Barker, Blake; Jung, Soyeun; Zumbrun, Kevin
2018-03-01
Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.
Standard and nonstandard Turing patterns and waves in the CIMA reaction
Rudovics, B.; Dulos, E.; de Kepper, P.
1996-01-01
We describe experimental evidence of stable triangular and hexagon-band mixed mode nonstandard patterns, in a three-dimensional chemical reaction-diffusion system with steep gradients of chemical constraints. These gradients confine the structures in a more or less thick stratum of the system. At onset, patterns develop in monolayers which approximate two-dimensional systems; but beyond onset, three-dimensional aspects have to be considered. We show that the nonstandard pattern symmetries result from the coupling of standard hexagonal and striped pattern modes which develop at adjacent positions, due to the differences in parameter values along the direction of the gradients. We evidence a Turing-Hopf codimension-2 point and show that some mixed mode chaotic dynamics, reminiscent of spatio-temporal intermittency combining the Turing and the Hopf modes, are also a consequence of the three-dimensional aspect of the structure. The relations between these observations and the theoretical studies performed in genuine two-dimensional systems are still open to discussion.
Turing patterns and biological explanation
DEFF Research Database (Denmark)
Serban, Maria
2017-01-01
, promoting theory exploration, and acting as constitutive parts of empirically adequate explanations of naturally occurring phenomena, such as biological pattern formation. Focusing on the roles that minimal model explanations play in science motivates the adoption of a broader diachronic view of scientific......Turing patterns are a class of minimal mathematical models that have been used to discover and conceptualize certain abstract features of early biological development. This paper examines a range of these minimal models in order to articulate and elaborate a philosophical analysis...
Ball, Philip
2015-04-19
Alan Turing was neither a biologist nor a chemist, and yet the paper he published in 1952, 'The chemical basis of morphogenesis', on the spontaneous formation of patterns in systems undergoing reaction and diffusion of their ingredients has had a substantial impact on both fields, as well as in other areas as disparate as geomorphology and criminology. Motivated by the question of how a spherical embryo becomes a decidedly non-spherical organism such as a human being, Turing devised a mathematical model that explained how random fluctuations can drive the emergence of pattern and structure from initial uniformity. The spontaneous appearance of pattern and form in a system far away from its equilibrium state occurs in many types of natural process, and in some artificial ones too. It is often driven by very general mechanisms, of which Turing's model supplies one of the most versatile. For that reason, these patterns show striking similarities in systems that seem superficially to share nothing in common, such as the stripes of sand ripples and of pigmentation on a zebra skin. New examples of 'Turing patterns' in biology and beyond are still being discovered today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Unilateral regulation breaks regularity of Turing patterns
Czech Academy of Sciences Publication Activity Database
Vejchodský, Tomáš; Jaroš, F.; Kučera, Milan; Rybář, Vojtěch
2017-01-01
Roč. 96, č. 2 (2017), č. článku 022212. ISSN 2470-0045 EU Projects: European Commission(XE) 328008 - STOCHDETBIOMODEL Institutional support: RVO:67985840 Keywords : unilateral term * Turing instability * pattern Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.366, year: 2016 https://link. aps .org/doi/10.1103/PhysRevE.96.022212
Directory of Open Access Journals (Sweden)
Diego A. Garzón
2012-06-01
reaction model, with parameters in the Turing space. Therefore, numerical tests are performed on the appearence of Turing patterns in spherical surfaces. For the solution of reaction diffusion equations provides a method of settling on surfaces in three dimensions using the finite element method under the total Lagrangian formulation. The results show that the formation of Turing patterns depends on the growth rate of the surface, the type of wave number predicted in the theory of square domains and their stabilization time. These results may explain some phenomena of pattern change on the surface of the skin of animals that exhibit characteristic spots.
Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei
2017-10-01
In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.
Nonlinear effects on Turing patterns: Time oscillations and chaos
Aragón, J. L.
2012-08-08
We show that a model reaction-diffusion system with two species in a monostable regime and over a large region of parameter space produces Turing patterns coexisting with a limit cycle which cannot be discerned from the linear analysis. As a consequence, the patterns oscillate in time. When varying a single parameter, a series of bifurcations leads to period doubling, quasiperiodic, and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos is identified. We also examine the Turing conditions for obtaining a diffusion-driven instability and show that the patterns obtained are not necessarily stationary for certain values of the diffusion coefficients. These results demonstrate the limitations of the linear analysis for reaction-diffusion systems. © 2012 American Physical Society.
Stochastic Turing Patterns: Analysis of Compartment-Based Approaches
Cao, Yang
2014-11-25
© 2014, Society for Mathematical Biology. Turing patterns can be observed in reaction-diffusion systems where chemical species have different diffusion constants. In recent years, several studies investigated the effects of noise on Turing patterns and showed that the parameter regimes, for which stochastic Turing patterns are observed, can be larger than the parameter regimes predicted by deterministic models, which are written in terms of partial differential equations (PDEs) for species concentrations. A common stochastic reaction-diffusion approach is written in terms of compartment-based (lattice-based) models, where the domain of interest is divided into artificial compartments and the number of molecules in each compartment is simulated. In this paper, the dependence of stochastic Turing patterns on the compartment size is investigated. It has previously been shown (for relatively simpler systems) that a modeler should not choose compartment sizes which are too small or too large, and that the optimal compartment size depends on the diffusion constant. Taking these results into account, we propose and study a compartment-based model of Turing patterns where each chemical species is described using a different set of compartments. It is shown that the parameter regions where spatial patterns form are different from the regions obtained by classical deterministic PDE-based models, but they are also different from the results obtained for the stochastic reaction-diffusion models which use a single set of compartments for all chemical species. In particular, it is argued that some previously reported results on the effect of noise on Turing patterns in biological systems need to be reinterpreted.
Wave-Based Turing Machine: Time Reversal and Information Erasing
Perrard, S.; Fort, E.; Couder, Y.
2016-08-01
The investigation of dynamical systems has revealed a deep-rooted difference between waves and objects regarding temporal reversibility and particlelike objects. In nondissipative chaos, the dynamic of waves always remains time reversible, unlike that of particles. Here, we explore the dynamics of a wave-particle entity. It consists in a drop bouncing on a vibrated liquid bath, self-propelled and piloted by the surface waves it generates. This walker, in which there is an information exchange between the particle and the wave, can be analyzed in terms of a Turing machine with waves as the information repository. The experiments reveal that in this system, the drop can read information backwards while erasing it. The drop can thus backtrack on its previous trajectory. A transient temporal reversibility, restricted to the drop motion, is obtained in spite of the system being both dissipative and chaotic.
A feedback quenched oscillator produces turing patterning with one diffuser.
Directory of Open Access Journals (Sweden)
Justin Hsia
2012-01-01
Full Text Available Efforts to engineer synthetic gene networks that spontaneously produce patterning in multicellular ensembles have focused on Turing's original model and the "activator-inhibitor" models of Meinhardt and Gierer. Systems based on this model are notoriously difficult to engineer. We present the first demonstration that Turing pattern formation can arise in a new family of oscillator-driven gene network topologies, specifically when a second feedback loop is introduced which quenches oscillations and incorporates a diffusible molecule. We provide an analysis of the system that predicts the range of kinetic parameters over which patterning should emerge and demonstrate the system's viability using stochastic simulations of a field of cells using realistic parameters. The primary goal of this paper is to provide a circuit architecture which can be implemented with relative ease by practitioners and which could serve as a model system for pattern generation in synthetic multicellular systems. Given the wide range of oscillatory circuits in natural systems, our system supports the tantalizing possibility that Turing pattern formation in natural multicellular systems can arise from oscillator-driven mechanisms.
Beyond Turing: mechanochemical pattern formation in biological tissues.
Mercker, Moritz; Brinkmann, Felix; Marciniak-Czochra, Anna; Richter, Thomas
2016-05-04
During embryogenesis, chemical (morphogen) and mechanical patterns develop within tissues in a self-organized way. More than 60 years ago, Turing proposed his famous reaction-diffusion model for such processes, assuming chemical interactions as the main driving force in tissue patterning. However, experimental identification of corresponding molecular candidates is still incomplete. Recent results suggest that beside morphogens, also tissue mechanics play a significant role in these patterning processes. Combining continuous finite strain with discrete cellular tissue models, we present and numerically investigate mechanochemical processes, in which morphogen dynamics and tissue mechanics are coupled by feedback loops. We consider three different mechanical cues involved in such feedbacks: strain, stress, and compression. Based on experimental results, for each case, we present a feedback loop spontaneously creating robust mechanochemical patterns. In contrast to Turing-type models, simple mechanochemical interaction terms are sufficient to create de novo patterns. Our results emphasize mechanochemical processes as possible candidates controlling different steps of embryogenesis. To motivate further experimental research discovering related mechanisms in living tissues, we also present predictive in silicio experiments. Reviewer 1 - Marek Kimmel; Reviewer 2 - Konstantin Doubrovinski (nominated by Ned Wingreen); Reviewer 3 - Jun Allard (nominated by William Hlavacek).
Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations
Directory of Open Access Journals (Sweden)
Oscar Rodrigo López-Vaca
2012-01-01
Full Text Available We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13 and vascular endothelial growth factor (VEGF. It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification.
Turing patterns and apparent competition in predator-prey food webs on networks.
Fernandes, L D; de Aguiar, M A M
2012-11-01
Reaction-diffusion systems may lead to the formation of steady-state heterogeneous spatial patterns, known as Turing patterns. Their mathematical formulation is important for the study of pattern formation in general and plays central roles in many fields of biology, such as ecology and morphogenesis. Here we show that Turing patterns may have a decisive role in shaping the abundance distribution of predators and prey living in patchy landscapes. We extend the original model proposed by Nakao and Mikhailov [Nat. Phys. 6, 544 (2010)] by considering food chains with several interacting pairs of prey and predators distributed on a scale-free network of patches. We identify patterns of species distribution displaying high degrees of apparent competition driven by Turing instabilities. Our results provide further indication that differences in abundance distribution among patches can be generated dynamically by self organized Turing patterns and not only by intrinsic environmental heterogeneity.
Investigation occurrences of turing pattern in Schnakenberg and Gierer-Meinhardt equation
Nurahmi, Annisa Fitri; Putra, Prama Setia; Nuraini, Nuning
2018-03-01
There are several types of animals with unusual, varied patterns on their skin. The skin pigmentation system influences this in the animal. On the other side, in 1950 Alan Turing formulated the mathematical theory of morphogenesis, where this model can bring up a spatial pattern or so-called Turing pattern. This research discusses the identification of Turing's model that can produce animal skin pattern. Investigations conducted on two types of equations: Schnakenberg (1979), and Gierer-Meinhardt (1972). In this research, parameters were explored to produce Turing's patter on that both equation. The numerical simulation in this research done using Neumann Homogeneous and Dirichlet Homogeneous boundary condition. The investigation of Schnakenberg equation yielded poison dart frog (Andinobates dorisswansonae) and ladybird (Coccinellidae septempunctata) pattern while skin fish pattern was showed by Gierer-Meinhardt equation.
Turing patterns and long-time behavior in a three-species food-chain model
Parshad, Rana D.
2014-08-01
We consider a spatially explicit three-species food chain model, describing generalist top predator-specialist middle predator-prey dynamics. We investigate the long-time dynamics of the model and show the existence of a finite dimensional global attractor in the product space, L2(Ω). We perform linear stability analysis and show that the model exhibits the phenomenon of Turing instability, as well as diffusion induced chaos. Various Turing patterns such as stripe patterns, mesh patterns, spot patterns, labyrinth patterns and weaving patterns are obtained, via numerical simulations in 1d as well as in 2d. The Turing and non-Turing space, in terms of model parameters, is also explored. Finally, we use methods from nonlinear time series analysis to reconstruct a low dimensional chaotic attractor of the model, and estimate its fractal dimension. This provides a lower bound, for the fractal dimension of the attractor, of the spatially explicit model. © 2014 Elsevier Inc.
Control of Turing patterns and their usage as sensors, memory arrays, and logic gates
Muzika, František; Schreiber, Igor
2013-10-01
We study a model system of three diffusively coupled reaction cells arranged in a linear array that display Turing patterns with special focus on the case of equal coupling strength for all components. As a suitable model reaction we consider a two-variable core model of glycolysis. Using numerical continuation and bifurcation techniques we analyze the dependence of the system's steady states on varying rate coefficient of the recycling step while the coupling coefficients of the inhibitor and activator are fixed and set at the ratios 100:1, 1:1, and 4:5. We show that stable Turing patterns occur at all three ratios but, as expected, spontaneous transition from the spatially uniform steady state to the spatially nonuniform Turing patterns occurs only in the first case. The other two cases possess multiple Turing patterns, which are stabilized by secondary bifurcations and coexist with stable uniform periodic oscillations. For the 1:1 ratio we examine modular spatiotemporal perturbations, which allow for controllable switching between the uniform oscillations and various Turing patterns. Such modular perturbations are then used to construct chemical computing devices utilizing the multiple Turing patterns. By classifying various responses we propose: (a) a single-input resettable sensor capable of reading certain value of concentration, (b) two-input and three-input memory arrays capable of storing logic information, (c) three-input, three-output logic gates performing combinations of logical functions OR, XOR, AND, and NAND.
Hurdal, Monica K.; Striegel, Deborah A.
2011-11-01
Modeling and understanding cortical folding pattern formation is important for quantifying cortical development. We present a biomathematical model for cortical folding pattern formation in the human brain and apply this model to study diseases involving cortical pattern malformations associated with neural migration disorders. Polymicrogyria is a cortical malformation disease resulting in an excessive number of small gyri. Our mathematical model uses a Turing reaction-diffusion system to model cortical folding. The lateral ventricle (LV) and ventricular zone (VZ) of the brain are critical components in the formation of cortical patterning. In early cortical development the shape of the LV can be modeled with a prolate spheroid and the VZ with a prolate spheroid surface. We use our model to study how global cortex characteristics, such as size and shape of the LV, affect cortical pattern formation. We demonstrate increasing domain scale can increase the number of gyri and sulci formed. Changes in LV shape can account for sulcus directionality. By incorporating LV size and shape, our model is able to elucidate which parameters can lead to excessive cortical folding.
A biochemical hypothesis on the formation of fingerprints using a turing patterns approach
Directory of Open Access Journals (Sweden)
Ramírez Martinez Angelica M
2011-06-01
Full Text Available Abstract Background Fingerprints represent a particular characteristic for each individual. Characteristic patterns are also formed on the palms of the hands and soles of the feet. Their origin and development is still unknown but it is believed to have a strong genetic component, although it is not the only thing determining its formation. Each fingerprint is a papillary drawing composed by papillae and rete ridges (crests. This paper proposes a phenomenological model describing fingerprint pattern formation using reaction diffusion equations with Turing space parameters. Results Several numerical examples were solved regarding simplified finger geometries to study pattern formation. The finite element method was used for numerical solution, in conjunction with the Newton-Raphson method to approximate nonlinear partial differential equations. Conclusions The numerical examples showed that the model could represent the formation of different types of fingerprint characteristics in each individual.
Lacitignola, Deborah; Bozzini, Benedetto; Frittelli, Massimo; Sgura, Ivonne
2017-07-01
The present paper deals with the pattern formation properties of a specific morpho-electrochemical reaction-diffusion model on a sphere. The physico-chemical background to this study is the morphological control of material electrodeposited onto spherical particles. The particular experimental case of interest refers to the optimization of novel metal-air flow batteries and addresses the electrodeposition of zinc onto inert spherical supports. Morphological control in this step of the high-energy battery operation is crucial to the energetic efficiency of the recharge process and to the durability of the whole energy-storage device. To rationalise this technological challenge within a mathematical modeling perspective, we consider the reaction-diffusion system for metal electrodeposition introduced in [Bozzini et al., J. Solid State Electr.17, 467-479 (2013)] and extend its study to spherical domains. Conditions are derived for the occurrence of the Turing instability phenomenon and the steady patterns emerging at the onset of Turing instability are investigated. The reaction-diffusion system on spherical domains is solved numerically by means of the Lumped Surface Finite Element Method (LSFEM) in space combined with the IMEX Euler method in time. The effect on pattern formation of variations in the domain size is investigated both qualitatively, by means of systematic numerical simulations, and quantitatively by introducing suitable indicators that allow to assign each pattern to a given morphological class. An experimental validation of the obtained results is finally presented for the case of zinc electrodeposition from alkaline zincate solutions onto copper spheres.
Beutel, Kathleen M.; Peacock-López, Enrique
2006-07-01
Chemical self-replication of oligonucleotides and helical peptides show the so-called square root rate law. Based on this rate we extend our previous work on ideal replicators to include the square root rate and other possible nonlinearities, which we couple with an enzimatic sink. Although the nonlinearity is necessary for complex dynamics, the nature of the sink is the essential feature in the mechanism that allows temporal and spatial patterns. We obtain exact general relations for the Poincare-Adronov-Hopf and Turing bifurcations, and our generalized results include the Higgins, autocatalator, and templator models as specific cases.
International Nuclear Information System (INIS)
Wang Huijuan; Ren Zhi
2011-01-01
Competition of spatial and temporal instabilities under time delay near the codimension-two Turing-Hopf bifurcations is studied in a reaction-diffusion equation. The time delay changes remarkably the oscillation frequency, the intrinsic wave vector, and the intensities of both Turing and Hopf modes. The application of appropriate time delay can control the competition between the Turing and Hopf modes. Analysis shows that individual or both feedbacks can realize the control of the transformation between the Turing and Hopf patterns. Two-dimensional numerical simulations validate the analytical results. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Directory of Open Access Journals (Sweden)
Feifan Zhang
2017-06-01
Full Text Available The formation of self-organized patterns in predator-prey models has been a very hot topic recently. The dynamics of these models, bifurcations and pattern formations are so complex that studies are urgently needed. In this research, we transformed a continuous predator-prey model with Lesie-Gower functional response into a discrete model. Fixed points and stability analyses were studied. Around the stable fixed point, bifurcation analyses including: flip, Neimark-Sacker and Turing bifurcation were done and bifurcation conditions were obtained. Based on these bifurcation conditions, parameters values were selected to carry out numerical simulations on pattern formation. The simulation results showed that Neimark-Sacker bifurcation induced spots, spirals and transitional patterns from spots to spirals. Turing bifurcation induced labyrinth patterns and spirals coupled with mosaic patterns, while flip bifurcation induced many irregular complex patterns. Compared with former studies on continuous predator-prey model with Lesie-Gower functional response, our research on the discrete model demonstrated more complex dynamics and varieties of self-organized patterns.
Turing instability for a two-dimensional Logistic coupled map lattice
International Nuclear Information System (INIS)
Xu, L.; Zhang, G.; Han, B.; Zhang, L.; Li, M.F.; Han, Y.T.
2010-01-01
In this Letter, stability analysis is applied to a two-dimensional Logistic coupled map lattice with the periodic boundary conditions. The conditions of Turing instability are obtained, and various patterns can be exhibited by numerical simulations in the Turing instability region. For example, space-time periodic structures, periodic or quasiperiodic traveling wave solutions, stationary wave solutions, spiral waves, and spatiotemporal chaos, etc. have been observed. In particular, the different pattern structures have also been observed for same parameters and different initial values. That is, pattern structures also depend on the initial values. The similar patterns have also been seen in relevant references. However, the present Letter owes to pattern formation via diffusion-driven instabilities because the system is stable in the absence of diffusion.
An Intensional Concurrent Faithful Encoding of Turing Machines
Directory of Open Access Journals (Sweden)
Thomas Given-Wilson
2014-10-01
Full Text Available The benchmark for computation is typically given as Turing computability; the ability for a computation to be performed by a Turing Machine. Many languages exploit (indirect encodings of Turing Machines to demonstrate their ability to support arbitrary computation. However, these encodings are usually by simulating the entire Turing Machine within the language, or by encoding a language that does an encoding or simulation itself. This second category is typical for process calculi that show an encoding of lambda-calculus (often with restrictions that in turn simulates a Turing Machine. Such approaches lead to indirect encodings of Turing Machines that are complex, unclear, and only weakly equivalent after computation. This paper presents an approach to encoding Turing Machines into intensional process calculi that is faithful, reduction preserving, and structurally equivalent. The encoding is demonstrated in a simple asymmetric concurrent pattern calculus before generalised to simplify infinite terms, and to show encodings into Concurrent Pattern Calculus and Psi Calculi.
Indian Academy of Sciences (India)
1912-06-23
Alan Mathison Turing was conceived in India (where his father. Julius Mathison Turing was an officer in the Indian Civil. Service) and was born on June 23, 1912 in Paddington, U.K. He was educated entirely in England and got his degree in mathematics from Cambridge University in 1934. His scientific career was marked ...
J.C.M. Baeten (Jos); S.P. Luttik (Bas); P.J.A. van Tilburg
2013-01-01
textabstractWe propose reactive Turing machines (RTMs), extending classical Turing machines with a process-theoretical notion of interaction, and use it to define a notion of executable transition system. We show that every computable transition system with a bounded branching degree is simulated
Some relations between quantum Turing machines and Turing machines
Sicard, Andrés; Vélez, Mario
1999-01-01
For quantum Turing machines we present three elements: Its components, its time evolution operator and its local transition function. The components are related with the components of deterministic Turing machines, the time evolution operator is related with the evolution of reversible Turing machines and the local transition function is related with the transition function of probabilistic and reversible Turing machines.
Nonlinear waves and pattern dynamics
Pelinovsky, Efim; Mutabazi, Innocent
2018-01-01
This book addresses the fascinating phenomena associated with nonlinear waves and spatio-temporal patterns. These appear almost everywhere in nature from sand bed forms to brain patterns, and yet their understanding still presents fundamental scientific challenges. The reader will learn here, in particular, about the current state-of-the art and new results in: Nonlinear water waves: resonance, solitons, focusing, Bose-Einstein condensation, as well as and their relevance for the sea environment (sea-wind interaction, sand bed forms, fiber clustering) Pattern formation in non-equilibrium media: soap films, chimera patterns in oscillating media, viscoelastic Couette-Taylor flow, flow in the wake behind a heated cylinder, other pattern formation. The editors and authors dedicate this book to the memory of Alexander Ezersky, Professor of Fluid Mechanics at the University of Caen Normandie (France) from September 2007 to July 2016. Before 2007, he had served as a Senior Scientist at the Institute of Applied Physi...
Are there intelligent Turing machines?
Bátfai, Norbert
2015-01-01
This paper introduces a new computing model based on the cooperation among Turing machines called orchestrated machines. Like universal Turing machines, orchestrated machines are also designed to simulate Turing machines but they can also modify the original operation of the included Turing machines to create a new layer of some kind of collective behavior. Using this new model we can define some interested notions related to cooperation ability of Turing machines such as the intelligence quo...
Turing machine universality of the game of life
Rendell, Paul
2016-01-01
This book presents a proof of universal computation in the Game of Life cellular automaton by using a Turing machine construction. It provides an introduction including background information and an extended review of the literature for Turing Machines, Counter Machines and the relevant patterns in Conway's Game of Life so that the subject matter is accessibly to non specialists. The book contains a description of the author’s Turing machine in Conway’s Game of Life including an unlimited storage tape provided by growing stack structures and it also presents a fast universal Turing machine designed to allow the working to be demonstrated in a convenient period of time. .
Artificial Intelligence, Evolutionary Computing and Metaheuristics In the Footsteps of Alan Turing
2013-01-01
Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo sear...
Turing instability in reaction-diffusion systems with nonlinear diffusion
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)
2013-10-15
The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.
Copeland, Jack; Sprevak, Mark; Wilson, Robin
2017-01-01
This carefully edited resource brings together contributions from some of the world's leading experts on Alan Turing to create a comprehensive guide that will serve as a useful resource for researchers in the area as well as the increasingly interested general reader.
Navarro, Aaron B.
1981-01-01
Presents a program in Level II BASIC for a TRS-80 computer that simulates a Turing machine and discusses the nature of the device. The program is run interactively and is designed to be used as an educational tool by computer science or mathematics students studying computational or automata theory. (MP)
Indian Academy of Sciences (India)
Machinery and Intelligence' which appeared in the Philo- sophical Magazine, Mind, in October 1950 (see Turing in ... Machine in 1935 and his subsequent attempts to build a stored program computer (called Automatic Computing .... Perhaps I could learn to get along with my mother. TELL ME MORE ABOUT YOUR FAMilY.
Spatiotemporal Wave Patterns: Information Dynamics
Energy Technology Data Exchange (ETDEWEB)
Mikhail Rabinovich; Lev Tsimring
2006-01-20
Pattern formation has traditionally been studied in non-equilibrium physics from the viewpoint of describing the basic structures and their interactions. While this is still an important area of research, the emphasis in the last few years has shifted towards analysis of specific properties of patterns in various complex media. For example, diverse and unexpected phenomena occur in neuro-like media that are characterized by highly non-trivial local dynamics. We carried out an active research program on analysis of spatio-temporal patterns in various physical systems (convection, oscillating fluid layer, soap film), as well as in neuro-like media, with an emphasis on informational aspects of the dynamics. Nonlinear nonequilibrium media and their discrete analogs have a unique ability to represent, memorize, and process the information contained in spatio-temporal patterns. Recent neurophysiological experiments demonstrated a certain universality of spatio-temporal representation of information by neural ensembles. Information processing is also revealed in the spatio-temporal dynamics of cellular patterns in nonequilibrium media. It is extremely important for many applications to study the informational aspects of these dynamics, including the origins and mechanisms of information generation, propagation and storage. Some of our results are: the discovery of self-organization of periodically oscillatory patterns in chaotic heterogeneous media; the analysis of the propagation of the information along a chaotic media as function of the entropy of the signal; the analysis of wave propagation in discrete non-equilibrium media with autocatalytic properties, which simulates the calcium dynamics in cellular membranes. Based on biological experiments we suggest the mechanism by which the spatial sensory information is transferred into the spatio-temporal code in the neural media. We also found a new mechanism of self-pinning in cellular structures and the related phenomenon
Beyond activator-inhibitor networks: the generalised Turing mechanism
Smith, Stephen; Dalchau, Neil
2018-01-01
The Turing patterning mechanism is believed to underly the formation of repetitive structures in development, such as zebrafish stripes and mammalian digits, but it has proved difficult to isolate the specific biochemical species responsible for pattern formation. Meanwhile, synthetic biologists have designed Turing systems for implementation in cell colonies, but none have yet led to visible patterns in the laboratory. In both cases, the relationship between underlying chemistry and emergent...
Pattern formation in the bistable Gray-Scott model
DEFF Research Database (Denmark)
Mazin, W.; Rasmussen, K.E.; Mosekilde, Erik
1996-01-01
The paper presents a computer simulation study of a variety of far-from-equilibrium phenomena that can arise in a bistable chemical reaction-diffusion system which also displays Turing and Hopf instabilities. The Turing bifurcation curve and the wave number for the patterns of maximum linear grow...
Hodges, Andrew
1983-01-01
It is only a slight exaggeration to say that the British mathematician Alan Turing (1912-1954) saved the Allies from the Nazis, invented the computer and artificial intelligence, and anticipated gay liberation by decades--all before his suicide at age forty-one. This classic biography of the founder of computer science, reissued on the centenary of his birth with a substantial new preface by the author, is the definitive account of an extraordinary mind and life. A gripping story of mathematics, computers, cryptography, and homosexual persecution, Andrew Hodges's acclaimed book captures bot
Noise-induced temporal dynamics in Turing systems
Schumacher, Linus J.
2013-04-25
We examine the ability of intrinsic noise to produce complex temporal dynamics in Turing pattern formation systems, with particular emphasis on the Schnakenberg kinetics. Using power spectral methods, we characterize the behavior of the system using stochastic simulations at a wide range of points in parameter space and compare with analytical approximations. Specifically, we investigate whether polarity switching of stochastic patterns occurs at a defined frequency. We find that it can do so in individual realizations of a stochastic simulation, but that the frequency is not defined consistently across realizations in our samples of parameter space. Further, we examine the effect of noise on deterministically predicted traveling waves and find them increased in amplitude and decreased in speed. © 2013 American Physical Society.
Intersecting circuits generate precisely patterned retinal waves.
Akrouh, Alejandro; Kerschensteiner, Daniel
2013-07-24
The developing retina generates spontaneous glutamatergic (stage III) waves of activity that sequentially recruit neighboring ganglion cells with opposite light responses (ON and OFF RGCs). This activity pattern is thought to help establish parallel ON and OFF pathways in downstream visual areas. The circuits that produce stage III waves and desynchronize ON and OFF RGC firing remain obscure. Using dual patch-clamp recordings, we find that ON and OFF RGCs receive sequential excitatory input from ON and OFF cone bipolar cells (CBCs), respectively. This input sequence is generated by crossover circuits, in which ON CBCs control glutamate release from OFF CBCs via diffusely stratified inhibitory amacrine cells. In addition, neighboring ON CBCs communicate directly and indirectly through lateral glutamatergic transmission and gap junctions, both of which are required for wave initiation and propagation. Thus, intersecting lateral excitatory and vertical inhibitory circuits give rise to precisely patterned stage III retinal waves. Copyright © 2013 Elsevier Inc. All rights reserved.
A survey of infinite time Turing machines
Hamkins, J.D.
2007-01-01
Infinite time Turing machines extend the operation of ordinary Turing machines into transfinite ordinal time, thereby providing a natural model of infinitary computability, with robust notions of computability and decidability on the reals, while remaining close to classical concepts of
Frances Allen Wins Turing Award
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 8. Frances Allen Wins Turing Award. Priti Shankar. Article-in-a-Box Volume 12 Issue 8 August 2007 pp 5-5. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/08/0005-0005. Author Affiliations.
Frances Allen Wins Turing Award
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 8. Frances Allen Wins Turing Award. Priti Shankar. Article-in-a-Box Volume 12 Issue 8 August 2007 pp ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...
Gaffney, E. A.
2013-10-01
© The authors 2013. Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing\\'s ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing\\'s model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106, 8429-8434; Yamaguchi et al., 2007, PNAS, 104, 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge.
A Simple Universal Turing Machine for the Game of Life Turing Machine
Rendell, Paul
In this chapter we present a simple universal Turing machine which is small enough to fit into the design limits of the Turing machine build in Conway's Game of Life by the author. That limit is 8 symbols and 16 states. By way of comparison we also describe one of the smallest known universal Turing machines due to Rogozhin which has 6 symbols and 4 states.
Turing pioneer of the information age
Copeland, Jack B
2014-01-01
Alan Turing is regarded as one of the greatest scientists of the 20th century. But who was Turing, and what did he achieve during his tragically short life of 41 years? Best known as the genius who broke Germany's most secret codes during the war of 1939-45, Turing was also the father of the modern computer. Today, all who 'click-to-open' are familiar with the impact of Turing's ideas. Here, B. Jack Copeland provides an account of Turing's life and work, exploring the key elements of his life-story in tandem with his leading ideas and contributions. The book highlights Turing's contributions to computing and to computer science, including Artificial Intelligence and Artificial Life, and the emphasis throughout is on the relevance of his work to modern developments. The story of his contributions to codebreaking during the Second World War is set in the context of his thinking about machines, as is the account of his work in the foundations of mathematics.
Stationary wave patterns in deep water | Doyle | Quaestiones ...
African Journals Online (AJOL)
ship" or an obstacle in a stream, is revisited. The wave patterns are calculated using the results of the method of stationary phase. This allows for an elegant geometrical construction in which the reciprocal polar of the wave normal diagram ...
Spatio-temporal patterns in simple models of marine systems
Feudel, U.; Baurmann, M.; Gross, T.
2009-04-01
Spatio-temporal patterns in marine systems are a result of the interaction of population dynamics with physical transport processes. These physical transport processes can be either diffusion processes in marine sediments or in the water column. We study the dynamics of one population of bacteria and its nutrient in in a simplified model of a marine sediments, taking into account that the considered bacteria possess an active as well as an inactive state, where activation is processed by signal molecules. Furthermore the nutrients are transported actively by bioirrigation and passively by diffusion. It is shown that under certain conditions Turing patterns can occur which yield heterogeneous spatial patterns of the species. The influence of bioirrigation on Turing patterns leads to the emergence of ''hot spots``, i.e. localized regions of enhanced bacterial activity. All obtained patterns fit quite well to observed patterns in laboratory experiments. Spatio-temporal patterns appear in a predator-prey model, used to describe plankton dynamics. These patterns appear due to the simultaneous emergence of Turing patterns and oscillations in the species abundance in the neighborhood of a Turing-Hopf bifurcation. We observe a large variety of different patterns where i) stationary heterogeneous patterns (e.g. hot and cold spots) compete with spatio-temporal patterns ii) slowly moving patterns are embedded in an oscillatory background iii) moving fronts and spiral waves appear.
Hair growth cycles and wave patterns in "nude" mice.
Eaton, G J
1976-09-01
Hair growth cycles and waves were studied through five generations of hair growth in C57BL/6Icr "nude" mice. One group of nudes received thymus grafts, a second group was composed of athymid nudes and a third consisted of heterozygous (nu/&) haired littermates. The results showed that hair growth cycles and wave patterns were essentially the same in thymus-restored nudes and athymic nudes which indicated that thymus did not play a role in these phenomena. The time interval between hair cycles was considerably shorter in both groups of nude mice as compared to heterozygotes (nu/&). Finally, the hair growth wave pattern in nude mice did not change throughout the generation of hair growth whereas profound changes in wave patterns were observed in heterozygous (nu/&) littermates.
Practical Implementation of a Graphics Turing Test
DEFF Research Database (Denmark)
Borg, Mathias; Johansen, Stine Schmieg; Thomsen, Dennis Lundgaard
2012-01-01
We present a practical implementation of a variation of the Turing Test for realistic computer graphics. The test determines whether virtual representations of objects appear as real as genuine objects. Two experiments were conducted wherein a real object and a similar virtual object is presented...... graphics. Based on the results from these experiments, future versions of the Graphics Turing Test could ease the restrictions currently necessary in order to test object telepresence under more general conditions. Furthermore, the test could be used to determine the minimum requirements to achieve object...
A Computational Behaviorist Takes Turing's Test
Whalen, Thomas E.
Behaviorism is a school of thought in experimental psychology that has given rise to powerful techniques for managing behavior. Because the Turing Test is a test of linguistic behavior rather than mental processes, approaching the test from a behavioristic perspective is worth examining. A behavioral approach begins by observing the kinds of questions that judges ask, then links the invariant features of those questions to pre-written answers. Because this approach is simple and powerful, it has been more successful in Turing competitions than the more ambitious linguistic approaches. Computational behaviorism may prove successful in other areas of Artificial Intelligence.
Leaky-wave antenna for square radiation pattern
Narayanan, K. K.; Mohanan, P.; Vasudevan, K.; Nair, K. G.
1991-02-01
A form of a leaky-wave antenna capable of providing square radiation pattern with sharp cutoff and large beam width is considered. The E-plan radiation patterns of a center-fed leaky-wave antenna are analyzed experimentally in the X-band inside a anechoic chamber. Square radiation patterns with large beam width and sharp cutoff are obtained for arithmetic-progression-spaced and regularly spaced elements, while higher beam width and lower ripple amplitude are achieved in the case of arithmetic-progression-spaced perturbation systems.
Continual Learning through Evolvable Neural Turing Machines
DEFF Research Database (Denmark)
Lüders, Benno; Schläger, Mikkel; Risi, Sebastian
2016-01-01
Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENTM...
Alan Turing and the origins of complexity
Directory of Open Access Journals (Sweden)
Martin-Delgado, Miguel Angel
2013-12-01
Full Text Available The 75th anniversary of Turing’s seminal paper and his centennial anniversary occur in 2011 and 2012, respectively. It is natural to review and assess Turing’s contributions in diverse fields in the light of new developments that his thought has triggered in many scientific communities. Here, the main idea is to discuss how the work of Turing allows us to change our views on the foundations of Mathematics, much as quantum mechanics changed our conception of the world of Physics. Basic notions like computability and universality are discussed in a broad context, placing special emphasis on how the notion of complexity can be given a precise meaning after Turing, i.e., not just qualitatively but also quantitatively Turing’s work is given some historical perspective with respect to some of his precursors, contemporaries and mathematicians who took his ideas further.El 75 aniversario del artículo seminal de Turing y el centenario de su nacimiento ocurren en 2011 y 2012, respectivamente. Es natural revisar y valorar las contribuciones que hizo Turing en campos muy diversos a la luz de los desarrollos que sus pensamientos han producido en muchas comunidades científicas. Aquí, la idea principal es discutir como el trabajo de Turing nos permite cambiar nuestra visión sobre los fundamentos de las Matemáticas, de forma similar a como la mecánica cuántica cambió nuestra concepción de la Física. Nociones básicas como compatibilidad y universalidad se discuten en un contexto amplio, haciendo énfasis especial en como a la noción de complejidad se le puede dar un significado preciso después de Turing, es decir, no solo cualitativo sino cuantitativo. Al trabajo de Turing se le da una perspectiva histórica en relación a algunos de sus precursores, contemporáneos y matemáticos que tomaron y llevaron sus ideas aún más allá.
Turing-like structures in a functional model of cortical spreading depression
Verisokin, A. Yu.; Verveyko, D. V.; Postnov, D. E.
