WorldWideScience

Sample records for turbine structure investigated

  1. Investigation of structural integrity for turbine generator foundation affected by alkali-silica reaction

    International Nuclear Information System (INIS)

    Ryo Fujimoto; Hiroshi Shimizu; Hisashi Sekimoto; Yuichi Watanabe; Tatsuya Ishikawa

    2005-01-01

    Turbine Generator Foundation is a reinforced concrete structure having a table deck to support equipments and columns to support the table deck. After operation of the plant, the expansion of the table deck in turbine longitudinal axis in the structure has been observed. By investigation of concrete material property, it is found that the expansion has been caused by alkali-silica reaction (ASR). In this study, we evaluate the material properties of the structure affected by ASR and safety margin of capacity of the structure by nonlinear analysis using beam element model with those material properties. (authors)

  2. Investigation Of Failure Mechanisms In A Wind Turbine Blade Root Sub-Structure

    DEFF Research Database (Denmark)

    Bender, Jens Jakob; Hallett, S.R.; Lindgaard, Esben

    2017-01-01

    and realistic results at the fraction of the cost of a full-scale test. Therefore, this work focuses on testing of sub-structures from the root end of wind turbine blades at the transition from the thick root laminate to the thinner main laminate. Some wind turbine blade manufacturers include pre-cured tapered...... beams in the root to reduce the time required to place the large quantity of material in the mould and to decrease manufacturing defects in these elements. However, this entails the risk of introducing other manufacturing defects during the Vacuum Assisted Resin Transfer Moulding process such as resin...... pockets and fibre wrinkles. Through this work it is sought to determine the effect that these manufacturing defects can have on the strength properties of the sub-structure. The sub-structures used in this work are cut out from actual wind turbine blades, meaning that the manufacturing defects...

  3. Experimental investigation of the turbine instability of a pump-turbine during synchronization

    International Nuclear Information System (INIS)

    Guggenberger, M; Senn, F; Schiffer, J; Jaberg, H; Gentner, C; Sallaberger, M; Widmer, C

    2014-01-01

    Although the technology of pump-turbines is generally well known the operation is still affected by flow phenomena that are quite complex and not fully understood. One of these phenomena is the S-shape instability which occurs in turbine mode at low load operation, close to runaway conditions. The instability results in an S-shape of the turbine characteristics and complicates the synchronization of the machine. Numerical investigations performed in the past indicated that the occurrence of turbine instabilities is connected with the appearance of rotor-stator interactions, and backflow regions in the vane less space between guide vane and impeller. This paper presents the results and conclusions of experimental investigations of pump-turbine instabilities carried out to find a practical explanation for the flow phenomena responsible for the appearance of the S-shaped characteristics. In the scope of a joint research project with Andritz Hydro, the Institute for Hydraulic Fluidmachinery at Graz University of Technology optimized an existing 4-quadrant test rig for an experimental investigation at off design conditions featuring the possibility for adjusting stable operation of instabilities. All the experimental investigations were based on IEC60193-standard using a pump turbine model provided by Andritz Hydro AG. In addition to the standard measurements of flow rate, head and efficiency the interaction between model and its hydraulic environment were analysed by dynamic pressure sensors. Additional pressure sensors integrated in the guide vane apparatus were used to investigate pressure distributions in the model. Particle Image Velocimetry (PIV) allowed the measurement of the velocity field in the vane less space between impeller and guide vanes and in the environment of two single guide vanes. The experimental investigations were focused on operation points in the S-shape region of the characteristics. For each operation point 190 double images for 20 rotor

  4. Full scale testing for investigation of wind turbine seismic response

    Energy Technology Data Exchange (ETDEWEB)

    Prowell, I.; Veletzos, M.; Elgamal, A. [California Univ., San Diego, CA (United States). Dept. of Structural Engineering

    2008-07-01

    In 2007, much of the growth in wind energy development was concentrated in North America and Asia, two regions which periodically experience strong earthquakes that may impact the final turbine design. As such, rational prediction of seismic hazards must be considered in order to maintain and enhance the ability of wind power to compete economically with other energy sources. In response to this challenge, researchers at the University of California, San Diego (UCSD) have experimentally investigated wind turbines to gain an understanding of expected earthquake forces. This paper described the experimental setup for a full scale shake table test of a 65 kW wind turbine. The turbine was excited perpendicular to the axis of the rotor with a seismic base shaking record scaled to various levels. The data was analyzed using simple but effective procedures to provide insight into the observed structural damping of the wind turbine. The experimental investigation showed that full scale seismic testing of wind turbines is possible and can provide valuable insight into dynamic behaviour of wind turbines. The results can be used to develop a more accurate picture of how wind turbines are impacted by earthquakes. The data regarding the low observed super-structure damping provides a basis for calibration and further development of verified design procedures. 20 refs., 3 tabs.

  5. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    Science.gov (United States)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  6. Investigation of safety margin for turbine generator foundation affected by Alkali Silica reaction based on non-linear structure analysis

    International Nuclear Information System (INIS)

    Shimizu, H.; Asai, Y.; Hosokawa, T.; Sekimoto, H.; Sato, K.; Oshima, R.; Takiguchi, K.; Masuda, Y.; Nishiguchi, I.

    2005-01-01

    A turbine generator foundation is a reinforced concrete structure having a table deck and columns to support equipments. After operation of the plant, the expansion of the table deck in turbine longitudinal axis has been observed. By investigation of concrete material properties, it was found that the expansion has been caused by alkali-silica reaction. This study has been performed to evaluate the safety allowance of strength capacity of the turbine generator foundation by nonlinear analysis using beam element model with elongation, rebar strain and material properties data which have been measured for almost 30 years in actual foundation. (authors)

  7. Investigating fundamental properties of wind turbine wake structure using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Whale, J. [Univ. of Edinburgh, Dept. of Mechanical Engineering, Edinburgh (United Kingdom)

    1997-08-01

    Low Reynolds number flow visualization tests are often used for showing the flow pattern changes associated with changes in lift-coefficients at a higher Reynolds number. In wind turbine studies, analysis of measured wake structures at small scale may reveal fundamental properties of the wake which will offer wake modellers a more complete understanding of rotor flows. Measurements are presented from experiments on a model wind turbine rig conducted in a water channel. The laser-optics technique of Particle Image Velocimetry (PIV) is used to make simultaneous multi-point measurements of the wake flow behind small-scale rotors. Analysis of the PIV data shows trends in velocity and vorticity structure in the wake. Study of the flow close to the rotor plane reveals information on stalled flow and blade performance. (au)

  8. Numerical investigation of hub clearance flow in a Kaplan turbine

    Science.gov (United States)

    Wu, H.; Feng, J. J.; Wu, G. K.; Luo, X. Q.

    2012-11-01

    In this paper, the flow field considering the hub clearance flow in a Kaplan turbine has been investigated through using the commercial CFD code ANSYS CFX based on high-quality structured grids generated by ANSYS ICEM CFD. The turbulence is simulated by k-ω based shear stress transport (SST) turbulence model together with automatic near wall treatments. Four kinds of simulations have been conducted for the runner geometry without hub clearance, with only the hub front clearance, with only the rear hub clearance, and with both front and rear clearance. The analysis of the obtained results is focused on the flow structure of the hub clearance flow, the effect on the turbine performance including hydraulic efficiency and cavitation performance, which can improve the understanding on the flow field in a Kaplan turbine.

  9. Numerical investigation of hub clearance flow in a Kaplan turbine

    International Nuclear Information System (INIS)

    Wu, H; Feng, J J; Wu, G K; Luo, X Q

    2012-01-01

    In this paper, the flow field considering the hub clearance flow in a Kaplan turbine has been investigated through using the commercial CFD code ANSYS CFX based on high-quality structured grids generated by ANSYS ICEM CFD. The turbulence is simulated by k-ω based shear stress transport (SST) turbulence model together with automatic near wall treatments. Four kinds of simulations have been conducted for the runner geometry without hub clearance, with only the hub front clearance, with only the rear hub clearance, and with both front and rear clearance. The analysis of the obtained results is focused on the flow structure of the hub clearance flow, the effect on the turbine performance including hydraulic efficiency and cavitation performance, which can improve the understanding on the flow field in a Kaplan turbine.

  10. Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Harte, M.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...

  11. Thermal stresses investigation of a gas turbine blade

    Science.gov (United States)

    Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.

    2012-06-01

    The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.

  12. Soil structure interaction in offshore wind turbine collisions

    DEFF Research Database (Denmark)

    Samsonovs, Artjoms; Giuliani, Luisa; Zania, Varvara

    2014-01-01

    Vessel impact is one of the load cases which should be accounted for in the design of an offshore wind turbine (OWT) according to design codes, but little guidance or information is given on the employed methodology. This study focuses on the evaluation of the distress induced in a wind turbine...... after a ship collision, thus providing an insight on the consequences of a collision event and on the main aspects to be considered when designing for this load case. In particular, the role of the foundation soil properties (site conditions) on the response of the structural system is investigated....... Dynamic finite element analyses have been performed taking into account the geometric and material nonlinearity of the tower, and the effects of soil structure interaction (SSI) have been studied in two representative collision scenarios of a service vessel with the turbine: a moderate energy impact...

  13. Inverse load calculation procedure for offshore wind turbines and application to a 5-MW wind turbine support structure: Inverse load calculation procedure for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pahn, T. [Pahn Ingenieure, Am Seegraben 17b 03051 Cottbus Germany; Rolfes, R. [Institut f?r Statik und Dynamik, Leibniz Universit?t Hannover, Appelstra?e 9A 30167 Hannover Germany; Jonkman, J. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden Colorado 80401 USA

    2017-02-20

    A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine support structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.

  14. LES investigation of infinite staggered wind-turbine arrays

    International Nuclear Information System (INIS)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2014-01-01

    The layouts of turbines affect the turbine wake interactions and thus the wind farm performance. The wake interactions in infinite staggered wind-turbine arrays are investigated and compared with infinite aligned turbine arrays in this paper. From the numerical results we identify three types of wake behaviours, which are significantly different from wakes in aligned wind-turbine arrays. For the first type, each turbine wake interferes with the pair of staggered downstream turbine wakes and the aligned downstream turbine. For the second type, each turbine wake interacts with the first two downstream turbine wakes but does not show significant interference with the second aligned downstream turbine. For the third type, each turbine wake recovers immediately after passing through the gap of the first two downstream turbines and has little interaction with the second downstream turbine wakes The extracted power density and power efficiency are also studied and compared with aligned wind-turbine arrays

  15. Structural investigation of composite wind turbine blade considering various load cases and fatigue life

    International Nuclear Information System (INIS)

    Kong, C.; Bang, J.; Sugiyama, Y.

    2005-01-01

    This study proposes a structural design for developing a medium scale composite wind turbine blade made of E-glass/epoxy for a 750 kW class horizontal axis wind turbine system. The design loads were determined from various load cases specified at the IEC61400-1 international specification and GL regulations for the wind energy conversion system. A specific composite structure configuration, which can effectively endure various loads such as aerodynamic loads and loads due to accumulation of ice, hygro-thermal and mechanical loads, was proposed. To evaluate the proposed composite wind turbine blade, structural analysis was performed by using the finite element method. Parametric studies were carried out to determine an acceptable blade structural design, and the most dominant design parameters were confirmed. In this study, the proposed blade structure was confirmed to be safe and stable under various load conditions, including the extreme load conditions. Moreover, the blade adapted a new blade root joint with insert bolts, and its safety was verified at design loads including fatigue loads. The fatigue life of a blade that has to endure for more than 20 years was estimated by using the well-known S-N linear damage theory, the service load spectrum, and the Spera's empirical equations. With the results obtained from all the structural design and analysis, prototype composite blades were manufactured. A specific construction process including the lay-up molding method was applied to manufacturing blades. Full-scale static structural test was performed with the simulated aerodynamic loads. From the experimental results, it was found that the designed blade had structural integrity. In addition, the measured results of deflections, strains, mass, and radial center of gravity agreed well with the analytical results. The prototype blade was successfully certified by an international certification institute, GL (Germanisher Lloyd) in Germany

  16. Optimal Structural Reliability of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2005-01-01

    The main failure modes of modern large wind turbines are fatigue failure of wings, hub, shaft and main tower, local buckling of main tower, and failure of the foundation. This paper considers reliability-based optimal design of wind turbines. Compared to onshore wind turbines and building...... structures, humans spent little time in the vicinity of offshore wind turbines and the probability of human injury during storm conditions is small. Further environmental pollution will also in general be small in case of failure. One could therefore argue that the reliability level of offshore wind turbines...... can be lower than for onshore wind turbines and other civil engineering structures and can be assessed by reliability-based cost-optimization. Specifically this paper considers the main tower and foundation. Both fatigue and ultimate strength failure modes are included. Different formulations...

  17. Investigation of the fluid-structure interaction of a high head Francis turbine using OpenFOAM and Code_Aster

    Science.gov (United States)

    Eichhorn, M.; Doujak, E.; Waldner, L.

    2016-11-01

    The increasing energy consumption and highly stressed power grids influence the operating conditions of turbines and pump turbines in the present situation. To provide or use energy as quick as possible, hydraulic turbines are operated more frequent and over longer periods of time in lower part load at off-design conditions. This leads to a more turbulent behavior and to higher requirements of the strength of stressed components (e.g. runner, guide or stay vanes). The modern advantages of computational capabilities regarding numerical investigations allow a precise prediction of appearing flow conditions and thereby induced strains in hydraulic machines. This paper focuses on the calculation of the unsteady pressure field of a high head Francis turbine with a specific speed of nq ≈ 24 min-1 and its impact on the structure at different operating conditions. In the first step, unsteady numerical flow simulations are performed with the open-source CFD software OpenFOAM. To obtain the appearing dynamic flow phenomena, the entire machine, consisting of the spiral casing, the stay vanes, the wicket gate, the runner and the draft tube, is taken into account. Additionally, a reduced model without the spiral casing and with a simplified inlet boundary is used. To evaluate the accuracy of the CFD simulations, operating parameters such as head and torque are compared with the results of site measurements carried out on the corresponding prototype machine. In the second part, the obtained pressure fields are used for a fluid-structure analysis with the open-source Finite Element software Code_Aster, to predict the static loads on the runner.

  18. Resonance investigation of pump-turbine during startup process

    International Nuclear Information System (INIS)

    He, L Y; Wang, Z W; Kurosawa, S; Nakahara, Y

    2014-01-01

    The causes of resonance of a certain model pump-turbine unit during startup process were investigated in this article. A three-dimensional full flow path analysis model which contains spiral case, stay vanes, guide vanes, runner, gaps outside the runner crown and band, and draft tube was constructed. The transient hydraulic excitation force of full flow path was analyzed under five conditions near the resonance region. Based on one-way fluid- structure interaction (FSI) analysis model, the dynamic stress characteristics of the pump-turbine runner was investigated. The results of pressure pulsation, vibration mode and dynamic stress obtained from simulation were consistent with the test results. The study indicated that the hydraulic excitation frequency (Z g *f n ) Hz due to rotor-stator interference corresponding to the natural frequency of 2ND+4ND runner mode is the main cause of resonance. The relationship among pressure pulsation, vibration mode and dynamic stress was discussed in this paper. The results revealed the underlying causes of the resonance phenomenon

  19. Structural Reliability Analysis of Wind Turbines: A Review

    Directory of Open Access Journals (Sweden)

    Zhiyu Jiang

    2017-12-01

    Full Text Available The paper presents a detailed review of the state-of-the-art research activities on structural reliability analysis of wind turbines between the 1990s and 2017. We describe the reliability methods including the first- and second-order reliability methods and the simulation reliability methods and show the procedure for and application areas of structural reliability analysis of wind turbines. Further, we critically review the various structural reliability studies on rotor blades, bottom-fixed support structures, floating systems and mechanical and electrical components. Finally, future applications of structural reliability methods to wind turbine designs are discussed.

  20. Structural Reliability of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    turbine blades. The main purpose is to draw a clear picture of how reliability-based design of wind turbines can be done in practice. The objectives of the thesis are to create methodologies for efficient reliability assessment of composite materials and composite wind turbine blades, and to map...... the uncertainties in the processes, materials and external conditions that have an effect on the health of a composite structure. The study considers all stages in a reliability analysis, from defining models of structural components to obtaining the reliability index and calibration of partial safety factors...... by developing new models and standards or carrying out tests The following aspects are covered in detail: ⋅ The probabilistic aspects of ultimate strength of composite laminates are addressed. Laminated plates are considered as a general structural reliability system where each layer in a laminate is a separate...

