective or frontal systems is investigated. Across these sites, intermittency buildup from slow to fast time-scales is analyzed in terms of its heavy tailed and asymmetric signatures in the scale-wise evolution of rainfall probability density functions (pdfs). The analysis demonstrates that rainfall records dominated by convective storms develop heavier-tailed power law pdfs across finer scales when compared with their frontal systems counterpart. A concomitant marked asymmetry buildup also emerges across finer time scales necessitating skewed probability laws for quantifying the scale-wise evolution of rainfall pdfs. A scale-dependent probabilistic description of such fat tails, peakedness and asymmetry appearance is proposed and tested by using a modified q-Gaussian model, able to describe the scale wise evolution of rainfall pdfs in terms of the nonextensivity parameter q, a lacunarity (intermittency) correction γ and a tail asymmetry coefficient c, also functions of q.

  17. Rainfall Distributions in Sri Lanka in Time and Space: An Analysis Based on Daily Rainfall Data

    Directory of Open Access Journals (Sweden)

    T. P. Burt

    2014-09-01

    Full Text Available Daily rainfall totals are analyzed for the main agro-climatic zones of Sri Lanka for the period 1976–2006. The emphasis is on daily rainfall rather than on longer-period totals, in particular the number of daily falls exceeding given threshold totals. For one station (Mapalana, where a complete daily series is available from 1950, a longer-term perspective on changes over half a century is provided. The focus here is particularly on rainfall in March and April, given the sensitivity of agricultural decisions to early southwest monsoon rainfall at the beginning of the Yala cultivation season but other seasons are also considered, in particular the northeast monsoon. Rainfall across Sri Lanka over three decades is investigated in relation to the main atmospheric drivers known to affect climate in the region: sea surface temperatures in the Pacific and Indian Oceans, of which the former are shown to be more important. The strong influence of El Niño and La Niña phases on various aspects of the daily rainfall distribution in Sri Lanka is confirmed: positive correlations with Pacific sea-surface temperatures during the north east monsoon and negative correlations at other times. It is emphasized in the discussion that Sri Lanka must be placed in its regional context and it is important to draw on regional-scale research across the Indian subcontinent and the Bay of Bengal.

  18. Rainfall Mechanisms for the Dominant Rainfall Mode over Zimbabwe Relative to ENSO and/or IODZM

    Directory of Open Access Journals (Sweden)

    Desmond Manatsa

    2012-01-01

    Full Text Available Zimbabwe’s homogeneous precipitation regions are investigated by means of principal component analysis (PCA with regard to the underlying processes related to ENSO and/or Indian Ocean Dipole zonal mode (IODZM. Station standardized precipitation index rather than direct rainfall values represent the data matrix used in the PCA. The results indicate that the country’s rainfall is highly homogeneous and is dominantly described by the first principal mode (PC1. This leading PC can be used to represent the major rainfall patterns affecting the country, both spatially and temporarily. The current practice of subdividing the country into the two seasonal rainfall forecast zones becomes irrelevant. Partial correlation analysis shows that PC1 is linked more to the IODZM than to the traditional ENSO which predominantly demonstrates insignificant association with PC1. The pure IODZM composite is linked to the most intense rainfall suppression mechanisms, while the pure El Niño composite is linked to rainfall enhancing mechanisms.

  19. Investigating changes over time of annual rainfall in Zimbabwe

    Directory of Open Access Journals (Sweden)

    D. Mazvimavi

    2010-12-01

    Full Text Available There is increasing concern in southern Africa about the possible decline of rainfall as a result of global warming. Some studies concluded that average rainfall in Zimbabwe had declined by 10% or 100 mm during the last 100 years. This paper investigates the validity of the assumption that rainfall is declining in Zimbabwe. Time series of annual rainfall, and total rainfall for (a the early part of the rainy season, October-November-December (OND, and (b the mid to end of the rainy season, January-February-March (JFM are analysed for the presence of trends using the Mann-Kendall test, and for the decline or increase during years with either high or low rainfall using quantile regression analysis. The Pettitt test has also been utilized to examine the possible existence of change or break-points in the rainfall time series. The analysis has been done for 40 rainfall stations with records starting during the 1892–1940 period and ending in 2000, and representative of all the rainfall regions.

    The Mann-Kendal test did not identify a significant trend at all the 40 stations, and therefore there is no proof that the average rainfall at each of these stations has changed. Quantile regression analysis revealed a decline in annual rainfall less than the tenth percentile at only one station, and increasing of rainfall greater than the ninetieth percentile at another station. All the other stations had no changes over time in both the low and high rainfall at the annual interval. Climate change effects are therefore not yet statistically significant within time series of total seasonal and annual rainfall in Zimbabwe. The general perception about declining rainfall is likely due to the presence of multidecadal variability characterized by bunching of years with above (e.g. 1951–1958, 1973–1980 and below (e.g. 1959–1972, 1982–1994 average rainfall.

  20. Rainfall spatiotemporal variability relation to wetlands hydroperiods

    Science.gov (United States)

    Serrano-Hidalgo, Carmen; Guardiola-Albert, Carolina; Fernandez-Naranjo, Nuria

    2017-04-01

    Doñana natural space (Southwestern Spain) is one of the largest protected wetlands in Europe. The wide marshes present in this natural space have such ecological value that this wetland has been declared a Ramsar reserve in 1982. Apart from the extensive marsh, there are also small lagoons and seasonally flooded areas which are likewise essential to maintain a wide variety of valuable habitats. Hydroperiod, the length of time each point remains flooded along an annual cycle, is a critical ecological parameter that shapes aquatic plants and animals distribution and determines available habitat for many of the living organisms in the marshes. Recently, there have been published two different works estimating the hydroperiod of Doñana lagoons with Landsat Time Series images (Cifuentes et al., 2015; Díaz-Delgado et al., 2016). In both works the flooding cycle hydroperiod in Doñana marshes reveals a flooding regime mainly driven by rainfall, evapotranspiration, topography and local hydrological management actions. The correlation found between rainfall and hydroperiod is studied differently in both works. While in one the rainfall is taken from one raingauge (Cifuentes et al., 2015), the one performed by Díaz-Delgado (2016) uses annual rainfall maps interpolated with the inverse of the distance method. The rainfall spatiotemporal variability in this area can be highly significant; however the amount of this importance has not been quantified at the moment. In the present work the geostatistical tool known as spatiotemporal variogram is used to study the rainfall spatiotemporal variability. The spacetime package implemented in R (Pebesma, 2012) facilities its computation from a high rainfall data base of more than 100 raingauges from 1950 to 2016. With the aid of these variograms the rainfall spatiotemporal variability is quantified. The principal aim of the present work is the study of the relation between the rainfall spatiotemporal variability and the

  1. Temporal and elevation trends in rainfall erosivity on a 149 km2 watershed in a semi-arid region of the American Southwest

    Directory of Open Access Journals (Sweden)

    Mark A. Nearing

    2015-06-01

    Full Text Available Temporal changes in rainfall erosivity can be expected to occur with changing climate, and because rainfall amounts are known to be in part of a function of elevation, erosivity can be expected to be influenced by elevation as well. This is particularly true in mountainous regions such as are found over much of the western United States. The objective of this study was to identify temporal and elevation trends in rainfall erosivity on a 149 km2 (58 miles2 watershed in a semi-arid region of southeastern Arizona. Data from 84 rain gages for the years 1960–2012 at elevations ranging from 1231 to 1644 m (4038–5394 ft were used in the analyses. The average annual erosivity over the watershed as a whole was 1104 MJ mm ha−1 h−1 yr−1 (65 hundreds of foot ton inch acre−1 h−1 yr−1, and ranged from approximately 950 to 1225 MJ mm ha−1 h−1 yr−1 (56–72 hundreds of foot ton inch acre−1 h−1 yr−1, with a statistical trend showing greater erosivity at the higher elevations. No statistically significant temporal changes in annual or summer erosivities were found. This result stands in contrast to recent modeling studies of runoff and erosion in the area based on downscaled GCM information that project significant levels of erosivity changes over coming decades. These results are consistent with known orographic rainfall effects, but contrast with recent studies that presented projections of significant trends of increasing erosivity in the future based on downscaled GCM outputs for the area. The results illustrate the need for testing and developing improved techniques to evaluate future erosion scenarios for purposes of making targeted soil conservation decisions.

  2. Birth, growth and progresses through the last twelve years of a regional scale landslide warning system

    Science.gov (United States)

    Fanti, Riccardo; Segoni, Samuele; Rosi, Ascanio; Lagomarsino, Daniela; Catani, Filippo

    2017-04-01

    SIGMA is a regional landslide warning system that operates in the Emilia Romagna region (Italy). In this work, we depict its birth and the continuous development process, still ongoing, after over a decade of operational employ. Traditionally, landslide rainfall thresholds are defined by the empirical correspondence between a rainfall database and a landslide database. However, in the early stages of the research, a complete catalogue of dated landslides was not available. Therefore, the prototypal version of SIGMA was based on rainfall thresholds defined by means of a statistical analysis performed over the rainfall time series. SIGMA was purposely designed to take into account both shallow and deep seated landslides and it was based on the hypothesis that anomalous or extreme values of accumulated rainfall are responsible for landslide triggering. The statistical distribution of the rainfall series was analyzed, and multiples of the standard deviation (σ) were used as thresholds to discriminate between ordinary and extraordinary rainfall events. In the warning system, the measured and the forecasted rainfall are compared with these thresholds. Since the response of slope stability to rainfall may be complex, SIGMA is based on a decision algorithm aimed at identifying short but exceptionally intense rainfalls and mild but exceptionally prolonged rains: while the former are commonly associated with shallow landslides, the latter are mainly associated with deep-seated landslides. In the first case, the rainfall threshold is defined by high σ values and short durations (i.e. a few days); in the second case, σ values are lower but the decision algorithm checks long durations (i.e. some months). The exact definition of "high" and "low" σ values and of "short" and "long" duration varied through time according as it was adjusted during the evolution of the model. Indeed, since 2005, a constant work was carried out to gather and organize newly available data (rainfall

  3. RAINFALL AGGRESSIVENESS EVALUATION IN REGHIN HILLS USING FOURNIER INDEX

    Directory of Open Access Journals (Sweden)

    J. SZILAGYI

    2016-03-01

    Full Text Available Aggressiveness erosive force of rainfall is the express of kinetic energy and potential energy of rain water runoff on slopes. In the absence of a database for the analysis of parameters that define the torrencial rainfall, the rainfall erosivity factor was calculated by Fournier Index, Modified Fournier Index based on the monthly and annual precipitation.

  4. A STUDY OF RELATIONSHIP BETWEEN "GUERILLA HEAVY RAINFALL" AND DISASTER

    Science.gov (United States)

    Ushiyama, Motoyuki

    "Guerilla heavy rainfall" is a newly-coined word by mass media of Japan. The four major newspaper publishing companies began to use this word frequently from the beginning of August, 2008. The definition of "Guerilla heavy rainfall" is not clear. It was found from the result of newspaper article analysis from 2008 to 2009 that short-time very heavy rainfall events are called "Guerilla heavy rainfall". In this study, the rainfall event of 80mm or more of rainfalls of 1 hour and 149mm or less of rainfalls was defined as "Guerilla heavy rainfall". 104 events of "Guerilla heavy rainfall" were extracted from AMeDAS precipitation data from 1979 to 2008. There were two victims of these heavy rainfall events in total. They killed at basement or underpass. Although inundation above the floor level occurred in 38% of event, the damage of 100 or more buildings was 9%. We may say that "Guerilla heavy rainfall" does not cause large-scale damage. However, it is necessary to keep in mind that damage caused by "Guerilla heavy rainfall" is generated well in high-risk area of flood, such as basement, underpass, low land and river park.

  5. Models are likely to underestimate increase in heavy rainfall in the extratropical regions with high rainfall intensity

    Science.gov (United States)

    Borodina, Aleksandra; Fischer, Erich M.; Knutti, Reto

    2017-07-01

    Model projections of regional changes in heavy rainfall are uncertain. On timescales of few decades, internal variability plays an important role and therefore poses a challenge to detect robust model response in heavy rainfall to rising temperatures. We use spatial aggregation to reduce the major role of internal variability and evaluate the heavy rainfall response to warming temperatures with observations. We show that in the regions with high rainfall intensity and for which gridded observations exist, most of the models underestimate the historical scaling of heavy rainfall and the land fraction with significant positive heavy rainfall scalings during the historical period. The historical behavior is correlated with the projected heavy rainfall intensification across models allowing to apply an observational constraint, i.e., to calibrate multimodel ensembles with observations in order to narrow the range of projections. The constraint suggests a substantially stronger intensification of future heavy rainfall than the multimodel mean.

  6. Mapping monthly rainfall erosivity in Europe.

    Science.gov (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha(-1)h(-1)) compared to winter (87MJmmha(-1)h(-1)). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R(2) values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  7. Performance of new 8-inch photomultiplier tube used for the Tibet muon-detector array

    Science.gov (United States)

    Zhang, Y.; Huang, J.; Chen, D.; Zhai, L.-M.; Chen, X.; Hu, X.-B.; Lin, Y.-H.; Jin, H.-B.; Zhang, X.-Y.; Feng, C.-F.; Jia, H.-Y.; Zhou, X.-X.; Danzengluobu; Chen, T.-L.; Labaciren; Liu, M.-Y.; Gao, Q.; Zhaxiciren

    2016-06-01

    Since 2014, a new hybrid experiment consisting of a high-energy air-shower-core array (YAC-II), a high-density air-shower array (Tibet-III) and a large underground water-Cherenkov muon-detector array (MD) has been continued by the Tibet ASγ collaboration to measure the chemical composition of cosmic rays in the wide energy range including the ``knee''. In this experiment, YAC-II is used to select high energy core events induced by cosmic rays in the above energy region, while MD is used to estimate the type of nucleus of primary particles by measuring the number of muons contained in the air showers. However, the dynamic range of each MD cell is only 5 to 2000 photoelectrons (PEs) which is mainly designed for observation of high-energy celestial gamma rays. In order to obtain the primary proton, helium and iron spectra and their ``knee'' positions with energy up to 1016 eV, each of PMTs equipped to the MD cell is required to measure the number of photons capable of covering a wide dynamic range of 100-106 PEs according to Monte Carlo simulations. In this paper, we firstly compare the characteristic features between R5912-PMT made by Japan Hamamatsu and CR365-PMT made by Beijing Hamamatsu. If there exists no serious difference, we will then add two 8-inch-in-diameter PMTs to meet our requirements in each MD cell, which are responsible for the range of 100-10000 PEs and 2000-1000000 PEs, respectively. That is, MD cell is expected to be able to measure the number of muons over 6 orders of magnitudes.

  8. Borneo vortex and mesoscale convective rainfall

    Science.gov (United States)

    Koseki, S.; Koh, T.-Y.; Teo, C.-K.

    2014-05-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite data sets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the Equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-α cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-β-scale rainfall cells. The intense rainfall in the comma head (comma tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-α cyclone system. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics.

  9. Rainfall Predictions From Global Salinity Anomalies

    Science.gov (United States)

    Schmitt, R. W.; Li, L.; Liu, T.

    2016-12-01

    We have discovered that sea surface salinity (SSS) is a better seasonal predictor of terrestrial rainfall than sea surface temperature (SST) or the usual pressure modes of atmospheric variability. In many regions, a 3-6 month lead of SSS over rainfall on land can be seen. While some lead is guaranteed due to the simple conservation of water and salt, the robust seasonal lead for SSS in some places is truly remarkable, often besting traditional SST and pressure predictors by a very significant margin. One mechanism for the lead has been identified in the recycling of water on land through soil moisture in regional ocean to land moisture transfers. However, a global search has yielded surprising long-range SSS-rainfall teleconnections. It is suggested that these teleconnections indicate a marked sensitivity of the atmosphere to where rain falls on the ocean. That is, the latent heat of evaporation is by far the largest energy transfer from ocean to atmosphere and where the atmosphere cashes in this energy in the form of precipitation is well recorded in SSS. SSS also responds to wind driven advection and mixing. Thus, SSS appears to be a robust indicator of atmospheric energetics and moisture transport and the timing and location of rainfall events is suggested to influence the subsequent evolution of the atmospheric circulation. In a sense, if the fall of a rain drop is at least equivalent to the flap of a butterfly's wings, the influence of a billion butterfly rainstorm allows for systematic predictions beyond the chaotic nature of the turbulent atmosphere. SSS is found to be particularly effective in predicting extreme precipitation or droughts, which makes its continued monitoring very important for building societal resilience against natural disasters.

  10. Artificial Neural Network for Monthly Rainfall Rate Prediction

    Science.gov (United States)

    Purnomo, H. D.; Hartomo, K. D.; Prasetyo, S. Y. J.

    2017-03-01

    Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is assesses based on monthly rainfall rate in Ampel, Boyolali, from 2001-2013. The experiment results show that the accuracy of the first model is much better than the accuracy of the second model. Its average accuracy is just above 98%, while the accuracy of the second model is approximately 75%. In additional, both models tend to perform better when the fluctuation of rainfall is low.

  11. Rainfall-enhanced blooming in typhoon wakes

    Science.gov (United States)

    Lin, Y.-C.; Oey, L.-Y.

    2016-08-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  12. Rainfall regimes of the Green Sahara.

    Science.gov (United States)

    Tierney, Jessica E; Pausata, Francesco S R; deMenocal, Peter B

    2017-01-01

    During the "Green Sahara" period (11,000 to 5000 years before the present), the Sahara desert received high amounts of rainfall, supporting diverse vegetation, permanent lakes, and human populations. Our knowledge of rainfall rates and the spatiotemporal extent of wet conditions has suffered from a lack of continuous sedimentary records. We present a quantitative reconstruction of western Saharan precipitation derived from leaf wax isotopes in marine sediments. Our data indicate that the Green Sahara extended to 31°N and likely ended abruptly. We find evidence for a prolonged "pause" in Green Sahara conditions 8000 years ago, coincident with a temporary abandonment of occupational sites by Neolithic humans. The rainfall rates inferred from our data are best explained by strong vegetation and dust feedbacks; without these mechanisms, climate models systematically fail to reproduce the Green Sahara. This study suggests that accurate simulations of future climate change in the Sahara and Sahel will require improvements in our ability to simulate vegetation and dust feedbacks.

  13. Statistical distribution of rainfall in Uttarakhand, India

    Science.gov (United States)

    Kumar, Vikram; Shanu; Jahangeer

    2017-07-01

    Understanding of rainfall is an important issue for Uttarakhand, India which having varied topography and due to that extreme rainfall causes quick runoff which warns structural and functional safety of large structures and other natural resources. In this study, an attempt has been made to determine the best-fit distribution of the annual series of rainfall data for the period of 1991-2002 of 13 districts of Uttarakhand. A best-fit distribution such as Chi-squared, Chi-squared (2P), exponential, exponential (2P), gamma, gamma (3P), gen. extreme value (GEV), log-Pearson 3, Weibull, Weibull (3P) distributions was applied. Comparisons of best distributions were based on the use of goodness-of-fit tests such as Kolmogorov-Smirnov, Anderson-Darling, and Chi squared. Results showed that the Weibull distribution performed the best with 46% of the total district, while the second best distribution was Chi squared (2P) and log-Pearson. The results of this study would be useful to the water resource engineers, policy makers and planners for the agricultural development and conservation of natural resources of Uttarakhand.

  14. Cyclical components of local rainfall data

    Science.gov (United States)

    Mentz, R. P.; D'Urso, M. A.; Jarma, N. M.; Mentz, G. B.

    2000-02-01

    This paper reports on the use of a comparatively simple statistical methodology to study local short time series rainfall data. The objective is to help in agricultural planning, by diminishing the risks associated with some uncertainties affecting this business activity.The analysis starts by assuming a model of unobservable components, trend, cycle, seasonal and irregular, that is well known in many areas of application. When series are in the realm of business and economics, the statistical methods popularized by the US Census Bureau US National Bureau of Economic Research are used for seasonal and cyclical estimation, respectively. The flexibility of these methods makes them good candidates to be applied in the meteorological context, and this is done in this paper for a selection of monthly rainfall time series.Use of the results to help in analysing and forecasting cyclical components is emphasized. The results are interesting. An agricultural entrepreneur, or a group of them located in a single geographical region, will profit by systematically collecting information (monthly in our work) about rainfall, and adopting the scheme of analysis described in this paper.

  15. Tropical stratospheric circulation and monsoon rainfall

    Science.gov (United States)

    Sikder, A. B.; Patwardhan, S. K.; Bhalme, H. N.

    1993-09-01

    Interannual variability of both SW monsoon (June September) and NE monsoon (October December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958 1986). Correlations of zonal wind anomalies to SW monsoon rainfall ( r=0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu. Tracks of the SW monsoon storms and depressions in association with the stratospheric wind were also examined to couple with the fluctuations in SW monsoon rainfall. It is noted that easterly / westerly wind at 10 hPa, in some manner, suppresses / enhances monsoon storms and depressions activity affecting their tracks.

  16. Rainfall regimes of the Green Sahara

    Science.gov (United States)

    Tierney, Jessica E.; Pausata, Francesco S. R.; deMenocal, Peter B.

    2017-01-01

    During the “Green Sahara” period (11,000 to 5000 years before the present), the Sahara desert received high amounts of rainfall, supporting diverse vegetation, permanent lakes, and human populations. Our knowledge of rainfall rates and the spatiotemporal extent of wet conditions has suffered from a lack of continuous sedimentary records. We present a quantitative reconstruction of western Saharan precipitation derived from leaf wax isotopes in marine sediments. Our data indicate that the Green Sahara extended to 31°N and likely ended abruptly. We find evidence for a prolonged “pause” in Green Sahara conditions 8000 years ago, coincident with a temporary abandonment of occupational sites by Neolithic humans. The rainfall rates inferred from our data are best explained by strong vegetation and dust feedbacks; without these mechanisms, climate models systematically fail to reproduce the Green Sahara. This study suggests that accurate simulations of future climate change in the Sahara and Sahel will require improvements in our ability to simulate vegetation and dust feedbacks. PMID:28116352

  17. Projected changes of rainfall event characteristics for the Czech Republic

    Directory of Open Access Journals (Sweden)

    Svoboda Vojtěch

    2016-12-01

    Full Text Available Projected changes of warm season (May–September rainfall events in an ensemble of 30 regional climate model (RCM simulations are assessed for the Czech Republic. Individual rainfall events are identified using the concept of minimum inter-event time and only heavy events are considered. The changes of rainfall event characteristics are evaluated between the control (1981–2000 and two scenario (2020–2049 and 2070–2099 periods. Despite a consistent decrease in the number of heavy rainfall events, there is a large uncertainty in projected changes in seasonal precipitation total due to heavy events. Most considered characteristics (rainfall event depth, mean rainfall rate, maximum 60-min rainfall intensity and indicators of rainfall event erosivity are projected to increase and larger increases appear for more extreme values. Only rainfall event duration slightly decreases in the more distant scenario period according to the RCM simulations. As a consequence, the number of less extreme heavy rainfall events as well as the number of long events decreases in majority of the RCM simulations. Changes in most event characteristics (and especially in characteristics related to the rainfall intensity depend on changes in radiative forcing and temperature for the future periods. Only changes in the number of events and seasonal total due to heavy events depend significantly on altitude.

  18. Deterministic Approach for Estimating Critical Rainfall Threshold of Rainfall-induced Landslide in Taiwan

    Science.gov (United States)

    Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei

    2013-04-01

    Taiwan is an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin. The inherent complexities of geological nature create numerous discontinuities through rock masses and relatively steep hillside on the island. In recent years, the increase in the frequency and intensity of extreme natural events due to global warming or climate change brought significant landslides. The causes of landslides in these slopes are attributed to a number of factors. As is well known, rainfall is one of the most significant triggering factors for landslide occurrence. In general, the rainfall infiltration results in changing the suction and the moisture of soil, raising the unit weight of soil, and reducing the shear strength of soil in the colluvium of landslide. The stability of landslide is closely related to the groundwater pressure in response to rainfall infiltration, the geological and topographical conditions, and the physical and mechanical parameters. To assess the potential susceptibility to landslide, an effective modeling of rainfall-induced landslide is essential. In this paper, a deterministic approach is adopted to estimate the critical rainfall threshold of the rainfall-induced landslide. The critical rainfall threshold is defined as the accumulated rainfall while the safety factor of the slope is equal to 1.0. First, the process of deterministic approach establishes the hydrogeological conceptual model of the slope based on a series of in-situ investigations, including geological drilling, surface geological investigation, geophysical investigation, and borehole explorations. The material strength and hydraulic properties of the model were given by the field and laboratory tests. Second, the hydraulic and mechanical parameters of the model are calibrated with the long-term monitoring data. Furthermore, a two-dimensional numerical program, GeoStudio, was employed to perform the modelling practice. Finally

  19. Application of seasonal rainfall forecasts and satellite rainfall observations to crop yield forecasting for Africa

    Science.gov (United States)

    Greatrex, H. L.; Grimes, D. I. F.; Wheeler, T. R.

    2009-04-01

    Rain-fed agriculture is of utmost importance in sub-Saharan Africa; the FAO estimates that over 90% of food consumed in the region is grown in rain-fed farming systems. As the climate in sub-Saharan Africa has a high interannual variability, this dependence on rainfall can leave communities extremely vulnerable to food shortages, especially when coupled with a lack of crop management options. The ability to make a regional forecast of crop yield on a timescale of months would be of enormous benefit; it would enable both governmental and non-governmental organisations to be alerted in advance to crop failure and could facilitate national and regional economic planning. Such a system would also enable individual communities to make more informed crop management decisions, increasing their resilience to climate variability and change. It should be noted that the majority of crops in the region are rainfall limited, therefore the ability to create a seasonal crop forecast depends on the ability to forecast rainfall at a monthly or seasonal timescale and to temporally downscale this to a daily time-series of rainfall. The aim of this project is to develop a regional-scale seasonal forecast for sub-Saharan crops, utilising the General Large Area Model for annual crops (GLAM). GLAM would initially be driven using both dynamical and statistical seasonal rainfall forecasts to provide an initial estimate of crop yield. The system would then be continuously updated throughout the season by replacing the seasonal rainfall forecast with daily weather observations. TAMSAT satellite rainfall estimates are used rather than rain-gauge data due to the scarcity of ground based observations. An important feature of the system is the use of the geo-statistical method of sequential simulation to create an ensemble of daily weather inputs from both the statistical seasonal rainfall forecasts and the satellite rainfall estimates. This allows a range of possible yield outputs to be

  20. Observed daily large-scale rainfall patterns during BOBMEX-1999

    Indian Academy of Sciences (India)

    A K Mitra; M Das Gupta; R K Paliwal; S V Singh

    2003-06-01

    A daily rainfall dataset and the corresponding rainfall maps have been produced by objective analysis of rainfall data. The satellite estimate of rainfall and the raingauge values are merged to form the final analysis. Associated with epochs of monsoon these rainfall maps are able to show the rainfall activities over India and the Bay of Bengal region during the BOBMEX period. The intra-seasonal variations of rainfall during BOBMEX are also seen using these data. This dataset over the oceanic region compares well with other available popular datasets like GPCP and CMAP. Over land this dataset brings out the features of monsoon in more detail due to the availability of more local raingauge stations.

  1. Passive microwave rainfall retrieval: A mathematical approach via sparse learning

    Science.gov (United States)

    Ebtehaj, M.; Lerman, G.; Foufoula-Georgiou, E.

    2013-12-01

    Detection and estimation of surface rainfall from spaceborne radiometric imaging is a challenging problem. The main challenges arise due to the nonlinear relationship of surface rainfall with its microwave multispectral signatures, the presence of noise, insufficient spatial resolution in observations, and the mixture of the earth surface and atmospheric radiations. A mathematical approach is presented for the detection and retrieval of surface rainfall from radiometric observations via supervised learning. In other words, we use a priori known libraries of high-resolution rainfall observations (e.g., obtained by an active radar) and their coincident spectral signatures (i.e., obtained by a radiometer) to design a mathematical model for rainfall retrieval. This model views the rainfall retrieval as a nonlinear inverse problem and relies on sparsity-promoting Bayesian inversion techniques. In this approach, we assume that small neighborhoods of the rainfall fields and their spectral signatures live on manifolds with similar local geometry and encode those neighborhoods in two joint libraries, the so-called rainfall and spectral dictionaries. We model rainfall passive microwave images by sparse linear combinations of the atoms of the spectral dictionary and then use the same representation coefficients to retrieve surface rain rates from the corresponding rainfall dictionary. The proposed methodology is examined by the use of spectral and rainfall dictionaries provided by the microwave imager (TMI) and precipitation radar (PR), aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. Pros and cons of the presented approach are studied by extensive comparisons with the current operational rainfall algorithm of the TRMM satellite. Future extensions are also highlighted for potential application in the era of the Global Precipitation Measurement (GPM) mission. Comparing the retrieved rain rates for Hurricane Danielle 08/29/2010 (UTC 09:48:00). (Top panel) PR-2A

  2. Uncertainty of Areal Rainfall Estimation Using Point Measurements

    Science.gov (United States)

    McCarthy, D.; Dotto, C. B. S.; Sun, S.; Bertrand-Krajewski, J. L.; Deletic, A.

    2014-12-01

    The spatial variability of precipitation has a great influence on the quantity and quality of runoff water generated from hydrological processes. In practice, point rainfall measurements (e.g., rain gauges) are often used to represent areal rainfall in catchments. The spatial rainfall variability is difficult to be precisely captured even with many rain gauges. Thus the rainfall uncertainty due to spatial variability should be taken into account in order to provide reliable rainfall-driven process modelling results. This study investigates the uncertainty of areal rainfall estimation due to rainfall spatial variability if point measurements are applied. The areal rainfall is usually estimated as a weighted sum of data from available point measurements. The expected error of areal rainfall estimates is 0 if the estimation is an unbiased one. The variance of the error between the real and estimated areal rainfall is evaluated to indicate the uncertainty of areal rainfall estimates. This error variance can be expressed as a function of variograms, which was originally applied in geostatistics to characterize a spatial variable. The variogram can be evaluated using measurements from a dense rain gauge network. The areal rainfall errors are evaluated in two areas with distinct climate regimes and rainfall patterns: Greater Lyon area in France and Melbourne area in Australia. The variograms of the two areas are derived based on 6-minute rainfall time series data from 2010 to 2013 and are then used to estimate uncertainties of areal rainfall represented by different numbers of point measurements in synthetic catchments of various sizes. The error variance of areal rainfall using one point measurement in the centre of a 1-km2 catchment is 0.22 (mm/h)2 in Lyon. When the point measurement is placed at one corner of the same-size catchment, the error variance becomes 0.82 (mm/h)2 also in Lyon. Results for Melbourne were similar but presented larger uncertainty. Results

  3. Spectroscopic classification of optical transients with the SEDM (Spectral Energy Distribution Machine) on Palomar 60-inch (P60) telescope

    Science.gov (United States)

    Blagorodnova, N.; Neill, D.; Walters, R.

    2016-07-01

    The Caltech Time Domain Astronomy group reports the classification of the optical transients SN 2016czr, SN 2016ejc and AT 2016eki. The candidates were discovered by the PMO-Tsinghua Supernova Survey (PTSS: http://119.78.210.3/ptss2/ ), the Gaia ESA survey (Rixon et al,2014, ATel #6593) and the All Sky Automated Survey for SuperNovae ASAS-SN (see Shappee et al. 2014, ApJ, 788, 48 and http://www.astronomy.ohio-state.edu/~assassin/index.shtml ). The observations were performed on 2016-07-28 and 2016-07-29 with the Palomar 60-inch (P60) telescope and the Spectral Energy Distribution Machine (SEDM) (http://www.astro.caltech.edu/sedm/, range 350-950nm, spectral resolution R~100) on Palomar 60-inch (P60) telescope.

  4. A Modeling Study of Surface Rainfall Processes Associated with a Torrential Rainfall Event over Hubei, China, during July 2007

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yushu; CUI Chunguang

    2011-01-01

    The surface rainfall processes associated with the torrential rainfall event over Hubei,China,during July 2007 were investigated using a two-dimensional cloud-resolving model.The model integrated the large-scale vertical velocity and zonal wind data from National Centers for Environmental Prediction (NCEP)/Global Data Assimilation System (GDAS) for 5 days.The time and model domain mean surface rain rate was used to identify the onset,mature,and decay periods of rainfall.During the onset period,the descending motion data imposed in the lower troposphere led to a large contribution of stratiform rainfall to the model domain mean surface rainfall.The local atmospheric drying and transport of rain from convective regions mainly contributes to the stratiform rainfall.During the mature periods,the ascending motion data integrated into the model was so strong that water vapor convergence was the dominant process for both convective and stratiform rainfall.Both convective and stratiform rainfalls made important contributions to the model domain mean surface rainfall. During the decay period,descending motion data input into the model prevailed,making stratiform rainfall dominant.Stratiform rainfall was mainly caused by the water vapor convergence over raining stratiform regions.

  5. Preparation of 3 Inch Double-Sided YBa2Cu3O7-X High Temperature Superconducting Thin Films

    Institute of Scientific and Technical Information of China (English)

    TAO Bo-wan

    2005-01-01

    @@ Owing to its excellent electrical property,YBCO thin film is much better than metal in the application for microwave devices. It makes the devices smaller, lighter, and with higher quality factor and lower insertion loss. YBCO thin film has attracted attentions for many years. Aiming at the uniformity and property of 3-inch double-sided YBCO thin film, the following aspects is considered in this dissertation:

  6. Chapter Twelve

    African Journals Online (AJOL)

    User

    dissemination in Nigeria· Some local jingles from Radio Nigeria Purity F.M. .... Indigenous Language in Advertisement: Problems and Prospects – Thecla ... the rural newspapers from performing their role of rural development· The ..... Sharma Raman, M· and, S (2004), Technical Communication Principle and Practice· India:.

  7. Optimizing Facility Configurations and Operating Conditions for Improved Performance in the NASA Ames 24 Inch Shock Tube

    Science.gov (United States)

    Bogdanoff, David W.; Cruden, Brett A.

    2016-01-01

    The Ames Electric Arc Shock Tube (EAST) is a shock tube wherein the driver gas can be heated by an electric arc discharge. The electrical energy is stored in a 1.2 MJ capacitor bank. Four inch and 24 inch diameter driven tubes are available. The facility is described and the need for testing in the 24 inch tube to better simulate low density NASA mission profiles is discussed. Three test entries, 53, 53B and 59, are discussed. Tests are done with air or Mars gas (95.7% CO2/2.7% N2/1.6% Ar) at pressures of 0.01 to 0.14 Torr. Velocities spanned 6.3-9.2 km/s, with a nominal center of 7 km/s. Many facility configurations are studied in an effort to improve data quality. Various driver and driven tube configurations and the use of a buffer section between the driver and the driven tube are studied. Diagnostics include test times, time histories of the shock light pulses and tilts of the shock wave off the plane normal to the tube axis. The report will detail the results of the various trials, give the best configuration/operating conditions found to date and provide recommendations for further improvements. Finally, diaphragm performance is discussed.

  8. Characterization of the ETEL and HZC 3-inch PMTs for the KM3NeT project

    Energy Technology Data Exchange (ETDEWEB)

    Bormuth, R.; Samtleben, D. [NIKHEF, Science Park 105, 1098 XG, Amsterdam, The Netherlands and Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, Leiden, 2300 RA (Netherlands); Classen, L., E-mail: kalekin@physik.uni-erlangen.de; Kalekin, Oleg, E-mail: kalekin@physik.uni-erlangen.de; Reubelt, J. [ECAP, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Peek, H.; Visser, E. [NIKHEF, Science Park 105, 1098 XG, Amsterdam (Netherlands); Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT collaboration constructs a multi-cubic-kilometer scale neutrino telescope in the Mediterranean Sea. The telescope’s detection units, deployed in the deep sea, will be instrumented with facet like Digital Optical Modules (DOMs), each housing 31 three-inch photomultiplier tubes (PMTs) and readout electronics inside of 17-inch pressure resistant glass sphere. Two companies, ET Enterprises Ltd (ETEL) from UK and HZC from China developed new 3-inch PMTs to meet KM3NeT requirements. 126 PMTs of types D783KFLA, D792KFLA, and D793KFLA from ETEL and 7 PMTs of type XP53 from HZC have been delivered to KM3NeT and tested by the KM3NeT groups of NIKHEF-Amsterdam and ECAP-Erlangen. Tests have been performed to measure the main PMT parameters listed in the KM3NeT specifications, such as gain, transit time spread, dark rate, fraction of spurious pulses, and quantum efficiency. Methods and results are presented in this report.

  9. Simulation of radar rainfall errors and their propagation into rainfall-runoff processes

    Science.gov (United States)

    Aghakouchak, A.; Habib, E.

    2008-05-01

    Radar rainfall data compared with rain gauge measurements provide higher spatial and temporal resolution. However, radar data obtained form reflectivity patterns are subject to various errors such as errors in Z-R relationship, vertical profile of reflectivity, spatial and temporal sampling, etc. Characterization of such uncertainties in radar data and their effects on hydrologic simulations (e.g., streamflow estimation) is a challenging issue. This study aims to analyze radar rainfall error characteristics empirically to gain information on prosperities of random error representativeness and its temporal and spatial dependency. To empirically analyze error characteristics, high resolution and accurate rain gauge measurements are required. The Goodwin Creek watershed located in the north part of Mississippi is selected for this study due to availability of a dense rain gauge network. A total of 30 rain gauge measurement stations within Goodwin Creak watershed and the NWS Level II radar reflectivity data obtained from the WSR-88dD Memphis radar station with temporal resolution of 5min and spatial resolution of 1 km2 are used in this study. Radar data and rain gauge measurements comparisons are used to estimate overall bias, and statistical characteristics and spatio-temporal dependency of radar rainfall error fields. This information is then used to simulate realizations of radar error patterns with multiple correlated variables using Monte Calro method and the Cholesky decomposition. The generated error fields are then imposed on radar rainfall fields to obtain statistical realizations of input rainfall fields. Each simulated realization is then fed as input to a distributed physically based hydrological model resulting in an ensemble of predicted runoff hydrographs. The study analyzes the propagation of radar errors on the simulation of different rainfall-runoff processes such as streamflow, soil moisture, infiltration, and over-land flooding.