2017-12-01
Cortical spreading depression (CSD) along with migraine waves and spreading depolarization events with stroke or injures are the front-line examples of extreme physiological behaviors of the brain cortex which manifest themselves via the onset and spreading of localized areas of neuronal hyperactivity followed by their depression. While much is known about the physiological pathways involved, the dynamical mechanisms of the formation and evolution of complex spatiotemporal patterns during CSD are still poorly understood, in spite of the number of modeling studies that have been already performed. Recently we have proposed a relatively simple mathematical model of cortical spreading depression which counts the effects of neurovascular coupling and cerebral blood flow redistribution during CSD. In the present study, we address the main dynamical consequences of newly included pathways, namely, the changes in the formation and propagation speed of the CSD front and the pattern formation features in two dimensions. Our most notable finding is that the combination of vascular-mediated spatial coupling with local regulatory mechanisms results in the formation of stationary Turing-like patterns during a CSD event.
Re-Entrant Hexagons and Locked Turing-Hopf Fronts in the CIMA Reaction
DEFF Research Database (Denmark)
Mosekilde, Erik; Larsen, F.; Dewel, G.
1998-01-01
Aspects of the mode-interaction and pattern-selection processes in far-from-equilibrium chemical reaction-diffusion systems are studied through numerical simulation of the Lengyel-Epstein Model. The competition between Hopf oscillations and Turing stripes is investigated by following the propagat...
Coherent patterning of matter waves with subwavelength localization
International Nuclear Information System (INIS)
Mompart, J.; Ahufinger, V.; Birkl, G.
2009-01-01
We propose the subwavelength localization via adiabatic passage (SLAP) technique to coherently achieve state-selective patterning of matter waves well beyond the diffraction limit. The SLAP technique consists in coupling two partially overlapping and spatially structured laser fields to three internal levels of the matter wave yielding state-selective localization at those positions where the adiabatic passage process does not occur. We show that by means of this technique matter wave localization down to the single nanometer scale can be achieved. We analyze in detail the potential implementation of the SLAP technique for nanolithography with an atomic beam of metastable Ne* and for coherent patterning of a two-component 87 Rb Bose-Einstein condensate.
Baby booms and busts: waves in fertility patterns
Beets, G.C.N.
2009-01-01
Fertility curves sometimes resemble sea waves. During periods that the fertility age patterns change, according to whatever reason, 'this sea' may become very turbulent. Also other sea-like phenomena, for example tsunamis, are discernible in fertility behaviour. This article gives a short overview
Kairic Rhythmicity in the Turing-Galaxy
DEFF Research Database (Denmark)
Jensen, Sisse Siggaard
2001-01-01
This paper explores problems of time and timing in different spaces with refer-ence to two case studies from the epoch of the Turing-Galaxy. Case study 1 is on networked learning communities and case study 2 is an e-learning project in a small multimedia firm in Denmark. Basic assumptions...... are that time has be-come one of our major problems, almost an obstacle rather than a rich source of life, in the epoch of the Turing-galaxy or in the network society, and it is ar-gued, that we have to deal with time in a new way different from during the industrial epoch. In order to discuss these assumptions...
Turing Computation with Recurrent Artificial Neural Networks
Carmantini, Giovanni S; Graben, Peter beim; Desroches, Mathieu; Rodrigues, Serafim
2015-01-01
We improve the results by Siegelmann & Sontag (1995) by providing a novel and parsimonious constructive mapping between Turing Machines and Recurrent Artificial Neural Networks, based on recent developments of Nonlinear Dynamical Automata. The architecture of the resulting R-ANNs is simple and elegant, stemming from its transparent relation with the underlying NDAs. These characteristics yield promise for developments in machine learning methods and symbolic computation with continuous time d...
Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern
Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.
2013-01-01
Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.
The super-Turing computational power of plastic recurrent neural networks.
Cabessa, Jérémie; Siegelmann, Hava T
2014-12-01
We study the computational capabilities of a biologically inspired neural model where the synaptic weights, the connectivity pattern, and the number of neurons can evolve over time rather than stay static. Our study focuses on the mere concept of plasticity of the model so that the nature of the updates is assumed to be not constrained. In this context, we show that the so-called plastic recurrent neural networks (RNNs) are capable of the precise super-Turing computational power--as the static analog neural networks--irrespective of whether their synaptic weights are modeled by rational or real numbers, and moreover, irrespective of whether their patterns of plasticity are restricted to bi-valued updates or expressed by any other more general form of updating. Consequently, the incorporation of only bi-valued plastic capabilities in a basic model of RNNs suffices to break the Turing barrier and achieve the super-Turing level of computation. The consideration of more general mechanisms of architectural plasticity or of real synaptic weights does not further increase the capabilities of the networks. These results support the claim that the general mechanism of plasticity is crucially involved in the computational and dynamical capabilities of biological neural networks. They further show that the super-Turing level of computation reflects in a suitable way the capabilities of brain-like models of computation.
A 'Turing' Test for Landscape Evolution Models
Parsons, A. J.; Wise, S. M.; Wainwright, J.; Swift, D. A.
2008-12-01
Resolving the interactions among tectonics, climate and surface processes at long timescales has benefited from the development of computer models of landscape evolution. However, testing these Landscape Evolution Models (LEMs) has been piecemeal and partial. We argue that a more systematic approach is required. What is needed is a test that will establish how 'realistic' an LEM is and thus the extent to which its predictions may be trusted. We propose a test based upon the Turing Test of artificial intelligence as a way forward. In 1950 Alan Turing posed the question of whether a machine could think. Rather than attempt to address the question directly he proposed a test in which an interrogator asked questions of a person and a machine, with no means of telling which was which. If the machine's answer could not be distinguished from those of the human, the machine could be said to demonstrate artificial intelligence. By analogy, if an LEM cannot be distinguished from a real landscape it can be deemed to be realistic. The Turing test of intelligence is a test of the way in which a computer behaves. The analogy in the case of an LEM is that it should show realistic behaviour in terms of form and process, both at a given moment in time (punctual) and in the way both form and process evolve over time (dynamic). For some of these behaviours, tests already exist. For example there are numerous morphometric tests of punctual form and measurements of punctual process. The test discussed in this paper provides new ways of assessing dynamic behaviour of an LEM over realistically long timescales. However challenges remain in developing an appropriate suite of challenging tests, in applying these tests to current LEMs and in developing LEMs that pass them.
Three-dimensional wave patterns in falling films
Scheid, Benoit; Ruyer-Quil, Christian; Manneville, Paul
2005-11-01
A large number of studies have been devoted to the modeling of film flows down inclined planes since the pioneering work of Kapitza & Kapitza (1949). Ruyer-Quil & Manneville (2000,2002) have extended the Shkadov formulation (1967) applying weighting residual techniques and expanding the flow field over a complete basis of polynomial functions. Inspired from a Pad'e-like approximant technique initially proposed by Ooshida (1999), a refined model is now formulated which also includes second-order inertia effects arising from the deviation of the streamwise velocity profile from its parabolic shape. The stability of two- dimensional traveling waves against three-dimensional perturbations is investigated using this model. The secondary instability is found to be not really selective which explains the widespread presence of the synchronous instability observed in the experiments by Liu et al. (1995), though theory predicts in most cases a subharmonic scenario. Three-dimensional wave patterns are next computed assuming periodic boundary conditions. Transition from 2D to 3D flows is shown to be strongly dependent on initial conditions. The herringbone patterns, the synchronously deformed fronts, the oblique and the V-shape solitary waves observed in various experimental data (Liu et al. 1995; Park & Nosoko 2003; Alekseenko et al. 1994) are reliably recovered.
Spatial patterns of wave energy delivery to coastal cliffs
Dickson, M. E.; Pentney, R.; Alvarez, M.; Malin, P.
2010-12-01
Recent studies have shown that wave energy delivery to coastal cliffs can be measured by proxy using arrays of seismometers that detect microseismic ground motion. There is considerable debate concerning the relative roles of subaerial weathering and wave processes in rocky coast evolution. Micro-seismic studies provide an important opportunity to progress understanding, because there have been relatively few quantitative measurements of the response of cliffed coasts to wave action. In this paper we describe new data from a study of sandstone sea-cliffs fronted by 100-150m wide near-horizontal shore platforms north of Auckland, New Zealand. Six seismometers were deployed in a cliff-top array and two seismometers were coupled to bedrock ledges a couple of metres above the cliff toe. An ADCP was deployed seaward of the shore platform to monitor incident wave conditions and two arrays of pressure sensors were deployed on the platform surface to monitor across-shore energy dissipation. The instrumentation enabled high resolution synchronous measurement of wave transformation and associated cliff motion. Data indicate that patterns of impact energy are heavily modulated by tidal conditions and by the characteristics of incident waves. The rock shore platform is nearly horizontal, elevated close to high tide level, and at its seaward edge plunges steeply into water 10-14m deep. Hence, under most conditions waves break against the seaward edge at low tide, and on top of the seaward edge at high tide. Under certain storm-wave conditions a significant portion of energy delivery is transferred to the cliff toe, but most of the time energy delivery is constrained to the seaward edge of the shore platform. These data imply that under most conditions it is more likely that the platform is being destroyed than created. This view presents a challenge to the static equilibrium model of cliff evolution that has dominated thought over the past two decades, and gives new impetus to
Molecular computing: paths to chemical Turing machines.
Varghese, Shaji; Elemans, Johannes A A W; Rowan, Alan E; Nolte, Roeland J M
2015-11-13
To comply with the rapidly increasing demand of information storage and processing, new strategies for computing are needed. The idea of molecular computing, where basic computations occur through molecular, supramolecular, or biomolecular approaches, rather than electronically, has long captivated researchers. The prospects of using molecules and (bio)macromolecules for computing is not without precedent. Nature is replete with examples where the handling and storing of data occurs with high efficiencies, low energy costs, and high-density information encoding. The design and assembly of computers that function according to the universal approaches of computing, such as those in a Turing machine, might be realized in a chemical way in the future; this is both fascinating and extremely challenging. In this perspective, we highlight molecular and (bio)macromolecular systems that have been designed and synthesized so far with the objective of using them for computing purposes. We also present a blueprint of a molecular Turing machine, which is based on a catalytic device that glides along a polymer tape and, while moving, prints binary information on this tape in the form of oxygen atoms.
Pattern formation and traveling waves in myxobacteria: Theory and modeling
Igoshin, Oleg A.; Mogilner, Alex; Welch, Roy D.; Kaiser, Dale; Oster, George
2001-01-01
Recent experiments have provided new quantitative measurements of the rippling phenomenon in fields of developing myxobacteria cells. These measurements have enabled us to develop a mathematical model for the ripple phenomenon on the basis of the biochemistry of the C-signaling system, whereby individuals signal by direct cell contact. The model quantitatively reproduces all of the experimental observations and illustrates how intracellular dynamics, contact-mediated intercellular communication, and cell motility can coordinate to produce collective behavior. This pattern of waves is qualitatively different from that observed in other social organisms, especially Dictyostelium discoideum, which depend on diffusible morphogens. PMID:11752439
Kidney branching morphogenesis under the control of a ligand-receptor-based Turing mechanism
Menshykau, Denis; Iber, Dagmar
2013-08-01
The main signalling proteins that control early kidney branching have been defined. Yet the underlying mechanism is still elusive. We have previously shown that a Schnakenberg-type Turing mechanism can recapitulate the branching and protein expression patterns in wild-type and mutant lungs, but it is unclear whether this mechanism would extend to other branched organs that are regulated by other proteins. Here, we show that the glial cell line-derived neurotrophic factor-RET regulatory interaction gives rise to a Schnakenberg-type Turing model that reproduces the observed budding of the ureteric bud from the Wolffian duct, its invasion into the mesenchyme and the observed branching pattern. The model also recapitulates all relevant protein expression patterns in wild-type and mutant mice. The lung and kidney models are both based on a particular receptor-ligand interaction and require (1) cooperative binding of ligand and receptor, (2) a lower diffusion coefficient for the receptor than for the ligand and (3) an increase in the receptor concentration in response to receptor-ligand binding (by enhanced transcription, more recycling or similar). These conditions are met also by other receptor-ligand systems. We propose that ligand-receptor-based Turing patterns represent a general mechanism to control branching morphogenesis and other developmental processes.
Wittgensteinian Perspectives on the Turing Test
Directory of Open Access Journals (Sweden)
Ondřej Beran
2014-04-01
Full Text Available This paper discusses some difficulties in understanding the Turing test. It emphasizes the importance of distinguishing between conceptual and empirical perspectives and highlights the former as introducing more serious problems for the TT. Some objections against the Turingian framework stemming from the later Wittgenstein’s philosophy are exposed. The following serious problems are examined: 1 It considers a unique and exclusive criterion for thinking which amounts to their identification; 2 it misidentifies the relationship of speaking to thinking as that of a criterion; 3 it neglects the “natural” course of the development in semantics. However, these considerations suggest only that it is problematic to label a successful chatbot as a “thinking entity” without further qualifications, but not necessarily and once and for all incorrect. Philosophy has only little to say about the technical possibility of creating such an effective program.
A Series Solution of the Cauchy Problem for Turing Reaction-diffusion Model
Directory of Open Access Journals (Sweden)
L. Päivärinta
2011-12-01
Full Text Available In this paper, the series pattern solution of the Cauchy problem for Turing reaction-diffusion model is obtained by using the homotopy analysis method (HAM. Turing reaction-diffusion model is nonlinear reaction-diffusion system which usually has power-law nonlinearities or may be rewritten in the form of power-law nonlinearities. Using the HAM, it is possible to find the exact solution or an approximate solution of the problem. This technique provides a series of functions which converges rapidly to the exact solution of the problem. The efficiency of the approach will be shown by applying the procedure on two problems. Furthermore, the so-called homotopy-Pade technique (HPT is applied to enlarge the convergence region and rate of solution series given by the HAM.
Alan Turing: person of the XXth century?
Directory of Open Access Journals (Sweden)
Sánchez Ron, José M.
2013-12-01
Full Text Available “Time” magazine chose Albert Einstein as “Person of the Century.” This was undoubtedly a reasonable choice, but as I will argue in this article, there are also good reasons for contending that Turing might have received this honor. One such reason I consider here is his purely scientific work, which stems from the greatest mathematical tradition, and how it affected the development of mathematics itself and was finally instrumental in shaping a new technological world. This is true both as regards the computation and treatment of information as well as the establishment of new forms of social relations. In relation to the foregoing, we have Turing’s contributions to the deciphering of secret codes during the Second World War, which in a somewhat metaphorical sense may be regarded as a new tool for undermining personal privacy, that civil right whose denial finally ruined his lifeEn diciembre de 1999, la revista Time eligió a Albert Einstein “The Person of the Century”. Fue, no cabe duda, una elección razonable, pero, como se argumenta en este artículo, existen también buenos argumentos para sostener que Turing podría haber recibido tal honor. En apoyo de semejante tesis están sus trabajos puramente científicos, que se esbozan aquí, trabajos que entroncan con la mejor tradición matemática, y cómo afectaron al desarrollo matemático, siendo finalmente instrumentales en la configuración de un nuevo mundo tecnológico, tanto en lo que al cálculo y manejo de información se refiere, como en lo relativo al establecimiento de nuevas formas de relaciones sociales. Relacionadas con lo anterior, se encuentran las aportaciones que hizo durante la Segunda Guerra Mundial al desciframiento de códigos secretos, que, en cierto sentido, metafórico, se pueden considerar como una nueva herramienta para socavar la privacidad, ese derecho civil cuya negación arruinó su propia vida.
Testing the Turing Test — do Men Pass It?
Adam, Ruth; Hershberg, Uri; Schul, Yaacov; Solomon, Sorin
We are fascinated by the idea of giving life to the inanimate. The fields of Artificial Life and Artificial Intelligence (AI) attempt to use a scientific approach to pursue this desire. The first steps on this approach hark back to Turing and his suggestion of an imitation game as an alternative answer to the question "can machines think?".1 To test his hypothesis, Turing formulated the Turing test1 to detect human behavior in computers. But how do humans pass such a test? What would you say if you would learn that they do not pass it well? What would it mean for our understanding of human behavior? What would it mean for our design of tests of the success of artificial life? We report below an experiment in which men consistently failed the Turing test.
How My Program Passed the Turing Test
Humphrys, Mark
In 1989, the author put an ELIZA-like chatbot on the Internet. The conversations this program had can be seen - depending on how one defines the rules (and how seriously one takes the idea of the test itself) - as a passing of the Turing Test. This is the first time this event has been properly written. This chatbot succeeded due to profanity, relentless aggression, prurient queries about the user, and implying that they were a liar when they responded. The element of surprise was also crucial. Most chatbots exist in an environment where people expectto find some bots among the humans. Not this one. What was also novel was the onlineelement. This was certainly one of the first AI programs online. It seems to have been the first (a) AI real-time chat program, which (b) had the element of surprise, and (c) was on the Internet. We conclude with some speculation that the future of all of AI is on the Internet, and a description of the "World- Wide-Mind" project that aims to bring this about.
Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis
Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng
2016-01-01
Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinalâ...
Meandering River Dynamics: Spatial and Temporal Wave Growth and Non-Periodic Wave Patterns
Weiss, S.; Higdon, J.
2014-12-01
The evolution of meandering river channels results from interactions amongst turbulent water flow, sediment transport, and channel geometry. Most current physics-based models derive from the meander-morphodynamics equations introduced by Ikeda et al. (1981). Corresponding linear theories have focused almost exclusively on periodic sequences of small-amplitude meanders. Mathematical consideration of the equations shows that boundary conditions must be chosen carefully to yield numerical solutions for a well posed boundary value problem. The numerical algorithms presented in this work yield 2D solutions to the (corrected) Ikeda et al. (1981) equations with second order convergence in both time and space. We explore the characteristics of spatially versus temporally growing waves, as well as the effects of stochastic variations in the upstream boundary condition and in the dimensionless parameter β, which characterizes the strength of secondary flow relative to cross-stream shear. Consideration of the growth patterns for spatially growing waves provides some insight for the design of experimental systems exhibiting self sustaining river meanders.
Compatibility waves drive crystal growth on patterned substrates
International Nuclear Information System (INIS)
Neuhaus, T; Schmiedeberg, M; Löwen, H
2013-01-01
We explore the crystallization in a colloidal monolayer on a structured template starting from a few-particle nucleus. The competition between the substrate structure and that of the growing crystal induces a new crystal growth scenario. Unlike with the crystal growth in the bulk where a well-defined and connected crystal–fluid interface grows into the fluid, we identify a mechanism where a ‘compatibility wave’ of the prescribed nucleus with the underlying substrate structure dictates the growth direction and efficiency. The growth process is strongly anisotropic and proceeds via transient island formation in front of an initial solid–fluid interface. We demonstrate the validity of this compatibility wave concept for a large class of substrate structures including a square lattice and a quasicrystalline pattern. Dynamical density functional theory that provides a microscopic approach to the crystallization process is employed for colloidal hard spheres. Our predictions can be verified in experiments on confined colloids and also bear consequences for molecular crystal growth on structured substrates. (paper)
Periodic Folded Wave Patterns for (2+1)-Dimensional Higher-Order Broer-Kaup Equation
International Nuclear Information System (INIS)
Huang Wenhua
2008-01-01
A general solution including three arbitrary functions is obtained for the (2+1)-dimensional higher-order Broer-Kaup equation by means of WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and their degenerated single folded solitary waves are investigated graphically and are found to be completely elastic
Tomographic reconstruction of internal wave patterns in a paraboloid
Hazewinkel, J.; Maas, L.R.M.; Dalziel, S.B.
2011-01-01
Using tomographic synthetic schlieren, we are able to reconstruct the three-dimensional density field of internal waves. In this study, the waves are radiating from an oscillating sphere positioned eccentrically at the surface of a paraboloidal domain filled with a uniformly stratified fluid. We
Turing's three philosophical lessons and the philosophy of information.
Floridi, Luciano
2012-07-28
In this article, I outline the three main philosophical lessons that we may learn from Turing's work, and how they lead to a new philosophy of information. After a brief introduction, I discuss his work on the method of levels of abstraction (LoA), and his insistence that questions could be meaningfully asked only by specifying the correct LoA. I then look at his second lesson, about the sort of philosophical questions that seem to be most pressing today. Finally, I focus on the third lesson, concerning the new philosophical anthropology that owes so much to Turing's work. I then show how the lessons are learned by the philosophy of information. In the conclusion, I draw a general synthesis of the points made, in view of the development of the philosophy of information itself as a continuation of Turing's work.
Faith in the algorithm, part 1: beyond the turing test
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Marko A [Los Alamos National Laboratory; Pepe, Alberto [UCLA
2009-01-01
Since the Turing test was first proposed by Alan Turing in 1950, the goal of artificial intelligence has been predicated on the ability for computers to imitate human intelligence. However, the majority of uses for the computer can be said to fall outside the domain of human abilities and it is exactly outside of this domain where computers have demonstrated their greatest contribution. Another definition for artificial intelligence is one that is not predicated on human mimicry, but instead, on human amplification, where the algorithms that are best at accomplishing this are deemed the most intelligent. This article surveys various systems that augment human and social intelligence.
THE INFLUENCE OF WAVE PATTERNS AND FREQUENCY ON THERMO-ACOUSTIC COOLING EFFECT
Directory of Open Access Journals (Sweden)
CHEN BAIMAN
2011-06-01
Full Text Available With the increasing environmental challenges, the search for an environmentally benign cooling technology that has simple and robust architecture continues. Thermo-acoustic refrigeration seems to be a promising candidate to fulfil these requirements. In this study, a simple thermo-acoustic refrigeration system was fabricated and tested. The thermo-acoustic refrigerator consists of acoustic driver (loudspeaker, resonator, stack, vacuum system and testing system. The effect of wave patterns and frequency on thermo-acoustic cooling effect was studied. It was found that a square wave pattern would yield superior cooling effects compared to other wave patterns tested.
Wave refraction and longshore current patterns along Calangute beach (Goa), west coast of India
Digital Repository Service at National Institute of Oceanography (India)
Krishnakumar, V.; Murty, C.S.; Shenoi, S.S.C.; Heblekar, A.K.
Wave refractions study for most predominant waves with 6,8,10 and 12 sec period and approaching from directions WNW, W and WSW has been carried out along the Calangute beach. The energy distribution and probable longshore/offshore current pattern...
Analysis of Wave Velocity Patterns in Black Cherry Trees and its Effect on Internal Decay Detection
Guanghui Li; Xiping Wang; Jan Wiedenbeck; Robert J. Ross
2013-01-01
In this study, we examined stress wave velocity patterns in the cross sections of black cherry trees, developed analytical models of stress wave velocity in sound healthy trees, and then tested the effectiveness of the models as a tool for tree decay diagnosis. Acoustic tomography data of the tree cross sections were collected from 12 black cherry trees at a production...
Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection
Guanghui Li; Xiping Wang; Hailin Feng; Jan Wiedenbeck; Robert J. Ross
2014-01-01
In this study, we examined stress wave velocity patterns in the cross sections of black cherry trees, developed analytical models of stress wave velocity in sound healthy trees, and then tested the effectiveness of the models as a tool for tree decay diagnosis. Acoustic tomography data of the tree cross sections were collected from 12 black cherry trees at a production...
Turing Incompleteness of Asynchronous P Systems with Active Membranes
Leporati, Alberto; Manzoni, Luca; Porreca, Antonio E.
2013-01-01
We prove that asynchronous P systems with active membranes without divi- sion rules can be simulated by place/transition Petri nets, and hence are computationally weaker than Turing machines. This result holds even if the synchronisation mechanisms provided by electrical charges and membrane dissolution are exploited.
Time complexity of tape reduction for reversible Turing machines
DEFF Research Database (Denmark)
Axelsen, Holger Bock
2012-01-01
in reversible computing theory are about multitape machines with two or more tapes, but it is non-obvious what these results imply for reversible complexity theory. Here, we study how the time complexity of multitape RTMs behaves under reductions to one and two tapes. For deterministic Turing machines...
Damage pattern and damage progression on breakwater roundheads under multidirectional waves
DEFF Research Database (Denmark)
Comola, F.; Andersen, Thomas Lykke; Martinelli, L.
2014-01-01
An experimental model test study is carried out to investigate damage pattern and progression on a rock armoured breakwater roundhead subjected to multidirectional waves. Concerning damage pattern, the most critical sector is observed to shift leeward with increasing wave period. Taking angles...... over the roundhead is developed. Thus the formula also considers the shifting of the critical sector due to increasing wave period which existing formulae do not include. Finally, analysing the damage produced by double peaked spectra, it is shown that the armour may be designed by the formula when...
Turing mechanism for homeostatic control of synaptic density during C. elegans growth
Brooks, Heather A.; Bressloff, Paul C.
2017-07-01
We propose a mechanism for the homeostatic control of synapses along the ventral cord of Caenorhabditis elegans during development, based on a form of Turing pattern formation on a growing domain. C. elegans is an important animal model for understanding cellular mechanisms underlying learning and memory. Our mathematical model consists of two interacting chemical species, where one is passively diffusing and the other is actively trafficked by molecular motors, which switch between forward and backward moving states (bidirectional transport). This differs significantly from the standard mechanism for Turing pattern formation based on the interaction between fast and slow diffusing species. We derive evolution equations for the chemical concentrations on a slowly growing one-dimensional domain, and use numerical simulations to demonstrate the insertion of new concentration peaks as the length increases. Taking the passive component to be the protein kinase CaMKII and the active component to be the glutamate receptor GLR-1, we interpret the concentration peaks as sites of new synapses along the length of C. elegans, and thus show how the density of synaptic sites can be maintained.
Vector wave diffraction pattern of slits masked by polarizing devices
Indian Academy of Sciences (India)
(7) where X = πud is the observation plane coordinate. If an analyser P(θ) is placed at the output side whose transmission axis makes an angle θ with the chosen x-axis, the vector wave amplitude obtained at the observation plane is then given by. F(u)WA = P(θ)F(u), where. P(θ) = ∣. ∣. ∣. ∣ cos2 θ sin θ cos θ sin θ cos θ.
Long waves over a bi-viscous seabed: transverse patterns
Directory of Open Access Journals (Sweden)
J. M. Becker
2002-01-01
Full Text Available The coupled interaction of long standing hydrodynamic waves with a deformable non-Newtonian seabed is examined using a two-layer model for which the upper layer fluid is inviscid and the lower layer is bi-viscous. The two-dimensional response of the system to forcing by a predominantly longitudinal (cross-shore standing wave perturbed by a small transverse (along-shore component is determined. With a constant yield stress in the bi-viscous lower layer, there is little amplification of these transverse per-turbations and the model response typically remains quasi-one-dimensional. However, for a bi-viscous layer with a pressure-dependent yield stress (which represents the effect that the seabed deforms less readily under compression and hence renders the rheology history dependent, the initially small transverse motions are amplified in some parameter regimes and two-dimensional, permanent bedforms are formed in the lower layer. This simple dynamical model is, therefore, able to explain the formation of permanent bedforms with significant cross- and along-shore features by predominantly cross-shore standing wave forcing.
Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System
Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying
2018-04-01
The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.
Nicola, Ernesto M.; Bär, Markus; Engel, Harald
2006-06-01
We study spatiotemporal patterns resulting from instabilities induced by nonlocal spatial coupling in the Oregonator model of the light-sensitive Belousov-Zhabotinsky reaction. In this system, nonlocal coupling can be externally imposed by means of an optical feedback loop which links the intensity of locally applied illumination with the activity in a certain vicinity of a particular point weighted by a given coupling function. This effect is included in the three-variable Oregonator model by an additional integral term in the photochemically induced bromide flow. A linear stability analysis of this modified Oregonator model predicts that wave and Turing instabilities of the homogeneous steady state can be induced for experimentally realistic parameter values. In particular, we find that a long-range inhibition in the optical feedback leads to a Turing instability, while a long-range activation induces wave patterns. Using a weakly nonlinear analysis, we derive amplitude equations for the wave instability which are valid close to the instability threshold. Therein, we find that the wave instability occurs supercritically or subcritically and that traveling waves are preferred over standing waves. The results of the theoretical analysis are in good agreement with numerical simulations of the model near the wave instability threshold. For larger distances from threshold, a secondary breathing instability is found for traveling waves.
Deciphering CAPTCHAs: what a Turing test reveals about human cognition.
Directory of Open Access Journals (Sweden)
Thomas Hannagan
Full Text Available Turning Turing's logic on its head, we used widespread letter-based Turing Tests found on the internet (CAPTCHAs to shed light on human cognition. We examined the basis of the human ability to solve CAPTCHAs, where machines fail. We asked whether this is due to our use of slow-acting inferential processes that would not be available to machines, or whether fast-acting automatic orthographic processing in humans has superior robustness to shape variations. A masked priming lexical decision experiment revealed efficient processing of CAPTCHA words in conditions that rule out the use of slow inferential processing. This shows that the human superiority in solving CAPTCHAs builds on a high degree of invariance to location and continuous transforms, which is achieved during the very early stages of visual word recognition in skilled readers.
On reversible Turing machines and their function universality
DEFF Research Database (Denmark)
Axelsen, Holger Bock; Glück, Robert
2016-01-01
We provide a treatment of the reversible Turing machines (RTMs) under a strict function semantics. Unlike many existing reversible computation models, we distinguish strictly between computing the function backslashlambda x.f(x) $ x . f ( x ) and computing the function backslashlambda x. (x, f...... exactly all injective computable functions. Because injectivity entails that the RTMs are not strictly Turing-complete w.r.t. functions, we use an appropriate alternative universality definition, and show how to derive universal RTMs (URTMs) from existing irreversible universal machines. We then proceed...... to construct a URTM from the ground up. This resulting machine is the first URTM which does not depend on a reversible simulation of an existing universal machine. The new construction has the advantage that the interpretive overhead of the URTM is limited to a (program dependent) constant factor. Another...
Evolving Neural Turing Machines for Reward-based Learning
DEFF Research Database (Denmark)
Greve, Rasmus Boll; Jacobsen, Emil Juul; Risi, Sebastian
2016-01-01
version of the double T-Maze, a complex reinforcement-like learning problem. In the T-Maze learning task the agent uses the memory bank to display adaptive behavior that normally requires a plastic ANN, thereby suggesting a complementary and effective mechanism for adaptive behavior in NE....... and integrating new information without losing previously acquired skills. Here we build on recent work by Graves et al. [5] who extended the capabilities of an ANN by combining it with an external memory bank trained through gradient descent. In this paper, we introduce an evolvable version of their Neural...... Turing Machine (NTM) and show that such an approach greatly simplifies the neural model, generalizes better, and does not require accessing the entire memory content at each time-step. The Evolvable Neural Turing Machine (ENTM) is able to solve a simple copy tasks and for the first time, the continuous...
Vector wave diffraction pattern of slits masked by polarizing devices
Indian Academy of Sciences (India)
This calls for a systematic study of diffraction properties of different apertures using polarization-sensitive devices. In the present paper, we have studied the Fraunhofer diffraction pattern of slits masked by different kinds of polarizing devices which introduce a phase difference between the two orthogonal components of the ...
Dynamics of actin waves on patterned substrates: a quantitative analysis of circular dorsal ruffles.
Directory of Open Access Journals (Sweden)
Erik Bernitt
Full Text Available Circular Dorsal Ruffles (CDRs have been known for decades, but the mechanism that organizes these actin waves remains unclear. In this article we systematically analyze the dynamics of CDRs on fibroblasts with respect to characteristics of current models of actin waves. We studied CDRs on heterogeneously shaped cells and on cells that we forced into disk-like morphology. We show that CDRs exhibit phenomena such as periodic cycles of formation, spiral patterns, and mutual wave annihilations that are in accord with an active medium description of CDRs. On cells of controlled morphologies, CDRs exhibit extremely regular patterns of repeated wave formation and propagation, whereas on random-shaped cells the dynamics seem to be dominated by the limited availability of a reactive species. We show that theoretical models of reaction-diffusion type incorporating conserved species capture partially the behavior we observe in our data.
Painter Jones, Matilda; Green, Mattias; Gove, Jamison; Williams, Gareth
2017-04-01
The ocean is saturated with internal waves at tidal frequency. The energy associated with conversion from barotropic to baroclinic can enhance mixing and upwelling at sites of generation and dissipation, which in turn can drive primary production. Hotspots of internal wave generation are located at sudden changes in topography with the Hawaiian archipelago identified as an area of intense internal wave activity. The role of internal waves as a driver of benthic reef community is unexplored and could be key to coral reefs survival in the unknown future. Using a Pacific wide map of internal wave flux and barotropic-to-baroclinic conversion at an unprecedented 1/30th degree resolution, energy budgets were developed for four islands to evaluate dissipation and generation of internal waves. Spatiotemporal variations in benthic community structure were plotted around each island and related to changes in internal wave energetics using a boosted regression tree. Contrasting spatial patterns and species assemblages were seen around islands with distinct internal wave regimes. The relative importance and influence of internal waves on coral reef ecosystems is evaluated.
Phase defects and spatiotemporal disorder in traveling-wave convection patterns
International Nuclear Information System (INIS)
La Porta, A.; Surko, C.M.
1997-01-01
Spatiotemporal disorder is studied in traveling-wave convection in ethanol-water mixtures. Spectral measures of disorder, linear correlation functions, and mutual information are used to characterize the patterns, and are found to give a weak indication of the level of disorder. The calculation of the complex order parameter for experimental patterns is described. It is found that the ordering of the patterns is accompanied by a dramatic change in the topological structure of the order parameter. Specific arrangements of defects are found to be associated with the elements of traveling-wave patterns, and the net charge and total number of defects is introduced as a measure of disorder in the patterns. The coarsening of the patterns is marked by an accumulation of net charge and a dramatic decrease in the number of defects. The physical significance of the defects is discussed, and it is shown that the phase velocity of the waves is lower in the vicinity of the defects. The defect-defect correlation functions are calculated for the convection patterns. It is shown that the ordering of the patterns is closely related to the apparent defect-defect interactions. copyright 1997 The American Physical Society
Reconstruction of Interfering Waves from Three Dimensional Analysis of Their Interference Pattern
Directory of Open Access Journals (Sweden)
M. T. Tavassoli
1997-04-01
Full Text Available Optical interferometry is being used as an efficient tool to analyse smooth surfaces for more than a century. Although, due to introduction of novel computer assisted analyzing techniques and array detectors, like CCD, the speed and the precision of processing have been increased tremendously, but the main equation involved is not changed. The main equation is the intensity distribution in the interference pattern of a plane reference wave and the required wave. In the paper it is shown that by analysis of the interference pattern of two unknown waves in three dimension (which is possible for coherent waves it is possible to reconstruct each wave separately. This approach has several useful applications, namely, on can do without reference plane wave in the interferometric surface analysis and, it is possible to reconstruct an unknown wave by making it to interfere with itself. This is very useful in determining the profile of laser beams and erasing the effect of atmospheric disturbances on observing astronomical objects.
Han, Renji; Dai, Binxiang
2017-06-01
The spatiotemporal pattern induced by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic functional response is investigated in this paper. The linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes in the framework of a weakly nonlinear theory, and the stability analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, we illustrate the theoretical results via numerical simulations. It is shown that the spatiotemporal distribution of the plankton is homogeneous in the absence of cross-diffusion. However, when the cross-diffusivity is greater than the critical value, the spatiotemporal distribution of all the plankton species becomes inhomogeneous in spaces and results in different kinds of patterns: spot, stripe, and the mixture of spot and stripe patterns depending on the cross-diffusivity. Simultaneously, the impact of toxin-producing rate of toxic-phytoplankton (TPP) species and natural death rate of zooplankton species on pattern selection is also explored.
Theoretical Fundaments for a Turing-Type Test for Virtual Environments
Sonnenfeld, Nathan
2016-01-01
AbstractAlan Turing supposed the “imitation game” which has also been called the Turing Test. In the game an interrogator is tasked with telling two similar stimuli apart by asking questions then, based on their responses, correctly identifying both stimuli. Applying this concept to virtual reality to create a similar test will be important as virtual reality becomes more and more like reality. It is also important to explore the conceptual and theoretical issues with the Turing Test in order...
Simulations of Quantum Turing Machines by Quantum Multi-Stack Machines
Qiu, Daowen
2005-01-01
As was well known, in classical computation, Turing machines, circuits, multi-stack machines, and multi-counter machines are equivalent, that is, they can simulate each other in polynomial time. In quantum computation, Yao [11] first proved that for any quantum Turing machines $M$, there exists quantum Boolean circuit $(n,t)$-simulating $M$, where $n$ denotes the length of input strings, and $t$ is the number of move steps before machine stopping. However, the simulations of quantum Turing ma...
Li, Ying-Han; Tseng, Chao-Yuan; Tsai, Arthur Chih-Hsin; Huang, Andrew Chih-Wei; Lin, Wei-Lun
2016-01-01
Contemporary understanding of brain functions provides a way to probe into the mystery of creativity. However, the prior evidence regarding the relationship between creativity and brain wave patterns reveals inconsistent conclusions. One possible reason might be that the means of selecting creative individuals in the past has varied in each study.…
Rogue waves, rational solutions, the patterns of their zeros and integral relations
International Nuclear Information System (INIS)
Ankiewicz, Adrian; Akhmediev, Nail; Clarkson, Peter A
2010-01-01
The focusing nonlinear Schroedinger equation, which describes generic nonlinear phenomena, including waves in the deep ocean and light pulses in optical fibres, supports a whole hierarchy of recently discovered rational solutions. We present recurrence relations for the hierarchy, the pattern of zeros for each solution and a set of integral relations which characterizes them. (fast track communication)
Altered brain perfusion patterns in wakefulness and slow-wave sleep in sleepwalkers.