  1. Fatigue strength ofcomposite wind turbine blade structures

    DEFF Research Database (Denmark)

    Ardila, Oscar Gerardo Castro

    Wind turbines are normally designed to withstand 20-30 years of life. During this period, the blades, which are the main rotating structures of a wind turbine, are subjected to high fluctuating load conditions as a result of a combination of gravity, inertia, and aeroelastic forces. For this reason......, fatigue is one of the foremost concerns during the design of these structures. However, current standard fatigue methods used for designing wind turbine blades seem not to be completely appropriate for these structures because they are still based on methods developed for metals and not for composite...... materials from which the blades are made. In this sense, the aim of this work is to develop more accurate and reliable fatigue-life prediction models for composite wind turbine blades. In this project, two types of fatigue models are implemented: fatigue-life models and damage mechanics models. In the first...

  2. Development of a structure-dependent material model for complex, high-temperature environments and stresses. Example: turbine blades, turbine discs

    International Nuclear Information System (INIS)

    Schubert, F.

    1988-01-01

    For the optimum use of new high-temperature superalloys for turbine discs and blades, it is necessary to develop new design concepts which, on the one hand, permit a quantitative allocation of the structural characteristics to the deformation behaviour and damage mechanisms and, on the other hand, take into account the real course of stress. It is planned to use PM-Udinet 700 as material for turbine discs and IN 738 LC with supplementary tests of IN 100 for turbine blades. For turbine discs, a probabilistic model is developed, for turbine blades, cooled at the interior, first a deterministic model is developed and then a probabilistic model is prepared. The concept for the development of the models is dealt with in detail. The project started in April 1987, therefore only first investigation results can be reported. (orig.) [de

  3. Investigation of structural behaviour due to bend-twist couplings in wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimiroy; Berggreen, Christian

    2009-01-01

    The structural behaviour of a composite wind turbine blade with implemented bend-twist coupling is examined in this paper. Several shell finite element models of the blade have been developed and validated against full-scale tests. All shell models performed well for flap-wise bending......, but performed poorly in torsion, when employing material off-sets....

  4. Design and Optimization of a Turbine Intake Structure

    Directory of Open Access Journals (Sweden)

    P. Fošumpaur

    2005-01-01

    Full Text Available The appropriate design of the turbine intake structure of a hydropower plant is based on assumptions about its suitable function, and the design will increase the total efficiency of operation. This paper deals with optimal design of the turbine structure of run-of-river hydropower plants. The study focuses mainly on optimization of the hydropower plant location with respect to the original river banks, and on the optimal design of a separating pier between the weir and the power plant. The optimal design of the turbine intake was determined with the use of 2-D mathematical modelling. A case study is performed for the optimal design of a turbine intake structure on the Nemen river in Belarus. 

  5. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    Energy Technology Data Exchange (ETDEWEB)

    Claytor, Thomas N [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory; Park, Gyu Hae [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Atterbury, Marie K [Los Alamos National Laboratory

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  6. Grid faults' impact on wind turbine structural loads

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Cutululis, N.A.; Soerensen, P.; Larsen, T.J. [Risoe National Lab., DTU, Wind Energy Dept. (Denmark); Iov, F.

    2007-11-15

    The objective of this work is to illustrate the impact of the grid faults on the wind turbine structural loads. Grid faults are typically in detailed power system simulation tools, which by applying simplified mechanical models, are not able to provide a throughout insight on the structural loads caused by sudden disturbances on the grid. On the other hand, structural loads of the wind turbine are typically assessed in advanced aeroelastic computer codes, which by applying simplified electrical models do not provide detailed electrical insight. This paper presents a simulation strategy, where the focus is on how to access a proper combination of two complementary simulation tools, such as the advanced aeroelastic computer code HAWC2 and the detailed power system simulation tool DIgSILENT, in order to provide a whole overview of both the structural and the electrical behaviour of the wind turbine during grid faults. The effect of a grid fault on the wind turbine flexible structure is assessed for a typical fixed speed wind turbine, equipped with an induction generator. (au)

  7. Structural Reliability Aspects in Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    Reliability assessment, optimal design and optimal operation and maintenance of wind turbines are an area of significant interest for the fast growing wind turbine industry for sustainable production of energy. Offshore wind turbines in wind farms give special problems due to wake effects inside...... the farm. Reliability analysis and optimization of wind turbines require that the special conditions for wind turbine operation are taken into account. Control of the blades implies load reductions for large wind speeds and parking for high wind speeds. In this paper basic structural failure modes for wind...... turbines are described. Further, aspects are presented related to reliability-based optimization of wind turbines, assessment of optimal reliability level and operation and maintenance....

  8. Structural Dynamic Behavior of Wind Turbines

    Science.gov (United States)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  9. Numerical investigation of flow structure and pressure pulsation in the Francis-99 turbine during startup

    Science.gov (United States)

    Minakov, A.; Sentyabov, A.; Platonov, D.

    2017-01-01

    We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at startup regimes. Numerical technique for calculating of low frequency pressure pulsations in a water turbine is based on the use of DES (k-ω Shear Stress Transport) turbulence model and the approach of “frozen rotor”. The structure of the flow behind the runner of turbine was analysed. Shows the effect of flow structure on the frequency and intensity of non-stationary processes in the flow path. Two version of the inlet boundary conditions were considered. The first one corresponded measured time dependence of the discharge. Comparison of the calculation results with the experimental data shows the considerable delay of the discharge in this calculation. Second version corresponded linear approximation of time dependence of the discharge. This calculation shows good agreement with experimental results.

  10. Investigation of Wind Turbine Rotor Concepts for Offshore Wind Farms

    International Nuclear Information System (INIS)

    Ceyhan, Özlem; Grasso, Francesco

    2014-01-01

    Current plans in offshore wind energy developments call for further reduction of cost of energy. In order to contribute to this goal, several wind turbine rotor concepts have been investigated. Assuming the future offshore wind turbines will operate only in the offshore wind farms, the rotor concepts are not only evaluated for their stand-alone performances and their potential in reducing the loads, but also for their performance in an offshore wind farm. In order to do that, the 10MW reference wind turbine designed in Innwind.EU project is chosen as baseline. Several rotor parameters have been modified and their influences are investigated for offshore wind turbine design purposes. This investigation is carried out as a conceptual parametrical study. All concepts are evaluated numerically with BOT (Blade optimisation tool) software in wind turbine level and with Farmflow software in wind farm level for two wind farm layouts. At the end, all these concepts are compared with each other in terms of their advantages and disadvantages

  11. Wake structure of a single vertical axis wind turbine

    International Nuclear Information System (INIS)

    Posa, Antonio; Parker, Colin M.; Leftwich, Megan C.; Balaras, Elias

    2016-01-01

    Highlights: • The wake structure of an isolated Vertical Axis Wind Turbine is studied by both Particle Imaging Velocimetry and Large Eddy Simulation. • The wake structure is investigated for two values of tip speed ratio, TSR_1=1.35 and TSR_2=2.21. • A displacement of the momentum deficit towards the windward side is verified in the wake. • Higher turbulence and coherence is observed on the leeward side of the wake, due to the upwind stall of the blades. • Coherence in the wake core, associated to the downwind stall, decays quickly downstream. - Abstract: The wake structure behind a vertical axis wind turbine (VAWT) is both measured in a wind tunnel using particle imaging velocimetry (PIV) and computed with large-eddy simulation (LES). Geometric and dynamic conditions are closely matched to typical applications of VAWTs (Re_D ∼ 1.8 × 10"5). The experiments and computations were highly coordinated with continuous two-way feedback to produce the most insightful results. Good qualitative agreement is seen between the computational and experimental results. The dependence of the wake structure on the tip speed ratio, TSR, is investigated, showing higher asymmetry and larger vortices at the lower rotational speed, due to stronger dynamic stall phenomena. Instantaneous, ensemble-averaged and phase-averaged fields are discussed, as well as the dynamics of coherent structures in the rotor region and downstream wake.

  12. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in

  13. Unbalanced voltage faults: the impact on structural loads of doubly fed asynchronous generator wind turbines

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio; Cutululis, Nicolaos Antonio; Hansen, Anca Daniela

    2014-01-01

    This paper investigates the impact that unbalanced voltage faults have on wind turbine structural loads. In such cases, electromagnetic torque oscillations occur at two times the supply voltage frequency. The objectives of this work are to quantify wind turbine structural loads induced...... by unbalanced voltage faults relative to those during normal operation; and to evaluate the potential for reducing structural loads with the control of the generator. The method applied is integrated dynamic analysis. Namely, dynamic analysis with models that consider the most important aeroelastic, electrical...

  14. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    Science.gov (United States)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  15. An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines

    Science.gov (United States)

    Parker, Colin M.

    The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties--tip-speed ratio and Reynolds number--of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit for a higher tip-speed ratio. For the higher tip-speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04Uinfinity. Phase-averaged vorticity fields--achieved by syncing the PIV system with the rotation of the turbine--show distinct structures form from each turbine blade. There are distinct differences in the structures that are shed into the wake for tip-speed ratios of 0.9, 1.3 and 2.2--switching from two pairs to a single pair of shed vortices--and how they convect into the wake--the middle tip-speed ratio vortices convect downstream inside the wake, while the high tip-speed ratio pair is shed into the shear layer of the wake. The wake structure is found to be much more sensitive to changes in tip-speed ratio than to changes in Reynolds number. The geometry of a turbine can influence tip-speed ratio, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. Next, we characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter (D), to blade chord (c), which was chosen to be D/c = 3, 6, and 9, for a fixed freestream Reynolds number based on the blade chord of Rec =16,000. In addition to two-component PIV and single-component constant temperature anemometer measurements are made at the horizontal mid-plane in the wake of each turbine. Hot

  16. An Integrated Structural Strength Analysis Method for Spar Type Floating Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    胡志强; 刘毅; 王晋

    2016-01-01

    An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper, and technical issues related to turbine structure modeling and stress combination are also addressed. The NREL-5MW “Hywind” Spar type wind turbine is adopted as study object. Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool, FAST, on the purpose of obtaining the dynamic characteristics of the floating wind turbine, and determining parameters for design load cases of finite element calculation. Then design load cases are identified, and finite element analyses are performed for these design load cases. The structural stresses due to wave-induced loads and wind-induced loads are calculated, and then combined to assess the structural strength of the floating wind turbine. The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.

  17. Experimental Studies of Turbulent Intensity around a Tidal Turbine Support Structure

    Directory of Open Access Journals (Sweden)

    Stuart Walker

    2017-04-01

    Full Text Available Tidal stream energy is a low-carbon energy source. Tidal stream turbines operate in a turbulent environment, and the effect of the structure between the turbine and seabed on this environment is not fully understood. An experimental study using 1:72 scale models based on a commercial turbine design was carried out to study the support structure influence on turbulent intensity around the turbine blades. The study was conducted using the wave-current tank at the Laboratory of Maritime Engineering (LABIMA, University of Florence. A realistic flow environment (ambient turbulent intensity = 11% was established. Turbulent intensity was measured upstream and downstream of a turbine mounted on two different support structures (one resembling a commercial design, the other the same with an additional vertical element, in order to quantify any variation in turbulence and performance between the support structures. Turbine drive power was used to calculate power generation. Acoustic Doppler velocimetry (ADV was used to record and calculate upstream and downstream turbulent intensity. In otherwise identical conditions, performance variation of only 4% was observed between two support structures. Turbulent intensity at 1, 3 and 5 blade diameters, both upstream and downstream, showed variation up to 21% between the two cases. The additional turbulent structures generated by the additional element of the second support structure appears to cause this effect, and the upstream propagation of turbulent intensity is believed to be permitted by surface waves. This result is significant for the prediction of turbine array performance.

  18. Experimental investigation of turbine blade-tip excitation forces

    Science.gov (United States)

    Martinez-Sanchez, Manuel; Jaroux, Belgacem; Song, Seung Jin; Yoo, Soom-Yung; Palczynski, Taras

    1994-01-01

    Results of a program to investigate the magnitude and parametric variations of rotordynamic forces which arise in high power turbines due to blade-tip leakage effects are presented. Five different unshrouded turbine configurations and one configuration shrouded with a labyrinth seal were tested with static offsets of the turbine shaft. The forces along and perpendicular to the offset were measured directly with a rotating dynometer. Exploration of casing pressure and flow velocity distributions was used to investigate the force-generating mechanisms. For unshrouded turbines, the cross-forces originate mainly from the classical Alford mechanisms while the direct forces arise mainly from a slightly skewed pressure pattern. The Alford coefficient for cross-force was found to vary between 2.4 and 4.0, while the similar direct force coefficient varied from 1.5 to 3.5. The cross-forces are found to increase substantially when the gap is reduced from 3.0 to 1.9% of blade height, probably due to viscous blade-tip effects. The forces also increase when the hub gap between stator and rotor decreases. The force coefficient decreased with operating flow coefficient. In the case of the shrouded turbine, most of the forces arise from nonuniform seal pressures. This includes about 80% for the transverse forces. The rest appears to come from uneven work extraction. Their level is about 50% higher in the shrouded case.

  19. Adaptive inflatable structures for protecting wind turbines against ship collisions

    Energy Technology Data Exchange (ETDEWEB)

    Graczykowski, C.; Heinonen, J.

    2006-09-15

    Collisions of small ships are one of main dangers for the offshore wind turbines. Using inflatable structures surrounding the tower on the water level is a possibility of effective protection. Modelling of such structures is based on interaction between solid wall and fluid enclosed inside. Inflatable structures can be adapted to various impact schemes by adjusting initial pressure and controlling release of compressed air by opening piezo-valves. Simulations of ship collision with 2D model of wind turbine tower protected by pneumatic structure are presented in the report. Numerical analysis is performed using ABAQUS/Standard and ABAQUS/Explicit. Performed feasibility study proves that inflatable structures can protect wind turbine tower and ship against serious damages. (orig.)

  20. Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper

    Science.gov (United States)

    Hu, Yaqi; He, Erming

    2017-12-01

    Floating wind turbines are subjected to more severe structural loads than fixed-bottom wind turbines due to additional degrees of freedom (DOFs) of their floating foundations. It's a promising way of using active structural control method to improve the structural responses of floating wind turbines. This paper investigates an active vibration control strategy for a barge-type floating wind turbine by setting a stroke-limited hybrid mass damper (HMD) in the turbine's nacelle. Firstly, a contact nonlinear modeling method for the floating wind turbine with clearance between the HMD and the stroke limiters is presented based on Euler-Lagrange's equations and an active control model of the whole system is established. The structural parameters are validated for the active control model and an equivalent load coefficient method is presented for identifying the wind and wave disturbances. Then, a state-feedback linear quadratic regulator (LQR) controller is designed to reduce vibration and loads of the wind turbine, and two optimization methods are combined to optimize the weighting coefficients when considering the stroke of the HMD and the active control power consumption as constraints. Finally, the designed controllers are implemented in high fidelity simulations under five typical wind and wave conditions. The results show that active HMD control strategy is shown to be achievable and the designed controllers could further reduce more vibration and loads of the wind turbine under the constraints of stroke limitation and power consumption. "V"-shaped distribution of the TMD suppression effect is inconsistent with the Weibull distribution in practical offshore floating wind farms, and the active HMD control could overcome this shortcoming of the passive TMD.

  1. A Comparison on the Dynamics of a Floating Vertical Axis Wind Turbine on Three Different Floating Support Structures

    OpenAIRE

    Borg, Michael; Collu, Maurizio

    2014-01-01

    To increase the competitiveness of offshore wind energy in the global energy market, it is necessary to identify optimal offshore wind turbine configurations to deliver the lowest cost of energy. For deep waters where floating wind turbines are the feasible support structure option, the vertical axis wind turbine concept might prove to be one of these optimal configurations. This paper carries out a preliminary investigation into the dynamics of a vertical axis wind turbine coupled with three...

  2. System Identification of Wind Turbines for Structural Health Monitoring

    DEFF Research Database (Denmark)

    Perisic, Nevena

    Structural health monitoring is a multi-disciplinary engineering field that should allow the actual wind turbine maintenance programmes to evolve to the next level, hence increasing safety and reliability and decreasing turbines downtime. The main idea is to have a sensing system on the structure...... cases are considered, two practical problems from the wind industry are studied, i.e. monitoring of the gearbox shaft torque and the tower root bending moments. The second part of the thesis is focused on the influence of friction on the health of the wind turbine and on the nonlinear identification...... that monitors the system responses and notifies the operator when damages or degradations have been detected. However, some of the response signals that contain important information about the health of the wind turbine components cannot be directly measured, or measuring them is highly complex and costly...

  3. Structural analysis of a 1kW Darrieus turbine spoke

    DEFF Research Database (Denmark)

    Belloni, Federico; Bedon, Gabriele; Castelli, Marco Raciti

    A structural study of a 1 kW Darrieus turbine spoke was performed in order to study stress distribution on the piece and make it more light. The VAWT turbine, originally intended for urban operation, is provided with 3 blades and 6 spokes. Since turbine initial tests showed relevant balancing...