  10. Quantifying uncertainty in observational rainfall datasets

    Science.gov (United States)

    Lennard, Chris; Dosio, Alessandro; Nikulin, Grigory; Pinto, Izidine; Seid, Hussen

    2015-04-01

    The CO-ordinated Regional Downscaling Experiment (CORDEX) has to date seen the publication of at least ten journal papers that examine the African domain during 2012 and 2013. Five of these papers consider Africa generally (Nikulin et al. 2012, Kim et al. 2013, Hernandes-Dias et al. 2013, Laprise et al. 2013, Panitz et al. 2013) and five have regional foci: Tramblay et al. (2013) on Northern Africa, Mariotti et al. (2014) and Gbobaniyi el al. (2013) on West Africa, Endris et al. (2013) on East Africa and Kalagnoumou et al. (2013) on southern Africa. There also are a further three papers that the authors know about under review. These papers all use an observed rainfall and/or temperature data to evaluate/validate the regional model output and often proceed to assess projected changes in these variables due to climate change in the context of these observations. The most popular reference rainfall data used are the CRU, GPCP, GPCC, TRMM and UDEL datasets. However, as Kalagnoumou et al. (2013) point out there are many other rainfall datasets available for consideration, for example, CMORPH, FEWS, TAMSAT & RIANNAA, TAMORA and the WATCH & WATCH-DEI data. They, with others (Nikulin et al. 2012, Sylla et al. 2012) show that the observed datasets can have a very wide spread at a particular space-time coordinate. As more ground, space and reanalysis-based rainfall products become available, all which use different methods to produce precipitation data, the selection of reference data is becoming an important factor in model evaluation. A number of factors can contribute to a uncertainty in terms of the reliability and validity of the datasets such as radiance conversion algorithims, the quantity and quality of available station data, interpolation techniques and blending methods used to combine satellite and guage based products. However, to date no comprehensive study has been performed to evaluate the uncertainty in these observational datasets. We assess 18 gridded

  11. Rainfall thresholds for possible landslide occurrence in Italy

    Science.gov (United States)

    Peruccacci, Silvia; Brunetti, Maria Teresa; Gariano, Stefano Luigi; Melillo, Massimo; Rossi, Mauro; Guzzetti, Fausto

    2017-08-01

    The large physiographic variability and the abundance of landslide and rainfall data make Italy an ideal site to investigate variations in the rainfall conditions that can result in rainfall-induced landslides. We used landslide information obtained from multiple sources and rainfall data captured by 2228 rain gauges to build a catalogue of 2309 rainfall events with - mostly shallow - landslides in Italy between January 1996 and February 2014. For each rainfall event with landslides, we reconstructed the rainfall history that presumably caused the slope failure, and we determined the corresponding rainfall duration D (in hours) and cumulated event rainfall E (in mm). Adopting a power law threshold model, we determined cumulated event rainfall-rainfall duration (ED) thresholds, at 5% exceedance probability, and their uncertainty. We defined a new national threshold for Italy, and 26 regional thresholds for environmental subdivisions based on topography, lithology, land-use, land cover, climate, and meteorology, and we used the thresholds to study the variations of the rainfall conditions that can result in landslides in different environments, in Italy. We found that the national and the environmental thresholds cover a small part of the possible DE domain. The finding supports the use of empirical rainfall thresholds for landslide forecasting in Italy, but poses an empirical limitation to the possibility of defining thresholds for small geographical areas. We observed differences between some of the thresholds. With increasing mean annual precipitation (MAP), the thresholds become higher and steeper, indicating that more rainfall is needed to trigger landslides where the MAP is high than where it is low. This suggests that the landscape adjusts to the regional meteorological conditions. We also observed that the thresholds are higher for stronger rocks, and that forested areas require more rainfall than agricultural areas to initiate landslides. Finally, we

  12. On the sensitivity of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager channels to overland rainfall

    Science.gov (United States)

    You, Yalei; Liu, Guosheng; Wang, Yu; Cao, Jie

    2011-06-01

    The response of brightness temperatures at different microwave frequencies to overland precipitation is investigated by using the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Microwave Imager (TMI) data. The Spearman correlation coefficients between observations at TMI channels or channel combinations and PR-measured near-surface rain are computed using 3 years of TRMM data. The results showed that the brightness temperature combinations from 19 and 37 GHz, that is, V19-V37 (the letter V denotes vertical polarization, and the numbers denote frequency in GHz) or V21-V37, can explain ˜10% more variance of near-surface rainfall rate than can the V85 brightness temperature. Also, the global distribution of the above correlation revealed that over almost all of the tropical land area covered by TRMM satellite, the V19-V37 channel has a closer response to the overland rainfall than does the V85 channel. This result is somewhat counterintuitive, because it has been long believed that the dominant signature of overland rainfall is the brightness temperature depression caused by ice scattering at high microwave frequencies (e.g., 85 GHz). To understand the underlying physics of this better low-frequency response, data analysis and radiative transfer modeling have been conducted to assess the influence on brightness temperatures from clouds with different ice and liquid water partitions. The results showed that under the condition of low frozen water and medium liquid water in the atmospheric column, the signal from the V19-V37 channel responded better to rainfall rate than did the one from the V85 channel. A plausible explanation to this result is that in addition to ice scattering signature, the V19-V37 channel contains liquid water information as well, which is more directly related to surface rain than to ice water aloft. At heavy rainfall conditions, the V19-V37, V37, and V85 channels all are correlated with near-surface rain reasonably well

  13. Investigation of summer monsoon rainfall variability in Pakistan

    Science.gov (United States)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  14. Accuracy of rainfall measurement for scales of hydrological interest

    Directory of Open Access Journals (Sweden)

    S. J. Wood

    2000-01-01

    Full Text Available The dense network of 49 raingauges over the 135 km2 Brue catchment in Somerset, England is used to examine the accuracy of rainfall estimates obtained from raingauges and from weather radar. Methods for data quality control and classification of precipitation types are first described. A super-dense network comprising eight gauges within a 2 km grid square is employed to obtain a 'true value' of rainfall against which the 2 km radar grid and a single 'typical gauge' estimate can be compared. Accuracy is assessed as a function of rainfall intensity, for different periods of time-integration (15 minutes, 1 hour and 1 day and for two 8-gauge networks in areas of low and high relief. In a similar way, the catchment gauge network is used to provide the 'true catchment rainfall' and the accuracy of a radar estimate (an area-weighted average of radar pixel values and a single 'typical gauge' estimate of catchment rainfall evaluated as a function of rainfall intensity. A single gauge gives a standard error of estimate for rainfall in a 2 km square and over the catchment of 33% and 65% respectively, at rain rates of 4 mm in 15 minutes. Radar data at 2 km resolution give corresponding errors of 50% and 55%. This illustrates the benefit of using radar when estimating catchment scale rainfall. A companion paper (Wood et al., 2000 considers the accuracy of rainfall estimates obtained using raingauge and radar in combination. Keywords: rainfall, accuracy, raingauge, radar

  15. Statistical Analysis of 30 Years Rainfall Data: A Case Study

    Science.gov (United States)

    Arvind, G.; Ashok Kumar, P.; Girish Karthi, S.; Suribabu, C. R.

    2017-07-01

    Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.

  16. Variations of characteristics of consecutive rainfall days over northern Thailand

    Science.gov (United States)

    Klongvessa, P.; Lu, M.; Chotpantarat, S.

    2017-07-01

    The Chao Phraya basin, Thailand, is frequently inundated by flooding during the southwest monsoon period. Most floods coincide with consecutive rainfall days. This study investigated consecutive rainfall days during the southwest monsoon period at 11 stations over northern Thailand, the upstream area of this basin. The Markov chain probability model was used to study the consecutiveness of days with at least 0.1, 10.1, and 35.1 mm of rainfall. The consecutive length of rainfall days from the model showed good agreement with the observed value. A chi-square test of independence was applied to assess the significance of the consecutiveness, and it was found that days with at least 10.1 mm of rainfall tend to be consecutive over the entire area. Moreover, days with at least 35.1 mm of rainfall were found to be consecutive over the joint area where the mountainous region meets the plain area. However, the consecutiveness of days with less than 10.1 mm of rainfall was not obvious. The rainfall amount on days with at least 10.1 mm of rainfall was also calculated and it showed lower values over the mountainous region than over the plain. Hence, this study established the characteristics of consecutive rainfall days over the plain, mountainous region, and joint area.

  17. THE IMPACT OF CLIMATE CHANGE UPON WINTER RAINFALL

    Directory of Open Access Journals (Sweden)

    Numan Shehadeh

    2013-01-01

    Full Text Available Climatic models that project the impact of climate change upon rainfall in the Eastern Mediterranean region predict that the negative impact will be more pronounced upon winter rainfall rather than Fall or Spring rainfall where instability conditions become more pronounced. Those models, also, predict that, due to the great geographical diversity, projected rainfall trends in the above region will show great spatial variability. Therefore, this study aims to analyze the possible impact of climate change upon winter rainfall (December, January and February in Jordan. Data from six meteorological stations that represent well the spatial variation of rainfall in the country is used. Various statistical techniques are applied in this study including, linear regression, t- test, moving averages and CUSUM charts. Results of the analysis reveal a decreasing rainfall trend in all the sample stations. However, the decreasing trends are significant at the 0.05 level in three stations only (Salt, Amman and Irbid. The negative impact of climate change upon winter rainfall totals in the northern and central parts of Jordan, where most of winter rainfall is associated with Mediterranean depressions, is statistically significant at the 0.05 level. However, such impact is not significant in the southern and eastern parts of the country, where a greater portion of winter rainfall is associated with khamasini depressions and instability conditions. Further research analyzing the impact of climate change upon other climatic elements such as temperature, relative humidity and dust storms is needed.

  18. Constraining continuous rainfall simulations for derived design flood estimation

    Science.gov (United States)

    Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.

    2016-11-01

    Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.

  19. Sources of Uncertainty in Rainfall Maps from Cellular Communication Networks

    Science.gov (United States)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2015-04-01

    Accurate measurements of rainfall are important in many hydrological applications, for instance, flash-flood early-warning systems, hydraulic structures design, agriculture, weather forecasting, and climate modelling. Rainfall intensities can be retrieved from (commercial) microwave link networks. Whenever possible, link networks measure and store the decrease in power of the electromagnetic signal at regular intervals. The decrease in power is largely due to the attenuation by raindrops along the link paths. Such an alternative technique fulfills the continuous strive for measurements of rainfall in time and space at higher resolutions, especially in places where traditional rain gauge networks are scarce or poorly maintained. Rainfall maps from microwave link networks have recently been introduced at country-wide scales. Despite their potential in rainfall estimation at high spatiotemporal resolutions, the uncertainties present in rainfall maps from link networks are not yet fully comprehended. The aim of this work is to identify and quantify the sources of uncertainty present in interpolated rainfall maps from link rainfall depths. In order to disentangle these sources of uncertainty, we classified them into two categories: (1) those associated with the individual microwave link measurements, i.e., the physics involved in the measurements such as wet antenna attenuation, sampling interval of measurements, wet/dry period classification, drop size distribution (DSD), and multi-path propagation; (2) those associated with mapping, i.e., the combined effect of the interpolation methodology, the spatial density of the network, and the availability of link measurements. We computed ~ 3500 rainfall maps from real and simulated link rainfall depths for 12 days for the land surface of The Netherlands. These rainfall maps were compared against quality-controlled gauge-adjusted radar rainfall fields (assumed to be the ground truth). Thus, we were able to not only identify

  20. Prediction of Rainfall-Induced Landslides

    Science.gov (United States)

    Nadim, F.; Sandersen, F.

    2009-12-01

    Rainfall-induced landslides can be triggered by two main mechanisms: shear failure due to build-up of pore water pressure and erosion by surface water runoff when flow velocity exceeds a critical value. Field measurements indicate that, in the initial phase, the slip surface of a landslide often occurs along the top of a relatively impermeable layer located at some depth within the soil profile, e.g. at the contact with a shallow underlying bedrock or parent rock. The shear strength along this surface and hence the stability of the slope is governed by the pore water pressure. The pore pressure is in turn controlled by water seepage through the slope, either from infiltrated rain, or from groundwater that follows bedrock joints and soil layers with high permeability. When the infiltration rate of the underlying layer is too low for further downward penetration of water or when a wetting front is produced, pore water pressure builds up, reducing the soil shear strength. During high intensity rainfall, surface water runoff will exert shear stresses on the bed material. De-pending on the grain size distribution and specific gravity of the material, erosion might occur when the flow velocity exceeds a critical value. As erosion progresses and sediment concentration increases, the flow regime may become unstable with heavy erosion at high flow velocity locations triggering a debris flow. In many cases, previous landslides along steep gully walls have fed an abundance of loose soil material into the gullies. Landslides along gully walls that obstruct the water transport may also trigger debris flows when the landslide-dam collapses, creating a surge downstream. Both the long-duration (1 or more days) and short-duration precipitation (of the order of 1 hour) are significant in the triggering of shallow landslides, since the critical short-duration rainfall intensity reduces as the antecedent accumulated rainfall increases. Experiences in Norway indicate that the maxi

  1. Hic Sunt Leones: Anomalous Scaling In Rainfall

    Science.gov (United States)

    Ferraris, L.; Gabellani, S.; Provenzale, A.; Rebora, N.

    In recent years the spatio-temporal intermittency of precipitation fields has often been quantified in terms of scaling and/or multifractal behaviour. In this work we anal- yse the spatial scaling properties of precipitation intensity fields measured during the GATE radar experiment, and compare the results with those obtained from surrogate data generated by nonlinearly filtered, linear stochastic processes and from random shuffling of the original data. The results of the study suggest a spurious nature of the spatial multifractal behaviour of the GATE fields and indicate that claims of multifrac- tality and anomalous scaling in rainfall may have to be reconsidered.

  2. Rainfall as proxy for evapotranspiration predictions

    Science.gov (United States)

    Collischonn, Bruno; Collischonn, Walter

    2016-10-01

    In this work, we evaluated the relationship between evapotranspiration and precipitation, based on the data recently made available by the Brazilian Meteorological Institute. ETP tend to be lower in rainy periods and vice-versa. This relationship was assessed both in physical and statistical ways, identifying the contribution of each explaining variable of ETP. We derived regression equations between monthly rainfall and ETP, which can be useful in studies where ETP time series are not available, such as reservoir design, irrigation management and flow forecast.

  3. Properties of Extreme Point Rainfall I

    DEFF Research Database (Denmark)

    Harremoës, Poul; Mikkelsen, Peter Steen

    1995-01-01

    Extreme rainfall has been recorded by the larger municipalities in Denmark since 1933. National intensity-duration-frequency curves were produced on this basis for engineering application in the whole of Denmark. In 1979, on the initiative of The Danish Water Pollution Control Committee under...... The Society of Danish Engineers, the old municipal rain gauges for measuring extreme rain were exchanged with a modern system of gauges tabbed electronically from a central computer at The Danish Meteorological Institute. The data have revealed a geographical variability that calls for revision...

  4. Multidecadal oscillations in rainfall and hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2013-04-01

    Many studies have anticipated a worldwide increase in the frequency and intensity of precipitation extremes and floods since the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extreme quantiles, it is shown that hydrological extremes have oscillatory behaviour at multidecadal time scales. Results are based on nearly independent extremes extracted from long-term historical time series of precipitation intensities and river flows. Study regions include Belgium - The Netherlands (Meuse basin), Ethiopia (Blue Nile basin) and Ecuador (Paute basin). For Belgium - The Netherlands, the past 100 years showed larger and more hydrological extremes around the 1910s, 1950-1960s, and more recently during the 1990-2000s. Interestingly, the oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930-1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years. References: Ntegeka V., Willems P. (2008), 'Trends and multidecadal oscillations in rainfall extremes, based on a more than 100 years time series of 10 minutes rainfall intensities at Uccle, Belgium', Water Resources Research, 44, W07402, doi:10.1029/2007WR006471 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water

  5. Rainfall effects on rare annual plants

    Science.gov (United States)

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2008-01-01

    Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood.We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future.Species showed 9 to 100-fold between-year variation in plant density over the 5–12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants.Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect.Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response

  6. Coping with rainfall variability in northern Tanzania

    DEFF Research Database (Denmark)

    Trærup, Sara Lærke Meltofte

    2012-01-01

    This chapter explores a potential relationship between rainfall data and household self-reported harvest shocks and local (spatial) variability of harvest shocks and coping strategies based on a survey of 2700 rural households in the Kagera region of northern Tanzania. In addition, correlations...... of household reported harvest shocks differs significantly between districts and correspond to the observed variability in local climate patterns. Coping strategies are focused on spreading risks and include reduced consumption, casual employment, new crops, external support and the selling of assets...

  7. Properties of Extreme Poin Rainfall II

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Harremoës, Poul; Rosbjerg, Dan

    1995-01-01

    As an alternative to the traditional non-parametric method the partial duration series approach with exponentially distributed exceedances is used to model extreme values of depth and maximum 10 min intensity per rainfall event, measured at gauges placed at different locations in Denmark....... A statistically significant regional variation is documented and shown to be of importance to engineering application. The apparent variability is divided into sampling uncertainty and uncertainty caused by true regional variability. Further, a method for assessing the total inherent design uncertainty, taking...

  8. Space-time organization of debris flows-triggering rainfall: effects on the identification of the rainfall threshold relationships

    Science.gov (United States)

    Borga, Marco; Nikolopoulos, Efthymios; Creutin, Jean Dominique; Marra, Francesco

    2015-04-01

    Debris flow occurrence is generally forecasted by means of empirical rainfall depth-duration thresholds which are often derived based on rain gauge observations (Guzzetti et al., 2008). Rainfall sampling errors, related to the sparse nature of raingauge data, lead to underestimation of the intensity-duration thresholds (Nikolopoulos et al., 2014, Nikolopoulos et al., 2015). This underestimation may be large when debris flows are triggered by convective rainfall events, characterized by limited spatial extent, turning into less efficient forecasts of debris flow occurrence. This work investigates the spatial and temporal structure of rainfall patterns and its effects on the derived rainfall threshold relationships using high-resolution, carefully corrected radar data for 82 debris flows events occurred in the eastern Italian Alps. We analyze the spatial organization of rainfall depths relative to the rainfall occurred over the debris flows initiation point using the distance from it as the main coordinate observing that, on average, debris flows initiation points are characterized by a maximum in the rainfall depth field. We investigate the relationship between spatial organization and duration of rainfall pointing out that the rainfall underestimation is larger for the shorter durations and increases regularly as the distance between rainfall measurement location and debris flow initiation point increases. We introduce an analytical framework that explains how the combination of the mean rainfall depth spatial pattern and its relationship with rainfall duration causes the bias observed in the raingauge-based thresholds. The consistency of this analytical framework is proved by using a Monte Carlo sampling of radar rainfall fields. References Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C.P., 2008. The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5, 3-17, 10.1007/s10346-625 007-0112-1 Nikolopoulos, E.I., S

  9. Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the

  10. Country-wide rainfall maps from cellular communication networks

    Science.gov (United States)

    Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko

    2013-04-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular telecommunication networks may be employed for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall monitoring using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. Here we show how one cellular telecommunication network can be used to retrieve the space-time dynamics of rainfall for an entire country. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (2400) covering the land surface of the Netherlands (35500 km2). This dataset consists of 24 days with substantial rainfall in June - September 2011. A rainfall retrieval algorithm is presented to derive rainfall intensities from the microwave link data, which have a temporal resolution of 15 min. Rainfall maps (1 km spatial resolution) are generated from these rainfall intensities using Kriging. This algorithm is suited for real-time application, and is calibrated on a subset (12 days) of the dataset. The other 12 days in the dataset are used to validate the algorithm. Both

  11. Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides

    Science.gov (United States)

    Bezak, Nejc; Šraj, Mojca; Mikoš, Matjaž

    2016-10-01

    Floods, landslides and debris flows are natural events that occur all over the world and are often induced by extreme rainfall conditions. Several extreme events occurred in Slovenia (Europe) in the last 25 years that caused 18 casualties and approximately 500 million Euros of economic loss. The intensity-duration-frequency (IDF) relationship was constructed using the Frank copula function for several rainfall stations using high-resolution rainfall data with an average subsample length of 34 years. The empirical rainfall threshold curves were also evaluated for selected extreme events. Post-event analyses showed that rainfall characteristics triggering flash floods and landslides are different. The sensitivity analysis results indicate that the inter-event time definition (IETD) and subsample definition methodology can have a significant influence on the position of rainfall events in the intensity-duration space, the constructed IDF curves and on the relationship between the empirical rainfall threshold curves and the IDF curves constructed using the copula approach. Furthermore, a combination of several empirical rainfall thresholds with an appropriate high-density rainfall measurement network can be used as part of the early warning system of the initiation of landslides and debris flows. However, different rainfall threshold curves should be used for lowland and mountainous areas in Slovenia.

  12. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    Science.gov (United States)

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable.

  13. Main diurnal cycle pattern of rainfall in East Java

    Science.gov (United States)

    Rais, Achmad Fahruddin; Yunita, Rezky

    2017-08-01

    The diurnal cycle pattern of rainfall was indicated as an intense feature in East Java. The research of diurnal cycle generally was only based on satellite estimation which had limitations in accuracy and temporal resolution. The hourly rainfall data of Climate Prediction Center Morphing Technique (CMORPH) and gauge were blended using the best correction method between transformation distribution (DT) and quantile mapping (QM) to increase the accuracy. We used spatiotemporal composite to analyse the concentration patterns of maximum rainfall and principal component analysis (PCA) to identify the spatial and temporal dominant patterns of diurnal rainfall. QM was corrected CMORPH data since it was best method. The eastern region of East Java had a rainfall peak at 14 local time (LT) and the western region had a rainfall peak at 16 LT.

  14. Adequacy of satellite derived rainfall data for stream flow modeling

    Science.gov (United States)

    Artan, G.; Gadain, Hussein; Smith, Jody L.; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.

    2007-01-01

    Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.

  15. Estimation of rainfall using remote sensing for Riyadh climate, KSA

    Science.gov (United States)

    AlHassoun, Saleh A.

    2013-05-01

    Rainfall data constitute an important parameter for studying water resources-related problems. Remote sensing techniques could provide rapid and comprehensive overview of the rainfall distribution in a given area. Thus, the infrared data from the LandSat satellite in conjunction with the Scofield-oliver method were used to monitor and model rainfall in Riyadh area as a resemble of any area in the Kingdom of Saudi Arabia(KSA). Four convective clouds that covered two rain gage stations were analyzed. Good estimation of rainfall was obtained from satellite images. The results showed that the satellite rainfall estimations were well correlated to rain gage measurements. The satellite climate data appear to be useful for monitoring and modeling rainfall at any area where no rain gage is available.

  16. Characterization of Future Caribbean Rainfall and Temperature Extremes across Rainfall Zones

    Directory of Open Access Journals (Sweden)

    Natalie Melissa McLean

    2015-01-01

    Full Text Available End-of-century changes in Caribbean climate extremes are derived from the Providing Regional Climate for Impact Studies (PRECIS regional climate model (RCM under the A2 and B2 emission scenarios across five rainfall zones. Trends in rainfall, maximum temperature, and minimum temperature extremes from the RCM are validated against meteorological stations over 1979–1989. The model displays greater skill at representing trends in consecutive wet days (CWD and extreme rainfall (R95P than consecutive dry days (CDD, wet days (R10, and maximum 5-day precipitation (RX5. Trends in warm nights, cool days, and warm days were generally well reproduced. Projections for 2071–2099 relative to 1961–1989 are obtained from the ECHAM5 driven RCM. Northern and eastern zones are projected to experience more intense rainfall under A2 and B2. There is less consensus across scenarios with respect to changes in the dry and wet spell lengths. However, there is indication that a drying trend may be manifest over zone 5 (Trinidad and northern Guyana. Changes in the extreme temperature indices generally suggest a warmer Caribbean towards the end of century across both scenarios with the strongest changes over zone 4 (eastern Caribbean.

  17. Characterizing response of total suspended solids and total phosphorus loading to weather and watershed characteristics for rainfall and snowmelt events in agricultural watersheds

    Science.gov (United States)

    Danz, Mari E.; Corsi, Steven; Brooks, Wesley R.; Bannerman, Roger T.

    2013-01-01

    Understanding the response of total suspended solids (TSS) and total phosphorus (TP) to influential weather and watershed variables is critical in the development of sediment and nutrient reduction plans. In this study, rainfall and snowmelt event loadings of TSS and TP were analyzed for eight agricultural watersheds in Wisconsin, with areas ranging from 14 to 110 km2 and having four to twelve years of data available. The data showed that a small number of rainfall and snowmelt runoff events accounted for the majority of total event loading. The largest 10% of the loading events for each watershed accounted for 73–97% of the total TSS load and 64–88% of the total TP load. More than half of the total annual TSS load was transported during a single event for each watershed at least one of the monitored years. Rainfall and snowmelt events were both influential contributors of TSS and TP loading. TSS loading contributions were greater from rainfall events at five watersheds, from snowmelt events at two watersheds, and nearly equal at one watershed. The TP loading contributions were greater from rainfall events at three watersheds, from snowmelt events at two watersheds and nearly equal at three watersheds. Stepwise multivariate regression models for TSS and TP event loadings were developed separately for rainfall and snowmelt runoff events for each individual watershed and for all watersheds combined by using a suite of precipitation, melt, temperature, seasonality, and watershed characteristics as predictors. All individual models and the combined model for rainfall events resulted in two common predictors as most influential for TSS and TP. These included rainfall depth and the antecedent baseflow. Using these two predictors alone resulted in an R2 greater than 0.7 in all but three individual models and 0.61 or greater for all individual models. The combined model yielded an R2 of 0.66 for TSS and 0.59 for TP. Neither the individual nor the combined models were

  18. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a

  19. Research of optical rainfall sensor based on CCD linear array

    Institute of Scientific and Technical Information of China (English)

    YANG; Bifeng; LIU; Yuyan; LU; Ying; WU; Shangqian

    2015-01-01

    Rainfall monitoring is one of the most important meteorological observation elements for the disaster weather. The maintenance of current tipping bucket rain gauge and weighing type rain gauge is a critical issue. The optical rainfall sensor based on CCD linear array is mainly studied in this paper. Because of the maintenance-free time and good adaptability,it can be widely used in the automatic rainfall monitoring in severe environment and have a good perspective in using.

  20. Development of Rainfall Model using Meteorological Data for Hydrological Use

    Directory of Open Access Journals (Sweden)

    Mohd Adib Mohammad Razi

    2013-11-01

    Full Text Available Abstract At present, research on forecasting unpredictable weather such as heavy rainfall is one of the most important challenges for equipped meteorological center. In addition, the incidence of significant weather events is estimated to rise in the near future due to climate change, and this situation inspires more studies to be done. This study introduces a rainfall model that has been developed using selected rainfall parameters with the aim to recognize rainfall depth in a catchment area. This study proposes a rainfall model that utilizes the amount of rainfall, temperature, humidity and pressure records taken from selected stations in Peninsular Malaysia and they are analyzed using SPSS multiple regression model. Seven meteorological stations are selected for data collection from 1997 until 2007 in Peninsular Malaysia which are Senai, Kuantan, Melaka, Subang, Ipoh, Bayan Lepas, and Chuping. Multiple Regression analysis in Statistical Package for Social Science (SPSS software has been used to analyze a set of eleven years (1997 – 2007 meteorological data. Senai rainfall model gives an accurate result compared to observation rainfall data and this model were validating with data from Kota Tinggi station. The analysis shows that the selected meteorological parameters influence the rainfall development. As a result, the rainfall model developed for Senai proves that it can be used in Kota Tinggi catchment area within the limit boundaries, as the two stations are close from one another. Then, the amounts of rainfall at the Senai and Kota Tinggi stations are compared and the calibration analysis shows that the proposed rainfall model can be used in both areas.

  1. Satellite rainfall retrieval by logistic regression

    Science.gov (United States)

    Chiu, Long S.

    1986-01-01

    The potential use of logistic regression in rainfall estimation from satellite measurements is investigated. Satellite measurements provide covariate information in terms of radiances from different remote sensors.The logistic regression technique can effectively accommodate many covariates and test their significance in the estimation. The outcome from the logistical model is the probability that the rainrate of a satellite pixel is above a certain threshold. By varying the thresholds, a rainrate histogram can be obtained, from which the mean and the variant can be estimated. A logistical model is developed and applied to rainfall data collected during GATE, using as covariates the fractional rain area and a radiance measurement which is deduced from a microwave temperature-rainrate relation. It is demonstrated that the fractional rain area is an important covariate in the model, consistent with the use of the so-called Area Time Integral in estimating total rain volume in other studies. To calibrate the logistical model, simulated rain fields generated by rainfield models with prescribed parameters are needed. A stringent test of the logistical model is its ability to recover the prescribed parameters of simulated rain fields. A rain field simulation model which preserves the fractional rain area and lognormality of rainrates as found in GATE is developed. A stochastic regression model of branching and immigration whose solutions are lognormally distributed in some asymptotic limits has also been developed.

  2. Effects of rainfall acidification on plant pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, D. S.; Cowling, E. B.

    1978-01-01

    Wind-blown rain, rain splash, and films of free moisture play important roles in the epidemiology of many plant diseases. The chemical nature of the aqueous microenvironment at the infection court is a potentially significant factor in the successful dissemination, establishment, and survival of plant pathogenic microorganisms. Acidic rainfall has a potential for influencing not only the pathogen, but also the host organism, and the host-pathogen complex. Although host-pathogen interactions add a degree of complexity to the study of abiotic environmental stress of plants, it is our hope, through the use of a combination of general concepts, theoretical postulations, and experimental data, to describe the potential role that rainfall acidity may play in the often subtle balance between populations of plants and populations of plant pathogens. The direct effects of acidic precipitation on vegetation are becoming increasingly better understood. The indirect consequences of both acute and chronic exposure of vegetation to acidic precipitation are very complex, however. Their effect is variable in time, and involves a variety of potential interactions which are only partially understood.

  3. Isolation and characterization of twelve microsatellite loci for the Japanese Devilray (Mobula japanica)

    NARCIS (Netherlands)

    Poortvliet, Marloes; Galvan-Magana, Felipe; Bernardi, Giacomo; Croll, Donald A.; Olsen, Jeanine L.

    2011-01-01

    Twelve polymorphic microsatellites loci were characterized for Mobula japanica (Japanese Devilray) using an enrichment protocol. All but two loci were in Hardy-Weinberg equilibrium with no evidence of linkage disequilibrium or null-alleles for a sample of 40 individuals from two populations. The num

  4. 17 CFR 210.3-06 - Financial statements covering a period of nine to twelve months.

    Science.gov (United States)

    2010-04-01

    ... ACT OF 1933, SECURITIES EXCHANGE ACT OF 1934, PUBLIC UTILITY HOLDING COMPANY ACT OF 1935, INVESTMENT COMPANY ACT OF 1940, INVESTMENT ADVISERS ACT OF 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975... to twelve months. Except with respect to registered investment companies, the filing of...

  5. Twelve new species of Triplocania Roesler (Psocodea: 'Psocoptera': Ptiloneuridae), from South America.

    Science.gov (United States)

    Silva Neto, Alberto Moreira Da; Aldrete, Alfonso N García; Rafael, José Albertino

    2016-05-09

    Twelve species of Triplocania, seven based on male and female specimens and five based on male specimens, are here described and illustrated; nine species are Brazilian, three are Ecuadorian, and one of the latter is shared with Peru. Comments on sexes known and distribution of the species are included.

  6. Portrayal of Life Form in Selected Biographies for Children Eight to Twelve Years of Age.

    Science.gov (United States)

    Koch, Shirley Lois

    This study describes and analyzes, in a critical literary manner, selected biographies for children eight to twelve years of age. Biographies of Jane Addams, Cesar Chavez, Mohandas Gandhi, Toyohiko Kagawa, Martin Luther King, Jr., and Albert Schweitzer are viewed from the perspective of a literary criterion based on the principles of design to…

  7. Premarital sex in the last twelve months and its predictors among ...

    African Journals Online (AJOL)

    Premarital sex in the last twelve months and its predictors among students of ... Statistical significance was determined through a 95% confidence level. ... having comprehensive knowledge of HIV [AOR(95% CI)=1.5(1.01-2.10)], alcohol use ...

  8. Portrayal of Life Form in Selected Biographies for Children Eight to Twelve Years of Age.

    Science.gov (United States)

    Koch, Shirley Lois

    This study describes and analyzes, in a critical literary manner, selected biographies for children eight to twelve years of age. Biographies of Jane Addams, Cesar Chavez, Mohandas Gandhi, Toyohiko Kagawa, Martin Luther King, Jr., and Albert Schweitzer are viewed from the perspective of a literary criterion based on the principles of design to…

  9. A novel double quad-inverter configuration for multilevel twelve-phase open-winding converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick William

    2016-01-01

    This paper describes a novel proposal of double quad-inverter configuration for multilevel twelve-phase open-winding ac converter. Modular power units are developed from reconfigured eight classical three-phase voltage source inverters (VSIs). Each VSI has one additional bi-directional switching ...

  10. Impacts of Two-Type ENSO on Rainfall over Taiwan

    OpenAIRE

    Chen-Chih Lin; Yi-Jiun Liou; Shih-Jen Huang

    2015-01-01

    Impacts of two-type ENSO (El Niño/Southern Oscillation), canonical ENSO and ENSO Modoki, on rainfall over Taiwan are investigated by the monthly mean rainfall data accessed from Taiwan Central Weather Bureau. The periods of the two-type ENSO are distinguished by Niño 3.4 index and ENSO Modoki index (EMI). The rainfall data in variously geographical regions are analyzed with the values of Niño 3.4 and EMI by correlation method. Results show that the seasonal rainfalls over Taiwan are different...

  11. Impacts of Two-Type ENSO on Rainfall over Taiwan

    OpenAIRE

    Chen-Chih Lin; Yi-Jiun Liou; Shih-Jen Huang

    2015-01-01

    Impacts of two-type ENSO (El Niño/Southern Oscillation), canonical ENSO and ENSO Modoki, on rainfall over Taiwan are investigated by the monthly mean rainfall data accessed from Taiwan Central Weather Bureau. The periods of the two-type ENSO are distinguished by Niño 3.4 index and ENSO Modoki index (EMI). The rainfall data in variously geographical regions are analyzed with the values of Niño 3.4 and EMI by correlation method. Results show that the seasonal rainfalls over Taiwan are different...

  12. Temporal correlation between malaria and rainfall in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Galappaththy Gawrie NL

    2008-05-01

    Full Text Available Abstract Background Rainfall data have potential use for malaria prediction. However, the relationship between rainfall and the number of malaria cases is indirect and complex. Methods The statistical relationships between monthly malaria case count data series and monthly mean rainfall series (extracted from interpolated station data over the period 1972 – 2005 in districts in Sri Lanka was explored in four analyses: cross-correlation; cross-correlation with pre-whitening; inter-annual; and seasonal inter-annual regression. Results For most districts, strong positive correlations were found for malaria time series lagging zero to three months behind rainfall, and negative correlations were found for malaria time series lagging four to nine months behind rainfall. However, analysis with pre-whitening showed that most of these correlations were spurious. Only for a few districts, weak positive (at lags zero and one or weak negative (at lags two to six correlations were found in pre-whitened series. Inter-annual analysis showed strong negative correlations between malaria and rainfall for a group of districts in the centre-west of the country. Seasonal inter-annual analysis showed that the effect of rainfall on malaria varied according to the season and geography. Conclusion Seasonally varying effects of rainfall on malaria case counts may explain weak overall cross-correlations found in pre-whitened series, and should be taken into account in malaria predictive models making use of rainfall as a covariate.

  13. Changing Rainfall and its Impact on Landslides in Sri Lanka

    Institute of Scientific and Technical Information of China (English)

    Uditha Ratnayake; Srikantha Herath

    2005-01-01

    During the recent past the rainfall pattern in Sri Lanka has shown a noticeable change. This paper describes the effect of this change on the occurrence of landslides and their impacts to eco systems. This study shows that most of the landslides occurring in Sri Lanka during northeast monsoons,southwest monsoons and second inter-monsoon were located in three distinctively separated areas. Analysis of rainfall time series shows a trend of increased lengths of dry periods along with an increasing trend of rainfall intensity, especially after the late seventies.A strong relation is obtained between the location of landslides and the spatial distribution of areas where rainfall intensity is increased.

  14. A rainfall simulation model for agricultural development in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. Sayedur Rahman

    2000-01-01

    Full Text Available A rainfall simulation model based on a first-order Markov chain has been developed to simulate the annual variation in rainfall amount that is observed in Bangladesh. The model has been tested in the Barind Tract of Bangladesh. Few significant differences were found between the actual and simulated seasonal, annual and average monthly. The distribution of number of success is asymptotic normal distribution. When actual and simulated daily rainfall data were used to drive a crop simulation model, there was no significant difference of rice yield response. The results suggest that the rainfall simulation model perform adequately for many applications.

  15. Pattern-oriented memory interpolation of sparse historical rainfall records

    Science.gov (United States)

    Matos, J. P.; Cohen Liechti, T.; Portela, M. M.; Schleiss, A. J.

    2014-03-01

    The pattern-oriented memory (POM) is a novel historical rainfall interpolation method that explicitly takes into account the time dimension in order to interpolate areal rainfall maps. The method is based on the idea that rainfall patterns exist and can be identified over a certain area by means of non-linear regressions. Having been previously benchmarked with a vast array of interpolation methods using proxy satellite data under different time and space availabilities, in the scope of the present contribution POM is applied to rain gauge data in order to produce areal rainfall maps. Tested over the Zambezi River Basin for the period from 1979 to 1997 (accurate satellite rainfall estimates based on spaceborne instruments are not available for dates prior to 1998), the novel pattern-oriented memory historical interpolation method has revealed itself as a better alternative than Kriging or Inverse Distance Weighing in the light of a Monte Carlo cross-validation procedure. Superior in most metrics to the other tested interpolation methods, in terms of the Pearson correlation coefficient and bias the accuracy of POM's historical interpolation results are even comparable with that of recent satellite rainfall products. The new method holds the possibility of calculating detailed and performing daily areal rainfall estimates, even in the case of sparse rain gauging grids. Besides their performance, the similarity to satellite rainfall estimates inherent to POM interpolations can contribute to substantially extend the length of the rainfall series used in hydrological models and water availability studies in remote areas.

  16. Rainfall variation and child health: effect of rainfall on diarrhea among under 5 children in Rwanda, 2010

    OpenAIRE

    Mukabutera, Assumpta; Thomson, Dana; Murray, Megan; Basinga, Paulin; Nyirazinyoye, Laetitia; Atwood, Sidney; Savage, Kevin P.; Ngirimana, Aimable; Hedt-Gauthier, Bethany L.

    2016-01-01

    Background: Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. Methods: We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitatio...

  17. The two-dimensional optical pattern of a five inch diagonal white organic light emitting diode by rapid rotating measurement

    Science.gov (United States)

    Yang, Henglong; Cheng, Yu-Hen; Chen, Ming-Hong; Lin, Yu-Hsuan

    2016-09-01

    The feasibility of applying a five-inch diagonal white organic light-emitting diode (WOLED) as a desk lamp was experimentally investigated by quantitatively comparing its two-dimensional (2D) optical intensity profile to that of a traditional 3M desk lamp equipped with optical diffuser. The 2D optical distribution patterns as the function of vertical distances to a surface of a five-inch diagonal WOLED were obtained by using rapid rotating measurement technique consisted of a sample holder on a rotational stage and a fixed photo detector with optical power meter. The 2D optical intensity profile on a surface can be rapidly established in a relatively small space by recording the reading from the fixed photo detector as rotating the sample holder. This rapid measurement technique is suitable for practical application in quality engineering without larger space. A WOLED is a compact and thin lighting source with planar device structure without additional optical components. Its optical intensity profile on a plane is expected to be different from traditional lighting sources. The optical distribution pattern of a desk lamp requires a relatively large area on a surface with relatively uniformed intensity distribution. The quantitative analysis of the similarity between WOLED and 3M desk lamp was conducted by comparing the optimal zones defined as the area within 75% of the maximum intensity in 2D optical distribution pattern. Our preliminary result showed that the optimal zone of a five-inch diagonal WOLED at 45cm vertical distance is highly similar to that of the 3M desk lamp with optical diffuser.