Desjardins, Marie-Ève; Baril, Andrée-Ann; Soucy, Jean-Paul; Dang-Vu, Thien Thanh; Desautels, Alex; Petit, Dominique; Montplaisir, Jacques; Zadra, Antonio
2018-03-03
The present study assessed brain perfusion patterns with single photon emission computed tomography (SPECT) during sleepwalkers' post-sleep deprivation slow-wave sleep and resting-state wakefulness. Following a 24-hr period of sleep deprivation, 10 sleepwalkers and 10 sex- and age-matched controls were scanned with a high-resolution SPECT scanner. Participants were injected with99mTc-ECD after 2 minutes of stable slow-wave sleep within their first sleep cycle as well as during resting-state wakefulness, both after a subsequent 24-hr period of sleep deprivation. When compared to controls' brain perfusion patterns during both slow-wave sleep and resting-state wakefulness, sleepwalkers showed reduced regional cerebral perfusion in several bilateral frontal regions, including the superior frontal, middle frontal and medial frontal gyri. Moreover, reduced regional cerebral perfusion was also found in sleepwalkers' left postcentral gyrus, insula and superior temporal gyrus during slow-wave sleep compared to controls. During resting-state wakefulness compared to controls, reduced cerebral perfusion was also found in parietal and temporal regions of sleepwalkers' left hemisphere while the right parahippocampal gyrus showed increased regional cerebral perfusion. Our results reveal patterns of reduced regional cerebral perfusion in sleepwalkers' frontal and parietal areas when compared to controls, regions previously associated with slow-wave sleep generation and episode occurrence. Additionally, reduced perfusion in the dorsolateral prefrontal cortex and insula during recovery slow-wave sleep is consistent with clinical features of somnambulistic episodes, including impaired awareness and reduced pain perception. Altered regional cerebral perfusion patterns during sleepwalkers' resting-state wakefulness may be related to daytime functional anomalies in this population.
Reverse engineering Turing Machines and insights into the Collatz conjecture
John Nixon
2017-01-01
In this paper I have extended my earlier work \\cite{jn} on small Turing Machines (TMs) by developing a method for obtaining recursive definitions of the irreducible regular rules (IRR) for a TM when explicit formulae for them cannot be obtained. This has been illustrated by two examples. The first example was randomly chosen and the second example was designed to simulate the Collatz conjecture. Analysis of this TM based on the its IRR suggested new approaches that might be the basis for a pr...
Alan Turing and the origins of modern Gaussian elimination
Directory of Open Access Journals (Sweden)
Dopico, Froilán M.
2013-12-01
Full Text Available The solution of a system of linear equations is by far the most important problem in Applied Mathematics. It is important both in itself and because it is an intermediate step in many other important problems. Gaussian elimination is nowadays the standard method for solving this problem numerically on a computer and it was the first numerical algorithm to be subjected to rounding error analysis. In 1948, Alan Turing published a remarkable paper on this topic: “Rounding-off errors in matrix processes” (Quart. J. Mech. Appl. Math. 1, pp. 287-308. In this paper, Turing formulated Gaussian elimination as the matrix LU factorization and introduced the “condition number of a matrix”, both of them fundamental notions of modern Numerical Analysis. In addition, Turing presented an error analysis of Gaussian elimination for general matrices that deeply influenced the spirit of the definitive analysis developed by James Wilkinson in 1961. Alan Turing’s work on Gaussian elimination appears in a fascinating period for modern Numerical Analysis. Other giants of Mathematics, as John von Neumann, Herman Goldstine, and Harold Hotelling were also working in the mid-1940s on Gaussian elimination. The goal of these researchers was to find an efficient and reliable method for solving systems of linear equations in modern “automatic computers”. At that time, it was not clear at all whether Gaussian elimination was a right choice or not. The purpose of this paper is to revise, at an introductory level, the contributions of Alan Turing and other authors to the error analysis of Gaussian elimination, the historical context of these contributions, and their influence on modern Numerical Analysis.La resolución de sistemas de ecuaciones lineales es sin duda el problema más importante en Matemática Aplicada. Es importante en sí mismo y también porque es un paso intermedio en la resolución de muchos otros problemas de gran relevancia. La eliminaci
Prediction of ion-exchange column breakthrough curves by constant-pattern wave approach.
Lee, I-Hsien; Kuan, Yu-Chung; Chern, Jia-Ming
2008-03-21
The release of heavy metals from industrial wastewaters represents one of major threats to environment. Compared with chemical precipitation method, fixed-bed ion-exchange process can effectively remove heavy metals from wastewaters and generate no hazardous sludge. In order to design and operate fixed-bed ion-exchange processes successfully, it is very important to understand the column dynamics. In this study, the column experiments for Cu2+/H+, Zn2+/H+, and Cd2+/H+ systems using Amberlite IR-120 were performed to measure the breakthrough curves under varying operating conditions. The experimental results showed that total cation concentration in the mobile-phase played a key role on the breakthrough curves; a higher feed concentration resulted in an earlier breakthrough. Furthermore, the column dynamics was also predicted by self-sharpening and constant-pattern wave models. The self-sharpening wave model assuming local ion-exchange equilibrium could provide a simple and quick estimation for the breakthrough volume, but the predicted breakthrough curves did not match the experimental data very well. On the contrary, the constant-pattern wave model using a constant driving force model for finite ion-exchange rate provided a better fit to the experimental data. The obtained liquid-phase mass transfer coefficient was correlated to the flow velocity and other operating parameters; the breakthrough curves under varying operating conditions could thus be predicted by the constant-pattern wave model using the correlation.
Czech Academy of Sciences Publication Activity Database
Korvasová, K.; Gaffney, E. A.; Maini, P.K.; Ferreira, M.A.; Klika, Václav
2015-01-01
Roč. 367, February (2015), s. 286-295 ISSN 0022-5193 Institutional support: RVO:61388998 Keywords : turing instability * non-diffusive substrate * pattern formation Subject RIV: BJ - Thermodynamics Impact factor: 2.049, year: 2015 http://ac.els-cdn.com/S0022519314006766/1-s2.0-S0022519314006766-main.pdf?_tid=63ec0858-9ffa-11e5-969b-00000aacb35d&acdnat=1449833527_e470798087aa42f7ca3b2efcfffc48cf
Cong, Rui; Li, Jing; Guo, Song
2017-02-01
To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all Ppattern 1 for downgrading and Qual1=Color pattern 5 for upgrading the BI-RADS categories, we obtained the highest Az value (0.951), and achieved a significantly higher specificity (86.56%, P=0.002) than that of the US (81.18%) with the same sensitivity (94.96%). The qualitative classification proposed in this study may be representative of SWE parameters and has potential to be relevant assistance in
Passing the Turing Test Does Not Mean the End of Humanity.
Warwick, Kevin; Shah, Huma
In this paper we look at the phenomenon that is the Turing test. We consider how Turing originally introduced his imitation game and discuss what this means in a practical scenario. Due to its popular appeal we also look into different representations of the test as indicated by numerous reviewers. The main emphasis here, however, is to consider what it actually means for a machine to pass the Turing test and what importance this has, if any. In particular does it mean that, as Turing put it, a machine can "think". Specifically we consider claims that passing the Turing test means that machines will have achieved human-like intelligence and as a consequence the singularity will be upon us in the blink of an eye.
Mutation-selection dynamics and error threshold in an evolutionary model for Turing machines.
Musso, Fabio; Feverati, Giovanni
2012-01-01
We investigate the mutation-selection dynamics for an evolutionary computation model based on Turing machines. The use of Turing machines allows for very simple mechanisms of code growth and code activation/inactivation through point mutations. To any value of the point mutation probability corresponds a maximum amount of active code that can be maintained by selection and the Turing machines that reach it are said to be at the error threshold. Simulations with our model show that the Turing machines population evolve toward the error threshold. Mathematical descriptions of the model point out that this behaviour is due more to the mutation-selection dynamics than to the intrinsic nature of the Turing machines. This indicates that this result is much more general than the model considered here and could play a role also in biological evolution. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
One Dimensional Turing-Like Handshake Test for Motor Intelligence
Karniel, Amir; Avraham, Guy; Peles, Bat-Chen; Levy-Tzedek, Shelly; Nisky, Ilana
2010-01-01
In the Turing test, a computer model is deemed to "think intelligently" if it can generate answers that are not distinguishable from those of a human. However, this test is limited to the linguistic aspects of machine intelligence. A salient function of the brain is the control of movement, and the movement of the human hand is a sophisticated demonstration of this function. Therefore, we propose a Turing-like handshake test, for machine motor intelligence. We administer the test through a telerobotic system in which the interrogator is engaged in a task of holding a robotic stylus and interacting with another party (human or artificial). Instead of asking the interrogator whether the other party is a person or a computer program, we employ a two-alternative forced choice method and ask which of two systems is more human-like. We extract a quantitative grade for each model according to its resemblance to the human handshake motion and name it "Model Human-Likeness Grade" (MHLG). We present three methods to estimate the MHLG. (i) By calculating the proportion of subjects' answers that the model is more human-like than the human; (ii) By comparing two weighted sums of human and model handshakes we fit a psychometric curve and extract the point of subjective equality (PSE); (iii) By comparing a given model with a weighted sum of human and random signal, we fit a psychometric curve to the answers of the interrogator and extract the PSE for the weight of the human in the weighted sum. Altogether, we provide a protocol to test computational models of the human handshake. We believe that building a model is a necessary step in understanding any phenomenon and, in this case, in understanding the neural mechanisms responsible for the generation of the human handshake. PMID:21206462
Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces
Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer
2018-01-01
Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.
Xu, Jian-Jun
2017-01-01
This comprehensive work explores interfacial instability and pattern formation in dynamic systems away from the equilibrium state in solidification and crystal growth. Further, this significantly expanded 2nd edition introduces and reviews the progress made during the last two decades. In particular, it describes the most prominent pattern formation phenomena commonly observed in material processing and crystal growth in the framework of the previously established interfacial wave theory, including free dendritic growth from undercooled melt, cellular growth and eutectic growth in directional solidification, as well as viscous fingering in Hele-Shaw flow. It elucidates the key problems, systematically derives their mathematical solutions by pursuing a unified, asymptotic approach, and finally carefully examines these results by comparing them with the available experimental results. The asymptotic approach described here will be useful for the investigation of pattern formation phenomena occurring in a much b...
A new qualitative pattern classification of shear wave elastograghy for solid breast mass evaluation
Energy Technology Data Exchange (ETDEWEB)
Cong, Rui, E-mail: congrui2684@163.com; Li, Jing, E-mail: lijing@sj-hospital.org; Guo, Song, E-mail: 21751735@qq.com
2017-02-15
Highlights: • Qualitative SWE classification proposed here was significantly better than quantitative SWE parameters. • Qualitative classification proposed here was better than the classification proposed before. • Qualitative classification proposed here could obtain higher specificity without a loss of sensitivity. - Abstract: Objectives: To examine the efficacy of qualitative shear wave elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. Methods: From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. One was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color patterns by the visual evaluations: Color pattern 1 (homogeneous pattern); Color pattern 2 (comparative homogeneous pattern); Color pattern 3 (irregularly heterogeneous pattern); Color pattern 4 (intralesional echo pattern); and Color pattern 5 (the stiff rim sign pattern). The second qualitative classification was named Qual2 here, and included a four-color overlay pattern classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. Results: With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all P < 0.05). When applying Qual1
Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements
Kim, Sang-Koog
2010-07-01
Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.
Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs
Energy Technology Data Exchange (ETDEWEB)
Yim, Jong-Hyuk; Min, Kyunggu; Jeong, Hoonil; Jho, Young-Dahl [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Eun-Hye; Song, Jin-Dong [Center for Opto-Electronics Convergence Systems, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)
2013-04-07
We performed terahertz (THz) time-domain spectroscopy in various geometries, for characterizing the directivity of THz waves emitted from groove patterned InAs structures. We first identified two transient transport processes as underlying THz emission mechanisms in InAs epilayers with different thicknesses. Carrier drift around the surface depletion region was predominant for the THz wave generation in the thin sample group (10-70 nm), whereas electronic diffusion overrode the drift currents in the thick sample group (370-900 nm) as revealed by the amplitude change and phase reversal. Through a combination of electron-beam lithography and inductively coupled plasma etching in 1 {mu}m-thick InAs epilayers, we could further periodically fabricate either asymmetric V-groove patterns or symmetric parabolic apertures. The THz amplitude was enhanced, particularly along the line-of-sight transmissive direction when the periodic groove patterns act as microscale reflective mirrors separated by a scale of the diffusion length.
Standing and travelling waves in a spherical brain model: The Nunez model revisited
Visser, S.; Nicks, R.; Faugeras, O.; Coombes, S.
2017-06-01
The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.
A novel modification of the Turing test for artificial intelligence and robotics in healthcare.
Ashrafian, Hutan; Darzi, Ara; Athanasiou, Thanos
2015-03-01
The increasing demands of delivering higher quality global healthcare has resulted in a corresponding expansion in the development of computer-based and robotic healthcare tools that rely on artificially intelligent technologies. The Turing test was designed to assess artificial intelligence (AI) in computer technology. It remains an important qualitative tool for testing the next generation of medical diagnostics and medical robotics. Development of quantifiable diagnostic accuracy meta-analytical evaluative techniques for the Turing test paradigm. Modification of the Turing test to offer quantifiable diagnostic precision and statistical effect-size robustness in the assessment of AI for computer-based and robotic healthcare technologies. Modification of the Turing test to offer robust diagnostic scores for AI can contribute to enhancing and refining the next generation of digital diagnostic technologies and healthcare robotics. Copyright © 2014 John Wiley & Sons, Ltd.
On the Super-Turing Computational Power of Non-Uniform Families of Neuromata
Czech Academy of Sciences Publication Activity Database
Wiedermann, Jiří
2002-01-01
Roč. 12, č. 5 (2002), s. 509-516 ISSN 1210-0552. [SOFSEM 2002 Workshop on Soft Computing. Milovy, 28.11.2002-29.11.2002] R&D Projects: GA ČR GA201/00/1489 Institutional research plan: AV0Z1030915 Keywords : neuromata * Turing machines with advice * non-uniform computational complexity * super-Turing computational power Subject RIV: BA - General Mathematics
Reverse engineering Turing Machines and insights into the Collatz conjecture
Directory of Open Access Journals (Sweden)
John Nixon
2017-02-01
Full Text Available In this paper I have extended my earlier work \\cite{jn} on small Turing Machines (TMs by developing a method for obtaining recursive definitions of the irreducible regular rules (IRR for a TM when explicit formulae for them cannot be obtained. This has been illustrated by two examples. The first example was randomly chosen and the second example was designed to simulate the Collatz conjecture. Analysis of this TM based on the its IRR suggested new approaches that might be the basis for a proof of this conjecture. The method involves running the TM backwards from a configuration set (CS. This in general produces a tree of CSs at each step. The aim is to find CS's $\\mathtt{y}$ that are reachable from a CS $x$ that simply specifies the symbol about to be read and the machine state. This means that following the computation forward from $x$ by adding some symbols when needed at the pointer, the CS $y$ can be reached. These CS's form the basis of the LHS's of the IRR.
Directory of Open Access Journals (Sweden)
Mai Li Dan Mu Ai Ke Bai
2017-12-01
Full Text Available Brugada syndrome (BS is an arrhythmogenic ion channelopathy, which constitutes a distinct subtype of idiopathic ventricular fibrillation. It is characterized by unique electrocardiographic (ECG manifestations, including right bundle branch block, ST-segment elevation of coved or saddle-back type, and T-wave inversion in the right precordial ECG from V1 to V3 leads, and a high incidence of sudden death from ventricular tachyarrhythmia. Early repolarization (ER has traditionally been considered a benign entity with ECG characterized by an elevation greater than 0.1 mV of the junction between the end of the magnetic resonance angiography (QRS complex and the beginning of the ST segment (J point and a notching or slurring of the terminal portion of the QRS complex followed by a positive T wave. Early repolarization pattern (ERP has been associated with vulnerability to ventricular fibrillation in independent case-controlled studies. Recently, clinical interest in ERP has been rekindled because of its similarities with BS. Here, we reported a case of a middle-aged male who presented with syncope that unmasked an ECG pattern consistent with diagnoses of both BS and ER, and discussed the variations in BS and the high-risk features associated with it.
Picosecond laser ultrasonic measurements of surface waves on patterned layered nanostructures
Gartenstein, Sam; James, Molly; Mahat, Sushant; Szwed, Erik; Daly, Brian; Cui, Weili; Antonelli, George
We report ultrafast optical pump-probe measurements of 5 - 25 GHz surface acoustic waves (SAWs) on patterned layered nanostructures. These very high frequency SAWs were generated and detected on the following patterned film stack: 25 nm physically vapor deposited Al / 60-110 nm thermally grown a-SiO2 / Si (100) substrate. The Al was etched to form lines of rectangular cross section with pitches ranging from 1000 nm down to 140 nm and the lines were oriented parallel to the [110] direction on the wafer surface. The absorption of ultrafast pulses from a Ti:sapphire oscillator operating at 800 nm generated SAWs that were detected by time-delayed probe pulses from the same oscillator via a reflectivity change (ΔR). The SAW frequency increased with decreasing pitch in a non-linear fashion due to dispersion of the wave caused by the presence of the oxide layer. We also experimentally demonstrate the traveling of the SAW's by separating the focused pump and probe laser spots by several microns. We compare the results to coarse-grained molecular dynamics simulations and simplified calculations using isotropic elasticity theory. This work was supported by NSF Award DMR1206681.
Yoon, Jung Hyun; Ko, Kyung Hee; Jung, Hae Kyoung; Lee, Jong Tae
2013-12-01
To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21-88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P0.05). Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Jung Hyun, E-mail: lvjenny0417@gmail.com [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Department of Radiology, Research Institute of Radiological Science, Yonsei University, College of Medicine (Korea, Republic of); Ko, Kyung Hee, E-mail: yourheeya@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Jung, Hae Kyoung, E-mail: AA40501@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of); Lee, Jong Tae, E-mail: jtlee@cha.ac.kr [Department of Radiology, CHA Bundang Medical Center, CHA University, School of Medicine (Korea, Republic of)
2013-12-01
Objective: To determine the correlation of qualitative shear wave elastography (SWE) pattern classification to quantitative SWE measurements and whether it is representative of quantitative SWE values with similar performances. Methods: From October 2012 to January 2013, 267 breast masses of 236 women (mean age: 45.12 ± 10.54 years, range: 21–88 years) who had undergone ultrasonography (US), SWE, and subsequent biopsy were included. US BI-RADS final assessment and qualitative and quantitative SWE measurements were recorded. Correlation between pattern classification and mean elasticity, maximum elasticity, elasticity ratio and standard deviation were evaluated. Diagnostic performances of grayscale US, SWE parameters, and US combined to SWE values were calculated and compared. Results: Of the 267 breast masses, 208 (77.9%) were benign and 59 (22.1%) were malignant. Pattern classifications significantly correlated with all quantitative SWE measurements, showing highest correlation with maximum elasticity, r = 0.721 (P < 0.001). Sensitivity was significantly decreased in US combined to SWE measurements to grayscale US: 69.5–89.8% to 100.0%, while specificity was significantly improved: 62.5–81.7% to 13.9% (P < 0.001). Area under the ROC curve (A{sub z}) did not show significant differences between grayscale US to US combined to SWE (P > 0.05). Conclusion: Pattern classification shows high correlation to maximum stiffness and may be representative of quantitative SWE values. When combined to grayscale US, SWE improves specificity of US.
Archaeology in the Átures Rapids of the Middle Orinoco, Venezuela
Directory of Open Access Journals (Sweden)
Natalia Lozada Mendieta
2016-12-01
Full Text Available This paper briefly reports on the initial results of a new Leverhulme-sponsored four-year archaeological project (RPG 234- 2014 centred on the Átures Rapids area of the Middle Orinoco River, Amazonas State, Venezuela (Fig. 1. The Cotúa Island Reflexive Archaeology Project seeks to establish the longue durée historical processes that by early colonial times culminated in the region’s reputation for being a key crossroads – where diverse ethno-linguistic groups from far-flung regions converged to trade (Oliver et al. 2014. Harnessing new evi- dence, it aims to elucidate how interaction between such diverse indigenous groups unfolded and the role it played in forg- ing ethnogenesis. Through archaeological research, it seeks to gain new insights into its history and elucidate regional patterns of exchange through the study of technical andstylisticdimensionsofmaterialculture. It also aims to investigate the abundant pre-colonial rock art and its relationships to the landscape and aboriginal oral tradi- tions. Finally, it seeks to understand how Western and Non-western archaeological knowledge is produced by engaging with the current indigenous groups as partners in (reconstructing history.
Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"
Young, Larry A.
2007-01-01
A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a
Wave refraction and longshore transport patterns along the southern Santa Catarina coast
Directory of Open Access Journals (Sweden)
Eduardo Siegle
2007-06-01
Full Text Available Based on the wave climate for the southern Brazilian coast, wave refraction has been modelled in order to obtain the refracted wave heights and directions along the southern Santa Catarina coast, providing the needed information for potential longshore drift estimates. According to its coastline orientation, different sectors of the coast present varying longshore drift patterns. Estimates have been made for the yearly-averaged wave climate as well as for each season, showing thereby the longshore drift patterns along the year. Based on the results of the potential longshore drift intensities and directions and on the shoreline outline in plan, it has been possible to identify a strongly drift-dominated coast in the south turning to a mixed drift and swash dominated coast towards the north of the studied area. Contrasting patterns of longshore drift between the southern and northern portion of the coastline indicate a sediment surplus in the central portion, making sediment available for cross-shore transport processes, either on- or offshore. Considering long-term aspects, the longshore drift patterns are in agreement with the coastal infilling process which has mainly been driven by persistent surplus from littoral sediment drift.Com base no clima de ondas para o sul da costa brasileira, a refração de ondas foi modelada para a obtenção de alturas e direção das ondas ao longo da costa sul de Santa Catarina. Essas informações permitem a estimativa da deriva litorânea potencial para a região. De acordo com a orientação da linha de costa, diferentes setores do litoral apresentam variados padrões de deriva. As estimativas foram realizadas com base nos dados médios anuais e para cada estação do ano, demonstrando assim a variabilidade dos padrões ao longo do ano. A configuração da linha de costa e os resultados das estimativas de intensidade e direção da deriva indicam o predomínio da deriva litorânea na porção sul da área e
DEFF Research Database (Denmark)
Hunding, Axel; Gerdes, Kenn; Charbon, Gitte Ebersbach
2003-01-01
Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about...... in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes....... formation, based on Turing's mechanism, and these patterns are destroyed by the degradation products, only to initiate a new pattern at the opposite nucleoid region. A recurrent wave thus emerges. This may be a particular example of a more general class of pattern forming mechanisms, based on protein...
The Effect of Waves with Different Patterns on On-Shore Structures
DEFF Research Database (Denmark)
Burcharth, Hans F.
This paper represents a contribution to the standing discussion on whether model tests in waves should be carried out with waves which are, both in time and frequency domaine, reproduced in accordance with field records (and thus conserving the succession of the waves) or whether irregular waves ...
Singh, Dheeraj Kumar; Majumdar, Pinaki
2017-12-01
We investigate the impurity-scattering-induced quasiparticle interference in the (π ,0 ) spin-density wave phase of the iron pnictides. We use a five-orbital tight-binding model and our mean-field theory in the clean limit captures key features of the Fermi surface observed in angle-resolved photoemission. We use a t -matrix formalism to incorporate the effect of doping-induced impurities on this state. The impurities lead to a spatial modulation of the local density of states about the impurity site, with a periodicity of ˜8 aFe -Fe along the antiferromagnetic direction. The associated momentum space quasiparticle interference pattern is anisotropic, with major peaks located at ˜(±π /4 ,0 ) , consistent with spectroscopic imaging scanning tunneling microscopy. We trace the origin of this pattern to an elliptical contour of constant energy around momentum (0,0), with major axis oriented along the (0,1) direction, in the mean-field electronic structure.
Zhang, Wei; Shmuylovich, Leonid; Kovács, Sándor J
2010-03-01
The transmitral Doppler E-wave "delayed relaxation" (DR) pattern is an established sign of diastolic dysfunction (DD). Furthermore, chambers exhibiting a DR filling pattern are also expected to have a prolonged time-constant of isovolumic relaxation (tau). The simultaneous observation of a DR pattern and normal tau in the same heart is not uncommon, however. The simultaneous hemodynamic equivalent of the DR pattern has not been proposed. To determine the feature of the left ventricular (LV) pressure contour during the E-wave that is causally related to its DR pattern we applied kinematic and fluid mechanics based arguments to derive the pressure recovery ratio (PRR). The PRR is dimensionless and is defined by the left ventricular pressure difference between diastasis and minimum pressure, normalized to the pressure difference between a fiducial diastolic filling pressure and minimum pressure [PRR=(P(Diastasis)-P(Min))/(P(Fiducial)-P(Min))]. We analyzed 354 cardiac cycles from 40 normal sinus rhythm (NSR) subjects and 113 beats from nine atrial fibrillation (AF) subjects from our database of simultaneous transmitral flow-micromanometric LV pressure recordings. The fiducial pressure is defined by the end diastolic pressure in NSR and by the pressure at dP/dt(MIN) in the setting of AF. Consistent with derivation, PRR was linearly related to a DR pattern related, model-based relaxation parameter (R(2) = 0.77, 0.83 in NSR and AF, respectively). Furthermore, the PRR successfully differentiated subjects with a DR pattern from subjects with partial DR or normal E-wave pattern (p waves, even when tau cannot. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Jeonghun Nam; Jae Young Kim; Chae Seung Lim
2017-01-01
We present continuous, sheathless microparticle patterning using conductive liquid (CL)-based standing surface acoustic waves (SSAWs). Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls...
Directory of Open Access Journals (Sweden)
Jeonghun Nam
2017-01-01
Full Text Available We present continuous, sheathless microparticle patterning using conductive liquid (CL-based standing surface acoustic waves (SSAWs. Conventional metal electrodes patterned on a piezoelectric substrate were replaced with electrode channels filled with a CL. The device performance was evaluated with 5-μm fluorescent polystyrene particles at different flow rate and via phase shifting. In addition, our device was further applied to continuous concentration of malaria parasites at the sidewalls of the fluidic channel.
Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F
2015-04-01
The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...
Xu, Hong-Ping; Burbridge, Timothy J; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z Jimmy; Crair, Michael C
2016-03-30
Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical,in vitroandin vivoelectrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the "recurrent network" model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic "retinal waves" are initiated in starburst amacrine cells and propagate to retinal ganglion cells
Undecidability and temporal logic: some landmarks from Turing to the present
DEFF Research Database (Denmark)
Goranko, Valentin
2012-01-01
This is a selective survey and discussion of some of the landmark undecidability results in temporal logic, beginning with Turing's undecidability of the Halting problem which, in retrospect, can be regarded as the historically first undecidability result for a suitable temporal logic over...... configuration graphs of Turing machines. I will discuss some of the natural habitats of undecidable temporal logics, such as first-order, interval-based and real time temporal logics, as well as some extensions that often lead to undecidability, such as two-dimensional temporal logics and temporal...
Copeland, B Jack
2005-01-01
The mathematical genius Alan Turing (1912-1954) was one of the greatest scientists and thinkers of the 20th century. Now well known for his crucial wartime role in breaking the ENIGMA code, he was the first to conceive of the fundamental principle of the modern computer-the idea of controlling a computing machine's operations by means of a program of coded instructions, stored in the machine's 'memory'. In 1945 Turing drew up his revolutionary design for an electronic computingmachine-his Automatic Computing Engine ('ACE'). A pilot model of the ACE ran its first program in 1950 and the product
Internal wave patterns in enclosed density-stratified and rotating fluids
Manders, A.M.A.
2003-01-01
Stratified fluids support internal waves, which propagate obliquely through the fluid. The angle with respectto the stratification direction is contrained: it is purely determined by the wave frequency and the strength of the density stratification (internal gravity waves) or the rotation rate
Long-lived force patterns and deformation waves at repulsive epithelial boundaries
Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier
2017-10-01
For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.
Moyama, Shota; Minami, Kazuhiro; Yano, Mihiro; Okumura, Masumi; Hayashi, Susumu; Takayama, Hiroshi; Yorimoto, Akira
2017-05-01
Arterial stiffness is a leading cause of cardiovascular disease (CVD), and it is considered to be affected by dietary intake. However, few studies have examined the relationship between major dietary patterns and brachial-ankle pulse wave velocity (baPWV) among Japanese middle-aged subjects. We studied whether major dietary patterns were associated with baPWV in this population. Between 2009 and 2012, 70 Japanese middle-aged subjects (39 men and 31 women) with no history of stroke, coronary heart disease, or cancer were studied. Dietary intake was documented using a validated food-frequency questionnaire, and dietary patterns were generated using factor analysis. Correlational analyses were performed between baPWV and identified dietary patterns and between baPWV and individual risk factors (total cholesterol, triglyceride, low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], non- HDL-C, LDL/HDL ratio, and augmentation index). Two dietary patterns were identified: a rice-rich pattern (high in rice, breads, oils and fats, meats, and confectionery) and a vegetable-rich pattern (high in vegetables, fruit, fish, and seaweed). The rice-rich pattern was not associated with baPWVor other risk factors. A significant inverse correlation was found between baPWV and the vegetable-rich dietary pattern (pvegetables, seafood, seaweed, fruit, and pulse is inversely associated with arterial stiffness measured by baPWV. This diet offers an additional nutritional approach to the prevention and treatment of arterial stiffness.
Song, T.; Liu, L.; Kawakatsu, H.
2011-12-01
Oceanic asthenosphere is characterized as a low seismic velocity, low viscosity, and strongly anisotropic channel separating from the oceanic lithosphere through a sharp shear wave velocity contrast. It has been a great challenge to reconcile all these observations and ultimately illuminate the fate of oceanic asthenosphere near convergent plate margins. Sub-slab shear wave splitting patterns are particularly useful to address the fate of oceanic asthenosphere since they are directly linked to deformation induced by the mantle flow beneath the subducting slab. To address slab entrainment of oceanic asthenosphere through shear wave splitting, it is important to recognize that oceanic asthenosphere is characterized by azimuthal anisotropy (1-3%) as well as strong P wave and S wave radial anisotropy (3-7%) for horizontally travelling P wave (VPH > VPV) and S wave (VSH > VSV), making it effectively an orthorhombic medium. Here we show that entrained asthenosphere predicts sub-slab SKS splitting pattern, where the fast splitting direction changes from predominantly trench-normal under shallow subduction zones to predominantly trench-parallel under relatively steep subduction zones. This result can be recognized by the 90 degrees shift in the polarization of the fast wave at about 20 degrees incident angle, where VSH equals to VSV forming a classical point singularity (Crampin, 1991). The thickness of the entrained asthenosphere is estimated to be on the order of 100 km, which predicts SKS splitting time varying from 0.5 seconds to 2 seconds. After briefly discussing improvement of the millefeuille model (Kawakatsu et al. 2009) of the asthenosphere upon this new constraint and long wave Backus averaging of orthorhombic solid and melt, we will illustrate that, in the range of observed trench migration speed, dynamic models of 2-D mantle convection with temperature-dependent viscosity do support thick subducting slab entrainment of asthenosphere under ranges of
Directory of Open Access Journals (Sweden)
Daniel Geberth
2009-07-01
Full Text Available The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers. This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path.
LT^2C^2: A language of thought with Turing-computable Kolmogorov complexity
Directory of Open Access Journals (Sweden)
Santiago Figueira
2013-03-01
Full Text Available In this paper, we present a theoretical effort to connect the theory of program size to psychology by implementing a concrete language of thought with Turing-computable Kolmogorov complexity (LT^2C^2 satisfying the following requirements: 1 to be simple enough so that the complexity of any given finite binary sequence can be computed, 2 to be based on tangible operations of human reasoning (printing, repeating,. . . , 3 to be sufficiently powerful to generate all possible sequences but not too powerful as to identify regularities which would be invisible to humans. We first formalize LT^2C^2, giving its syntax and semantics, and defining an adequate notion of program size. Our setting leads to a Kolmogorov complexity function relative to LT^2C^2 which is computable in polynomial time, and it also induces a prediction algorithm in the spirit of Solomonoff’s inductive inference theory. We then prove the efficacy of this language by investigating regularities in strings produced by participants attempting to generate random strings. Participants had a profound understanding of randomness and hence avoided typical misconceptions such as exaggerating the number of alternations. We reasoned that remaining regularities would express the algorithmic nature of human thoughts, revealed in the form of specific patterns. Kolmogorov complexity relative to LT^2C^2 passed three expected tests examined here: 1 human sequences were less complex than control PRNG sequences, 2 human sequences were not stationary showing decreasing values of complexity resulting from fatigue 3 each individual showed traces of algorithmic stability since fitting of partial data was more effective to predict subsequent data than average fits. This work extends on previous efforts to combine notions of Kolmogorov complexity theory and algorithmic information theory to psychology, by explicitly proposing a language which may describe the patterns of human thoughts.Received: 12
Kiselev, Alexei D.; Vovk, Roman G.
2008-01-01
We study the angular structure of polarization of light transmitted through a nematic liquid crystal (NLC) cell by analyzing the polarization state as a function of the incidence angles and the polarization of the incident wave. The polarization resolved angular patterns emerging after the NLC cell illuminated by the convergent light beam are described in terms of the polarization singularities such as C-points (points of circular polarization) and L-lines (lines of linear polarization). For ...
Muller, Lyle; Piantoni, Giovanni; Koller, Dominik; Cash, Sydney S; Halgren, Eric; Sejnowski, Terrence J
2016-11-15
During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories.
Frommelt, Thomas; Gogel, Daniel; Kostur, Marcin; Talkner, Peter; Hänggi, Peter; Wixforth, Achim
2008-10-01
This work presents an approach for determining the streaming patterns that are generated by Rayleigh surface acoustic waves in arbitrary 3-D geometries by finite element method (FEM) simulations. An efficient raytracing algorithm is applied on the acoustic subproblem to avoid the unbearable memory demands and computational time of a conventional FEM acoustics simulation in 3-D. The acoustic streaming interaction is modeled by a body force term in the Stokes equation. In comparisons between experiments and simulated flow patterns, we demonstrate the quality of the proposed technique.
Directory of Open Access Journals (Sweden)
Shilei Liu
2017-07-01
Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.
Navarro, Gabriel; Vicent, Jorge; Caballero, Isabel; Gómez-Enri, Jesús; Morris, Edward P.; Sabater, Neus; Macías, Diego; Bolado-Penagos, Marina; Gomiz, Juan Jesús; Bruno, Miguel; Caldeira, Rui; Vázquez, Águeda
2018-05-01
High Amplitude Internal Waves (HAIWs) are physical processes observed in the Strait of Gibraltar (the narrow channel between the Atlantic Ocean and the Mediterranean Sea). These internal waves are generated over the Camarinal Sill (western side of the strait) during the tidal outflow (toward the Atlantic Ocean) when critical hydraulic conditions are established. HAIWs remain over the sill for up to 4 h until the outflow slackens, being then released (mostly) towards the Mediterranean Sea. These have been previously observed using Synthetic Aperture Radar (SAR), which captures variations in surface water roughness. However, in this work we use high resolution optical remote sensing, with the aim of examining the influence of HAIWs on biogeochemical processes. We used hyperspectral images from the Hyperspectral Imager for the Coastal Ocean (HICO) and high spatial resolution (10 m) images from the MultiSpectral Instrument (MSI) onboard the Sentinel-2A satellite. This work represents the first attempt to examine the relation between internal wave generation and the water constituents of the Camarinal Sill using hyperspectral and high spatial resolution remote sensing images. This enhanced spatial and spectral resolution revealed the detailed biogeochemical patterns associated with the internal waves and suggests local enhancements of productivity associated with internal waves trains.
Jahren, Silje Ekroll; Amacher, Raffael; Weber, Alberto; Most, Henriette; Flammer, Shannon Axiak; Traupe, Tobias; Stoller, Michael; de Marchi, Stefano; Vandenberghe, Stijn
2014-10-15
Arterial waves are seen as possible independent mediators of cardiovascular risks, and the wave intensity analysis (WIA) has therefore been proposed as a method for patient selection for ventricular assist device (VAD) implantation. Interpreting measured wave intensity (WI) is challenging, and complexity is increased by the implantation of a VAD. The waves generated by the VAD interact with the waves generated by the native heart, and this interaction varies with changing VAD settings. Eight sheep were implanted with a pulsatile VAD (PVAD) through ventriculoaortic cannulation. The start of PVAD ejection was synchronized to the native R wave and delayed between 0 and 90% of the cardiac cycle in 10% steps or phase shifts (PS). Pressure and velocity signals were registered, with the use of a combined Doppler and pressure wire positioned in the abdominal aorta, and used to calculate the WI. Depending on the PS, different wave interference phenomena occurred. Maximum unloading of the left ventricle (LV) coincided with constructive interference and maximum blood flow pulsatility, and maximum loading of the LV coincided with destructive interference and minimum blood flow pulsatility. We believe that noninvasive WIA could potentially be used clinically to assess the mechanical load of the LV and to monitor the peripheral hemodynamics such as blood flow pulsatility and risk of intestinal bleeding. Copyright © 2014 the American Physiological Society.