  4. Investigation of Structural Behavior due to Bend-Twist Couplings in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimirov; Berggreen, Christian

    2010-01-01

    for predicting the torsional response of the wind turbine blades with built-in bend-twist couplings. Additionally, a number of improved full-scale tests using an advanced bi-axial servo-hydraulic load control have been performed on a wind turbine blade section provided by Vestas Wind Systems A/S. In the present......One of the problematic issues concerning the design of future large composite wind turbine blades is the prediction of bend-twist couplings and torsion behaviour. The current work is a continuation of a previous work [1,2], and it examines different finite element modelling approaches...... of the blade cross section as the defining surface, off-setting the location of the shell elements according to the specified thickness. The experimental full-scale tests were carried out on an 8 m section of a 23 m wind turbine blade with specially implemented bend-twist coupling. The blade was tested under...

  5. Structural Load Analysis of a Wind Turbine under Pitch Actuator and Controller Faults

    International Nuclear Information System (INIS)

    Etemaddar, Mahmoud; Gao, Zhen; Moan, Torgeir

    2014-01-01

    In this paper, we investigate the characteristics of a wind turbine under blade pitch angle and shaft speed sensor faults as well as pitch actuator faults. A land-based NREL 5MW variable speed pitch reg- ulated wind turbine is considered as a reference. The conventional collective blade pitch angle controller strategy with independent pitch actuators control is used for load reduction. The wind turbine class is IEC-BII. The main purpose is to investigate the severity of end effects on structural loads and responses and consequently identify the high-risk components according to the type and amplitude of fault using a servo-aero-elastic simulation code, HAWC2. Both transient and steady state effects of faults are studied. Such information is useful for wind turbine fault detection and identification as well as system reliability analysis. Results show the effects of faults on wind turbine power output and responses. Pitch sensor faults mainly affects the vibration of shaft main bearing, while generator power and aerodynamic thrust are not changed significantly, due to independent pitch actuator control of three blades. Shaft speed sensor faults can seriously affect the generator power and aerodynamic thrust. Pitch actuator faults can result in fully pitching of the blade, and consequently rotor stops due to negative aerodynamic torque

  6. Structural health and prognostics management for offshore wind turbines :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C.

    2012-12-01

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blades torsional stiffness due to the disbond, which also resulted in changes in the blades local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  7. Structural integrity analysis of a steam turbine

    International Nuclear Information System (INIS)

    Villagarcia, Maria P.

    1997-01-01

    One of the most critical components of a power utility is the rotor of the steam turbine. Catastrophic failures of the last decades have promoted the development of life assessment procedures for rotors. The present study requires the knowledge of operating conditions, component geometry, the properties of materials, history of the component, size, location and nature of the existing flaws. The aim of the present work is the obtention of a structural integrity analysis procedure for a steam turbine rotor, taking into account the above-mentioned parameters. In this procedure, a stress thermal analysis by finite elements is performed initially, in order to obtain the temperature and stress distribution for a subsequent analysis by fracture mechanics. The risk of a fast fracture due to flaws in the central zone of the rotor is analyzed. The procedure is applied to an operating turbine: the main steam turbine of the Atucha I nuclear power utility. (author)

  8. Experimental investigation on performance of crossflow wind turbine as effect of blades number

    Science.gov (United States)

    Kurniawati, Diniar Mungil; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    Urban living is one of the areas with large electrical power consumption that requires a power supply that is more than rural areas. The number of multi-storey buildings such as offices, hotels and several other buildings that caused electricity power consumption in urban living is very high. Therefore, energy alternative is needed to replace the electricity power consumption from government. One of the utilization of renewable energy in accordance with these conditions is the installation of wind turbines. One type of wind turbine that is now widely studied is a crossflow wind turbines. Crossflow wind turbine is one of vertical axis wind turbine which has good self starting at low wind speed condition. Therefore, the turbine design parameter is necessary to know in order to improve turbine performance. One of wind turbine performance parameter is blades number. The main purpose of this research to investigate the effect of blades number on crossflow wind turbine performance. The design of turbine was 0.4 × 0.4 m2 tested by experimental method with configuration on three kinds of blades number were 8,16 and 20. The turbine investigated at low wind speed on 2 - 5 m/s. The result showed that best performance on 16 blade number.

  9. Experimental investigation on the off-design performance of a small-sized humid air turbine cycle

    International Nuclear Information System (INIS)

    Wei, Chenyu; Zang, Shusheng

    2013-01-01

    This research aimed to study the improvement of the gas turbine performance of a humid air turbine (HAT) cycle at low pressure ratio and at low turbine inlet temperature (TIT). To achieve this goal, an off-design performance test investigation was conducted on a small-sized, two-shaft gas turbine test rig. The test rig consisted of a centrifugal compressor, a centripetal turbine, an individual direct flow flame tube, a free power turbine, a dynamometer, and a saturator with structured packing. Two different conditions were considered for the test investigation: in Case I, the control system kept the fuel flow constant at 57 kg/h, and in Case II, the turbine inlet temperature was kept constant at 665 °C. In Case I, when the air humidity ratio increased from 30 g/kg dry air (DA) to 43 g/kg DA, the power output increased by 3 kW. At the same time, the turbine inlet temperature decreased by 19 °C, and the NO x emissions were reduced from 25 ppm to 16 ppm. In Case II, when the air humidity ratio increased from 48 g/kg DA to 57 g/kg DA, the power output increased by 9.5 kW. Based on the actual gas turbine parts, characteristics, and test conditions, the off-design performance of the HAT cycle was calculated. Upon comparing the measured and calculated results, the HAT cycle was found to perform better than the two-shaft cycle in terms of specific work, efficiency, and specific fuel consumption. The effect of performance improvement became more obvious as the air humidity ratio increased. Under the same inlet air flow, turbine inlet temperature, and power output, the surge margin on compressor curves became enlarged as the humidity ratio increased. The off-design performance of a HAT cycle with regenerator was also investigated. The results show that the highest efficiency can be increased by 3.1%, which will greatly improve the gas turbine performance. -- Highlights: ► We built a flexible small-size test rig of HAT cycle gas turbine and the real test data were

  10. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  11. Modular structure of wind turbine models in IEC 61400-27-1

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Andresen, Bjørn; Fortmann, Jens

    2013-01-01

    This paper presents the modular structure of wind turbine models to be published in a new standard IEC 61400-27 for “Electrical simulation models for wind power generation”. The purpose of this standardization work is to define generic simulation models for wind turbines (Part 1) and wind power...... plants (Part 2), which are intended for short-term power system stability analyses. Part 1 has passed the first committee draft stage, whereas Part 2 is in an early stage of development. Initially, the paper describes the interfaces between wind turbine, wind power plant and grid models, and then gives...... a more detailed description of the modular structure of the types of wind turbines that are included in Part 1....

  12. Performance investigations on modified vertical axis water turbine: Combination of lift and drag

    Science.gov (United States)

    Baumatary, Mithinga; Biswas, Angimitra; Misra, Rahul Dev

    2018-04-01

    Extracting energy from the water has been followed since decades due to environmental friendly. Now a days everyone is running after clean energy, therefore extracting energy from the water turbine is a good approach. The main idea of this study is to investigate the performance of a new design turbine which is a combination of the concepts of lift and drag turbine. The main purpose of the study is to accumulate maximum energy by considering advantages of two different types of turbine. The maximum coefficient of power is 0.141 at free stream velocity of 0.5 m/s. The modified new design turbine consist of straight section and the curve section. The length of the straight section influences the performance of the turbine. Investigation on the optimization of straight section has been carried out in this paper. As this type of turbine have opted the advantages of both lift and drag it has turned out to be fruitful.

  13. Damage tolerance and structural monitoring for wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Pereira, Gilmar Ferreira; Sørensen, Bent F.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will b......The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation...

  14. Grid faults' impact on wind turbine structural loads

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Iov, F.

    2007-01-01

    The objective of this work is to illustrate the impact of the grid faults on the wind turbine structural loads. Grid faults are typically simulated in detailed power system simulation tools, which by applying simplified mechanical models, are not able to provide a throughout insight...... on the structural loads caused by sudden disturbances on the grid. On the other hand, structural loads of the wind turbine are typically assessed in advanced aerolastic computer codes, which by applying simplified electrical models do not provide detailed electrical insight. This paper presents a simulation...... strategy, where the focus is on how to access a proper combination of two complimentary simulations tools, such as the advanced aeroelastic computer code HAWC2 and the detailed power system simulation tool DIgSILENT, in order to provide a whole overview of both the structural and the electrical behaviour...

  15. Combined Structural Optimization and Aeroelastic Analysis of a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Roscher, Björn; Ferreira, Carlos Simao; Bernhammer, Lars O.

    2015-01-01

    Floating offshore wind energy poses challenges on the turbine design. A possible solution is vertical axis wind turbines, which are possibly easier to scale-up and require less components (lower maintenance) and a smaller floating structure than horizontal axis wind turbines. This paper presents...... a structural optimization and aeroelastic analysis of an optimized Troposkein vertical axis wind turbine to minimize the relation between the rotor mass and the swept area. The aeroelastic behavior of the different designs has been analyzed using a modified version of the HAWC2 code with the Actuator Cylinder...... model to compute the aerodynamics of the vertical axis wind turbine. The combined shape and topology optimization of a vertical axis wind turbine show a minimum mass to area ratio of 1.82 kg/m2 for blades with varying blade sections from a NACA 0040 at the attachment points to a NACA 0015...

  16. Laser-based investigations in gas turbine model combustors

    Science.gov (United States)

    Meier, W.; Boxx, I.; Stöhr, M.; Carter, C. D.

    2010-10-01

    Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field-flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.

  17. Damage tolerance and structural monitoring for wind turbine blades.

    Science.gov (United States)

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades

    International Nuclear Information System (INIS)

    Wang, Ying; Sun, Xiaojing; Dong, Xiaohua; Zhu, Bing; Huang, Diangui; Zheng, Zhongquan

    2016-01-01

    Highlights: • A novel vertical axis wind turbine with deformed blades is designed. • The universal tendency of power characteristics for simulated turbine is found. • The whole flow field of different turbines from the aspect of vortex is analyzed. • The tracking analysis of vortex at different positions for a blade is conducted. • The aerodynamic performance of turbine with three deformed blades is analyzed. - Abstract: In this paper, a novel Darrieus vertical axis wind turbine was designed whose blade can be deformed automatically into a desired geometry and thus achieve a better aerodynamic performance. A series of numerical simulations were conducted by utilizing the United Computational Fluid Dynamics code. Firstly, analysis and comparison of the performance of undeformed and deformed blades for the rotors having different blades were conducted. Then, the power characteristics of each simulated turbine were summarized and a universal tendency was found. Secondly, investigation on the effect of blade number and solidity on the power performance of Darrieus vertical axis wind turbine with deformable and undeformable blades was carried out. The results indicated that compared to conventional turbines with same solidity, the maximum percentage increase in power coefficient that the low solidity turbine with three deformable blades can achieve is about 14.56%. When solidity is high and also turbine operates at low tip speed ratio of less than the optimum value, the maximum power coefficient increase for the turbines with two and four deformable blades are 7.51% and 8.07%, respectively. However, beyond the optimal tip speed ratio, the power improvement of the turbine using the deformable blades seems not significant and even slightly worse than the conventional turbines. The last section studied the transient behavior of vortex and turbulent flow structures around the deformable rotor blade to explore the physical mechanism of improving aerodynamic

  19. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    Directory of Open Access Journals (Sweden)

    Tan Jiqiu

    2014-05-01

    Full Text Available In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction field of MW- level vertical axis wind turbine tower has little effect on the modal vibration mode, but has a great effect on its natural frequency and the maximum deformation, and the influence will decrease with increasing of modal order; MW-level vertical axis wind turbine tower needs to be raised the stiffness and strength, its structure also needs to be optimized; In the case of satisfy the intensity, the larger the ratio of the tower height and wind turbines diameter, the more soft the MW-level vertical axis wind turbine tower, the lower its frequency.

  20. An experimental investigation of pump as turbine for micro hydro application

    International Nuclear Information System (INIS)

    Raman, N; Hussein, I; Palanisamy, K; Foo, B

    2013-01-01

    This paper presents the results of an experimental investigation of a centrifugal pump working as turbine (PAT). An end suction centrifugal pump was tested in turbine mode at PAT experimental rig installed in the Mechanical Engineering Laboratory of Universiti Tenaga Nasional. The pump with specific speed of 15.36 (m, m 3 /s) was used in the experiment and the performance characteristic of the PAT was determined. The experiment showed that a centrifugal pump can satisfactorily be operated as turbine without any mechanical problems. As compared to pump operation, the pump was found to operate at higher heads and discharge values in turbine mode. The best efficiency point (BEP) in turbine mode was found to be lower than BEP in pump mode. The results obtained were also compared to the work of some previous researchers.

  1. Natural Frequency and Damping Estimation of an Offshore Wind Turbine Structure

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Jacob K. F.; Ibsen, Lars Bo

    2012-01-01

    During the last years, offshore wind turbines have increased significantly in size with larger rotors and more powerful generators. The costs are kept as low as possible by reducing the overall weight, which leads to very slender and flexible structures. An improper design may cause resonance due...... of an offshore wind turbine located in the North Sea. Simple Fourier Transformation and least square fitting to the vibration decay of ten “rotor stop” tests make it possible to evaluate the dynamic properties of the wind turbine structure. Based on the traditionally p-y curve method (Winkler type approach...

  2. Investigation Of Cross-Flow Model Water Turbine

    International Nuclear Information System (INIS)

    Obretenov, V.S.

    1998-01-01

    The research is made with the basic objective of constructing effective stream section of cross-flow turbine. In the research project are presented the results from experimental testing of the cross-flow turbine with various runner. nozzles and draft tubes. The rotational and universal characteristics of the turbine are presented. The experimental results have been analyzed.The results from the research give the possibility to make clear some important aspects of the working process with the cross-flow turbines. The characteristics derived from these tests prove that the stream section of the tested cross-flow turbine can be used as a model in the construction of cross-flow turbines for power electric stations with small capacity

  3. Active vibration-based structural health monitoring system for wind turbine blade: Demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2017-01-01

    enough to be able to propagate the entire blade length. This article demonstrates the system on a Vestas V27 wind turbine. One blade of the wind turbine was equipped with the system, and a 3.5-month monitoring campaign was conducted while the turbine was operating normally. During the campaign, a defect......—a trailing-edge opening—was artificially introduced into the blade and its size was gradually increased from the original 15 to 45 cm. Using a semi-supervised learning algorithm, the system was able to detect even the smallest amount of damage while the wind turbine was operating under different weather......This study presents a structural health monitoring system that is able to detect structural defects of wind turbine blade such as cracks, leading/trailing-edge opening, or delamination. It is shown that even small defects of at least 15 cm size can be detected remotely without stopping the wind...

  4. Investigation of the possible influence of wind turbines on birds

    Energy Technology Data Exchange (ETDEWEB)

    Winkelman, J E

    1988-11-01

    An overview is given of carried out and current field studies, results and gaps with regard to bird damage caused by wind turbines. Present research aims at disturbance of the environment, chances for birds to become victims and actual number of victims. Gaps in our knowledge exist in particular with regard to victims which fall at night. Investigation of the chances for birds to become victims at night is preferable to searching night victims by daylight because of minimal chances of finding them and high labour-intensity. In general it can be said that current field research at the relation between wind turbines and birds is site-oriented. Broader research, especially aimed at the disturbance aspect, is not possible right now, because large wind turbines and wind turbine arrays are rare. 3 figs., 7 refs., 5 tabs.

  5. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex A. Cost-benefit for embedded sensors in large wind turbine blades

    OpenAIRE

    Hansen, L.G.; Lading, Lars

    2002-01-01

    This report contains the results of a cost-benefit analysis for the use of embed-ded sensors for damage detection in large wind turbine blades - structural health monitoring - (in connection with remote surveillance) of large wind turbine placedoff-shore. The total operating costs of a three-bladed 2MW turbine placed offshore either without sensors or with sensors are compared. The price of a structural health monitoring system of a price of 100 000 DKK (per tur-bine) results in a break-event...