  18. Choice of rainfall inputs for event-based rainfall-runoff modeling in a catchment with multiple rainfall stations using data-driven techniques

    Science.gov (United States)

    Chang, Tak Kwin; Talei, Amin; Alaghmand, Sina; Ooi, Melanie Po-Leen

    2017-02-01

    Input selection for data-driven rainfall-runoff models is an important task as these models find the relationship between rainfall and runoff by direct mapping of inputs to output. In this study, two different input selection methods were used: cross-correlation analysis (CCA), and a combination of mutual information and cross-correlation analyses (MICCA). Selected inputs were used to develop adaptive network-based fuzzy inference system (ANFIS) in Sungai Kayu Ara basin, Selangor, Malaysia. The study catchment has 10 rainfall stations and one discharge station located at the outlet of the catchment. A total of 24 rainfall-runoff events (10-min interval) from 1996 to 2004 were selected from which 18 events were used for training and the remaining 6 were reserved for validating (testing) the models. The results of ANFIS models then were compared against the ones obtained by conceptual model HEC-HMS. The CCA and MICCA methods selected the rainfall inputs only from 2 (stations 1 and 5) and 3 (stations 1, 3, and 5) rainfall stations, respectively. ANFIS model developed based on MICCA inputs (ANFIS-MICCA) performed slightly better than the one developed based on CCA inputs (ANFIS-CCA). ANFIS-CCA and ANFIS-MICCA were able to perform comparably to HEC-HMS model where rainfall data of all 10 stations had been used; however, in peak estimation, ANFIS-MICCA was the best model. The sensitivity analysis on HEC-HMS was conducted by recalibrating the model by using the same selected rainfall stations for ANFIS. It was concluded that HEC-HMS model performance deteriorates if the number of rainfall stations reduces. In general, ANFIS was found to be a reliable alternative for HEC-HMS in cases whereby not all rainfall stations are functioning. This study showed that the selected stations have received the highest total rain and rainfall intensity (stations 3 and 5). Moreover, the contributing rainfall stations selected by CCA and MICCA were found to be located near the outlet of

  19. Low-Cost, Manufacturable, 6-Inch Wafer Bonding Process for Next-Generation 5-Junction IMM+Ge Photovoltaic Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a 6-inch wafer bonding process to allow bonding of a multi-junction inverted metamorphic (IMM) tandem solar cell structure to an...

  20. Inverse hydrological modelling of spatio-temporal rainfall patterns

    Science.gov (United States)

    Grundmann, Jens; Hörning, Sebastian; Bárdossy, András

    2016-04-01

    Distributed hydrological models are commonly used for simulating the non-linear response of a watershed to rainfall events for addressing different hydrological properties of the landscape. Such models are driven by spatial rainfall patterns for consecutive time steps, which are normally generated from point measurements using spatial interpolation methods. However, such methods fail in reproducing the true spatio-temporal rainfall patterns especially in data scarce regions with poorly gauged catchments or for highly dynamic, small scaled rainstorms which are not well recorded by existing monitoring networks. Consequently, uncertainties are associated with poorly identified spatio-temporal rainfall distribution in distributed rainfall-runoff-modelling since the amount of rainfall received by a catchment as well as the dynamics of the runoff generation of flood waves are underestimated. For addressing these challenges a novel methodology for inverse hydrological modelling is proposed using a Markov-Chain-Monte-Carlo framework. Thereby, potential candidates of spatio-temporal rainfall patterns are generated and selected according their ability to reproduce the observed surface runoff at the catchment outlet for a given transfer function in a best way. The Methodology combines the concept of random mixing of random spatial fields with a grid-based spatial distributed rainfall runoff model. The conditional target rainfall field is obtained as a linear combination of unconditional spatial random fields. The corresponding weights of the linear combination are selected such that the spatial variability of the rainfall amounts as well as the actual observed rainfall values are reproduced. The functionality of the methodology is demonstrated on a synthetic example. Thereby, the known spatio-temporal distribution of rainfall is reproduced for a given number of point observations of rainfall and the integral catchment response at the catchment outlet for a synthetic catchment

  1. Countrywide rainfall maps from a commercial cellular telecommunication network

    Science.gov (United States)

    Overeem, A.; Leijnse, H.; Uijlenhoet, R.

    2012-12-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information. Many countries do not have continuously operating weather radars, and have no or few rain gauges. A new development is rainfall estimation from microwave links of commercial cellular telecommunication networks. Such networks cover large parts of the land surface of the earth and have a high density, especially in urban areas. The estimation of rainfall using commercial microwave links could therefore become a valuable source of information. The data produced by microwave links is essentially a by-product of the communication between mobile telephones. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (1500) covering the land surface of the Netherlands (35500 km2). This dataset consists of 24 days with substantial rainfall in June - September 2011. A rainfall retrieval algorithm is presented to derive rainfall intensities from the microwave link data, which have a temporal resolution of 15 min. Rainfall maps (1 km spatial resolution) are generated from these rainfall intensities using Kriging. This algorithm is suited for real-time application, and is calibrated on a subset (12 days) of the dataset. The other 12 days in the dataset are used to validate the algorithm. Both calibration and validation are done using gauge-adjusted radar data

  2. Observed and projected urban extreme rainfall events in India

    Science.gov (United States)

    Ali, Haider; Mishra, Vimal; Pai, D. S.

    2014-11-01

    We examine changes in extreme rainfall indices over 57 major urban areas in India under the observed (1901-2010) and projected future climate (2010-2060). Between 1901 and 2010, only four out of the total 57 urban areas showed a significant (p-value urban areas experienced significant increases in the extreme rainfall indices for the different periods. Moreover, rainfall maxima for 1-10 day durations and at 100 year return period did not change significantly over the majority of urban areas in the post-1955 period. Results do not indicate any significant change (p > 0.05) in the pooled mean and distribution of the extreme rainfall indices for the pre- and post-1983 periods revealing an insignificant role of urbanization on rainfall extremes in the major urban areas in India. We find that at the majority of urban areas changes in the extreme rainfall indices are driven by large scale climate variability. Regional Climate Models (RCMs) that participated in the CORDEX-South Asia program showed a significant bias in the monsoon maximum rainfall and rainfall maxima at 100 year return period for the majority of urban areas. For instance, most of the models fail to simulate rainfall maxima within ±10% bias, which can be considered appropriate for a storm water design at many urban areas. Rainfall maxima at 1-3 day durations and 100 year return period is projected to increase significantly under the projected future climate at the majority of urban areas in India. The number of urban areas with significant increases in rainfall maxima under the projected future climate is far larger than the number of areas that experienced significant changes in the historic climate (1901-2010), which warrants a careful attention for urban storm water infrastructure planning and management.

  3. Rainfall thresholds for shallow landslides occurrence in Calabria, southern Italy

    Directory of Open Access Journals (Sweden)

    C. Vennari

    2013-09-01

    Full Text Available In many areas, rainfall is the primary trigger of landslides. Determining the rainfall conditions responsible for landslide occurrence is important, and may contribute to save lives and properties. In a long-term national project for the definition of rainfall thresholds for possible landslide occurrence in Italy, and for the implementation of a national landslide warning system, we compiled a catalogue of 186 rainfall events that have resulted in 251 shallow landslides in Calabria, southern Italy, from January 1996 to September 2011. Landslides were located geographically using Google Earth®, and were given a mapping and a temporal accuracy. We used the landslide information, and sub-hourly rainfall measurements obtained from two complementary networks of rain gauges, to determine cumulated event vs. rainfall duration (ED thresholds for Calabria. For the purpose, we adopted an existing method used to prepare rainfall thresholds and to estimate their associated uncertainties in central Italy. The regional thresholds for Calabria were found nearly identical to previous ED thresholds for Calabria obtained using a reduced set of landslide information, and slightly higher than the ED thresholds obtained for central Italy. We segmented the regional catalogue of rainfall events with landslides on lithology, soil regions, rainfall zones, and seasonal periods. The number of events in each subdivision was insufficient to determine reliable thresholds, but allowed for preliminary conclusions on the role of the environmental factors on the rainfall conditions responsible for shallow landslides in Calabria. We further segmented the regional catalogue based on administrative subdivisions used for hydro-meteorological monitoring and operational flood forecasting, and we determined separate ED thresholds for the Tyrrhenian and the Ionian coasts of Calabria. We expect the ED rainfall thresholds for Calabria to be used in regional and national landslide warning

  4. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall

    Science.gov (United States)

    Jones, Robbie; Thomas, Robert E.; Peakall, Jeff; Manville, Vern

    2017-04-01

    Rain-triggered lahars (RTLs) are a significant and often persistent secondary volcanic hazard at many volcanoes around the world. Rainfall on unconsolidated volcaniclastic material is the primary initiation mechanism of RTLs: the resultant flows have the potential for large runout distances (> 100 km) and present a substantial hazard to downstream infrastructure and communities. RTLs are frequently anticipated in the aftermath of eruptions, but the pattern, timing and scale of lahars varies on an eruption-by-eruption and even catchment-by-catchment basis. This variability is driven by a set of local factors including the grain size distribution, thickness, stratigraphy and spatial distribution of source material in addition to topography, vegetation coverage and rainfall conditions. These factors are often qualitatively discussed in RTL studies based on post-eruption lahar observations or instrumental detections. Conversely, this study aims to move towards a quantitative assessment of RTL hazard in order to facilitate RTL predictions and forecasts based on constrained rainfall, grain size distribution and isopach data. Calibrated simulated rainfall and laboratory-constructed tephra beds are used within a repeatable experimental set-up to isolate the effects of individual parameters and to examine runoff and infiltration processes from analogous RTL source conditions. Laboratory experiments show that increased antecedent rainfall and finer-grained surface tephra individually increase runoff rates and decrease runoff lag times, while a combination of these factors produces a compound effect. These impacts are driven by increased residual moisture content and decreased permeability due to surface sealing, and have previously been inferred from downstream observations of lahars but not identified at source. Water and sediment transport mechanisms differ based on surface grain size distribution: a fine-grained surface layer displayed airborne remobilisation

  5. Two members of the CERN HPD team present their babies. André Braem (left) holds in his hands a 5-inch glass HPD, while a ceramic HPD for medical applications is shown by Christian Joram. The large detector in the middle is a 10-inch HPD developed for an astrophysics experiment.

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Two members of the CERN HPD team present their babies. André Braem (left) holds in his hands a 5-inch glass HPD, while a ceramic HPD for medical applications is shown by Christian Joram. The large detector in the middle is a 10-inch HPD developed for an astrophysics experiment.

  6. User guide for the digital control system of the NASA/Langley Research Center's 13-inch Magnetic Suspension and Balance System

    Science.gov (United States)

    Britcher, Colin P.

    1987-01-01

    The technical background to the development of the digital control system of the NASA/Langley Research Center's 13 inch Magnetic Supension and Balance Systen (MSBS) is reviewed. The implementation of traditional MSBS control algorithms in digital form is examined. Extensive details of the 13-inch MSBS digital controller and related hardware are given, together with the introductory instructions for systems operators. Full listings of software are included in the Appendices.

  7. A rainfall simulator based on multifractal generator

    Science.gov (United States)

    Akrour, Nawal; mallet, Cecile; barthes, Laurent; chazottes, Aymeric

    2015-04-01

    The Precipitations are due to complex meteorological phenomenon's and unlike other geophysical constituents such as water vapour concentration they present a relaxation behaviour leading to an alternation of dry and wet periods. Thus, precipitations can be described as intermittent process. The spatial and temporal variability of this phenomenon is significant and covers large scales. This high variability can cause extreme events which are difficult to observe properly because of their suddenness and their localized character. For all these reasons, the precipitations are therefore difficult to model. This study aims to adapt a one-dimensional time series model previously developed by the authors [Akrour et al., 2013, 2014] to a two-dimensional rainfall generator. The original time series model can be divided into 3 major steps : rain support generation, intra event rain rates generation using multifractal and finally calibration process. We use the same kind of methodology in the present study. Based on dataset obtained from meteorological radar of Météo France with a spatial resolution of 1 km x 1 km we present the used approach : Firstly, the extraction of rain support (rain/no rain area) allowing the retrieval of the rain support structure function (variogram) and fractal properties. This leads us to use either the rain support modelisation proposed by ScleissXXX [ref] or directly real rain support extracted from radar rain maps. Then, the generation (over rain areas) of rain rates is made thanks to a 2D multifractal Fractionnally Integrated Flux (FIF) model [ref]. This second stage is followed by a calibration/forcing step (forcing average rain rate per events) added in order to provide rain rate coherent with observed rain-rate distribution. The forcing process is based on a relation identified from the average rain rate of observed events and their surfaces. The presentation will first explain the different steps presented above, then some results

  8. Measuring rainfall with low-cost cameras

    Science.gov (United States)

    Allamano, Paola; Cavagnero, Paolo; Croci, Alberto; Laio, Francesco

    2016-04-01

    In Allamano et al. (2015), we propose to retrieve quantitative measures of rainfall intensity by relying on the acquisition and analysis of images captured from professional cameras (SmartRAIN technique in the following). SmartRAIN is based on the fundamentals of camera optics and exploits the intensity changes due to drop passages in a picture. The main steps of the method include: i) drop detection, ii) blur effect removal, iii) estimation of drop velocities, iv) drop positioning in the control volume, and v) rain rate estimation. The method has been applied to real rain events with errors of the order of ±20%. This work aims to bridge the gap between the need of acquiring images via professional cameras and the possibility of exporting the technique to low-cost webcams. We apply the image processing algorithm to frames registered with low-cost cameras both in the lab (i.e., controlled rain intensity) and field conditions. The resulting images are characterized by lower resolutions and significant distortions with respect to professional camera pictures, and are acquired with fixed aperture and a rolling shutter. All these hardware limitations indeed exert relevant effects on the readability of the resulting images, and may affect the quality of the rainfall estimate. We demonstrate that a proper knowledge of the image acquisition hardware allows one to fully explain the artefacts and distortions due to the hardware. We demonstrate that, by correcting these effects before applying the image processing algorithm, quantitative rain intensity measures are obtainable with a good accuracy also with low-cost modules.

  9. Heavy Rainfall Episodes in the Eastern Northeast Brazil Linked to Large-Scale Ocean-Atmosphere Conditions in the Tropical Atlantic

    Directory of Open Access Journals (Sweden)

    Yves K. Kouadio

    2012-01-01

    Full Text Available Relationships between simultaneous occurrences of distinctive atmospheric easterly wave (EW signatures that cross the south-equatorial Atlantic, intense mesoscale convective systems (lifespan > 2 hour that propagate westward over the western south-equatorial Atlantic, and subsequent strong rainfall episodes (anomaly > 10 mm·day−1 that occur in eastern Northeast Brazil (ENEB are investigated. Using a simple diagnostic analysis, twelve cases with EW lifespan ranging between 3 and 8 days and a mean velocity of 8 m·s−1 were selected and documented during each rainy season of 2004, 2005, and 2006. These cases, which represent 50% of the total number of strong rainfall episodes and 60% of the rainfall amount over the ENEB, were concomitant with an acceleration of the trade winds over the south-equatorial Atlantic, an excess of moisture transported westward from Africa to America, and a strengthening of the convective activity in the oceanic region close to Brazil. Most of these episodes occurred during positive sea surface temperature anomaly patterns over the entire south-equatorial Atlantic and low-frequency warm conditions within the oceanic mixing layer. A real-time monitoring and the simulation of this ocean-atmosphere relationship could help in forecasting such dramatic rainfall events.

  10. Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall

    Directory of Open Access Journals (Sweden)

    Elena Tarnavsky

    2013-12-01

    Full Text Available This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR. Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

  11. Urban Run-off Volumes Dependency on Rainfall Measurement Method

    DEFF Research Database (Denmark)

    Pedersen, L.; Jensen, N. E.; Rasmussen, Michael R.;

    2005-01-01

    Urban run-off is characterized with fast response since the large surface run-off in the catchments responds immediately to variations in the rainfall. Modeling such type of catchments is most often done with the input from very few rain gauges, but the large variation in rainfall over small area...... resolutions and single gauge rainfall was fed to a MOUSE run-off model. The flow and total volume over the event is evaluated.......Urban run-off is characterized with fast response since the large surface run-off in the catchments responds immediately to variations in the rainfall. Modeling such type of catchments is most often done with the input from very few rain gauges, but the large variation in rainfall over small areas...... suggests that rainfall needs to be measured with a much higher spatial resolution (Jensen and Pedersen, 2004). This paper evaluates the impact of using high-resolution rainfall information from weather radar compared to the conventional single gauge approach. The radar rainfall in three different...

  12. Association between Australian rainfall and the Southern Annular Mode

    Science.gov (United States)

    Meneghini, Belinda; Simmonds, Ian; Smith, Ian N.

    2007-01-01

    In this study, we explore the relationships between seasonal Australian rainfall and the Southern Annular Mode (SAM). We produce two seasonal indices of the SAM: the Antarctic Oscillation Index (AOI), and an Australian regional version (AOIR) using ERA-40 mean sea-level pressure (MSLP) reanalysis data. The seasonal rainfall data are based on gridded monthly rainfall provided by the Australian Bureau of Meteorology.For the period 1958-2002 a significant inverse relationship is found between the SAM and rainfall in southern Australia, while a significant in-phase relationship is found between the SAM and rainfall in northern Australia. Furthermore, widespread significant inverse relationships in southern Australia are only observed in winter, and only with the AOIR. The AOIR accounts for more of the winter rainfall variability in southwest Western Australia, southern South Australia, western and southern Victoria, and western Tasmania than the Southern Oscillation Index. Overall, our results suggest that changes in the SAM may be partly responsible for the current decline in winter rainfall in southern South Australia, Victoria, and Tasmania, but not the long-term decline in southwest Western Australian winter rainfall.

  13. Impacts of Two-Type ENSO on Rainfall over Taiwan

    Directory of Open Access Journals (Sweden)

    Chen-Chih Lin

    2015-01-01

    Full Text Available Impacts of two-type ENSO (El Niño/Southern Oscillation, canonical ENSO and ENSO Modoki, on rainfall over Taiwan are investigated by the monthly mean rainfall data accessed from Taiwan Central Weather Bureau. The periods of the two-type ENSO are distinguished by Niño 3.4 index and ENSO Modoki index (EMI. The rainfall data in variously geographical regions are analyzed with the values of Niño 3.4 and EMI by correlation method. Results show that the seasonal rainfalls over Taiwan are different depending on the effects of two-type ENSO. In canonical El Niño episode, the rainfall increases in winter and spring while it reduces in summer and autumn. On the contrary, the rainfall increases in summer and autumn but reduces in winter and spring in El Niño Modoki episode. Nevertheless, two types of La Niña cause similar effects on the rainfall over Taiwan. It increases in autumn only. The rainfall variations in different types of ENSO are mainly caused by the monsoon and topography.

  14. Users guide for distributed routing rainfall-runoff model

    Science.gov (United States)

    Dawdy, D.R.; Schaake, John C.; Alley, William M.

    1978-01-01

    A computer program of a watershed model for routing urban flood discharges through a branched system of pipes or natural channels using rainfall as input has been developed and documented. The model combines soil-moisture-accounting and rainfall-excess components developed by Dawdy and others (1972) with the kinematic-wave routing method presented by Leclerc and Schaake (1973). (Woodard-USGS)

  15. East coast lows, atmospheric blocking and rainfall: A Tasmanian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Pook, Michael; Risbey, James; McIntosh, Peter, E-mail: Mike.Pook@csiro.a [Centre for Australian Weather and Climate Research (A partnership between CSIRO and Bureau of Meteorology), Castray Esplanade, Hobart, Tasmania 7000 (Australia)

    2010-08-15

    Although the term 'east coast low' is normally associated with intense cyclones near the east coast of mainland Australia, cutoff lows of similar type also affect Tasmania. This paper demonstrates that the cutoff low is a major source of rainfall for the agricultural districts and water catchments of eastern Tasmania. In particular, an analysis of synoptic systems and daily rainfall reveals that cutoff lows are responsible for almost 50% of April to October rainfall in parts of the northeast and a slightly lower proportion in the southeast. The other large contribution to rainfall is from frontal systems but the relative effects of the various synoptic types vary widely across the state as a result of the complex topography. Cutoff lows commonly form the cyclonic portion of a blocking dipole which can have opposing influences on Tasmanian rainfall. The high latitude anticyclone suppresses rainfall in western and southwestern Tasmania, while the cutting off of a relatively small cyclonic component equatorwards of the high frequently results in enhanced rainfall over eastern Tasmania. Results from two climate models indicate that the accurate simulation of blocking and cutoff lows remains difficult to achieve and this has implications for projections of Tasmanian rainfall on seasonal and longer time scales.

  16. Simulating diverse native C4 perennial grasses with varying rainfall

    Science.gov (United States)

    Rainfall is recognized as a major factor affecting the rate of plant growth development. The impact of changes in amount and variability of rainfall on growth and production of different forage grasses needs to be quantified to determine how climate change can impact rangelands. Growth and product...

  17. Curve number estimation from Brazilian Cerrado rainfall and runoff data

    Science.gov (United States)

    The Curve Number (CN) method has been widely used to estimate runoff from rainfall events in Brazil, however, CN values for use in the Brazilian savanna (Cerrado) are poorly documented. In this study we used experimental plots to measure natural rainfall-driven rates of runoff under undisturbed Cerr...

  18. Uncertainty evaluation of design rainfall for urban flood risk analysis.

    Science.gov (United States)

    Fontanazza, C M; Freni, G; La Loggia, G; Notaro, V

    2011-01-01

    A reliable and long dataset describing urban flood locations, volumes and depths would be an ideal prerequisite for assessing flood frequency distributions. However, data are often piecemeal and long-term hydraulic modelling is often adopted to estimate floods from historical rainfall series. Long-term modelling approaches are time- and resource-consuming, and synthetically designed rainfalls are often used to estimate flood frequencies. The present paper aims to assess the uncertainty of such an approach and for suggesting improvements in the definition of synthetic rainfall data for flooding frequency analysis. According to this aim, a multivariate statistical analysis based on a copula method was applied to rainfall features (total depth, duration and maximum intensity) to generate synthetic rainfalls that are more consistent with historical events. The procedure was applied to a real case study, and the results were compared with those obtained by simulating other typical synthetic rainfall events linked to intensity-duration-frequency (IDF) curves. The copula-based multi-variate analysis is more robust and adapts well to experimental flood locations even if it is more complex and time-consuming. This study demonstrates that statistical correlations amongst rainfall frequency, duration, volume and peak intensity can partially explain the weak reliability of flood-frequency analyses based on synthetic rainfall events.

  19. Rainfall measurement using radio links from cellular communication networks

    NARCIS (Netherlands)

    Leijnse, H.; Uijlenhoet, R.; Stricker, J.N.M.

    2007-01-01

    We investigate the potential of radio links such as employed by commercial cellular communication companies to monitor path-averaged rainfall. We present an analysis of data collected using two 38-GHz links during eight rainfall events over a 2-month period (October¿November 2003) during mostly stra

  20. Madagascar corals reveal Pacific multidecadal modulation of rainfall since 1708

    Directory of Open Access Journals (Sweden)

    C. A. Grove

    2012-03-01

    Full Text Available The Pacific Ocean modulates Australian and North American rainfall variability on multidecadal timescales, in concert with the Pacific Decadal Oscillation (PDO. It has been suggested that Pacific decadal variability may also influence Indian Ocean surface temperature and rainfall in a far-field response, similar to the El Niño Southern Oscillation (ENSO on interannual timescales. However, instrumental records of rainfall are too short and too sparse to confidently assess such multidecadal climatic teleconnections. Here, we present four climate archives spanning the past 300 yr from giant Madagascar corals. We decouple 20th century human deforestation effects from rainfall induced soil erosion using spectral luminescence scanning and geochemistry. The corals provide the first evidence for Pacific decadal modulation of rainfall over the Western Indian Ocean. We find that positive PDO phases are associated with increased Indian Ocean temperatures and rainfall in Eastern Madagascar, while precipitation in Southern Africa and Eastern Australia declines. Consequently, the negative PDO phase that started in 1998 should lead to reduced rainfall over Eastern Madagascar and increased precipitation in Southern Africa and Eastern Australia. We conclude that the PDO has important implications for future multidecadal variability of African rainfall, where water resource management is increasingly important under the warming climate.

  1. Generating monthly rainfall amount using multivariate skew-t copula

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Zanariah Satari, Siti

    2017-09-01

    This study aims to generate rainfall data in cases where the data is not available or not enough for a certain area of study. In general, the rainfall data is rightly skewed, so the multivariate skew-t copula is used as it able to model rainfall amount and capture the spatial dependence in the data. To illustrate the methodology, three rainfall stations in Kelantan are used. Firstly, the observed data is transformed to uniform unit. The Spearman’s correlation coefficient is calculated between the three stations. It is found that the correlations between the stations are significance at α = 0.05. The next step involved generating the synthetic rainfall data using the multivariate skew-t copula. The data is then transformed to uniform unit and the correlation coefficient is calculated for the generated data. Finally, the correlation coefficient of the observed and the generated data are compared. The Kolmogorov-Smirnov goodness of fit test is used to assess the fit between theoretical and empirical copula and supported by graphical representation. The results show that there is no significant difference between empirical and theoretical copula at 5% significance level. Thus, the multivariate skew-t copula is suitable to generate synthetic rainfall data that can mimic the observed rainfall data. It can also be used to present different rainfall scenarios by changing the value of the parameters in the model.

  2. Hydrologic conditions and quality of rainfall and storm runoff for two agricultural areas of the Oso Creek Watershed, Nueces County, Texas, 2005-07

    Science.gov (United States)

    Ockerman, Darwin J.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and quality of rainfall and storm runoff of two (primarily) agricultural areas (subwatersheds) of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is 5,145 acres. The other area, a subwatershed drained by an unnamed Oso Creek tributary (hereinafter, Oso Creek tributary), is 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during October 2005-September 2007. Fourteen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Nineteen composite runoff samples (10 West Oso Creek, nine Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-two discrete suspended-sediment samples (10 West Oso Creek, 12 Oso Creek tributary) and 13 bacteria samples (eight West Oso Creek, five Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the study subwatersheds. Quantities of fertilizers and pesticides applied in the subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff at both subwatershed outlet sites occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 10.83 inches compared with 7.28 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 2-year study period averaged 2.61 pounds

  3. Hydrologic conditions and water quality of rainfall and storm runoff for two agricultural areas of the Oso Creek watershed, Nueces County, Texas, 2005-08

    Science.gov (United States)

    Ockerman, Darwin J.; Fernandez, Carlos J.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3

  4. Sensitivity of point scale runoff predictions to rainfall resolution

    Directory of Open Access Journals (Sweden)

    A. J. Hearman

    2006-11-01

    Full Text Available This paper investigates the effects of using non-linear, high resolution rainfall, compared to time averaged rainfall on the triggering of hydrologic thresholds and therefore model predictions of infiltration excess and saturation excess runoff. The bounded random cascade model, parameterized to south western Australian rainfall, was used to scale rainfall intensities at various time resolutions ranging from 1.875 min to 2 h. A one dimensional, conceptual rainfall partitioning model was used that instantaneously partitions water into infiltration excess, infiltration, storage, deep drainage, saturation excess and surface runoff, where the fluxes into and out of the soil store are controlled by thresholds. For example, saturation excess is triggered when the soil water content reaches the storage capacity threshold. The results of the numerical modelling were scaled by relating soil infiltration properties to soil draining properties, and inturn, relating these to average storm intensities. By relating maximum soil infiltration capacities to saturated drainage rates (f*, we were able to split soils into two groups; those where all runoff is a result of infiltration excess alone (f*≤0.2 and those susceptible to both infiltration excess and saturation excess runoff (f*>0.2. For all soil types, we related maximum infiltration capacities to average storm intensities (k* and were able to show where model predictions of infiltration excess were most sensitive to rainfall resolution (ln k=0.4 and where using time averaged rainfall data can lead to an under prediction of infiltration excess and an over prediction of the amount of water entering the soil (ln k*>2. For soils susceptible to both infiltration excess and saturation excess, total runoff sensitivity was scaled by relating saturated drainage rates to average storm intensities (g* and parameter ranges where predicted runoff was dominated by

  5. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  6. Spreading of Exhaust Jet from 16 Inch Ream Jet at Mach Number 2.0 / Fred Wilcox, Donald Pennington

    Science.gov (United States)

    Wilcox, Fred; Pennington, Donald

    1952-01-01

    An investigation of the jet-spreading characteristics of a 16 inch ram-jet engine was conducted in the 8 by 6 foot supersonic tunnel at a Mach number of 2.0; both a converging nozzle having a contraction ratio of 0.71 and a cylindrical extension to the combustion chamber were used. The jet boundaries determined by means of pitot pressure surveys were compared with boundaries calculated from one-dimensional continuity and momentum relations. For the cylindrical nozzle, the jet reaches its maximum diameter, 4 percent greater than calculated, about 0.6 nozzle-exit diameter downstream of the nozzle exit. The maximum diameter for the converging nozzle was 7 percent greater than calculated from one dimensional relations and occurred from 1 to 1.5 nozzle-exit diameters downstream of the exit. Non dimensional maximum jet diameters agreed closely with results of an investigation by Rousso and Baughman; these data were obtained with low-temperature jets exhausting into a stream at a Mach number of 1.91 from nozzles having exit diameters of 0.75 inch.

  7. The effects of Earth's magnetic field on 3-inch diameter photomultipliers used in KM3NeT neutrino telescope

    Directory of Open Access Journals (Sweden)

    Giordano V.

    2016-01-01

    Full Text Available The KM3NeT neutrino telescope will be the largest underwater neutrino telescope and will be located in the abyss of the Mediterranean Sea. In neutrino telescopes the key element of the detector is the optical module and for KM3NeT it consists of 31 PMTs stored inside a transparent pressure-resistant glass sphere of 17-inch that serves as mechanical protection while ensuring good light transmission. Since the PMTs installed into an underwater neutrino telescope can change their orientation because of movements of the detector structure due to sea currents, the influence of Earth's magnetic field has been investigated. Magnetic shielding by means of a mu-metal cage is used to reduce magnetic effects and to make the response of the PMT sufficiently orientation independent. In order to quantify the effect on magnetic field, we compared measurements on variation of gain, transit time spread and detection efficiency for a 3-inch PMT in shielded and unshielded condition at 3 PMT inclinations. Data shows that variations are sufficiently low especially for timing properties.

  8. Application of Derrick Corporation's stack sizer technology for slimes reduction in 6 inch clean coal hydrocyclone circuits

    Energy Technology Data Exchange (ETDEWEB)

    Brodzik, P.

    2009-04-15

    The article discusses the successful introduction of Derrick Corporation's Stack Sizer technology for removing minus 200 mesh slimes from 6-inch coal hydrocyclone underflow prior to froth flotation or dewatering by screen bowl centrifuges. In 2006, the James River Coal Company selected the Stack Sizer fitted with Derrick 150 micron and 100 micron urethane screen panels for removal of the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits. After this application proved successful, Derrick Corporation introduced new 75 micron urethane screen panels for use on the Stack Sizer. Evaluation of feed slurry to flotation cells and screen bowl centrifuges showed significant amounts of minus 75 micron that could potentially be removed by efficient screening technology. Removal of the minus 75 micron fraction was sought to reduce ash and moisture content of the final clean coal product. Full-scale lab tests confirmed that the Stack Sizer fitted with Derrick 75 micron urethane screen panels consistently reduced the minus 75 micron percentage in coal slurry from 6-inch clean coal hydrocyclone underflow that is approximately 15 to 20% solid by-weight and 30 to 60% minus 75 micron to a clean coal fraction that is approximately 13 to 16% minus 75 micron. As a result total ash is reduced from approximately 36 to 38% in the hydrocyclone underflow to 14 to 16% in the oversize product fraction form the Stack Sizers. 1 fig., 2 tabs., 5 photos.

  9. High-performance 6-inch EUV mask blanks produced under real production conditions by ion-beam sputter deposition

    Science.gov (United States)

    Becker, Hans W.; Sobel, Frank; Aschke, Lutz; Renno, Markus; Krieger, Juergen; Buttgereit, Ute; Hess, Guenter; Lenzen, Frank; Knapp, Konrad; Yulin, Sergey A.; Feigl, Torsten; Kuhlmann, Thomas; Kaiser, Norbert

    2002-12-01

    EUV mask blanks consist of two thin film systems deposited on low thermal expansion 6 inch substrates (LTEM). First there is the multilayer stack with around 100 alternating layers of elements with different optical properties which are topped by a capping layer. The absorber stack which consists of a buffer and a absorber layer is next. Here a minimum absorption of EUV light of 99 % is required. The stress in both layer systems should be as low as possible. The reduction of defects to an absolute minimum is one of the main challenges. The high-reflective Mo/Si multilayer coatings were designed for normal incidence reflectivity and successfully deposited on 6-inch LTEM substrates by ion-beam sputtering. X-ray scattering, transmission electron microscopy and atomic force microscopy were used for characterization of the multilayer interfaces and the surface morphology. The results are correlated to the measured normal incidence reflectivity using synchrotron radiation at the "Physikalisch- Technischen Bundesanstalt" (PTB) refelctometer at BESSY II, Berlin, Germany. A high resolution laser scanner was used to measure the particle distribution. First multilayer defect results are presented.

  10. Positive response of Indian summer rainfall to Middle East dust

    KAUST Repository

    Jin, Qinjian

    2014-06-02

    Using observational and reanalyses data, we investigated the impact of dust aerosols over the Middle East and the Arabian Sea (AS) on the Indian summer monsoon (ISM) rainfall. Satellite and aerosol reanalysis data show extremely heavy aerosol loading, mainly mineral dust, over the Middle East and AS during the ISM season. Multivariate empirical orthogonal function analyses suggest an aerosol-monsoon connection. This connection may be attributed to dust-induced atmospheric heating centered over the Iranian Plateau (IP), which enhances the meridional thermal contrast and strengthens the ISM circulation and rainfall. The enhanced circulation further transports more dust to the AS and IP, heating the atmosphere (positive feedback). The aerosols over the AS and the Arabian Peninsula have a significant correlation with rainfall over central and eastern India about 2 weeks later. This finding highlights the nonlocal radiative effect of dust on the ISM circulation and rainfall and may improve ISM rainfall forecasts. © 2014. American Geophysical Union. All Rights Reserved.

  11. Tree ring reconstructed rainfall over the southern Amazon Basin

    Science.gov (United States)

    Lopez, Lidio; Stahle, David; Villalba, Ricardo; Torbenson, Max; Feng, Song; Cook, Edward

    2017-07-01

    Moisture sensitive tree ring chronologies of Centrolobium microchaete have been developed from seasonally dry forests in the southern Amazon Basin and used to reconstruct wet season rainfall totals from 1799 to 2012, adding over 150 years of rainfall estimates to the short instrumental record for the region. The reconstruction is correlated with the same atmospheric variables that influence the instrumental measurements of wet season rainfall. Anticyclonic circulation over midlatitude South America promotes equatorward surges of cold and relatively dry extratropical air that converge with warm moist air to form deep convection and heavy rainfall over this sector of the southern Amazon Basin. Interesting droughts and pluvials are reconstructed during the preinstrumental nineteenth and early twentieth centuries, but the tree ring reconstruction suggests that the strong multidecadal variability in instrumental and reconstructed wet season rainfall after 1950 may have been unmatched since 1799.

  12. The Interdependence between Rainfall and Temperature: Copula Analyses

    DEFF Research Database (Denmark)

    Cong, Ronggang; Brady, Mark

    2012-01-01

    Rainfall and temperature are important climatic inputs for agricultural production, especially in the context of climate change. However, accurate analysis and simulation of the joint distribution of rainfall and temperature are difficult due to possible interdependence between them. As one...... possible approach to this problem, five families of copula models are employed to model the interdependence between rainfall and temperature. Scania is a leading agricultural province in Sweden and is affected by a maritime climate. Historical climatic data for Scania is used to demonstrate the modeling...... is found to be most suitable to model the bivariate distribution of rainfall and temperature based on the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Using the student copula, we simulate temperature and rainfall simultaneously. The resulting models can be integrated...

  13. Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach

    Science.gov (United States)

    Berti, M.; Martina, M.; Franceschini, S.; Pignone, S.; Simoni, A.; Pizziolo, M.

    2012-04-01

    Landslide rainfall thresholds are commonly defined as the critical value of two combined variables (e.g. rainfall duration and rainfall intensity) responsible for the occurrence of landslides in a given area. Various methods have been proposed in the literature to predict the rainfall conditions that are likely to trigger landslides, using for instance physically-based models or statistical analysis of historical catalogues. Most of these methods share an implicit deterministic view: the occurrence of landslides can be predicted by comparing the input value (rainfall conditions) with the threshold, and a single output (landslide or no-landslide) is only possible for a given input. In practical applications, however, a deterministic approach is not always applicable. Failure conditions are often achieved with a unique combination of many relevant factors (hydrologic response, weathering, changes in field stress, anthropic activity) and landslide triggering cannot be predicted by rainfall alone. When different outputs (landslide or no-landslide) can be obtained for the same input (rainfall conditions) a deterministic approach is no longer applicable and a probabilistic model is preferable. In this study we propose a new method to evaluate the rainfall thresholds based on Bayes probability. The method is simple, statistically rigorous, and provides a way to define thresholds in complex cases, when conventional approaches become highly subjective. The Bayes theorem is a direct application of conditional probabilities and it allows to computed the conditional probability to have a landslide (A) when a rainfall event of a given magnitude (B) is expected. The fundamental aspect of the Bayes approach is that the landslide probability P(A|B) depends not only on the observed probability of the triggering rainfall P(B|A), but also on the marginal probability of the expected rainfall event P(B). Therefore, both the rainfall that resulted in landslides and the rainfall that not

  14. Applicability of open rainfall data to event-scale urban rainfall-runoff modelling

    Science.gov (United States)

    Niemi, Tero J.; Warsta, Lassi; Taka, Maija; Hickman, Brandon; Pulkkinen, Seppo; Krebs, Gerald; Moisseev, Dmitri N.; Koivusalo, Harri; Kokkonen, Teemu

    2017-04-01

    Rainfall-runoff simulations in urban environments require meteorological input data with high temporal and spatial resolutions. The availability of precipitation data is constantly increasing due to the shift towards more open data sharing. However, the applicability of such data for urban runoff assessments is often unknown. Here, the feasibility of Finnish Meteorological Institute's open rain gauge and open weather radar data as input sources was studied by conducting Storm Water Management Model simulations at a very small (33.5 ha) urban catchment in Helsinki, Finland. In addition to the open data sources, data were also available from two research gauges, one of them located on-site, and from a research radar. The results confirmed the importance of local precipitation measurements for urban rainfall-runoff simulations, implying the suitability of open gauge data to be largely dictated by the gauge's distance from the catchment. Performance of open radar data with 5 min and 1 km2 resolution was acceptable in terms of runoff reproduction, albeit peak flows were constantly and flow volumes often underestimated. Gauge adjustment and advection interpolation were found to improve the quality of the radar data, and at least gauge adjustment should be performed when open radar data are used. Finally, utilizing dual-polarization capabilities of radars has a potential to improve rainfall estimates for high intensity storms although more research is still needed.