Turing Systems, Entropy, and Kinetic Models for Self-Healing Surfaces
Directory of Open Access Journals (Sweden)
Eugene Kagan
2010-03-01
Full Text Available The paper addresses the methods of description of friction-induced self-healing at the interface between two solid bodies. A macroscopic description of self-healing is based on a Turing system for the transfer of matter that leads to self-organization at the interface in the case of an unstable state. A microscopic description deals with a kinetic model of the process and entropy production during self-organization. The paper provides a brief overview of the Turing system approach and statistical kinetic models. The relation between these methods and the description of the self-healing surfaces is discussed, as well as results of their application. The analytical considerations are illustrated by numerical simulations.
Zhang, Xin; Liu, Haitao; Zhong, Ying
2013-10-07
We theoretically investigate the electromagnetic enhancement on a metallic surface patterned with periodic subwavelength structures. Fully-vectorial calculations show a large-area electromagnetic enhancement (LAEE) on the surface, which strongly contrasts with the previously reported "hot spots" that occur in specific tiny regions and which relieves the rigorous requirement of the nano-scale location of sample molecules. The LAEE allows for designing more practicable substrates for many enhanced-spectra applications. By building up microscopic models, the LAEE is shown due to a resonant excitation of surface waves that include both the surface plasmon polariton (SPP) and a quasi-cylindrical wave (QCW). The surface waves propagate on the substrate over a long distance and thus greatly enlarge the area of electromagnetic enhancement compared to the nano-sized hot spots caused by localized modes. Gain medium is introduced to further strengthen the large-area surface-wave resonance, with which an enhancement factor (EF) of electric-field intensity up to a few thousands is achieved.
On Tight Separation for Blum Measures Applied to Turing Machine Buffer Complexity
Czech Academy of Sciences Publication Activity Database
Šíma, Jiří; Žák, Stanislav
2017-01-01
Roč. 152, č. 4 (2017), s. 397-409 ISSN 0169-2968 R&D Projects: GA ČR GBP202/12/G061; GA ČR GAP202/10/1333 Institutional support: RVO:67985807 Keywords : Turing machine * hierarchy * buffer complexity * diagonalization Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.687, year: 2016
Turing Machines with One-sided Advice and Acceptance of the co-RE Languages
Czech Academy of Sciences Publication Activity Database
van Leeuwen, J.; Wiedermann, Jiří
2017-01-01
Roč. 153, č. 4 (2017), s. 347-366 ISSN 0169-2968 Grant - others:GA ČR(CZ) GA15-04960S Institutional support: RVO:67985807 Keywords : advice functions * co-RE languages * machine models * Turing machines Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.687, year: 2016
On Tichý’s Attempt to Explicate Sense in Terms of Turing Machines
Czech Academy of Sciences Publication Activity Database
Materna, Pavel
2018-01-01
Roč. 25, č. 1 (2018), s. 41-52 ISSN 1335-0668 R&D Projects: GA ČR(CZ) GA17-15645S Institutional support: RVO:67985955 Keywords : Oracle * possible worlds * procedure * sense * Turing machine Subject RIV: AA - Philosophy ; Religion OBOR OECD: History (history of science and technology to be 6.3, history of specific sciences to be under the respective headings)
Directory of Open Access Journals (Sweden)
Wilkin Mary Sarah Ruth
2016-12-01
Full Text Available Parallel Communicating Grammar Systems (PCGS were introduced as a language-theoretic treatment of concurrent systems. A PCGS extends the concept of a grammar to a structure that consists of several grammars working in parallel, communicating with each other, and so contributing to the generation of strings. PCGS are usually more powerful than a single grammar of the same type; PCGS with context-free components (CF-PCGS in particular were shown to be Turing complete. However, this result only holds when a specific type of communication (which we call broadcast communication, as opposed to one-step communication is used. We expand the original construction that showed Turing completeness so that broadcast communication is eliminated at the expense of introducing a significant number of additional, helper component grammars. We thus show that CF-PCGS with one-step communication are also Turing complete. We introduce in the process several techniques that may be usable in other constructions and may be capable of removing broadcast communication in general.
ANÁLISIS DE LA INESTABILIDAD DE TURING EN MODELOS BIOLÓGICOS
Directory of Open Access Journals (Sweden)
JUAN VANEGAS
2009-01-01
Full Text Available El análisis matemático de modelos biológicos descritos por ecuaciones de reacción difusión da lugar al concepto de inestabilidad de Turing. En este artículo se analiza este concepto y el espacio matemático en donde tiene lugar, conocido como espacio de Turing. El objetivo es establecer la relación entre el conjunto de parámetros que definen la presencia de patrones espacio-temporales en un sistema de reacción difusión. Estos parámetros son validados mediante la implementación numérica por el método de los elementos finitos en 1D y 2D de dos modelos conocidos: el modelo de Schnakenberg y el modelo de glucólisis. Los resultados demuestran que los parámetros obtenidos mediante el análisis matemático cumplen las restricciones de Turing y permiten la formación de patrones espacio-temporales. Se concluye que el análisis matemático de estabilidad es una herramienta útil para la obtención de parámetros desconocidos en modelos que usualmente requieren de ajustes mediante experimentación numérica.
Ichinose, G. A.; Ford, S. R.; Myers, S.; Pasyanos, M.; Walter, W. R.
2016-12-01
The 6 January 2016, 12 February 2013 and 25 May 2009 declared nuclear explosions at the Punggye-ri test site in the Democratic People's Republic of Korea (DPRK) were all closely located providing an opportunity to perform differential analysis. We used spectral ratios of surface waves between 50 and 10 sec period between the co-located events to isolate relative explosion amplitude radiation patterns by the cancelation of propagation and site effects. We calculated the spectral ratios using a dense array of 72 NIED F-NET stations across Japan and all available IMS, IC and IU network stations. Analyses of Rayleigh waves indicated non-spherical radiation for the 2016 and 2013 tests relative to 2009. The 2016/2009 and 2013/2009 event pairs had ellipsoidal radiation patterns. The 2016/2009 pair had an ellipse major axis oriented 123 degrees from north and the 2013/2009 pair was oriented 33 degrees from north. This suggests that both 2016 and 2013 explosions have non-spherical radiation and also that the radiation between 2016 and 2013 were rotated by 90 degrees. This radiation pattern was strongest in the 20 and 33 sec period band but was also observed in the 10 and 50 sec band with higher scatter. We did not discern any Love wave radiation patterns but there is high scatter possibly due to a lower long-period signal to noise ratio on the horizontal relative to the vertical components. There are several possible source models that can theoretically cause non-spherical radiation, for example topography, spall damage, or tectonic release. One implication we have identified is that the radiation pattern makes it problematic for the use of surface waves in relative relocations, typically more robust for earthquakes. The amount of departure from purely spherical radiation is consistent with the 20-30% CLVD and 60-70% isotropic components estimated from regional long-period moment tensor solutions for the two explosions. This work performed under the auspices of the US
Gasser, Constantine E; Mensah, Fiona K; Kerr, Jessica A; Wake, Melissa
2017-12-01
Social patterning of dietary-related diseases may partly be explained by population disparities in children's diets. This study aimed to determine which early life socioeconomic factors best predict dietary trajectories across childhood. For waves 2-6 of the Baby (B) Cohort (ages 2-3 to 10-11 years) and waves 1-6 of the Kindergarten (K) Cohort (ages 4-5 to 14-15 years) of the Longitudinal Study of Australian Children, we constructed trajectories of dietary scores and of empirically derived dietary patterns. Dietary scores, based on the Australian Dietary Guidelines, summed children's consumption frequencies of seven groups of foods or drinks over the last 24 hours. Dietary patterns at each wave were derived using factor analyses of 12-16 food or drink items. Using multinomial logistic regression analyses, we examined associations of baseline single (parental education, remoteness area, parental employment, income, food security and home ownership) and composite (socioeconomic position and neighbourhood disadvantage) factors with adherence to dietary trajectories. All dietary trajectory outcomes across both cohorts showed profound gradients by composite socioeconomic position but not by neighbourhood disadvantage. For example, odds for children in the lowest relative to highest socioeconomic position quintile being in the 'never healthy' relative to the 'always healthy' score trajectory were OR=16.40, 95% CI 9.40 to 28.61 (B Cohort). Among the single variables, only parental education consistently predicted dietary trajectories. Child dietary trajectories vary profoundly by family socioeconomic position. If causal, reducing dietary inequities may require researching underlying pathways, tackling socioeconomic inequities and targeting health promoting interventions to less educated families. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise
De Giorgis, Valentina; Filippini, Melissa; Macasaet, Joyce Ann; Masnada, Silvia; Veggiotti, Pierangelo
2017-09-01
Continuous spike and waves during slow sleep (CSWS) is a typical EEG pattern defined as diffuse, bilateral and recently also unilateral or focal localization spike-wave occurring in slow sleep or non-rapid eye movement sleep. Literature results so far point out a progressive deterioration and decline of intellectual functioning in CSWS patients, i.e. a loss of previously normally acquired skills, as well as persistent neurobehavioral disorders, beyond seizure and EEG control. The objective of this study was to shed light on the neurobehavioral impact of CSWS and to identify the potential clinical risk factors for development. We conducted a retrospective study involving a series of 16 CSWS idiopathic patients age 3-16years, considering the entire duration of epilepsy from the onset to the outcome, i.e. remission of CSWS pattern. All patients were longitudinally assessed taking into account clinical (sex, age at onset, lateralization and localization of epileptiform abnormalities, spike wave index, number of antiepileptic drugs) and behavioral features. Intelligent Quotient (IQ) was measured in the whole sample, whereas visuo-spatial attention, visuo-motor skills, short term memory and academic abilities (reading and writing) were tested in 6 out of 16 patients. Our results showed that the most vulnerable from an intellectual point of view were those children who had an early-onset of CSWS whereas those with later onset resulted less affected (p=0.004). Neuropsychological outcome was better than the behavioral one and the lexical-semantic route in reading and writing resulted more severely affected compared to the phonological route. Cognitive deterioration is one but not the only consequence of CSWS. Especially with respect to verbal skills, CSWS is responsible of a pattern of consequences in terms of developmental hindrance, including slowing of development and stagnation, whereas deterioration is rare. Behavioral and academic problems tend to persist beyond
Efficient computation of steady, 3D water-wave patterns, application to hovercraft-type flows
M.R. Lewis; B. Koren (Barry)
2002-01-01
textabstractNumerical methods for the computation of stationary free surfaces is the subject of much current research in computational engineering. The present report is directed towards free surfaces in maritime engineering. Of interest here are the long steady waves generated by hovercraft and
Directory of Open Access Journals (Sweden)
O. Klemp
2006-01-01
Full Text Available In order to satisfy the stringent demand for an accurate prediction of MIMO channel capacity and diversity performance in wireless communications, more effective and suitable models that account for real antenna radiation behavior have to be taken into account. One of the main challenges is the accurate modeling of antenna correlation that is directly related to the amount of channel capacity or diversity gain which might be achieved in multi element antenna configurations. Therefore spherical wave theory in electromagnetics is a well known technique to express antenna far fields by means of a compact field expansion with a reduced number of unknowns that was recently applied to derive an analytical approach in the computation of antenna pattern correlation. In this paper we present a novel and efficient computational technique to determine antenna pattern correlation based on the evaluation of the surface current distribution by means of a spherical mode expansion.
Cross-diffusion induced Turing patterns in a sex-structured predator-prey model
DEFF Research Database (Denmark)
Liu, J.; Zhou, H.; Zhang, Lai
2012-01-01
that the unique homogenous steady-state is locally asymptotically stable for the associated ODE system and PDE system with self-diffusion. With the presence of the cross-diffusion, the homogeneous equilibrium is destabilized, and a heterogenous steady-state emerges as a consequence. In addition, the conditions...
Park, Jiyoon; Woo, Ok Hee; Shin, Hye Seon; Cho, Kyu Ran; Seo, Bo Kyoung; Kang, Eun Young
2015-10-01
The purpose of this study is to evaluate the diagnostic performance of SWE in palpable breast mass and to compare with color overlay pattern in SWE with conventional US and quantitative SWE for assessing palpable breast mass. SWE and conventional breast US were performed in 133 women with 156 palpable breast lesions (81 benign, 75 malignant) between August 2013 to June 2014. Either pathology or periodic imaging surveillance more than 2 years was a reference standard. Existence of previous image was blinded to performing radiologists. US BI-RADS final assessment, qualitative and quantitative SWE measurements were evaluated. Diagnostic performances of grayscale US, SWE and US combined to SWE were calculated and compared. Correlation between pattern classification and quantitative SWE was evaluated. Both color overlay pattern and quantitative SWE improved the specificity of conventional US, from 81.48% to 96.30% (p=0.0005), without improvement in sensitivity. Color overlay pattern was significantly related to all quantitative SWE parameters and malignancy rate (poverlay pattern was between 2 and 3. Emax with optimal cutoff at 45.1 kPa showed the highest Az value, sensitivity, specificity and accuracy among other quantitative SWE parameters (poverlay pattern and pathology (poverlay pattern classification is more quick and easy and may represent quantitative SWE measurements with similar diagnostic performances. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Gareth J. Williams
2013-05-01
Full Text Available Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54–86% cover, namely hard corals (20–74% and crustose coralline algae (CCA (10–36%. While turf algae were relatively common at both locations (8–22%, larger fleshy macroalgae were virtually absent at Kingman (<1% and rare at Palmyra (0.7–9.3%. Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra’s backreef and Kingman’s patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman’s patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora, indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman’s forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to
Directory of Open Access Journals (Sweden)
Susanne H Landis
Full Text Available Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle as a host and its digenean trematode parasite (Cryptocotyle lingua. In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming.
van de Ven, Gido M.; Trouche, Stéphanie; McNamara, Colin G.; Allen, Kevin; Dupret, David
2016-01-01
Summary The ability to reinstate neuronal assemblies representing mnemonic information is thought to require their consolidation through offline reactivation during sleep/rest. To test this, we detected cell assembly patterns formed by repeated neuronal co-activations in the mouse hippocampus during exploration of spatial environments. We found that the reinstatement of assembly patterns representing a novel, but not a familiar, environment correlated with their offline reactivation and was i...
Vermeersen, B. L. A.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.
2014-12-01
One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. More recently, Porco et al. [Astron. J., 148:45, Sep. 2014] and Nimmo et al. [Astron. J., 148:46, Sep. 2014] have reported strong evidence that the geysers are not caused by frictional heating at the surface, but that geysers must originate deeper in Enceladus' interior. Tidal flexing models, like those of Hurford et al., Nature, 447, 292-294, 2007, give a good match for the brightness variations Cassini observes, but they seem to fail to reproduce the exact timing of plume brightening. Although jet activity is thus strongly connected to tidal forcing, another mechanism must be involved as well. Last year, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. The latest observations by Porco et al. and Nimmo et al. seem to be in agreement with this tidal-induced wave attractor phenomenon, both with respect to tiger stripe pattern and with respect to timing of hotspot activity. However, in
Directory of Open Access Journals (Sweden)
Oleksandr B. Yashchyk
2016-05-01
Full Text Available The article discusses the importance of studying the notion of algorithm and its formal specification using Turing machines. In the article it was identified the basic hypothesis of the theory of algorithms for Turing as well as reviewed scientific research of modern scientists devoted to this issue and found the main principles of the Turing machine as an abstract mathematical model. The process of forming information competencies components, information culture and students` logical thinking development with the inclusion of the topic “Study and Application of Turing machine as Universal Algorithm Executor” in the course of Informatics was analyzed.
Digital Repository Service at National Institute of Oceanography (India)
Gujar, A.R.; Angusamy, N.; Rajamanickam, G.V.
and Hughes, 2003). One of the important effects of littoral currents is the movement of sand as a littoral drift along the coast The cal- culated quantum of gross littoral drift in the west coast of India about 1.28 million cubic metres/ year, (Moni, 1972... area at different wave periods can be attributed to the change of quantum of sediment movement from one convergent point to another (Angusamy et al., 2000). The convergence point (Ambolgarh promon- tory and Vijaydurg southern end) acts as a barrier...
Larger, L; Soriano, M C; Brunner, D; Appeltant, L; Gutierrez, J M; Pesquera, L; Mirasso, C R; Fischer, I
2012-01-30
Many information processing challenges are difficult to solve with traditional Turing or von Neumann approaches. Implementing unconventional computational methods is therefore essential and optics provides promising opportunities. Here we experimentally demonstrate optical information processing using a nonlinear optoelectronic oscillator subject to delayed feedback. We implement a neuro-inspired concept, called Reservoir Computing, proven to possess universal computational capabilities. We particularly exploit the transient response of a complex dynamical system to an input data stream. We employ spoken digit recognition and time series prediction tasks as benchmarks, achieving competitive processing figures of merit.
Turing instability and bifurcation analysis in a diffusive bimolecular system with delayed feedback
Wei, Xin; Wei, Junjie
2017-09-01
A diffusive autocatalytic bimolecular model with delayed feedback subject to Neumann boundary conditions is considered. We mainly study the stability of the unique positive equilibrium and the existence of periodic solutions. Our study shows that diffusion can give rise to Turing instability, and the time delay can affect the stability of the positive equilibrium and result in the occurrence of Hopf bifurcations. By applying the normal form theory and center manifold reduction for partial functional differential equations, we investigate the stability and direction of the bifurcations. Finally, we give some simulations to illustrate our theoretical results.
El juego de imitación de Turing y el pensamiento humano
Directory of Open Access Journals (Sweden)
Leonardo Francisco Barón Birchenall
2008-12-01
Full Text Available In 1950, the English mathematician Alan Mathison Turing proposed the basis of what some authors consider the test that a machine must pass to establish that it can think. This test is basically a game; nevertheless, it has had great influence in the development of the theories of the mind performance. The game specifications and some of its repercussions in the conception of thinking, the consciousness and the human will, will be ramifications of the path that will take us through the beginning of the artificial intelligence, passing along some of its singular manifestations, to culminate in the posing of certain restrictions of its fundaments.
Digital Repository Service at National Institute of Oceanography (India)
Veerayya, M.; Pankajakshan, T.
For predominant waves approaching from directions varying between SW and WNW and periods varying from 6 to 11 sec, the refraction function (Kd) shows amplification of wave heights resulting in concentration of wave energy on headlands and reduction...
Directory of Open Access Journals (Sweden)
Anja Schröter
2012-01-01
Full Text Available In recent years, self-assembled monolayers (SAMs have been demonstrated to provide promising new approaches to nonlinear laser processing. Most notably, because of their ultrathin nature, indirect excitation mechanisms can be exploited in order to fabricate subwavelength structures. In photothermal processing, for example, microfocused lasers are used to locally heat the substrate surface and initiate desorption or decomposition of the coating. Because of the strongly temperature-dependent desorption kinetics, the overall process is highly nonlinear in the applied laser power. For this reason, subwavelength patterning is feasible employing ordinary continuous-wave lasers. The lateral resolution, generally, depends on both the type of the organic monolayer and the nature of the substrate. In previous studies we reported on photothermal patterning of distinct types of SAMs on Si supports. In this contribution, a systematic study on the impact of the substrate is presented. Alkanethiol SAMs on Au-coated glass and silicon substrates were patterned by using a microfocused laser beam at a wavelength of 532 nm. Temperature calculations and thermokinetic simulations were carried out in order to clarify the processes that determine the performance of the patterning technique. Because of the strongly temperature-dependent thermal conductivity of Si, surface-temperature profiles on Au/Si substrates are very narrow ensuring a particularly high lateral resolution. At a 1/e spot diameter of 2 µm, fabrication of subwavelength structures with diameters of 300–400 nm is feasible. Rapid heat dissipation, though, requires high laser powers. In contrast, patterning of SAMs on Au/glass substrates is strongly affected by the largely distinct heat conduction within the Au film and in the glass support. This results in broad surface temperature profiles. Hence, minimum structure sizes are larger when compared with respective values on Au/Si substrates. The required
A NUMERICAL APPLICATION TO PREDICT THE RESISTANCE AND WAVE PATTERN OF KRISO CONTAINER SHIP
Directory of Open Access Journals (Sweden)
Yavuz Hakan Ozdemir
2016-06-01
Full Text Available In this study, the computational results for KRISO Container Ship (KCS are presented. CFD analyses are performed to simulate free surface flow around KCS by using RANS approach with success. Also the complicated turbulent flow zone behind the ship is well simulated. The RANS equations and the non-linear free surface boundary conditions are discretized by means of a finite volume scheme. The numerical methodology is found to be appropriate for simulating the turbulent flow around a ship in order to estimate ship total resistance and free surface. By the numerical results, total resistance is calculated for the ship model and the result is satisfactory with regard to the experimental one. As a result of well captured free surface, the wave elevation on/around the hull is compared with the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Peter E. Malin; Eylon Shalev; Min Lou; Silas M. Simiyu; Anastasia Stroujkova; Windy McCausland
2004-02-24
In this project we developed a method for using seismic S-wave data to map the patterns and densities of sub-surface fractures in the NW Geysers Geothermal Field/ (1) This project adds to both the general methods needed to characterize the geothermal production fractures that supply steam for power generation and to the specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be possible to reduce the cost of geothermal power development with the targeting of high production geothermal wells. (3) The results of the project having been transferred to both US based and international geothermal research and exploration agencies and concerns by several published papers and meeting presentations, and through the distribution of the data handling and other software codes we developed.
Numerical Prediction of Wave Patterns Due to Motion of 3D Bodies by Kelvin-Havelock Sources
Directory of Open Access Journals (Sweden)
Ghassemi Hassan
2016-12-01
Full Text Available This paper discusses the numerical evaluation of the hydrodynamic characteristics of submerged and surface piercing moving bodies. Generally, two main classes of potential methods are used for hydrodynamic characteristic analysis of steady moving bodies which are Rankine and Kelvin-Havelock singularity distribution. In this paper, the Kelvin- Havelock sources are used for simulating the moving bodies and then free surface wave patterns are obtained. Numerical evaluation of potential distribution of a Kelvin-Havelock source is completely presented and discussed. Numerical results are calculated and presented for a 2D cylinder, single source, two parallel moving source, sphere, ellipsoid and standard Wigley hull in different situation that show acceptable agreement with results of other literatures or experiments.
Directory of Open Access Journals (Sweden)
Jesús García
2012-01-01
Full Text Available The application of a 3D domain decomposition finite-element and spherical mode expansion for the design of planar ESPAR (electronically steerable passive array radiator made with probe-fed circular microstrip patches is presented in this work. A global generalized scattering matrix (GSM in terms of spherical modes is obtained analytically from the GSM of the isolated patches by using rotation and translation properties of spherical waves. The whole behaviour of the array is characterized including all the mutual coupling effects between its elements. This procedure has been firstly validated by analyzing an array of monopoles on a ground plane, and then it has been applied to synthesize a prescribed radiation pattern optimizing the reactive loads connected to the feeding ports of the array of circular patches by means of a genetic algorithm.
Calculating Kolmogorov Complexity from the Output Frequency Distributions of Small Turing Machines
Delahaye, Jean-Paul; Gauvrit, Nicolas
2014-01-01
Drawing on various notions from theoretical computer science, we present a novel numerical approach, motivated by the notion of algorithmic probability, to the problem of approximating the Kolmogorov-Chaitin complexity of short strings. The method is an alternative to the traditional lossless compression algorithms, which it may complement, the two being serviceable for different string lengths. We provide a thorough analysis for all binary strings of length and for most strings of length by running all Turing machines with 5 states and 2 symbols ( with reduction techniques) using the most standard formalism of Turing machines, used in for example the Busy Beaver problem. We address the question of stability and error estimation, the sensitivity of the continued application of the method for wider coverage and better accuracy, and provide statistical evidence suggesting robustness. As with compression algorithms, this work promises to deliver a range of applications, and to provide insight into the question of complexity calculation of finite (and short) strings. Additional material can be found at the Algorithmic Nature Group website at http://www.algorithmicnature.org. An Online Algorithmic Complexity Calculator implementing this technique and making the data available to the research community is accessible at http://www.complexitycalculator.com. PMID:24809449
Fernandez Montenegro, Juan Manuel; Argyriou, Vasileios
2017-05-01
Alzheimer's screening tests are commonly used by doctors to diagnose the patient's condition and stage as early as possible. Most of these tests are based on pen-paper interaction and do not embrace the advantages provided by new technologies. This paper proposes novel Alzheimer's screening tests based on virtual environments and game principles using new immersive technologies combined with advanced Human Computer Interaction (HCI) systems. These new tests are focused on the immersion of the patient in a virtual room, in order to mislead and deceive the patient's mind. In addition, we propose two novel variations of Turing Test proposed by Alan Turing as a method to detect dementia. As a result, four tests are introduced demonstrating the wide range of screening mechanisms that could be designed using virtual environments and game concepts. The proposed tests are focused on the evaluation of memory loss related to common objects, recent conversations and events; the diagnosis of problems in expressing and understanding language; the ability to recognize abnormalities; and to differentiate between virtual worlds and reality, or humans and machines. The proposed screening tests were evaluated and tested using both patients and healthy adults in a comparative study with state-of-the-art Alzheimer's screening tests. The results show the capacity of the new tests to distinguish healthy people from Alzheimer's patients. Copyright © 2017. Published by Elsevier Inc.
Calculating Kolmogorov complexity from the output frequency distributions of small Turing machines.
Directory of Open Access Journals (Sweden)
Fernando Soler-Toscano
Full Text Available Drawing on various notions from theoretical computer science, we present a novel numerical approach, motivated by the notion of algorithmic probability, to the problem of approximating the Kolmogorov-Chaitin complexity of short strings. The method is an alternative to the traditional lossless compression algorithms, which it may complement, the two being serviceable for different string lengths. We provide a thorough analysis for all Σ(n=1(11 2(n binary strings of length n<12 and for most strings of length 12≤n≤16 by running all ~2.5 x 10(13 Turing machines with 5 states and 2 symbols (8 x 22(9 with reduction techniques using the most standard formalism of Turing machines, used in for example the Busy Beaver problem. We address the question of stability and error estimation, the sensitivity of the continued application of the method for wider coverage and better accuracy, and provide statistical evidence suggesting robustness. As with compression algorithms, this work promises to deliver a range of applications, and to provide insight into the question of complexity calculation of finite (and short strings. Additional material can be found at the Algorithmic Nature Group website at http://www.algorithmicnature.org. An Online Algorithmic Complexity Calculator implementing this technique and making the data available to the research community is accessible at http://www.complexitycalculator.com.
Dominant winter-time mesospheric wave signatures over a low ...
Indian Academy of Sciences (India)
10.1016/j.jastp.2008.09.017. Taori A, Taylor M J and Franke S 2005 Terdiurnal wave signatures in the upper mesospheric tempera- ture and their association with the wind fields at low latitudes (20. °. N); J. Geophys. Res. 110 D09S06, doi: 10.1029/2004JD004564. Taori A and Taylor M J 2006 Characteristics of wave.
Azure at the Turing: Talk from Microsoft Azure HPC for research round table on 05 October 2017
Reilly, Martin O.
2017-01-01
An overview of how The Alan Turing Institute is using Azure to support its research programme. The talk describes how we use Azure at the Turing and discusses the benefits and challenges of using the cloud for our primary institutional level compute resource. It discusses how we support researchers in using Azure and how we hope to make cloud computing easier for our researchers in future, highlighting some excellent work being done at UCL in this direction.Presented at a Microsoft Azure HPC ...
International Nuclear Information System (INIS)
Jamet, F.; Thomer, G.
An arrangement including a flash X-ray tube and an image intensifier has been designed and built in order to record X-ray diffraction patterns with exposure times of the order of 100nsec. This arrangement allows Laue patterns (polychromatic radiation) as well as powder patterns (copper K(α) radiation) to be recorded. Examples for record are shown. As an application to the investigation of transient changes in crystalline structures, the Debye-Scherrer patterns of potassium chloride undergoing the dynamic action of shock waves were recorded. The first results achieved are discussed [fr
KP solitons and the Grassmannians combinatorics and geometry of two-dimensional wave patterns
Kodama, Yuji
2017-01-01
This is the first book to treat combinatorial and geometric aspects of two-dimensional solitons. Based on recent research by the author and his collaborators, the book presents new developments focused on an interplay between the theory of solitons and the combinatorics of finite-dimensional Grassmannians, in particular, the totally nonnegative (TNN) parts of the Grassmannians. The book begins with a brief introduction to the theory of the Kadomtsev–Petviashvili (KP) equation and its soliton solutions, called the KP solitons. Owing to the nonlinearity in the KP equation, the KP solitons form very complex but interesting web-like patterns in two dimensions. These patterns are referred to as soliton graphs. The main aim of the book is to investigate the detailed structure of the soliton graphs and to classify these graphs. It turns out that the problem has an intimate connection with the study of the TNN part of the Grassmannians. The book also provides an elementary introduction to the recent development of ...
Directory of Open Access Journals (Sweden)
Josef H.L.P. Sadowski
2016-03-01
Full Text Available Place cell firing patterns reactivated during hippocampal sharp-wave ripples (SWRs in rest or sleep are thought to induce synaptic plasticity and thereby promote the consolidation of recently encoded information. However, the capacity of reactivated spike trains to induce plasticity has not been directly tested. Here, we show that reactivated place cell firing patterns simultaneously recorded from CA3 and CA1 of rat dorsal hippocampus are able to induce long-term potentiation (LTP at synapses between CA3 and CA1 cells but only if accompanied by SWR-associated synaptic activity and resulting dendritic depolarization. In addition, we show that the precise timing of coincident CA3 and CA1 place cell spikes in relation to SWR onset is critical for the induction of LTP and predictive of plasticity generated by reactivation. Our findings confirm an important role for SWRs in triggering and tuning plasticity processes that underlie memory consolidation in the hippocampus during rest or sleep.
Sadowski, Josef H.L.P.; Jones, Matthew W.; Mellor, Jack R.
2016-01-01
Summary Place cell firing patterns reactivated during hippocampal sharp-wave ripples (SWRs) in rest or sleep are thought to induce synaptic plasticity and thereby promote the consolidation of recently encoded information. However, the capacity of reactivated spike trains to induce plasticity has not been directly tested. Here, we show that reactivated place cell firing patterns simultaneously recorded from CA3 and CA1 of rat dorsal hippocampus are able to induce long-term potentiation (LTP) at synapses between CA3 and CA1 cells but only if accompanied by SWR-associated synaptic activity and resulting dendritic depolarization. In addition, we show that the precise timing of coincident CA3 and CA1 place cell spikes in relation to SWR onset is critical for the induction of LTP and predictive of plasticity generated by reactivation. Our findings confirm an important role for SWRs in triggering and tuning plasticity processes that underlie memory consolidation in the hippocampus during rest or sleep. PMID:26904941
Morphogenesis origins of patterns and shapes
Bourgine, Paul
2010-01-01
This collective book written for the non-specialist addresses the fundamental issue of the emergence of forms and patterns in physical and living systems. Relying on the seminal works of DâArcy Thompson, Alan Turing and RenÃ© Thom, it confronts major examples.
Ion beam induced surface pattern formation and stable travelling wave solutions.
Numazawa, Satoshi; Smith, Roger
2013-03-06
The formation of ripple structures on ion bombarded semiconductor surfaces is examined theoretically. Previous models are discussed and a new nonlinear model is formulated, based on the infinitesimal local atomic relocation induced by elastic nuclear collisions in the early stages of collision cascades and an associated density change in the near surface region. Within this framework ripple structures are shown to form without the necessity to invoke surface diffusion or large sputtering as important mechanisms. The model can also be extended to the case where sputtering is important, and it is shown that in this case certain 'magic' angles can occur at which the ripple patterns are most clearly defined. The results are in very good agreement with experimental observations.
Chao, Anne; Chiu, Chun-Huo; Colwell, Robert K; Magnago, Luiz Fernando S; Chazdon, Robin L; Gotelli, Nicholas J
2017-11-01
Estimating the species, phylogenetic, and functional diversity of a community is challenging because rare species are often undetected, even with intensive sampling. The Good-Turing frequency formula, originally developed for cryptography, estimates in an ecological context the true frequencies of rare species in a single assemblage based on an incomplete sample of individuals. Until now, this formula has never been used to estimate undetected species, phylogenetic, and functional diversity. Here, we first generalize the Good-Turing formula to incomplete sampling of two assemblages. The original formula and its two-assemblage generalization provide a novel and unified approach to notation, terminology, and estimation of undetected biological diversity. For species richness, the Good-Turing framework offers an intuitive way to derive the non-parametric estimators of the undetected species richness in a single assemblage, and of the undetected species shared between two assemblages. For phylogenetic diversity, the unified approach leads to an estimator of the undetected Faith's phylogenetic diversity (PD, the total length of undetected branches of a phylogenetic tree connecting all species), as well as a new estimator of undetected PD shared between two phylogenetic trees. For functional diversity based on species traits, the unified approach yields a new estimator of undetected Walker et al.'s functional attribute diversity (FAD, the total species-pairwise functional distance) in a single assemblage, as well as a new estimator of undetected FAD shared between two assemblages. Although some of the resulting estimators have been previously published (but derived with traditional mathematical inequalities), all taxonomic, phylogenetic, and functional diversity estimators are now derived under the same framework. All the derived estimators are theoretically lower bounds of the corresponding undetected diversities; our approach reveals the sufficient conditions under
The Society of Brains: How Alan Turing and Marvin Minsky Were Both Right
Struzik, Zbigniew R.
2015-04-01
In his well-known prediction, Alan Turing stated that computer intelligence would surpass human intelligence by the year 2000. Although the Turing Test, as it became known, was devised to be played by one human against one computer, this is not a fair setup. Every human is a part of a social network, and a fairer comparison would be a contest between one human at the console and a network of computers behind the console. Around the year 2000, the number of web pages on the WWW overtook the number of neurons in the human brain. But these websites would be of little use without the ability to search for knowledge. By the year 2000 Google Inc. had become the search engine of choice, and the WWW became an intelligent entity. This was not without good reason. The basis for the search engine was the analysis of the ’network of knowledge’. The PageRank algorithm, linking information on the web according to the hierarchy of ‘link popularity’, continues to provide the basis for all of Google's web search tools. While PageRank was developed by Larry Page and Sergey Brin in 1996 as part of a research project about a new kind of search engine, PageRank is in its essence the key to representing and using static knowledge in an emergent intelligent system. Here I argue that Alan Turing was right, as hybrid human-computer internet machines have already surpassed our individual intelligence - this was done around the year 2000 by the Internet - the socially-minded, human-computer hybrid Homo computabilis-socialis. Ironically, the Internet's intelligence also emerged to a large extent from ‘exploiting’ humans - the key to the emergence of machine intelligence has been discussed by Marvin Minsky in his work on the foundations of intelligence through interacting agents’ knowledge. As a consequence, a decade and a half decade into the 21st century, we appear to be much better equipped to tackle the problem of the social origins of humanity - in particular thanks to the
Protopapa, M L; De Tomasi, F; Di Giulio, M; Perrone, M R; Scaglione, S
2002-01-01
The standing-wave electric field pattern that forms inside an optical coating as a consequence of laser irradiation is one of the factors influencing the coating laser-induced damage threshold. The influence of the standing-wave electric field profile on the damage resistance to ultraviolet radiation of hafnium dioxide (HfO sub 2) thin films was investigated in this work. To this end, HfO sub 2 thin films of different thicknesses deposited by the electron beam evaporation technique at the same deposition conditions were analyzed. Laser damage thresholds of the samples were measured at 308 nm (XeCl laser) by the photoacoustic beam deflection technique and microscopic inspections. The dependence of the laser damage threshold on the standing-wave electric field pattern was analyzed.
Montor, Karel
The purpose of this study was to compare brain wave patterns produced by high and low grade point average students, while they were resting, solving problems, and subjected to stress situations. The study involved senior midshipmen at the United States Naval Academy. The high group was comprised of those whose cumulative grade point average was…
Ge, Huazhi; Zhang, Xi; Fletcher, Leigh; Orton, Glenn S.; Sinclair, James Andrew; Fernandes,, Joshua; Momary, Thomas W.; Warren, Ari; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya
2017-10-01
Many brown dwarfs exhibit infrared rotational light curves with amplitude varying from a fewpercent to twenty percent (Artigau et al. 2009, ApJ, 701, 1534; Radigan et al. 2012, ApJ, 750,105). Recently, it was claimed that weather patterns, especially planetary-scale waves in thebelts and cloud spots, are responsible for the light curves and their evolutions on brown dwarfs(Apai et al. 2017, Science, 357, 683). Here we present a clear relationship between the direct IRemission maps and light curves of Jupiter at multiple wavelengths, which might be similar withthat on cold brown dwarfs. Based on infrared disk maps from Subaru/COMICS and VLT/VISIR,we constructed full maps of Jupiter and rotational light curves at different wavelengths in thethermal infrared. We discovered a strong relationship between the light curves and weatherpatterns on Jupiter. The light curves also exhibit strong multi-bands phase shifts and temporalvariations, similar to that detected on brown dwarfs. Together with the spectra fromTEXES/IRTF, our observations further provide detailed information of the spatial variations oftemperature, ammonia clouds and aerosols in the troposphere of Jupiter (Fletcher et al. 2016,Icarus, 2016 128) and their influences on the shapes of the light curves. We conclude that waveactivities in Jupiter’s belts (Fletcher et al. 2017, GRL, 44, 7140), cloud holes, and long-livedvortices such as the Great Red Spot and ovals control the shapes of IR light curves and multi-wavelength phase shifts on Jupiter. Our finding supports the hypothesis that observed lightcurves on brown dwarfs are induced by planetary-scale waves and cloud spots.