  6. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  7. Development of a Fast Fluid-Structure Coupling Technique for Wind Turbine Computations

    DEFF Research Database (Denmark)

    Sessarego, Matias; Ramos García, Néstor; Shen, Wen Zhong

    2015-01-01

    Fluid-structure interaction simulations are routinely used in the wind energy industry to evaluate the aerodynamic and structural dynamic performance of wind turbines. Most aero-elastic codes in modern times implement a blade element momentum technique to model the rotor aerodynamics and a modal......, multi-body, or finite-element approach to model the turbine structural dynamics. The present paper describes a novel fluid-structure coupling technique which combines a threedimensional viscous-inviscid solver for horizontal-axis wind-turbine aerodynamics, called MIRAS, and the structural dynamics model...... used in the aero-elastic code FLEX5. The new code, MIRASFLEX, in general shows good agreement with the standard aero-elastic codes FLEX5 and FAST for various test cases. The structural model in MIRAS-FLEX acts to reduce the aerodynamic load computed by MIRAS, particularly near the tip and at high wind...

  8. Investigation of brush seals for application in steam turbines

    International Nuclear Information System (INIS)

    Zorn, Peter

    2012-01-01

    Brush seals have high potential for efficiency increase compared to conventional labyrinth seals in steam turbines. Due to less experience in operation today there is a lot of scepticism with customers of steam turbine manufacturers. Therefore this thesis is investigating characteristics of this type of seal. Experiments and numerical models will be presented, which lead to better knowledge about leakages and influence of flow through seal onto dynamics of rotor in comparison to labyrinth seals. This thesis is increasing area of experience and one more positive reference.

  9. Probabilistic Calibration of Fatigue Design Factors for Offshore Wind Turbine Support Structures

    DEFF Research Database (Denmark)

    Ramirez, José Rangel; Sørensen, John Dalsgaard

    2010-01-01

    for the considered offshore wind turbines in such a way that the specific uncertainties for the fatigue life are accounted in a rational manner. Similar approaches have been used for offshore oil & gas sub-structures, but the required reliability level for offshore wind turbines is generally lower and the fatigue......This paper describes a reliability-based approach to determine fatigue design factors (FDF) for offshore wind turbine support structures made of steel. The FDF values are calibrated to a specific reliability level and linked to a specific inspection and maintenance (I&M) strategy used...

  10. Analysis of Grid-Scored Sandwich Structures of Different Curvatures and Grid Sizes For Wind Turbine Blades

    DEFF Research Database (Denmark)

    Laustsen, Steffen; Thomsen, Ole Thybo; Lund, Erik

    2012-01-01

    The stress and strain field developed locally in-situ the core of grid-scored sandwich structures in wind turbine blades is investigated. Due to the many singularities occurring from the “tri-material corners”, a full 3D analysis of the sandwich structure in terms of the Finite Element Method is ...

  11. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    OpenAIRE

    Tan Jiqiu; Zhong Dingqing; Wang Qiong

    2014-01-01

    In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction fie...

  12. Structural health and prognostics management for offshore wind turbines :

    Energy Technology Data Exchange (ETDEWEB)

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  13. Improving Ambient Wind Environments of a Cross-flow Wind Turbine near a Structure by using an Inlet Guide Structure and a Flow Deflector

    Institute of Scientific and Technical Information of China (English)

    Tadakazu TANINO; Shinichiro NAKAO; Genki UEBAYASHI

    2005-01-01

    A cross-flow wind turbine near a structure was tested for the performance. The results showed that the performance of a cross-flow wind turbine near a structure was up to 30% higher than the one without a structure.In addition, we tried to get higher performance of a cross-flow wind turbine by using an Inlet Guide Structure and a Flow Deflector. An Inlet Guide Structure was placed on the edge of a structure and a Flow Deflector was set near a cross-flow wind turbine and can improve ambient wind environments of the wind turbine, the maximum power coefficients were about 15 to 40% higher and the tip speed ratio range showing the high power coefficient was wide and the positive gradients were steep apparently.

  14. A New Structure Based on Cascaded Multilevel Converter for Variable Speed Wind Turbine

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2010-01-01

    An alternative structure for variable speed wind turbine, using multiple permanent magnet synchronous generators (PMSGs) drive-train configuration and cascaded multilevel converter is proposed in this paper. This study presents a power electronic solution for the wind turbine. A transformer......-less cascaded multilevel converter interface based on PMSGs is developed to synthesize a desired high ac sinusoidal output voltage. The benefits of high power and high ac voltage make this structure possible to be applied in the wind power generation. In addition, the bulky transformer could be omitted....... A simulation model of 10 MW variable speed wind turbine based on PMSGs developed in PSCAD/EMTDC is presented. The dynamic performance of grid-connected wind turbine is analyzed. Simulation results shows that the proposed structure may be attractive in wind power generation....

  15. Investigation of transient models and performances for a doubly fed wind turbine under a grid fault

    DEFF Research Database (Denmark)

    Wang, M.; Zhao, B.; Li, H.

    2011-01-01

    fed induction generator (DFIG), the assessments of the impact on the electrical transient performances were investigated for the doubly fed wind turbine with different representations of wind turbine drive-train dynamics models, different initial operational conditions and different active crowbar...... crowbar on the transient performances of the doubly fed wind turbine were also investigated, with the possible reasonable trip time of crowbar. The investigation have shown that the transient performances are closely correlated with the wind turbine drive train models, initial operational conditions, key...

  16. Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes

    Science.gov (United States)

    Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.

  17. Computational investigation of flow control by means of tubercles on Darrieus wind turbine blades

    Science.gov (United States)

    Sevinç, K.; Özdamar, G.; Şentürk, U.; Özdamar, A.

    2015-09-01

    This work presents the current status of the computational study of the boundary layer control of a vertical axis wind turbine blade by modifying the blade geometry for use in wind energy conversion. The control method is a passive method which comprises the implementation of the tubercle geometry of a humpback whale flipper onto the leading edge of the blades. The baseline design is an H-type, three-bladed Darrieus turbine with a NACA 0015 cross-section. Finite-volume based software ANSYS Fluent was used in the simulations. Using the optimum control parameters for a NACA 634-021 profile given by Johari et al. (2006), turbine blades were modified. Three dimensional, unsteady, turbulent simulations for the blade were conducted to look for a possible improvement on the performance. The flow structure on the blades was investigated and flow phenomena such as separation and stall were examined to understand their impact on the overall performance. For a tip speed ratio of 2.12, good agreement was obtained in the validation of the baseline model with a relative error in time- averaged power coefficient of 1.05%. Modified turbine simulations with a less expensive but less accurate turbulence model yielded a decrease in power coefficient. Results are shown comparatively.

  18. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  19. Investigating Coherent Structures in the Standard Turbulence Models using Proper Orthogonal Decomposition

    International Nuclear Information System (INIS)

    Eliassen, Lene; Andersen, Søren

    2016-01-01

    The wind turbine design standards recommend two different methods to generate turbulent wind for design load analysis, the Kaimal spectra combined with an exponential coherence function and the Mann turbulence model. The two turbulence models can give very different estimates of fatigue life, especially for offshore floating wind turbines. In this study the spatial distributions of the two turbulence models are investigated using Proper Orthogonal Decomposition, which is used to characterize large coherent structures. The main focus has been on the structures that contain the most energy, which are the lowest POD modes. The Mann turbulence model generates coherent structures that stretches in the horizontal direction for the longitudinal component, while the structures found in the Kaimal model are more random in their shape. These differences in the coherent structures at lower frequencies for the two turbulence models can be the reason for differences in fatigue life estimates for wind turbines. (paper)

  20. Investigation of turbine ventilator performance after added wind cup for room exhaust air applications

    Science.gov (United States)

    Harun, D.; Zulfadhli; Akhyar, H.

    2018-05-01

    The turbine ventilator is a wind turbine with a vertical axis that has a combined function of the wind turbine and a suction fan. In this study, the turbine ventilator modified by adding a wind cup on the top (cap) turbine ventilator. The purpose of this experiment is to investigated the effect of the addition of wind cup on the turbine ventilator. Turbine ventilator used is type v30 and wind cup with diameter 77 mm. The experiment was conducted using a triangular pentagon model space chamber which was cut off to place the ventilator turbine ventilation cup with a volume of 0.983 m3 (equivalent to 1 mm3). The results of this study indicate that at an average wind speed of 1.8 m/s, the rotation of the turbine produced without a wind cup is 60.6 rpm while with the addition of a wind cup in the turbine ventilator is 69 rpm. The average increase of rotation turbine after added win cup is 8.4 rpm and the efficiency improvement of turbine ventilator is 1.7 %.

  1. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    Science.gov (United States)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  2. Structural Optimization of an Innovative 10 MW Wind Turbine Nacelle

    DEFF Research Database (Denmark)

    Dabrowski, Dariusz; Natarajan, Anand; Stehouwer, Ewoud

    2015-01-01

    For large wind turbine configurations of 10 MW and higher capacities, direct-drives present a more compact solution over conventional geared drivetrains. Further, if the generator is placed in front of the wind turbine rotor, a compact “king-pin” drive is designed, that allows the generator...... to be directly coupled to the hub. In presented study, the structural re-design of the innovative 10 MW nacelle was made using extreme loads obtained from a 10 MW reference wind turbine. On the basis of extreme loads the ultimate stresses on critical nacelle components were determined to ensure integrity...

  3. Implications of Stably Stratified Atmospheric Boundary Layer Turbulence on the Near-Wake Structure of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kiran Bhaganagar

    2014-09-01

    Full Text Available Turbulence structure in the wake behind a full-scale horizontal-axis wind turbine under the influence of real-time atmospheric inflow conditions has been investigated using actuator-line-model based large-eddy-simulations. Precursor atmospheric boundary layer (ABL simulations have been performed to obtain mean and turbulence states of the atmosphere under stable stratification subjected to two different cooling rates. Wind turbine simulations have revealed that, in addition to wind shear and ABL turbulence, height-varying wind angle and low-level jets are ABL metrics that influence the structure of the turbine wake. Increasing stability results in shallower boundary layers with stronger wind shear, steeper vertical wind angle gradients, lower turbulence, and suppressed vertical motions. A turbulent mixing layer forms downstream of the wind turbines, the strength and size of which decreases with increasing stability. Height dependent wind angle and turbulence are the ABL metrics influencing the lateral wake expansion. Further, ABL metrics strongly impact the evolution of tip and root vortices formed behind the rotor. Two factors play an important role in wake meandering: tip vortex merging due to the mutual inductance form of instability and the corresponding instability of the turbulent mixing layer.

  4. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    Science.gov (United States)

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  5. Structural dynamic analysis of turbine blade

    Science.gov (United States)

    Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.

    2017-10-01

    In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.

  6. Investigation of the K-500-65/3000 turbine and its foundation defopmation

    International Nuclear Information System (INIS)

    Gluzshtejn, Yu.O.; Gurevich, G.I.; Zarkovskij, Yu.V.; Mikheev, Yu.I.; Ustavich, G.A.; Tyshchuk, O.L.; Cherepanov, D.A.; Chesheva, I.N.

    1984-01-01

    At the Leningrad NPP during the seren-year period four K-50a-65/3000 turbine and their foundation deformation measurements have been performed by means of a high accuracy geometric levelling. Determined are: settling values and values of residual deformations of the lower foundation plate, thermal deformations of the upper foundation structure under different turbine operation conditions, turbine shafting bearing shafting at the horizontal joint level; horizontal time required for shafting bearing stabilization upon shut-down and start-up of the turbine. Tne turbine foundation columns elongation has been determined with accuracy of 0.05-0.06 mm and 0.06-0.08 mm at the shut-down or operating turbine, respectively. For levelling a leveller has been applied, the accuracy of measurement of relative height of which is equal to 0.03 mm at the 6 m collimating ray length. The measurement accuracy is decreasing at the operating turbine up to 0.04-0.05 mm. As a result of measurements it has been revealed that relative bearing shifting occurs during the first 8-10 days after shut-down and 4-5 days after start-up and reach 2.5 and 2.0 mm, respectively. In addition, shafting bearing centers shifting has been determined at the operating and shut-down turbine. The conclusion is drawn that the number of problems of shafting bearing alignment of high power turbines arising during their mounting, operation and maintenance, one may succeed in solving by means of high accuracy geometric levelling

  7. Aerodynamic investigation of winglets on wind turbine blades using CFD

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side...

  8. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex A. Cost-benefit for embedded sensors in large wind turbine blades

    DEFF Research Database (Denmark)

    Hansen, L.G.; Lading, Lars

    2002-01-01

    -bladed 2MW turbine placed offshore either without sensors or with sensors are compared. The price of a structural health monitoring system of a price of 100 000 DKK (per tur-bine) results in a break-eventime of about 3 years. For a price of 300 000 DKK the break-even time is about 8 years. However......This report contains the results of a cost-benefit analysis for the use of embed-ded sensors for damage detection in large wind turbine blades - structural health monitoring - (in connection with remote surveillance) of large wind turbine placedoff-shore. The total operating costs of a three......, the cost/benefit analysis has large uncertainties....

  9. Experimental investigation of the wake behind a model of wind turbine in a water flume

    International Nuclear Information System (INIS)

    Okulov, V L; Mikkelsen, R; Sørensen, J N; Naumov, I N; Kabardin, I

    2014-01-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert's optimization. The transitional regime, generally characterized as in between the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities. The near wake characteristics (development of expansion, tip vortex position, deficit velocity and rotation in the wake) have been measured for different tip speed ratio to compare with main assumptions and conclusions of various rotor theories

  10. Experimental investigation of the wake behind a model of wind turbine in a water flume

    DEFF Research Database (Denmark)

    Okulov, Valery; Naumov, Igor; Kabardin, I.

    2014-01-01

    The flow behind the model of wind turbine rotor is investigated experimentally in a water flume using Particle Image Velocimetry. The study carried out involves rotors of three bladed wind turbine designed using Glauert’s optimization. The transitional regime, generally characterized as in between...... the regime governed by stable organized vortical structures and the turbulent wake, develops from disturbances of the tip and root vorticies through vortex paring and further complex behaviour towards the fully turbulent wake. Our PIV measurements pay special attention to the onset of the instabilities....... The near wake characteristics (development of expansion, tip vortex position, deficit velocity and rotation in the wake) have been measured for different tip speed ratio to compare with main assumptions and conclusions of various rotor theories....

  11. Radar micro-Doppler of wind turbines : Simulation and analysis using rotating linear wire structures

    NARCIS (Netherlands)

    Krasnov, O.A.; Yarovoy, A.

    2015-01-01

    A simple electromagnetic model of wind-turbine's main structural elements as the linear wired structures is developed to simulate the temporal patterns of observed radar return Doppler spectra (micro-Doppler). Using the model, the micro-Doppler for different combinations of the turbines rotation

  12. Numerical investigations of wake interactions of two wind turbines in tandem

    Science.gov (United States)

    Qian, Yaoru; Wang, Tongguang

    2018-05-01

    Aerodynamic performance and wake interactions between two wind turbine models under different layouts are investigated numerically using large eddy simulation in conjunction with actuator line method based on the “Blind Test” series wind tunnel experiments from Norwegian University of Science and Technology. Numerical results of the power and thrust coefficients of the two rotors and wake characteristics are in good agreement with the experimental measurements. Extended investigations emphasizing the influence of different layout arrangements on the downstream rotor performance and wake development are conducted. Results show that layout arrangements have great influence on the power and thrust prediction of the downstream turbine.

  13. Aspects of structural health and condition monitoring of offshore wind turbines.

    Science.gov (United States)

    Antoniadou, I; Dervilis, N; Papatheou, E; Maguire, A E; Worden, K

    2015-02-28

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector.

  14. Aspects of structural health and condition monitoring of offshore wind turbines

    Science.gov (United States)

    Antoniadou, I.; Dervilis, N.; Papatheou, E.; Maguire, A. E.; Worden, K.

    2015-01-01

    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector. PMID:25583864

  15. Structured, Gain-Scheduled Control of Wind Turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher

    2013-01-01

    Improvements in cost-effectiveness and reliability of wind turbines is a constant in the industry. This requires new knowledge and systematic methods for analyzing and designing the interaction of structural dynamics, aerodynamics, and controllers. This thesis presents novel methods and theoretical....... Robustness and fault-tolerance capabilities are also important properties, which should be considered in the design process. Novel gain-scheduling and robust control methods that adapt to variations in the operational conditions of the wind turbine are proposed under the linear parameter-varying (LPV...... intuitive and physical specifications for vibration control, such as minimum damping and decay rate of aeroelastic modes. Moreover, the number of weighting functions and consequently the order of the final controller is reduced. Inspired by this application, theoretical control developments are presented...

  16. Structural design of the turbine building of Angra Nuclear Power Station, Unit 1

    International Nuclear Information System (INIS)

    Varella, L.N.; Reis, F.J.C.; Jurkiewicz, W.J.