  15. Anatomical studies on twelve clones of Camellia species with reference to their taxonomic significance

    Directory of Open Access Journals (Sweden)

    Rajanna L

    2010-10-01

    Full Text Available Anatomical studies of leaf and stem of twelve clones of Camellia were investigated. Cross sections of the stem of all the clones exhibited a typical pattern of arrangement of tissues characteristics of woody plants. Two types of idioblastic sclereids were found in the medullary parenchyma of the taxa studied. While astrosclereids werepresent in 10 of the twelve clones, the vesciculose sclereids were found only in the four clones belonging to C. sinensis. Leaves of the clones show variations in the number of palisade layers. Astro sclereids, brachy sclereids, and dendritic forms were observed in the leaves, their distribution varying in the different clones. A few other micromorphological features are also recorded. Our study forms a basis for answering uncertainties in taxonomic revision in the genus Camellia.

  16. Descriptions of twelve new species of ochyroceratids (Araneae, Ochyroceratidae) from mainland Ecuador.

    Science.gov (United States)

    Dupérré, Nadine

    2015-05-12

    Twelve new species in three different genera from the spider family Ochyroceratidae are described from mainland Ecuador: Speocera bioforestae sp. n., Speocera violacea sp. n., Speocera musgo sp. n., Ochyrocera rinocerotos sp. n., Ochyrocera callaina sp. n., Ochyrocera italoi sp. n., Ochyrocera minotaure sp. n., Ochyrocera losrios sp. n., Ochyrocera zabaleta sp. n., Ochyrocera otonga sp. n., Ochyrocera cashcatotoras sp. n. and Psiloochyrocera tortilis sp. n. Speocera machadoi Gertsch 1977 is transferred to Ochyrocera.

  17. A Hidden Twelve-Dimensional SuperPoincare Symmetry In Eleven Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bars, Itzhak; Deliduman, Cemsinan; Pasqua, Andrea; Zumino, Bruno

    2003-12-13

    First, we review a result in our previous paper, of how a ten-dimensional superparticle, taken off-shell, has a hidden eleven-dimensional superPoincare symmetry. Then, we show that the physical sector is defined by three first-class constraints which preserve the full eleven-dimensional symmetry. Applying the same concepts to the eleven dimensional superparticle, taken off-shell, we discover a hidden twelve dimensional superPoincare symmetry that governs the theory.

  18. Premarital Sex in the Last Twelve Months and Its Predictors among Students of Wollega University, Ethiopia.

    Science.gov (United States)

    Regassa, Tesfaye; Chala, Dereje; Adeba, Emiru

    2016-07-01

    Premarital sex increases the risk of unintended pregnancy and sexually transmitted infections including HIV if unprotected and contraception is not used. Thus, the objective of this study was to assess premarital sex in the last twelve months and its predictors among regular undergraduate students of Wollega University. A cross-sectional survey using pretested, structured questionnaire was conducted on a total of 704 regular undergraduate students of Wollega University from February to March, 2014. We used multistage sampling technique to recruit study participants. Binary and multivariable logistic regressions were performed using SPSS version 20 to assess predictors of premarital sex. Statistical significance was determined through a 95% confidence level. Wollega University youths who had premarital sex in the last twelve months were 28.4%; 55.5% of them did not use condom during last sex while 31.3% engaged in multiple sex. Being male [Adjusted Odds Ratio (AOR)(95% Confidence Interval(CI))=2.7(1.58-4.75)], age 20-24 years [AOR(95%CI)=2.8(1.13-7.20)], training on how to use condom [AOR(95%CI)=1.7(1.17-2.46)], being tested for HIV [AOR(95%CI)=2.3(1.48-3.53)], using social media frequently [AOR(95%CI)=1.8(1.14-2.88)], having comprehensive knowledge of HIV [AOR(95% CI)=1.5(1.01-2.10)], alcohol use [AOR (95%CI)=2.2(1.31-3.56)] were associated with increased odds of premarital sex in the last twelve months. Nearly one-third of regular undergraduate students of the university were engaged in premarital sex in the last twelve months. Being male, using social media frequently and alcohol use were associated with increased odds of premarital sex in the stated period. Thus, higher institutions have to deliver abstinence messages alongside information about self-protection.

  19. Hidden twelve-dimensional super Poincaré symmetry in eleven dimensions

    CERN Document Server

    Bars, Itzhak; Pasqua, A; Zumino, B; Bars, Itzhak; Deliduman, Cemsinan; Pasqua, Andrea; Zumino, Bruno

    2004-01-01

    First, we review a result in our previous paper, of how a ten-dimensional superparticle, taken off-shell, has a hidden eleven-dimensional superPoincare symmetry. Then, we show that the physical sector is defined by three first-class constraints which preserve the full eleven-dimensional symmetry. Applying the same concepts to the eleven dimensional superparticle, taken off-shell, we discover a hidden twelve dimensional superPoincare symmetry that governs the theory.

  20. The contribution of tropical cyclones to rainfall in Mexico

    Science.gov (United States)

    Agustín Breña-Naranjo, J.; Pedrozo-Acuña, Adrián; Pozos-Estrada, Oscar; Jiménez-López, Salma A.; López-López, Marco R.

    Investigating the contribution of tropical cyclones to the terrestrial water cycle can help quantify the benefits and hazards caused by the rainfall generated from this type of hydro-meteorological event. Rainfall induced by tropical cyclones can enhance both flood risk and groundwater recharge, and it is therefore important to characterise its minimum, mean and maximum contributions to a region or country's water balance. This work evaluates the rainfall contribution of tropical depressions, storms and hurricanes across Mexico from 1998 to 2013 using the satellite-derived precipitation dataset TMPA 3B42. Additionally, the sensitivity of rainfall to other datasets was assessed: the national rain gauge observation network, real-time satellite rainfall and a merged product that combines rain gauges with non-calibrated space-borne rainfall measurements. The lower Baja California peninsula had the highest contribution from cyclonic rainfall in relative terms (∼40% of its total annual rainfall), whereas the contributions in the rest of the country showed a low-to-medium dependence on tropical cyclones, with mean values ranging from 0% to 20%. In quantitative terms, southern regions of Mexico can receive more than 2400 mm of cyclonic rainfall during years with significant TC activity. Moreover, (a) the number of tropical cyclones impacting Mexico has been significantly increasing since 1998, but cyclonic contributions in relative and quantitative terms have not been increasing, and (b) wind speed and rainfall intensity during cyclones are not highly correlated. Future work should evaluate the impacts of such contributions on surface and groundwater hydrological processes and connect the knowledge gaps between the magnitude of tropical cyclones, flood hazards, and economic losses.

  1. Evaluating rainfall kinetic energy - intensity relationships with observed disdrometric data

    Science.gov (United States)

    Angulo-Martinez, Marta; Begueria, Santiago; Latorre, Borja

    2016-04-01

    Rainfall kinetic energy is required for determining erosivity, the ability of rainfall to detach soil particles and initiate erosion. Its determination relay on the use of disdrometers, i.e. devices capable of measuring the drop size distribution and velocity of falling raindrops. In the absence of such devices, rainfall kinetic energy is usually estimated with empirical expressions relating rainfall energy and intensity. We evaluated the performance of 14 rainfall energy equations in estimating one-minute rainfall energy and event total energy, in comparison with observed data from 821 rainfall episodes (more than 100 thousand one-minute observations) by means of an optical disdrometer. In addition, two sources of bias when using such relationships were evaluated: i) the influence of using theoretical terminal raindrop fall velocities instead of measured values; and ii) the influence of time aggregation (rainfall intensity data every 5-, 10-, 15-, 30-, and 60-minutes). Empirical relationships did a relatively good job when complete events were considered (R2 > 0.82), but offered poorer results for within-event (one-minute resolution) variation. Also, systematic biases where large for many equations. When raindrop size distribution was known, estimating the terminal fall velocities by empirical laws produced good results even at fine time resolution. The influence of time aggregation was very high in the estimated kinetic energy, although linear scaling may allow empirical correction. This results stress the importance of considering all these effects when rainfall energy needs to be estimated from more standard precipitation records. , and recommends the use of disdrometer data to locally determine rainfall kinetic energy.

  2. Rainfall estimation using moving cars as rain gauges - laboratory experiments

    Science.gov (United States)

    Rabiei, E.; Haberlandt, U.; Sester, M.; Fitzner, D.

    2013-11-01

    The spatial assessment of short time-step precipitation is a challenging task. Low density of observation networks, as well as the bias in radar rainfall estimation motivated the new idea of exploiting cars as moving rain gauges with windshield wipers or optical sensors as measurement devices. In a preliminary study, this idea has been tested with computer experiments (Haberlandt and Sester, 2010). The results have shown that a high number of possibly inaccurate measurement devices (moving cars) provide more reliable areal rainfall estimations than a lower number of precise measurement devices (stationary gauges). Instead of assuming a relationship between wiper frequency (W) and rainfall intensity (R) with an arbitrary error, the main objective of this study is to derive valid W-R relationships between sensor readings and rainfall intensity by laboratory experiments. Sensor readings involve the wiper speed, as well as optical sensors which can be placed on cars and are usually made for automating wiper activities. A rain simulator with the capability of producing a wide range of rainfall intensities is designed and constructed. The wiper speed and two optical sensors are used in the laboratory to measure rainfall intensities, and compare it with tipping bucket readings as reference. Furthermore, the effect of the car speed on the estimation of rainfall using a car speed simulator device is investigated. The results show that the sensor readings, which are observed from manual wiper speed adjustment according to the front visibility, can be considered as a strong indicator for rainfall intensity, while the automatic wiper adjustment show weaker performance. Also the sensor readings from optical sensors showed promising results toward measuring rainfall rate. It is observed that the car speed has a significant effect on the rainfall measurement. This effect is highly dependent on the rain type as well as the windshield angle.

  3. Interannual rainfall variability over the Cape south coast of South Africa linked to cut-off low associated rainfall

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2014-10-01

    Full Text Available The influence of cut-off low (COL) associated rainfall on interannual rainfall variability over the Cape south coast region of South Africa for the period 1979-2011 is investigated. COLs are objectively identified and tracked on daily average 500 hPa...

  4. Are extreme rainfall intensities more frequent? Analysis of trends in rainfall patterns relevant to urban drainage systems.

    Science.gov (United States)

    De Toffol, S; Laghari, A N; Rauch, W

    2009-01-01

    The fact that climate change is affecting the intensity and frequency of rainfall is well accepted in the scientific community. This is backed by a multitude of reports on the basis of daily rainfall series analysis; however, little research is available for short duration intensities. Due to its significant influence on the behaviour of urban drainage, it is critical to investigate the changes in short duration rainfall intensities. In this study different intensities relevant for the urban drainage and the total rainfall per rain event are analysed. The trend is investigated using the Mann-Kendall test. The rainfall series analysed are from the alpine region Tyrol. The results present differences depending on the duration of the intensity and the series considered, however an increase in the number of extreme events is detectable for short durations for the most series.

  5. Downscaled TRMM Rainfall Time-Series for Catchment Hydrology Applications

    Science.gov (United States)

    Tarnavsky, E.; Mulligan, M.

    2009-04-01

    Hydrology in semi-arid regions is controlled, to a large extent, by the spatial and temporal distribution of rainfall defined in terms of rainfall depth and intensity. Thus, appropriate representation of the space-time variability of rainfall is essential for catchment-scale hydrological models applied in semi-arid regions. While spaceborne platforms equipped with remote sensing instruments provide information on a range of variables for hydrological modelling, including rainfall, the necessary spatial and temporal detail is rarely obtained from a single dataset. This paper presents a new dynamic model of dryland hydrology, DryMOD, which makes best use of free, public-domain remote sensing data for representation of key variables with a particular focus on (a) simulation of spatial rainfall fields and (b) the hydrological response to rainfall, particularly in terms of rainfall-runoff partitioning. In DryMOD, rainfall is simulated using a novel approach combining 1-km spatial detail from a climatology derived from the TRMM 2B31 dataset (mean monthly rainfall) and 3-hourly temporal detail from time-series derived from the 0.25-degree gridded TRMM 3B42 dataset (rainfall intensity). This allows for rainfall simulation at the hourly time step, as well as accumulation of infiltration, recharge, and runoff at the monthly time step. In combination with temperature, topography, and soil data, rainfall-runoff and soil moisture dynamics are simulated over large dryland regions. In order to investigate the hydrological response to rainfall and variable catchment characteristics, the model is applied to two very different catchments in the drylands of North and West Africa. The results of the study demonstrate the use of remote sensing-based estimates of precipitation intensity and volume for the simulation of critical hydrological parameters. The model allows for better spatial planning of water harvesting activities, as well as for optimisation of agricultural activities

  6. Can SAPHIR Instrument Onboard MEGHATROPIQUES Retrieve Hydrometeors and Rainfall Characteristics ?

    Science.gov (United States)

    Goyal, J. M.; Srinivasan, J.; Satheesh, S. K.

    2014-12-01

    MEGHATROPIQUES (MT) is an Indo-French satellite launched in 2011 with the main intention of understanding the water cycle in the tropical region and is a part of GPM constellation. MADRAS was the primary instrument on-board MT to estimate rainfall characteristics, but unfortunately it's scanning mechanism failed obscuring the primary goal of the mission.So an attempt has been made to retrieve rainfall and different hydrometeors using other instrument SAPHIR onboard MT. The most important advantage of using MT is its orbitography which is specifically designed for tropical regions and can reach up to 6 passes per day more than any other satellite currently in orbit. Although SAPHIR is an humidity sounder with six channels centred around 183 GHz channel, it still operates in the microwave region which directly interacts with rainfall, especially wing channels and thus can pick up rainfall signatures. Initial analysis using radiative transfer models also establish this fact .To get more conclusive results using observations, SAPHIR level 1 brightness temperature (BT) data was compared with different rainfall products utilizing the benefits of each product. SAPHIR BT comparison with TRMM 3B42 for one pass clearly showed that channel 5 and 6 have a considerable sensitivity towards rainfall. Following this a huge database of more than 300000 raining pixels of spatially and temporally collocated 3B42 rainfall and corresponding SAPHIR BT for an entire month was created to include all kinds of rainfall events, to attain higher temporal resolution collocated database was also created for SAPHIR BT and rainfall from infrared sensor on geostationary satellite Kalpana 1.These databases were used to understand response of various channels of SAPHIR to different rainfall regimes . TRMM 2A12 rainfall product was also used to identify capabilities of SAPHIR to retrieve cloud and ice water path which also gave significant correlation. Conclusively,we have shown that SAPHIR has

  7. Rainfall thresholds for the possible occurrence of landslides in Italy

    Directory of Open Access Journals (Sweden)

    M. T. Brunetti

    2010-03-01

    Full Text Available In Italy, rainfall is the primary trigger of landslides that frequently cause fatalities and large economic damage. Using a variety of information sources, we have compiled a catalogue listing 753 rainfall events that have resulted in landslides in Italy. For each event in the catalogue, the exact or approximate location of the landslide and the time or period of initiation of the slope failure is known, together with information on the rainfall duration D, and the rainfall mean intensity I, that have resulted in the slope failure. The catalogue represents the single largest collection of information on rainfall-induced landslides in Italy, and was exploited to determine the minimum rainfall conditions necessary for landslide occurrence in Italy, and in the Abruzzo Region, central Italy. For the purpose, new national rainfall thresholds for Italy and new regional rainfall thresholds for the Abruzzo Region were established, using two independent statistical methods, including a Bayesian inference method and a new Frequentist approach. The two methods proved complementary, with the Bayesian method more suited to analyze small data sets, and the Frequentist method performing better when applied to large data sets. The new regional thresholds for the Abruzzo Region are lower than the new national thresholds for Italy, and lower than the regional thresholds proposed in the literature for the Piedmont and Lombardy Regions in northern Italy, and for the Campania Region in southern Italy. This is important, because it shows that landslides in Italy can be triggered by less severe rainfall conditions than previously recognized. The Frequentist method experimented in this work allows for the definition of multiple minimum rainfall thresholds, each based on a different exceedance probability level. This makes the thresholds suited for the design of probabilistic schemes for the prediction of rainfall-induced landslides. A scheme based on four

  8. Rainfall deficit and excess rainfall during vegetation of early potatoes varieties in central-eastern Poland (1971-2005

    Directory of Open Access Journals (Sweden)

    Elżbieta Radzka

    2015-06-01

    Full Text Available The study was based on data collected from nine stations of the Institute of Meteoro­logy and Water Management in central-eastern Poland (1971-2005 concerning monthly precipitation total and mean monthly air temperature during the vegetation period of early potatoes (April-July. Optimal precipitation for early potato was calculated according to the Klatt indexes for medium cohesive and light soils in the successive months of the vegetation period. Rainfall deficit and excess rainfall were determined based on differences between monthly precipitation totals recorded in the years of the study and values considered to be optimal. It was found that the frequency of rainfall deficit during vegetation of early potato in each analysed location both for medium cohesive soil and for light soil exceeded the frequency of its excess. The greatest mean monthly rainfall deficit from the multiannual period in the vegetation season of early potato in all the analysed locations and for both soil types was recorded in June, while excess rainfall was observed in July. Lower values of standard deviation for rainfall deficit were calculated in the case of light soil than medium cohesive soil, while an opposite dependence was recorded for excess rainfall. The risk for early potato plantations on light soil was connected with frequent extreme deficits. They were observed most often in the south-eastern part of the study area, while they were rarest in the belt from Pułtusk towards Szepietowo. Values of the slope of the trend lines were low for all the weather stations and most of them were statistically non-significant. However, all values concerning rainfall deficit were negative, which indicates its slight increase from year to year. A significant trend for changes in rainfall deficit was observed only in Włodawa and Siedlce, while for excess rainfall it was found in Szepietowo and Białowieża.

  9. Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall

    Science.gov (United States)

    Taibi, S.; Meddi, M.; Mahé, G.; Assani, A.

    2017-01-01

    This work aims, as a first step, to analyze rainfall variability in Northern Algeria, in particular extreme events, during the period from 1940 to 2010. Analysis of annual rainfall shows that stations in the northwest record a significant decrease in rainfall since the 1970s. Frequencies of rainy days for each percentile (5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th) and each rainfall interval class (1-5, 5-10, 10-20, 20-50, and ≥50 mm) do not show a significant change in the evolution of daily rainfall. The Tenes station is the only one to show a significant decrease in the frequency of rainy days up to the 75th percentile and for the 10-20-mm interval class. There is no significant change in the temporal evolution of extreme events in the 90th, 95th, and 99th percentiles. The relationships between rainfall variability and general atmospheric circulation indices for interannual and extreme event variability are moderately influenced by the El Niño-Southern Oscillation and Mediterranean Oscillation. Significant correlations are observed between the Southern Oscillation Index and annual rainfall in the northwestern part of the study area, which is likely linked with the decrease in rainfall in this region. Seasonal rainfall in Northern Algeria is affected by the Mediterranean Oscillation and North Atlantic Oscillation in the west. The ENSEMBLES regional climate models (RCMs) are assessed using the bias method to test their ability to reproduce rainfall variability at different time scales. The Centre National de Recherches Météorologiques (CNRM), Czech Hydrometeorological Institute (CHMI), Eidgenössische Technische Hochschule Zürich (ETHZ), and Forschungszentrum Geesthacht (GKSS) models yield the least biased results.

  10. Characteristics of rainfall triggering of debris flows in the Chenyulan watershed, Taiwan

    OpenAIRE

    Chen, J. C.; C. D. Jan; Huang, W. S.

    2013-01-01

    This paper reports the variation in rainfall characteristics associated with debris flows in the Chenyulan watershed, central Taiwan, between 1963 and 2009. The maximum hourly rainfall Im, the maximum 24 h rainfall Rd, and the rainfall index RI (defined as the product RdIm) were analysed for each rainfall event that triggered a debris flow within the watershed. The corresponding number of debris flows initiated by each rainfall event (N) was also investigated via image analy...

  11. A rainfall-based warning model for shallow landslides

    Science.gov (United States)

    Zeng, Yi-Chao; Wang, Ji-Shang; Jan, Chyan-Deng; Yin, Hsiao-Yuan; Lo, Wen-Chun

    2016-04-01

    According to the statistical data of past rainfall events, the climate has changed in recent decades. Rainfall patterns have presented a more concentrated, high-intensity and long-duration trend in Taiwan. The most representative event is Typhoon Morakot which induced a total of 67 enormous landslides by the extreme amount of rain during August 7 to 10 in 2009 and resulted in the heaviest casualties in southern Taiwan. In addition, the nature of vulnerability such as steep mountains and rushing rivers, fragile geology and loose surface soil results in more severe sediment-relative disasters, in which shallow landslides are widespread hazards in mountainous regions. This research aims to develop and evaluate a model for predicting shallow landslides triggered by rainfall in mountainous area. Considering the feasibility of large-scale application and practical operation, the statistical techniques is adopted to form the landslide model based on abundant historical rainfall data and landslide events. The 16 landslide inventory maps and 15 variation results by comparing satellite images taken before and after the rainfall event were interpreted and delineated since 2004 to 2011. Logit model is utilized for interpreting the relationship between rainfall characteristics and landslide events delineated from satellite. Based on the analysis results of logistic regression, the rainfall factors that are highly related to shallow landslide occurrence are selected which are 3 hours rainfall intensity I3 (mm/hr) and the effective cumulative precipitation Rt (mm) including accumulated rainfall at time t and antecedent rainfall. A landslide rainfall triggering index (LRTI) proposed for assessing the occurrence potential of shallow landslides is defined as the product of I3 and Rt. A form of probability of shallow landslide triggered threshold is proposed to offer a measure of the likelihood of landslide occurrence. Two major critical lines which represent the lower and upper

  12. Influence of Northwest Cloudbands on Southwest Australian Rainfall

    Directory of Open Access Journals (Sweden)

    Nicola Telcik

    2014-01-01

    Full Text Available Northwest cloudbands are tropical-extratropical feature that crosses the Australian continent originating from Australia’s northwest coast and develops in a NW-SE orientation. In paper, atmospheric and oceanic reanalysis data (NCEP and Reynolds reconstructed sea surface temperature data were used to examine northwest cloudband activity across the Australian mainland. An index that reflected the monthly, seasonal, and interannual activity of northwest cloudbands between 1950 and 1999 was then created. Outgoing longwave radiation, total cloud cover, and latent heat flux data were used to determine the number of days when a mature northwest cloudband covered part of the Australian continent between April and October. Regional indices were created for site-specific investigations, especially of cloudband-related rainfall. High and low cloudband activity can affect the distribution of cloudbands and their related rainfall. In low cloudband activity seasons, cloudbands were mostly limited to the south and west Australian coasts. In high cloudband activity seasons, cloudbands penetrated farther inland, which increased the inland rainfall. A case study of the southwest Australian region demonstrated that, in a below average rainfall year, cloudband-related rainfall was limited to the coast. In an above average rainfall year, cloudband-related rainfall occurred further inland.

  13. Interannual variability of rainfall characteristics over southwestern Madagascar

    Science.gov (United States)

    Randriamahefasoa, T. S. M.; Reason, C. J. C.

    2017-04-01

    The interannual variability of daily frequency of rainfall [>1 mm/day] and heavy rainfall [>30 mm/day] is studied for the southwestern region of Madagascar, which is relatively arid compared to the rest of the island. Attention is focused on the summer rainy season from December to March at four stations (Morondava, Ranohira, Toliara and Taolagnaro), whose daily rainfall data covering the period 1970-2000 were obtained from the Madagascar Meteorological Service. El Niño Southern Oscillation (ENSO) was found to have a relatively strong correlation with wet day frequency at each station and, particularly, for Toliara in the extreme southwest. In terms of seasonal rainfall totals, most El Niño (La Niña) summers receive below (above) average amounts. An ENSO connection with heavy rainfall events was less clear. However, for heavy rainfall events, the associated atmospheric circulation displays a Southern Annular Mode-like pattern throughout the hemisphere. For ENSO years and the neutral seasons 1979/80, 1981/82 which had large anomalies in wet day frequency, regional atmospheric circulation patterns consisted of strong anomalies in low-level moisture convergence and uplift over and near southwestern Madagascar that made conditions correspondingly more or less favourable for rainfall. Dry (wet) summers in southern Madagascar were also associated with an equatorward (poleward) displacement of the ITCZ in the region.

  14. Interannual variability in rainfall and wet spell frequency during the New South Wales sugarcane harvest season

    National Research Council Canada - National Science Library

    Everingham, Yvette L; Reason, C. J. C

    2011-01-01

    .... Farmer groups acknowledge that, whilst information about seasonal rainfall totals can assist forward planning activities impacted by harvest rainfall, knowledge about the number of wet spells during...

  15. A protocol for conducting rainfall simulation to study soil runoff.

    Science.gov (United States)

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B

    2014-04-03

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  16. Rainfall monitoring with microwave link networks -state of the art

    Science.gov (United States)

    de Vos, Lotte; Overeem, Aart; Ríos Gaona, Manuel; van Leth, Tommy; Uijlenhoet, Remko

    2017-04-01

    For the purpose of hydrological applications, meteorology, climate monitoring and agriculture, accurate high resolution rainfall monitoring is highly desirable. Often used techniques to measure rainfall include rain gauge networks and radar. However, accurate rainfall information is lacking in large areas in the world, and the number of rain gauges is even severely declining in Europe, South-America and Africa. The investments required for the installation and maintenance of dense sensor networks can form a large obstacle. Over the past decade, various investigations have shown that microwave links from cellular communication networks may be used for rainfall monitoring. These commercial networks are installed for the purpose of cellular communication. These consist of antennas that transmit microwave link signals through the atmosphere over a path of typically several kilometers. Microwave signals are sensitive to rainfall at the frequencies that are typically used. The loss of signal (attenuation) over the link-path, which is logged in real-time by cellular communication companies for quality monitoring, can therefore be interpreted as a rainfall measurement. In recent years, various techniques have been developed to quantitatively determine rainfall from these microwave link attenuations. An overview of error sources in this process, quantitative rainfall determination techniques, as well as the results of various validation studies are provided. These studies show that there is considerable potential in using commercial microwave link networks for rainfall monitoring. This is a promising development, as these networks cover 20% of the land surface of the earth and have high density, especially in urban areas where there is generally a lack of in situ ground measurements.

  17. Estimating Monthly Rainfall from Geostationary Satellite Imagery Over Amazonia, Brazil.

    Science.gov (United States)

    Cutrim, Elen Maria Camara

    The infrared regression and the grid-history satellite rainfall estimating techniques were utilized to estimate monthly rainfall in Amazonia during one month of the rainy season (March, 1980) and one month of the dry season (September, 1980). The estimates were based on 3-hourly SMS-II infrared and visible images. Three sets of coefficients for the grid history method (Marajo, Arabian Sea, and GATE) were used to estimate rainfall. The estimated rain was compared with gauge measurements over the region. The infrared regression technique overestimated by a factor of 1.5. The Marajo coefficients yielded the best estimate, especially for eastern Amazonia. In the wet month Marajo coefficients overestimated rain by 10% and in the dry month by 70%. The Arabian Sea coefficients overestimated rain and the GATE coefficients slightly underestimated rain for Amazonia. Two maps of monthly rainfall over Amazonia were constructed for March and September, 1980, combining the ground station and satellite inferred rainfall of the grid history method using the Marajo coefficients. The satellite observations and ground data were mutually compatible and were contourable on these final, composite maps. Monthly rainfall was found to be much more inhomogeneous than previously reported. In March there was a belt of high precipitation trending southwest, with higher values and sharpest gradients in the coastal area. The upper Amazon was also an area of high precipitation, both north and south of the equator. In Roraima rainfall decreased drastically to the north. In September, the area of highest precipitation was the northwestern part of Amazonas State (northern hemisphere). Rainfall elsewhere was very localized and in northeastern Amazonia varied from 0 to 150 mm. Even though the grid history method presented better results for estimating rainfall over Amazonia, the IR model could be utilized more efficiently and economically on an operational basis if the calibration were properly made

  18. Rainfall variation by geostatistical interpolation method

    Directory of Open Access Journals (Sweden)

    Glauber Epifanio Loureiro

    2013-08-01

    Full Text Available This article analyses the variation of rainfall in the Tocantins-Araguaia hydrographic region in the last two decades, based upon the rain gauge stations of the ANA (Brazilian National Water Agency HidroWeb database for the years 1983, 1993 and 2003. The information was systemized and treated with Hydrologic methods such as method of contour and interpolation for ordinary kriging. The treatment considered the consistency of the data, the density of the space distribution of the stations and the periods of study. The results demonstrated that the total volume of water precipitated annually did not change significantly in the 20 years analyzed. However, a significant variation occurred in its spatial distribution. By analyzing the isohyet it was shown that there is a displacement of the precipitation at Tocantins Baixo (TOB of approximately 10% of the total precipitated volume. This displacement can be caused by global change, by anthropogenic activities or by regional natural phenomena. However, this paper does not explore possible causes of the displacement.

  19. Stochastic modeling of hourly rainfall times series in Campania (Italy)

    Science.gov (United States)

    Giorgio, M.; Greco, R.

    2009-04-01

    Occurrence of flowslides and floods in small catchments is uneasy to predict, since it is affected by a number of variables, such as mechanical and hydraulic soil properties, slope morphology, vegetation coverage, rainfall spatial and temporal variability. Consequently, landslide risk assessment procedures and early warning systems still rely on simple empirical models based on correlation between recorded rainfall data and observed landslides and/or river discharges. Effectiveness of such systems could be improved by reliable quantitative rainfall prediction, which can allow gaining larger lead-times. Analysis of on-site recorded rainfall height time series represents the most effective approach for a reliable prediction of local temporal evolution of rainfall. Hydrological time series analysis is a widely studied field in hydrology, often carried out by means of autoregressive models, such as AR, ARMA, ARX, ARMAX (e.g. Salas [1992]). Such models gave the best results when applied to the analysis of autocorrelated hydrological time series, like river flow or level time series. Conversely, they are not able to model the behaviour of intermittent time series, like point rainfall height series usually are, especially when recorded with short sampling time intervals. More useful for this issue are the so-called DRIP (Disaggregated Rectangular Intensity Pulse) and NSRP (Neymann-Scott Rectangular Pulse) model [Heneker et al., 2001; Cowpertwait et al., 2002], usually adopted to generate synthetic point rainfall series. In this paper, the DRIP model approach is adopted, in which the sequence of rain storms and dry intervals constituting the structure of rainfall time series is modeled as an alternating renewal process. Final aim of the study is to provide a useful tool to implement an early warning system for hydrogeological risk management. Model calibration has been carried out with hourly rainfall hieght data provided by the rain gauges of Campania Region civil

  20. The influence of seasonal rainfall upon Sahel vegetation

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Rasmussen, Laura Vang

    2011-01-01

    include changes in total yearly rainfall, land-use change and migration. But these factors are not fully explanatory. This study addresses other possible factors for variation in vegetation patterns through the analysis of the Normalized Difference Vegetation Index (NDVI) produced by satellite sensors. We...... focus on precipitation, but instead of looking at the total yearly amount of rainfall, the intra-annual variation is examined. Here we show that plant growth is strongly correlated with the number and frequency of days within the rainy season upon which there is no rainfall. Furthermore, we find...

  1. Investigation on rainfall extremes events trough a geoadditive model

    Science.gov (United States)

    Bocci, C.; Caporali, E.; Petrucci, A.; Rossi, G.

    2012-04-01

    Rainfall can be considered a very important variable, and rainfall extreme events analysis of great concern for the enormous impacts that they may have on everyday life particularly when related to intense rainfalls and floods, and hydraulic risk management. On the catchment area of Arno River in Tuscany, Central Italy, a geoadditive mixed model of rainfall extremes is developed. Most of the territory of Arno River has suffered in the past of many severe hydro-geological events, with high levels of risk due to the vulnerability of a unique artistic and cultural heritage. The area has a complex topography that greatly influences the precipitation regime. The dataset is composed by the time series of the annual maxima of daily rainfall recorded in about 400 rain gauges, spatially distributed over the catchment area of about 8.800 km2. The record period covers mainly the second half of 20th century. The rainfall observations are assumed to follow generalized extreme value distributions whose locations are spatially dependent and where the dependence is captured using a geoadditive model. In particular, since rainfall has a natural spatial domain and a significant spatial variability, a spatial hierarchical model for extremes is used. The spatial hierarchical models, in fact, take into account data from all locations, borrowing strength from neighbouring locations when they estimate parameters and are of great interest when small set of data is available, as in the case of rainfall extreme values. Together with rain gauges location variables further physiographic variables are investigated as explanation variables. The implemented geoadditive mixed model of spatially referenced time series of rainfall extreme values, is able to capture the spatial dynamics of the rainfall extreme phenomenon. Since the model shows evidence of a spatial trend in the rainfall extreme dynamic, the temporal dynamic and the time influence can be also taken into account. The implemented

  2. Fluvial signatures of modern and paleo orographic rainfall gradients

    Science.gov (United States)

    Schildgen, Taylor; Strecker, Manfred

    2016-04-01

    The morphology of river profiles is intimately linked to both climate and tectonic forcing. While much interest recently has focused on how river profiles can be inverted to derive uplift histories, here we show how in regions of strong orographic rainfall gradients, rivers may primarily record spatial patterns of precipitation. As a case study, we examine the eastern margin of the Andean plateau in NW Argentina, where the outward (eastward) growth of a broken foreland has led to a eastward shift in the main orographic rainfall gradient over the last several million years. Rivers influenced by the modern rainfall gradient are characterized by normalized river steepness values in tributary valleys that closely track spatial variations in rainfall, with higher steepness values in drier areas and lower steepness values in wetter areas. The same river steepness pattern has been predicted in landscape evolution models that apply a spatial gradient in rainfall to a region of uniform erosivity and uplift rate (e.g., Han et al., 2015). Also, chi plots from river networks on individual ranges affected by the modern orographic rainfall reveal patterns consistent with assymmetric precipitation across the range: the largest channels on the windward slopes are characterized by capture, while the longest channels on the leeward slopes are dominated by beheadings. Because basins on the windward side both lengthen and widen, tributary channels in the lengthening basins are characterized by capture, while tributary channels from neighboring basins on the windward side are dominated by beheadings. These patterns from the rivers influenced by the modern orographic rainfall gradient provide a guide for identifying river morphometric signatures of paleo orographic rainfall gradients. Mountain ranges to the west of the modern orographic rainfall have been interpreted to mark the location of orographic rainfall in the past, but these ranges are now in spatially near-uniform semi-arid to

  3. Dispersion sensitivity of the eight inch advanced ramjet munitions technology projectile due to wind and minor thrust errors

    Science.gov (United States)

    Poole, S. R.

    1984-09-01

    Advanced Ramjet Munitions Technology (ARMT) is an ongoing DARPA project to research ramjet munitions. The ARMT eight inch projectile uses ramjet thrust for a boosted trajectory, but operates on a thrust drag balance concept to create pseudovacuum trajectory during powered flight. The trajectory was analyzed using an IBM-370 computer simulation for three and five degrees of freedom. Work was also done to adapt the Ballistics Research Laboratories six degrees of freedom program to the IBM system. Projectile aerodynamic and mass properties were obtained from the Norden Systems Wind Tunnel Data. Dispersion from the vaccuum trajectory due to wind prior to ramjet burnout proved minor. Dispersion due to constant thrust errors under 5% was within a 600 radius at terminal guidance over a range of 33 miles.

  4. Evaluation of the Hitachi CM814U 4 x 3 Aspect Ratio, 21-Inch Diagonal Color CRT Monitor

    Science.gov (United States)

    2000-04-01

    The Hitachi CM814U 21 inch color monitor (20' viewable area, selling price 1200) has very good image quality and features that make it an excellent candidate display device for NIMA Imagery Exploitation Capability workstations. Based on our evaluation, NIDL certifies the Hitachi CM814U color monitor as being suitable for IEC workstations. NlDL rates this color monitor as a 'B' for the Image Analyst and Cartographer applications. The 'B' ratings, rather than 'A', result from a slightly high halation and non-linearity values, and from a somewhat low stereo extinction ratio. In a light ambient, the monitor is calculated to achieve 158:1 dynamic range with 3 fc illumination, and 62:1 with 10 fc illumination falling onto the screen.

  5. Free-jet Tests of a 1.1-inch-diameter Supersonic Ram-jet Engine

    Science.gov (United States)

    Judd, Joseph H; Trout, Otto F , Jr

    1957-01-01

    Results are presented of free-jet tests of a 1.1-inch-diameter hydrogen-burning ram-jet engine over a Mach number range from 1.42 to 2.28 and a Reynolds number range from 6.01 times 10 to the 6th power to 15.78 times 10 to the 6th power. Tests demonstrated the reliability and wide operating range of the engine and showed its suitability for installation on wind-tunnel models of airplane and missile configurations. A comparison of engine operation with combustion-chamber lengths of 3.33 and 1.51 engine diameters was made at a Mach number of 2.06. A maximum test thrust coefficient of 0.905 was obtained at fuel-air ratio of 0.034 and a Mach number of 2.06 for the engine with the 3.33-diameter combustion chamber.

  6. Torrential Rainfall Responses to Ice Microphysical Processes during Pre-Summer Heavy Rainfall over Southern China

    Institute of Scientific and Technical Information of China (English)

    SHEN Xinyong; LIU Jia; Xiaofan LI

    2012-01-01

    In this study,the effects of key ice microphysical processes on the pre-summer heavy rainfall over southern China during 3-8 June 2008 were investigated.A series of two-dimensional sensitivity cloud-resolving model simulations were forced with zonally uniform vertical velocity,zonal wind,horizontal temperature,and water vapor advection data from the National Centers for Environmental Prediction (NCEP)/Global Data Assimilation System (GDAS).The effects of key ice microphysical processes on the responses of rainfall to large-scale forcing were analyzed by comparing two sensitivity experiments with a control experiment.In one sensitivity experiment,ice crystal radius,associated with depositional growth of snow from cloud ice,was reduced from 100 μm in the control experiment to 50 μm,and in the other sensitivity experiment the efficiency of the growth of graupel from the accretion of snow was reduced to 50% from 100% in the control experiment.The results show that the domain-mean rainfall responses to these ice microphysical processes are stronger during the decay phase than during the onset and mature phases.During the decay phase,the increased mean rain rate resulting from the decrease in ice crystal radius is associated with the enhanced mean local atmospheric drying,the increased mean local hydrometeor loss,and the suppressed mean water vapor divergence.The increased mean rain rate caused by the reduction in accretion efficiency is related to the reduced mean water vapor divergence and the enhanced mean local hydrometeor loss.

  7. Along the Rainfall-Runoff Chain: From Scaling of Greatest Point Rainfall to Global Change Attribution

    Science.gov (United States)

    Fraedrich, K.

    2014-12-01

    Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.