Directory of Open Access Journals (Sweden)
Xiaolu Zhu
2018-03-01
Full Text Available Four-dimensional (4D biofabrication techniques aim to dynamically produce and control three-dimensional (3D biological structures that would transform their shapes or functionalities with time, when a stimulus is imposed or cell post-printing self-assembly occurs. The evolution of 3D branching patterns via self-assembly of cells is critical for the 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear how the formation and evolution of these branching patterns are biologically encoded. Here, we study the biofabrication of lung branching structures utilizing a simulation model based on Turing instability that raises a dynamic reaction–diffusion (RD process of the biomolecules and cells. The simulation model incorporates partial differential equations of four variables, describing the tempo-spatial distribution of the variables in 3D over time. The simulation results present the formation and evolution process of 3D branching patterns over time and also interpret both the behaviors of side-branching and tip-splitting as the stalk grows and the fabrication style under an external concentration gradient of morphogen, through 3D visualization. This provides a theoretical framework for rationally guiding the 4D biofabrication of lung airway grafts via cellular self-organization, which would potentially reduce the complexity of future experimental research and number of trials.
Directory of Open Access Journals (Sweden)
Ken-Chung Ko Huang-Hsiung Hsu
2014-01-01
Full Text Available This study used the barotropic kinetic energy conversion to record the active eddy-mean flow interaction between the TC/sub-monthly wave pattern (TSM and the intraseasonal oscillation (ISO in the western North Pacific (WNP. Overall, the TSM extracted (lost kinetic energy from (to the cyclonic (anticyclonic circulation of the ISO, which is located in the South China Sea and the Philippine Sea, during the ISO westerly (easterly phase. The phase change in barotropic energy conversion was due to the opposite background flow set up by the ISO. When the climatological-mean southwesterly was retained as part of the background flow in both ISO westerly and easterly phases as in previous studies, the ISO along with the low-frequency background flow always provided kinetic energy to the TSM regardless of the phase. The stronger (weaker southwesterly in the ISO westerly (easterly phase, the stronger (weaker energy conversion to the TSM. Climatological mean flow exclusion showed an upscale feedback in the TSM to the ISO during the easterly phase. However, this feedback was weaker than the downscale conversion from the ISO to the TSM during the westerly phase.
Krahé, Barbara; Busching, Robert
2014-01-01
In a longitudinal study with N = 1,854 adolescents from Germany, we investigated patterns of change and gender differences in physical and relational aggression in relation to normative beliefs about these two forms of aggression. Participants, whose mean age was 13 years at T1, completed self-report measures of physically and relationally aggressive behavior and indicated their normative approval of both forms of aggression at four data waves separated by 12-month intervals. Boys scored higher than did girls on both forms of aggression, but the gender difference was more pronounced for physical aggression. Physical aggression decreased and relational aggression increased over the four data waves in both gender groups. The normative acceptance of both forms of aggression decreased over time, with a greater decrease for the approval of physical aggression. In both gender groups, normative approval of relational aggression prospectively predicted relational aggression across all data waves, and the normative approval of physical aggression predicted physically aggressive behavior at the second and third data waves. A reciprocal reinforcement of aggressive norms and behavior was found for both forms of aggression. The findings are discussed as supporting a social information processing perspective on developmental patterns of change in physical and relational aggression in adolescence.
Directory of Open Access Journals (Sweden)
Barbara eKrahé
2014-10-01
Full Text Available A longitudinal study with N = 1,854 adolescents from Germany investigated patterns of change and gender differences in physical and relational aggression in relation to normative beliefs about aggression. Participants, whose mean age was 13 years at T1, completed self-report measures of physically and relationally aggressive behavior and indicated their normative approval about both forms of aggression at four data waves separated by 12-month intervals. Boys scored higher than did girls on both forms of aggression, but the gender difference was more pronounced for physical aggression. Physical aggression decreased and relational aggression increased over the four data waves in both gender groups. The normative acceptance of both forms of aggression decreased over time, with a greater decrease for the approval of physical aggression. In both gender groups, normative approval of relational aggression prospectively predicted relational aggression across all data waves, and the normative approval of physical aggression predicted physically aggressive behavior at the second and third data waves. A reciprocal reinforcement of aggressive norms and behavior was found for both forms of aggression. The findings are discussed as supporting a social information processing perspective on developmental patterns of change in physical and relational aggression in adolescence.
Directory of Open Access Journals (Sweden)
Rüdiger eThul
2012-07-01
Full Text Available Clusters of ryanodine receptors within atrial myocytes are confined to spatially separated layers. In many species, these layers are not juxtaposed by invaginations of the plasma membrane, so that calcium-induced-calcium signals rely on centripetal propagation rather than voltage-synchronised channel openings to invade the interior of the cell and trigger contraction. The combination of this specific cellular geometry and dynamics of calcium release can lead to novel autonomous spatio-temporal waves, and in particular ping waves. These are waves of calcium release activity that spread as counter-rotating sectors of elevated calcium within a single layer of ryanodine receptors, and can seed further longitudinal calcium waves. Here we show, using a computational model, that these calcium waves can dominate the response of a cell to electrical pacing and hence are pro-arrhythmic. This highlights the importance of modelling internal cellular structures when investigating mechanisms of cardiac dysfunction such as atrial arrhythmia.
Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems
Woolley, Thomas E.
2012-05-22
Cellular gene expression is a complex process involving many steps, including the transcription of DNA and translation of mRNA; hence the synthesis of proteins requires a considerable amount of time, from ten minutes to several hours. Since diffusion-driven instability has been observed to be sensitive to perturbations in kinetic delays, the application of Turing patterning mechanisms to the problem of producing spatially heterogeneous differential gene expression has been questioned. In deterministic systems a small delay in the reactions can cause a large increase in the time it takes a system to pattern. Recently, it has been observed that in undelayed systems intrinsic stochasticity can cause pattern initiation to occur earlier than in the analogous deterministic simulations. Here we are interested in adding both stochasticity and delays to Turing systems in order to assess whether stochasticity can reduce the patterning time scale in delayed Turing systems. As analytical insights to this problem are difficult to attain and often limited in their use, we focus on stochastically simulating delayed systems. We consider four different Turing systems and two different forms of delay. Our results are mixed and lead to the conclusion that, although the sensitivity to delays in the Turing mechanism is not completely removed by the addition of intrinsic noise, the effects of the delays are clearly ameliorated in certain specific cases. © 2012 American Physical Society.
Pattern formation induced by cross-diffusion in a predator–prey system
International Nuclear Information System (INIS)
Sun Guiquan; Jin Zhen; Liu Quanxing; Li Li
2008-01-01
This paper considers the Holling–Tanner model for predator–prey with self and cross-diffusion. From the Turing theory, it is believed that there is no Turing pattern formation for the equal self-diffusion coefficients. However, combined with cross-diffusion, it shows that the system will exhibit spotted pattern by both mathematical analysis and numerical simulations. Furthermore, asynchrony of the predator and the prey in the space. The obtained results show that cross-diffusion plays an important role on the pattern formation of the predator–prey system. (general)
Space-Bounded Church-Turing Thesis and Computational Tractability of Closed Systems
Braverman, Mark; Schneider, Jonathan; Rojas, Cristóbal
2015-08-01
We report a new limitation on the ability of physical systems to perform computation—one that is based on generalizing the notion of memory, or storage space, available to the system to perform the computation. Roughly, we define memory as the maximal amount of information that the evolving system can carry from one instant to the next. We show that memory is a limiting factor in computation even in lieu of any time limitations on the evolving system—such as when considering its equilibrium regime. We call this limitation the space-bounded Church-Turing thesis (SBCT). The SBCT is supported by a simulation assertion (SA), which states that predicting the long-term behavior of bounded-memory systems is computationally tractable. In particular, one corollary of SA is an explicit bound on the computational hardness of the long-term behavior of a discrete-time finite-dimensional dynamical system that is affected by noise. We prove such a bound explicitly.
Space-Bounded Church-Turing Thesis and Computational Tractability of Closed Systems.
Braverman, Mark; Schneider, Jonathan; Rojas, Cristóbal
2015-08-28
We report a new limitation on the ability of physical systems to perform computation-one that is based on generalizing the notion of memory, or storage space, available to the system to perform the computation. Roughly, we define memory as the maximal amount of information that the evolving system can carry from one instant to the next. We show that memory is a limiting factor in computation even in lieu of any time limitations on the evolving system-such as when considering its equilibrium regime. We call this limitation the space-bounded Church-Turing thesis (SBCT). The SBCT is supported by a simulation assertion (SA), which states that predicting the long-term behavior of bounded-memory systems is computationally tractable. In particular, one corollary of SA is an explicit bound on the computational hardness of the long-term behavior of a discrete-time finite-dimensional dynamical system that is affected by noise. We prove such a bound explicitly.
Engel, Max; Boesl, Fabian; Narod Eco, Rodrigo; Galang, Jam Albert; Gonzalo, Lia Anne; Llanes, Francesca; Quix, Eva; Schroeder-Ritzrau, Andrea; Frank, Norbert; Mahar Lagmay, Alfredo; Brückner, Helmut
2017-04-01
The Eastern Visayas region in the Philippines is hit by some of the most violent tropical cyclones on Earth on a regular basis, exemplified by Typhoon Haiyan, 7-9 November 2013, and a number of other category 4 and 5 events during the last decades. Moreover, strong earthquakes along the Philippine Trench have triggered several tsunamis in the historical past. Coastal flooding through extreme waves associated with these events represents a significant hazard for communities along the eastern coasts of Samar. However, not much is known about frequency-magnitude relationships of coastal flooding events and the maximum magnitude on centennial and millennial scales, which can be derived from geological traces and which have to be considered in a coastal hazard management process. We investigated a large boulder field in Eastern Samar distributed over an elevated, intertidal palaeo-reef platform in order to understand mechanisms of boulder transport and to derive implications for the maximum spatial extent, height, and velocity of coastal flooding. In the field, we recorded location, shape, morphological features as well as length and orientation of the main axes of more than 250 boulders, the a-axes of which were between 1.5 and 10.7 m. Eight samples were taken for Th/U dating of post-depositional, secondary calcite flowstones and pre-depostional coral, and four samples were taken for radiocarbon dating of pre-depositional, sessil organisms attached to the boulders. We 3D-mapped the most important parts of the boulder field using an unmanned aerial vehicle (UAV) and created structure-from-motion (SfM) models of the most prominent boulders, which will be used for inverse modelling of transport flows. Samples of the most common coralline lithofacies were taken for density estimations. We used interviews with elders of the local community as well as multi-temporal analysis of satellite images to reconstruct recent flooding patterns and boulder movement during recent events
Chowell, Gerardo; Viboud, Cécile; Simonsen, Lone; Miller, Mark A; Acuna-Soto, Rodolfo
2010-08-15
Although the mortality burden of the devastating 1918 influenza pandemic has been carefully quantified in the United States, Japan, and European countries, little is known about the pandemic experience elsewhere. Here, we compiled extensive archival records to quantify the pandemic mortality patterns in 2 Mexican cities, Mexico City and Toluca. We applied seasonal excess mortality models to age-specific respiratory mortality rates for 1915-1920 and quantified the reproduction number from daily data. We identified 3 pandemic waves in Mexico City in spring 1918, autumn 1918, and winter 1920, which were characterized by unusual excess mortality among people 25-44 years old. Toluca experienced 2-fold higher excess mortality rates than Mexico City but did not experience a substantial third wave. All age groups, including that of people 65 years old, experienced excess mortality during 1918-1920. Reproduction number estimates were Mexico experienced a herald pandemic wave with elevated young adult mortality in spring 1918, similar to the United States and Europe. In contrast to the United States and Europe, there was no mortality sparing among Mexican seniors 65 years old, highlighting potential geographical differences in preexisting immunity to the 1918 virus. We discuss the relevance of our findings to the 2009 pandemic mortality patterns.
A bio-inspired spatial patterning circuit.
Chen, Kai-Yuan; Joe, Danial J; Shealy, James B; Land, Bruce R; Shen, Xiling
2014-01-01
Lateral Inhibition (LI) is a widely conserved patterning mechanism in biological systems across species. Distinct from better-known Turing patterns, LI depend on cell-cell contact rather than diffusion. We built an in silico genetic circuit model to analyze the dynamic properties of LI. The model revealed that LI amplifies differences between neighboring cells to push them into opposite states, hence forming stable 2-D patterns. Inspired by this insight, we designed and implemented an electronic circuit that recapitulates LI patterning dynamics. This biomimetic system serve as a physical model to elucidate the design principle of generating robust patterning through spatial feedback, regardless of the underlying devices being biological or electrical.
Phase separation explains a new class of self-organized spatial patterns in ecological systems
Liu, Q.X.; Doelman, A.; Rottschäfer, V.; de Jager, M.; Herman, P.M.J.; Rietkerk, M.; van de Koppel, J.
2013-01-01
The origin of regular spatial patterns in ecological systems has long fascinated researchers. Turing's activator-inhibitor principle is considered the central paradigm to explain such patterns. According to this principle, local activation combined with long-range inhibition of growth and survival
Lanza, Gaetano Antonio; Argirò, Alessia; Mollo, Roberto; De Vita, Antonio; Spera, Francesco; Golino, Michele; Rota, Elisabetta; Filice, Monica; Crea, Filippo
2017-12-01
"Early repolarization" (ER) is a frequent finding at standard electrocardiogram (ECG). In this study we assessed whether ER is associated with an increased risk of events, as recently suggested by some studies. We prospectively enrolled 4,176 consecutive subjects without any heart disease who underwent routine ECG recording. ER was diagnosed in case of typical concave ST-segment elevation ≥0.1 mV; a J wave was diagnosed when the QRS showed a notch or a slur in its terminal part. In this study we compared the 6-year outcome of all 687 subjects with ER/J wave and 687 matched subjects without ER/J wave (controls). Both groups included 335 males and 352 females, and age was 48.8 ± 18 years. Overall, 145 deaths occurred (11%), only 11 of which attributed to cardiac causes. No sudden death was reported. Cardiac deaths occurred in 5 (0.8%) and 6 (0.9%) ER/J wave subjects and controls, respectively (odds ratio [OR] 0.85, 95% confidence interval [CI] 0.26 to 2.80, p = 0.79). Both ER (OR 1.68, 95% CI 0.21 to 13.3, p = 0.62) and J wave (OR 0.91, 95% CI 0.28 to 3.00, p = 0.88) showed no association with cardiac death. Total mortality was 11.5% in the ER/J wave group and 10.6% in the control group (OR 1.10, 95% CI 0.78 to 1.56, p = 0.58). Both ER (OR 0.44, 95% CI 0.16 to 1.24, p = 0.12) and J wave (OR 1.20, 95% CI 0.85 to 1.70, p = 0.30) showed also no association with all-cause death. In subjects without any evidence of heart disease, we found no significant association of ER/J wave with the risk of cardiac, as well as all-cause, death at medium-term follow-up. Copyright © 2017 Elsevier Inc. All rights reserved.
van der Ven, S.H.G.; Boom, J.; Kroesbergen, E.H.; Leseman, P.P.M.
2012-01-01
Variability in strategy selection is an important characteristic of learning new skills such as mathematical skills. Strategies gradually come and go during this development. In 1996, Siegler described this phenomenon as "overlapping waves." In the current microgenetic study, we attempted to model
Spatially Localized Chemical Patterns around an A + B → Oscillator Front.
Budroni, M A; Lemaigre, L; Escala, D M; Muñuzuri, A P; De Wit, A
2016-02-18
When two gels, each loaded with a different set of reactants A and B of an oscillatory reaction, are brought into contact, reaction-diffusion patterns such as waves or Turing patterns can develop in the reactive contact zone. The initial condition which separates the reactants at the beginning leads to a localization in space of the different dynamical regimes accessible to the chemical oscillator. We study here both numerically and experimentally the composite traveling structures resulting from the interaction between chemical fronts and localized waves in the case in which the reactants of such an A + B → oscillator system are those of the canonical Belousov-Zhabotinsky (BZ) oscillating reaction. A transition between different dynamics is obtained by varying the initial concentration of the organic substrate of the BZ reactants, which is one of the parameters controlling the local excitability. We show that the dynamical regime (excitable or oscillatory) characterizing the BZ oscillator in the initial contact area is the key feature which determines the spatiotemporal evolution of the system. The experimental results are in qualitative agreement with the theoretical predictions.
Dos fundamentos da matemática ao surgimento da teoria da computação por Alan Turing
Bispo, Danilo Gustavo
2013-01-01
Neste texto apresento inicialmente com o intuito de contextualizar as influências envolvidas no surgimento da teoria de Alan Turing sobre computabilidade um histórico de algum problemas que mobilizaram os matemáticos no início do século XX. No capítulo 1, será exposto um panorama do surgimento da ideologia formalista concebida pelo matemático David Hilbert no início do século XX. O objetivo do formalismo era de fundamentar a matemática elementar a partir do método e axiomático,...
2004-01-01
The ideas that gave birth to the computer age. Alan Turing, pioneer of computing and WWII codebreaker, was one of the most important and influential thinkers of the twentieth century. In this volume for the first time his key writings are made available to a broad, non-specialist readership. They make fascinating reading both in their own right and for their historic significance: contemporary computational theory, cognitive science, artificial intelligence, and artificial life all spring from this ground-breaking work, which is also rich. in philosophical and logical insight. An introduction
Paired carbon isotope from three key intervals of the Turee Creek Group, Pilbara Craton, Australia
Ader, M.; Thomazo, C.; Busigny, V.; Baton, F.; Muller, E.; Chaduteau, C.; Vennin, E.; Buoncristiani, J. F.; Van Kranendonk, M. J.; Philippot, P.
2017-12-01
Strong links between the global carbon cycle, surface oxygenation and climate are expected through Earth history, but remain elusive in the carbon isotope record up until the end of the Mesoproterozoic. This is well exemplified at the time of the Great Oxydation Event (GOE) and its succeding global glaciation when δ13Ccarbseems to remain close to 0‰. The Turee Creek Group (Pilbara Craton, Austalia) was identified as a good target for reevaluating the C-isotope record of this period as it is the only continuous stratigraphic sedimentary section worldwide hosting both events. Paired carbon isotope data (Δ13Ccarb-org = δ13Ccarb - δ13Corg) were measured on drill cores collected at three of its in key stratigraphic horizons: the transition between the Kungarra Fm. and underlying BIFs of the Boolgeeda Iron Fm. (TCDP1); the base of the Meteorite Bore Member glacial diamictites (TCDP2); the transition of the carbonate-bearing Kazput Fm. and underlying quartzites of the Koolbye Fm. (TCDP3). The carbonate interval of Kazput Fm. with δ13Ccarb 0‰ is probably the only one recording primary δ13Ccarb values. Its Δ13Ccarb-org value of 27.5‰ is tipical of Rubisco-based photosynthesis. All other formations are carbonate-poor. Their δ13Ccarb are lower than -3‰, reaching -15‰, with a broad tendancy of decreasing δ13Ccarb with decreasing carbonate content. Δ13Ccarb-org values are lower than 25‰ and define a negative correlation with δ13Ccarb within each formation, indicating that these carbonates are largely diagenetic. δ13Corg values in the Kazput Fm., Coolbye Fm. and BIFs range from 24 to -29‰, typical of rubisco-based photosynthesis assimilating carbon from a dissolved inorganic carbon reservoir close to 0‰. In the upper Kungarra Fm. δ13Corg values cluster around -32‰. In the diamictite and lower Kungarra Fm., they decrease from -28 to -36‰ with increasing TOC, pointing to variable contributions of an isotopically negative organic matter pool that
Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.
2018-03-01
Various magnetohydrodynamic (MHD) waves have recently been detected in the solar corona and investigated intensively in the context of coronal heating and coronal seismology. In this Letter, we report the first detection of short-period propagating fast sausage mode waves in a metric radio spectral fine structure observed with the Assembly of Metric-band Aperture Telescope and Real-time Analysis System. Analysis of Zebra patterns (ZPs) in a type-IV burst revealed a quasi-periodic modulation in the frequency separation between the adjacent stripes of the ZPs (Δf ). The observed quasi-periodic modulation had a period of 1–2 s and exhibited a characteristic negative frequency drift with a rate of 3–8 MHz s‑1. Based on the double plasma resonance model, the most accepted generation model of ZPs, the observed quasi-periodic modulation of the ZP can be interpreted in terms of fast sausage mode waves propagating upward at phase speeds of 3000–8000 km s‑1. These results provide us with new insights for probing the fine structure of coronal loops.
Tanner, Hildegard; Bischof, Désirée; Roten, Laurent; Hoksch, Beatrix; Seiler, Jens; Schmid, Ralph A; Delacrétaz, Etienne
2016-01-01
Abnormal ECG findings suggestive of cardiac disease are frequent in patients with funnel chest, although structural heart disease is rare. Electrocardiographic characteristics and changes following new surgical treatments in young adults are not described so far. The aim of the study was to analyze electrocardiographic characteristics of patients with funnel chest before and after minimally invasive funnel chest correction by the Nuss procedure. Twenty-six patients with surgical correction of funnel chest using pectus bar were included. Twelve-lead ECGs before and later than one year after surgery were analyzed. In postoperative ECGs, amplitude of P wave in lead II and negative terminal amplitude of P wave in lead V1 decreased from 0.13 to 0.10mV (p=0.03), and from 0.10 to 0.04mV (pfunnel chest are frequent, and can normalize after surgical correction by the Nuss procedure. De novo J wave pattern in precordial leads V4-V6 is a frequent finding after surgical funnel chest correction using pectus bar. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Y. F.; Chang, C. C.; Lee, C. Y.; Tung, J. C.; Liang, H. C.; Huang, K. F.
2018-01-01
Theoretical wave functions are analytically derived to characterize the propagation evolution of the Hermite–Gaussian (HG) beams transformed by a single-lens astigmatic mode converter with arbitrary angle. The derived wave functions are related to the combination of the rotation transform and the antisymmetric fractional Fourier transform. The derived formula is systematically validated by using an off-axis diode-pumped solid-state laser to generate various high-order HG beams for mode conversions. In addition to validation, the creation and evolution of vortex structures in the transformed HG beams are numerically manifested. The present theoretical analyses can be used not only to characterize the evolution of the transformed beams but to design the optical vortex beams with various forms.
Xiao, Xia; Shan, Xingmeng; Tao, Ye; Sun, Yuan; Kikkawa, Takamaro
2013-02-01
Surface acoustic waves (SAWs) technique is a promising method to determine the mechanical properties of thin low dielectric constant (low-k) dielectrics by matching the experimental dispersion curve with the theoretical dispersion curves. However, it is difficult to calculate the dispersion curves when SAWs propagate along patterned structure. In this paper, finite element method (FEM) is applied to obtain the numerical dispersion results of SAWs propagating on patterned film. Periodic boundary condition and plane-strain model is used to improve the computation speed. Four structures of bulk silicon, single layered low-k film, two layered Cu and SiO2 film, and patterned film, are simulated in this paper. The dispersion curves of single low-k films derived from the FEM simulation agree very well with those calculated by traditional method, which verifies the correct employment of the FEM approach. Dispersion curves of two patterned film structure of Cu and SiO2 with difference metal wire width are obtained. Effective Young's moduli are achieved by fitting the FEM simulated results with those of traditional theoretical calculation through least square error method.
Hering, J; Angelkort, B; Keck, N; Wilde, J; Amann, B
2010-02-01
In the diabetic foot syndrome (DFS) due to peripheral artery disease, the fibular artery is often the only vessel which can be revascularised. Because the fibular artery does not have a direct connection to the plantar arch, the clinical result of fibular artery PTA is dependent upon the extent of collateralization at the ankle. Therefore, successful PTA of the fibular artery with resulting biphasic doppler waves at the ankle can lead to either biphasic or monophasic post-occlusive doppler wave patterns at the forefoot. We evaluated prospectively the association of the forefoot doppler wave form on long-term clinical outcome in patients with DFS after successful PTA of the fibular artery. 44 patients with occluded calf vessels and DFS Wagner 2-4 underwent primary successful fibular artery PTA resulting in biphasic ankle doppler wave. According to doppler wave form at the forefoot, patients were divided into 1) a biphasic or 2) a monophasic group. Up to 45 months, we documented doppler wave forms, clinical course, restenosis, reinterventions, wound healing, major- and minor amputations. PTA resulted in a biphasic doppler wave at the forefoot in 26 (59 %), in 18 (41 %) in a monophasic wave pattern. Biphasic forefoot doppler wave was strongly correlated with longer event-free survival (35 bi- vs. 5.5 months monophasic, p = 0.0018) and complete wound healing (69 % s bi- vs. 44 % vs. monophasic p = 0.0309). Major amputations: 2 / 26 (8 %) in the biphasic and in 3 / 18 (17 %) in the monophasic group. Second revascularisation procedures were more often necessary in the monophasic group (7 / 18 (39 % vs. 2 / 26 (8 %)). After successful PTA of the fibular artery, monophasic doppler wave patterns at the forefoot denote insufficient collateralization and are associated with poor outcome. If successful fibular artery PTA results only in monophasic forefoot doppler, additional crural or pedal bypass should be strongly contemplated.
Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.
2017-12-01
Recent observations have revealed that various modes of magnetohydrodynamic (MHD) waves are ubiquitous in the corona. In imaging observations in EUV, propagating fast magnetoacoustic waves are difficult to observe due to the lack of time resolution. Quasi-periodic modulation of radio fine structures is an important source of information on these MHD waves. Zebra patterns (ZPs) are one of such fine structures in type IV bursts, which consist of several parallel stripes superimposed on the background continuum. Although the generation mechanism of ZPs has been discussed still, the most favorable model of ZPs is so-called double plasma resonance (DPR) model. In the DPR model, the frequency separation between the adjacent stripes (Δf) is determined by the plasma density and magnetic field in their source. Hence, the variation of Δf in time and frequency represents the disturbance in their source region in the corona. We report the detection of propagating fast sausage waves through the analysis of a ZP event on 2011 June 21. The variation of Δf in time and frequency was obtained using highly resolved spectral data from the Assembly of Metric-band Aperture Telescope and Real-time Analysis System (AMATERAS). We found that Δf increases with the increase of emission frequency as a whole, which is consistent with the DPR model. Furthermore, we also found that irregularities in Δf are repetitively drifting from the high frequency side to the low frequency side. Their frequency drift rate was 3 - 8 MHz/s and the repetitive frequency was several seconds. Assuming the ZP generation by the DPR model, the drifting irregularities in Δf correspond to propagating disturbances in plasma density and magnetic field with speeds of 3000 - 8000 km/s. Taking account of these facts, the observed modulations in Δf can be explained by fast sausage waves propagating through the corona. We will also discuss the plasma conditions in the corona estimated from the observational results.
Effet de l'âge et de l'intensité de pâture sur le développement des ...
African Journals Online (AJOL)
Effet de l'âge et de l'intensité de pâture sur le développement des touffes et la production de biomasse de Panicum maximum var. C1 dans les pâturages artificiels en zone soudanienne et subéquatoriale.
Pattern formation for a model of plankton allelopathy with cross-diffusion
DEFF Research Database (Denmark)
Tian, C.R.; Zhang, Lai; Lin, Z.G.
2011-01-01
In this paper, we develop a theoretical framework for investigating spatial patterns on plankton allelopathy with cross-diffusion. We show that under some conditions the cross-diffusion is able to induce the Turing instability, which is further confirmed by the numerical simulations. Moreover...
Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Le Bon, Olivier
2015-10-01
To investigate slow wave sleep (SWS) spectral power proportions in distinct clinical conditions sharing non-restorative sleep and fatigue complaints without excessive daytime sleepiness (EDS), namely the chronic fatigue syndrome (CFS) and primary insomnia (PI). Impaired sleep homeostasis has been suspected in both CFS and PI. We compared perceived sleep quality, fatigue and sleepiness symptom-intensities, polysomnography (PSG) and SWS spectral power distributions of drug-free CFS and PI patients without comorbid sleep or mental disorders, with a good sleeper control group. Higher fatigue without EDS and impaired perceived sleep quality were confirmed in both patient groups. PSG mainly differed in sleep fragmentation and SWS durations. Spectral analysis revealed a similar decrease in central ultra slow power (0.3-0.79Hz) proportion during SWS for both CFS and PI and an increase in frontal power proportions of faster frequencies during SWS in PI only. The latter was correlated to affective symptoms whereas lower central ultra slow power proportions were related to fatigue severity and sleep quality impairment. In combination with normal (PI) or even increased SWS durations (CFS), we found consistent evidence for lower proportions of slow oscillations during SWS in PI and CFS. Observing normal or increased SWS durations but lower proportions of ultra slow power, our findings suggest a possible quantitative compensation of altered homeostatic regulation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Parametric pattern selection in a reaction-diffusion model.
Directory of Open Access Journals (Sweden)
Michael Stich
Full Text Available We compare spot patterns generated by Turing mechanisms with those generated by replication cascades, in a model one-dimensional reaction-diffusion system. We determine the stability region of spot solutions in parameter space as a function of a natural control parameter (feed-rate where degenerate patterns with different numbers of spots coexist for a fixed feed-rate. While it is possible to generate identical patterns via both mechanisms, we show that replication cascades lead to a wider choice of pattern profiles that can be selected through a tuning of the feed-rate, exploiting hysteresis and directionality effects of the different pattern pathways.
Hopf Bifurcation and Delay-Induced Turing Instability in a Diffusive lac Operon Model
Cao, Xin; Song, Yongli; Zhang, Tonghua
In this paper, we investigate the dynamics of a lac operon model with delayed feedback and diffusion effect. If the system is without delay or the delay is small, the positive equilibrium is stable so that there are no spatial patterns formed; while the time delay is large enough the equilibrium becomes unstable so that rich spatiotemporal dynamics may occur. We have found that time delay can not only incur temporal oscillations but also induce imbalance in space. With different initial values, the system may have different spatial patterns, for instance, spirals with one head, four heads, nine heads, and even microspirals.
TRENDS IN MONTHLY R INF LL ND TEMPER TURE IN R ...
African Journals Online (AJOL)
USER
2016-11-05
Nov 5, 2016 ... One sample t-tailed test of hypothesis was carried out. An increasing trend in temperature is observed over the years while a decreasing trend in precipitation is observed by the year 2014. The trends exhibited a cyclic and Seasonal pattern with Increasing Variability. Descriptive statistics revealed. Rainfall ...
Samir, Anthony E; Dhyani, Manish; Anvari, Arash; Prescott, Jason; Halpern, Elkan F; Faquin, William C; Stephen, Antonia
2015-11-01
To evaluate the diagnostic accuracy of shear-wave elastography (SWE) for the diagnosis of malignancy in follicular lesions and to identify the optimal SWE measurement plane. The institutional review board approved this HIPAA-compliant, single-institution, prospective pilot study. Subjects scheduled for surgery after a previous fine-needle aspiration report of "atypia of undetermined significance" or "follicular lesion of undetermined significance," "suspicion for follicular neoplasm," or "suspicion for Hurthle cell neoplasm," were enrolled after obtaining informed consent. Subjects underwent conventional ultrasonography (US), Doppler evaluation, and SWE preoperatively, and their predictive value for thyroid malignancy was evaluated relative to the reference standard of surgical pathologic findings. Thirty-five patients (12 men, 23 women) with a mean age of 55 years (range, 23-85 years) and a fine-needle aspiration diagnosis of atypia of undetermined significance or follicular lesion of undetermined significance (n = 16), suspicion for follicular neoplasm (n = 14), and suspicion for Hurthle cell neoplasm (n = 5) were enrolled in the study. Male sex was a statistically significant (P = .02) predictor of malignancy, but age was not. No sonographic morphologic parameter, including nodule size, microcalcification, macrocalcification, halo sign, taller than wide dimension, or hypoechogenicity, was associated with malignancy. Similarly, no Doppler feature, including intranodular vascularity, pulsatility index, resistive index, or peak-systolic velocity, was associated with malignancy. Higher median SWE tissue Young modulus estimates from the transverse insonation plane were associated with malignancy, yielding an area under the receiver operating characteristic curve of 0.81 (95% confidence interval: 0.62, 1.00) for differentiation of malignant from benign nodules. At a cutoff value of 22.3 kPa, sensitivity, specificity, positive predictive value, and negative predictive
Nonlinear Waves on Stochastic Support: Calcium Waves in Astrocyte Syncytia
Jung, P.; Cornell-Bell, A. H.
Astrocyte-signaling has been observed in cell cultures and brain slices in the form of Calcium waves. Their functional relevance for neuronal communication, brain functions and diseases is, however, not understood. In this paper, the propagation of intercellular calcium waves is modeled in terms of waves in excitable media on a stochastic support. We utilize a novel method to decompose the spatiotemporal patterns into space-time clusters (wave fragments). Based on this cluster decomposition, a statistical description of wave patterns is developed.
Abouchami, W.; Busigny, V.; Philippot, P.; Galer, S. J. G.; Cheng, C.; Pecoits, E.
2016-12-01
The evolution of the ocean, atmosphere and biosphere throughout Earth's history has impacted on the biogeochemistry of some key trace metals that are of particular importance in regulating the exchange between Earth's reservoirs. Several geochemical proxies exhibit isotopic shifts that have been linked to major changes in the oxygenation levels of the ancient oceans during the Great Oxygenation Event (GOE) between 2.45 and 2.2 Ga and the Neoproterozoic Oxygenation Event at ca. 0.6 Ga. Studies of the modern marine biogeochemical cycle of the transition metal Cadmium have shown that stable Cd isotope fractionation is mainly driven by biological uptake of light Cd into marine phytoplankton in surface waters leaving behind the seawater enriched in the heavy Cd isotopes. Here we use of the potential of this novel proxy to trace ancient biological productivity which remains an enigma, particularly during the early stages of Earth history. The Turee Creek Group in the Hamersley Basin, Australia, provides a continuous stratigraphic sedimentary section covering the GOE and at least two glacial events, offering a unique opportunity to examine the changes that took place during these periods and possibly constrain the evolution, timing and onset of oxygenic photosynthesis. Stable Cd isotope data were obtained on samples from the Boolgeeda Iron Fm. (BIFs), the siliciclastic and carbonate successions of Kungara (including the Meteorite Bore Member) and the Kazputt Fm., using a double spike technique by TIMS (ThermoFisher Triton) and Cd concentrations were determined by isotope dilution. The Boolgeeda BIFs have generally low Cd concentrations varying between 8 and 50ppb, with two major excursions marked by an increase in Cd content, reaching similar levels to those in the overlying Kungarra Fm. (≥150 ppb). These variations are associated with a large range in ɛ112/110Cd values (-2 to +2), with the most negative values typically found in the organic and Cd-rich shales and
DEFF Research Database (Denmark)
Christensen, Linda; Jensen, Thomas Christian
of the trip reflecting rush hours and congestion. The socio-economic data includes age, gender, family size, children of different age, income and position. Travel costs could not be included because of the high correlation with the travel time. Among other variables missing in the analyses are the access...
Sound Waves Levitate Substrates
Lee, M. C.; Wang, T. G.
1982-01-01
System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
Dynamical 3-Space Gravitational Waves: Reverberation Effects
Directory of Open Access Journals (Sweden)
Cahill R. T.
2013-04-01
Full Text Available Gravity theory missed a key dynamical process that became ap parent only when ex- pressed in terms of a velocity field, instead of the Newtonian gravitational acceleration field. This dynamical process involves an additional self-i nteraction of the dynam- ical 3-space, and experimental data reveals that its streng th is set by the fine struc- ture constant, implying a fundamental link between gravity and quantum theory. The dynamical 3-space has been directly detected in numerous li ght-speed anisotropy ex- periments. Quantum matter has been shown to exhibit an accel eration caused by the time-dependence and inhomogeneity of the 3-space flow, givi ng the first derivation of gravity from a deeper theory, as a quantum wave refraction effect. EM radiation is also refracted in a similar manner. The anisotropy experiments have all shown 3-space wave / turbulence effects, with the latest revealing the fractal structure of 3-s pace. Here we report the prediction of a new effect, namely a reverberation effect, when the gravi- tational waves propagate in the 3-space inflow of a large mass . This effect arises from the non-linear dynamics of 3-space. These reverberations c ould offer an explanation for the Shnoll effect, in which cosmological factors influence stochastic pro cesses, such as radioactive decay rates.
Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion
Directory of Open Access Journals (Sweden)
Xinze Lian
2013-01-01
Full Text Available We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.
Chan, J. H.; Catchings, R.; Strayer, L. M.; Goldman, M.; Criley, C.; Sickler, R. R.; Boatwright, J.