    1978-01-01

    The Turbine Building of the Angra Nuclear Power Plant, Unit 1, and particularly its structure and structural design are described. The Turbine Building, as far as its structure is concerned, deviates from the standard structure of any turbine building due to the fact that huge ducts are provided in the foundation mat as to accomodate the circulating water system. This aspect and the fact that the building is founded upon a very deep strata of compacted and controlled fill, makes out of the building structure 'a concrete ship floating in the sea of sand', and by the same reason presents by itself an interesting structure, worth to be known to all engineers involved in design of power plants. This pape, suplemented by a few slides shown during presentation of the paper at the conference, covers the subject mainly from the designers' point of view. (Author)

  17. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    Science.gov (United States)

    Berg, D. E.

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.

  18. Hydraulic and structural co-simulation analysis of turbine runner during operation

    International Nuclear Information System (INIS)

    Markov, Zoran; Popovski, Predrag; Lipej, Andrej; Djelic, Vesko

    2006-01-01

    Modern concept of HPP refurbishment procedure consists of many aspects of the turbine re-design. One of the most useful data is the previous operational data during the lifetime of the unit. In many cases, high stressed areas are damaged. Lack of the measurements makes the solution of the problems and verification of the numerical results very difficult. This work represents an integrated approach in solving hydraulic and structural problems in design stage or optimization of an aial hydro turbine. CFD approach is implemented in solving the flow through a complete aial turbine, taking into account all the necessary factors influencing the real flow. Frozen rotor condition is taken as an input in the computations. The results from the CFD calculations are used as an input for the performed FEA modeling and structural analysis.

  19. Investigation for vertical, two-phase steam-water flow of three turbine models

    International Nuclear Information System (INIS)

    Silverman, S.; Goodrich, L.D.

    1977-01-01

    One of the basic quantities of interest during a loss-of-coolant experiment (LOCE) is the primary system mass flow rate. Presently, there are no transducers commercially available which continuously measure this parameter. Therefore, a transducer was designed at EG and G Idaho, Inc. which combines a drag-disc and turbine into a single unit. The basis for the design was that the drag-disc would measure momentum flux (rhoV 2 ), the turbine would measure velocity and the mass flow rate could then be calculated from the two quantities by assuming a flow profile. For two-phase flow, the outputs are approximately proportional to the desired parameter, but rather large errors can be expected under those assumptions. Preliminary evaluation of the experimental two- and single-phase calibration data has resulted in uncertainty estimates of +-8% of range for the turbine and +-20% of range for the drag-disc. In an effort to reduce the errors, further investigations were made to determine what the drag-disc and turbine really measure. In the present paper, three turbine models for vertical, two-phase, steam/water flow are investigated; the Aya Model, the Rouhani Model, and a volumetric flow model. Theoretical predictions are compared with experimental data for vertical, two-phase steam/water flow. For the purposes of the mass flow calculation, velocity profiles were assumed to be flat for the free-field condition. It is appreciated that this may not be true for all cases investigated, but for an initial inspection, flat profiles were assumed

  20. An investigation of the levels of electromagnetic radiation generated by wind turbines

    International Nuclear Information System (INIS)

    Morgan, C.A.

    1992-01-01

    The issue of electromagnetic interference is arising with some regularity as various wind energy projects throughout the UK reach the stage where local authority planning approval is sought. To many of the parties involved, wind turbines represent an unknown quantity and hence objections to their siting must be expected. Wind turbines may cause electromagnetic interference through two quite distinct processes. The first occurs when the wind turbine scatters electromagnetic signals passing through the area of the site and essentially, provides a second path between the transmitter and receiver of the signal. The second source of interference arises when signals generated within the wind turbine itself affect communications equipment or, indeed, any electronic circuitry. A case in point is a wind farm project under development by Bonython Estates of Cornwall. The aim of this project was to investigate the emissions from the wind turbines proposed for the Bonython development. This was achieved by means of field measurements on existing installations. (author)

  1. Static Structural and Modal Analysis of Gas Turbine Blade

    Science.gov (United States)

    Ranjan Kumar, Ravi; Pandey, K. M., Prof.

    2017-08-01

    Gas turbine is one of the most versatile items of turbo machinery nowadays. It is used in different modes such as power generation, oil and gas, process plants, aviation, domestic and related small industries. This paper is based on the problems concerning blade profile selection, material selection and turbine rotor blade vibration that seriously impact the induced stress-deformation and structural functioning of developmental gas turbine engine. In this paper for generating specific power by rotating blade at specific RPM, blade profile and material has been decided by static structural analysis. Gas turbine rotating blade RPM is decided by Modal Analysis so that the natural frequency of blade should not match with the excitation frequency. For the above blade profile has been modeled in SOLIDWORKS and analysis has been done in ANSYS WORKBENCH 14. Existing NACA6409 profile has been selected as base model and then it is modified by bending it through 72.5° and 145°. Hence these three different blade profiles have been analyzed for three different materials viz. Super Alloy X, Nimonic 80A and Inconel 625 at three different speed viz. 20000, 40000 and 60000RPM. It is found that NACA6409 with 72.5° bent gives best result for all material at all speed. Among all the material Inconel 625 gives best result. Hence Blade of Inconel 625 having 72.5° bent profile is the best combination for all RPM.

  2. Summary of Investigations of the Use of Modified Turbine Inlet Conditions in a Binary Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mines, Gregory Lee

    2000-09-01

    Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

  3. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  4. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  5. Structural experiment of wind turbine blades; Fushayo blade no zairyo rikigakuteki jikken kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K; Shimizu, Y; Kuroyanagi, H [Tokai University, Tokyo (Japan)

    1997-11-25

    Aluminum, GFRP and composite of aluminum coated with carbon as structural materials for wind turbine blades were bending-tested, to improve blade bending stiffness, understand stress conditions at each position, and clarify structural dynamic strength by the bending-failure test. It is possible to estimate stress conditions at each position from the test results of displacement and strain at each load. The test results with GFRP are well explained qualitatively by the boundary theory, known as a theory for composite materials. The test gives reasonable material strength data, useful for designing wind turbines of high functions and safety. The results of the blade bending-failure test are in good agreement with the calculated structural blade strength. It is also found that GFRP is a good material of high structural strength for wind turbines. 8 refs., 6 tabs.

  6. Numerical investigation of the optimum wind turbine sitting for domestic flat roofs

    Science.gov (United States)

    Ishfaq, Salman Muhammad; Chaudhry, Hassam Nasarullah

    2018-05-01

    The power capacity of roof mounted wind turbines is dependent on several factors which influence its energy yield. In this paper, an investigation has been carried out using Computational Fluid Dynamics (CFD) to determine flow distribution and establish an optimum mounting location for a small wind turbine on a domestic flat roof. The realisable k-ɛ and SST k-ω turbulence models were compared to establish their consistency with one another with respect to the physical domain. Nine mounting locations were considered for a pole mounted wind turbine. Three windward positions on the upwind side of the flat surfaced building were considered as viable locations for mounting the small wind turbine. Out of the three windward locations, the central upwind (1,0) mounting position was seen to be producing the highest velocity of 5.3 m/s from the available ambient velocity which was 4 m/s. Therefore, this mounting location provided the highest extractable power for the wind turbine. Conclusively, wind properties along with the mounting locations can play a significant role in either enhancing or diminishing the small wind turbine's performance on a domestic flat roof.

  7. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    2 P O Box 5800, Albuquerque, NM, 87185 (United States))" data-affiliation=" (Senior Member of Technical Staff, Analytical Structural Dynamics Sandia National Laboratories2 P O Box 5800, Albuquerque, NM, 87185 (United States))" >Owens, B C; 2 P O Box 5800, Albuquerque, NM, 87185 (United States))" data-affiliation=" (Principal Member of Technical Staff, Wind Energy Technologies Sandia National Laboratories2 P O Box 5800, Albuquerque, NM, 87185 (United States))" >Griffith, D T

    2014-01-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs

  8. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    Science.gov (United States)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  9. Probabilistic analysis of turbine missile damage to nuclear power plant structures

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.; Frank, R.A.

    1983-01-01

    This paper summarizes the results of the EPRI project that focused on the development of the overall probabilistic methodology to assess the risks of turbine missile induced damage to nuclear power plant structures and components. The project was structured to use the results of other EPRI projects that provided information on turbine failure and missile generation frequencies, models to predict the characteristics and exit conditions of the missiles, and experimental data for use in updating empirical impact formulas for reinforced concrete barriers. The research effort included: (1) adaptation and implementation of the missile generation probability and turbine casing impact models developed in Ref. [2]; (2) development of a methodology for the prediction of the motion of the postulated missile fragments that perforate the turbine casing; (3) development of a model using the experimental impact data to predict the effects of fragment impact on nuclear power plant barriers and components; (4) construction of a probabilistic damage assessment methodology using Monte Carlo simulation methodology; and (5) implementation of the methodology into an independent computer program (TURMIS), demonstration of its application to an example case study problem, and assessment of prediction sensitivity. (orig./RW)

  10. Statistical Evaluation of the Identified Structural Parameters of an idling Offshore Wind Turbine

    International Nuclear Information System (INIS)

    Kramers, Hendrik C.; Van der Valk, Paul L.C.; Van Wingerden, Jan-Willem

    2016-01-01

    With the increased need for renewable energy, new offshore wind farms are being developed at an unprecedented scale. However, as the costs of offshore wind energy are still too high, design optimization and new innovations are required for lowering its cost. The design of modern day offshore wind turbines relies on numerical models for estimating ultimate and fatigue loads of the turbines. The dynamic behavior and the resulting structural loading of the turbines is determined for a large part by its structural properties, such as the natural frequencies and damping ratios. Hence, it is important to obtain accurate estimates of these modal properties. For this purpose stochastic subspace identification (SSI), in combination with clustering and statistical evaluation methods, is used to obtain the variance of the identified modal properties of an installed 3.6MW offshore wind turbine in idling conditions. It is found that one is able to obtain confidence intervals for the means of eigenfrequencies and damping ratios of the fore-aft and side-side modes of the wind turbine. (paper)

  11. Design and Analysis of Wind Turbine Rotors Using Hinged Structures and Rods

    Science.gov (United States)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    Light weight and high stiffness are key design factors in ensuring cost effectiveness and reliability of wind turbines, especially for the inboard region of the rotor blades. In this study, several novel designs were developed to improve the mechanical performance of the rotor. Experiments were performed on an isolated blade incorporating the new features of a hinged structure and rods. The results validated the effectiveness of these features at alleviating the root-bending moment of the blade under varying wind loads and enhancing the stiffness of the blade. A numerical investigation was carried out to further examine the bending moment distribution, shear and axial force, and rod tension of these novel rotor designs under uniform loads. Longitudinal geometrical variations of the blade were considered in the model. Results showed that two designs realized a favorable bending moment distribution and improved the modal frequencies of the edgewise modes: bisymmetrical rods on a single-hinged structure and interveined symmetrical rods on a cantilevered structure. However, these designs have different deformation mechanisms. In addition, the first group of edgewise modal frequencies of these two designs were improved compared with the traditional rotor design. Their potential values in the application to the design of a lightweight, high-stiffness, and reliable wind turbine rotor were discussed.

  12. WindPACT Reference Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rinker, Jennifer [Former National Renewable Energy Laboratory (NREL) employee

    2018-04-02

    To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor to NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.

  13. Development of Self-Powered Wireless Structural Health Monitoring (SHM) for Wind Turbine Blades

    Science.gov (United States)

    Lim, Dong-Won

    Wind turbine blade failure can lead to unexpected power interruptions. Monitoring wind turbine blades is important to ensure seamless electricity delivery from power generation to consumers. Structural health monitoring (SHM) enables early recognition of structural problems so that the safety and reliability of operation can be enhanced. This dissertation focuses on the development of a wireless SHM system for wind turbine blades. The sensor is comprised of a piezoelectric energy harvester (EH) and a telemetry unit. The sensor node is mounted on the blade surface. As the blade rotates, the blade flexes, and the energy harvester captures the strain energy on the blade surface. Once sufficient electricity is captured, a pulse is sent from the sensing node to a gateway. Then, a central monitoring algorithm processes a series of pulses received from all three blades. This wireless SHM, which uses commercially available components, can be retrofitted to existing turbines. The harvested energy for sensing can be estimated in terms of two factors: the available strain energy and conversion efficiency. The available strain energy was evaluated using the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) simulator. The conversion efficiency was studied analytically and experimentally. An experimental set-up was designed to mimic the expected strain frequency and amplitude for rotor blades. From a series of experiments, the efficiency of a piezoelectric EH at a typical rotor speed (0.2 Hz) was approximately 0.5%. The power requirement for sending one measurement (280 muJ) can be achieved in 10 minutes. Designing a detection algorithm is challenging due to this low sampling rate. A new sensing approach-the timing of pulses from the transmitter-was introduced. This pulse timing, which is tied to the charging time, is indicative of the structural health. The SHM system exploits the inherent triple redundancy of the three blades. The timing data of the three blades are

  14. Numerical Investigation of Aerodynamic Performance and Loads of a Novel Dual Rotor Wind Turbine

    Directory of Open Access Journals (Sweden)

    Behnam Moghadassian

    2016-07-01

    Full Text Available The objective of this paper is to numerically investigate the effects of the atmospheric boundary layer on the aerodynamic performance and loads of a novel dual-rotor wind turbine (DRWT. Large eddy simulations are carried out with the turbines operating in the atmospheric boundary layer (ABL and in a uniform inflow. Two stability conditions corresponding to neutral and slightly stable atmospheres are investigated. The turbines are modeled using the actuator line method where the rotor blades are modeled as body forces. Comparisons are drawn between the DRWT and a comparable conventional single-rotor wind turbine (SRWT to assess changes in aerodynamic efficiency and loads, as well as wake mixing and momentum and kinetic energy entrainment into the turbine wake layer. The results show that the DRWT improves isolated turbine aerodynamic performance by about 5%–6%. The DRWT also enhances turbulent axial momentum entrainment by about 3.3 %. The highest entrainment is observed in the neutral stability case when the turbulence in the ABL is moderately high. Aerodynamic loads for the DRWT, measured as out-of-plane blade root bending moment, are marginally reduced. Spectral analyses of ABL cases show peaks in unsteady loads at the rotor passing frequency and its harmonics for both rotors of the DRWT.

  15. Numerical investigation of aerodynamic performance of darrieus wind turbine based on the magnus effect

    Directory of Open Access Journals (Sweden)

    L Khadir

    2016-10-01

    Full Text Available The use of several developmental approaches is the researchers’ major preoccupation with the DARRIEUS wind turbine. This paper presents the first approach and results of a wide computational investigation on the aerodynamics of a vertical axis DARRIEUS wind turbine based on the MAGNUS effect. Consequently, wind tunnel tests were carried out to ascertain overall performance of the turbine and two-dimensional unsteady computational fluid dynamics (CFD models were generated to help understand the aerodynamics of this new performance. Accordingly, a moving mesh technique was used where the geometry of the turbine blade was cylinders. The turbine model was created in Gambit modeling software and then read into fluent software for fluid flow analysis. Flow field characteristics are investigated for several values of tip speed ratio (TSR, in this case we generated a new rotational speed ratio between the turbine and cylinder (δ = ωC/ωT. This new concept based on the MAGNUS approach provides the best configuration for better power coefficient values. The positive results of Cp obtained in this study are used to generate energy; on the other hand, the negative values of Cp could be used in order to supply the engines with energy.

  16. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...... turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating...... support structure and mooring system for the DeepWind concept. The conceptual design is formulated as an optimization problem: Starting with an initial configuration, the optimization procedure tries to find a cheaper solution while satisfying a set of design requirements. This approach utilizes available...

  17. Numerical investigation of aerodynamic performance of darrieus wind turbine based on the magnus effect

    OpenAIRE

    L Khadir; H Mrad

    2016-01-01

    The use of several developmental approaches is the researchers’ major preoccupation with the DARRIEUS wind turbine. This paper presents the first approach and results of a wide computational investigation on the aerodynamics of a vertical axis DARRIEUS wind turbine based on the MAGNUS effect. Consequently, wind tunnel tests were carried out to ascertain overall performance of the turbine and two-dimensional unsteady computational fluid dynamics (CFD) models were generated to help understand t...

  18. Effective solidity in vertical axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  19. Noise pollution from wind turbine gears loudness of structural noise sources related to gears

    International Nuclear Information System (INIS)

    Crone, A.