  8. The development of 8 inch roll-to-plate nanoimprint lithography (8-R2P-NIL) system

    Science.gov (United States)

    Lee, Lai Seng; Mohamed, Khairudin; Ooi, Su Guan

    2017-07-01

    Growth in semiconductor and integrated circuit industry was observed in the past decennium of years for industrial technology which followed Moore's law. The line width of nanostructure to be exposed was influenced by the essential technology of photolithography. Thus, it is crucial to have a low cost and high throughput manufacturing process for nanostructures. Nanoimprint Lithography technique invented by Stephen Y. Chou was considered as major nanolithography process to be used in future integrated circuit and integrated optics. The drawbacks of high imprint pressure, high imprint temperature, air bubbles formation, resist sticking to mold and low throughput of thermal nanoimprint lithography on silicon wafer have yet to be solved. Thus, the objectives of this work is to develop a high throughput, low imprint force, room temperature UV assisted 8 inch roll to plate nanoimprint lithography system capable of imprinting nanostructures on 200 mm silicon wafer using roller imprint with flexible mold. A piece of resist spin coated silicon wafer was placed onto vacuum chuck drives forward by a stepper motor. A quartz roller wrapped with a piece of transparent flexible mold was used as imprint roller. The imprinted nanostructures were cured by 10 W, 365 nm UV LED which situated inside the quartz roller. Heat generated by UV LED was dissipated by micro heat pipe. The flexible mold detaches from imprinted nanostructures in a 'line peeling' pattern and imprint pressure was measured by ultra-thin force sensors. This system has imprinting speed capability ranging from 0.19 mm/s to 5.65 mm/s, equivalent to imprinting capability of 3 to 20 pieces of 8 inch wafers per hour. Speed synchronization between imprint roller and vacuum chuck was achieved by controlling pulse rate supplied to stepper motor which drive the vacuum chuck. The speed different ranging from 2 nm/s to 98 nm/s is achievable. Vacuum chuck height was controlled by stepper motor with displacement of 5 nm/step.

  9. Force relaxation of 3/16 inch heavy orthodontic latex elastics used in maxillofacial trauma in simulated jaw fracture situation

    Directory of Open Access Journals (Sweden)

    Amin Rahpeyma

    2014-01-01

    Full Text Available Introduction: Orthodontic elastic has been investigated for tooth movement. Study about their use in treatment of jaw fractures is limited. This study is designed to measure force relaxation of 3/16 inch heavy latex orthodontic elastics in jaw fracture treatment simulated conditions. Materials and Methods: This study is designed to study the force relaxation of 45 heavy 3/16 inch orthodontic elastic (American Orthodontist, AO (4/8 mm internal diameter were measured using Zwick testing machine (Zwick GmbH & Ulm Germany in 0, 1, and 14 days of immersion in simulated oral environment. In each of these three occasions, 15 specimens were placed in jigs with metallic pins that inserted 15 mm and 20 mm apart that is equivalent to the normal inter-arch space in a closed mouth position. The jigs were incubated in 37°C and each 24 hours they received 10 thermal cycles of 55°C and 5°C for 30 seconds in a thermocycle. The distribution of the data was evaluated by Klomogrov-Simirnov test and after confirmation of a normal distribution; data was analyzed using analysis of variance (ANOVA. Results: Mean force decay at 15 mm stretch was significantly differ between 0-1 days and 0-14 days (P < 0.05 but was not significantly differ between 1-14 days. The same relations exist for 20 mm stretch. Conclusions: This study creates scientific basis for use of orthodontic elastics in treatment of fractured jaws.

  10. Estimation of Real-Time Flood Risk on Roads Based on Rainfall Calculated by the Revised Method of Missing Rainfall

    Directory of Open Access Journals (Sweden)

    Eunmi Kim

    2014-09-01

    Full Text Available Recently, flood damage by frequent localized downpours in cities is on the increase on account of abnormal climate phenomena and the growth of impermeable areas due to urbanization. This study suggests a method to estimate real-time flood risk on roads for drivers based on the accumulated rainfall. The amount of rainfall of a road link, which is an intensive type, is calculated by using the revised method of missing rainfall in meteorology, because the rainfall is not measured on roads directly. To process in real time with a computer, we use the inverse distance weighting (IDW method, which is a suitable method in the computing system and is commonly used in relation to precipitation due to its simplicity. With real-time accumulated rainfall, the flooding history, rainfall range causing flooding from previous rainfall information and frequency probability of precipitation are used to determine the flood risk on roads. The result of simulation using the suggested algorithms shows the high concordance rate between actual flooded areas in the past and flooded areas derived from the simulation for the research region in Busan, Korea.

  11. Impact of rainfall spatial distribution on rainfall-runoff modelling efficiency and initial soil moisture conditions estimation

    Directory of Open Access Journals (Sweden)

    Y. Tramblay

    2011-01-01

    Full Text Available A good knowledge of rainfall is essential for hydrological operational purposes such as flood forecasting. The objective of this paper was to analyze, on a relatively large sample of flood events, how rainfall-runoff modeling using an event-based model can be sensitive to the use of spatial rainfall compared to mean areal rainfall over the watershed. This comparison was based not only on the model's efficiency in reproducing the flood events but also through the estimation of the initial conditions by the model, using different rainfall inputs. The initial conditions of soil moisture are indeed a key factor for flood modeling in the Mediterranean region. In order to provide a soil moisture index that could be related to the initial condition of the model, the soil moisture output of the Safran-Isba-Modcou (SIM model developed by Météo-France was used. This study was done in the Gardon catchment (545 km2 in South France, using uniform or spatial rainfall data derived from rain gauge and radar for 16 flood events. The event-based model considered combines the SCS runoff production model and the Lag and Route routing model. Results show that spatial rainfall increases the efficiency of the model. The advantage of using spatial rainfall is marked for some of the largest flood events. In addition, the relationship between the model's initial condition and the external predictor of soil moisture provided by the SIM model is better when using spatial rainfall, in particular when using spatial radar data with R2 values increasing from 0.61 to 0.72.

  12. Comparison of recorded rainfall with quantitative precipitation forecast in a rainfall-runoff simulation for the Langat River Basin, Malaysia

    Science.gov (United States)

    Billa, Lawal; Assilzadeh, Hamid; Mansor, Shattri; Mahmud, Ahmed; Ghazali, Abdul

    2011-09-01

    Observed rainfall is used for runoff modeling in flood forecasting where possible, however in cases where the response time of the watershed is too short for flood warning activities, a deterministic quantitative precipitation forecast (QPF) can be used. This is based on a limited-area meteorological model and can provide a forecasting horizon in the order of six hours or less. This study applies the results of a previously developed QPF based on a 1D cloud model using hourly NOAA-AVHRR (Advanced Very High Resolution Radiometer) and GMS (Geostationary Meteorological Satellite) datasets. Rainfall intensity values in the range of 3-12 mm/hr were extracted from these datasets based on the relation between cloud top temperature (CTT), cloud reflectance (CTR) and cloud height (CTH) using defined thresholds. The QPF, prepared for the rainstorm event of 27 September to 8 October 2000 was tested for rainfall runoff on the Langat River Basin, Malaysia, using a suitable NAM rainfall-runoff model. The response of the basin both to the rainfall-runoff simulation using the QPF estimate and the recorded observed rainfall is compared here, based on their corresponding discharge hydrographs. The comparison of the QPF and recorded rainfall showed R2 = 0.9028 for the entire basin. The runoff hydrograph for the recorded rainfall in the Kajang sub-catchment showed R2 = 0.9263 between the observed and the simulated, while that of the QPF rainfall was R2 = 0.819. This similarity in runoff suggests there is a high level of accuracy shown in the improved QPF, and that significant improvement of flood forecasting can be achieved through `Nowcasting', thus increasing the response time for flood early warnings.

  13. Definition of a Twelve-Point Polygonal SAA Boundaryfor the GLAST Mission

    Energy Technology Data Exchange (ETDEWEB)

    Djomehri, Sabra I.; /UC, Santa Cruz /SLAC

    2007-08-29

    The Gamma-Ray Large Area Space Telescope (GLAST), set to launch in early 2008, detects gamma rays within a huge energy range of 100 MeV - 300 GeV. Background cosmic radiation interferes with such detection resulting in confusion over distinguishing cosmic from gamma rays encountered. This quandary is resolved by encasing GLAST's Large Area Telescope (LAT) with an Anti-Coincidence Detector (ACD), a device which identifies and vetoes charged particles. The ACD accomplishes this through plastic scintillator tiles; when cosmic rays strike, photons produced induce currents in Photomultiplier Tubes (PMTs) attached to these tiles. However, as GLAST orbits Earth at altitudes {approx}550km and latitudes between -26 degree and 26 degree, it will confront the South Atlantic Anomaly (SAA), a region of high particle flux caused by trapped radiation in the geomagnetic field. Since the SAA flux would degrade the sensitivity of the ACD's PMTs over time, a determined boundary enclosing this region need be attained, signaling when to lower the voltage on the PMTs as a protective measure. The operational constraints on such a boundary require a convex SAA polygon with twelve edges, whose area is minimal ensuring GLAST has maximum observation time. The AP8 and PSB97 models describing the behavior of trapped radiation were used in analyzing the SAA and defining a convex SAA boundary of twelve sides. The smallest possible boundary was found to cover 14.58% of GLAST's observation time. Further analysis of defining a boundary safety margin to account for inaccuracies in the models reveals if the total SAA hull area is increased by {approx}20%, the loss of total observational area is < 5%. These twelve coordinates defining the SAA flux region are ready for implementation by the GLAST satellite.

  14. The correlation between reading and mathematics ability at age twelve has a substantial genetic component.

    Science.gov (United States)

    Davis, Oliver S P; Band, Gavin; Pirinen, Matti; Haworth, Claire M A; Meaburn, Emma L; Kovas, Yulia; Harlaar, Nicole; Docherty, Sophia J; Hanscombe, Ken B; Trzaskowski, Maciej; Curtis, Charles J C; Strange, Amy; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz A Z; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Viswanathan, Ananth C; Wood, Nicholas W; Barroso, Ines; Peltonen, Leena; Dale, Philip S; Petrill, Stephen A; Schalkwyk, Leonard S; Craig, Ian W; Lewis, Cathryn M; Price, Thomas S; Donnelly, Peter; Plomin, Robert; Spencer, Chris C A

    2014-07-08

    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children's ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child's cognitive abilities at age twelve.

  15. New Eyes on the Universe Twelve Cosmic Mysteries and the Tools We Need to Solve Them

    CERN Document Server

    Webb, Stephen

    2012-01-01

    "New Eyes on the Universe -- Twelve Cosmic Mysteries and the Tools We Need to Solve Them" gives an up-to-date broad overview of some of the key issues in modern astronomy and cosmology. It describes the vast amount of observational data that the new generation of observatories and telescopes are currently producing, and how that data might solve some of the outstanding puzzles inherent in our emerging world view. Included are questions such as: What is causing the Universe to blow itself apart? What could be powering the luminous gamma-ray bursters? Where is all the matter in the Uni

  16. DETECTION OF CHROMOSOME ABERRATIONS IN TWELVE PRIMARY GASTRIC CANCERS BY DIRECT CHROMOSOME ANALYSIS AND FISH

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Direct chromosome analysis and FISH were performed on twelve primary gastric carcinomas. Two of them had simple chromosome changes: 48,XX, +8, +20, and 49, XY, +2, +8, +9, and the others had complicated chromosome changes, which includes much more numerical and structural chromosome aberrations. Frequent structural changes in the complicated types involved chromosome 7, 3, 1, 5 and 12 etc. The del 7q was noted in eight cases. The del (3p) and del (1p) were noted in six and five cases, respectively. The results provide some important clues for isolation of the genes related to gastric cancer.

  17. Developing a learning culture: twelve tips for individuals, teams and organizations.

    Science.gov (United States)

    Stinson, Lynn; Pearson, David; Lucas, Beverley

    2006-06-01

    A culture of learning in providing health services and education for health professionals is a constant challenge for individuals, team and organizations. The importance of such a culture was highlighted by the findings of the Bristol Royal Infirmary Inquiry (2001). This was discussed in the context of the literature on the Learning Organization (Senge, 1990) at the 2004 Association of Medical Education in Europe (AMEE) conference, and reviewed a year later at the 2005 AMEE conference. This paper outlines twelve tips for educational and health service organizations in facilitating a culture of learning for their members and also offers specific advice to individual students and professionals.

  18. A time fractional model to represent rainfall process

    Directory of Open Access Journals (Sweden)

    Jacques GOLDER

    2014-01-01

    Full Text Available This paper deals with a stochastic representation of the rainfall process. The analysis of a rainfall time series shows that cumulative representation of a rainfall time series can be modeled as a non-Gaussian random walk with a log-normal jump distribution and a time-waiting distribution following a tempered α-stable probability law. Based on the random walk model, a fractional Fokker-Planck equation (FFPE with tempered α-stable waiting times was obtained. Through the comparison of observed data and simulated results from the random walk model and FFPE model with tempered α-stable waiting times, it can be concluded that the behavior of the rainfall process is globally reproduced, and the FFPE model with tempered α-stable waiting times is more efficient in reproducing the observed behavior.

  19. St. Vincent National Wildlife Refuge : 1993 Rainfall Data

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains graphs and tables summarizing rainfall totals on St. Vincent National Wildlife Refuge between September and October of 1993.

  20. Analysis of rainfall seasonality from observations and climate models

    CERN Document Server

    Pascale, Salvatore; Feng, Xue; Porporato, Amilcare; Hasson, Shabeh-ul

    2014-01-01

    Precipitation seasonality of observational datasets and CMIP5 historical simulations are analyzed using novel quantitative measures based on information theory. Two new indicators, the relative entropy (RE) and the dimensionless seasonality index (DSI), together with the mean annual rainfall, are evaluated on a global scale for recently updated precipitation gridded datasets and for historical simulations from coupled atmosphere-ocean general circulation models. The RE provides a measure of how peaked the shape of the annual rainfall curve is whereas the DSI quantifies the intensity of the rainfall during the wet season. The global monsoon regions feature the largest values of the DSI. For precipitation regimes featuring one maximum in the monthly rain distribution the RE is related to the duration of the wet season. We show that the RE and the DSI are measures of rainfall seasonality fairly independent of the time resolution of the precipitation data, thereby allowing objective metrics for model intercompari...

  1. Application of the rainfall infiltration breakthrough (RIB) model for ...

    African Journals Online (AJOL)

    2012-05-23

    May 23, 2012 ... Scenarios using the data from Oudebosch with different rainfall and groundwater abstraction inputs ... A manual entitled 'Preparation of a manual on Quantitative ..... The definition of the symbols used in the RIB programme.

  2. prediction of rainfall magnitudes and variations in nigeria

    African Journals Online (AJOL)

    engr peter ekpo

    Department of Civil Engineering, University of Nigeria, Nsukka. .... maximum annual rainfall depth of return period T. ..... of Gdańsk Meteorological Station. ... Landsliding in Pittwater. Australian. Geomechanics: Vol 42 No 1 March 2007. 3.

  3. RAINFALL-RUNOFF MODELING IN THE TURKEY RIVER USING ...

    African Journals Online (AJOL)

    2015-01-15

    Jan 15, 2015 ... Modeling rainfall-runoff relationships in a watershed have an important role in water .... Initial estimations will improve following the development of the model. .... Resources Research Nordic Hydrology, 33 (5), 2002,33 1-346.

  4. Approximation of Rainfall Erosivity Factors in North Jordan

    Institute of Scientific and Technical Information of China (English)

    N.I.ELTAIF; M.A.GHARAIBEH; F.AL-ZAITAWI; M.N.ALHAMAD

    2010-01-01

    Despite being in arid and semi-arid areas, erosion is largely a result of infrequent but heavy rainfall events; therefore,rainfall erosivity data can be used as an indicator of potential erosion risks. The purpose of this study was to investigate the spatial distribution of annual rainfall erosivity in North Jordan. A simplified procedure was used to correlate erosivity factor R values in both the universal soil loss equation (USLE) and the revised universal soil loss equation (RUSLE) with annual rainfall amount or modified Fournier index (Fmod). Pluviometric data recorded at 18 weather stations covering North Jordan were used to predict R values. The annual values of erosivity ranged between 86-779 MJ mm ha-1 h-1 year-1. The northwest regions of Jordan showed the highest annual erosivity values, while the northeastern regions showed the lowest annual erosivity values.

  5. Past, present and future variations of extreme rainfall in Denmark

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow

    of non-stationary extreme rainfall behaviour, in Denmark as well as worldwide. To provide recommendations on future design intensities it is necessary to explore and understand patterns of temporal variation in urban design rainfall and identify potential drivers behind past, present and future changes....... In addition, there is a need for an extreme value model that can include both regional and temporal explanatory variables, evaluate their significance and on this basis estimate the design rainfall. Both topics are addressed in this thesis. The analysed data material includes 137 years of observed daily...... is not reproduced well by the two climate models assessed. The thesis also presents a framework in which regional and temporal variability of extreme rainfall statistics can be modelled simultaneously. The framework is an extension of the regional model presently used for estimation of urban design intensities...

  6. Community Risk Assessment of Rainfall Variability under Rain-fed ...

    African Journals Online (AJOL)

    2016-10-02

    Oct 2, 2016 ... systems for observing and describing changes in weather elements, especially rainfall and temperature. ... Forecast for temperature .... inventories of local biological resources, animal breeds, local plant, crop and tree species.

  7. Seasonal And Long Term Rainfall Trends In Calabar, Nigeria ...

    African Journals Online (AJOL)

    Seasonal And Long Term Rainfall Trends In Calabar, Nigeria. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... Both seasonal and long term trends of rain fall in Calabar between 1985 and 2003 have been examined.

  8. The Structure and Rainfall Features of Tropical Cyclone Rammasun (2002)

    Institute of Scientific and Technical Information of China (English)

    马雷鸣; 端义宏; 朱永褆

    2004-01-01

    Tropical Rainfall Measuring Mission (TRMM) data [TRMM Microwave Imager/Precipitation Radar/Visible and Infrared Scanner (TMI/PR/VIRS)] and a numerical model are used to investigate the structure and rainfall features of Tropical Cyclone (TC) Rammasun (2002). Based on the analysis of TRMM data, which are diagnosed together with NCEP/AVN [Aviation (global model)] analysis data,some typical features of TC structure and rainfall are preliminary discovered. Since the limitations of TRMM data are considered for their time resolution and coverage, the world observed by TRMM at several moments cannot be taken as the representation of the whole period of the TC lifecycle, therefore the picture should be reproduced by a numerical model of high quality. To better understand the structure and rainfall features of TC Rammasun, a numerical simulation is carried out with mesoscale model MM5in which the validations have been made with the data of TRMM and NCEP/AVN analysis.

  9. Effects of rainfall infiltration on deep slope failure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the finite element method and the limit equilibrium method, a numerical model has been established for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably reflect the variations in pore pressure field in slopes, dead weight of soil, and the softening of soil strength caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing is studied to analyze the effects of rainfall infiltration on the seepage field and the slope stability. The simulated results show that a deep slope failure is prone to occur when rainfall infiltration will lead to a remarkable variation in the seepage field, in particular, for large range pore water pressure increase in slopes.

  10. Effects of rainfall infiltration on deep slope failure

    Institute of Scientific and Technical Information of China (English)

    SUN JianPing; LIU QingQuan; LI JiaChun; AN Yi

    2009-01-01

    With the finite element method and the limit equilibrium method, a numerical model has been estab-lished for examining the effects of rainfall infiltration on the stability of slopes. This model is able to availably reflect the variations in pore pressure field in slopes, dead weight of soil, and the softening of soil strength caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing is studied to analyze the effects of rainfall infiltration on the seepage field and the slope stability. The simulated results show that a deep slope failure is prone to occur when rainfall infiltration will lead to a remarkable variation in the seepage field, in particular, for large range pore water pressure increase in slopes.

  11. A map-based South Pacific rainfall climatology

    Science.gov (United States)

    Lorrey, A.; Diamond, H.; Renwick, J.; Salinger, J.; Gergis, J.; Dalu, G.

    2008-12-01

    The lives of more than four million people that reside in the South Pacific are greatly affected by rainfall variability. This region is subjected to large rainfall anomalies on seasonal timescales due to tropical cyclone occurrences, ENSO activity, and the AAO. Regional climate anomalies are also dictated by the IPO on multi- decadal scales that alter the motions of large-scale circulation features like the South Pacific Convergence Zone (SPCZ). Strong climate change impacts are anticipated for this region, so gauging the severity of rainfall variations that can occur are paramount for implementing appropriate climate change adaptation measures. Lack of historical rainfall records and documentation of other climate data hinders our current understanding of South Pacific climate variability. Climate data rescue activities are currently aimed at recovering, archiving, and digitising this information to rectify this issue. This research aims to examine the rainfall database administered by the Island Climate Update (ICU) project, which is contributed to by all Pacific Island national meteorological services (NMS), Meteo-France (New Caledonia and French Polynesia), NIWA (New Zealand), NOAA (USA), the IRI (USA), and the Bureau of Meteorology (Australia). Monthly rainfall totals for all stations in the ICU database were assessed, and allowed construction of master rainfall chronologies for all or portions of the major South Pacific Island nations. Climatic norms were then calculated over common time periods, and monthly-resolved rainfall anomaly maps for the South Pacific covering 1951-2008 were undertaken. Immediate benefits of this exercise have pointed out holes in the rainfall network that can be specifically targeted for data rescue in the near future, which can be achieved by providing financial assistance to Pacific Island NMSs. In addition, there is ample scope to extend the rainfall anomaly map time series into the early 1900s using a spatially degraded data

  12. Using rainfall patterns and IDF in flood hazard assessment

    Science.gov (United States)

    Beckers, Joost

    2017-04-01

    Spatio-temporal patterns of rainfall are commonly used as model input in e.g. urban drainage design or flood hazard studies. The hydraulic model that is used is oftentimes too computationally demanding to alllow for a simulation of a long historical time series. Instead, a limited set of high-intensity events is selected that is considered representative for the extreme rainfall over a given period at the location of interest. The set of events can be compiled from historical records, from stochastic rainfall generators or NWP model simulations. In general, there are numerous sources of realistic and plausible rainfall patterns and it is possible to compile a set of representative rainfall events for an application of interest. However, in order to apply the set of events to a flood study, a probability must be assigned to each event. This poses a challenge. Ideally, the event probabilities are derived from Intensity-Duration-Frequency (IDF) curves. For a given event and for a given duration, the exceedance frequency of the rainfall depth directly follows from the IDF curves. However, for a different duration, the exceedance frequency of the rainfall depth for the same event will typically be different. The exceedance frequency thus depends on the duration. Unfortunately, for many applications, the critical duration is not known beforehand. In the proposed approach this problem is overcome by selecting a set of events that covers extreme rainfall over a range of durations. A probability is assigned to each event such that the collective set of events reproduces the IDF curves. This way, the set of events not only represents the spatio-temporal rainfall patterns that may occur in the area, but also the IDF curves. The proposed method thus offers a way to use realistic rainfall patterns in combination with IDF curves in probabilistic flood studies. We will explain how the event probabilities are derived and demonstrate that a relatively small set of 50 to 100 events

  13. Spatial and temporal variability of rainfall in the Nile Basin

    Directory of Open Access Journals (Sweden)

    C. Onyutha

    2014-10-01

    Full Text Available Spatio-temporal variability in annual and seasonal rainfall totals were assessed at 37 locations of the Nile Basin in Africa using quantile perturbation method. To get insight into the spatial difference in rainfall statistics, the stations were grouped based on the pattern of the long-term mean of monthly rainfall and that of temporal variability. To find the origin of the driving forces for the temporal variability in rainfall, correlation analyses were carried out using global monthly sea level pressure and surface temperature. Further investigations to support the obtained correlations were made using a total of 10 climate indices. It was possible to obtain 3 groups of stations; those within the equatorial region (A, Sudan and Ethiopia (B, and Egypt (C. For group A, annual rainfall was found to be below (above the reference during the late 1940s to 1950s (1960s to mid 1980s. Conversely for groups B and C, the period 1930s to late 1950s (1960s to 1980s was characterized by anomalies being above (below the reference. For group A, significant linkages were found to Niño 3, Niño 3.4 and the North Atlantic and Indian Ocean drivers. Correlations of annual rainfall of group A with Pacific Ocean-related climate indices were inconclusive. With respect to the main wet seasons, the June to September rainfall of group B has strong connection to the influence from the Indian Ocean. For the March to May (October to February rainfall of group A (C, possible links to the Atlantic and Indian Oceans were found.

  14. What rainfall events trigger landslides on the West Coast US?

    Science.gov (United States)

    Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia

    2016-04-01

    A dataset of landslide occurrences compiled by collating google news reports covers 9 full years of data. We show that, while this compilation cannot provide consistent and widespread monitoring everywhere, it is adequate to capture the distribution of events in the major urban areas of the West Coast US and it can be used to provide a quantitative relationship between landslides and rainfall events. The case of the Seattle metropolitan area is presented as an example. The landslide dataset shows a clear seasonality in landslide occurrence, corresponding to the seasonality of rainfall, modified by the accumulation of soil moisture as winter progresses. Interannual variability of landslide occurrences is also linked to interannual variability of monthly rainfall. In most instances, landslides are clustered on consecutive days or at least within the same pentad and correspond to days of large rainfall accumulation at the regional scale. A joint analysis of the landslide data and of the high-resolution PRISM daily rainfall accumulation shows that on days when landslides occurred, the distribution of rainfall was shifted, with rainfall accumulation higher than 10mm/day being more common. Accumulations above 50mm/day much increase the probability of landslides, including the possibility of a major landslide event (one with multiple landslides in a day). The synoptic meteorological conditions associated with these major events show a mid-tropospheric ridge to the south of the target area steering a surface low and bringing enhanced precipitable water towards the Pacific North West. The interaction of the low-level flow with the local orography results in instances of a strong Puget Sound Convergence Zone, with widespread rainfall accumulation above 30mm/day and localized maxima as high as 100mm/day or more.

  15. Bayesian spatiotemporal interpolation of rainfall in the Central Chilean Andes

    Science.gov (United States)

    Ossa-Moreno, Juan; Keir, Greg; McIntyre, Neil

    2016-04-01

    Water availability in the populous and economically significant Central Chilean region is governed by complex interactions between precipitation, temperature, snow and glacier melt, and streamflow. Streamflow prediction at daily time scales depends strongly on accurate estimations of precipitation in this predominantly dry region, particularly during the winter period. This can be difficult as gauged rainfall records are scarce, especially in the higher elevation regions of the Chilean Andes, and topographic influences on rainfall are not well understood. Remotely sensed precipitation and topographic products can be used to construct spatiotemporal multivariate regression models to estimate rainfall at ungauged locations. However, classical estimation methods such as kriging cannot easily accommodate the complicated statistical features of the data, including many 'no rainfall' observations, as well as non-normality, non-stationarity, and temporal autocorrelation. We use a separable space-time model to predict rainfall using the R-INLA package for computationally efficient Bayesian inference, using the gridded CHIRPS satellite-based rainfall dataset and digital elevation models as covariates. We jointly model both the probability of rainfall occurrence on a given day (using a binomial likelihood) as well as amount (using a gamma likelihood or similar). Correlation in space and time is modelled using a Gaussian Markov Random Field (GMRF) with a Matérn spatial covariance function which can evolve over time according to an autoregressive model if desired. It is possible to evaluate the GMRF at relatively coarse temporal resolution to speed up computations, but still produce daily rainfall predictions. We describe the process of model selection and inference using an information criterion approach, which we use to objectively select from competing models with various combinations of temporal smoothing, likelihoods, and autoregressive model orders.

  16. Stochastic rainfall analysis for storm tank performance evaluation

    Directory of Open Access Journals (Sweden)

    I. Andrés-Doménech

    2010-03-01

    Full Text Available Stormwater detention tanks are widely used for mitigating impacts of combined sewer overflows (CSO from urban catchments into receiving water bodies. The optimal size of detention tanks depends on climate and sewer system behaviours and can be estimated by using derived distribution approaches. They are based on using a stochastic model to fit the statistical pattern of observed rainfall records and a urban hydrology model to transform rainfall in sewer discharge. A key issue is the identification of the optimal structure of the stochastic rainfall model. Point processes are frequently applied where rainfall events are schematised through the occurrence of rectangular pulses, which are governed by rainfall descriptors. In the model herein used these latter descriptors are the interevent time (duration of the dry period between consecutive storms, event rainfall depth and event rainfall duration. This paper focuses on the analytical derivation of the probability distribution of the number and volume of overflows from the storm tank to the receiving water body for different and non-standard shapes of the probability distribution for above mentioned descriptors. The proposed approach is applied to 2 different sites in Spain: Valencia and Santander located on the Mediterranean and northern Atlantic coastline, respectively. For both cases, it turned out that Pareto and Gamma-2 probability distributions for rainfall depth and duration provided better fit than the exponential model, widely used in previous studies. A comparison between the two climatic zones, humid and semiarid, respectively, proves the key role played by climatic conditions for storm detention tanks sizing.

  17. Stochastic rainfall analysis for storm tank performance evaluation

    Directory of Open Access Journals (Sweden)

    I. Andrés-Doménech

    2010-07-01

    Full Text Available Stormwater detention tanks are widely used for mitigating impacts of combined sewer overflows (CSO from urban catchments into receiving water bodies. The optimal size of detention tanks depends on climate and sewer system behaviours and can be estimated by using derived distribution approaches. They are based on using a stochastic model to fit the statistical pattern of observed rainfall records and a urban hydrology model to transform rainfall in sewer discharge. A key issue is the identification of the optimal structure of the stochastic rainfall model. Point processes are frequently applied, where rainfall events are schematised through the occurrence of rectangular pulses, which are governed by rainfall descriptors. In the presented model these latter descriptors are the interevent time (duration of the dry period between consecutive storms, event rainfall depth and event rainfall duration. This paper focuses on the analytical derivation of the probability distribution of the number and volume of overflows from the storm tank to the receiving water body for different and non-standard shapes of the probability distribution for above mentioned descriptors. The proposed approach is applied to 2 different sites in Spain: Valencia and Santander, located on the Mediterranean and northern Atlantic coastline, respectively. For both cases, it turned out that Pareto and Gamma-2 probability distributions for rainfall depth and duration provided a better fit than the exponential model, widely used in previous studies. A comparison between the two climatic zones, humid and semiarid, respectively, proves the key role played by climatic conditions for storm detention tanks sizing.

  18. Vulnerability Assessment of Rainfall-Induced Debris Flow

    Science.gov (United States)

    Lu, G. Y.; Wong, D. W.; Chiu, L. S.

    2006-05-01

    Debris flow is a common hazard triggered by large amount of rainfall over mountainous areas. A debris flow event results from a complex interaction between rainfall and topographical properties of watersheds. Heavy rainfall facilitates this process by increasing pore water pressure, seepage force and reducing effective stress of soils (normal stress carried by soil particles at the points of contact). Since debris flow events are closely related to topography and rainfall, the goal of this research is to assess debris flow vulnerability related to these two factors. Objectives of this research are to: (1) examine new spatial interpolation techniques to estimate high spatial rainfall data relevant to debris flows. (2) develop topographical factors using Geography Information System (GIS) and remote sensing (RS) approaches and (3) combine the estimated rainfall and topographical factors to assess the vulnerability of debris flow. We examined three spatial interpolation techniques: adaptive inversed distance weight (AIDW), simple kriging and spatial disaggregation using wind induced-topographic effect that incorporates gauge measurements, satellite remote sensing data (TRMM). The topographical factors are derived from high resolution digital elevation model (DEM), and adopt fuzzy-based topographical models proposed by Tseng (2004). Estimated rainfall and topographical factors are processed by self-organizing maps (SOM) to provide vulnerability assessment. To demonstrate our technique, rainfall data collected by 39 rain gauges in the central part of Taiwan during the passage of Typhoon Tori-Ji around July 29, 2001 were used. Results indicate that the proposed spatial interpolation methods outperform existing methods (i.e. kriging, inverse distance weight, and co-kriging methods). The vulnerability assessment of 187 debris flows watersheds in the study area will be presented. Keyword: Debris flow, spatial interpolation, adaptive inverse distance weight, TRMM, self

  19. Should seasonal rainfall forecasts be used for flood preparedness?

    Directory of Open Access Journals (Sweden)

    E. Coughlan de Perez

    2017-09-01

    Full Text Available In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale across sub-Saharan Africa. Given the sparsity of hydrological observations, we input bias-corrected reanalysis rainfall into the Global Flood Awareness System to identify seasonal indicators of floodiness. Results demonstrate that in some regions of western, central, and eastern Africa with typically wet climates, even a perfect tercile forecast of seasonal total rainfall would provide little to no indication of the seasonal likelihood of flooding. The number of extreme events within a season shows the highest correlations with floodiness consistently across regions. Otherwise, results vary across climate regimes: floodiness in arid regions in southern and eastern Africa shows the strongest correlations with seasonal average soil moisture and seasonal total rainfall. Floodiness in wetter climates of western and central Africa and Madagascar shows the strongest relationship with measures of the intensity of seasonal rainfall. Measures of rainfall patterns, such as the length of dry spells, are least related to seasonal floodiness across the continent. Ultimately, identifying the drivers of seasonal flooding can be used to improve forecast information for flood preparedness and to avoid misleading decision-makers.

  20. Demography of Verreaux's sifaka in a stochastic rainfall environment.

    Science.gov (United States)

    Lawler, Richard R; Caswell, Hal; Richard, Alison F; Ratsirarson, Joelisoa; Dewar, Robert E; Schwartz, Marion

    2009-09-01

    In this study, we use deterministic and stochastic models to analyze the demography of Verreaux's sifaka (Propithecus verreauxi verreauxi) in a fluctuating rainfall environment. The model is based on 16 years of data from Beza Mahafaly Special Reserve, southwest Madagascar. The parameters in the stage-classified life cycle were estimated using mark-recapture methods. Statistical models were evaluated using information-theoretic techniques and multi-model inference. The highest ranking model is time-invariant, but the averaged model includes rainfall-dependence of survival and breeding. We used a time-series model of rainfall to construct a stochastic demographic model. The time-invariant model and the stochastic model give a population growth rate of about 0.98. Bootstrap confidence intervals on the growth rates, both deterministic and stochastic, include 1. Growth rates are most elastic to changes in adult survival. Many demographic statistics show a nonlinear response to annual rainfall but are depressed when annual rainfall is low, or the variance in annual rainfall is high. Perturbation analyses from both the time-invariant and stochastic models indicate that recruitment and survival of older females are key determinants of population growth rate.

  1. Bivariate Rainfall and Runoff Analysis Using Entropy and Copula Theories

    Directory of Open Access Journals (Sweden)

    Lan Zhang

    2012-09-01

    Full Text Available Multivariate hydrologic frequency analysis has been widely studied using: (1 commonly known joint distributions or copula functions with the assumption of univariate variables being independently identically distributed (I.I.D. random variables; or (2 directly applying the entropy theory-based framework. However, for the I.I.D. univariate random variable assumption, the univariate variable may be considered as independently distributed, but it may not be identically distributed; and secondly, the commonly applied Pearson’s coefficient of correlation (g is not able to capture the nonlinear dependence structure that usually exists. Thus, this study attempts to combine the copula theory with the entropy theory for bivariate rainfall and runoff analysis. The entropy theory is applied to derive the univariate rainfall and runoff distributions. It permits the incorporation of given or known information, codified in the form of constraints and results in a universal solution of univariate probability distributions. The copula theory is applied to determine the joint rainfall-runoff distribution. Application of the copula theory results in: (i the detection of the nonlinear dependence between the correlated random variables-rainfall and runoff, and (ii capturing the tail dependence for risk analysis through joint return period and conditional return period of rainfall and runoff. The methodology is validated using annual daily maximum rainfall and the corresponding daily runoff (discharge data collected from watersheds near Riesel, Texas (small agricultural experimental watersheds and Cuyahoga River watershed, Ohio.

  2. The Interdependence between Rainfall and Temperature: Copula Analyses

    Directory of Open Access Journals (Sweden)

    Rong-Gang Cong

    2012-01-01

    Full Text Available Rainfall and temperature are important climatic inputs for agricultural production, especially in the context of climate change. However, accurate analysis and simulation of the joint distribution of rainfall and temperature are difficult due to possible interdependence between them. As one possible approach to this problem, five families of copula models are employed to model the interdependence between rainfall and temperature. Scania is a leading agricultural province in Sweden and is affected by a maritime climate. Historical climatic data for Scania is used to demonstrate the modeling process. Heteroscedasticity and autocorrelation of sample data are also considered to eliminate the possibility of observation error. The results indicate that for Scania there are negative correlations between rainfall and temperature for the months from April to July and September. The student copula is found to be most suitable to model the bivariate distribution of rainfall and temperature based on the Akaike information criterion (AIC and Bayesian information criterion (BIC. Using the student copula, we simulate temperature and rainfall simultaneously. The resulting models can be integrated with research on agricultural production and planning to study the effects of changing climate on crop yields.

  3. Comparative Analysis of Data Mining Techniques for Malaysian Rainfall Prediction

    Directory of Open Access Journals (Sweden)

    Suhaila Zainudin

    2016-12-01

    Full Text Available Climate change prediction analyses the behaviours of weather for a specific time. Rainfall forecasting is a climate change task where specific features such as humidity and wind will be used to predict rainfall in specific locations. Rainfall prediction can be achieved using classification task under Data Mining. Different techniques lead to different performances depending on rainfall data representation including representation for long term (months patterns and short-term (daily patterns. Selecting an appropriate technique for a specific duration of rainfall is a challenging task. This study analyses multiple classifiers such as Naïve Bayes, Support Vector Machine, Decision Tree, Neural Network and Random Forest for rainfall prediction using Malaysian data. The dataset has been collected from multiple stations in Selangor, Malaysia. Several pre-processing tasks have been applied in order to resolve missing values and eliminating noise. The experimental results show that with small training data (10% from 1581 instances Random Forest correctly classified 1043 instances. This is the strength of an ensemble of trees in Random Forest where a group of classifiers can jointly beat a single classifier.

  4. Analysis of extreme rainfall in the Ebre Observatory (Spain)

    Science.gov (United States)

    Pérez-Zanón, Núria; Casas-Castillo, M. Carmen; Rodríguez-Solà, Raúl; Peña, Juan Carlos; Rius, Anna; Solé, J. Germán; Redaño, Ángel

    2016-05-01

    The relationship between maximum rainfall rates for time intervals between 5 min and 24 h has been studied from almost a century (1905-2003) of rainfall data registered in the Ebre Observatory (Tarragona, Spain). Intensity-duration-frequency (IDF) curves and their master equation for every return period in the location have been obtained, as well as the probable maximum precipitation (PMP) for all the considered durations. In particular, the value of the 1-day PMP has resulted to be 415 mm, very similar to previous estimations of this variable for the same location. Extreme rainfall events recorded in this period have been analyzed and classified according to their temporal scale. Besides the three main classes of cases corresponding to the main meteorological scales, local, mesoscale, and synoptic, a fourth group constituted by complex events with high-intensity rates for a large range of durations has been identified also, indicating the contribution of different scale meteorological processes acting together in the origin of the rainfall. A weighted intensity index taking into account the maximum rainfall rate in representative durations of every meteorological scale has been calculated for every extreme rainfall event in order to reflect their complexity.

  5. Laboratory-Measured Rainfall Effects on LWIR Soil Reflectance

    Science.gov (United States)

    Howington, S. E.; Ballard, J., Jr.; Wilhelms, S.