2017-12-01
We conducted an active-source seismic investigation across the Napa Valley (Napa Valley Seismic Investigation-16) in September of 2016 consisting of two basin-wide seismic profiles; one profile was 20 km long and N-S-trending (338°), and the other 15 km long and E-W-trending (80°) (see Catchings et al., 2017). Data from the NVSI-16 seismic investigation were recorded using a total of 666 vertical- and horizontal-component seismographs, spaced 100 m apart on both seismic profiles. Seismic sources were generated by a total of 36 buried explosions spaced 1 km apart. The two seismic profiles intersected in downtown Napa, where a large number of buildings were red-tagged by the City following the 24 August 2014 Mw 6.0 South Napa earthquake. From the recorded Rayleigh and Love waves, we developed 2-Dimensional S-wave velocity models to depths of about 0.5 km using the multichannel analysis of surface waves (MASW) method. Our MASW (Rayleigh) and MALW (Love) models show two prominent low-velocity (Vs = 350 to 1300 m/s) sub-basins that were also previously identified from gravity studies (Langenheim et al., 2010). These basins trend N-W and also coincide with the locations of more than 1500 red- and yellow-tagged buildings within the City of Napa that were tagged after the 2014 South Napa earthquake. The observed correlation between low-Vs, deep basins, and the red-and yellow-tagged buildings in Napa suggests similar large-scale seismic investigations can be performed. These correlations provide insights into the likely locations of significant structural damage resulting from future earthquakes that occur adjacent to or within sedimentary basins.
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Directory of Open Access Journals (Sweden)
Maasa Nakano
2013-04-01
Full Text Available Micrometer order magnetophotonic crystals with periodic arranged metallic glass and oxide glass composite materials were fabricated by stereolithographic method to reflect electromagnetic waves in terahertz frequency ranges through Bragg diffraction. In the fabrication process, the photo sensitive acrylic resin paste mixed with micrometer sized metallic glass of Fe72B14.4Si9.6Nb4 and oxide glass of B2O3·Bi2O3 particles was spread on a metal substrate, and cross sectional images of ultra violet ray were exposed. Through the layer by layer stacking, micro lattice structures with a diamond type periodic arrangement were successfully formed. The composite structures could be obtained through the dewaxing and sintering process with the lower temperature under the transition point of metallic glass. Transmission spectra of the terahertz waves through the magnetophotonic crystals were measured by using a terahertz time domain spectroscopy.
Resetting Wave Forms in Dictyostelium Territories
Energy Technology Data Exchange (ETDEWEB)
Lee, Kyoung J.; Goldstein, Raymond E.; Cox, Edward C.
2001-08-06
The mechanism by which spiral wave patterns appear in populations of Dictyostelium was probed experimentally by external chemical perturbation. Spiral waves, which often arise from the breakup of circular waves driven by pacemakers, typically entrain those pacemakers. We studied these processes by resetting the waves with a spatially uniform pulse of extrinsic cyclic AMP. A pattern of spirals reappeared if resetting was early in the signaling stage, but only targets emerged following late resetting, in a manner analogous to cardiac defibrillation. This supports recent hypotheses that wave pattern selection naturally occurs by slow temporal variation of the excitability of the cells.
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....
Energy Technology Data Exchange (ETDEWEB)
Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-18
This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.
Polarization of concave domains by traveling wave pinning.
Directory of Open Access Journals (Sweden)
Slawomir Bialecki
Full Text Available Pattern formation is one of the most fundamental yet puzzling phenomena in physics and biology. We propose that traveling front pinning into concave portions of the boundary of 3-dimensional domains can serve as a generic gradient-maintaining mechanism. Such a mechanism of domain polarization arises even for scalar bistable reaction-diffusion equations, and, depending on geometry, a number of stationary fronts may be formed leading to complex spatial patterns. The main advantage of the pinning mechanism, with respect to the Turing bifurcation, is that it allows for maintaining gradients in the specific regions of the domain. By linking the instant domain shape with the spatial pattern, the mechanism can be responsible for cellular polarization and differentiation.
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.
1998-01-01
This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies...
Towne, Dudley H
1988-01-01
This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....
The Influence of Gene Expression Time Delays on Gierer–Meinhardt Pattern Formation Systems
Seirin Lee, S.
2010-03-23
There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer-Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer-Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens. © 2010 Society for Mathematical Biology.
Paton, R. T.; Skews, B. W.; Rubidge, S.; Snow, J.
2013-07-01
The behaviour of conical shock waves imploding axisymmetrically was first studied numerically by Hornung (J Fluid Mech 409:1-12, 2000) and this prompted a limited experimental investigation into these complex flow patterns by Skews et al. (Shock Waves 11:323-326, 2002). Modification of the simulation boundary conditions, resulting in the loss of self-similarity, was necessary to image the flow experimentally. The current tests examine the temporal evolution of these flows utilising a converging conical gap of fixed width fed by a shock wave impinging at its entrance, supported by CFD simulations. The effects of gap thickness, angle and incident shock strength were investigated. The wave initially diffracts around the outer lip of the gap shedding a vortex which, for strong incident shock cases, can contain embedded shocks. The converging shock at exit reflects on the axis of symmetry with the reflected wave propagating outwards resulting in a triple point developing on the incident wave together with the associated shear layer. This axisymmetric shear layer rolls up into a mushroom-shaped toroidal vortex ring and forward-facing jet. For strong shocks, this deforms the Mach disk to the extent of forming a second triple point with the primary shock exhibiting a double bulge. Separate features resembling the Richtmeyer-Meshkov and Kelvin-Helmholtz instabilities were noted in some tests. Aside from the incident wave curvature, the reflection patterns demonstrated correspond well with the V- and DV-types identified by Hornung although type S was not clearly seen, possibly due to the occlusion of the reflection region by the outer diffraction vortex at these early times. Some additional computational work explicitly exploring the limits of the parameter space for such systems has demonstrated the existence of a possible further reflection type, called vN-type, which is similar to the von Neumann reflection for plane waves. It is recommended that the parameter space be
Directory of Open Access Journals (Sweden)
Miryanti Cahyaningtias
2011-11-01
Full Text Available Palpitation is a common presenting symptom in the emergency department. Wolf-Parkinson White (WPW syndrome is a cardiac conduction disorder that may present with palpitation and lead to sudden cardiac death. WPW could be detected by electrocardiogram (ECG. In this case report, we present two young male patients with WPW syndrome admitted to our hospital with history of repeated and progressive palpitation. ECG of the first patient revealed supraventricular tachycardia which converted to sinus rhythm after propanolol treatment. ECG showed sinus rhythm with delta wave in lead II,III,aVF, V1 suggesting the presence of accessory pathway (AP in left lateral wall. Electrophysiology study confirmed the presence of AP and radio frequency catheter ablation was successfully done resulted in disappearance of delta on outpatient clinic ECG. Patient has no symptom and he do not have to take medication. ECG of the second patient revealed supraventricular tachycardia with abberancy. After amiodarone infusion, ECG showed sinus rhythm with delta wave in lead I,II,aVL suggesting the presence of accessory pathway in anteroseptal wall. Electrophysiology study and catheter ablation did not perform for this patient because of financial problem, however amidarone has to be taken regularly to prevent the recurrence of supraventricular tachycardia. (Med J Indones 2011; 20:298-301Keywords: ECG, palpitation, supraventricular tachycardia, Wolf- Parkinson White syndrome
DEFF Research Database (Denmark)
Graff, Claus; Andersen, Mads P; Xue, Joel Q
2009-01-01
BACKGROUND: The electrocardiographic QT interval is used to identify drugs with potential harmful effects on cardiac repolarization in drug trials, but the variability of the measurement can mask drug-induced ECG changes. The use of complementary electrocardiographic indices of abnormal......-induced prolongation of the heart rate corrected QT interval (QTcF) was compared with changes in the computerized measure for T-wave morphology. Effect sizes for QTcF and MCS were calculated at the time of maximum plasma concentrations and for maximum change from baseline. Accuracy for separating baseline from sotalol......% and for the 320 mg dose: (AUC) 94% versus 87%, p effect sizes for QTcF were less than half the effect sizes for MCS, p Effect sizes at peak changes of the mean were up to 3-fold higher for MCS compared...
CERN. Geneva
2005-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.
Tracking Target and Spiral Waves
DEFF Research Database (Denmark)
Jensen, Flemming G.; Sporring, Jon; Nielsen, Mads
2002-01-01
A new algorithm for analyzing the evolution of patterns of spiral and target waves in large aspect ratio chemical systems is introduced. The algorithm does not depend on finding the spiral tip but locates the center of the pattern by a new concept, called the spiral focus, which is defined by the...
Periodic folded waves for a (2+1)-dimensional modified dispersive water wave equation
International Nuclear Information System (INIS)
Wen-Hua, Huang
2009-01-01
A general solution, including three arbitrary functions, is obtained for a (2+1)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In the long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and the degenerated single folded solitary waves are investigated graphically and found to be completely elastic. (general)
DEFF Research Database (Denmark)
Graff, Claus; Andersen, Mads P; Xue, Joel Q
2009-01-01
BACKGROUND: The electrocardiographic QT interval is used to identify drugs with potential harmful effects on cardiac repolarization in drug trials, but the variability of the measurement can mask drug-induced ECG changes. The use of complementary electrocardiographic indices of abnormal repolariz......BACKGROUND: The electrocardiographic QT interval is used to identify drugs with potential harmful effects on cardiac repolarization in drug trials, but the variability of the measurement can mask drug-induced ECG changes. The use of complementary electrocardiographic indices of abnormal...... are typical ECG patterns in LQT2. Blinded to labels, the new morphology measures were tested in a third group of 39 healthy subjects receiving sotalol. Over 3 days the sotalol group received 0, 160 and 320 mg doses, respectively, and a 12-lead Holter ECG was recorded for 22.5 hours each day. Drug...... with QTcF, p ECG patterns in LQT2 carriers effectively quantified repolarization changes induced by sotalol. Further studies are needed to validate whether this measure has...
Wave-driven Countercurrent Plasma Centrifuge
International Nuclear Information System (INIS)
Fetterman, A.J.; Fisch, N.J.
2009-01-01
A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....
Liu, Xia; Zhang, Tonghua; Meng, Xinzhu; Zhang, Tongqian
2018-04-01
In this paper, we propose a predator-prey model with herd behavior and prey-taxis. Then, we analyze the stability and bifurcation of the positive equilibrium of the model subject to the homogeneous Neumann boundary condition. By using an abstract bifurcation theory and taking prey-tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of stable nonconstant solutions bifurcating from the positive equilibrium. Our results show that prey-taxis can yield the occurrence of spatial patterns.
Moving localized structures and spatial patterns in quadratic media with a saturable absorber
International Nuclear Information System (INIS)
Tlidi, M; Taki, M; Berre, M Le; Reyssayre, E; Tallet, A; Di Menza, L
2004-01-01
For near the first lasing threshold, we give a detailed derivation of a real order parameter equation for the degenerate optical parametric oscillator with a saturable absorber. For this regime, we study analytically the role of the quasi-homogeneous neutral mode in the pattern formation process. We show that this effect stabilized the hexagonal patterns below the lasing threshold. More importantly, we find numerically that when Turing and Hopf bifurcations interact, a stable moving asymmetric localized structure with a constant transverse velocity is generated. The formation of the moving localized structures is analysed for both the propagation and the mean field models. A quantitative confrontation of the two models is discussed
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Knapp, W.
2006-01-01
power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...
Directory of Open Access Journals (Sweden)
Abílio C.S.P. Bittencourt
2007-06-01
Full Text Available This paper presents a numerical modeling estimation of the sediment dispersion patterns caused by waves inciding through four distinct coastline contours of the delta plain of the Doce River during the Late Holocene. For this, a wave climate model based on the construction of wave refraction diagrams, as a function of current boundary conditions, was defined and was assumed to be valid for the four coastlines. The numerical modeling was carried out on basis of the refraction diagrams, taking into account the angle of approximation and the wave height along the coastline. The results are shown to be comparable with existing data regarding the directions of net longshore drift of sediments estimated from the integration of sediment cores, interpretation of aerial photographs and C14 datings. This fact apparently suggests that, on average, current boundary conditions appear to have remained with the same general characteristics since 5600 cal yr BP to the present. The used approach may prove useful to evaluate the sediment dispersion patterns during the Late Holocene in the Brazilian east-northeast coastal region.O presente trabalho apresenta uma estimativa, por modelagem numérica, dos padrões de dispersão de sedimentos causados por ondas ao longo de quatro distintos traçados da linha decosta durante o Holoceno Tardio na planície deltaica do Rio Doce. Para tanto, foi definido um modelo de clima de ondas baseado na construção de diagramas de refração de ondas, em função das condições de contorno atuais, que foi assumido como válido para as quatro linhas de costa. A modelagem numérica foi realizada a partir dos diagramas de refração, levando-se em conta o ângulo de aproximação e a altura da onda ao longo da linha de costa. Os resultados obtidos mostraram-se compatíveis com os dados existentes relativos aos sentidos da deriva litorânea efetiva de sedimentos estimados a partir da integração de testemunhos de vibra
Traveling waves in a magnetized Taylor-Couette flow
International Nuclear Information System (INIS)
Liu Wei; Ji Hantao; Goodman, Jeremy
2007-01-01
We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes
Preterm labour: tsunami waves?
Douglas, Alison J
2010-09-01
Preterm labour and birth can be delayed but are generally unstoppable, threatening the health of the mother-baby duo. This may be a result of peripheral signals prematurely recruiting the oxytocin neurones that co-ordinate the timing of birth and, via specialised activity and secretion patterns, drive uterine contractions. Once sensitised, these neurones respond with waves of activity, even to weak stimuli, resulting in a positive-feedback loop that escalates towards inevitable birth.
Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan
2018-03-01
This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.
Arctic Climate and Atmospheric Planetary Waves
Cavalieri, D. J.; Haekkinen, S.; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave 1 pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach for determining significant forcing patterns of sea ice and high-latitude variability.
... quickly. - Drink plenty of water regularly and often. - Eat small meals and eat more often. - Avoid using salt tablets ... plenty of water during a heat wave and eat smaller, more frequent meals. Text from "Are You Prepared?" by the Cass ( ...
Efficient Wave Energy Amplification with Wave Reflectors
DEFF Research Database (Denmark)
Kramer, Morten Mejlhede; Frigaard, Peter Bak
2002-01-01
Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....
DEFF Research Database (Denmark)
Kramer, Morten; Andersen, Thomas Lykke
Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....
Needham, Charles E
2010-01-01
The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...
Boucher, Jean-Philippe; Clanet, Christophe; Quéré, David; Chevy, Frédéric
2017-08-25
The cobra wave is a popular physical phenomenon arising from the explosion of a metastable grillage made of popsicle sticks. The sticks are expelled from the mesh by releasing the elastic energy stored during the weaving of the structure. Here we analyze both experimentally and theoretically the propagation of the wave front depending on the properties of the sticks and the pattern of the mesh. We show that its velocity and its shape are directly related to the recoil imparted to the structure by the expelled sticks. Finally, we show that the cobra wave can only exist for a narrow range of parameters constrained by gravity and rupture of the sticks.
Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.
Tuan, H.-S.; Chang, C.-P.
1972-01-01
A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.
DEFF Research Database (Denmark)
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....
The convection patterns in microemulsions
International Nuclear Information System (INIS)
Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.
1991-07-01
The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs
Wind wave source functions in opposing seas
Langodan, Sabique
2015-08-26
The Red Sea is a challenge for wave modeling because of its unique two opposed wave systems, forced by opposite winds and converging at its center. We investigate the different physical aspects of wave evolution and propagation in the convergence zone. The two opposing wave systems have similar amplitude and frequency, each driven by the action of its own wind. Wave patterns at the centre of the Red Sea, as derived from extensive tests and intercomparison between model and measured data, suggest that the currently available wave model source functions may not properly represent the evolution of the local fields that appear to be characterized by a less effective wind input and an enhanced white-capping. We propose and test a possible simple solution to improve the wave-model simulation under opposing winds and waves condition. This article is protected by copyright. All rights reserved.
Attosecond electron wave packet interferometry
International Nuclear Information System (INIS)
Remetter, T.; Ruchon, T.; Johnsson, P.; Varju, K.; Gustafsson, E.
2006-01-01
Complete test of publication follows. The well controlled generation and characterization of attosecond XUV light pulses provide an unprecedented tool to study electron wave packets (EWPs). Here a train of attosecond pulses is used to create and study the phase of an EWP in momentum space. There is a clear analogy between electronic wave functions and optical fields. In optics, methods like SPIDER or wave front shearing interferometry, allow to measure the spectral or spatial phase of a light wave. These two methods are based on the same principle: an interferogram is produced when recombining two sheared replica of a light pulse, spectrally (SPIDER) or spatially (wave front shearing interferometry). This enables the comparison of two neighbouring different spectral or spatial slices of the original wave packet. In the experiment, a train of attosecond pulses is focused in an Argon atomic gas jet. EWPs are produced from the single XUV photon ionization of Argon atoms. If an IR beam is synchronized to the EWPs, it is possible to introduce a shear in momentum space between two consecutive s wave packets. A Velocity Map Imaging Spectrometer (VMIS) enables us to detect the interference pattern. An analysis of the interferograms will be presented leading to a conclusion about the symmetry of the studied wave packet.
Indian Academy of Sciences (India)
IAS Admin
plitude waves and finite amplitude waves. This article provides a brief introduction to finite amplitude wave theories. Some of the general characteristics of waves as well as the importance of finite amplitude wave theories are touched upon. 2. Small Amplitude Waves. The topmost and the lowest levels of the waves are re-.
A direct and inverse problem for wave crests modelled by interactions of two solitons
Peterson, P.; van Groesen, Embrecht W.C.
2000-01-01
The paper addresses a new "inverse" problem for reconstructing the amplitudes of 2D surface waves from observation of the wave patterns (formed by wave crests). These patterns will depend on the amplitudes because of nonlinear effects. We show that the inverse problem can be solved when the waves
Wave-current interaction near the Gulf Stream during the surface wave dynamics experiment
Wang, David W.; Liu, Antony K.; Peng, Chih Y.; Meindl, Eric A.
1994-01-01
This paper presents a case study on the wave-current interaction near the local curvature of a Gulf Stream meander. The wave data were obtained from in situ measurements by a pitch-roll discus buoy during the Surface Wave Dynamics Experiment (SWADE) conducted off Wallops Island, Virginia, from October 1990 to March 1991. Owing to the advection of the Gulf Stream by the semidiurnal tide, the discus buoy was alternately located outside and inside the Gulf Stream. The directional wave measurements from the buoy show the changes in wave direction, wave energy, and directional spreading when waves encountered the current in the Gulf Stream meanders. A wave refraction model, using the ray-tracing method with an estimated Gulf Stream velocity field and meandering condition, was used to simulate wave refraction patterns and to estimate wave parameters at relative locations corresponding to buoy measurements. The numerical simulation shows that a focusing zone of wave rays was formed near the boundary and behind the crest of a simulated Gulf Stream meander. The focusing of wave rays causes changes in wave direction, increases in wave energy, and decreases in wave directional spreading, which are in good agreement with the results from the buoy measurements.
Ocean wave forecasting using recurrent neural networks
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
not accurately represent the measured values. The parametric or differential equation based on wind wave relationship and a differential equation of wave energy are solved numerically in wave forecasting. This is generally employed to give an estimate over... to the biological neurons, works on the input and output passing through a hidden layer. The ANN used here is a data- oriented modeling technique to find relations between input and output patterns by self learning and without any fixed mathematical form assumed...
Impact of Wave Dragon on Wave Climate
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Tedd, James; Kramer, Morten
This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.......This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter; Brorsen, Michael
Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....
Jiang, Z
2005-01-01
The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.
Ferrarese, Giorgio
2011-01-01
Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics
Computing nature turing centenary perspective
Giovagnoli, Raffaela
2013-01-01
This book is about nature considered as the totality of physical existence, the universe, and our present day attempts to understand it. If we see the universe as a network of networks of computational processes at many different levels of organization, what can we learn about physics, biology, cognition, social systems, and ecology expressed through interacting networks of elementary particles, atoms, molecules, cells, (and especially neurons when it comes to understanding of cognition and intelligence), organs, organisms and their ecologies? Regarding our computational models of natural phenomena Feynman famously wondered: “Why should it take an infinite amount of logic to figure out what one tiny piece of space/time is going to do?” Phenomena themselves occur so quickly and automatically in nature. Can we learn how to harness nature’s computational power as we harness its energy and materials? This volume includes a selection of contributions from the Symposium on Natural Computing/Unconventional Com...
Hierarchical patterning modes orchestrate hair follicle morphogenesis.
Glover, James D; Wells, Kirsty L; Matthäus, Franziska; Painter, Kevin J; Ho, William; Riddell, Jon; Johansson, Jeanette A; Ford, Matthew J; Jahoda, Colin A B; Klika, Vaclav; Mort, Richard L; Headon, Denis J
2017-07-01
Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction-diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction-diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern's condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) β signalling, which serves to drive chemotactic mesenchymal patterning when reaction-diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis.
Hierarchical patterning modes orchestrate hair follicle morphogenesis
Glover, James D.; Wells, Kirsty L.; Matthäus, Franziska; Painter, Kevin J.; Ho, William; Riddell, Jon; Johansson, Jeanette A.; Ford, Matthew J.; Jahoda, Colin A. B.; Klika, Vaclav; Mort, Richard L.
2017-01-01
Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction–diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction–diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern’s condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) β signalling, which serves to drive chemotactic mesenchymal patterning when reaction–diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis. PMID:28700594
Hierarchical patterning modes orchestrate hair follicle morphogenesis.
Directory of Open Access Journals (Sweden)
James D Glover
2017-07-01
Full Text Available Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction-diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction-diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF, wingless-related integration site (WNT, and bone morphogenetic protein (BMP signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern's condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF β signalling, which serves to drive chemotactic mesenchymal patterning when reaction-diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis.
Making Waves: Seismic Waves Activities and Demonstrations
Braile, S. J.; Braile, L. W.
2011-12-01
The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.
Cellular automaton modeling of biological pattern formation characterization, examples, and analysis
Deutsch, Andreas
2017-01-01
This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In ...
Introduction to vibrations and waves
Pain, H John
2015-01-01
Based on the successful multi-edition book "The Physics ofVibrations and Waves" by John Pain, the authors carry overthe simplicity and logic of the approach taken in the originalfirst edition with its focus on the patterns underlying andconnecting so many aspects of physical behavior, whilst bringingthe subject up-to-date so it is relevant to teaching in the21st century.The transmission of energy by wave propagation is a key conceptthat has applications in almost every branch of physics withtransmitting mediums essentially acting as a continuum of coupledoscillators. The characterization of t
Indian Academy of Sciences (India)
IAS Admin
are known as intermediate or transitional water waves and if the depth of the water column is less than 1/20 of wavelength, they are called shallow water waves. In the case of both these waves, the particle motion is elliptical. Particle motions are shown in Figure 1. The velocity of waves is generally referred to as wave.
Press, W. H.; Thorne, K. S.
1972-01-01
The significance of experimental evidence for gravitational waves is considered for astronomy. Properties, generation, and astrophysical sources of the waves are discussed. Gravitational wave receivers and antennas are described. A review of the Weber experiment is presented.
Self-Organized Stationary Patterns in Networks of Bistable Chemical Reactions.
Kouvaris, Nikos E; Sebek, Michael; Mikhailov, Alexander S; Kiss, István Z
2016-10-10
Experiments with networks of discrete reactive bistable electrochemical elements organized in regular and nonregular tree networks are presented to confirm an alternative to the Turing mechanism for the formation of self-organized stationary patterns. The results show that the pattern formation can be described by the identification of domains that can be activated individually or in combinations. The method also enabled the localization of chemical reactions to network substructures and the identification of critical sites whose activation results in complete activation of the system. Although the experiments were performed with a specific nickel electrodissolution system, they reproduced all the salient dynamic behavior of a general network model with a single nonlinearity parameter. Thus, the considered pattern-formation mechanism is very robust, and similar behavior can be expected in other natural or engineered networked systems that exhibit, at least locally, a treelike structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
National Research Council Canada - National Science Library
Pritchard, David
1999-01-01
Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...
Propagating waves in human motor cortex
Directory of Open Access Journals (Sweden)
Kazutaka eTakahashi
2011-04-01
Full Text Available Previous studies in non-human primates have shown that beta oscillations (15-30Hz of local field potentials (LFPs in the arm/hand areas of primary motor cortex (MI propagate as traveling waves across the cortex. These waves exhibited two stereotypical features across animals and tasks: 1 The waves propagated in two dominant modal directions roughly 180 degrees apart, and 2 their propagation speed ranged from 10 ~ 35 cm/s. It is, however, unknown if such cortical waves occur in the human motor cortex. This study shows that the two properties of propagating beta waves are present in MI of a tetraplegic human patient while he was instructed to perform an instruction delay center out task using a cursor controlled by the chin. Moreover, we show that beta waves are sustained and have similar properties whether the subject was engaged in the task or at rest. The directions of the successive sustained waves both in the human subject and a nonhuman primate (NHP subject tended to switch from one dominant mode to the other, and at least in the NHP subject the estimated distance travelled between successive waves traveling into and out of the central sulcus is consistent with the hypothesis of wave reflection between the border of motor and somatosensory cortices. Further, we show that the occurrence of the beta waves is not uniquely tied to periods of increased power in the beta frequency band. These results demonstrate that traveling beta waves in MI are a general phenomenon occurring in human as well as non-human primates. Consistent with the non-human primate data, the dominant directions of the beta LFP waves in human aligned to the proximal to distal gradient of joint representations in MI somatotopy. This consistent finding of wave propagation may imply the existence of a hardwired organization of motor cortex that mediates this spatio-temporal pattern.
Computation of nonlinear water waves with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2005-01-01
-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...
Surfing wave climate variability
Espejo, Antonio; Losada, Iñigo J.; Méndez, Fernando J.
2014-10-01
International surfing destinations are highly dependent on specific combinations of wind-wave formation, thermal conditions and local bathymetry. Surf quality depends on a vast number of geophysical variables, and analyses of surf quality require the consideration of the seasonal, interannual and long-term variability of surf conditions on a global scale. A multivariable standardized index based on expert judgment is proposed for this purpose. This index makes it possible to analyze surf conditions objectively over a global domain. A summary of global surf resources based on a new index integrating existing wave, wind, tides and sea surface temperature databases is presented. According to general atmospheric circulation and swell propagation patterns, results show that west-facing low to middle-latitude coasts are more suitable for surfing, especially those in the Southern Hemisphere. Month-to-month analysis reveals strong seasonal variations in the occurrence of surfable events, enhancing the frequency of such events in the North Atlantic and the North Pacific. Interannual variability was investigated by comparing occurrence values with global and regional modes of low-frequency climate variability such as El Niño and the North Atlantic Oscillation, revealing their strong influence at both the global and the regional scale. Results of the long-term trends demonstrate an increase in the probability of surfable events on west-facing coasts around the world in recent years. The resulting maps provide useful information for surfers, the surf tourism industry and surf-related coastal planners and stakeholders.
Carlos Humberto Galeano; Diego Alexander Garzón; Juan Miguel Mantilla
2010-01-01
El presente artículo estudia el efecto de la incorporación del término de transporte en las ecuaciones de reacción-difusión de dominio fijo, a través de campos de velocidad toroidal. Se estudia específicamente la formación de patrones de Turing en problemas de difusión-advección-reacción, considerando los modelos de cinética de reacción de Schnackenberg y de glucólisis. Se analizan tres casos, los cuales se solucionan numéricamente empleando elementos finitos. Se encuentra que, para los model...
International Nuclear Information System (INIS)
Yan Zhenya
2010-01-01
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black-Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.
Fuster, Andrea; Pabst, Cornelia
2016-11-01
In this work we present Finsler gravitational waves. These are a Finslerian version of the well-known p p -waves, generalizing the very special relativity line element. Our Finsler p p -waves are an exact solution of Finslerian Einstein's equations in vacuum and describe gravitational waves propagating in an anisotropic background.
Gerritsen, S.
2007-01-01
In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
Not all sea waves look alike in form. Scientists, in fact, classify all waves into definite groups, which can be simulated on a computer using specific models. Thus there are many types of wave forms on the sea surface like regular sinusoidal waves...
DEFF Research Database (Denmark)
Alikhani, Amir; Frigaard, Peter; Burcharth, Hans F.
1998-01-01
The data collected over the course of the experiment must be analysed and converted into a form suitable for its intended use. Type of analyses range from simple to sophisticated. Depending on the particular experiment and the needs of the researcher. In this study three main part of irregular wave...... data analyses are presented e.g. Time Domain (Statistical) Analyses, Frequency Domain (Spectral) Analyses and Wave Reflection Analyses. Random wave profile and definitions of representative waves, distributions of individual wave height and wave periods and spectra of sea waves are presented....
Transient Aspects of Wave Propagation Connected with Spatial Coherence
Directory of Open Access Journals (Sweden)
Ezzat G. Bakhoum
2013-01-01
Full Text Available This study presents transient aspects of light wave propagation connected with spatial coherence. It is shown that reflection and refraction phenomena involve spatial patterns which are created within a certain transient time interval. After this transient time interval, these patterns act like a memory, determining the wave vector for subsequent sets of reflected/refracted waves. The validity of this model is based on intuitive aspects regarding phase conservation of energy for waves reflected/refracted by multiple centers in a certain material medium.
Localized instability on the route to disorder in Faraday waves.
Shani, Itamar; Cohen, Gil; Fineberg, Jay
2010-05-07
We experimentally investigate how disorder comes about in parametrically excited waves on a fluid surface (Faraday waves). We find that the transition from an ordered pattern to disorder corresponding to "defect-mediated turbulence" is mediated by a spatially incoherent oscillatory phase. This phase consists of highly damped waves that propagate through the effectively elastic lattice defined by the pattern. They have a well-defined frequency, velocity, and transverse polarization. As these waves decay within a few lattice spaces, they are spatially and temporally uncorrelated at larger scales.
Energy Technology Data Exchange (ETDEWEB)
Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco
2018-01-02
A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.
The Prediction of Wave Competitions in Inhomogeneous Brusselator Systems
International Nuclear Information System (INIS)
Cui Xiao-Hua; Dong Yun-Xia; Huang Xiao-Qing; Li Ning
2015-01-01
The competition of waves has remained a hot topic in physics over the past few decades, especially the area of pattern control. Because of improved understanding of various dynamic behaviors, many practical applications have sprung up recently. The prediction of wave competitions is also very important and quite useful in these fields. This paper considers the behaviors of wave competitions in simple, inhomogeneous media which is modeled by Brusselator equations. We present a simple rule to judge the results of wave competitions utilizing the dispersion relation curves and the waves coming from different wave sources. Moreover, this rule can also be used to predict the results of wave propagation. It provides methods of obtaining the desired waves with given frequencies in inhomogeneous media. All our results are concluded and verified by computer simulations. (paper)
Hough transform search for continuous gravitational waves
International Nuclear Information System (INIS)
Krishnan, Badri; Papa, Maria Alessandra; Sintes, Alicia M.; Schutz, Bernard F.; Frasca, Sergio; Palomba, Cristiano
2004-01-01
This paper describes an incoherent method to search for continuous gravitational waves based on the Hough transform, a well-known technique used for detecting patterns in digital images. We apply the Hough transform to detect patterns in the time-frequency plane of the data produced by an earth-based gravitational wave detector. Two different flavors of searches will be considered, depending on the type of input to the Hough transform: either Fourier transforms of the detector data or the output of a coherent matched-filtering type search. We present the technical details for implementing the Hough transform algorithm for both kinds of searches, their statistical properties, and their sensitivities
Air pressure waves from Mount St. Helens eruptions
Reed, Jack W.
1987-10-01
Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.
Robust Wave Resource Estimation
DEFF Research Database (Denmark)
Lavelle, John; Kofoed, Jens Peter
2013-01-01
An assessment of the wave energy resource at the location of the Danish Wave Energy test Centre (DanWEC) is presented in this paper. The Wave Energy Converter (WEC) test centre is located at Hanstholm in the of North West Denmark. Information about the long term wave statistics of the resource...... is necessary for WEC developers, both to optimise the WEC for the site, and to estimate its average yearly power production using a power matrix. The wave height and wave period sea states parameters are commonly characterized with a bivariate histogram. This paper presents bivariate histograms and kernel....... An overview is given of the methods used to do this, and a method for identifying outliers of the wave elevation data, based on the joint distribution of wave elevations and accelerations, is presented. The limitations of using a JONSWAP spectrum to model the measured wave spectra as a function of Hm0 and T0...
Human gamma oscillations during slow wave sleep.
Directory of Open Access Journals (Sweden)
Mario Valderrama
Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.
Explaining polarization reversals in STEREO wave data
Breneman, A.; Cattell, C.; Wygant, J.; Kersten, K.; Wilson, L. B., III; Dai, L.; Colpitts, C.; Kellogg, P. J.; Goetz, K.; Paradise, A.
2012-04-01
Recently, Breneman et al. (2011) reported observations of large amplitude lightning and transmitter whistler mode waves from two STEREO passes through the inner radiation belt (L plane transverse to the magnetic field showed that the transmitter waves underwent periodic polarization reversals. Specifically, their polarization would cycle through a pattern of right-hand to linear to left-hand polarization at a rate of roughly 200 Hz. The lightning whistlers were observed to be left-hand polarized at frequencies greater than the lower hybrid frequency and less than the transmitter frequency (21.4 kHz) and right-hand polarized otherwise. Only right-hand polarized waves in the inner radiation belt should exist in the frequency range of the whistler mode and these reversals were not explained in the previous paper. We show, with a combination of observations and simulated wave superposition, that these polarization reversals are due to the beating of an incident electromagnetic whistler mode wave at 21.4 kHz and linearly polarized, symmetric lower hybrid sidebands Doppler-shifted from the incident wave by ±200 Hz. The existence of the lower hybrid waves is consistent with the parametric decay mechanism of Lee and Kuo (1984) whereby an incident whistler mode wave decays into symmetric, short wavelength lower hybrid waves and a purely growing (zero-frequency) mode. Like the lower hybrid waves, the purely growing mode is Doppler-shifted by ˜200 Hz as observed on STEREO. This decay mechanism in the upper ionosphere has been previously reported at equatorial latitudes and is thought to have a direct connection with explosive spread F enhancements. As such it may represent another dissipation mechanism of VLF wave energy in the ionosphere and may help to explain a deficit of observed lightning and transmitter energy in the inner radiation belts as reported by Starks et al. (2008).
Ghosh, Erina; Caruthers, Shelton D; Kovács, Sándor J
2014-08-01
The Doppler echocardiographic E-wave is generated when the left ventricle's suction pump attribute initiates transmitral flow. In some subjects E-waves are accompanied by L-waves, the occurrence of which has been correlated with diastolic dysfunction. The mechanisms for L-wave generation have not been fully elucidated. We propose that the recirculating diastolic intraventricular vortex ring generates L-waves and based on this mechanism, we predict the presence of L-waves in the right ventricle (RV). We imaged intraventricular flow using Doppler echocardiography and phase-contrast magnetic resonance imaging (PC-MRI) in 10 healthy volunteers. L-waves were recorded in all subjects, with highest velocities measured typically 2 cm below the annulus. Fifty-five percent of cardiac cycles (189 of 345) had L-waves. Color M-mode images eliminated mid-diastolic transmitral flow as the cause of the observed L-waves. Three-dimensional intraventricular flow patterns were imaged via PC-MRI and independently validated our hypothesis. Additionally as predicted, L-waves were observed in the RV, by both echocardiography and PC-MRI. The re-entry of the E-wave-generated vortex ring flow through a suitably located echo sample volume can be imaged as the L-wave. These waves are a general feature and a direct consequence of LV and RV diastolic fluid mechanics. Copyright © 2014 the American Physiological Society.
Reflectors to Focus Wave Energy
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
2005-01-01
Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...
Coronal Waves and Oscillations
Directory of Open Access Journals (Sweden)
Nakariakov Valery M.
2005-07-01
Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.
Electromagnetic ultrasonic guided waves
Huang, Songling; Li, Weibin; Wang, Qing
2016-01-01
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.
National Research Council Canada - National Science Library
Pritchard, David
2000-01-01
Long-term research objective: Matter wave interferometers, in which de Broglie waves are coherently split and then recombined to produce interference fringes, have opened exciting new possibilities for precision and fundamental...
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Laboratory
2015-12-14
The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.
Electromagnetic wave matching device
International Nuclear Information System (INIS)
Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.
1997-01-01
The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)
International Nuclear Information System (INIS)
Schmidt, G.
1975-01-01
A new definition of the sign of wave energy is given, which is valid where the old definition based on an expansion procedure breaks down. It is shown that a beam-plasma wave does not produce explosive instabilities
Wiley, Scott
2008-01-01
This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.
Nonlinear periodic space-charge waves in plasma
International Nuclear Information System (INIS)
Kovalev, V. A.
2009-01-01
A solution is obtained in the form of coupled nonlinear periodic space-charge waves propagating in a magnetoactive plasma. The wave spectrum in the vicinity of the critical point, where the number of harmonics increases substantially, is found to fall with harmonic number as ∝ s -1/3 . Periodic space-charge waves are invoked to explain the zebra pattern in the radio emission from solar flares.
Self-excited hydrothermal waves in evaporating sessile drops
Sefiane K.; Moffat J.R.; Matar O.K.; Craster R.V.
2008-01-01
Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC- 72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrotherma...
Jiang, Caigui
2015-10-27
We study the design and optimization of polyhedral patterns, which are patterns of planar polygonal faces on freeform surfaces. Working with polyhedral patterns is desirable in architectural geometry and industrial design. However, the classical tiling patterns on the plane must take on various shapes in order to faithfully and feasibly approximate curved surfaces. We define and analyze the deformations these tiles must undertake to account for curvature, and discover the symmetries that remain invariant under such deformations. We propose a novel method to regularize polyhedral patterns while maintaining these symmetries into a plethora of aesthetic and feasible patterns.