    1995-04-01

    The purpose of the project has been to develop a method for determination of the structure-borne noise source strength of the gearbox in a typical modern Danish wind turbine construction, with special reference to the tonal noise emission form the turbines. Through study and evaluation of eight potential methods, a simple method has ben formulated. The method is based on measurements of the free vibration velocity level on the gearbox in a load test bed. The relation between this source strength measure and the gearbox related noise from wind turbines has been documented by measurements made during the project together with earlier measurements. The method is intended as a tool for the wind turbine manufacturer, for control of the gearbox related noise from the wind turbines, due to structure-borne noise from the gearbox. It may be used for preparation of specifications to the gearbox manufacturer on test procedure and acceptable source strength levels. Also, it may be used for evaluation of the transmission and radiation of gearbox related noise, for example in order to uncover weaknesses in a prototype turbine. Suggestions for adaptation and evolution of the method has been given, thereby improving the strength of the method for the individual wind turbine manufacturer. (au) 19 refs

  20. Effect of soil-foundation-structure interaction on the seismic response of wind turbines

    Directory of Open Access Journals (Sweden)

    Sam Austin

    2017-09-01

    Full Text Available Soil-foundation-structure interaction can affect the seismic response of wind turbines. This paper studies the effects of soil-foundation-structure interaction on the seismic response of 65 kW, 1 MW, and 2 MW horizontal-axis wind turbines with truncated cone steel towers. Four types of foundations with frequency-based design were analyzed, including spread foundation, mono pile, pile group with cap, and anchored spread foundation. Soil is modeled both implicitly (subgrade reaction modulus and explicitly. The finite element model developed using the ANSYS program was first validated using experimental data. Numerical models are then analyzed in both frequency and time domains using the Block Lanczos and generalized HHT-α formulations. Recommendations were given to simplify the soil-foundation-structure interaction analysis of wind turbines subjected to seismic loading.

  1. Dynamic Analysis of A 5-MW Tripod Offshare Wind Turbine by Considering Fluid-Structure Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-wei; LI Xin

    2017-01-01

    Fixed of fshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod of fshore wind turbine considering the pile–soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of of fshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of of fshore wind turbines fixed in deep seawater.

  2. Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction

    Science.gov (United States)

    Zhang, Li-wei; Li, Xin

    2017-10-01

    Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.

  3. Investigation of the two-element airfoil with flap structure for the vertical axis wind turbine

    International Nuclear Information System (INIS)

    Wei, Y; Li, C

    2013-01-01

    The aerodynamic performance of Vertical axis wind turbine (VAWT) is not as simple as its structure because of the large changing range of angle of attack. We have designed a new kind of two-element airfoil for VAWT on the basis of NACA0012. CFD calculation has been confirmed to have high accuracy by comparison with the experiment data and Xfoil result. The aerodynamic parameter of two-element airfoil has been acquired by CFD calculation in using the Spalart-Allmaras (S-A) turbulence model and the Simple scheme. The relationship between changings of angle of attack and flap's tilt angle has been found and quantified. The analysis will lay the foundation for further research on the control method for VAWT

  4. Investigation of a High Head Francis Turbine at Runaway Operating Conditions

    Directory of Open Access Journals (Sweden)

    Chirag Trivedi

    2016-03-01

    Full Text Available Hydraulic turbines exhibit total load rejection during operation because of high fluctuations in the grid parameters. The generator reaches no-load instantly. Consequently, the turbine runner accelerates to high speed, runaway speed, in seconds. Under common conditions, stable runaway is only reached if after a load rejection, the control and protection mechanisms both fail and the guide vanes cannot be closed. The runner life is affected by the high amplitude pressure loading at the runaway speed. A model Francis turbine was used to investigate the consequences at the runaway condition. Measurements and simulations were performed at three operating points. The numerical simulations were performed using standard k-ε, k-ω shear stress transport (SST and scale-adaptive simulation (SAS models. A total of 12.8 million hexahedral mesh elements were created in the complete turbine, from the spiral casing inlet to the draft tube outlet. The experimental and numerical analysis showed that the runner was subjected to an unsteady pressure loading up to three-times the pressure loading observed at the best efficiency point. Investigates of unsteady pressure pulsations at the vaneless space, runner and draft tube are discussed in the paper. Further, unsteady swirling flow in the blade passages was observed that was rotating at a frequency of 4.8-times the runaway runner angular speed. Apart from the unsteady pressure loading, the development pattern of the swirling flow in the runner is discussed in the paper.

  5. Turbine and Structural Seals Team Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Seals Team Facilities conceive, develop, and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. Current projects include...

  6. A GLANCE AT OFFSHORE WIND TURBINE FOUNDATION STRUCTURES

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2016-06-01

    Full Text Available Energy poverty and climate change are crucial issues we face in our societies. Offshore wind energy has been a reliable solution to both of these problems - solving our growing energy problems while reducing CO2 emission. Innovative foundation design is one of the setbacks faced by this industry. Designing and constructing a cost effective offshore wind farm is greatly hampered by technical and infrastructural challenges, especially in foundation structures. This paper provides a detailed overview of issues related to this problem, with the aim of eliminating the frequent misunderstandings which can arise among engineers and investors working in the offshore wind energy sector. It begins by investigating the latest data and recommendations regarding the design and deployment of various kinds of offshore wind turbine (OWT foundations. It provides a framework which enables us to study the different OWT foundations, including prototypes and their limitations. Various structural failure modes are highlighted and corrosion measures are presented. Moreover, various removal methods of support structures are put forward. Finally, this paper presents the setbacks preventing the spread of offshore wind energy and the future works for offshore wind energy applications.

  7. Light Rotor: The 10-MW reference wind turbine

    DEFF Research Database (Denmark)

    Bak, Christian; Bitsche, Robert; Yde, Anders

    2012-01-01

    design show a rather well performing wind turbine both in terms of power and loads, but in the further work towards the final design the challenges in the control needs to be solved and the balance between power performance and loads and between structural performance and mass will be investigated......This paper describes the design of a rotor and a wind turbine for an artificial 10-MW wind turbine carried out in the Light Rotor project. The turbine called the Light Rotor 10-MW Reference Wind Turbine (LR10-MW RWT), is designed with existing methods and techniques and serves as a reference...... like the determination of the specific power and upscaling of the turbine. The design of Iteration #2 of the LR10-MW RWT is carried out in a sequence between aerodynamic rotor design, structural design and aero-servo-elastic design. Each of these topics is described. The results from the Iteration #2...

  8. Diode rectifier bridge-based structure for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes a new structure for the doubly-fed induction generator (DFIG)-based wind turbine. The proposed structure consists of a DFIG controlled by a partial rated power converter in the rotor side, a three-phase diode rectifier bridge (DRB) connected to the stator, and a DC/AC full rated...

  9. Probabilistic Design of Wind Turbine Structures: Design Studies and Sensitivities to Model Parameters

    DEFF Research Database (Denmark)

    NJOMO WANDJI, Wilfried

    : decrease of conservatism level, improvement of design procedures, and development of innovative structural systems that suit well for large wind turbines. The increasing size of the structure introduces new problems that were not present for small structures. These problems include: (i) the preparation...... substructures. In addition to being aggressive, conditions for offshore environments and the associated models are highly uncertain. Appropriate statistical methodologies should be used in order to design robust structures, which are structures whose engineering performance is not significantly affected....... These research areas are differentially implemented through tasks on various wind turbine structures (shaft, jacket, semi-floater, monopile, and grouted joint). In particular the following research questions are answered: How are extreme and fatigue loads on a given structure influenced by the design of other...

  10. Investigation of potential extreme load reduction for a two-bladed upwind turbine with partial pitch

    DEFF Research Database (Denmark)

    Kim, Taeseong; Larsen, Torben J.; Yde, Anders

    2015-01-01

    This paper presents a wind turbine concept with an innovative design combining partial pitch with a two-bladed (PP-2B) turbine configuration. Special emphasis is on extreme load reduction during storm situations at standstill, but operational loads are also investigated. In order to compare...... loads are reduced by approximately 20% for the PP-2B and 18% for the PP-3B compared with the 3B turbine for the parked condition in a storm situation. Moreover, a huge potential of 60% is observed for the reduction of the extreme tower bottom bending moment for the PP-2B turbine, when the wind direction...... is from ±90° to the turbine, but this also requires that the turbine is parked in a T-configuration. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd....

  11. Investigation of Self Yaw and its Potential using a Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2013-01-01

    The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-MW...... turbine, modeled in FAST, in which a new robust method for implementing Coulomb friction is utilized. Based on this model and a model of the hydraulic system, the influence of friction and wind speed is investigated in relation to the possibility to use the system as a self-aligning yaw system. Similarly...... the behavior of the hydraulic system is analyzed and it is concluded that the hydraulic yaw system allows selfyaw under normal operating conditions for the turbine. Self-yaw control is possible in wind speeds above 12 m/s when yaw friction is kept below 1 MNm....

  12. Design of Large Wind Turbines using Fluid-Structure Coupling Technique

    DEFF Research Database (Denmark)

    Sessarego, Matias

    Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely carried out in the wind energy field using computational tools known as aero-elastic codes. Most aero-elastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics......-dimensional viscous-inviscid interactive method, MIRAS, with the dynamics model used in the aero-elastic code FLEX5. Following the development of MIRAS-FLEX, a surrogate optimization methodology using MIRAS alone has been developed for the aerodynamic design of wind-turbine rotors. Designing a rotor using...... a computationally expensive MIRAS instead of an inexpensive BEM code represents a challenge, which is resolved by using the proposed surrogate-based approach. The approach is unique because most aerodynamic wind-turbine rotor design codes use the more common and inexpensive BEM technique. As a verification case...

  13. One-Way Fluid-Structure Interaction Simulation of an Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhi-Kui Wang

    2014-07-01

    Full Text Available The Fluid-Structure Interaction (FSI has gained great interest of scholars recently, meanwhile, extensive studies have been conducted by the virtue of numerical methods which have been implemented on wind turbine models. The blades of a wind turbine have been gained a deep insight into the FSI analyses, however, few studies have been conducted on the tower and nacelle, which are key components of the wind turbine, using this method. We performed the one-way FSI analysis on a 2-MW offshore wind turbine, using the Finite Volume Method (FVM with ANSYS CFX solver and the RNG k-ε turbulence model, to achieve a comprehensive cognition of it. The grid convergence was studied and verified in this study, and the torque value is chosen to determine the optimal case. The superior case, which was chosen to conduct the FSI analysis, with a relative error is only 2.15%, thus, the accuracy of results is credible.

  14. Optimised and balanced structural and system reliability of offshore wind turbines. An account

    Energy Technology Data Exchange (ETDEWEB)

    Tarp-Johansen, N.J.; Kozine, I. (Risoe National Lab., DTU, Roskilde, (DK)); Rademarkers, L. (Netherlands Energy Research Foundation (NL)); Dalsgaard Soerensen, J. (Aalborg Univ. (DK)) Ronold, K. (Det Norske Veritas (DK))

    2005-04-15

    This report gives the results of the research project 'Optimised and Uniform Safety and Reliability of Offshore Wind Turbines (an account)'. The main subject of the project has been the account of the state-of-the art of knowledge about, and/or attempts to, harmonisation of the structural reliability of wind turbines, on the one hand, and the reliability of the wind turbine's control/safety system, on the other hand. Within the project some research pointing ahead has also been conducted. (au)

  15. Investigation into the effects of operating conditions and design parameters on the creep life of high pressure turbine blades in a stationary gas turbine engine

    OpenAIRE

    Eshati, Samir; Abu, Abdullahi; Laskaridis, Panagiotis; Haslam, Anthony

    2011-01-01

    A physics–based model is used to investigate the relationship between operating conditions and design parameters on the creep life of a stationary gas turbine high pressure turbine (HPT) blade. A performance model is used to size the blade and to determine its stresses. The effects of radial temperature distortion, turbine inlet temperature, ambient temperature and compressor degradation on creep life are then examined. The results show variations in creep life and failure locat...

  16. Structural monitoring and smart control of a wind turbine

    DEFF Research Database (Denmark)

    Caterino, Nicola; Trinchillo, Francesco; Georgakis, Christos T.

    2014-01-01

    The remarkable growth in height of wind turbines in the last years - for a higher production of electricity - makes the issues of monitoring and control of such challenging engineering works pressing than ever. The research herein proposed is addressed to monitor the structural demand imposed to ...

  17. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo

    2006-01-01

    Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...

  18. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    Science.gov (United States)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  19. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  20. Grid fault and design-basis for wind turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Cutululis, N.A.; Markou, H.; Soerensen, Poul; Iov, F.

    2010-01-15

    the structural loads, have also been proposed and investigated during the project. Statistics in terms of mean value and standard deviation have been analysed and rainflow calculations have been performed to estimate the impact over the lifetime of a variable speed wind turbine. (author)

  1. Orthogonal Analysis Based Performance Optimization for Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Lei Song

    2016-01-01

    Full Text Available Geometrical shape of a vertical axis wind turbine (VAWT is composed of multiple structural parameters. Since there are interactions among the structural parameters, traditional research approaches, which usually focus on one parameter at a time, cannot obtain performance of the wind turbine accurately. In order to exploit overall effect of a novel VAWT, we firstly use a single parameter optimization method to obtain optimal values of the structural parameters, respectively, by Computational Fluid Dynamics (CFD method; based on the results, we then use an orthogonal analysis method to investigate the influence of interactions of the structural parameters on performance of the wind turbine and to obtain optimization combination of the structural parameters considering the interactions. Results of analysis of variance indicate that interactions among the structural parameters have influence on performance of the wind turbine, and optimization results based on orthogonal analysis have higher wind energy utilization than that of traditional research approaches.

  2. Structural Dynamic Analysis of Semi-Submersible Floating Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Jeremiah Ishie

    2016-12-01

    Full Text Available The strong and stable wind at offshore locations and the increasing demand for energy have made the application of wind turbines in deeper water surge. A novel concept of a 5 MW baseline Floating Vertical Axis Wind Turbine (FVAWT and a 5 MW optimised FVAWT with the DeepWind Darrieus rotor and the optimised DeepWind Darrieus rotor, respectively, were studied extensively. The structural responses, fatigue damages, platform global motions and mooring line dynamics of the FVAWTs were investigated comprehensively during normal operating conditions under steady wind and turbulent wind conditions, using a coupled non-linear aero-hydro-servo-elastic code (the Simo-Riflex-DMS code which was developed by Wang et al. for modeling FVAWTs. This coupled code incorporates the models for the turbulent wind field, aerodynamics, hydrodynamics, structural dynamics, and generator controller. The simulation is performed in a fully coupled manner in time domain. The comparison of responses under different wind conditions were used to demonstrate the effect of turbulence on both FVAWTs dynamic responses. The turbulent wind condition has the advantage of reducing the 2P effects. Furthermore, comparative studies of the FVAWTs responses were undertaken to explore the advantages of adopting the optimised 5 MW DeepWind Darrieus rotor over the baseline model. The results identified the 5 MW optimised FVAWT to having: lower Fore-Aft (FA but higher lower Side-Side (SS bending moments of structural components; lower motions amplitude; lower short-term fatigue equivalent loads and a further reduced 2P effects.

  3. AN INVESTIGATION INTO THE MECHANICS OF SINGLE CRYSTAL TURBINE BLADES WITH A VIEW TOWARDS ENHANCING GAS TURBINE EFFICIENCY

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Rajagopal; I.J. Rao

    2006-05-05

    The demand for increased efficiency of gas turbines used in power generation and aircraft applications has fueled research into advanced materials for gas turbine blades that can withstand higher temperatures in that they have excellent resistance to creep. The term ''Superalloys'' describes a group of alloys developed for applications that require high performance at elevated temperatures. Superalloys have a load bearing capacity up to 0.9 times their melting temperature. The objective of the investigation was to develop a thermodynamic model that can be used to describe the response of single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model. Having developed the model, its efficacy was to be tested by corroborating the predictions of the model with available experimental data. Such a model was developed and it is implemented in the finite element software ABAQUS/STANDARD through a user subroutine (UMAT) so that the model can be used in realistic geometries that correspond to turbine blades.

  4. Turbine Imaging Technology Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  5. Turbine Imaging Technology Assessment

    International Nuclear Information System (INIS)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-01-01

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions

  6. Numerical Investigation of the Tip Vortex of a Straight-Bladed Vertical Axis Wind Turbine with Double-Blades

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2017-10-01

    Full Text Available Wind velocity distribution and the vortex around the wind turbine present a significant challenge in the development of straight-bladed vertical axis wind turbines (VAWTs. This paper is intended to investigate influence of tip vortex on wind turbine wake by Computational Fluid Dynamics (CFD simulations. In this study, the number of blades is two and the airfoil is a NACA0021 with chord length of c = 0.265 m. To capture the tip vortex characteristics, the velocity fields are investigated by the Q-criterion iso-surface (Q = 100 with shear-stress transport (SST k-ω turbulence model at different tip speed ratios (TSRs. Then, mean velocity, velocity deficit and torque coefficient acting on the blade in the different spanwise positions are compared. The wind velocities obtained by CFD simulations are also compared with the experimental data from wind tunnel experiments. As a result, we can state that the wind velocity curves calculated by CFD simulations are consistent with Laser Doppler Velocity (LDV measurements. The distribution of the vortex structure along the spanwise direction is more complex at a lower TSR and the tip vortex has a longer dissipation distance at a high TSR. In addition, the mean wind velocity shows a large value near the blade tip and a small value near the blade due to the vortex effect.