    2012-12-01

    The long-wave infrared reflectance of soils will often have distinct spectral characteristics that depend on the soil's physical and spectral properties. Rainfall has the effect of sorting soil particles at the ground surface, thus changing its long-wave infrared reflectance. This study examines how rainfall alters the measured directional-hemispherical thermal infrared (8-14 μm) spectral reflectance by comparing disturbed soil with undisturbed soil and pre-rain with post-rain conditions. The study uses a soil with a specified sand/silt ratio and a calibrated, laboratory rainfall simulator. For an accumulated rainfall of 8 cm, the mean disturbed soil thermal infrared spectral reflectance within 8.1 - 9.2 μm waveband increases from an initial reflectance of 13 percent to a maximum reflectance of 31 percent. Sixty percent of this reflectance change occurred with only 1 cm accumulated rainfall. This study shows that, for this described disturbed sand/silt soil mixture, small accumulated rainfall amounts significantly alter the directional-hemispherical thermal infrared spectral reflectance.

  6. RAINFALL ANALYSIS IN KLANG RIVER BASIN USING CONTINUOUS WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    Celso A. G. Santos

    2016-01-01

    Full Text Available The rainfall characteristics within Klang River basin is analyzed by the continuous wavelet transform using monthly rainfall data (1997–2009 from a raingauge and also using daily rainfall data (1998–2013 from the Tropical Rainfall Measuring Mission (TRMM. The wavelet power spectrum showed that some frequency components were presented within the rainfall time series, but the observed time series is short to provide accurate information, thus the daily TRMM rainfall data were used. In such analysis, two main frequency components, i.e., 6 and 12 months, showed to be present during the entire period of 16 years. Such semiannual and annual frequencies were confirmed by the global wavelet power spectra. Finally, the modulation in the 8–16-month and 256– 512-day bands were examined by an average of all scales between 8 and 16 months, and 256 and 512 days, respectively, giving a measure of the average monthly/daily variance versus time, where the periods with low or high variance could be identified.

  7. Satellite radiance data assimilation for rainfall prediction in Java Region

    Science.gov (United States)

    Sagita, Novvria; Hidayati, Rini; Hidayat, Rahmat; Gustari, Indra

    2017-01-01

    This study examined the influence of satellite radiance data assimilation for predicting two days of heavy rainfall in the Java region. The first case occurred from 22 to 23 on January 2015 while the second case occurred from 1 to 2 on February 2015. The analysis examined before and after data assimilation in the two cases study. The Global Forecast System (GFS) data were used as initial condition which was assimilated with several data such as surface observation data, radiance data from AMSUA sensor, radiance data from HIRS sensor, and radiance data from MHS sensor. Weather Research and Forecasting Data Assimilation (WRFDA) is a tool which is used in this study for assimilating process with Three Dimensional Variation (3D-Var) method. The Quantitative Precipitation Forecast (QPF) skill was used to evaluate influence data assimilation for rainfall prediction. The result of the study obtained different rainfall prediction with different data assimilation. In general, the surface observation data assimilation has lower QPF skill than the satellite radiance data assimilation. Even thought radiance data assimilation has slightly contribution on rainfall prediction, but it gave better accuracy on rainfall prediction for two heavy rainfall cases.

  8. Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System

    Science.gov (United States)

    Fallah-Ghalhary, G.-A.; Habibi Nokhandan, M.; Mousavi Baygi, M.

    2009-04-01

    Long-term rainfall prediction is very important to countries thriving on agro-based economy. In general, climate and rainfall are highly non-linear phenomena in nature giving rise to what is known as "butterfly effect". The parameters that are required to predict the rainfall are enormous even for a short period. Soft computing is an innovative approach to construct computationally intelligent systems that are supposed to possess humanlike expertise within a specific domain, adapt themselves and learn to do better in changing environments, and explain how they make decisions. Unlike conventional artificial intelligence techniques the guiding principle of soft computing is to exploit tolerance for imprecision, uncertainty, robustness, partial truth to achieve tractability, and better rapport with reality. In this paper, 33 years of rainfall data analyzed in khorasan state, the northeastern part of Iran situated at latitude-longitude pairs (31°-38°N, 74°- 80°E). this research attempted to train Fuzzy Inference System (FIS) based prediction models with 33 years of rainfall data. For performance evaluation, the model predicted outputs were compared with the actual rainfall data. Simulation results reveal that soft computing techniques are promising and efficient. The test results using by FIS model showed that the RMSE was obtained 52 millimeter.

  9. Should seasonal rainfall forecasts be used for flood preparedness?

    Science.gov (United States)

    Coughlan de Perez, Erin; Stephens, Elisabeth; Bischiniotis, Konstantinos; van Aalst, Maarten; van den Hurk, Bart; Mason, Simon; Nissan, Hannah; Pappenberger, Florian

    2017-09-01

    In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale across sub-Saharan Africa. Given the sparsity of hydrological observations, we input bias-corrected reanalysis rainfall into the Global Flood Awareness System to identify seasonal indicators of floodiness. Results demonstrate that in some regions of western, central, and eastern Africa with typically wet climates, even a perfect tercile forecast of seasonal total rainfall would provide little to no indication of the seasonal likelihood of flooding. The number of extreme events within a season shows the highest correlations with floodiness consistently across regions. Otherwise, results vary across climate regimes: floodiness in arid regions in southern and eastern Africa shows the strongest correlations with seasonal average soil moisture and seasonal total rainfall. Floodiness in wetter climates of western and central Africa and Madagascar shows the strongest relationship with measures of the intensity of seasonal rainfall. Measures of rainfall patterns, such as the length of dry spells, are least related to seasonal floodiness across the continent. Ultimately, identifying the drivers of seasonal flooding can be used to improve forecast information for flood preparedness and to avoid misleading decision-makers.

  10. Work environment perceptions following relocation to open-plan offices: A twelve-month longitudinal study.

    Science.gov (United States)

    Bergström, Jessica; Miller, Michael; Horneij, Eva

    2015-01-01

    A workplace's design can have various positive or negative effects on the employees and since the 1970s the advantages and disadvantages of open-plan offices have been discussed. The aim of this study was to investigate perceived health, work environment and self-estimated productivity one month before and at three, six and twelve months after relocation from individual offices to an open-plan office environment. Employees from three departments within the same company group and who worked with relatively similar tasks and who were planned to be relocated from private offices to open-plan offices were invited to participate. Questionnaires comprising items from The Salutogenic Health Indicator Scale, The Work Experience Measurement Scale, the questionnaire by Brennan et al. about perceived performance and one question from the Work Ability Index were sent to participants one month before relocation (baseline) to open-plan offices and then at three, six and twelve months after relocation. At baseline, 82 questionnaires were sent out. The response rate was 85%. At the follow-ups 77-79 questionnaires were sent out and the response-rate was 70%-81%. At follow-ups, perceived health, job satisfaction and performance had generally deteriorated. The results of the study indicate that employees' perception of health, work environment and performance decreased during a 12 month period following relocation from individual offices to open-plan offices.

  11. Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites

    Science.gov (United States)

    Vashkovyaka, M. A.; Zaslavskii, G. S.

    2016-09-01

    We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.

  12. Global surface temperature change analysis based on MODIS data in recent twelve years

    Science.gov (United States)

    Mao, K. B.; Ma, Y.; Tan, X. L.; Shen, X. Y.; Liu, G.; Li, Z. L.; Chen, J. M.; Xia, L.

    2017-01-01

    Global surface temperature change is one of the most important aspects in global climate change research. In this study, in order to overcome shortcomings of traditional observation methods in meteorology, a new method is proposed to calculate global mean surface temperature based on remote sensing data. We found that (1) the global mean surface temperature was close to 14.35 °C from 2001 to 2012, and the warmest and coldest surface temperatures of the global in the recent twelve years occurred in 2005 and 2008, respectively; (2) the warmest and coldest surface temperatures on the global land surface occurred in 2005 and 2001, respectively, and on the global ocean surface in 2010 and 2008, respectively; and (3) in recent twelve years, although most regions (especially the Southern Hemisphere) are warming, global warming is yet controversial because it is cooling in the central and eastern regions of Pacific Ocean, northern regions of the Atlantic Ocean, northern regions of China, Mongolia, southern regions of Russia, western regions of Canada and America, the eastern and northern regions of Australia, and the southern tip of Africa. The analysis of daily and seasonal temperature change indicates that the temperature change is mainly caused by the variation of orbit of celestial body. A big data model based on orbit position and gravitational-magmatic change of celestial body with the solar or the galactic system should be built and taken into account for climate and ecosystems change at a large spatial-temporal scale.

  13. Introduction of laser initiation for the 48-inch Advanced Solid Rocket Motor (ASRM) test motors at Marshall Space Flight Center (MSFC)

    Science.gov (United States)

    Zimmerman, Chris J.; Litzinger, Gerald E.

    1993-01-01

    The Advanced Solid Rocket Motor is a new design for the Space Shuttle Solid Rocket Booster. The new design will provide more thrust and more payload capability, as well as incorporating many design improvements in all facets of the design and manufacturing process. A 48-inch (diameter) test motor program is part of the ASRM development program. This program has multiple purposes for testing of propellent, insulation, nozzle characteristics, etc. An overview of the evolution of the 48-inch ASRM test motor ignition system which culminated with the implementation of a laser ignition system is presented. The laser system requirements, development, and operation configuration are reviewed in detail.

  14. Comparative assay of fluorescent antibody test results among twelve European National Reference Laboratories using various anti-rabies conjugates

    DEFF Research Database (Denmark)

    Robardet, E.; Andrieu, S.; Rasmussen, Thomas Bruun

    2013-01-01

    Twelve National Reference Laboratories (NRLs) for rabies have undertaken a comparative assay to assess the comparison of fluorescent antibody test (FAT) results using five coded commercial anti-rabies conjugates (Biorad, Bioveta, Fujirebio, Millipore, and SIFIN conjugates). Homogenized positive...

  15. Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan.

    Science.gov (United States)

    Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey

    2017-04-01

    Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this

  16. Investigation of Rainfall-Runoff Processes and Soil Moisture Dynamics in Grassland Plots under Simulated Rainfall Conditions

    Directory of Open Access Journals (Sweden)

    Nana Zhao

    2014-09-01

    Full Text Available The characteristics of rainfall-runoff are important aspects of hydrological processes. In this study, rainfall-runoff processes and soil moisture dynamics at different soil depths and slope positions of grassland with two different row spacings (5 cm and 10 cm, respectively, referred to as R5 and R10 were analyzed, by means of a solution of rainfall simulation experiments. Bare land was also considered as a comparison. The results showed that the mechanism of runoff generation was mainly excess infiltration overland flow. The surface runoff amount of R5 plot was greater than that of R10, while the interflow amount of R10 was larger than that of R5 plot, although the differences of the subsurface runoff processes between plots R5 and R10 were little. The effects of rainfall intensity on the surface runoff were significant, but not obvious on the interflow and recession curve, which can be described as a simple exponential equation, with a fitting degree of up to 0.854–0.996. The response of soil moisture to rainfall and evapotranspiration was mainly in the 0–20 cm layer, and the response at the 40 cm layer to rainfall was slower and generally occurred after the rainfall stopped. The upper slope generally responded fastest to rainfall, and the foot of the slope was the slowest. The results presented here could provide insights into understanding the surface and subsurface runoff processes and soil moisture dynamics for grasslands in semi-arid regions.

  17. Spatial and temporal variability of rainfall erosivity factor for Switzerland

    Directory of Open Access Journals (Sweden)

    K. Meusburger

    2012-01-01

    Full Text Available Rainfall erosivity, considering rainfall amount and intensity, is an important parameter for soil erosion risk assessment under future land use and climate change. Despite its importance, rainfall erosivity is usually implemented in models with a low spatial and temporal resolution. The purpose of this study is to assess the temporal- and spatial distribution of rainfall erosivity in form of the (Revised Universal Soil Loss Equation R-factor for Switzerland. Time series of 22 yr for rainfall (10 min resolution and temperature (1 h resolution data were analysed for 71 automatic gauging stations distributed throughout Switzerland. Regression-kriging was used to interpolate the rainfall erosivity values of single stations and to generate a map for Switzerland. Latitude, longitude, average annual precipitation, biogeographic units (Jura, Midland, etc., aspect and elevation were used as covariates, of which average annual precipitation, elevation and the biographic unit (Western Central Alps were significant (p<0.01 predictors. The mean value of long-term rainfall erosivity is 1330 MJ mm ha−1 h−1 yr−1 with a range of lowest values of 124 MJ mm ha−1 h−1 yr−1 at an elevated station in Grisons to highest values of 5611 MJ mm ha−1 h−1 yr−1 in Ticino. All stations have highest erosivity values from July to August and lowest values in the winter months. Swiss-wide the month May to October show significantly increasing trends of rainfall erosivity for the observed period (p<0.005. Only in February a significantly decreasing trend of rainfall erosivity is found (p<0.01. The increasing trends of rainfall erosivity in May, September and October when vegetation cover is scarce are likely to enhance soil erosion risk for certain agricultural crops and alpine grasslands in Switzerland.

  18. Evolution of the rainfall regime in the United Arab Emirates

    Science.gov (United States)

    Ouarda, T. B. M. J.; Charron, C.; Niranjan Kumar, K.; Marpu, P. R.; Ghedira, H.; Molini, A.; Khayal, I.

    2014-06-01

    Arid and semiarid climates occupy more than 1/4 of the land surface of our planet, and are characterized by a strongly intermittent hydrologic regime, posing a major threat to the development of these regions. Despite this fact, a limited number of studies have focused on the climatic dynamics of precipitation in desert environments, assuming the rainfall input - and their temporal trends - as marginal compared with the evaporative component. Rainfall series at four meteorological stations in the United Arab Emirates (UAE) were analyzed for assessment of trends and detection of change points. The considered variables were total annual, seasonal and monthly rainfall; annual, seasonal and monthly maximum rainfall; and the number of rainy days per year, season and month. For the assessment of the significance of trends, the modified Mann-Kendall test and Theil-Sen’s test were applied. Results show that most annual series present decreasing trends, although not statistically significant at the 5% level. The analysis of monthly time series reveals strong decreasing trends mainly occurring in February and March. Many trends for these months are statistically significant at the 10% level and some trends are significant at the 5% level. These two months account for most of the total annual rainfall in the UAE. To investigate the presence of sudden changes in rainfall time-series, the cumulative sum method and a Bayesian multiple change point detection procedure were applied to annual rainfall series. Results indicate that a change point happened around 1999 at all stations. Analyses were performed to evaluate the evolution of characteristics before and after 1999. Student’s t-test and Levene’s test were applied to determine if a change in the mean and/or in the variance occurred at the change point. Results show that a decreasing shift in the mean has occurred in the total annual rainfall and the number of rainy days at all four stations, and that the variance has

  19. Modelling Ecuador's rainfall distribution according to geographical characteristics.

    Science.gov (United States)

    Tobar, Vladimiro; Wyseure, Guido

    2017-04-01

    It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting

  20. Lightning and Rainfall Characteristics in Elevated vs. Surface Based Convection in the Midwest that Produce Heavy Rainfall

    Directory of Open Access Journals (Sweden)

    Joshua S. Kastman

    2017-02-01

    Full Text Available There are differences in the character of surface-based and elevated convection, and one type may pose a greater threat to life or property. The lightning and rainfall characteristics of eight elevated and eight surface-based thunderstorm cases that occurred between 2007 and 2010 over the central Continental United States were tested for statistical differences. Only events that produced heavy rain (>50.8 mm·day−1 were investigated. The nonparametric Mann–Whitney test was used to determine if the characteristics of elevated thunderstorm events were significantly different than the surface based events. Observations taken from these cases include: rainfall–lightning ratios (RLR within the heavy rain area, the extent of the heavy rainfall area, cloud-to-ground (CG lightning flashes, CG flashes·h−1, positive CG flashes, positive CG flashes·h−1, percentage of positive CG flashes within the heavy rainfall area, and maximum and mean rainfall amounts within the heavy rain area. Results show that elevated convection cases produced more rainfall, total CG lightning flashes, and positive CG lightning flashes than surface based thunderstorms. More available moisture and storm morphology explain these differences, suggesting elevated convection is a greater lightning and heavy rainfall threat than surface based convection.

  1. Evaluation of the Pioneer PDP-502MX 4 x 3 Aspect Ratio, 50 Inch Diagonal Color Plasma Display Panel

    Science.gov (United States)

    2000-12-01

    NIDL evaluated the thin, large screen, flat panel Pioneer 50 inch plasma display panel (PDP) to determine its usefulness to the display of images that are of interest to imagery analysts and GI specialists, As NIDL's ratings show, the Pioneer PDP-502MX is not going to be useful as the primary imagery analysis display on an IEC workstation, It fails many of the IEC requirements so we rate it "F" for IEC workstation monoscopic and stereo applications, Rather, its usefulness comes from its large, 50 inch diagonal size and its high pixel count for a PDP, up to 1280 x 768 pixels in the 16:9 and 1024 x 768 pixels in the 4:3 format, that could make it appropriate for group conference discussions, The Pioneer PDP-502MX has a relatively good gray scale capability; it can display 245 of 256 differences in input levels for a 7,94 bit depth, Its linearity surpasses that we have measured for CRT monitors, and comes about because of its precisely formed pixel structure, This pixel structure, like in LCD monitors, can have several non- operating pixels, It has a very high (exceeds 60% over the entire screen) and a very uniform 1-pixel-on/1-pixel-off contrast modulation for both the horizontal and vertical directions, The PDP can have a maximum luminance up to 40 fL for a small patch of white, and a minimum luminance of 0.2 fL For full screen white, its luminance is 18 fL, limited by internal circuitry to minimize panel heat generation and its luminance is more uniform than a CRT monitor, The reflectivity and the viewing angle are about the same as for a CRT monitor, It has a capability to do stereo imaging at 43 Hz per eye, which is on the borderline of visible flicker, and its dynamic range in stereo is good, The extinction ratio is poor, and is probably limited by the long persistence of the green phosphor, Most who have seen the Pioneer PDP-502MX would love to have one, at least for football games, The price is about 18,000.

  2. On the relationship of coastal tropical rainfall and the large-scale atmosphere

    CERN Document Server

    Bergemann, Martin; Lane, Todd P

    2015-01-01

    Rainfall in coastal areas of the tropics is often shaped by the presence of circulations directly associated with the topography, such as land-sea and/or mountain-valley breezes. In many regions the coastally-affected rainfall consitutes more than half of the overall rainfall received. Weather and climate models with parametrized convection produce large errors in rainfall in tropical coastal regions, most commonly underestimating rainfall over land and overestimating it over the ocean. Building on an algorithm to objectively identify rainfall that is associated with land-sea interaction we investigate whether the relationship between rainfall in coastal regions and the large-scale atmosphere differs from that over the open ocean or over inland areas. We combine 3-hourly satellite estimates of rainfall with estimates of the large-scale atmospheric state from reanalyses. We find that when grouped by rainfall intensity, medium-intensity coastal rainfall in the tropics occurs in more stable conditions and drier ...

  3. Rainfall partitioning by desert shrubs in arid regions

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We measured the rainfall partitioning among throughfall, stemflow, and interception by desert shrubs in an arid region of China, and analyzed the influence of rainfall and canopy characteristics on this partitioning and its ecohydrological effects. The percent-ages of total rainfall accounted for by throughfall, stemflow, and interception ranged from 78.85±2.78 percent to 86.29±5.07 per-cent, from 5.50±3.73 percent to 8.47±4.19 percent, and from 7.54±2.36 percent to 15.95±4.70 percent, respectively, for the four shrubs in our study (Haloxylon ammodendron, Elaeagnus angustifolia, Tamarix ramosissima, and Nitraria sphaerocarpa). Rain-fall was significantly linearly correlated with throughfall, stemflow, and interception (P < 0.0001). The throughfall, stemflow, and interception percentages were logarithmically related to total rainfall (P < 0.01), but were quadratically related to the maximum 1-hour rainfall intensity (P < 0.01). The throughfall and stemflow percentages increased significantly with increasing values of the rainfall characteristics, whereas the interception percentage generally decreased (except for average wind speed, air temperature, and canopy evaporation). Regression analysis suggested that the stemflow percentage increased significantly with increasing crown length, number of branches, and branch angle (R2 = 0.92, P < 0.001). The interception percentage increased significantly with increasing LAI (leaf area index) and crown length, but decreased with increasing branch angle (R2 = 0.96, P < 0.001). The mean funnelling percentages for the four shrubs ranged from 30.27±4.86 percent to 164.37±6.41 percent of the bulk precipitation. Much of the precipitation was funnelled toward the basal area of the stem, confirming that shrub stemflow conserved in deep soil layers may be an available moisture source to support plant survival and growth under arid conditions.

  4. Describing rainfall in northern Australia using multiple climate indices

    Science.gov (United States)

    Wilks Rogers, Cassandra Denise; Beringer, Jason

    2017-02-01

    Savanna landscapes are globally extensive and highly sensitive to climate change, yet the physical processes and climate phenomena which affect them remain poorly understood and therefore poorly represented in climate models. Both human populations and natural ecosystems are highly susceptible to precipitation variation in these regions due to the effects on water and food availability and atmosphere-biosphere energy fluxes. Here we quantify the relationship between climate phenomena and historical rainfall variability in Australian savannas and, in particular, how these relationships changed across a strong rainfall gradient, namely the North Australian Tropical Transect (NATT). Climate phenomena were described by 16 relevant climate indices and correlated against precipitation from 1900 to 2010 to determine the relative importance of each climate index on seasonal, annual and decadal timescales. Precipitation trends, climate index trends and wet season characteristics have also been investigated using linear statistical methods. In general, climate index-rainfall correlations were stronger in the north of the NATT where annual rainfall variability was lower and a high proportion of rainfall fell during the wet season. This is consistent with a decreased influence of the Indian-Australian monsoon from the north to the south. Seasonal variation was most strongly correlated with the Australian Monsoon Index, whereas yearly variability was related to a greater number of climate indices, predominately the Tasman Sea and Indonesian sea surface temperature indices (both of which experienced a linear increase over the duration of the study) and the El Niño-Southern Oscillation indices. These findings highlight the importance of understanding the climatic processes driving variability and, subsequently, the importance of understanding the relationships between rainfall and climatic phenomena in the Northern Territory in order to project future rainfall patterns in the

  5. Initialization with diabatic heating from satellite-derived rainfall

    Science.gov (United States)

    Ma, Leiming; Chan, Johnny; Davidson, Noel E.; Turk, Joe

    2007-07-01

    In this paper, a new technique is proposed to improve initialization of a tropical cyclone (TC) prediction model using diabatic heating profiles estimated from a combination of both infrared satellite cloud imagery and satellite-derived rainfall. The method is termed Rainfall-defined Diabatic Heating, RDH. To examine the RDH performance, initialization and forecast experiments are made with the Australia Bureau of Meteorology Research Centre (BMRC) Tropical Cyclone — Limited Area Prediction System (TC-LAPS) for the case of TC Chris, which made landfall on the west coast of Australia during 3-6 Feb 2002. RDH is performed in three steps: 1) based on previous observational and numerical studies, reference diabatic heating profiles are firstly classified into three kinds: convective, stratiform or composite types; 2) NRL (Naval Research Laboratory) 3-hourly gridded satellite rainfall estimates are categorized as one of the three types according to the rain rate; 3) within a nudging phase of 24 h, the model-generated heating at each grid point during the integration is replaced by the reference heating profiles on the basis of the satellite-observed cloud top temperature and rainfall type. The results of sensitivity experiments show that RDH has a positive impact on the model initialization of TC Chris. The heating profiles generated by the model within the observed rainfall area show agreement with that of reference heating. That is, maximum heating is located in the lower troposphere for convective rainfall, and in the upper troposphere for stratiform rainfall. In response to the replaced heating and its impact on the TC structure, the model initial condition and forecasts of the track and intensity are improved.

  6. Spatial and temporal variability of rainfall erosivity factor for Switzerland

    Directory of Open Access Journals (Sweden)

    A. Steel

    2011-09-01

    Full Text Available Rainfall erosivity, considering rainfall amount and intensity, is an important parameter for soil erosion risk assessment under future land use and climate change. Despite its importance, rainfall erosivity is usually implemented in models with a low spatial and temporal resolution. The purpose of this study is to assess the temporal- and spatial distribution of rainfall erosivity (R-factor in Switzerland. Time series of 22 yr for rainfall (10 min resolution and temperature (1 h resolution data were analysed for 71 automatic gauging stations distributed throughout Switzerland. Multiple regression was used to interpolate the erosivity values of single stations and to generate a map for Switzerland. Latitude, longitude, average annual precipitation, biogeographic units (Jura, Midland, etc., aspect and elevation were used as covariates, of which average annual precipitation, elevation and the biographic unit (Western Alps were significant predictors. The mean value of long-term rainfall erosivity is 1323 MJ mm ha−1 h−1 yr−1 with a range of lowest values of 124 MJ mm ha−1 h−1 yr−1 at an elevated station in Grisons to highest values of 5611 MJ mm ha−1 h−1 yr−1 in Ticino. All stations have highest erosivity values from July to August and lowest values in the winter month. Swiss-wide the month May to October show significantly increasing trends of erosivity (p<0.005. Only in February a significantly decreasing trend of rainfall erosivity is found (p<0.01. The increasing trends of erosivity in May, September and October when vegetation cover is susceptible are likely to enhance soil erosion risk for certain agricultural crops and alpine grasslands in Switzerland.

  7. Rainfall event profiles: importance in ecohydrology, geomorphology, and soil management

    Science.gov (United States)

    Dunkerley, D.

    2012-04-01

    The importance of the temporal structure of rainfall events is widely, but not universally, recognised. In agricultural research, the role of event structure has been quite well explored (e.g. in relation to leachates from manure, or in agrochemical washoff). However, in dryland hydrology, and in soil erosion research, much less attention has been paid to the role of aspects such as intensity variations or rain intermittency. Moreover, changes in rainfall event profiles form a little-explored aspect of ongoing climatic change, but one that may have great significance in ecohydrology and in geomorphology. The importance of rain event structure is clearly demonstrated from rainfall simulation experiments on dryland soils in arid NSW Australia. A series of small plot experiments using drop-forming rainfall simulation was established in order to explore the effects of varying event profiles on infiltration and the generation of runoff. Experiments all had the same rain event duration, the same mean rain rate, and the same total event depth. However, event profile, including peak intensity, and intermittency, were varied by using computer-controlled pumps. The rain rates and event profiles were designed to mimic the character of natural rainfall events in the study area. Results show that events with uniform rainfall rates, as widely used in rainfall simulations in soil erosion research and in hydrology, yield the highest apparent soil infiltrability and the least runoff volume. Events with peak intensity late in the event, when soils are already wet, yield the lowest apparent infiltrability and the highest runoff volume, as well as the highest runoff intensity. These results need to be confirmed for other soil types, but suggest that event profile is an important determinant of soil hydraulic behaviour that warrants increased attention in many fields, including ecohydrology, geomorphology, and soil management.

  8. Heavy rainfall and waterborne disease outbreaks: the Walkerton example.

    Science.gov (United States)

    Auld, Heather; MacIver, D; Klaassen, J

    Recent research indicates that excessive rainfall has been a significant contributor to historical waterborne disease outbreaks. The Meteorological Service of Canada, Environment Canada, provided an analysis and testimony to the Walkerton Inquiry on the excessive rainfall events, including an assessment of the historical significance and expected return periods of the rainfall amounts. While the onset of the majority of the Walkerton, Ontario, Escherichia coli O157:H7 and Campylobacter outbreak occurred several days after a heavy rainfall on May 12, the accumulated 5-d rainfall amounts from 8-12 May were particularly significant. These 5-d accumulations could, on average, only be expected once every 60 yr or more in Walkerton and once every 100 yr or so in the heaviest rainfall area to the south of Walkerton. The significant link between excess rainfall and waterborne disease outbreaks, in conjunction with other multiple risk factors, indicates that meteorological and climatological conditions need to be considered by water managers, public health officials, and private citizens as a significant risk factor for water contamination. A system to identify and project the impacts of such challenging or extreme weather conditions on water supply systems could be developed using a combination of weather/climate monitoring information and weather prediction or quantitative precipitation forecast information. The use of weather monitoring and forecast information or a "wellhead alert system" could alert water system and water supply managers on the potential response of their systems to challenging weather conditions and additional requirements to protect health. Similar approaches have recently been used by beach managers in parts of the United States to predict day-to-day water quality for beach advisories.

  9. Asian Summer Monsoon and its Associated Rainfall Variability in Thailand

    Directory of Open Access Journals (Sweden)

    Atsamon Limsakul

    2010-07-01

    Full Text Available The Asian monsoon is an important component of the Earth's climate. Its associated rainfall variability is a crucial fac¬tor for Thailand's socio-economic development, water resources and agricultural management. An analysis shows that the Thailand rainfall annual cycle is in phase with the Indian summer monsoon (ISM and the western North Pacific summer monsoon (WNPSM. On the basis of the Empirical Orthogonal Function (EOF analysis, the dominant spatial-temporal interannual variability in summer monsoon rainfall (Jun.-Sep. during 1975-2006 could be explained by the first two EOF modes, accounting for 34% of the total variance. The EOF1 was spatially dominated by strong positive signals in the central and east, whereas the EOF2 exhibited dipole variability. The coefficient time series of EOF1 significantly correlated posi¬tively with ISM index, but negatively with WNPSM index. The results suggest that summer monsoon rainfall in Thailand is higher (lower than normal during the strengthening (weakening of ISM. In contrast, rainfall in the north-east (central is surplus (deficit during the strengthening (weakening of WNPSM. These findings imply that, on an interannual time scale, ISM and WNPSM exert their influence to a different extent on summer monsoon rainfall in Thailand. A clear picture of linking mechanisms and interactions with another climate mode in the Indo-Pacific sector needs to be understood. This knowledge is essential for effectively adapting to climate-related hazards and rainfall extremes and for better management of water resource and agriculture in Thailand, especially under current/future warming conditions.

  10. A new approach to modeling tree rainfall interception

    Science.gov (United States)

    Xiao, Qingfu; McPherson, E. Gregory; Ustin, Susan L.; Grismer, Mark E.

    2000-12-01

    A three-dimensional physically based stochastic model was developed to describe canopy rainfall interception processes at desired spatial and temporal resolutions. Such model development is important to understand these processes because forest canopy interception may exceed 59% of annual precipitation in old growth trees. The model describes the interception process from a single leaf, to a branch segment, and then up to the individual tree level. It takes into account rainfall, meteorology, and canopy architecture factors as explicit variables. Leaf and stem surface roughness, architecture, and geometric shape control both leaf drip and stemflow. Model predictions were evaluated using actual interception data collected for two mature open grown trees, a 9-year-old broadleaf deciduous pear tree (Pyrus calleryana "Bradford" or Callery pear) and an 8-year-old broadleaf evergreen oak tree (Quercus suber or cork oak). When simulating 18 rainfall events for the oak tree and 16 rainfall events for the pear tree, the model over estimated interception loss by 4.5% and 3.0%, respectively, while stemflow was under estimated by 0.8% and 3.3%, and throughfall was under estimated by 3.7% for the oak tree and over estimated by 0.3% for the pear tree. A model sensitivity analysis indicates that canopy surface storage capacity had the greatest influence on interception, and interception losses were sensitive to leaf and stem surface area indices. Among rainfall factors, interception losses relative to gross precipitation were most sensitive to rainfall amount. Rainfall incident angle had a significant effect on total precipitation intercepting the projected surface area. Stemflow was sensitive to stem segment and leaf zenith angle distributions. Enhanced understanding of interception loss dynamics should lead to improved urban forest ecosystem management.

  11. A Poisson Cluster Stochastic Rainfall Generator That Accounts for the Interannual Variability of Rainfall Statistics: Validation at Various Geographic Locations across the United States

    Directory of Open Access Journals (Sweden)

    Dongkyun Kim

    2014-01-01

    Full Text Available A novel approach for a Poisson cluster stochastic rainfall generator was validated in its ability to reproduce important rainfall and watershed response characteristics at 104 locations in the United States. The suggested novel approach, The Hybrid Model (THM, as compared to the traditional Poisson cluster rainfall modeling approaches, has an additional capability to account for the interannual variability of rainfall statistics. THM and a traditional approach of Poisson cluster rainfall model (modified Bartlett-Lewis rectangular pulse model were compared in their ability to reproduce the characteristics of extreme rainfall and watershed response variables such as runoff and peak flow. The results of the comparison indicate that THM generally outperforms the traditional approach in reproducing the distributions of peak rainfall, peak flow, and runoff volume. In addition, THM significantly outperformed the traditional approach in reproducing extreme rainfall by 2.3% to 66% and extreme flow values by 32% to 71%.

  12. Modelling and assessment of urban flood hazards based on rainfall intensity-duration-frequency curves reformation

    OpenAIRE

    Ghazavi, Reza; Moafi Rabori, Ali; Ahadnejad Reveshty, Mohsen

    2016-01-01

    Estimate design storm based on rainfall intensity–duration–frequency (IDF) curves is an important parameter for hydrologic planning of urban areas. The main aim of this study was to estimate rainfall intensities of Zanjan city watershed based on overall relationship of rainfall IDF curves and appropriate model of hourly rainfall estimation (Sherman method, Ghahreman and Abkhezr method). Hydrologic and hydraulic impacts of rainfall IDF curves change in flood properties was evaluated via Stormw...

  13. Correlations between the air pollution and the rainfall composition in Jiului Valley area

    Directory of Open Access Journals (Sweden)

    Traistă Eugen

    2003-09-01

    Full Text Available Rainfall composition is conditional on the air quality. If the air is polluted, the rainfall will be also polluted. In fact, rainfall contains the same compounds like the air as nitrites, nitrates, sulphites, sulphates, ammonia etc. Some cations like calcium, magnesium, sodium and potassium are present in rainfall because of dust. This paper presents the air qualities and the soil composition influenced by the rainfall in one of the most polluted mining areas from our country, Jiului Valley.

  14. Analysis on Variation Trend of Rainfall in Xingtai Area in Recent 48 Years

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to analyze the variation trend of rainfall in Xingtai area of Hebei Province in recent 48 years. [Method] According to the annual and seasonal rainfall data in Xingtai, Nangong, Shahe and Neiqiu during 1963-2010, by using the interannual variation rainfall line chart, trend chart and climatic variability, the variation trend of rainfall in Xingtai area in recent 48 years was analyzed. [Result] The annual rainfall in Xingtai area during 1963-2010 presented yearly decrease trend...

  15. A Unified Theory of Rainfall Extremes, Rainfall Excesses, and IDF Curves

    Science.gov (United States)

    Veneziano, D.; Yoon, S.

    2012-04-01

    Extreme rainfall events are a key component of hydrologic risk management and design. Yet, a consistent mathematical theory of such extremes remains elusive. This study aims at laying new statistical foundations for such a theory. The quantities of interest are the distribution of the annual maximum, the distribution of the excess above a high threshold z, and the intensity-duration-frequency (IDF) curves. Traditionally, the modeling of annual maxima and excesses is based on extreme value (EV) and extreme excess (EE) theories. These theories establish that the maximum of n iid variables is attracted as n →∞ to a generalized extreme value (GEV) distribution with a certain index k and the distribution of the excess is attracted as z →∞ to a generalized Pareto distribution with the same index. The empirical value of k tends to decrease as the averaging duration d increases. To a first approximation, the IDF intensities scale with d and the return period T . Explanations for this approximate scaling behavior and theoretical predictions of the scaling exponents have emerged over the past few years. This theoretical work has been largely independent of that on the annual maxima and the excesses. Deviations from exact scaling include a tendency of the IDF curves to converge as d and T increase. To bring conceptual clarity and explain the above observations, we analyze the extremes of stationary multifractal measures, which provide good representations of rainfall within storms. These extremes follow from large deviation theory rather than EV/EE theory. A unified framework emerges that (a) encompasses annual maxima, excesses and IDF values without relying on EV or EE asymptotics, (b) predicts the index k and the IDF scaling exponents, (c) explains the dependence of k on d and the deviations from exact scaling of the IDF curves, and (d) explains why the empirical estimates of k tend to be positive (in the Frechet range) while, based on frequently assumed marginal

  16. Refurbishment and modification of existing protective shipping packages (for 30-inch UF{sub 6} cylinders) per USDOT specification No. USA-DOT-21PF-1A

    Energy Technology Data Exchange (ETDEWEB)

    Housholder, W.R. [Nuclear Containers, Incorporated, Elizabethton, TN (United States)

    1991-12-31

    This paper addresses the refurbishment procedures for existing shipping containers for 30-inch diameter UF{sub 6} cylinders in accordance with DOT Specification 21PF-1 and the criteria used to determine rejection when such packages are unsuitable for refurbishment.

  17. Projected economic impacts of a 16-Inch tree cutting cap for ponderosa pine forests within the greater Flagstaff urban-wildlands

    Science.gov (United States)

    Debra Larson; Richard Mirth

    2001-01-01

    The Grand Canyon Forest Partnership (GCFP), located in Flagstaff, AZ, has implemented a 16-inch diameter breast height cutting cap in the Fort Valley Restoration (Phase One) Project to secure the support of environmental organizations for urban interface forest restoration and fuels reduction projects. This paper provides insights into the economic impacts of this...

  18. Spectroscopic classification of Gaia16atw and Gaia16aui with the SEDM (Spectra Energy Distribution Machine) on Palomar 60-inch (P60) telescope

    Science.gov (United States)

    Blagorodnova, N.; Neill, D.; Walters, R.

    2016-07-01

    The Caltech Time Domain Astronomy group reports the classification of Gaia16atw and Gaia16aui, discovered by the Gaia ESA survey. The observations were performed with the Spectral Energy Distribution Machine (SEDM)(http://www.astro.caltech.edu/sedm/, range 350-950nm, spectral resolution R~100) on Palomar 60-inch (P60) telescope.

  19. A novel 2D silicon nano-mold fabrication technique for linear nanochannels over a 4 inch diameter substrate.

    Science.gov (United States)

    Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei

    2016-01-11

    A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar(+) (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type  silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar(+) sputter etching, and photoresist &Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar(+) etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas.

  20. Development of a 55 μm pitch 8 inch CMOS image sensor for the high resolution NDT application

    Science.gov (United States)

    Kim, M. S.; Kim, G.; Cho, G.; Kim, D.

    2016-11-01

    A CMOS image sensor (CIS) with a large area for the high resolution X-ray imaging was designed. The sensor has an active area of 125 × 125 mm2 comprised with 2304 × 2304 pixels and a pixel size of 55 × 55 μm2. First batch samples were fabricated by using an 8 inch silicon CMOS image sensor process with a stitching method. In order to evaluate the performance of the first batch samples, the electro-optical test and the X-ray test after coupling with an image intensifier screen were performed. The primary results showed that the performance of the manufactured sensors was limited by a large stray capacitance from the long path length between the analog multiplexer on the chip and the bank ADC on the data acquisition board. The measured speed and dynamic range were limited up to 12 frame per sec and 55 dB respectively, but other parameters such as the MTF, NNPS and DQE showed a good result as designed. Based on this study, the new X-ray CIS with ~ 50 μm pitch and ~ 150 cm2 active area are going to be designed for the high resolution X-ray NDT equipment for semiconductor and PCB inspections etc.