Morphodynamics of Disequilibrium Wave Ripples
Huppert, K. L.; Koss, A.; Perron, T.; Myrow, P. M.; Southard, J. B.; Wickert, A. D.
2011-12-01
Sand ripples, one of the most commonly observed patterns in sedimentary environments, record the complex interplay between fluid flow and sediment transport in aeolian and hydrodynamic systems. Because of a well-known relationship between the wavelength of orbital ripples and the amplitude of wave-generated oscillatory flow, wave ripple patterns preserved in sedimentary rock are important paleoenvironmental indicators used to infer ancient wave conditions. Many previous studies have focused on the development of equilibrium ripple fields, in which the ripples have adjusted to a steady-state wavelength under the imposed flow conditions. However, natural ripple fields are often in disequilibrium because ripples typically evolve over time scales of minutes to hours, and wave conditions rarely remain constant over longer intervals. A complete theory of wave ripple morphodynamics therefore requires an understanding of transient dynamics, but the mechanisms by which two-dimensional ripple fields adjust to changed flow conditions are poorly understood. We performed a series of experiments in a field-scale laboratory wave tank to study the disequilibrium dynamics of orbital ripples. In each experiment, we subjected a level sand bed with small perturbations to constant wave forcing to establish an initial ripple field, and then imposed an abrupt change in wave conditions that would produce a different final ripple wavelength. To control for the influence of boundary shear stress on ripple adjustment rates or mechanisms, the final wave conditions were the same in all experiments. A variety of ripple defects emerged in our experiments during both the formation of an initial ripple field and its adjustment to changed wave conditions, though defects were generally more abundant during the adjustment stage. Different types of defects accommodated lengthening and shortening of the ripple wavelength. When the amplitude of the oscillatory flow was lengthened, cup-like depressions
Mathur, Manikandan; Peacock, Thomas
2010-03-19
Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, which are prevalent throughout nature, has a direct mathematical analogy with the classical optical problem of a Fabry-Perot multiple-beam light interferometer. We rigorously establish this correspondence, and furthermore provide the first experimental demonstration of an internal wave interferometer, based on the theory of resonant transmission of internal waves.
International Nuclear Information System (INIS)
Lambert, A.J.D.
1979-01-01
A review of linear and weakly non-linear theory of electron waves, ion waves and electromagnetic waves in plasmas is presented. The author restricts the discussion to an infinitely extended, homogeneous and isotropic plasma, not affected by external fields and described by Vlasov's and Maxwell's equations. (Auth.)
Indian Academy of Sciences (India)
We present a broad overview of the emerging field of gravitational-wave astronomy. Although gravitational waves have not been directly de- tected yet, the worldwide scientific community is engaged in an exciting search for these elusive waves. Once detected, they will open up a new observational window to the Universe.
Fundamentals of wave phenomena
Hirose, Akira
2010-01-01
This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.
Directory of Open Access Journals (Sweden)
Andreas Spiegelberg
2016-12-01
With the still unmet need for a clinically acceptable method for acquiring intracranial compliance, and the revival of ICP waveform analysis, B-waves are moving back into the research focus. Herein we provide a concise review of the literature on B-waves, including a critical assessment of non-invasive methods for obtaining B-wave surrogates.
DEFF Research Database (Denmark)
Schultz, Ulrik Pagh; Lawall, Julia Laetitia; Consel, Charles
2000-01-01
of design patterns. In this paper, we analyze the specialization opportunities provided by specific uses of design patterns. Based on the analysis of each design pattern, we define the associated specialization pattern. These specialization opportunities can be declared using the specialization classes......Design patterns offer many advantages for software development, but can introduce inefficiency into the final program. Program specialization can eliminate such overheads, but is most effective when targeted by the user to specific bottlenecks. Consequently, we propose that these concepts...... are complementary. Program specialization can optimize programs written using design patterns, and design patterns provide information about the program structure that can guide specialization. Concretely, we propose specialization patterns, which describe how to apply program specialization to optimize uses...
DEFF Research Database (Denmark)
Schultz, Ulrik Pagh; Lawall, Julia Laetitia; Consel, Charles
2000-01-01
Design patterns offer many advantages for software development, but can introduce inefficiency into the final program. Program specialization can eliminate such overheads, but is most effective when targeted by the user to specific bottlenecks. Consequently, we propose that these concepts...... are complementary. Program specialization can optimize programs written using design patterns, and design patterns provide information about the program structure that can guide specialization. Concretely, we propose specialization patterns, which describe how to apply program specialization to optimize uses...... of design patterns. In this paper, we analyze the specialization opportunities provided by specific uses of design patterns. Based on the analysis of each design pattern, we define the associated specialization pattern. These specialization opportunities can be declared using the specialization classes...
Tutorial review of seismic surface waves' phenomenology
Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.
2018-03-01
In recent years, surface wave seismology has become one of the leading directions in seismological investigations of the Earth's structure and seismic sources. Various applications cover a wide spectrum of goals, dealing with differences in sources of seismic excitation, penetration depths, frequency ranges, and interpretation techniques. Observed seismic data demonstrates the great variability of phenomenology which can produce difficulties in interpretation for beginners. This tutorial review is based on the many years' experience of authors in processing and interpretation of seismic surface wave observations and the lectures of one of the authors (ALL) at Workshops on Seismic Wave Excitation, Propagation and Interpretation held at the Abdus Salam International Center for Theoretical Physics (Trieste, Italy) in 1990-2012. We present some typical examples of wave patterns which could be encountered in different applications and which can serve as a guide to analysis of observed seismograms.
Demultiplexing Surface Waves With Silicon Nanoantennas
DEFF Research Database (Denmark)
Sinev, I.; Bogdanov, A.; Komissarenko, F.
2017-01-01
We demonstrate directional launching of surface plasmon polaritons on thin gold film with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation within extremely narrow spectral hand (! 50 nm), which is driven...
Climate change impact on wave energy in the Persian Gulf
Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas
2015-06-01
Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.
Wave turbulence in annular wave tank
Onorato, Miguel; Stramignoni, Ettore
2014-05-01
We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.
DEFF Research Database (Denmark)
Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William
2006-01-01
The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power......'s first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...
Elmore, William C
1985-01-01
Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam
The Gravitational-Wave Physics
Cai, Rong-Gen; Cao, Zhoujian; Guo, Zong-Kuan; Wang, Shao-Jiang; Yang, Tao
2017-01-01
The direct detection of gravitational wave by Laser Interferometer Gravitational-Wave Observatory indicates the coming of the era of gravitational-wave astronomy and gravitational-wave cosmology. It is expected that more and more gravitational-wave events will be detected by currently existing and planned gravitational-wave detectors. The gravitational waves open a new window to explore the Universe and various mysteries will be disclosed through the gravitational-wave detection, combined wit...
Engelbrecht, Jüri
2015-01-01
This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.
antimicrobial susceptibility pattern of Salmonella species
African Journals Online (AJOL)
user
ABSTRACT. Treatment of enteric fever is increasingly becoming very challenging due to the increasing wave of antibiotic resistance. This study is a review of the contemporary antimicrobial susceptibility pattern of. Salmonella species. The antimicrobial susceptibility pattern of Salmonella species to a wide range of.
Cycloidal Wave Energy Converter
Energy Technology Data Exchange (ETDEWEB)
Stefan G. Siegel, Ph.D.
2012-11-30
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will
Twisted speckle entities inside wave-front reversal mirrors
International Nuclear Information System (INIS)
Okulov, A. Yu
2009-01-01
The previously unknown property of the optical speckle pattern reported. The interference of a speckle with the counterpropagating phase-conjugated (PC) speckle wave produces a randomly distributed ensemble of a twisted entities (ropes) surrounding optical vortex lines. These entities appear in a wide range of a randomly chosen speckle parameters inside the phase-conjugating mirrors regardless to an internal physical mechanism of the wave-front reversal. These numerically generated interference patterns are relevant to the Brillouin PC mirrors and to a four-wave mixing PC mirrors based upon laser trapped ultracold atomic cloud.
Spin wave vortex from the scattering on Bloch point solitons
Energy Technology Data Exchange (ETDEWEB)
Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elías, R.G., E-mail: gabriel.elias@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, A.S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)
2015-12-15
The interaction of a spin wave with a stationary Bloch point is studied. The topological non-trivial structure of the Bloch point manifests in the propagation of spin waves endowing them with a gauge potential that resembles the one associated with the interaction of a magnetic monopole and an electron. By pursuing this analogy, we are led to the conclusion that the scattering of spin waves and Bloch points is accompanied by the creation of a magnon vortex. Interference between such a vortex and a plane wave leads to dislocations in the interference pattern that can be measurable by means of magnon holography.
Blocking Radial Diffusion in a Double-Waved Hamiltonian Model
Energy Technology Data Exchange (ETDEWEB)
Martins, Caroline G L; De Carvalho, R Egydio [UNESP-Univ Estadual Paulista, Instituto de Geociencias e Ciencias Exatas, Departamento de Estatistica, Matematica Aplicada e Computacao, Av. 24A, 1515, 13506-900 Rio Claro, SP (Brazil); Marcus, F A [Universidade de Sao Paulo, Departamento de Engenharia Naval e Oceanica 05508-970 Sao Paulo, SP (Brazil); Caldas, I L, E-mail: carolinegameiro@gmail.com, E-mail: albertus@if.usp.br, E-mail: ibere@if.usp.br, E-mail: regydio@rc.unesp.br [Universidade de Sao Paulo, Instituto de Fisica 05315-970 Sao Paulo, SP (Brazil)
2011-03-01
A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.
Waves and fluid-solid interaction in stented blood vessels
Frecentese, S.; Argani, L. P.; Movchan, A. B.; Movchan, N. V.; Carta, G.; Wall, M. L.
2018-01-01
This paper focuses on the modelling of fluid-structure interaction and wave propagation problems in a stented artery. Reflection of waves in blood vessels is well documented in the literature, but it has always been linked to a strong variation in geometry, such as the branching of vessels. The aim of this work is to detect the possibility of wave reflection in a stented artery due to the repetitive pattern of the stents. The investigation of wave propagation and possible blockages under time-harmonic conditions is complemented with numerical simulations in the transient regime.
Fourier optics and time evolution of de Broglie wave packets
Dillon, G.
2012-06-01
It is shown that, under the conditions of validity of the Fresnel approximation, diffraction and interference for a monochromatic wave traveling in the z-direction may be described in terms of the spreading in time of the transverse ( x, y wave packet. The time required for the evolved wave packet to yield identical patterns as given by standard optics corresponds to the time for the quantum to cross the optical apparatus. This point of view may provide interesting cues in wave mechanics and quantum physics education.
The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia
Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha
2017-11-01
The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.
Wavenumber locking and pattern formation in spatially forced systems
International Nuclear Information System (INIS)
Manor, Rotem; Meron, Ehud; Hagberg, Aric
2009-01-01
We study wavenumber locking and pattern formation resulting from weak spatially periodic one-dimensional forcing of two-dimensional systems. We consider systems that produce stationary or traveling stripe patterns when unforced and apply forcing aligned with the stripes. Forcing at close to twice the pattern wavenumber selects, stabilizes, or creates resonant stripes locked at half the forcing wavenumber. If the mismatch between the forcing and pattern wavenumber is high we find that the pattern still locks but develops a wave vector component perpendicular to the forcing direction and forms rectangular and oblique patterns. When the unforced system supports traveling waves, resonant rectangular patterns remain stationary but oblique patterns travel in a direction orthogonal to the traveling waves.
Controls of multi-modal wave conditions in a complex coastal setting
Hegermiller, Christie; Rueda, Ana C.; Erikson, Li H.; Barnard, Patrick L.; Antolinez, J.A.A.; Mendez, Fernando J.
2017-01-01
Coastal hazards emerge from the combined effect of wave conditions and sea level anomalies associated with storms or low-frequency atmosphere-ocean oscillations. Rigorous characterization of wave climate is limited by the availability of spectral wave observations, the computational cost of dynamical simulations, and the ability to link wave-generating atmospheric patterns with coastal conditions. We present a hybrid statistical-dynamical approach to simulating nearshore wave climate in complex coastal settings, demonstrated in the Southern California Bight, where waves arriving from distant, disparate locations are refracted over complex bathymetry and shadowed by offshore islands. Contributions of wave families and large-scale atmospheric drivers to nearshore wave energy flux are analyzed. Results highlight the variability of influences controlling wave conditions along neighboring coastlines. The universal method demonstrated here can be applied to complex coastal settings worldwide, facilitating analysis of the effects of climate change on nearshore wave climate.
Excitation of Love waves in a thin film layer by a line source.
Tuan, H.-S.; Ponamgi, S. R.
1972-01-01
The excitation of a Love surface wave guided by a thin film layer deposited on a semiinfinite substrate is studied in this paper. Both the thin film and the substrate are considered to be elastically isotropic. Amplitudes of the surface wave in the thin film region and the substrate are found in terms of the strength of a line source vibrating in a direction transverse to the propagating wave. In addition to the surface wave, the bulk shear wave excited by the source is also studied. Analytical expressions for the bulk wave amplitude as a function of the direction of propagation, the acoustic powers transported by the surface and bulk waves, and the efficiency of surface wave excitation are obtained. A numerical example is given to show how the bulk wave radiation pattern depends upon the source frequency, the film thickness and other important parameters of the problem. The efficiency of surface wave excitation is also calculated for various parameter values.
Dynamic Skin Patterns in Cephalopods
Directory of Open Access Journals (Sweden)
Martin J. How
2017-06-01
Full Text Available Cephalopods are unrivaled in the natural world in their ability to alter their visual appearance. These mollusks have evolved a complex system of dermal units under neural, hormonal, and muscular control to produce an astonishing variety of body patterns. With parallels to the pixels on a television screen, cephalopod chromatophores can be coordinated to produce dramatic, dynamic, and rhythmic displays, defined collectively here as “dynamic patterns.” This study examines the nature, context, and potential functions of dynamic patterns across diverse cephalopod taxa. Examples are presented for 21 species, including 11 previously unreported in the scientific literature. These range from simple flashing or flickering patterns, to highly complex passing wave patterns involving multiple skin fields.
Dynamic Skin Patterns in Cephalopods
How, Martin J.; Norman, Mark D.; Finn, Julian; Chung, Wen-Sung; Marshall, N. Justin
2017-01-01
Cephalopods are unrivaled in the natural world in their ability to alter their visual appearance. These mollusks have evolved a complex system of dermal units under neural, hormonal, and muscular control to produce an astonishing variety of body patterns. With parallels to the pixels on a television screen, cephalopod chromatophores can be coordinated to produce dramatic, dynamic, and rhythmic displays, defined collectively here as “dynamic patterns.” This study examines the nature, context, and potential functions of dynamic patterns across diverse cephalopod taxa. Examples are presented for 21 species, including 11 previously unreported in the scientific literature. These range from simple flashing or flickering patterns, to highly complex passing wave patterns involving multiple skin fields. PMID:28674500
Theodoridis, Sergios
2003-01-01
Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to ""learn"" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10
Imaging fictive locomotor patterns in larval Drosophila
Bayley, Timothy G.; Taylor, Adam L.; Berni, Jimena; Bate, Michael; Hedwig, Berthold
2015-01-01
We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca2+ indicators. The Ca2+ signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca2+ signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca2+ signals were normally initiated did not eliminate production of Ca2+ waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques. PMID:26311188
CERN. Geneva
2016-01-01
In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.
Electromagnetic wave matching device
International Nuclear Information System (INIS)
Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.
1997-01-01
The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)
DEFF Research Database (Denmark)
Frigaard, Peter; Andersen, Thomas Lykke
The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...
Ockendon, Hilary
2016-01-01
Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications. New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises. Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science. Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...
CERN. Geneva
2006-01-01
Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.
2007-10-01
frequenciesfoeahpbeswllsa"gdnsmtrc fo eah/Rbe. /Qthe acuation are de fiamn aprltmethod raetheorta cmiurve fTtn,wihe ies whynee select ful cycle wisdoimporat tob...See Figure 22 for a comparison of measured waves, linear waves, and non- linear Stokes waves. Looking at the selected 16 runs from the trough-to-peak...Figure 23 for the benchmark data set, the relation of obtained frequency verses desired frequency is almost completely linear . The slight variation at
International Nuclear Information System (INIS)
Gregg, D.W.; Kidder, R.E.; Biehl, A.T.
1975-01-01
A method is described for generating a traveling wave laser pulse of almost unlimited energy content wherein a gain medium is pumped into a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)
CERN. Geneva HR-RFA
2006-01-01
We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort.
2015-10-30
Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface ( GUI ) data management tool developed for Corps coastal...generates tabular and graphical information for project planning and design documents. The WaveNet is a web-based GUI designed to provide users with a...data from different sources, and employs a combination of Fortran, Python and Matlab codes to process and analyze data for USACE applications
Hindcasting of storm waves using neural networks
Digital Repository Service at National Institute of Oceanography (India)
Rao, S.; Mandal, S.
Department NN neural network net i weighted sum of the inputs of neuron i o k network output at kth output node P total number of training pattern s i output of neuron i t k target output at kth output node 1. Introduction Severe storms occur in Bay of Bengal... useful in the planning and maintenance of marine activities. Wave hindcasting is a non-real time application of numerical wave models in the broad field of climatology. Just as weather conditions, w ij weight from neuron j to neuron i YM Young’s model h a...
Boucher , Jean-Philippe; Clanet , Christophe; Quéré , David; Chevy , Frédéric
2017-01-01
The cobra wave is a popular physical phenomenon arising from the explosion of a metastable grillage made of popsicle sticks. The sticks are expelled from the mesh by releasing the elastic energy stored during the weaving of the structure. Here we analyse both experimentally and theoretically the propagation of the wave-front depending on the properties of the sticks and the pattern of the mesh. We show that its velocity and its shape are directly related to the recoil imparted to the structur...
Hernandez-Figueroa, Hugo E; Recami, Erasmo
2013-01-01
This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy
David, P
2013-01-01
Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear
DEFF Research Database (Denmark)
Kofoed, Jens Peter
2017-01-01
This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...
DEFF Research Database (Denmark)
Burcharth, H. F.; Frigaard, Peter
1989-01-01
Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....
International Nuclear Information System (INIS)
Gregg, D.W.; Kidder, R.E.; Biehl, A.T.
1975-01-01
The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)
Pizzo, Nick
2017-11-01
A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.
Godin, Oleg A.
2015-04-01
Much like light and sound, acoustic-gravity waves in inhomogeneous atmosphere often have a caustic or caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Increase of the wave magnitude in the vicinity of a caustic makes such vicinities of primary interest in a number of problems, where a signal needs to be separated from a background noise. The value of wave focusing near caustics should be carefully quantified in order to evaluate possible nonlinearities promoted by the focusing. Physical understanding of the wave field in the vicinity of a caustic is also important for understanding of the wave reflection from and transmission (tunneling) through the caustic. To our knowledge, in contrast to caustics of acoustic, electromagnetic, and seismic waves as well as gravity waves in incompressible fluids, asymptotics of acoustic-gravity waves in the vicinity of a caustic have never been studied systematically. In this paper, we fill this gap. Atmospheric waves are considered as linear acoustic-gravity waves in a neutral, horizontally stratified, moving ideal gas of variable composition. Air temperature and wind velocity are assumed to be gradually varying functions of height, and slowness of these variations determines the large parameter of the problem. The scale height of the atmosphere can be large or small compared to the vertical wavelength. It is found that the uniform asymptotics of the wave field in the presence of a simple caustic can be expressed in terms of the Airy function and its derivative. As for the acoustic waves, the argument of the Airy function is expressed in terms of the eikonal calculated in the ray, or WKB, approximation. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In the uniform asymptotics, the terms with the Airy function and its derivative are weighted by cosine
Journal and Wave Bearing Impedance Calculation Software
Hanford, Amanda; Campbell, Robert
2012-01-01
The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.
Wave Dragon Wave Energy Converters Used as Coastal Protection
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter
2011-01-01
This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m mod...
Abnormal Waves Modelled as Second-order Conditional Waves
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2005-01-01
, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...
Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis
2013-11-26
A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.
Pottmann, Helmut
2010-07-26
Geodesic curves in surfaces are not only minimizers of distance, but they are also the curves of zero geodesic (sideways) curvature. It turns out that this property makes patterns of geodesics the basic geometric entity when dealing with the cladding of a freeform surface with wooden panels which do not bend sideways. Likewise a geodesic is the favored shape of timber support elements in freeform architecture, for reasons of manufacturing and statics. Both problem areas are fundamental in freeform architecture, but so far only experimental solutions have been available. This paper provides a systematic treatment and shows how to design geodesic patterns in different ways: The evolution of geodesic curves is good for local studies and simple patterns; the level set formulation can deal with the global layout of multiple patterns of geodesics; finally geodesic vector fields allow us to interactively model geodesic patterns and perform surface segmentation into panelizable parts. © 2010 ACM.
Scattering of sound waves by a compressible vortex
Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz
1991-01-01
Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.
Generation of intermittent gravitocapillary waves via parametric forcing
Castillo, Gustavo; Falcón, Claudio
2018-04-01
We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.
Coupling atmospheric and ocean wave models for storm simulation
DEFF Research Database (Denmark)
Du, Jianting
is found to have similar spatial patterns as the Advanced Synthetic Aperture Radar (ASAR) radar backscatter; both show features of the bathymetry. Analysis of the wind field from the non-coupled and WBLM coupled experiments show that the wind-wave coupling is important in strong wind conditions, varying......This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... areas, are challenging for the wind-wave coupling system because: in storm cases, the wave field is constantly modified by the fast varying wind field; in coastal zones, the wave field is strongly influenced by the bathymetry and currents. Both conditions have complex, unsteady sea state varying...
Unraveling Climatic Wind and Wave Trends in the Red Sea Using Wave Spectra Partitioning
Langodan, Sabique
2017-12-27
The wind and wave climatology of the Red Sea is derived from a validated 30-year high-resolution model simulation. After describing the relevant features of the basin, the main wind and wave systems are identified by using an innovative spectral partition technique to explain their genesis and characteristics. In the northern part of the sea, wind and waves of the same intensity are present throughout the year, while the central and southern zones are characterized by a marked seasonality. The partition technique allows the association of a general decrease in the energy of the different wave systems with a specific weather pattern. The most intense decrease is found in the northern storms, which are associated with meteorological pulses from the Mediterranean Sea.
Southern California coastal response to CMIP5 projected 21st century wave conditions
Hegermiller, C.; Erikson, L. H.; Barnard, P.; Adams, P. N.
2016-02-01
Recent projections of 21st century Eastern North Pacific deep-water wave conditions under climate change scenarios predict slightly decreased significant wave heights, increased peak wave periods, and more southerly wave directions offshore of Southern California relative to historical conditions. Combined dynamical and statistical efforts were employed to project wave climate-driven changes in local erosion and accretion patterns along the Southern California coast based on these deep-water wave projections. The numerical wave model SWAN was forced with USACE WIS hindcast bulk wave parameters and reanalysis near-surface winds to generate nearshore wave conditions at the 5 m contour from 1980-2010. A nontraditional lookup table was created to establish the functional relationship between deep-water wave conditions defined by the ERA-Interim wave reanalysis and nearshore wave conditions simulated with SWAN. Historical and future deep-water wave time series were translated to the nearshore via the lookup table. Refraction across the continental shelf reduces the difference between projected and historical nearshore wave angles. Never the less, changes in gradients in longshore transport, resulting from long-term changes in wave angle, create new hot spots for erosion and accretion. This work identifies potentially vulnerable areas on which to focus protection and mitigation efforts and provides an approach for assessing how the future evolution of the wave climate due to climate change may affect coastal processes and hazards.
Making waves: visualizing fluid flows
Zweers, Wout; Zwart, Valerie; Bokhove, Onno
2013-01-01
We explore the visualization of violent wave dynamics and erosion by waves and jets in laser-cut reliefs, laser engravings, and three-dimensional printing. For this purpose we built table-top experiments to cast breaking waves, and also explored the creation of extreme or rogue waves in larger wave
Gravitational waves from inflation
International Nuclear Information System (INIS)
Guzzetti, M.C.; Bartolo, N.; Liguori, M.; Matarrese, S.
2016-01-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index ηT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
DEFF Research Database (Denmark)
Østergaard, Claus Møller; Rosenstand, Claus Andreas Foss; Gertsen, Frank
2012-01-01
Building on previous well-argued work by Jon Sundbo (1995a), on how innovation has evolved in three phases or waves since 1880, this paper’s contribution is extending the historical line, by offering arguments and explanations for two additional waves of innovation that explain the most recent de...
International Nuclear Information System (INIS)
Shawhan, S.D.
1977-01-01
A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)
International Nuclear Information System (INIS)
Yan, Zhenya
2011-01-01
The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black–Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields. -- Highlights: ► We investigate the coupled nonlinear volatility and option pricing model. ► We analytically present vector financial rogue waves. ► The vector financial rogue waves may be used to describe the extreme events in financial markets. ► This results may excite the relative researches and potential applications of vector rogue waves.
DEFF Research Database (Denmark)
Burcharth, H. F.; Larsen, Brian Juul
The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...
Those Elusive Gravitational Waves
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Directory of Open Access Journals (Sweden)
Zheng-Johansson J. X.
2006-10-01
Full Text Available The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity v, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed c between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength Λd=vcΛ and phase velocity c2/v+v which resembles directly L. de Broglie’s hypothetic phase wave. This phase wave in terms of transmitting the particle mass at the speed v and angular frequency Ωd= 2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schrödinger equation of an identical system.
DEFF Research Database (Denmark)
Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter
2008-01-01
The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low h...
Parametric analysis of change in wave number of surface waves
Directory of Open Access Journals (Sweden)
Tadić Ljiljana
2015-01-01
Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.
Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA
Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.
2014-12-01
The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the
Morville, Peter
2010-01-01
What people are saying about Search Patterns "Search Patterns is a delight to read -- very thoughtful and thought provoking. It's the most comprehensive survey of designing effective search experiences I've seen." --Irene Au, Director of User Experience, Google "I love this book! Thanks to Peter and Jeffery, I now know that search (yes, boring old yucky who cares search) is one of the coolest ways around of looking at the world." --Dan Roam, author, The Back of the Napkin (Portfolio Hardcover) "Search Patterns is a playful guide to the practical concerns of search interface design. It cont
Parsimonious Surface Wave Interferometry
Li, Jing
2017-10-24
To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.
4-wave dynamics in kinetic wave turbulence
Chibbaro, Sergio; Dematteis, Giovanni; Rondoni, Lamberto
2018-01-01
A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an ;interaction representation; and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.
Ion Acoustic Waves in the Presence of Electron Plasma Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....
Energy Technology Data Exchange (ETDEWEB)
Schüler, D.; Alonso, S.; Bär, M. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Torcini, A. [CNR-Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi - Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy)
2014-12-15
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.
Directional spectrum of ocean waves
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A.; Gouveia, A.D.; Nagarajan, R.
This paper describes a methodology for obtaining the directional spectrum of ocean waves from time series measurement of wave elevation at several gauges arranged in linear or polygonal arrays. Results of simulated studies using sinusoidal wave...
Linking source region and ocean wave parameters with the observed primary microseismic noise
Juretzek, C.; Hadziioannou, C.
2017-12-01
In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.
Origin choice and petal loss in the flower garden of spiral wave tip trajectories.
Gray, Richard A; Wikswo, John P; Otani, Niels F
2009-09-01
Rotating spiral waves have been observed in numerous biological and physical systems. These spiral waves can be stationary, meander, or even degenerate into multiple unstable rotating waves. The spatiotemporal behavior of spiral waves has been extensively quantified by tracking spiral wave tip trajectories. However, the precise methodology of identifying the spiral wave tip and its influence on the specific patterns of behavior remains a largely unexplored topic of research. Here we use a two-state variable FitzHugh-Nagumo model to simulate stationary and meandering spiral waves and examine the spatiotemporal representation of the system's state variables in both the real (i.e., physical) and state spaces. We show that mapping between these two spaces provides a method to demarcate the spiral wave tip as the center of rotation of the solution to the underlying nonlinear partial differential equations. This approach leads to the simplest tip trajectories by eliminating portions resulting from the rotational component of the spiral wave.
Near-field tsunami edge waves and complex earthquake rupture
Geist, Eric L.
2013-01-01
The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.
Defect dynamics in wave ripples (Invited)
Perron, T.; Myrow, P.; Southard, J. B.; Huppert, K. L.; Szulczewski, M.
2010-12-01
Symmetric sand ripples generated by wave-driven oscillatory flow are common in modern sedimentary systems and in the rock record, yet the processes by which fields of wave ripples are established and respond to changes in wave conditions are unclear. Geometric defects in ripple crests are common, but it is unknown whether these defects are long-lived or transient features, and what role, if any, they play in accommodating changes in evolving ripple fields. To investigate these processes, we performed two sets of experiments in a laboratory wave tank. First, a bed initially covered with small perturbations was subjected to constant wave forcing until an equilibrium ripple field formed. Second, equilibrium ripple fields were subjected to sudden changes in wave conditions that would produce a different ripple wavelength. We observed several kinds of defects that facilitate both the establishment of an equilibrium ripple field and shifts from one equilibrium to another. Secondary crests that develop in troughs can grow to become main crests, and conversely, main crests can shrink until they disappear. Small, sharp-rimmed depressions emerge and propagate along or between ripple crests, accommodating discrete jumps in ripple position. Even without these small depressions, crests can propagate edge dislocations following the development of pronounced crest curvature. After creation or elimination of a few crests, gradual lateral crest migration creates uniform crest spacing. A poorly understood pattern involving bulging and necking of crests was also noted. Bulges are offset between adjacent ripple crests, and align in diagonal patterns. It has been suggested, based on recent experimental results, that established ripple fields are insensitive to small changes in wave conditions, only adjusting once conditions change by a sufficient amount. If this is true, the empirical relationship between wave conditions and ripple wavelength should display much more scatter than has
Borcherdt, R. D.
2007-12-01
General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.
Abnormal Waves Modelled as Second-order Conditional Waves
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2005-01-01
The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral density......, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...... quite well by the second order conditional wave including directional spreading and finite water depth the probability to encounter such a wave is still, however, extremely rare. The use of the second order conditional wave as initial condition to a fully non-linear three-dimensional analysis...
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Kaliski, S
2013-01-01
This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth
Mandal, Birendra Nath
2015-01-01
The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous
DEFF Research Database (Denmark)
Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær
2008-01-01
The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special...... conditions, have been analyzed in different geometries and settings. Nevertheless, they are still awaiting experimental demonstration. The most important advances in this topic are briefly discussed in this review, pointing out aspects that have not been clearly covered by the literature. Finally......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....
Extreme waves in New Zealand waters
Godoi, Victor A.; Bryan, Karin R.; Stephens, Scott A.; Gorman, Richard M.
2017-09-01
A detailed climatology of extreme wave events for New Zealand waters is presented, in addition to estimates of significant wave height (Hs) for up to a 100-year return period. Extreme events were explored using 44 years (1958-2001) of wave hindcast data. Comparisons to buoy data at three locations around New Zealand showed negative biases in the model, which nevertheless provided a suitable basis for trends, spatial distribution, and frequency analyses. Results indicate some similarities to patterns previously shown in the mean wave climate, with the largest waves found in southern New Zealand, and the smallest ones observed in areas sheltered from southwesterly swells. The number of extreme events varies substantially throughout the year, while the differences in intensity are more consistent. Events occur more/less frequently in winter/summer months. The greatest mean annual variability of extreme Hs is found on the north coasts of both the North and South Islands, where more locally-generated storms drive the extremes. The interannual variability is largest along the north coast of the country and on the east coast of the South Island, suggesting relationships with La Niña-like effects and the Southern Annular Mode, respectively, which past work showed to be important drivers in these regions. Moreover, the known trend for a more positive Southern Annular Mode may explain the increasing number of extreme events shown in our study.
Model for predicting mountain wave field uncertainties
Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal
2017-04-01
Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of
Lattice Waves, Spin Waves, and Neutron Scattering
Brockhouse, Bertram N.
1962-03-01
Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)
Electromechanical wave imaging for arrhythmias
Provost, Jean; Thanh-Hieu Nguyen, Vu; Legrand, Diégo; Okrasinski, Stan; Costet, Alexandre; Gambhir, Alok; Garan, Hasan; Konofagou, Elisa E.
2011-11-01
Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging modality for mapping of the electromechanical wave (EW), i.e. the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in prior studies. However, the methods used previously to map the EW required the reconstruction of images over multiple cardiac cycles, precluding the application of EWI for non-periodic arrhythmias such as fibrillation. In this study, new imaging sequences are developed and applied based on flash- and wide-beam emissions to image the entire heart at very high frame rates (2000 fps) during free breathing in a single heartbeat. The methods are first validated by imaging the heart of an open-chest canine while simultaneously mapping the electrical activation using a 64-electrode basket catheter. Feasibility is then assessed by imaging the atria and ventricles of closed-chest, conscious canines during sinus rhythm and during right-ventricular pacing following atrio-ventricular dissociation, i.e., during a non-periodic rhythm. The EW was validated against electrode measurements in the open-chest case, and followed the expected electrical propagation pattern in the closed-chest setting. These results indicate that EWI can be used for the characterization of non-periodic arrhythmias in conditions similar to the clinical setting, in a single heartbeat, and during free breathing.
Wave Height Distribution for Nonlinear Swell Waves in Deep an Depth Limited Wave Conditions
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Knudsen, Jannie Elkær
2017-01-01
This paper presents initial results from an on-going study on the influence from wave nonlinearity on the wave height distribution in deep- and depth-limited nonlinear wave conditions. A fully nonlinear VOF model, IH-2VOF, is applied to model the propagation of irregular waves on a sloping sea bed...... from deep to shallow water, including the effects of wave breaking. Different wave nonlinearities are evaluated in the model and the effects of the wave nonlinearity, described by the so-called Ursell-number, on the wave height distributions along the sloping sea bed are evaluated. The widely used...
Acoustics waves and oscillations
Sen, S.N.
2013-01-01
Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...
DEFF Research Database (Denmark)
Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.
2009-01-01
a better understanding of the processes involved. The wave's approach towards a structure is modelled with classical irrotational flow to obtain the different types of impact profiles that may or may not lead to air entrapment. The subsequent impact is modelled with a novel compressible-flow model...... local error. The high pressures measured during wave impacts on a breakwater are reproduced and it is shown that trapped air can be compressed to a pressure of several atmospheres. Pressure shock waves, reflected off nearby surfaces such as the seabed, can lead to pressures comparable with those...... for a homogeneous mixture of incompressible liquid and ideal gas. This enables a numerical description of both trapped air pockets and the propagation of pressure shock waves through the aerated water. An exact Riemann solver is developed to permit a finite-volume solution to the flow model with smallest possible...
Sound wave transmission (image)
When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...
Gravitational waves: Stellar palaeontology
Mandel, Ilya; Farmer, Alison
2017-07-01
A third gravitational-wave signal has been detected with confidence, produced again by the merger of two black holes. The combined data from these detections help to reveal the histories of the stars that left these black holes behind.
National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have waves data. Because of the nature of SOS requests, requests for data...
Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media
Energy Technology Data Exchange (ETDEWEB)
Kartashov, Yaroslav V [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain); Egorov, Alexey A [Physics Department, M V Lomonosov Moscow State University, 119899, Moscow (Russian Federation); Vysloukh, Victor A [Departamento de Fisica y Matematicas, Universidad de las Americas-Puebla, Santa Catarina Martir, 72820, Puebla, Cholula (Mexico); Torner, Lluis [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain)
2004-05-01
We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns.
Traveling Wave RF Systems for Helical Cooling Channels
Yonehara, K; Moretti, A; Popovic, M; Romanov, G; Neubauer, M; Johnson, R P; Thorndahl, L
2010-01-01
The great advantage of the helical ionization cooling channel (HCC) is its compact structure that enables the fast cooling of muon beam 6-dimensional phase space. This compact aspect requires a high average RF gradient, with few places that do not have cavities. Also, the muon beam is diffuse and requires an RF system with large transverse and longitudinal acceptance. A traveling wave system can address these requirements. First, the number of RF power coupling ports can be significantly reduced compared with our previous pillbox concept. Secondly, by adding a nose on the cell iris, the presence of thin metal foils traversed by the muons can possibly be avoided. We show simulations of the cooling performance of a traveling wave RF system in a HCC, including cavity geometries with inter-cell RF power couplers needed for power propagation.
International Nuclear Information System (INIS)
Benoit, M.; Marcos, F.; Teisson, Ch.
1999-01-01
Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)
DEFF Research Database (Denmark)
Kramer, Morten; Kristensen, Tom Sten
Design pile loads in this document are based on the Morison equation. In Chapter 3 and 4 the background for the design loads provided in Chapter 5 are given. In the remaining chapters from Chapter 6 and onward discussions and explanations of the results are given. A historical list of activities ...... to the present revision is given in Appendix A. Calculations of extreme events with wave slamming and plunging wave breaking is included in Appendix B and C....