  7. Accuracy of an efficient framework for structural analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Bitsche, Robert D.; Fedorov, Vladimir

    2016-01-01

    -section analysis tool is able to capture the effects stemming from material anisotropy and inhomogeneity for sections of arbitrary geometry. The proposed framework is very efficient and therefore ideally suited for integration within wind turbine aeroelastic design and analysis tools. A number of benchmark......This paper presents a novel framework for the structural design and analysis of wind turbine blades and establishes its accuracy. The framework is based on a beam model composed of two parts—a 2D finite element-based cross-section analysis tool and a 3D beam finite element model. The cross...... examples are presented comparing the results from the proposed beam model to 3D shell and solid finite element models. The examples considered include a square prismatic beam, an entire wind turbine rotor blade and a detailed wind turbine blade cross section. Phenomena at both the blade length scale...

  8. Aerodynamic investigation of winglets on wind turbine blades using CFD

    OpenAIRE

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of themwere pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets...

  9. Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs

    Science.gov (United States)

    Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team

    2011-11-01

    An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.

  10. An Introduction to Operational Modal Identification of Offshore Wind Turbine Structures

    DEFF Research Database (Denmark)

    Damgaard, Mads

    excitation originating from the rotating rotor and broadband excitation from air turbulence is present, which sets limitations on the applicability of operational modal analysis to wind turbine structures. The technical memorandum contains an introduction to the theory within experimental modal analysis and......The present technical memorandum “An Introduction to Operational Modal Identification of Offshore Wind Turbine Structures” is prepared in connection with an ongoing Ph.D study at Aalborg University. The memorandum is intended for use in the civil engineering field and may serve as an inspiration...

  11. Grid Faults Impact on the Mechanical Loads of Active Stall Wind Turbine

    DEFF Research Database (Denmark)

    Iov, Florin; Cutululis, Nicolaos A.; Hansen, Anca D.

    2008-01-01

    Emphasis in this paper is on the fault ride-through operation impact on the wind turbines structural loads. Grid faults are typically simulated in power system simulation tools using simplified drive train mechanical model, approach which doesn't allow a thorough investigation of structural loads...... as the electrical design of the wind turbine response during grid faults. The two-step simulation procedure is assessed by means of a simulation example. The effect of a grid fault on the structural part of a typical fixed speed wind turbine, equipped with an induction generator, is assessed....

  12. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  13. Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Markfort, Corey D. [University of Minnesota, Saint Anthony Falls Laboratory, Department of Civil Engineering, Minneapolis, MN (United States); Porte-Agel, Fernando [Ecole Polytechnique Federale de Lausanne (EPFL), ENAC-IIE-WIRE, Wind Engineering and Renewable Energy Laboratory (WIRE), Lausanne (Switzerland)

    2012-05-15

    Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (x-z) and vertical span-wise planes (y-z). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and

  14. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  15. Experimental and numerical investigation of 3D aerofoil characteristics on a MW wind turbine

    DEFF Research Database (Denmark)

    Troldborg, Niels; Bak, Christian; Sørensen, Niels N.

    2013-01-01

    3D aerofoil characteristics on a MW wind turbine is investigated through a combination of field measurements, wind tunnel tests and computational fluid dynamics (CFD). Surface pressuremeasurements as well as the integrated force coefficients for selected aerofoil sections on a blade of the turbine...... is compared to wind tunnel measurements on the same aerofoil sections in order to reveal the difference in performance of aerofoils on full scale rotors in atmospheric conditions and aerofoils in wind tunnels. The findings of the measurements are backed up by analogous CFD analysis involving fully resolved 3D...... computations on the wind turbine as well as 2D aerofoil simulations....

  16. A Method for Modeling of Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Wang, Kai; Hansen, Martin Otto Laver; Moan, Torgeir

    2013-01-01

    It is of interest to investigate the potential advantages of floating vertical axis wind turbine (FVAWT) due to its economical installation and maintenance. A novel 5MW vertical axis wind turbine concept with a Darrieus rotor mounted on a semi-submersible support structure is proposed in this paper....... In order to assess the technical and economic feasibility of this novel concept, a comprehensive simulation tool for modeling of the floating vertical axis wind turbine is needed. This work presents the development of a coupled method for modeling of the dynamics of a floating vertical axis wind turbine....... This integrated dynamic model takes into account the wind inflow, aerodynamics, hydrodynamics, structural dynamics (wind turbine, floating platform and the mooring lines) and a generator control. This approach calculates dynamic equilibrium at each time step and takes account of the interaction between the rotor...

  17. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    Science.gov (United States)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  18. Investigation of Reactive Power Control Effects on Flicker and Harmonics Emission of a DFIG Wind Turbine

    Directory of Open Access Journals (Sweden)

    Amir Nagizadeh Ghoogdareh

    2013-01-01

    Full Text Available One of the most important power quality aspects in wind farms is voltage fluctuation or flicker which should be investigated due to the nature of wind speed variations. These variations result in power and voltage fluctuations at the load bus. Moreover, the wind generation systems may be assumed as a harmonics source because of their power electronic converters. There are numerous factors that affect flicker and harmonic emission of grid-connected wind turbines during continuous operation, such as wind characteristics (e.g. mean wind speed, turbulence intensity, type of generator and grid conditions (e.g. short circuit capacity, grid impedance angle. In this paper, an IEC based flickermeter is first modeled and then a variable speed wind turbine has been simulated by Matlab/Simulink software. The flicker and harmonics emissions of wind turbines equipped with DFIG during continuous operation and using output reactive control are investigated. The simulation results show that control of wind turbine output reactive power is an effective means for flicker mitigation during continuous operation. However, there should be a compromise between flicker reduction and harmonics level increase to enhance the whole power quality of wind turbine.

  19. Advanced Instrumentation for Measuring Fluid-Structure Coupling Phenomena in the Guide Vanes Cascade of a Pump-Turbine Scale Model

    OpenAIRE

    Roth, Steven; Hasmatuchi, Vlad; Botero, Francisco; Farhat, Mohamed; Avellan, François

    2010-01-01

    In the present study, the fluid-structure coupling is investigated in the guide vanes of a pump-turbine scale model placed in one of the test rigs of the Laboratory for Hydraulic Machines (EPFL) in Lausanne. The paper focuses on the advanced instrumentation used to get reliable and complete fluid-structure coupling results. Semi-conductor strain gages are installed on three guide vanes which are especially weakened to account for stronger fluid-structure coupling phenomena. These are statical...

  20. Impact of fault ride-through requirements on fixed-speed wind turbine structural loads

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Markou, Helen

    2011-01-01

    by performing a rainflow and a statistical analysis for fatigue and ultimate structural loads, respectively. Two cases are compared i.e. one where the turbine is immediately disconnected from the grid when a grid fault occurs and one where the turbine is equipped with a fault ride-through controller...... and therefore it is able to remain connected to the grid during the grid fault. Copyright © 2010 John Wiley & Sons, Ltd....

  1. Wind Turbine Model and Observer in Takagi-Sugeno Model Structure

    International Nuclear Information System (INIS)

    Georg, Sören; Müller, Matthias; Schulte, Horst

    2014-01-01

    Based on a reduced-order, dynamic nonlinear wind turbine model in Takagi- Sugeno (TS) model structure, a TS state observer is designed as a disturbance observer to estimate the unknown effective wind speed. The TS observer model is an exact representation of the underlying nonlinear model, obtained by means of the sector-nonlinearity approach. The observer gain matrices are obtained by means of a linear matrix inequality (LMI) design approach for optimal fuzzy control, where weighting matrices for the individual system states and outputs are included. The observer is tested in simulations with the aero-elastic code FAST for the NREL 5 MW reference turbine, where it shows a stable behaviour in turbulent wind simulations

  2. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  3. Modal Characteristics of Novel Wind Turbine Rotors with Hinged Structures

    Science.gov (United States)

    Lu, Hongya; Zeng, Pan; Lei, Liping

    2018-03-01

    The vibration problems of the wind turbine rotors have drawn public attention as the size of wind turbine has increased incredibly. Although various factors may cause the vibration problems, the flexibility is a big threat among them. Therefore, ensuring the high stiffness of the rotors by adopting novel techniques becomes a necessity. The study was a further investigation of several novel designs regarding the dynamic behaviour and the influencing mechanism. The modal testing experiments were conducted on a traditional blade and an isolated blade with the hinged rods mounted close to the root. The results showed that the rod increased both the modal frequency and the damping of the blade. More studies were done on the rods’ impact on the wind turbine rotor with a numerical model, where dimensionless parameters were defined to describe the configuration of the interveined and the bisymmetrical rods. Their influences on the modal frequencies of the rotor were analyzed and discussed.

  4. The importance of including dynamic soil-structure interaction into wind turbine simulation codes

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    A rigorous numerical model, describing a wind turbine structure and subsoil, may contain thousands of degrees of freedom, making the approach computationally inefficient for fast time domain analysis. In order to meet the requirements of real-time calculations, the dynamic impedance of the founda......A rigorous numerical model, describing a wind turbine structure and subsoil, may contain thousands of degrees of freedom, making the approach computationally inefficient for fast time domain analysis. In order to meet the requirements of real-time calculations, the dynamic impedance...... of the foundation from a rigorous analysis can be formulated into a so-called lumped-parameter model consisting of a few springs, dashpots and point masses which are easily implemented into aeroelastic codes. In this paper, the quality of consistent lumped-parameter models of rigid surface footings and mono piles...... is examined. The optimal order of the models is determined and implemented into the aeroelastic code HAWC2, where the dynamic response of a 5.0 MW wind turbine is evaluated. In contrast to the fore-aft vibrations, the inclusion of soil-structure interaction is shown to be critical for the side-side vibrations...

  5. Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines

    Science.gov (United States)

    Frost, Susan

    2011-01-01

    Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.

  6. Design and Manufacturing of Composite Tower Structure for Wind Turbine Equipment

    Science.gov (United States)

    Park, Hyunbum

    2018-02-01

    This study proposes the composite tower design process for large wind turbine equipment. In this work, structural design of tower and analysis using finite element method was performed. After structural design, prototype blade manufacturing and test was performed. The used material is a glass fiber and epoxy resin composite. And also, sand was used in the middle part. The optimized structural design and analysis was performed. The parameter for optimized structural design is weight reduction and safety of structure. Finally, structure of tower will be confirmed by structural test.

  7. Investigation of cool down processes in a NPP turbine of the K-1000-60/1500 type

    International Nuclear Information System (INIS)

    Pereverzev, D.A.; Lebedev, A.G.; Palej, V.A.

    1985-01-01

    Methods of mathematical simulation were used to investigate cooling-off dynamics of separate NPP turbine parts of the K-1000-60/1500 type during shutdowns of different duration. Investigations indicated that a flange section of horizontal external casing joint in the steam inlet zone of the intermediate pressure casing is a main place limiting duration of turbine starting regime. When strengthening thermal protection of branch pipes, turbine start-up time (after shutdown during 72-168 h) can be reduced by 0.25-0.3 h; if also pick-ups are isolated than reduction of start-up duration will constitute 0.5-0.7 h. During shutdowns of shorter duration all critical assemblies will not limit in practice time of starting regime

  8. Assessment of the impact of frequency support on DFIG wind turbine loads

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio; You, Rui; Hansen, Anca Daniela

    2013-01-01

    This study presents models and tools for the assessment of the impact that providing frequency support has on doubly-fed generator (DFIG) wind turbine structural loads and drive train. The focus is on primary frequency support, aiming at quantifying the impact on wind turbines acting as frequency...... code and electrical models. In this simulation framework, the impact that power system conditions can have on wind turbines, and vice versa the support that wind turbines can offer to the power system can be investigated....... containment reserve and providing inertial response. The sensitivity of wind turbine load indicators—load duration- distribution and maximum load values—to inertial response control actions and different torsional models of drive train is investigated. The analysis is done by co-simulations of an aeroelastic...

  9. Power density investigation on the press-pack IGBT 3L-HB-VSCs applied to large wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    capabilities, DC capacitor sizes, converter cabinet volumes of the three 3LHB- VSCs utilizing press-pack IGBTs are investigated in order to quantify and compare the power densities of the 3L-HB-VSCs employed as grid-side converters. Also, the suitable transformer types for the 3L-HB-VSCs are determined......With three different DC-side and AC-side connections, the three-level H-bridge voltage source converters (3L-HB-VSCs) are alternatives to 3L neutral-point-clamped VSCs (3L-NPC-VSCs) for interfacing large wind turbines with electricity grids. In order to assess their feasibility for large wind...... turbines, they should be investigated in terms of power density, which is one of the most important design criteria for wind turbine converters due to turbine nacelle space limitation. In this study, by means of the converter electro-thermal models based on the converter characteristics, the power...

  10. Incorporating Structural Health Monitoring in the design of slip formed concrete wind turbine towers

    DEFF Research Database (Denmark)

    Hovgaard, Mads Knude

    , where the development of riskbased inspection for offshore structures has been economically motivated, the economic value added by SHM has been somewhat neglected. With a starting point in the business case of wind turbine towers made of concrete, this thesis sets up the framework for the assessing...... is different which require a different approach. As exact solution is intractable, various approximations using surrogate objective functions from detection theory, filters, decision rules and Limited Memory Influence Diagrams (LIMID) are investigated. The main focus is on damage detection but the value...

  11. Research on Darrieus-type hydraulic turbine for extra-low head hydropower utilization

    International Nuclear Information System (INIS)

    Furukawa, A; Watanabe, S; Okuma, K

    2012-01-01

    A Darrieus-type turbine has been investigated for extra-low head hydropower utilization. In the present paper, authors'research on Darrieus-type hydraulic turbine is briefly reviewed. The working principle of Darrieus turbine is explained with advantage of its simple structure, at first. Then the fluid-dynamic difference between rotating and linear motions of a blade in a uniform flow is clarified with guiding principle of high performance design of Darrieus turbine. Cavitation problem is also described. Next, effects of duct-casing, consisting of an intake, runner section and draft tube, are discussed and a simplified structure of Darrieus turbine is shown by installing the inlet nozzle. Finally, in the practical use, an adjustment of inlet nozzle section by lowering the inlet nozzle height is proposed when flow rate is varied temporally and seasonally.

  12. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  13. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    International Nuclear Information System (INIS)

    Roth, S; Hasmatuchi, V; Botero, F; Farhat, M; Avellan, F

    2010-01-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  14. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    Science.gov (United States)

    Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.

    2010-08-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  15. Investigation of the flow through an axial turbine stage

    Energy Technology Data Exchange (ETDEWEB)

    Svensdotter, S.; Wei Ning [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    1995-12-31

    In this licentiate thesis the classical turbine theory and experimental results from the test turbine at KTH have been studied. The theory for the data evaluation program has also been studied and the loss models by Traupel and Denton have been investigated and applied to the measured results. The work has been performed to prepare for a theory concerning aerodynamic design of so called compound leaned blades and for future experiments on this non-conventional blade design with a new measurement system. A literature survey shows that the compound lean can be an effective three-dimensional technique in turbine designs, with significantly improved flow conditions, especially near the end-wall regions. A new measurement system, PSI, has been installed and the first preliminary tests shows good agreement with the existing system. The speed of the global measurements has been improved from about 10 minutes to about 12 seconds. The system reliability and documentation is also improved with the PSI system. The accuracy of the PSI-system is significantly better on the pressure measurement side, while the analogue side has somewhat less accuracy for the moment. From the analysis of the measurement results on the 25 mm stage, the tendencies of parameter variation versus pressure and velocity ratios were gained by the authors. The results show high secondary flow loss cores near the end-walls downstream the stator. The result is similar with those from the literature survey. The radial positions of the secondary flow cores change when simulating stator leakage flow. 140 refs, 54 figs, 14 tabs, 14 appendices

  16. Mapping of grid faults and grid codes[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F. [Aalborg Univ., Inst. of Energy Technology (Denmark); Hansen, Anca D.; Soerensen, Poul; Cutululis, N.A. [Risoe National Lab. - DTU, Wind Enegy Dept., Roskilde (Denmark)

    2007-06-15

    The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need for such investigations. The grid connection requirements for wind turbines have increased significantly during the last 5-10 years. Especially the requirements for wind turbines to stay connected to the grid during and after voltage sags, imply potential challenges in the design of wind turbines. These requirements pose challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads' impact on the wind turbines' lifetime are defined. The goal of this report is to present a mapping of different grid fault types and their frequency in different countries. The report provides also a detailed overview of the Low Voltage Ride-Through Capabilities for wind turbines in different relevant countries. The most relevant study cases for the quantification of the loads' impact on the wind turbines' lifetime are defined. (au)

  17. RBI Optimization of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    methods for oil & gas installations, a framework for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore wind turbines considered are the fatigue loading characteristics where usually the wind loading are dominating the wave loading, wake......Wind turbines for electricity production have increased significantly the last years both in production capability and size. This development is expected to continue also in the coming years. Offshore wind turbines with an electricity production of 5-10 MW are planned. Typically, the wind turbine...... support structure is a steel structure consisting of a tower and a monopile, tripod or jacket type foundation. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod type of wind turbine support structures. Based on risk-based inspection planning...