  1. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical–chemical vapor deposition

    Science.gov (United States)

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; Lee, Namhoon; Wolak, Matthäus A.; Tan, Teng; Welander, Paul B.; Franzi, Matthew; Tantawi, Sami; Kustom, Robert L.

    2017-04-01

    Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg–Cu alloy layer with occasional intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm‑2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.

  2. PCE-1 oil pipeline/point A24 inch : inspection alternatives for a non-piggable pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Franzoi, A.R.; Bueno, S.I.O. [Petrobras, Rio de Janeiro (Brazil); Camerini, C.S. [Petrobras, Rio de Janeiro (Brazil); Silva, J.A.P. [Pipeway Engenharia Ltda., Rio de Janeiro (Brazil); Vinicius, C.L. [Pontifica Univ. Catolica, Rio de Janeiro (Brazil)

    2004-07-01

    This paper provided details of flexpigs designed to both clean and inspect a 24 inch pipeline in Brazil. Originally built to be piggable, the pipeline had several areas with internal diameter restrictions. Small electronic devices were attached to the pigs in order to survey thermal profiles, pressure profiles and to locate areas with wax depositions. Additional corrosion detection instrumentation was also added to the flexpig due to its success in locating geometric obstructions. A differential magnetic coil (DMC) consisted of 2 coils with a core containing 2 permanent neodymium-iron-boron magnets. The DMC magnets generated a magnetic flux proportional to the quantity of material at the extremities of its poles. Corrosion defects caused imbalances in magnetic flux, which caused signals generated by the sensors to be amplified. The DMC sensors were mounted along the perimeter of the pig, while 2 odometers were fixed on the pig's rear flange. Initial trials of the pig resulted in damage to approximately 30 per cent of the sensors. Later attempts resulted in the successful identification of areas of corrosion along an 800 meter section of the pipeline. The areas were then excavated. Field verifications showed that the pig correctly identified areas of corrosion. Both the length and width of corrosion areas in the images obtained from the flexpig were identical to images recorded by an automatic ultrasonic tool. It was concluded that the modified flexpig is ideal for the inspection of non piggable pipelines. 2 refs., 13 figs.

  3. Transient analysis of ”2 inch Direct Vessel Injection line break” in SPES-2 facility by using TRACE code

    Science.gov (United States)

    D'Amico, S.; Lombardo, C.; Moscato, I.; Polidori, M.; Vella, G.

    2015-11-01

    In the past few decades a lot of theoretical and experimental researches have been done to understand the physical phenomena characterizing nuclear accidents. In particular, after the Three Miles Island accident, several reactors have been designed to handle successfully LOCA events. This paper presents a comparison between experimental and numerical results obtained for the “2 inch Direct Vessel Injection line break” in SPES-2. This facility is an integral test facility built in Piacenza at the SIET laboratories and simulating the primary circuit, the relevant parts of the secondary circuits and the passive safety systems typical of the AP600 nuclear power plant. The numerical analysis here presented was performed by using TRACE and CATHARE thermal-hydraulic codes with the purpose of evaluating their prediction capability. The main results show that the TRACE model well predicts the overall behaviour of the plant during the transient, in particular it is able to simulate the principal thermal-hydraulic phenomena related to all passive safety systems. The performance of the presented CATHARE noding has suggested some possible improvements of the model.

  4. SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) on the South African Astronomical Observatory's 74-inch telescope

    Science.gov (United States)

    Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.

    2016-08-01

    SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI

  5. Assessment of RELAP/MOD3 using BETHSY 6.2TC 6-inch cold leg side break comparative test

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young-Jong; Jeong, Jae-Jun; Chang, Won-Pyo; Kim, Dong-Su [Korea Atomic Energy Research Institute, Yusung, Taejon (Korea, Republic of)] [and others

    1996-10-01

    This report presents the results of the RELAP5/MOD3 Version 7j assessment on BETHSY 6.2TC. BETHSY 6.2TC test corresponding to a six inch cold leg break LOCA of the Pressurizer Water Reactor(PWR). The primary objective of the test was to provide reference data of two facilities of different scales (BETHSY and LSTF facility). On the other hand, the present calculation aims at analysis of RELAP5/N4OD3 capability on the small break LOCA simulation, The results of calculation have shown that the RELAP5/MOD3 reasonably predicts occurrences as well as trends of the major phenomena such as primary pressure, timing of loop seal clearing, liquid hold up, etc. However, some disagreements also have been found in the predictions of loop seal clearing, collapsed core water level after loop seal clearing, and accumulator injection behaviors. For better understanding of discrepancies in same predictions, several sensitivity calculations have been performed as well. These include the changes of two-phase discharge coefficient at the break junction and some corrections of the interphase drag term. As result, change of a single parameter has not improved the overall predictions and it has been found that the interphase drag model has still large uncertainties.

  6. Exploring Content Schemata Influence on L2 Reading: The Hunted Fox and Twelve and Not Stupid

    Directory of Open Access Journals (Sweden)

    Amizura Hanadi Mohd Radzi

    2014-10-01

    Full Text Available This paper will discuss the aspects of content schemata in second language reading among diploma level students who were taking a reading course in Universiti Teknologi MARA Perlis. In this qualitative case study, the researcher had selected two short stories that are categorized as content-familiar texts, i.e. The Hunted Fox and Twelve and Not Stupid. Six participants were asked to write a 150-word entry response on the short story and a grading criteria was used to assess the participants’ level of comprehension. An in-depth interview was also conducted on each participant. The entry responses and the interview patterns were analyzed to determine whether content schemata had contributed to the learners’ understanding of the text. This study discovered that content schemata had contributed to the learners’ understanding of the text because the learners’ comprehension was facilitated by their background knowledge on the content-familiar texts.

  7. Development and characterization of twelve microsatellite markers for Porphyra linearis Greville.

    Science.gov (United States)

    Varela-Álvarez, Elena; Paulino, Cristina; Serrão, Ester A

    2017-02-01

    The genus Porphyra (and its sister genus Pyropia) contains important red algal species that are cultivated and/or harvested for human consumption, sustaining a billion-dollar aquaculture industry. A vast amount of research has been focused on species of this genus, including studies on genetics and genomics among other areas. Twelve novel microsatellite markers were developed here for Porphyra linearis. Markers were characterized using 32 individuals collected from four natural populations of P. linearis with total heterozygosity varying from 0.098 to 0.916. The number of alleles per locus ranged from 2 to 18. All markers showed cross amplification with Porphyra umbilicalis and/or Porphyra dioica. These polymorphic microsatellite markers are useful for investigating population genetic diversity and differentiation in P. linearis and may become useful for other genetic research on the reproductive biology of this important species.

  8. Proteomic characterization of human milk whey proteins during a twelve-month lactation period.

    Science.gov (United States)

    Liao, Yalin; Alvarado, Rudy; Phinney, Brett; Lönnerdal, Bo

    2011-04-01

    Human milk is a rich source of bioactive proteins that support the early growth and development of the newborn. Although the major components of the protein fraction in human milk have been studied, the expression and relative abundance of minor components have received limited attention. We examined the expression of low-abundance proteins in the whey fraction of human milk and their dynamic changes over a twelve-month lactation period. The low-abundance proteins were enriched by ProteoMiner beads, and protein identification was performed by liquid chromatography tandem mass spectrometry. One hundred and fifteen proteins were identified, thirty-eight of which have not been previously reported in human colostrum or milk. We also for the first time described differences in protein patterns among the low-abundance proteins during lactation. These results enhance our knowledge about the complexity of the human milk proteome, which constitutes part of the advantages to the breast-fed infant.

  9. Fate of the conformal fixed point with twelve massless fermions and SU(3) gauge group

    CERN Document Server

    Fodor, Zoltan; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him

    2016-01-01

    We report new results on the conformal properties of an important strongly coupled gauge theory, a building block of composite Higgs models beyond the Standard Model. With twelve massless fermions in the fundamental representation of the SU(3) color gauge group, an infrared fixed point of the $\\beta$-function was recently reported in the theory (Cheng:2014jba) with uncertainty in the location of the critical gauge coupling inside the narrow $[ 6.0

  10. Twelve Years of Education and Public Outreach with the Fermi Gamma-ray Space Telescope

    CERN Document Server

    Cominsky, Lynn; Simonnet, Aurore; Education, the Fermi

    2013-01-01

    During the past twelve years, NASA's Fermi Gamma-ray Space Telescope has supported a wide range of Education and Public Outreach (E/PO) activities, targeting K-14 students and the general public. The purpose of the Fermi E/PO program is to increase student and public understanding of the science of the high-energy Universe, through inspiring, engaging and educational activities linked to the mission's science objectives. The E/PO program has additional more general goals, including increasing the diversity of students in the Science, Technology, Engineering and Mathematics (STEM) pipeline, and increasing public awareness and understanding of Fermi science and technology. Fermi's multi-faceted E/PO program includes elements in each major outcome category: Higher Education; Elementary and Secondary Education; Informal Education and Public Outreach.

  11. Twelve tips for developing and delivering a massive open online course in medical education.

    Science.gov (United States)

    Pickering, James D; Henningsohn, Lars; DeRuiter, Marco C; de Jong, Peter G M; Reinders, Marlies E J

    2017-07-01

    Massive open online courses (MOOCs) are a novel mode of online learning. They are typically based on higher education courses and can attract a high number of learners, often in the thousands. They are distinct from on-campus education and deliver the learning objectives through a series of short videos, recommended readings and discussion fora, alongside automated assessments. Within medical education the role of MOOCs remains unclear, with recent proposals including continuing professional development, interprofessional education or integration into campus-based blended learning curricula. In this twelve tips article, we aim to provide a framework for readers to use when developing, delivering and evaluating a MOOC within medical education based on the literature and our own experience. Practical advice is provided on how to design the appropriate curriculum, engage with learners on the platform, select suitable assessments, and comprehensively evaluate the impact of your course.

  12. Hepatoprotective activity of twelve novel 7'-hydroxy lignan glucosides from Arctii Fructus.

    Science.gov (United States)

    Yang, Ya-Nan; Huang, Xiao-Ying; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2014-09-17

    Twelve novel 7'-hydroxy lignan glucosides (1-12), including two benzofuran-type neolignans, two 8-O-4' neolignans, two dibenzylbutyrolactone lignans, and six tetrahydrofuranoid lignans, together with six known lignan glucosides (13-18), were isolated from the fruit of Arctium lappa L. (Asteraceae), commonly known as Arctii Fructus. Their structures were elucidated using spectroscopy (1D and 2D NMR, MS, IR, ORD, and UV) and on the basis of chemical evidence. The absolute configurations of compounds 1-12 were confirmed using rotating frame nuclear overhauser effect spectroscopy (ROESY), the circular dichroic (CD) exciton chirality method, and Rh2(OCOCF3)4-induced CD spectrum analysis. All of the isolated compounds were tested for hepatoprotective effects against D-galactosamine-induced cytotoxicity in HL-7702 hepatic cells. Compounds 1, 2, 7-12, and 17 showed significantly stronger hepatoprotective activity than the positive control bicyclol at a concentration of 1 × 10(-5) M.

  13. Twelve Tips for teaching medical professionalism at all levels of medical education.

    Science.gov (United States)

    Al-Eraky, Mohamed Mostafa

    2015-01-01

    Review of studies published in medical education journals over the last decade reveals that teaching medical professionalism is essential, yet challenging. According to a recent Best Evidence in Medical Education (BEME) guide, there is no consensus on a theoretical or practical model to integrate the teaching of professionalism into medical education. The aim of this article is to outline a practical manual for teaching professionalism at all levels of medical education. Drawing from research literature and author's experience, Twelve Tips are listed and organised in four clusters with relevance to (1) the context, (2) the teachers, (3) the curriculum, and (4) the networking. With a better understanding of the guiding educational principles for teaching medical professionalism, medical educators will be able to teach one of the most challenging constructs in medical education.

  14. Christiansen Revisited: Rethinking Quantification of Uniformity in Rainfall Simulator Studies

    Science.gov (United States)

    Green, Daniel; Pattison, Ian

    2016-04-01

    Rainfall simulators, whether based within a laboratory or field setting are used extensively within a number of fields of research, including plot-scale runoff, infiltration and erosion studies, irrigation and crop management and scaled investigations into urban flooding. Rainfall simulators offer a number of benefits, including the ability to create regulated and repeatable rainfall characteristics (e.g. intensity, duration, drop size distribution and kinetic energy) without relying on unpredictable natural precipitation regimes. Ensuring and quantifying spatially uniform simulated rainfall across the entirety of the plot area is of particular importance to researchers undertaking rainfall simulation. As a result, numerous studies have focused on the quantification and improvement of uniformity values. Several statistical methods for the assessment of rainfall simulator uniformity have been developed. However, the Christiansen Uniformity Coefficient (CUC) suggested by Christiansen (1942) is most frequently used. Despite this, there is no set methodology and researchers can adapt or alter factors such as the quantity, as well as the spacing, distance and location of the measuring beakers used to derive CUC values. Because CUC values are highly sensitive to the resolution of the data, i.e. the number of observations taken, many densely distributed measuring containers subjected to the same experimental conditions may generate a significantly lower CUC value than fewer, more sparsely distributed measuring containers. Thus, the simulated rainfall under a higher resolution sampling method could appear less uniform than when using a coarser resolution sampling method, despite being derived from the same initial rainfall conditions. Expressing entire plot uniformity as a single, simplified percentage value disregards valuable qualitative information about plot uniformity, such as the small-scale spatial distribution of rainfall over the plot surface and whether these

  15. Calibration of three rainfall simulators with automatic measurement methods

    Science.gov (United States)

    Roldan, Margarita

    2010-05-01

    CALIBRATION OF THREE RAINFALL SIMULATORS WITH AUTOMATIC MEASUREMENT METHODS M. Roldán (1), I. Martín (2), F. Martín (2), S. de Alba(3), M. Alcázar(3), F.I. Cermeño(3) 1 Grupo de Investigación Ecología y Gestión Forestal Sostenible. ECOGESFOR-Universidad Politécnica de Madrid. E.U.I.T. Forestal. Avda. Ramiro de Maeztu s/n. Ciudad Universitaria. 28040 Madrid. margarita.roldan@upm.es 2 E.U.I.T. Forestal. Avda. Ramiro de Maeztu s/n. Ciudad Universitaria. 28040 Madrid. 3 Facultad de Ciencias Geológicas. Universidad Complutense de Madrid. Ciudad Universitaria s/n. 28040 Madrid The rainfall erosivity is the potential ability of rain to cause erosion. It is function of the physical characteristics of rainfall (Hudson, 1971). Most expressions describing erosivity are related to kinetic energy or momentum and so with drop mass or size and fall velocity. Therefore, research on factors determining erosivity leds to the necessity to study the relation between fall height and fall velocity for different drop sizes, generated in a rainfall simulator (Epema G.F.and Riezebos H.Th, 1983) Rainfall simulators are one of the most used tools for erosion studies and are used to determine fall velocity and drop size. Rainfall simulators allow repeated and multiple measurements The main reason for use of rainfall simulation as a research tool is to reproduce in a controlled way the behaviour expected in the natural environment. But in many occasions when simulated rain is used in order to compare it with natural rain, there is a lack of correspondence between natural and simulated rain and this can introduce some doubt about validity of data because the characteristics of natural rain are not adequately represented in rainfall simulation research (Dunkerley D., 2008). Many times the rainfall simulations have high rain rates and they do not resemble natural rain events and these measures are not comparables. And besides the intensity is related to the kinetic energy which

  16. Synthesis of rainfall time series in a high temporal resolution

    Science.gov (United States)

    Callau Poduje, Ana Claudia; Haberlandt, Uwe

    2014-05-01

    In order to optimize the design and operation of urban drainage systems, long and continuous rain series in a high temporal resolution are essential. As the length of the rainfall records is often short, particularly the data available with the temporal and regional resolutions required for urban hydrology, it is necessary to find some numerical representation of the precipitation phenomenon to generate long synthetic rainfall series. An Alternating Renewal Model (ARM) is applied for this purpose, which consists of two structures: external and internal. The former is the sequence of wet and dry spells, described by their durations which are simulated stochastically. The internal structure is characterized by the amount of rain corresponding to each wet spell and its distribution within the spell. A multivariate frequency analysis is applied to analyze the internal structure of the wet spells and to generate synthetic events. The stochastic time series must reproduce the statistical characteristics of observed high resolution precipitation measurements used to generate them. The spatio-temporal interdependencies between stations are addressed by resampling the continuous synthetic series based on the Simulated Annealing (SA) procedure. The state of Lower-Saxony and surrounding areas, located in the north-west of Germany is used to develop the ARM. A total of 26 rainfall stations with high temporal resolution records, i.e. rainfall data every 5 minutes, are used to define the events, find the most suitable probability distributions, calibrate the corresponding parameters, simulate long synthetic series and evaluate the results. The length of the available data ranges from 10 to 20 years. The rainfall series involved in the different steps of calculation are compared using a rainfall-runoff model to simulate the runoff behavior in urban areas. The EPA Storm Water Management Model (SWMM) is applied for this evaluation. The results show a good representation of the

  17. Comparative analysis and supragenome modeling of twelve Moraxella catarrhalis clinical isolates

    Directory of Open Access Journals (Sweden)

    Hermans Peter WM

    2011-01-01

    Full Text Available Abstract Background M. catarrhalis is a gram-negative, gamma-proteobacterium and an opportunistic human pathogen associated with otitis media (OM and exacerbations of chronic obstructive pulmonary disease (COPD. With direct and indirect costs for treating these conditions annually exceeding $33 billion in the United States alone, and nearly ubiquitous resistance to beta-lactam antibiotics among M. catarrhalis clinical isolates, a greater understanding of this pathogen's genome and its variability among isolates is needed. Results The genomic sequences of ten geographically and phenotypically diverse clinical isolates of M. catarrhalis were determined and analyzed together with two publicly available genomes. These twelve genomes were subjected to detailed comparative and predictive analyses aimed at characterizing the supragenome and understanding the metabolic and pathogenic potential of this species. A total of 2383 gene clusters were identified, of which 1755 are core with the remaining 628 clusters unevenly distributed among the twelve isolates. These findings are consistent with the distributed genome hypothesis (DGH, which posits that the species genome possesses a far greater number of genes than any single isolate. Multiple and pair-wise whole genome alignments highlight limited chromosomal re-arrangement. Conclusions M. catarrhalis gene content and chromosomal organization data, although supportive of the DGH, show modest overall genic diversity. These findings are in stark contrast with the reported heterogeneity of the species as a whole, as wells as to other bacterial pathogens mediating OM and COPD, providing important insight into M. catarrhalis pathogenesis that will aid in the development of novel therapeutic regimens.

  18. Evaluation of Rainfall-Runoff Models for Mediterranean Subcatchments

    Science.gov (United States)

    Cilek, A.; Berberoglu, S.; Donmez, C.

    2016-06-01

    The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA), a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.

  19. Erosivity of rainfall in Lages, Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Jefferson Schick

    2014-12-01

    Full Text Available The erosive capacity of rainfall can be expressed by an index and knowing it allows recommendation of soil management and conservation practices to reduce water erosion. The objective of this study was to calculate various indices of rainfall erosivity in Lages, Santa Catarina, Brazil, identify the best one, and discover its temporal distribution. The study was conducted at the Center of Agricultural and Veterinary Sciences, Lages, Santa Catarina, using daily rainfall charts from 1989 to 2012. Using the computer program Chuveros , 107 erosivity indices were obtained, which were based on maximum intensity in 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120, 135, 150, 165, 180, 210, and 240 min of duration and on the combination of these intensities with the kinetic energy obtained by the equations of Brown & Foster, Wagner & Massambani, and Wischmeier & Smith. The indices of the time period from 1993 to 2012 were correlated with the respective soil losses from the standard plot of the Universal Soil Loss Equation (USLE in order to select the erosivity index for the region. Erosive rainfall accounted for 83 % of the mean annual total volume of 1,533 mm. The erosivity index (R factor of rainfall recommended for Lages is the EI30, whose mean annual value is 5,033 MJ mm ha-1 h-1, and of this value, 66 % occurs from September to February. Mean annual erosivity has a return period estimated at two years with a 50 % probability of occurrence.

  20. Space–Time Characterization of Rainfall Field in Tuscany

    Directory of Open Access Journals (Sweden)

    Alessandro Mazza

    2017-01-01

    Full Text Available Precipitation during the period 2001–2016 over the northern and central part of Tuscany was studied in order to characterize the rainfall regime. The dataset consisted of hourly cumulative rainfall series recorded by a network of 801 rain gauges. The territory was divided into 30 × 30 km2 square areas where the annual and seasonal Average Cumulative Rainfall (ACR and its uncertainty were estimated using the Non-Parametric Ordinary Block Kriging (NPOBK technique. The choice of area size was a compromise that allows a satisfactory spatial resolution and an acceptable uncertainty of ACR estimates. The daily ACR was estimated using a less computationally expensive technique, averaging the cumulative rainfall measurements in the area. The trend analysis of annual and seasonal ACR time series was performed by means of the Mann–Kendall test. Four climatic zones were identified: the north-western was the rainiest, followed by the north-eastern, northcentral and south-central. An overall increase in precipitation was identified, more intense in the north-west, and determined mostly by the increase in winter precipitation. On the entire territory, the number of rainy days, mean precipitation intensity and sum of daily ACR in four intensity groups were evaluated at annual and seasonal scale. The main result was a magnitude of the ACR trend evaluated as 35 mm/year, due mainly to an increase in light and extreme precipitations. This result is in contrast with the decreasing rainfall detected in the past decades.

  1. Distributed modelling of shallow landslides triggered by intense rainfall

    Directory of Open Access Journals (Sweden)

    G. B. Crosta

    2003-01-01

    Full Text Available Hazard assessment of shallow landslides represents an important aspect of land management in mountainous areas. Among all the methods proposed in the literature, physically based methods are the only ones that explicitly includes the dynamic factors that control landslide triggering (rainfall pattern, land-use. For this reason, they allow forecasting both the temporal and the spatial distribution of shallow landslides. Physically based methods for shallow landslides are based on the coupling of the infinite slope stability analysis with hydrological models. Three different grid-based distributed hydrological models are presented in this paper: a steady state model, a transient "piston-flow" wetting front model, and a transient diffusive model. A comparative test of these models was performed to simulate landslide occurred during a rainfall event (27–28 June 1997 that triggered hundreds of shallow landslides within Lecco province (central Southern Alps, Italy. In order to test the potential for a completely distributed model for rainfall-triggered landslides, radar detected rainfall intensity has been used. A new procedure for quantitative evaluation of distributed model performance is presented and used in this paper. The diffusive model results in the best model for the simulation of shallow landslide triggering after a rainfall event like the one that we have analysed. Finally, radar data available for the June 1997 event permitted greatly improving the simulation. In particular, radar data allowed to explain the non-uniform distribution of landslides within the study area.

  2. EVALUATION OF RAINFALL-RUNOFF MODELS FOR MEDITERRANEAN SUBCATCHMENTS

    Directory of Open Access Journals (Sweden)

    A. Cilek

    2016-06-01

    Full Text Available The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA, a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.

  3. Projected climate change impacts in rainfall erosivity over Brazil.

    Science.gov (United States)

    Almagro, André; Oliveira, Paulo Tarso S; Nearing, Mark A; Hagemann, Stefan

    2017-08-15

    The impacts of climate change on soil erosion may bring serious economic, social and environmental problems. However, few studies have investigated these impacts on continental scales. Here we assessed the influence of climate change on rainfall erosivity across Brazil. We used observed rainfall data and downscaled climate model output based on Hadley Center Global Environment Model version 2 (HadGEM2-ES) and Model for Interdisciplinary Research On Climate version 5 (MIROC5), forced by Representative Concentration Pathway 4.5 and 8.5, to estimate and map rainfall erosivity and its projected changes across Brazil. We estimated mean values of 10,437 mm ha(-1) h(-1) year(-1) for observed data (1980-2013) and 10,089 MJ mm ha(-1) h(-1) year(-1) and 10,585 MJ mm ha(-1) h(-1) year(-1) for HadGEM2-ES and MIROC5, respectively (1961-2005). Our analysis suggests that the most affected regions, with projected rainfall erosivity increases ranging up to 109% in the period 2007-2040, are northeastern and southern Brazil. Future decreases of as much as -71% in the 2071-2099 period were estimated for the southeastern, central and northwestern parts of the country. Our results provide an overview of rainfall erosivity in Brazil that may be useful for planning soil and water conservation, and for promoting water and food security.

  4. Hazard assessment of rainfall-induced landsliding in mexico

    Science.gov (United States)

    Alcantara-Ayala, I.

    2004-07-01

    Rainfall-induced landsliding represents a major hazard in Mexico. About 200 municipalities in the states of Puebla, Veracruz and Hidalgo were affected by flooding and mass movement processes that resulted from a tropical depression from the Atlantic Ocean in October 1999. Hundreds of slope failures were triggered by intense precipitation, which in some localities reached 420 mm during a 24-h period. According to official information, 263 people died and 1 475 654 inhabitants were affected by flooding and landsliding. Rainfall event and cycle coefficient defined and the ratios between event and antecedent rainfalls, respectively, and the mean annual rainfall are summed to give a total coefficient. For landslide-triggering rainfalls in the Sierra Norte, values for the total coefficient of 0.8 and 0.4 for beginning and end of the wet season, respectively, appear to be important. In addition, a hazard assessment was carried out through the development of a landslide susceptibility indicator. This was elaborated by using aerial photographs, integrating field observations and the coupling of slope instability analysis within a digital elevation model framework. Field validation indicated that this approach provides a good representation of shallow translational failures; 81% of the observed landslides were satisfactorily predicted as potential unstable zones. Results suggested that this type of DEM-based hazard assessment can be extremely valuable not only after, but also before any landslide-related event, so that disaster preparedness and planning could be adequately structured.

  5. The impacts of Middle East dust on Indian summer rainfall

    Science.gov (United States)

    Jin, Q.; Yang, Z. L.; Wei, J.

    2014-12-01

    Using the Weather Research and Forecasting model with online chemistry (WRF-Chem), the impact of Middle East dust aerosols on the Indian summer monsoon rainfall was studied. Eight numerical experiments were conducted to take into account uncertainties related to dust-absorbing properties, various assumptions used in calculating aerosol optical depth (AOD), and various radiation schemes. In order to obtain reasonable dust emission, model-simulated AOD and radiation forcing at the top of the atmosphere were compared with multiple satellite- and surface-based observations. Consistent with observations, modeled results show heavy dust loadings in the Arabian Peninsula and Pakistan, which can be transported through long distance to the Arabian Sea and the Indian Peninsula. By heating the atmosphere in the lower troposphere over the Iranian Plateau, these dust aerosols result in strengthened Indian summer monsoon circulations, which in turn transport more water vapor to the Indian Peninsula. The model shows that northern India becomes wetter during the monsoon season in dust cases than non-dust cases. Further observational analyses show an increasing trend in AOD over the Arabian Peninsula, which corresponds to an increasing trend of rainfall in northern India during summer monsoon seasons from 2000 to 2013. These observed trends of AOD and rainfall are consistent with the model-simulated positive relationship between Middle East dust and Indian summer monsoon rainfall. Our results highlight long-term (decadal) impacts of Middle East dust aerosols on the Indian summer rainfall.

  6. Tree-ring reconstructed rainfall variability in Zimbabwe

    Science.gov (United States)

    Therrell, Matthew D.; Stahle, David W.; Ries, Lydia P.; Shugart, Herman H.

    2006-06-01

    We present the first tree-ring reconstruction of rainfall in tropical Africa using a 200-year regional chronology based on samples of Pterocarpus angolensis from Zimbabwe. The regional chronology is significantly correlated with summer rainfall (November-February) from 1901 to 1948, and the derived reconstruction explains 46% of the instrumental rainfall variance during this period. The reconstruction is well correlated with indices of the El Niño-southern oscillation (ENSO), and national maize yields. An aridity trend in instrumental rainfall beginning in about 1960 is partially reproduced in the reconstruction, and similar trends are evident in the nineteenth century. A decadal-scale drought reconstructed from 1882 to 1896 matches the most severe sustained drought during the instrumental period (1989-1995), and is confirmed in part by documentary evidence. An even more severe drought is indicated from 1859 to 1868 in both the tree-ring and documentary data, but its true magnitude is uncertain. A 6-year wet period at the turn of the nineteenth century (1897-1902) exceeds any wet episode during the instrumental era. The reconstruction exhibits spectral power at ENSO, decadal and multi-decadal frequencies. Composite analysis of global sea surface temperature during unusually wet and dry years also suggests a linkage between reconstructed rainfall and ENSO.

  7. Tree-ring reconstructed rainfall variability in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Therrell, Matthew D.; Ries, Lydia P.; Shugart, Herman H. [University of Virginia, Department of Environmental Sciences, Charlottesville, VA (United States); Stahle, David W. [University of Arkansas, Department of Geosciences, Fayetteville, AR (United States)

    2006-06-15

    We present the first tree-ring reconstruction of rainfall in tropical Africa using a 200-year regional chronology based on samples of Pterocarpus angolensis from Zimbabwe. The regional chronology is significantly correlated with summer rainfall (November-February) from 1901 to 1948, and the derived reconstruction explains 46% of the instrumental rainfall variance during this period. The reconstruction is well correlated with indices of the El Nino-southern oscillation (ENSO), and national maize yields. An aridity trend in instrumental rainfall beginning in about 1960 is partially reproduced in the reconstruction, and similar trends are evident in the nineteenth century. A decadal-scale drought reconstructed from 1882 to 1896 matches the most severe sustained drought during the instrumental period (1989-1995), and is confirmed in part by documentary evidence. An even more severe drought is indicated from 1859 to 1868 in both the tree-ring and documentary data, but its true magnitude is uncertain. A 6-year wet period at the turn of the nineteenth century (1897-1902) exceeds any wet episode during the instrumental era. The reconstruction exhibits spectral power at ENSO, decadal and multi-decadal frequencies. Composite analysis of global sea surface temperature during unusually wet and dry years also suggests a linkage between reconstructed rainfall and ENSO. (orig.)

  8. Sediment Load in Runoff Under Laboratory and Field Simulated Rainfall

    Institute of Scientific and Technical Information of China (English)

    JIN Ke; Wouter Schiettecatte; Koen Verbist; Donald Gabriels; Roger Hartmann; CAI Dian-xiong

    2004-01-01

    Soil erosion is one of the most important problems in the Loess Plateau of China affecting sustainable agriculture. Near Luoyang (Henan Province, China), field plots were constructed to measure soil erosion rates under conventional tillage practices using field-simulated rainfall. Field rainfall experiments were carried out to compare previous results from laboratory rainfall simulations on the same soil for interrill conditions. Although in the laboratory experiments, a strong correlation was found between the stream power of the runoff water and the unit sediment load, this sediment transport equation overestimated the field rainfall simulation results. Another sediment transport equation derived by Nearing et al. for rill erosion was in better agreement with the results of the field experiments, although it also overestimated these values. The measured sediment load values during the field rainfall simulations were also lower than those found during field experiments on the same soil but with a loosened surface layer. This difference indicates the importance of soil physical condition of surfce like soil structure and aggregate size, which may contribute to the discrepancy between the field and laboratory experiment results.

  9. Comparison of Two Stochastic Daily Rainfall Models and their Ability to Preserve Multi-year Rainfall Variability

    Science.gov (United States)

    Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George; Kiem, Anthony; Parana Manage, Nadeeka

    2016-04-01

    Stochastic simulation of rainfall is often required in the simulation of streamflow and reservoir levels for water security assessment. As reservoir water levels generally vary on monthly to multi-year timescales, it is important that these rainfall series accurately simulate the multi-year variability. However, the underestimation of multi-year variability is a well-known issue in daily rainfall simulation. Focusing on this issue, we developed a hierarchical Markov Chain (MC) model in a traditional two-part MC-Gamma Distribution modelling structure, but with a new parameterization technique. We used two parameters of first-order MC process (transition probabilities of wet-to-wet and dry-to-dry days) to simulate the wet and dry days, and two parameters of Gamma distribution (mean and standard deviation of wet day rainfall) to simulate wet day rainfall depths. We found that use of deterministic Gamma parameter values results in underestimation of multi-year variability of rainfall depths. Therefore, we calculated the Gamma parameters for each month of each year from the observed data. Then, for each month, we fitted a multi-variate normal distribution to the calculated Gamma parameter values. In the model, we stochastically sampled these two Gamma parameters from the multi-variate normal distribution for each month of each year and used them to generate rainfall depth in wet days using the Gamma distribution. In another study, Mehrotra and Sharma (2007) proposed a semi-parametric Markov model. They also used a first-order MC process for rainfall occurrence simulation. But, the MC parameters were modified by using an additional factor to incorporate the multi-year variability. Generally, the additional factor is analytically derived from the rainfall over a pre-specified past periods (e.g. last 30, 180, or 360 days). They used a non-parametric kernel density process to simulate the wet day rainfall depths. In this study, we have compared the performance of our

  10. Numerical analysis of rainfall effects in external overburden dump

    Institute of Scientific and Technical Information of China (English)

    Radhakanta Koner⇑; Debashish Chakravarty

    2016-01-01

    The effect of slope angle for external overburden dump in response to average and heavy rainfall has been analyzed using a two dimensional finite difference method of transient water flow through unsaturated–saturated soil. The external dump stability is evaluated for five geomaterial types on the basis of globally accepted safety factor analysis technique, based on shear strength reduction approach using finite differ-ence method. The results obtained from the finite difference method of analysis indicate that the external dump with more than 30? slope angle is greatly influenced by the rainfall under the studied conditions for geomaterial 3, 4 and 5, whereas dumps with geomaterial 1 and 2 remain safe. The analysis shows that major slope failure is out of preview for the studied rainfall conditions.

  11. Long range prediction of Indian summer monsoon rainfall

    Indian Academy of Sciences (India)

    A A Munot; K Krishna Kumar

    2007-02-01

    The search for new parameters for predicting the all India summer monsoon rainfall (AISMR) has been an important aspect of long range prediction of AISMR. In recent years NCEP/NCAR reanalysis has improved the geographical coverage and availability of the data and this can be easily updated. In this study using NCEP/NCAR reanalysis data on temperature, zonal and meridional wind at different pressure levels, few predictors are identified and a prediction scheme is developed for predicting AISMR. The regression coeffcients are computed by stepwise multiple regression procedure. The final equation explained 87% of the variance with multiple correlation coeffcient (MCC), 0.934. The estimated rainfall in the El-Nino year of 1997 was -1.7% as against actual of 4.4%. The estimated rainfall deficiency in both the recent deficient years of 2002 and 2004 were -19.5% and -8.5% as against observed -20.4% and -11.5% respectively.

  12. Effects of Mediterranean shrub species on rainfall interception

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Estringana, P.; Alonso-Blazquez, N.; Marques, M. J.; Bienes, R.; Alegre, J.

    2009-07-01

    Rainfall is intercepted by vegetation. Water intercepted could be evaporated, or it could drip from the leaves and stems to the soil or it could run down the stems to the base of the plant. In the Mediterranean, where water is a scant resource, interception loss could have an influence on hydrology. Water storage capacity depends on vegetation type. In the Mediterranean, there are many types of shrubs, and many of them are able to intercept large volumes of water depending on the shrub type. many lands of the Mediterranean basin of European Union have been abandoned in the last decades and consequently vegetation type changes too. This modifies hydrologic processes, changing the volume and the way in which the rainfall reaches the soil. The aim of this study was to characterize water storage capacity in 9 Mediterranean shrub species, working with the whole plant and comparing results obtained by two methods, rainfall simulation and submersion method in laboratory conditions. (Author) 12 refs.

  13. Geotechnical hazards from large earthquakes and heavy rainfalls

    CERN Document Server

    Kazama, Motoki; Lee, Wei

    2017-01-01

    This book is a collection of papers presented at the International Workshop on Geotechnical Natural Hazards held July 12–15, 2014, in Kitakyushu, Japan. The workshop was the sixth in the series of Japan–Taiwan Joint Workshops on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, held under the auspices of the Asian Technical Committee No. 3 on Geotechnology for Natural Hazards of the International Society for Soil Mechanics and Geotechnical Engineering. It was co-organized by the Japanese Geotechnical Society and the Taiwanese Geotechnical Society. The contents of this book focus on geotechnical and natural hazard-related issues in Asia such as earthquakes, tsunami, rainfall-induced debris flows, slope failures, and landslides. The book contains the latest information and mitigation technology on earthquake- and rainfall-induced geotechnical natural hazards. By dissemination of the latest state-of-the-art research in the area, the information contained in this book will help researchers, des...

  14. Migrating deformation in the Central Andes from enhanced orographic rainfall

    Science.gov (United States)

    Norton, Kevin; Schlunegger, Fritz

    2011-12-01

    Active shortening in the Central Andes shifted from the western to the eastern margin between 10-7Ma. Here we propose that this shift was primarily controlled by changes in erosion patterns. The uplift of the Andes blocked easterly winds, resulting in enhanced orographic rainfall on the eastern margin and reduced rainfall on the western margin. Lower erosion rates, associated with the arid conditions, caused the western margin to steepen inhibiting internal deformation and the migration of deformation to the eastern margin where it is active today. River channel profiles on the western margin are indicative of long-term transience from an older tectonic event whereas those on the eastern margin reflect ongoing coupled climatic-tectonic feedback. Both critical wedge theory and local-scale fault friction calculations support this interpretation. This work emphasizes the role that orographic rainfall and erosion can have on the orogen-scale development of mountain belts.

  15. Comparison of different types of medium scale field rainfall simulators

    Science.gov (United States)

    Dostál, Tomáš; Strauss, Peter; Schindewolf, Marcus; Kavka, Petr; Schmidt, Jürgen; Bauer, Miroslav; Neumann, Martin; Kaiser, Andreas; Iserloh, Thomas

    2015-04-01

    Rainfall simulators are used in numerous experiments to study runoff and soil erosion characteristics. However, they usually differ in their construction details, rainfall generation, plot size and other technical parameters. As field experiments using medium to large scale rainfall simulators (plot length 3 - 8 m) are very much time and labor consuming, close cooperation of individual teams and comparability of results is highly desirable to enlarge the database of results. Two experimental campaigns were organized to compare three field rainfall simulators of similar scale (plot size), but with different technical parameters. The results were then compared, to identify parameters that are crucial for soil loss and surface runoff formation and test if results from individual devices can be reliably compared. The rainfall simulators compared were: field rainfall simulator of CTU Prague (the Czech Republic) (Kavka et al., 2012; EGU2015-11025), field simulator of BAW (Austria) (Strauss et al., 2002) and field simulator of TU Bergakademie Freiberg (Germany) (Schindewolf & Schmidt 2012). The device of CTU Prague is usually applied to a plot size of 9,5 x 2 m employing 4 nozzles SS Full Jet 40WSQ mounted on folding arm, working pressure is 0.8 bar, height of nozzles is 2.65 m. The intensity of rainfall is regulated electronically, which leaves the nozzle opened only for certain time. The rainfall simulator of BAW is constructed as a modular system, which is usually applied for a length of 5 m (area 2 x 5 m), using 6 nozzles SS Full Jet 40WSQ. Usual working pressure is 0.25 bar. Elevation of nozzles is 2.6 m. The intensity of rainfall is regulated electronically, which leaves the nozzle opened only for certain time. The device of TU Bergakademie Freiberg is also standard modular system, working usually with a plot size of 3 x 1 m, using 3 oscillating VeeJet 80/100 nozzles with an usual operating pressure of 0.5 bar. Intensity is regulated by the frequency of sweeps above

  16. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    Science.gov (United States)

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  17. MODELLING OF SHORT DURATION RAINFALL (SDR INTENSITY EQUATIONS FOR ERZURUM

    Directory of Open Access Journals (Sweden)

    Serkan ŞENOCAK

    2007-01-01

    Full Text Available The scope of this study is to develop a rainfall intensity-duration-frequency (IDF equation for some return periods at Erzurum rainfall station. The maximum annual rainfall values for 5, 10, 15, 30 and 60 minutes are statistically analyzed for the period 1956 – 2004 by using some statistical distributions such as the Generalized Extreme Values (GEV, Gumbel, Normal, Two-parameter Lognormal, Three-parameter Lognormal, Gamma, Pearson type III and Log-Pearson type III distributions. ?2 goodness-of-fit test was used to choose the best statistical distribution among all distributions. IDF equation constants and coefficients of correlation (R for each emprical functions are calculated using nonlinear estimation method for each return periods (T = 2, 5, 10, 25, 50, 75 and 100 years. The most suitable IDF equation is observed that ( B max i (t = A/ t + C , except for T=100 years, because of the highest coefficients of correlation.