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
Solitary wave collisions in the regularized long wave equation
Directory of Open Access Journals (Sweden)
Henrik Kalisch
2013-01-01
Full Text Available The regularized long-wave equation admits families of positive and negative solitary waves. Interactions of these waves are studied, and it is found that interactions of pairs of positive and pairs of negative solitary waves feature the same phase shift asymptotically as the wave velocities grow large as long as the same amplitude ratio is maintained. The collision of a positive with a negative wave leads to a host of phenomena, including resonance, annihilation and creation of secondary waves. A sharp criterion on the resonance for positive-negative interactions is found.
Grimshaw, RHJ
2007-01-01
After the initial observation by John Scott Russell of a solitary wave in a canal, his insightful laboratory experiments and the subsequent theoretical work of Boussinesq, Rayleigh and Korteweg and de Vries, interest in solitary waves in fluids lapsed until the mid 1960's with the seminal paper of Zabusky and Kruskal describing the discovery of the soliton. This was followed by the rapid development of the theory of solitons and integrable systems. At the same time came the realization that solitary waves occur naturally in many physical systems, and play a fundamental role in many circumstances. The aim of this text is to describe the role that soliton theory plays in fluids in several contexts. After an historical introduction, the book is divided five chapters covering the basic theory of the Korteweg-de Vries equation, and the subsequent application to free-surface solitary waves in water to internal solitary waves in the coastal ocean and the atmospheric boundary layer, solitary waves in rotating flows, ...
Chorus Wave Modulation of Langmuir Waves in the Radiation Belts
Li, Jinxing; Bortnik, Jacob; An, Xin; Li, Wen; Thorne, Richard M.; Zhou, Meng; Kurth, William S.; Hospodarsky, George B.; Funsten, Herbert O.; Spence, Harlan E.
2017-12-01
Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. This microscale interaction between chorus waves and high-frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.
Rational solitary wave and rogue wave solutions in coupled defocusing Hirota equation
Energy Technology Data Exchange (ETDEWEB)
Huang, Xin, E-mail: 14491558@qq.com
2016-06-03
Highlights: • The M/W shape rational solitary wave solutions and rogue wave solutions of coupled Hirota equations are given. • The baseband modulational stability theory is established in the defocusing coupled Hirota model. • The M/W shape rational solitary wave can be explained by the baseband modulational stability theory. - Abstract: We derive and study a general rational solution of a coupled defocusing Hirota equation which can be used to describe evolution of light in a two-mode fiber with defocusing Kerr effect and some certain high-order effects. We find some new excitation patterns in the model, such as M-shaped soliton, W-shaped soliton, anti-eye-shaped rogue wave and four-petaled flower rogue wave. The results are compared with the solutions obtained in other coupled systems like vector nonlinear Schrödinger equation, coupled focusing Hirota and Sasa–Satsuma equations. We explain the new characters by modulational instability properties. This further indicates that rational solution does not necessarily correspond to rogue wave excitation dynamics and the quantitative relation between nonlinear excitations and modulational instability should exist.
Wave energy fluxes and multi-decadal shoreline changes
DEFF Research Database (Denmark)
Kabuth, Alina Kristin; Kroon, Aart
2014-01-01
Spatial patterns of multidecadal shoreline changes in two microtidal, low-energetic embayments of southern Zealand, Denmark, were investigated by using the directional distribution of wave energy fluxes. The sites include a barrier island system attached to moraine bluffs, and a recurved spit...... variability of directional distributions of wave energy fluxes furthermore outlined potential sediment sources and sinks for the evolution of the barrier island system and for the evolution of the recurved spit....
Scheres, Ben; Laskowski, Marta
2016-01-01
The mechanisms that pattern lateral root primordial are essential for the elaboration of root system architecture, a trait of key importance for future crop breeding. But which are most important: periodic or local cues? In this issue of Journal of Experimental Botany (pages 1411-1420), Kircher
Mulvey, Bridget
2016-01-01
Students best learn science through a combination of science inquiry and language learning. This article presents a series of chemistry lessons on the naming of compounds. The weeklong unit focuses on patterns across compound names and chemical formulas and addresses several of the "Next Generation Science Standards" (NGSS Lead States…
Aranson, Igor S
2009-01-01
This title presents a review of experiments and novel theoretical concepts needed to understand the mechanisms of pattern formation in granular materials. An effort is made to connect concepts and ideas developed in granular physics with new emergent fields, especially in biology, such as cytoskeleton dynamics.
Wave Height Distribution for Nonlinear Swell Waves in Deep an Depth-Limited Wave Conditions
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Knudsen, Jannie Elkær
2017-01-01
This paper presents initial results from an on-going study on the influence from wave nonlinearity on the wave height distribution in deep- and depth-limited nonlinear wave conditions. A fully nonlinear VOF model, IH-2VOF, is applied to model the propagation of irregular waves on a sloping sea bed...... Battjes & Groenendijk (2000) shallow water wave height distribution is concluded in the present study to significantly underpredict the low-exceedance wave heights in case of very nonlinear waves. A modification of the Battjess & Groenendijk (2000) distribution is suggested in order to include the effects...... from deep to shallow water, including the effects of wave breaking. Different wave nonlinearities are evaluated in the model and the effects of the wave nonlinearity, described by the so-called Ursell-number, on the wave height distributions along the sloping sea bed are evaluated. The widely used...
Fast wave current drive above the slow wave density limit
International Nuclear Information System (INIS)
McWilliams, R.; Sheehan, D.P.; Wolf, N.S.; Edrich, D.
1989-01-01
Fast wave and slow wave current drive near the mean gyrofrequency were compared in the Irvine Torus using distinct phased array antennae of similar principal wavelengths, frequencies, and input powers. The slow wave current drive density limit was measured for 50ω ci ≤ω≤500ω ci and found to agree with trends in tokamaks. Fast wave current drive was observed at densities up to the operating limit of the torus, demonstrably above the slow wave density limit
The wave buoy analogy - estimating high-frequency wave excitations
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam
2008-01-01
The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... be estimated reasonably well, even considering high-frequency wave components of a wind sea wave spectrum....
Evans function computation for the stability of travelling waves
Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J.
2018-04-01
In recent years, the Evans function has become an important tool for the determination of stability of travelling waves. This function, a Wronskian of decaying solutions of the eigenvalue equation, is useful both analytically and computationally for the spectral analysis of the linearized operator about the wave. In particular, Evans-function computation allows one to locate any unstable eigenvalues of the linear operator (if they exist); this allows one to establish spectral stability of a given wave and identify bifurcation points (loss of stability) as model parameters vary. In this paper, we review computational aspects of the Evans function and apply it to multidimensional detonation waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.
Wind-wave modelling aspects within complicate topography
Directory of Open Access Journals (Sweden)
S. Christopoulos
Full Text Available Wave forecasting aspects for basins with complicate geomorphology, such as the Aegean Sea, are investigated through an intercomparison study. The efficiency of the available wind models (ECMWF, UKMO to reproduce wind patterns over special basins, as well as three wave models incorporating different physics and characteristics (WAM, AUT, WACCAS, are tested for selected storm cases representing the typical wind situations over the basin. From the wave results, discussed in terms of time-series and statistical parameters, the crucial role is pointed out of the wind resolution and the reliability of the different wave models to estimate the wave climate in such a basin. The necessary grid resolution is also tested, while for a specific test case (December 1991 ERS-1 satellite data are compared with those of the model.
High interobserver variability in the assessment of epsilon waves
DEFF Research Database (Denmark)
Platonov, Pyotr G; Calkins, Hugh; Hauer, Richard N
2016-01-01
BACKGROUND: Revision of the Task Force diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) has increased their sensitivity for the diagnosis of early and familial forms of the disease. The epsilon wave is a major diagnostic criterion in the context of ARVC....../D, which, however, remains not quantifiable and therefore may leave room for substantial subjective interpretation. OBJECTIVE: The purpose of this study was to assess interobserver agreement in epsilon wave definition and epsilon wave importance for ARVC/D diagnosis. METHODS: Electrocardiographic (ECG...... waves for ARVC/D diagnosis were assessed in a pooled data set of patients with definite ARVC/D from European and American registries (n = 815). RESULTS: The number of ECG patterns identified as epsilon waves varied from 5 to 18 per reviewer (median 13 per reviewer). A unanimous agreement was reached...
Partnership for Wave Power - Roadmaps
DEFF Research Database (Denmark)
Nielsen, Kim; Krogh, Jan; Brodersen, Hans Jørgen
This Wave Energy Technology Roadmap is developed by the Partnership for Wave Power including nine Danish wave energy developers. It builds on to the strategy [1] published by the Partnership in 2012, a document that describes the long term vision of the Danish Wave Energy sector: “By 2030...
Some considerations of wave propagation
Verdonk, P. L. F. M.
The meaning of group velocity and its relation to conserved quantities are demonstrated. The origin of wave dispersion in terms of nonlocal and relaxation phenomena are clarified. The character of a wave described by an equation with a general type of nonlinearity and general dispersion terms is explained. The steepening of a wave flank and the occurrence of stationary waves are discussed.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Impacts of ULF wave power on the Ionosphere
Yizengaw, E.; Doherty, P.; Zesta, E.; Moldwin, M.
2015-12-01
The impact of the ULF wave power, which is excited by long-lived high solar wind speed streams, in the magnetosphere has been well understood. For example, it has been reported that ULF pulsations may be the likely acceleration mechanism for generating storm-time MeV "killer" electrons in the magnetosphere. However, the impact of this energetic ULF wave power onto the ionosphere is not yet explored very well. In this paper we unequivocally demonstrated that during intense Pc5 ULF wave activity period, distinct pulsations with the same periodicity were found in the TEC data observed by GPS receivers located at different latitudes. The GPS-TEC has been used as a powerful tool to study the propagation pattern of transient ionospheric disturbances generated by seismic or internal gravity waves. Since then the small-scale variations (undulation) of GPS TEC has been associated with either gravity wave or TIDs. However, these small scale undulations of TECs turned out to be sensitive enough to the intense global ULF waves as well. The wavelet analysis of GPS TEC small scale undulations shows a peak value at the frequency of 2-10mHz which is a typical frequency range of Pc5 ULF wave. The typical internal gravity wave frequency is less than 1.6 or 2 mHz, therefore the TEC waves are likely due to ULF waves. At the same time, we detect the ULF activity on the ground using a chain of ground-based magnetometer data, depicting the ULF wave penetration from high latitude to low latitude region. All these observations demonstrate that Pc5 waves with a likely driver in the solar wind can penetrate to the ionosphere and cause small scale undulation on the ionospheric density structures.
Near Shore Wave Modeling and applications to wave energy estimation
Zodiatis, G.; Galanis, G.; Hayes, D.; Nikolaidis, A.; Kalogeri, C.; Adam, A.; Kallos, G.; Georgiou, G.
2012-04-01
The estimation of the wave energy potential at the European coastline is receiving increased attention the last years as a result of the adaptation of novel policies in the energy market, the concernsfor global warming and the nuclear energy security problems. Within this framework, numerical wave modeling systems keep a primary role in the accurate description of wave climate and microclimate that is a prerequisite for any wave energy assessment study. In the present work two of the most popular wave models are used for the estimation of the wave parameters at the coastline of Cyprus: The latest parallel version of the wave model WAM (ECMWF version), which employs new parameterization of shallow water effects, and the SWAN model, classically used for near shore wave simulations. The results obtained from the wave models near shores are studied by an energy estimation point of view: The wave parameters that mainly affect the energy temporal and spatial distribution, that is the significant wave height and the mean wave period, are statistically analyzed,focusing onpossible different aspects captured by the two models. Moreover, the wave spectrum distribution prevailing in different areas are discussed contributing, in this way, to the wave energy assessmentin the area. This work is a part of two European projects focusing on the estimation of the wave energy distribution around Europe: The MARINA platform (http://www.marina-platform.info/ index.aspx) and the Ewave (http://www.oceanography.ucy.ac.cy/ewave/) projects.
Relationship between ultrasonic Rayleigh waves and surface residual stress
International Nuclear Information System (INIS)
Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.
1977-01-01
Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments
Experiments on nonlinear cross waves
Lichter, S.; Shemer, L.
1986-12-01
Surface water waves are generated by a paddle-type wavemaker operating at one end of a long tank. In addition to a progressing wave field at the forcing frequency, a subharmonic cross wave is generated in the neighborhood of the wavemaker. At lower forcing amplitudes there is a Benjamin-Feir instability of the progressing wave. At large forcing amplitudes, the fundamental decays rapidly along the channel. The cross wave dominates the near field and is strongly modulated on a slow time scale. During each modulation period a soliton propagates away from the wavemaker. The near-field standing cross wave undergoes a transformation into a progressing wave in the far field.
Periodic waves in nonlinear metamaterials
International Nuclear Information System (INIS)
Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo
2012-01-01
Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.
On the Shape of the Crest of Short Wavelength Water Waves at Incipient Breaking
Diorio, J. D.; Liu, X.; Duncan, J. H.
2007-11-01
Breaking waves with wavelengths ranging from about 0.1 to 1.2 m are studied experimentally in a wind wave tank that is 11.8 m long, 1.15 m wide and 1.8 m high (1.0 m of water). The tank includes a wind tunnel with speeds up to 10 m/s and a programmable wave maker that resides at the upwind end of the tank. The shortest waves are generated by wind with speeds ranging from about 4 to 7 m/s. The longest waves are generated mechanically from focused wave packets with average frequencies ranging from 1.15 to 1.42 Hz. Waves with intermediate lengths are formed either by wind or by a nonlinear wave train with unstable sidebands generated by the wave maker. At incipient breaking, all the waves have a capillary-ripple pattern at the crest rather than a plunging jet. It is found that in spite of the wide range of wavelengths and major differences in the generation methods, the shapes of the capillary-ripple pattern are remarkably similar. Various geometrical parameters including the length of the first capillary wave and the length and thickness of the bulge that forms at the crest are extracted from the data. The variation of these parameters with gravity wavelength and slope of the front face of the wave is examined.
Hoeke, R.; Storlazzi, C.; Ridd, P.
2011-01-01
This paper examines the relationship between offshore wave climate and nearshore waves and currents at Hanalei Bay, Hawaii, an exposed bay fringed with coral reefs. Analysis of both offshore in situ data and numerical hindcasts identify the predominance of two wave conditions: a mode associated with local trade winds and an episodic pattern associated with distant source long-period swells. Analysis of 10 months of in situ data within the bay show that current velocities are up to an order of magnitude greater during long-period swell episodes than during trade wind conditions; overall circulation patterns are also fundamentally different. The current velocities are highly correlated with incident wave heights during the swell episodes, while they are not during the modal trade wind conditions. A phase-averaged wave model was implemented with the dual purpose of evaluating application to bathymetrically complex fringing reefs and to examine the propagation of waves into the nearshore in an effort to better explain the large difference in observed circulation during the two offshore wave conditions. The prediction quality of this model was poorer for the episodic condition than for the lower-energy mode, however, it illustrated how longer-period swells are preferentially refracted into the bay and make available far more nearshore wave energy to drive currents compared to waves during modal conditions. The highly episodic circulation, the nature of which is dependent on complex refraction patterns of episodic, long-period swell has implications for flushing and sediment dynamics for incised fringing reef-lined bays that characterize many high islands at low latitudes around the world.
The origin of traveling waves in an emperor penguin huddle
Gerum, R. C.; Fabry, B.; Metzner, C.; Beaulieu, M.; Ancel, A.; Zitterbart, D. P.
2013-12-01
Emperor penguins breed during the Antarctic winter and have to endure temperatures as low as -50 °C and wind speeds of up to 200 km h-1. To conserve energy, they form densely packed huddles with a triangular lattice structure. Video recordings from previous studies revealed coordinated movements in regular wave-like patterns within these huddles. It is thought that these waves are triggered by individual penguins that locally disturb the huddle structure, and that the traveling wave serves to remove the lattice defects and restore order. The mechanisms that govern wave propagation are currently unknown, however. Moreover, it is unknown if the waves are always triggered by the same penguin in a huddle. Here, we present a model in which the observed wave patterns emerge from simple rules involving only the interactions between directly neighboring individuals, similar to the interaction rules found in other jammed systems, e.g. between cars in a traffic jam. Our model predicts that a traveling wave can be triggered by a forward step of any individual penguin located within a densely packed huddle. This prediction is confirmed by optical flow velocimetry of the video recordings of emperor penguins in their natural habitat.
The origin of traveling waves in an emperor penguin huddle
International Nuclear Information System (INIS)
Gerum, R C; Fabry, B; Metzner, C; Zitterbart, D P; Beaulieu, M; Ancel, A
2013-01-01
Emperor penguins breed during the Antarctic winter and have to endure temperatures as low as −50 °C and wind speeds of up to 200 km h −1 . To conserve energy, they form densely packed huddles with a triangular lattice structure. Video recordings from previous studies revealed coordinated movements in regular wave-like patterns within these huddles. It is thought that these waves are triggered by individual penguins that locally disturb the huddle structure, and that the traveling wave serves to remove the lattice defects and restore order. The mechanisms that govern wave propagation are currently unknown, however. Moreover, it is unknown if the waves are always triggered by the same penguin in a huddle. Here, we present a model in which the observed wave patterns emerge from simple rules involving only the interactions between directly neighboring individuals, similar to the interaction rules found in other jammed systems, e.g. between cars in a traffic jam. Our model predicts that a traveling wave can be triggered by a forward step of any individual penguin located within a densely packed huddle. This prediction is confirmed by optical flow velocimetry of the video recordings of emperor penguins in their natural habitat. (paper)
Wave-energy distribution and hurricane effects on Margarita Reef, southwestern Puerto Rico
Lugo-Fernández, A.; Hernández-Ávila, M. L.; Roberts, H. H.
1994-01-01
Wave measurements at Margarita Reef in southwestern Puerto Rico show that wave height decreases as waves travel across the forereef and into the backreef. Wave spectra reveal the presence of two wave trains impinging on the reef during the study: trade-wind waves and locally generated seas. Significant wave height calculated from the spectra show an average reduction of 19.5% from 20- to 10-m isobaths and 26% from 20- to 5-m isobaths. The significant wave height decreases an average of 82% for waves traveling across the reef crest and into the backreef. Wave-energy reduction is 35% from 20- to 10-m isobaths and 45% from 20- to 5-m isobaths. Energy loss across the reef crest is 97% which translates into the formation of strong across-the-reef currents capable of moving coarse sediment. Refraction diagrams of waves impinging on the reef from the SE provide a display of wave energy distribution around the reef. The transmission coefficients calculated for trade-wind waves and locally generated seas have means of 18% and 39%, respectively. A wave height model with negligible energy dissipation, produces wave height estimates that are, in general, within the ±15% error bands. Results of wave-energy changes from this study were applied to waves representative of hurricane conditions at the reef. Aerial photographs of the reef before and after the passage of hurricanes were compared to assess the reef changes. Changes observed in the photographs are interpreted as products of sediment transport by hurricane-generated waves. The patterns of change agree with the refraction diagrams suggesting that waves were the main agents of change at margarita Reef during severe storms.
Nonlinear wave interactions of kinetic sound waves
Directory of Open Access Journals (Sweden)
G. Brodin
2015-08-01
Full Text Available We reconsider the nonlinear resonant interaction between three electrostatic waves in a magnetized plasma. The general coupling coefficients derived from kinetic theory are reduced here to the low-frequency limit. The main contribution to the coupling coefficient we find in this way agrees with the coefficient recently presented in Annales Geophysicae. But we also deduce another contribution which sometimes can be important, and which qualitatively agrees with that of an even more recent paper. We have thus demonstrated how results derived from fluid theory can be improved and generalized by means of kinetic theory. Possible extensions of our results are outlined.
Wave calculus based upon wave logic
International Nuclear Information System (INIS)
Orlov, Y.F.
1978-01-01
A number operator has been introduced based upon the binary (p-nary) presentation of numbers. This operator acts upon a numerical state vector. Generally the numerical state vector describes numbers that are not precise but smeared in a quantum sense. These states are interrupted in wave logic terms, according to which concepts may exist within the inner language of a phenomenon that in principle cannot be translated into the language of the investigator. In particular, states may exist where mean values of a quantity, continuous in classical limits, take only discrete values. Operators for differentiation and integration of operator functions are defined, which take the usual form in the classical limit. (author)
Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays
Energy Technology Data Exchange (ETDEWEB)
Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba
2013-01-26
This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
Joshi, Mark
2015-01-01
This innovative textbook introduces a new pattern-based approach to learning proof methods in the mathematical sciences. Readers will discover techniques that will enable them to learn new proofs across different areas of pure mathematics with ease. The patterns in proofs from diverse fields such as algebra, analysis, topology and number theory are explored. Specific topics examined include game theory, combinatorics, and Euclidean geometry, enabling a broad familiarity. The author, an experienced lecturer and researcher renowned for his innovative view and intuitive style, illuminates a wide range of techniques and examples from duplicating the cube to triangulating polygons to the infinitude of primes to the fundamental theorem of algebra. Intended as a companion for undergraduate students, this text is an essential addition to every aspiring mathematician’s toolkit.
Directory of Open Access Journals (Sweden)
Patrícia S. M. Bernardi
2004-12-01
preventing the release of thromboxane A2, a potent activator of platelet aggregation. This drug has been evaluated for more than thirty years as a potent antithrombotic drug in patients with cardiovascular diseases. Our objective was to obtain wave traces corresponding to platelet aggregation phases for standardization purposes using blood donors as a control group and comparing the results with a study group using different agonistic agents at different concentrations: ADP 1 µM and 3 µM; AA 0.5 mM and ADR at 0.05 mg/mL, 0.025 mg/mL and 0.010 mg/mL. The analyzed groups were composed of 41 cardiac patients and 40 blood donors. Among the cardiac patients, 33 regularly used 200 mg of ASA per day and 8 patients normally used 100 mg of ASA per day, all of whom were considered hypertensive. The pattern of aggregation was dependent on conjunction traces corresponding to aggregation waves. A percentage at 5 minutes was obtained with these traces established by the equipment used. In our work, comparing the results among analysed patients and the control group, it was possible to observe that in the presence of the aggregating agents ADP 1µM and ADP 3µM; ADR 0.05 mg/mL, 0.025 mg/mL and 0.010 mg/mL the patients showed the first wave but no second wave aggregation. However, in respect to AA 0.5 mM the conjunction of the trace waves was not seen.
Duda, Richard O; Stork, David G
2001-01-01
The first edition, published in 1973, has become a classic reference in the field. Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Rupture, waves and earthquakes.
Uenishi, Koji
2017-01-01
Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.
Simões-Moreira, José R.
Evaporation waves are processes that may occur under certain conditions in which a metastable or superheated liquid undergoes a sudden phase transition in a narrow and observable region, which resembles a shock wave. It is inferred from photographic documentation that in certain liquid jet flashing regimes the phenomenon is present. The evaporation wave discontinuity has been successfully modeled in a similar way as a deflagration wave in a combusting gas. One-dimensional laboratory experiments have demonstrated the existence of the (lower) Chapman-Jouguet solution for the cases where the liquid were at a high degree of metastability. Subsonic solutions were also observed for less pronounced degree of metastability (Hill 1991, Sim oes-Moreira 1994). In this paper, the fundamental theory is briefly revised and compared with some of the experimental results obtained for the cases operating at the C-J condition. Next, the paper presents the extension of the one-dimensional theory to include the oblique evaporation wave geometry. Relationships between upstream and downstream flow properties are discussed ant further consequences of these relationships are analyzed.
Magnetostatic wave tunable resonators
Castera, J.-P.; Hartemann, P.
1983-06-01
Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.
Periodicity effects of axial waves in elastic compound rods
DEFF Research Database (Denmark)
Nielsen, R. B.; Sorokin, S. V.
2015-01-01
Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase-closure Prin......Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase...
Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.
Energy Technology Data Exchange (ETDEWEB)
Roberts, Jesse D.; Jones, Craig; Magalen, Jason
2014-09-01
The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.
Conversion from surface wave to surface wave on reflection
DEFF Research Database (Denmark)
Novitsky, Andrey
2010-01-01
can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves.......We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...
Experimental Study on the WavePiston Wave Energy Converter
DEFF Research Database (Denmark)
Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.
This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
Energy Technology Data Exchange (ETDEWEB)
Graham, T. B.
2010-04-01
The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
DEFF Research Database (Denmark)
Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans
1975-01-01
with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin......The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...
Kelvin wake pattern and wave resistance at large Froude numbers
Benzaquen, Michael; Darmon, Alexandre; Raphaël, Elie
2015-03-01
The modification of surfaces by coating with polymer brushes has attracted much interest in the past few years due to numerous potential applications in material and life science for the development of smart surfaces. They can be used as 3D matrices for the immobilization of nanoparticles, resulting in nanocomposite materials with interesting mechanical, optical, or catalytic properties with tailored functions. Studying the mutual influence of the brush matrix and the attached AuNPs on the structure of the resulting brush/AuNP hybrid will allow fine-tuning of the particle loading and distribution . this study, responsive poly-(N,N-dimethylamino)ethyl methacrylate (PDMAEMA) and poly-(N-isopropylacrylamide) (PNIPAM) brushes are used as a matrix for the attachment of spherical gold nanoparticles (AuNPs). We find that the uptake and distribution of nanoparticles in polymer brush matrices depends greatly on the brush thickness, brush grafting density, polymer chemistry, particle surface functionalization and particle size.
Propagating Waves and Target Patterns in Chemical Systems.
1980-05-01
medium. Biofizika 20, 489-493. 5. R. Casten, H. Cohen, and P. Lagerstrom 1975, Perturbation analysis of an approximation to Hodgkin - Huxley theory... y ’ a c ros I-qthe , .r ir ijn monr hp w^ r +a -’ -hen ;itlin thL-s n1arrow zone, , -av" he, troated as r-onst int Tr thiq a. it is rpasoa ,Ip to -ir...the order Vrxk , and tle width of the% front is 0.’ the, or-mr v’ L < 1. Now let x = y (t) denote the position of one tsucb front. Ynow-ino il-s
Quasilinear ridge structures in water surface waves
Blümel, R.; Davidson, I. H.; Reinhardt, W. P.; Lin, H.; Sharnoff, M.
1992-02-01
Nodal patterns of stationary capillary waves formed on the surface of water enclosed in an agitated ripple tank with circular and stadium-shaped cylindrical walls are examined in the low-frequency (ν700 Hz) regimes. In the low-frequency regime, in agreement with predictions of quantum-chaos theory, the shape of the tank's boundaries (integrable or nonintegrable) dictates the type of nodal patterns obtained. In the high-frequency regime we obtain nodal patterns characterized by short-range order (called ``scarlets'' because they are believed to be the precursors of quantum scars), as recently predicted in the quantum-chaos context by P. O'Connor, J. Gehlen, and E. J. Heller [Phys. Rev. Lett. 58, 1296 (1987)].
Energy Technology Data Exchange (ETDEWEB)
Mansard, E.; Sand, S.E.; Klinting, P.
1989-02-01
There are recent indications that distinct wave groupings can be found even in deep water. The main objective has been to give a statistical description suitable for the design of coastal and offshore structures and it is undertaken to make further investigations in this field by analyzing some prototype records using the concepts of run length of high waves and spectrum of squared elevation, the limitations and performances of which in nonlinear waves will be highlighted in this study. An attempt has been made to relate this wave grouping to the surge motion of a floating structure with a simple mooring arrangement and thereby to propose a motion-based grouping measure. It appears that the observed run length statistics can be suitably described by Kimura's predictions if the records are sufficiently long. Records whose duration are equal to, or less than, 0.6 h reflect a large statistical variability in the various wave grouping measures. The filter cut-off proposed in the concept of SIWEH for the estimation of Groupiness Factor appears to be too high to give meaningful contrasts with respect to prototype values of the peakedness factors. It is therefore proposed to use the Hilbert Transform of the time series and a cut-off which is relevant to the natural period of the test structure. In the absence of information about this natural period a cut-off fc less than or equal to f/sub p//15 may work better. The motion equivalent groupiness factor concept could be used effectively to determine the critical sea state conditions to be used for testing of floating structures. The directional resolution of the sea state and theoretical formulations defining statistical variabilities caused by finite record lengths could be useful in evaluating whether the wave grouping is a linear process. (AB) 49 refs.
Shaarawi, Amr Mohamed
In this work, nondispersive wavepacket solutions to linear partial differential equations are investigated. These solutions are characterized by infinite energy content; otherwise they are continuous, nonsingular and propagate in free space without spreading out. Examples of such solutions are Berry and Balazs' Airy packet, MacKinnon's wave packet and Brittingham's Focus Wave Mode (FWM). It is demonstrated in this thesis that the infinite energy content is not a basic problem per se and that it can be dealt with in two distinct ways. First these wave packets can be used as bases to construct highly localized, slowly decaying, time-limited pulsed solutions. In the case of the FWMs, this path leads to the formulation of the bidirectional representation, a technique that provides the most natural basis for synthesizing Brittingham-like solutions. This representation is used to derive new exact solutions to the 3-D scalar wave equation. It is also applied to problems involving boundaries, in particular to the propagation of a localized pulse in a infinite acoustic waveguide and to the launchability of such a pulse from the opening of a semi-infinite waveguide. The second approach in dealing with the infinite energy content utilizes the bump-like structure of nondispersive solutions. With an appropriate choice of parameters, these bump fields have very large amplitudes around the centers, in comparison to their tails. In particular, the FWM solutions are used to model massless particles and are capable of providing an interesting interpretation to the results of Young's two slit experiment and to the wave-particle duality of light. The bidirectional representation provides, also, a systematic way of deriving packet solutions to the Klein-Gordon, the Schrodinger and the Dirac equations. Nondispersive solutions of the former two equations are compared to previously derived ones, e.g., the Airy packet and MacKinnon's wave packet.
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2014-01-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Scalar modified Bessel-Gauss beams and waves.
Seshadri, S R
2007-09-01
For modified Bessel-Gauss beams, the modulating function for the Gaussian, instead of a Bessel function of real argument, is a Bessel function of imaginary argument. The modified Bessel-Gauss beams and their full wave generalizations are treated with particular attention to the spreading properties on propagation for the azimuthal mode numbers m=0 and m=1. The spreading on propagation of the peak and the null in the radiation pattern obtained in the propagation direction for m=0 and m=1, respectively, is substantially less for the modified Bessel-Gauss waves than that for the corresponding Bessel-Gauss waves. The total power transported by the waves is determined and compared with that of the corresponding paraxial beam to assess the quality of the paraxial beam approximation for the wave. The powers in the Bessel-Gauss wave and the modified Bessel-Gauss wave are finite in contrast to that in the Bessel wave. With respect to both the spreading properties and the quality of the paraxial beam approximation, the modified Bessel-Gauss beam is an improvement over the Bessel-Gauss beam.
Design of pattern-placed Revetments
Peters, D.J.
2017-01-01
Revetment systems prevent erosion of dikes. The systems need to be stable under wave attack. The size and the weight of revetment elements is the main contribution to their stability. Pattern-placed revetments consist of relatively small blocks or column-shaped natural stones or concrete elements,
Antenna Pattern Impact on MIMO OTA Testing
DEFF Research Database (Denmark)
Fan, Wei; Nielsen, Jesper Ødum; Franek, Ondrej
2013-01-01
This paper investigates the impact of the DUT antenna pattern on the test area performance for multi-probe based MIMO OTA setup in terms of received voltage and spatial correlation. The plane wave synthesis (PWS) technique has been proposed for vertical polarization in the literature, where...
DEFF Research Database (Denmark)
Dühring, Maria Bayard
application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model......The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...
Berg, Robert F.
1996-01-01
Near the liquid-vapor critical point, density stratification supports internal gravity waves which affect 1-g viscosity measurements in the CVX (Critical Viscosity of Xenon) experiment. Two internal-wave modes were seen in the horizontal viscometer. The frequencies of the two modes had different temperature dependences: with decreasing temperature, the higher frequency increased monotonically from 0.7 to 2.8 Hz, but the lower frequency varied non-monotonically, with a maximum of 1.0 Hz at 20 mK above the critical temperature. The measured frequencies agree with independently calculated frequencies to within 15%.
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Mechanics, Waves and Thermodynamics
Ranjan Jain, Sudhir
2016-05-01
Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.
International Nuclear Information System (INIS)
Stix, H.
1981-01-01
The physics of Alfven-wave heating is particularly sensitive to the character of the linear mode conversion which occurs at the Alfven resonance layer. Parameter changes can profoundly affect both the location within the plasma and the mechanism for the power absorption. Under optimal conditions the heating power may be absorbed by electron Landau damping and by electron transit-time magnetic pumping in the plasma interior, or by the same processes acting near the resonance layer on the mode-converted kinetic Alfven wave. The method is outlined for computing the coefficients for reflection, transmission and absorption at the resonance layer and some representative results are offered
Piecewise flat gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Van de Meent, Maarten, E-mail: M.vandeMeent@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, PO Box 80.195, 3508 TD Utrecht (Netherlands)
2011-04-07
We examine the continuum limit of the piecewise flat locally finite gravity model introduced by 't Hooft. In the linear weak field limit, we find the energy-momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy-momentum turns out to be restricted to satisfy certain conditions. The metric perturbation is mostly fixed by the energy-momentum except for its lightlike modes which reproduce linear gravitational waves, despite no such waves being present at the microscopic level.
Quantum positron acoustic waves
Energy Technology Data Exchange (ETDEWEB)
Metref, Hassina; Tribeche, Mouloud [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)
2014-12-15
Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.
Metamaterials and wave control
Lheurette, Eric
2013-01-01
Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. Onthe one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand,metamaterials also provide new tools for the design of well-known wave functions s
Lominadze, D G
2013-01-01
Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f
Surface waves in a cylindrical borehole through partially-saturated ...
Indian Academy of Sciences (India)
M D Sharma
2018-02-14
Feb 14, 2018 ... interest in various fields, viz., acoustics, biome- chanics, structural engineering, seismology and exploration of subsurface resources. Pores and frac- tures are pervasive in almost all the rocks in the earth's crust. In-situ reservoir rocks contain oil, water or gas, which are of great economic impor- tance.
On Density Waves in Spiral Galaxies
Grosbol, P.; Patsis, P. A.
The spiral structure of five ordinary spiral galaxies was studied using deep BVIK' surface photometry maps obtained at the 2.2m ESO/MPI telescope. The detailed shape of the arms was analyzed in terms of the spiral density wave theory. Grand design spirals were found on the K' maps in all five galaxies although at least two would be classified as flocculent on the blue images. In several of the galaxies, bulges with weak oval distortion (~10%) were observed. Dust spirals also continue, in some cases, inside the ILR where the stellar arms terminate. This emphasizes the strong bias of morphological classifications of spiral galaxies based on blue image due to dust and young stars. The 2--armed spirals were systematically found to be wound tighter on I than on K' maps suggesting the existence of a density wave. Locations of the ILR and the 4/1 resonance were estimated based on the arm morphology and the amplitude ratio between the m = 2,4 Fourier components. The wavenumber of the stellar 2--armed pattern is increasing towards the ILR which could suggest that the density wave is associated to the long waved branch of the dispersion relation. A possible scenario is discussed.
Nonlinear waves and weak turbulence
Zakharov, V E
1997-01-01
This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.
Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger–Boussinesq system
Sun, Baonan; Lian, Zhan
2018-02-01
By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger-Boussinesq system are generated.
Visual Motion Discrimination by Propagating Patterns in Primate Cerebral Cortex.
Townsend, Rory G; Solomon, Selina S; Martin, Paul R; Solomon, Samuel G; Gong, Pulin
2017-10-18
Visual stimuli can evoke waves of neural activity that propagate across the surface of visual cortical areas. The relevance of these waves for visual processing is unknown. Here, we measured the phase and amplitude of local field potentials (LFPs) in electrode array recordings from the motion-processing medial temporal (MT) area of anesthetized male marmosets. Animals viewed grating or dot-field stimuli drifting in different directions. We found that, on individual trials, the direction of LFP wave propagation is sensitive to the direction of stimulus motion. Propagating LFP patterns are also detectable in trial-averaged activity, but the trial-averaged patterns exhibit different dynamics and behaviors from those in single trials and are similar across motion directions. We show that this difference arises because stimulus-sensitive propagating patterns are present in the phase of single-trial oscillations, whereas the trial-averaged signal is dominated by additive amplitude effects. Our results demonstrate that propagating LFP patterns can represent sensory inputs at timescales relevant to visually guided behaviors and raise the possibility that propagating activity patterns serve neural information processing in area MT and other cortical areas. SIGNIFICANCE STATEMENT Propagating wave patterns are widely observed in the cortex, but their functional relevance remains unknown. We show here that visual stimuli generate propagating wave patterns in local field potentials (LFPs) in a movement-sensitive area of the primate cortex and that the propagation direction of these patterns is sensitive to stimulus motion direction. We also show that averaging LFP signals across multiple stimulus presentations (trial averaging) yields propagating patterns that capture different dynamic properties of the LFP response and show negligible direction sensitivity. Our results demonstrate that sensory stimuli can modulate propagating wave patterns reliably in the cortex. The relevant
Westerhof, E.
1994-01-01
The essential elements of the theory of electron cyclotron waves are reviewed, The two main electro-magnetic modes of propagation are identified and their dispersion and absorption properties are discussed. The importance of the use of the relativistic resonance condition is stressed.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Flood Wave Propagation-The Saint Venant Equations. P P Mujumdar. General Article Volume 6 Issue 5 May 2001 pp 66-73. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/05/0066-0073 ...