  18. A Regenerative Prediction Algorithm for Indian Rainfall Prediction

    Directory of Open Access Journals (Sweden)

    SEEMA MAHAJAN

    2013-11-01

    Full Text Available Rainfall forecasting is critical for the crop planning and water management strategies. Proposed study presents a novel approach for modelling time series precipitation data. The 51 years of Indian rainfall data is used for the development of the model. We use nonlinear predictive code based on 11th order with 240 coefficients. Coefficients are optimized using gradient descendent algorithm. Algorithm is tested using 40 years of rainfall training data. Prediction error tested outside training period is found less than1% for few months. Prediction period is extended to one year by including progressive predicted values in input samples using regenerative feedback algorithm. This model is applied for different training and testing periods with average error of 2% to 10%.

  19. Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System

    Science.gov (United States)

    Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum

    2017-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i

  20. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    Science.gov (United States)

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  1. Toxicity of parking lot runoff after application of simulated rainfall.

    Science.gov (United States)

    Greenstein, D; Tiefenthaler, L; Bay, S

    2004-08-01

    Stormwater runoff is an important source of toxic substances to the marine environment, but the effects of antecedent dry period, rainfall intensity, and duration on the toxicity of runoff are not well understood. In this study, simulated rainfall was applied to parking lots to examine the toxicity of runoff while controlling for antecedent period, intensity, and duration of rainfall. Parking areas were divided into high and low use and maintained and unmaintained treatments. The parking stalls were cleaned by pressure washing at time zero. Simulated rainfall was then applied to subplots of the parking lots so that antecedent periods of 1, 2, and 3 months were achieved, and all of the runoff was collected for analysis. On a separate parking lot, rainfall was applied at a variety of intensities and durations after a 3-month antecedent period. Runoff samples were tested for toxicity using the purple sea urchin fertilization test. Every runoff sample tested was found to be toxic. Mean toxicity for the sea urchin fertilization test ranged from 2.0 to 12.1 acute toxic units. The toxicity increased rapidly during the first month but then decreased approximately to precleaning levels and remained there. No difference in toxicity was found between the different levels of use or maintenance treatments. The intensity and duration of rainfall were inversely related to degree of toxicity. For all intensities tested, toxicity was always greatest in the first sampling time interval. Dissolved zinc was most likely the primary cause of toxicity based on toxicant characterization of selected runoff samples.

  2. Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences

    Science.gov (United States)

    Mailhot, A.; Talbot, G.; Lavallée, B.

    2015-04-01

    Combined Sewer Overflow (CSO) has been recognized as a major environmental issue in many countries. In Canada, the proposed reinforcement of the CSO frequency regulations will result in new constraints on municipal development. Municipalities will have to demonstrate that new developments do not increase CSO frequency above a reference level based on historical CSO records. Governmental agencies will also have to define a framework to assess the impact of new developments on CSO frequency and the efficiency of the various proposed measures to maintain CSO frequency at its historic level. In such a context, it is important to correctly assess the average number of days with CSO and to define relationships between CSO frequency and rainfall characteristics. This paper investigates such relationships using available CSO and rainfall datasets for Quebec. CSO records for 4285 overflow structures (OS) were analyzed. A simple model based on rainfall thresholds was developed to forecast the occurrence of CSO on a given day based on daily rainfall values. The estimated probability of days with CSO have been used to estimate the rainfall threshold value at each OS by imposing that the probability of exceeding this rainfall value for a given day be equal to the estimated probability of days with CSO. The forecast skill of this model was assessed for 3437 OS using contingency tables. The statistical significance of the forecast skill could be assessed for 64.2% of these OS. The threshold model has demonstrated significant forecast skill for 91.3% of these OS confirming that for most OS a simple threshold model can be used to assess the occurrence of CSO.

  3. Road accidents and rainfall in a large Australian city.

    Science.gov (United States)

    Keay, Kevin; Simmonds, Ian

    2006-05-01

    We investigate the impact of rainfall on daily road accidents in the metropolitan area of Melbourne, Australia, over 1987-2002. Our analysis from several viewpoints of the accident count, which has been normalised for variation in traffic volume, indicated that the effect of rainfall is multifaceted. Owing to a large non-linear trend a subdivision into three epochs (1987-1991, 1992-1996 and 1997-2002) was made. Nominal daytime and nighttime as well as 3h raw counts were available for the first two epochs only. Generally, the effect of rainfall across the epochs shows a tendency for larger values in autumn with smaller values in spring. For the daily, daytime and nighttime cases there is an approximate 40% decrease in both the volume-normalised dry and wet means from the first to second epoch. Since the second epoch is wetter than the first, and both dry and wet cases are affected in a similar way, then it appears that a non-weather influence is at work. It is suggested that law enforcement measures may be largely responsible. We obtained a conservative estimate of relative risk of an accident in wet conditions based on a matched-pair analysis of 3h dry and wet periods over the first two epochs (1987-1996). As with other studies we find that the risk is greater than unity in almost all cases suggesting that the presence of rainfall consistently represents a driving hazard. Rainfall occurring after a dry spell has an enhanced effect on the volume-normalised accident count as the spell duration increases. The effect of dry spells is more clearly described when broken down by rain class. Generally, there is an increase in the impact of a dry spell when it first rains as the spell duration and rainfall amount increase.

  4. The Effect of Rainfall Patterns on the Mechanisms of Shallow Slope Failure

    Directory of Open Access Journals (Sweden)

    Muhammad Suradi

    2014-04-01

    Full Text Available This paper examines how rainfall patterns affect the mechanisms of shallow slope failure. Numerical modelling, utilising the commercial software SVFlux and SVSlope, was carried out for a coupled analysis of rainfall-induced slope seepage and instability, with reference to a shallow landslide took place in Jabiru, Northern Territory (NT Australia in 2007. Rainfall events were varied in terms of pattern in this analysis. The results revealed that slopes are sensitive to rainfall pattern when the rainfall intensity has a high degree of fluctuation at around the same value as that of saturated hydraulic conductivity. Average rainfall intensity at the beginning of a rainfall period plays a primary role in determining the rate of decrease in initial factor of safety (Fi towards minimum factor of safety (Fmin. The effect of rainfall events on the slope instability is attributed to the amount of rainwater infiltration into slope associated with rainfall pattern.

  5. The relationship between the Guinea Highlands and the West African offshore rainfall maximum

    Science.gov (United States)

    Hamilton, H. L.; Young, G. S.; Evans, J. L.; Fuentes, J. D.; Núñez Ocasio, K. M.

    2017-01-01

    Satellite rainfall estimates reveal a consistent rainfall maximum off the West African coast during the monsoon season. An analysis of 16 years of rainfall in the monsoon season is conducted to explore the drivers of such copious amounts of rainfall. Composites of daily rainfall and midlevel meridional winds centered on the days with maximum rainfall show that the day with the heaviest rainfall follows the strongest midlevel northerlies but coincides with peak low-level moisture convergence. Rain type composites show that convective rain dominates the study region. The dominant contribution to the offshore rainfall maximum is convective development driven by the enhancement of upslope winds near the Guinea Highlands. The enhancement in the upslope flow is closely related to African easterly waves propagating off the continent that generate low-level cyclonic vorticity and convergence. Numerical simulations reproduce the observed rainfall maximum and indicate that it weakens if the African topography is reduced.

  6. How important is tropospheric humidity for coastal rainfall in the tropics?

    Science.gov (United States)

    Bergemann, Martin; Jakob, Christian

    2016-06-01

    Climate models show considerable rainfall biases in coastal tropical areas, where approximately 33% of the overall rainfall received is associated with coastal land-sea interaction. Building on an algorithm to objectively identify rainfall that is associated with land-sea interaction we investigate whether the relationship between rainfall in coastal regions and atmospheric humidity differs from that over the open ocean or over inland areas. We combine 3-hourly satellite estimates of rainfall with humidity estimates from reanalyses and investigate if coastal rainfall reveals the well-known relationship between area-averaged precipitation and column-integrated moisture. We find that rainfall that is associated with coastal land-sea effects occurs under much drier midtropospheric conditions than that over the ocean and does not exhibit a pronounced critical value of humidity. In addition, the dependence of the amount of rainfall on midtropospheric moisture is significantly weaker when the rainfall is coastally influenced.

  7. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network

    Science.gov (United States)

    Overeem, Aart; Uijlenhoet, Remko; Leijnse, Hidde

    2016-04-01

    Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide rainfall maps can be derived from the signal attenuations of microwave links in such a network. We present a rainfall retrieval algorithm, which is employed to obtain rainfall maps from microwave links in a cellular communication network. We compare these rainfall maps to gauge-adjusted radar rainfall maps. The microwave link data set, as well as the developed code, a package in the open source scripting language "R", are freely available at GitHub (https://github.com/overeem11/RAINLINK). The purpose of this presentation is to promote rainfall mapping utilizing microwave links from cellular communication networks as an alternative or complementary means for continental-scale rainfall monitoring.

  8. A dependence modelling study of extreme rainfall in Madeira Island

    Science.gov (United States)

    Gouveia-Reis, Délia; Guerreiro Lopes, Luiz; Mendonça, Sandra

    2016-08-01

    The dependence between variables plays a central role in multivariate extremes. In this paper, spatial dependence of Madeira Island's rainfall data is addressed within an extreme value copula approach through an analysis of maximum annual data. The impact of altitude, slope orientation, distance between rain gauge stations and distance from the stations to the sea are investigated for two different periods of time. The results obtained highlight the influence of the island's complex topography on the spatial distribution of extreme rainfall in Madeira Island.

  9. Resolving orographic rainfall on the Indian west coast

    Digital Repository Service at National Institute of Oceanography (India)

    Suprit, K.; Shankar, D.

    consequence of the small scale of these west-coast rivers. This need for estimating the freshwater discharge into the seas around India led Shankar et al. (2004) to assemble a framework for estimating river discharge. The framework was based on Terrestrial... at various spatial and temporal scales. Some of these data sets are based on rain-gauge measurements and some on satellite estimates; some of them use model- derived reanalysis data. We tested three available rainfall data sets to see if these rainfall data...

  10. Understanding extreme rainfall events in Australia through historical data

    Science.gov (United States)

    Ashcroft, Linden; Karoly, David John

    2016-04-01

    Historical climate data recovery is still an emerging field in the Australian region. The majority of Australia's instrumental climate analyses begin in 1900 for rainfall and 1910 for temperature, particularly those focussed on extreme event analysis. This data sparsity for the past in turn limits our understanding of long-term climate variability, constraining efforts to predict the impact of future climate change. To address this need for improved historical data in Australia, a new network of recovered climate observations has recently been developed, centred on the highly populated southeastern Australian region (Ashcroft et al., 2014a, 2014b). The dataset includes observations from more than 39 published and unpublished sources and extends from British settlement in 1788 to the formation of the Australian Bureau of Meteorology in 1908. Many of these historical sources provide daily temperature and rainfall information, providing an opportunity to improve understanding of the multidecadal variability of Australia's extreme events. In this study we combine the historical data for three major Australian cities - Melbourne, Sydney and Adelaide - with modern observations to examine extreme rainfall variability over the past 174 years (1839-2013). We first explore two case studies, combining instrumental and documentary evidence to support the occurrence of severe storms in Sydney in 1841 and 1844. These events appear to be at least as extreme as Sydney's modern 24-hour rainfall record. Next we use a suite of rainfall indices to assess the long-term variability of rainfall in southeastern Australia. In particular, we focus on the stationarity of the teleconnection between the El Niño-Southern Oscillation (ENSO) phenomenon and extreme rainfall events. Using ENSO reconstructions derived from both palaeoclimatic and documentary sources, we determine the historical relationship between extreme rainfall in southeastern Australia and ENSO, and examine whether or not this

  11. Potential of deterministic and geostatistical rainfall interpolation under high rainfall variability and dry spells: case of Kenya's Central Highlands

    Science.gov (United States)

    Kisaka, M. Oscar; Mucheru-Muna, M.; Ngetich, F. K.; Mugwe, J.; Mugendi, D.; Mairura, F.; Shisanya, C.; Makokha, G. L.

    2016-04-01

    Drier parts of Kenya's Central Highlands endure persistent crop failure and declining agricultural productivity. These have, in part, attributed to high temperatures, prolonged dry spells and erratic rainfall. Understanding spatial-temporal variability of climatic indices such as rainfall at seasonal level is critical for optimal rain-fed agricultural productivity and natural resource management in the study area. However, the predominant setbacks in analysing hydro-meteorological events are occasioned by either lack, inadequate, or inconsistent meteorological data. Like in most other places, the sole sources of climatic data in the study region are scarce and only limited to single stations, yet with persistent missing/unrecorded data making their utilization a challenge. This study examined seasonal anomalies and variability in rainfall, drought occurrence and the efficacy of interpolation techniques in the drier regions of eastern Kenyan. Rainfall data from five stations (Machang'a, Kiritiri, Kiambere and Kindaruma and Embu) were sourced from both the Kenya Meteorology Department and on-site primary recording. Owing to some experimental work ongoing, automated recording for primary dailies in Machang'a have been ongoing since the year 2000 to date; thus, Machang'a was treated as reference (for period of record) station for selection of other stations in the region. The other stations had data sets of over 15 years with missing data of less than 10 % as required by the world meteorological organization whose quality check is subject to the Centre for Climate Systems Modeling (C2SM) through MeteoSwiss and EMPA bodies. The dailies were also subjected to homogeneity testing to evaluate whether they came from the same population. Rainfall anomaly index, coefficients of variance and probability were utilized in the analyses of rainfall variability. Spline, kriging and inverse distance weighting interpolation techniques were assessed using daily rainfall data and

  12. Canopy interception during rainfall, storm break time and after cessation of rainfall: experimental study using artificial Christmas trees

    Science.gov (United States)

    Murakami, Shigeki

    2017-04-01

    Evaporation of canopy interception can be divided into three phases: evaporation during rainfall IR, storm break time when it stops raining temporarily ISbt, and after cessation of rainfall IAft. In this study, IR, ISbt, and IAft were measured using model forests, i.e. plastic Christmas tree stands. The method and preliminary results are described in Murakami and Toba (2013). Christmas trees with original height of 65 cm (small tree) and 150 cm (large tree) were placed on three trays. Small trees were set on Tray #1. The same trees with height of 110 cm (extended using plastic rod) were placed on Tray #2, and large trees with height of 240 cm (raised using iron pipe) were set on Tray #3. The dimension of Tray #1 and #2 were a 180-cm square, and Tray #3 was a 360-cm square. Measurement was conducted under natural rainfall. Gross rainfall and net rainfall of each tray (discharge from each tray), in addition to single tree weight on Tray #1 and #3 were measured. Initial tree density of each tray was 41 trees per tray. Thinning was conducted in the middle of the experiment period and it was reduced to 25 trees per tray on Tray #2 and #3, but Tray #1 was unthinned. Total rainfall for pre-thinning period was 204.2 mm with 16 rain events and canopy interception CI was 10.8% (22.0 mm), 13.9% (28.3 mm) and 16.3% (33.4 mm) of rainfall for Tray #1, #2 and #3, respectively. Amount of rainfall for after thinning period was 291.5 mm with 24 rain events and canopy interception was 12.7% (40.0 mm), 21.7% (63.3 mm) and 13.6% (39.7 mm) of rainfall for Tray #1, #2 and #3, respectively. It is noteworthy that canopy interception increased on Tray #2 after thinning. IR, ISbt, and IAft were calculated for each tray using gross rainfall, net rainfall and the weight of single tree. Before thinning the value of IR/CI was 67.3% to74.9% and IAft occupied the remaining part of CI with ISbt/CI being nearly equal to zero. After thinning, IR/CI ranged from 65.3% to 93.8%. Both before and after

  13. Mean annual water-budget components for the Island of Oahu, Hawaii, for drought conditions, 1998-2002 rainfall and 2010 land cover

    Science.gov (United States)

    Engott, John A.

    2015-01-01

    The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of drought conditions (1998-2002 rainfall) and 2010 land cover, as described in USGS Scientific Investigations Report (SIR) 2015-5010. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model subareas were generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets that characterize the spatial distribution of rainfall, fog interception, irrigation, reference evapotranspiration, direct runoff, soil type, and land cover. These spatial data sets characterize the spatial distribution of hydrologic and physical conditions that the model uses to compute groundwater recharge and other water-budget components.The model-subarea data set (387,533 polygons) was subsequently intersected with the 0-ft elevation contour of the top of the basalt aquifer to produce the 395,955 polygons in this shapefile. This metadata file describes the process of merging these spatial data sets, The shapefile attribute information associated with each polygon present an estimate of mean annual rainfall, fog interception, irrigation, septic-system leachate, runoff, canopy evaporation, actual evapotranspiration, storm-drain capture, net precipitation, total evapotranspiration, recharge, and seepage from reservoirs and cesspools. This shapefile also includes select geographic and land-cover attributes of the polygons. Brief descriptions of the water-budget components and attributes are included in this metadata file. Refer to USGS SIR 2015-5010 (doi:10.3133/sir20155010) for further details of the methods and sources used to determine these components and attributes.

  14. Mean annual water-budget components for the Island of Oahu, Hawaii, for average climate conditions, 1978-2007 rainfall and 2010 land cover

    Science.gov (United States)

    Engott, John A.

    2015-01-01

    The shapefile associated with this metadata file represents the spatial distribution of mean annual water-budget components, in inches, for the Island of Oahu, Hawaii. The water-budget components in the shapefile were computed by a water-budget model for a scenario representative of average climate conditions (1978-2007 rainfall) and 2010 land cover, as described in USGS Scientific Investigations Report (SIR) 2015-5010. The model was developed for estimating groundwater recharge and other water-budget components for each subarea of the model. The model subareas were generated using Esri ArcGIS software by intersecting (merging) multiple spatial data sets that characterize the spatial distribution of rainfall, fog interception, irrigation, reference evapotranspiration, direct runoff, soil type, and land cover. These spatial data sets characterize the spatial distribution of hydrologic and physical conditions that the model uses to compute groundwater recharge and other water-budget components.The model-subarea data set (387,533 polygons) was subsequently intersected with the 0-ft elevation contour of the top of the basalt aquifer to produce the 395,955 polygons in this shapefile. This metadata file describes the process of merging these spatial data sets, The shapefile attribute information associated with each polygon present an estimate of mean annual rainfall, fog interception, irrigation, septic-system leachate, runoff, canopy evaporation, actual evapotranspiration, storm-drain capture, net precipitation, total evapotranspiration, recharge, and seepage from reservoirs and cesspools. This shapefile also includes select geographic and land-cover attributes of the polygons. Brief descriptions of the water-budget components and attributes are included in this metadata file. Refer to USGS SIR 2015-5010 (doi:10.3133/sir20155010) for further details of the methods and sources used to determine these components and attributes.

  15. Rainfall variation and child health: effect of rainfall on diarrhea among under 5 children in Rwanda, 2010.

    Science.gov (United States)

    Mukabutera, Assumpta; Thomson, Dana; Murray, Megan; Basinga, Paulin; Nyirazinyoye, Laetitia; Atwood, Sidney; Savage, Kevin P; Ngirimana, Aimable; Hedt-Gauthier, Bethany L

    2016-08-05

    Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitation measurements collected between 2009 and 2011. Using these data and the 2010 Rwanda Demographic and Health Survey database, we measured the association between total monthly rainfall, monthly rainfall intensity, runoff water and anomalous rainfall and the occurrence of diarrhea in children under 5 years of age. Among the 8601 children under 5 years of age included in the survey, 13.2 % reported having diarrhea within the 2 weeks prior to the survey. We found that higher levels of runoff were protective against diarrhea compared to low levels among children who lived in households with unimproved toilet facilities (OR = 0.54, 95 % CI: [0.34, 0.87] for moderate runoff and OR = 0.50, 95 % CI: [0.29, 0.86] for high runoff) but had no impact among children in household with improved toilets. Our finding that children in households with unimproved toilets were less likely to report diarrhea during periods of high runoff highlights the vulnerabilities of those living without adequate sanitation to the negative health impacts of environmental events.

  16. Rainfall analysis for Indian monsoon region using the merged rain gauge observations and satellite estimates: Evaluation of monsoon rainfall features

    Indian Academy of Sciences (India)

    S K Roy Bhowmik; Ananda K Das

    2007-06-01

    Objective analysis of daily rainfall at the resolution of 1° grid for the Indian monsoon region has been carried out merging dense land rainfall observations and INSAT derived precipitation estimates. This daily analysis, being based on high dense rain gauge observations was found to be very realistic and able to reproduce detailed features of Indian summer monsoon. The inter-comparison with the observations suggests that the new analysis could distinctly capture characteristic features of the summer monsoon such as north–south oriented belt of heavy rainfall along the Western Ghats with sharp gradient of rainfall between the west coast heavy rain region and the rain shadow region to the east, pockets of heavy rainfall along the location of monsoon trough/low, over the east central parts of the country, over north–east India, along the foothills of Himalayas and over the north Bay of Bengal. When this product was used to assess the quality of other available standard climate products (CMAP and ECMWF reanalysis) at the grid resolution of 2.5°, it was found that the orographic heavy rainfall along Western Ghats of India was poorly identified by them. However, the GPCC analysis (gauge only) at the resolution of 1° grid closely discerns the new analysis. This suggests that there is a need for a higher resolution analysis with adequate rain gauge observations to retain important aspects of the summer monsoon over India. The case studies illustrated show that the daily analysis is able to capture large-scale as well as mesoscale features of monsoon precipitation systems. This study with data of two seasons (2001 and 2003) has shown sufficiently promising results for operational application, particularly for the validation of NWP models.

  17. Twelve-year cyclic surging episode at Donjek Glacier in Yukon, Canada

    Science.gov (United States)

    Furuya, M.; Abe, T.; Sakakibara, D.

    2015-12-01

    Surge-type glaciers exhibit several-fold to orders-of-magnitude speed-up during the short active phase, resulting in km-scale terminus advance. Although there are many surge-type glaciers near the border of Alaska and the Yukon, the generation mechanisms remain uncertain because of limited and few continuous observations. To better understand the surge dynamics and predict the next event, it is essential to examine the entire surge cycles. Here we use Landsat optical imageries to reveal the long-term evolutions, and report three surging episodes at Donjek Glacier in Yukon, Canada. Using the Landsat images, we found three surging events in 1989, 2001, and 2013. In the 2001 event, the surface speed significantly increased by up to 4.5 m/d; during the quiescent phases it was ~0.5 m/d at the terminus. While the duration of active phase is about 4~5 and 2~3 year in the 2001 and 2013 events, the period in the 1989 event is unclear because of the lack of high temporal resolution data. Remarkably, the surging area is limited to the ~20-km section from the terminus instead of the entire glacier. Moreover, we examined the terminus area changes from 1975 to 2014. Although the area has been secularly decreasing probably due to the tread of global warming, it has also revealed four significant fluctuations during the nearly forty years. Comparing the speed and the area changes, the three speed-up events correspond to the terminus area fluctuations with a few time lags. It turns out that the surge event has been quite regularly repeating every twelve years. Although the behavior is rather similar to that in Svalbard glaciers in terms of maximum speed and unclear initiation season, the recurrence interval is much shorter than other nearby surges. Considering that the surge events seem to have initiated around significantly narrower area than upstream, the strong valley constriction may control the regularity as well as the twelve-year recurrence time.

  18. Theoretical framework to estimate spatially averaged rainfalls conditional on river discharges and point rainfall measurements from a single location: an application to Western Greece

    Directory of Open Access Journals (Sweden)

    A. Langousis

    2012-11-01

    Full Text Available We focus on the special case of catchments covered by a single raingauge, and develop a theoretical framework to obtain estimates of spatial rainfall averages conditional on rainfall measurements from a single location, and the flow conditions at the catchment outlet. In doing so we use: (a statistical tools to identify and correct inconsistencies between daily rainfall occurrence and amount and the flow conditions at the outlet of the basin, (b concepts from multifractal theory to relate the fraction of wet intervals in point rainfall measurements and that in spatial rainfall averages, while accounting for the shape and size of the catchment, the size, lifetime and advection velocity of rainfall generating features and the location of the raingauge inside the basin, and (c semi-theoretical arguments to assure consistency between rainfall and runoff volumes at an inter-annual level, implicitly accounting for spatial heterogeneities of rainfall caused by orographic influences. In an application study, using point rainfall records from Glafkos river basin in Western Greece, we find the suggested approach to demonstrate significant skill in resolving rainfall-runoff incompatibilities at a daily level, while reproducing the statistics of spatial rainfall averages at both monthly and annual time scales, independently of the location of the raingauge and the magnitude of the observed deviations between point rainfall measurements and spatial rainfall averages. The developed scheme should serve as an important tool for the effective calibration of rainfall-runoff models in basins covered by a single raingauge and, also, improve hydrologic impact assessment at a river basin level under changing climatic conditions.

  19. Rainfall-runoff mechanisms on a hill-island

    DEFF Research Database (Denmark)

    Frederiksen, Rasmus Rumph; Rasmussen, Keld Rømer; Christensen, Steen

    - map the shallow subsurface in more detail - choose appropriate locations for further monitoring of discharge at different spatial scales - monitor hydraulic head variations and quantify hydraulic parameters - build a model for analysis of rainfall-runoff processes in this particular hydrogeological...

  20. Fuzzy committees of specialised rainfall-runoff models: further enhancements

    NARCIS (Netherlands)

    Kayastha, N.; Ye, J.; Fenicia, F.; Solomatine, D.P.

    2013-01-01

    Often a single hydrological model cannot capture the details of a complex rainfall-runoff relationship, and a possibility here is building specialised models to be responsible for a particular aspect of this relationship and combining them forming a committee model. This study extends earlier work o

  1. Physically based modelling of rainfall-runoff processes

    NARCIS (Netherlands)

    Diermanse, F.L.M.

    2001-01-01

    This PhD. research was set up to investigate the use of rainfall-runoff models for simulation of high water events in hillslope areas. First, dominant parameters for runoff production during high water events have been identified. Subsequently, the influence of antecedent conditions on runoff percen

  2. Real Rainfall Time Series for Storm Sewer Design

    DEFF Research Database (Denmark)

    Larsen, Torben

    1981-01-01

    This paper describes a simulation method for the design of retention storages, overflows etc. in storm sewer systems. The method is based on computer simulation with real real rainfall time series as input and with a simple transfer model of the ARMA-type (Autoregressive moving average) applied...

  3. Real Rainfall Time Series for Storm Sewer Design

    DEFF Research Database (Denmark)

    Larsen, Torben

    The paper describes a simulation method for the design of retention storages, overflows etc. in storm sewer systems. The method is based on computer simulation with real rainfall time series as input ans with the aply of a simple transfer model of the ARMA-type (autoregressiv moving average model...

  4. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  5. Seasonal rainfall predictability over the Lake Kariba catchment area

    CSIR Research Space (South Africa)

    Muchuru, S

    2014-07-01

    Full Text Available are a significant aspect of the catchment. To determine the predictability of seasonal rainfall totals over the Lake Kariba catchment area, this study used the low-level atmospheric circulation (850 hPa geopotential height fields) of a coupled ocean...

  6. Hydrometeorological and Statistical Analyses of Heavy Rainfall in Midwestern USA

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Smith, J. A.; Krajewski, W. F.

    2012-01-01

    During the last two decades the mid-western states of the United States of America has been largely afflicted by heavy flood producing rainfall. Several of these storms seem to have similar hydrometeorological properties in terms of pattern, track, evolution, life cycle, clustering, etc. which rais...

  7. Interpolation of daily rainfall using spatiotemporal models and clustering

    KAUST Repository

    Militino, A. F.

    2014-06-11

    Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.

  8. Preliminary results on uncertainties in rainfall interception estimation

    Energy Technology Data Exchange (ETDEWEB)

    Muzylo, A.; Llorens, P.; Domingo, F.; Valente, Fe.; Beven, K.; Gallart, F.

    2009-07-01

    This work deals with some aspects of rainfall interception estimation uncertainty in a deciduous forest. The importance of interception loss measurement error is stressed. Confidence limits of Rutter original and sparse interception model parameters obtained from regressions for leafed and leafless period are presented, as well as free throughfall coefficient variability with event weather conditions. (Author) 8 refs.

  9. Trends in rainfall and temperature extremes in Morocco

    Directory of Open Access Journals (Sweden)

    K. Khomsi

    2015-02-01

    Full Text Available In Morocco, socioeconomic fields are vulnerable to weather extreme events. This work aims to analyze the frequency and the trends of temperature and rainfall extreme events in two contrasted Moroccan regions (the Tensift in the semi-arid South, and the Bouregreg in the sub-humid North, during the second half of the 20th century. This study considers long time series of daily extreme temperatures and rainfall, recorded in the stations of Marrakech and Safi for the Tensift region, and Kasba-Tadla and Rabat-Sale for the Bouregreg region, data from four other stations (Tanger, Fes, Agadir and Ouarzazate from outside the regions were added. Extremes are defined by using as thresholds the 1st, 5th, 90th, 95th, and 99th percentiles. Results show upward trends in maximum and minimum temperatures of both regions and no generalized trends in rainfall amounts. Changes in cold events are larger than those for warm events, and the number of very cold events decrease significantly in the whole studied area. The southern region is the most affected with the changes of the temperature regime. Most of the trends found in rainfall heavy events are positive with weak magnitudes even though no statistically significant generalized trends could be identified during both seasons.

  10. Exploring Aerosol Effects on Rainfall for Brisbane, Australia

    Directory of Open Access Journals (Sweden)

    Michael Hewson

    2013-10-01

    Full Text Available The majority of studies assessing aerosol effects on rainfall use coarse spatial scale (1° latitude/longitude or more and multi-seasonal or decadal data sets. Here, we present results from a spatial correlation of aerosol size distribution and rain rate for selected stratiform and cumuliform precipitation events. The chemistry transport version of the Weather Research and Forecasting model was used to estimate aerosol parameters during rain events Aerosol maps were then compared with observations of rainfall using geostatistics for the first time. The cross-variogram analysis showed that anthropogenic aerosol was associated with areas of less intense rain within the stratiform system studied. For cumuliform systems, cross-variogram analysis found that anthropogenic emissions may be associated with enhanced rain downwind of aerosol emissions. We conclude that geostatistics provides a promising new technique to investigate relationships between aerosols and rainfall at spatial scales of 1 km which complements more commonly used methods to study aerosol effects on rainfall.

  11. Real Time Updating in Distributed Urban Rainfall Runoff Modelling

    DEFF Research Database (Denmark)

    Borup, Morten; Madsen, Henrik

    When it rains on urban areas the rainfall runoff is transported out of the city via the drainage system. Frequently, the drainage system cannot handle all the rain water, which results in problems like flooding or overflows into natural water bodies. To reduce these problems the systems...

  12. The Importance of Rainfall Distribution in Urban Drainage Operation

    DEFF Research Database (Denmark)

    Nelen, Fons; Mooijman, Annemarieke; Jacobsen, Per

    1992-01-01

    A control simulation model, called LOCUS, is used to investigate the effects of spatially distributed rain and the possibilities to benefit from this phenomenon by means of real time control. The study is undertaken for a catchment in Copenhagen, where rainfall is measured with a network of 8 rai...

  13. Investigating rainfall estimation from radar measurements using neural networks

    Directory of Open Access Journals (Sweden)

    A. Alqudah

    2013-03-01

    Full Text Available Rainfall observed on the ground is dependent on the four dimensional structure of precipitation aloft. Scanning radars can observe the four dimensional structure of precipitation. Neural network is a nonparametric method to represent the nonlinear relationship between radar measurements and rainfall rate. The relationship is derived directly from a dataset consisting of radar measurements and rain gauge measurements. The performance of neural network based rainfall estimation is subject to many factors, such as the representativeness and sufficiency of the training dataset, the generalization capability of the network to new data, seasonal changes, and regional changes. Improving the performance of the neural network for real time applications is of great interest. The goal of this paper is to investigate the performance of rainfall estimation based on Radial Basis Function (RBF neural networks using radar reflectivity as input and rain gauge as the target. Data from Melbourne, Florida NEXRAD (Next Generation Weather Radar ground radar (KMLB over different years along with rain gauge measurements are used to conduct various investigations related to this problem. A direct gauge comparison study is done to demonstrate the improvement brought in by the neural networks and to show the feasibility of this system. The principal components analysis (PCA technique is also used to reduce the dimensionality of the training dataset. Reducing the dimensionality of the input training data will reduce the training time as well as reduce the network complexity which will also avoid over fitting.

  14. Quantifying rainfall-runoff relationships on the Mieso Hypo Calcic ...

    African Journals Online (AJOL)

    2012-04-17

    Apr 17, 2012 ... water storage capacity (Botha, et al., 2003; Botha, 2006). Rainfall in ... dicted runoff from crusted soils in Arizona (Morin and Cluff,. 1980), and in Israel .... intervals by an automatic tipping-bucket rain gauge (Hobo. Event (C) ...

  15. Seasonal rainfall predictability over the Lake Kariba catchment area

    African Journals Online (AJOL)

    2013-10-24

    Oct 24, 2013 ... an extreme range of conditions across the catchment and through time. Marked ..... system for seasonal rainfall downscaling (Landman et al.,. 2012; Landman and ..... and Zambia issued flood warnings to districts adjacent to the .... pled atmosphere–ocean general circulation model. Mon. Weather. Rev.

  16. Recent findings with rainfall monitoring by cellular communication systems

    Science.gov (United States)

    Alpert, P.; Rayitsfeld, A.; David, N.; Goldshtein, O.; Messer, H.; Zinevich, A.

    2009-04-01

    We will demonstrate how 19 rainfall storms from recent two full winter seasons over south Israel are analyzed with high-resolution (1 minute time interval) data from a cellular network. New insight into the hydrological applications from this new source on rainfall, including flood warning, is given by this source of data and compared to classical methods based on rain-gauges and radar. One case of flooding in 2008 over the Judea Desert, central Israel, will be analyzed. Global spread of wireless networks brings a great opportunity for their use in environmental studies. Weather, atmospheric conditions and constituents cause propagation impairments on radio links. As such, wireless communication systems provide built-in monitoring capabilities, and can be considered as a widespread distributed, high-resolution atmospheric observation network, operating in real time, with minimum supervision and with almost no additional cost. Here, we demonstrate how standard measurements of the received signal level, made in a cellular network, provide reliable measurements for surface rainfall. We compare the estimated rainfall intensity with the radar and rain gauge measurements.

  17. Are global mangrove carbon stocks driven by rainfall?

    Science.gov (United States)

    Sanders, Christian J.; Maher, Damien T.; Tait, Douglas R.; Williams, Darren; Holloway, Ceylena; Sippo, James Z.; Santos, Isaac R.

    2016-10-01

    Mangrove forests produce significant amounts of organic carbon and maintain large carbon stocks in tidally inundated, anoxic soils. This work analyzes new and published data from 17 regions spanning a latitudinal gradient from 22°N to 38°S to assess some of the global drivers (temperature, tidal range, latitude, and rainfall) of mangrove carbon stocks. Mangrove forests from the tropics have larger carbon stocks (895 ± 90 t C ha-1) than the subtropics and temperate regions (547 ± 66 t C ha-1). A multiple regression model showed that 86% of the observed variability is associated with annual rainfall, which is the best predictor of mangrove ecosystem carbon stocks. Therefore, a predicted increase in rainfall along the tropical Indo-Pacific may increase mangrove forest carbon stocks. However, there are other potentially important factors that may regulate organic matter diagenesis, such as nutrient availability and pore water salinity. Our predictive model shows that if mangrove deforestation is halted, global mangrove forest carbon stocks could increase by almost 10% by 2115 as a result of increased rainfall in the tropics.

  18. Rainfall and temperature affect tree species distributions in Ghana

    NARCIS (Netherlands)

    Amissah, L.; Mohren, G.M.J.; Bongers, F.; Hawthorne, W.D.; Poorter, L.

    2014-01-01

    We evaluated the relative importance of annual rainfall, temperature and their seasonality to tree species distribution in Ghana. We used species presence/absence data from 2505 1-ha plots systematically distributed over Ghana's forests. Logistic regression was used to determine species responses to

  19. Effect of simulated rainfall on leaching and efficacy of fenamiphos.

    Science.gov (United States)

    Johnson, A W; Wauchope, R D; Burgoa, B

    1995-12-01

    There is increasing concern in the United States about the pesticide movement in soil, groundwater contamination, and pesticide residue in food. The objective of this study was to determine the efficacy, degradation, and movement of fenamiphos (Nemacur 15G) in the soil and residues in squash fruit as influenced by four simulated rainfall treatments (2.5 or 5.0 cm each applied 1 or 3 days after nematicide application) under field conditions. In 1990, concentrations of fenamiphos were greater in the top 15 cm of soil in plots with no rainfall than in those treated with rainfall. Eighty to 95 % of the fenamiphos recovered from treated plots was found in the 0-15-cm soil layer. The concentration of fenamiphos recovered from the 0-15-cm soil layer in 1991 was approximately one-half the concentration recovered in 1990, but greater concentrations of fenamiphos sulfoxide (an oxidation product of fenamiphos) were recovered in 1991 than in 1990. Concentrations of fenamiphos, fenamiphos sulfoxide, and fenamiphos sulfone were near or below detectable levels (0.002 mg/kg soil) below the 0-15-cm soil layer. Rainfall treatments did not affect the efficacy of the nematicide against Meloidogyne incognita race 1. The concentration of fenamiphos in squash fruit in 1991 was below the detectable level (0.01 mg/kg).

  20. Rainfall-Triggered Landslides Bury Sri Lankan Villages

    Science.gov (United States)

    Kirschbaum, Dalia; Stanley, Thomas

    2016-01-01

    On the afternoon of May 17th, 2016, a major landslide event caused at least 92 deaths, with 109 still missing*. The site was rated highly susceptible to landslides in a new global landslide susceptibility map. GPM precipitation data suggest that both antecedent and current rainfall as well as complex topography played a role in the slope failures.