  18. Fundamental investigations for a OWC-tidal power plant with a conventional hydraulic turbine; Basisuntersuchungen fuer ein OWC-Wellenenergiekraftwerk mit konventioneller Hydroturbine. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Graw, K.U.; Lengricht, J.; Schimmels, S.

    2001-07-01

    At the present the OWC-tidal power plant is the most forward-looking way of converting tidal energy into usable electric power. Current research works focus on the dimensions of the structures in terms of occurring loads, the minimisation of hydraulic losses and the development of new turbine-generator types. The development of all air-turbine systems, which have been investigated so far, is considered as problematic and the commercialisation is likely to be a hindrance. Based on international research results an inventory tata of available hydraulic turbines is supposed to be gathered and fundamental investigations are supposed to check, if the application of conventional hydraulic turbines are an energetic progress in the OWC-tidal power plant. In order to considerably increase the efficiency compared to current developments, small-scale investigations at a physical model are supposed to show if and how a hydraulic turbine can be realised in a OWC-tidal power plant and how a concept of flow rectification as well as a flow-optimised form of inflow and outflow chambers can be achieved. (orig.) [German] Das OWC-Wellenenergiekraftwerk ist der zur Zeit zukunftstraechtigste Typ zur Umwandlung von Wellenenergie in nutzbaren Strom. Die laufenden Forschungsarbeiten beschaeftigen sich insbesondere mit der Dimensionierung der Strukturen hinsichtlich auftretender Belastungen, der Minimierung der hydraulischen Verluste und der Entwicklung von neuartigen Turbinen-Generatoren-Typen. Die Entwicklung aller bisher untersuchten Luftturbinensysteme wird jedoch als problematisch und die Kommerzialisierung hindernd angesehen. Aufbauend auf den internationalen Forschungsergebnissen sollen eine Bestandaufnahme der verfuegbaren Hydroturbinen durchgefuehrt und mit Baisuntersuchungen geprueft werden, ob ein Einsatz konventionaller Hydroturbinen im OWC-Wellenenergiekraftwerk eine energetische Weiterentwicklung darstellen kann. Um den Wirkungsgrad gegenueber derzeitigen Entwicklungen

  19. Experimental investigation of turbine disk cavity aerodynamics and heat transfer

    Science.gov (United States)

    Daniels, W. A.; Johnson, B. V.

    1993-01-01

    An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.

  20. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  1. Investigation of ambient temperature on the performance of GE-F5 gas turbine

    International Nuclear Information System (INIS)

    Ghazikhani, M.; Taffazoli, D.; Manshori, N.

    2002-01-01

    The role of ambient temperature in determining the performance of GE-F5 gas turbine is analysed by investigating the Shirvan gas turbine power plant 10 MW , 15 MW and 20 MW power output. These parameters have been brought as a function of ambient temperature. The results show when ambient temperature increases 1 deg C, The compressor pressure decreases about 20 k Pa, compressor outlet temperature increases about 1.13 deg C and exhaust temperature increases about 2.5 deg C. It is revealed that variations are due to decreasing the efficiency of compressor and less due to mass flow rate of air reduction as ambient temperature increases at constant power output. The results shows cycle efficiency reduces 3% with increasing 50 of ambient temperature, also the m increases as ambient temperature increase for constant turbine work. These are also because of reducing the compressor efficiency as ambient temperature increases

  2. Experimental investigations on the aerodynamics and aeromechanics of wind turbines for floating offshore applications

    Science.gov (United States)

    Khosravi, Morteza

    -locked'' PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the surge, heave, and pitch motions of the wind turbine base on the wake flow characteristics were examined in great details based on the PIV measurements. The findings derived from the present study can be used to improve the understanding of the underlying physics for optimal mechanical design of floating offshore wind turbines, as well as the layout optimization of floating offshore wind farms. Although, the mean power measurement results show little difference between the oscillating turbine and the bottom fixed turbine, but the excessive fluctuations in the power output of the oscillating turbine is anticipated to greatly reduce the power quality of such floating turbines. The load measurements also show substantial amount of difference both in terms of mean and the fluctuating components. The results of the wake study reveal that the wake of a wind turbine subjected to base motions, is highly dependent on which direction the turbine is oscillating. In the case of the moving turbine, the wake accelerates as the turbine is moving with the flow, hence, reducing the power extraction by the turbine. A decrease in Reynolds shear stress and the turbulent kinetic energy production was noted as the turbine was oscillating with the flow. However, as the turbine was moving into the flow, these effects reverse, and causes a deceleration in the wake of the moving turbine, hence increases the power production by the turbine, and increase the Reynolds shear stress and the turbulent kinetic energy. Finally, The wake flow field (x/D Darrieus type VAWT were also carried out by using a high-resolution PIV system, and the results obtained at two different horizontal (x-y) planes, at the equator height (H/2) and above the equator height (3H/4), for four different tip speed

  3. Numerical and experimental investigation on the performance of three newly designed 100 kW-class tidal current turbines

    Directory of Open Access Journals (Sweden)

    Museok Song

    2012-09-01

    Full Text Available Three types of 100 kW-class tidal stream turbines are proposed and their performance is studied both numerically and experimentally. Following a wind turbine design procedure, a base blade is derived and two additional blades are newly designed focusing more on efficiency and cavitation. For the three designed turbines, a CFD is performed by using FLUENT. The calculations predict that the newly designed turbines perform better than the base turbine and the tip vortex can be reduced with additional efficiency increase by adopting a tip rake. The performance of the turbines is tested in a towing tank with 700 mm models. The scale problem is carefully investigated and the measurements are compared with the CFD results. All the prediction from the CFD is supported by the model experiment with some quantitative discrepancy. The maximum efficiencies are 0.49 (CFD and 0.45 (experiment at TSR 5.17 for the turbine with a tip rake.

  4. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  5. Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

    DEFF Research Database (Denmark)

    Caterino, Nicola; Georgakis, Christos T.; Spizzuoco, Mariacristina

    2016-01-01

    The design of a semi-active (SA) control system addressed to mitigate wind induced structural demand to high wind turbine towers is discussed herein. Actually, the remarkable growth in height of wind turbines in the last decades, for a higher production of electricity, makes this issue pressing....../20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been...... calibrated so as to develop several numerical simulations addressed to calibrate the controller, i.e., to achieve as much as possible different, even conflicting, structural goals. The results are definitely encouraging, since the best configuration of the controller leaded to about 80% of reduction of base...

  6. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    Megawatt-size wind turbines nowadays operate in very complex environmental conditions, and increasingly demanding power system requirements. Pursuing a cost-effective and reliable wind turbine design is a multidisciplinary task. However nowadays, wind turbine design and research areas...... conditions that stem from disturbances in the power system. An integrated simulation environment, wind turbine models, and power system models are developed in order to take an integral perspective that considers the most important aeroelastic, structural, electrical, and control dynamics. Applications...... of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...

  7. Numerical simulation of a cross flow Marine Hydrokinetic turbine.

    Science.gov (United States)

    Hall, Taylor; Aliseda, Alberto

    2011-11-01

    In the search for alternative sources of energy, the kinetic energy of water currents in oceans, rivers and estuaries is being explored as predictable and environmentally benign. We are investigating the flow past a cross flow turbine in which a helical blade under hydrodynamic forces turns around a shaft perpendicular to the free stream. This type of turbine, while very different from the classical horizontal axis turbine commonly used in the wind energy field, presents advantages for stacking in very narrow constricted channels where the water currents are consistently high and therefore turbine installation may be economically feasible. We use a model of a helical four-bladed turbine in cross flow to investigate the efficiency of the energy capture and the dynamics of the turbulent wake. Scale model experiments in a flume are used to validate the numerical results on a stationary configuration as an initial step towards creating an accurate numerical model of the turbine. The simulation of the rotating turbine provides a full perspective on the effect of angular position on flow detachment and vortex shedding from the blade, as well as on the fluctuations of the shaft torque produced (a problematic feature of this type of turbine). The results are analyzed in terms of hydrodynamic optimization of the blade and its structural loading. Supported by DOE through the Northwest National Marine Renewable Energy Center.

  8. Recent run-time experience and investigation of impurities in turbines circuit of Helium plant of SST-1

    International Nuclear Information System (INIS)

    Panchal, P.; Panchal, R.; Patel, R.

    2013-01-01

    One of the key sub-systems of Steady State superconducting Tokamak (SST-1) is cryogenic 1.3 kW at 4.5 K Helium refrigerator/liquefier system. The helium plant consists of 3 nos. of screw compressors, oil removal system, purifier and cold-box with 3 turbo expanders (turbines) and helium cold circulator. During the recent SST-1 plasma campaigns, we observed high pressure drop of the order of 3 bar between the wheel outlet of turbine A and the wheel inlet of turbine - B. This was significant higher values of pressures drop across turbines, which reduced the speed of turbine A and B and in turn reduced the overall plant capacity. The helium circuits in the plant have 10-micron filter at the mouth of turbine - B. Initially, major suspects of such high blockage are assumed to be air-impurity, dust particles or collapse of filter. Several breaks in plant operation have been taken to warm up the turbines circuits up to 90 K to remove condensation of air-impurities at filter. Still this exercise did not solve blockage of filter in turbine circuits. A detailed investigation exercise with air/water regeneration and rinsing of cold box as well as purification of helium gas in buffer tanks are carried out to remove air impurities from cold-box. A trial run of cold box was executed in liquefier mode with turbines up to cryogenic temperatures and solved blockage in turbine circuits. The paper describes run-time experience of helium plant with helium impurity in turbine circuits, methods to remove impurity, demonstration of turbine performance and lessons learnt during this operation. (author)

  9. Fluid-structure interaction modeling of wind turbines: simulating the full machine

    Science.gov (United States)

    Hsu, Ming-Chen; Bazilevs, Yuri

    2012-12-01

    In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.

  10. Assessment of Wind Turbine Structural Integrity using Response Surface Methodology

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Highlights •A new approach to assessment of site specific wind turbine loads is proposed. •The approach can be applied in both fatigue and ultimate limit state. •Two different response surface methodologies have been investigated. •The model uncertainty introduced by the response surfaces...

  11. Investigation on cause of the elevator turbine wear

    Science.gov (United States)

    Zhang, J.; Ouyang, W. P.; Xue, J. A.

    2018-03-01

    Elevator traction turbine is often worn for various reasons, causing serious safety hazard. It is explained the main causes of traction wheel wear in detail in combination with a large number of engineering experience. The effect of turbine wear on the actual operation of the elevator is verified by contrast experiment, which is helpful to identify risks early. It is put forward on some reasonable suggestions for elevator inspection, maintenance and management.

  12. Soil-structure interaction effects in seismic analysis of turbine generator building on rock-like foundation

    International Nuclear Information System (INIS)

    Park, Chi Seon; Lee, Sang Hoon; Yoo, Kwang Hoon

    2004-01-01

    Soil properties supporting structure may become criteria determining methodologies for seismic response analysis of a structure. Regulatory Guide describes that a fixed-base assumption is acceptable for structures supported on rock or rock-like materials defined by a shear wave velocity of 3,500 ft/sec or greater at a shear strain of 10 -3 percent or smaller when considering preloaded soil conditions due to the structure. Seismic analyses for the Korean nuclear power plant (NPP) structures satisfying the above site soil condition have been completed through the fixed-base analysis. However, dynamic responses for relatively stiff structures such as NPP structures still have soil-structure interaction (SSI) effects. In other words, the fixed-base analysis does not always yield conservative results to be compared with SSI analysis. The SSI effects due to different stiff soil properties for Turbine Generator Building (TGB) structure to be constructed at Kori site of South Korea are investigated in views of floor response spectra (FRS) and member forces

  13. Multiple piece turbine engine airfoil with a structural spar

    Science.gov (United States)

    Vance, Steven J [Orlando, FL

    2011-10-11

    A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.

  14. Investigation of flow in axial turbine stage without shroud-seal

    Directory of Open Access Journals (Sweden)

    Straka Petr

    2015-01-01

    Full Text Available This article deals with investigation of the influence of the radial gaps on the efficiency of the axial turbine stage. The investigation was carried out for the axial stage of the low-power turbine with the drum-type rotor without the shroud. In this configuration the flow through the radial gap under the hub-end of the stator blades and above the tip-end of the rotor blades leads to generation of the strong secondary flows, which decrease the efficiency of the stage. This problem was studied by experiment as well as by numerical modelling. The experiment was performed on the test rig equipped with the water brake dynamometer, torque meter and rotatable stator together with the linear probe manipulator. Numerical modelling was carried out for both the steady flow using the ”mixing plane” interface and the unsteady flow using the ”sliding mesh” interface between the stator and rotor wheels. The influence of the radial gap was studied in two configuration a positive and b negative overlapping of the tip-ends of the rotor blades. The efficiency of the axial stage in dependence on the expansion ratio, velocity ratio and the configuration as well as the details of the flow fields are presented in this paper.

  15. Evaluation of different inertial control methods for variable-speed wind turbines simulated by fatigue, aerodynamic, structures and turbulence (FAST)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Gao, Wenzhong; Scholbrock, Andrew; Muljadi, Eduard; Gevorgian, Vahan; Wang, Jianhui; Yan, Weihang; Zhang, Huaguang

    2017-10-18

    To mitigate the degraded power system inertia and undesirable primary frequency response caused by large-scale wind power integration, the frequency support capabilities of variable-speed wind turbines is studied in this work. This is made possible by controlled inertial response, which is demonstrated on a research turbine - controls advanced research turbine, 3-bladed (CART3). Two distinct inertial control (IC) methods are analysed in terms of their impacts on the grids and the response of the turbine itself. The released kinetic energy in the IC methods are determined by the frequency measurement or shaped active power reference in the turbine speed-power plane. The wind turbine model is based on the high-fidelity turbine simulator fatigue, aerodynamic, structures and turbulence, which constitutes the aggregated wind power plant model with the simplified power converter model. The IC methods are implemented over the baseline CART3 controller, evaluated in the modified 9-bus and 14-bus testing power grids considering different wind speeds and different wind power penetration levels. The simulation results provide various insights on designing such kinds of ICs. The authors calculate the short-term dynamic equivalent loads and give a discussion about the turbine structural loadings related to the inertial response.

  16. Steady State Structural Analysis of High Pressure Gas Turbine Blade using Finite Element Analysis

    Science.gov (United States)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Murari Pandey, Krishna

    2017-08-01

    In gas turbines the major portion of performance dependency lies upon turbine blade design. Turbine blades experience very high centrifugal, axial and tangential force during power generation. While withstanding these forces blades undergo elongation. Different methods have proposed for better enhancement of the mechanical properties of blade to withstand in extreme condition. Present paper describes the stress and elongation for blades having properties of different materials. Steady state structural analysis have performed in the present work for different materials (In 625, In 718, In 738, In 738 LC, MAR M246, Ni-Cr, Ti-alloy, Ti-Al, Ti-T6, U500). Remarkable finding is that the root of the blade is subjected to maximum stress for all blade materials and the blade made of MAR M246 has less stress and deformation among all other blade materials which can be selected as a suitable material for gas turbine blade.

  17. Preliminary Investigation on Generation of Electricity Using Micro Wind Turbines Placed on A Car

    Directory of Open Access Journals (Sweden)

    Yogendra Chaudhary

    2017-03-01

    Full Text Available Wind energy is one of the prominent resources for renewable energy and it is traditionally extracted using stationary wind turbines. However, it can also be extracted using mini or micro wind turbines on a moving body, such as an automobile, while cruising at high speeds on freeways. If the electricity is produced using air flowing around the vehicle without affecting aerodynamic performance of the vehicle, it can be used to charge up the battery or power up additional accessories of the vehicle. For the first time, in the present work, a preliminary investigation was carried out to generate electricity by utilizing air flow on a moving car. Initially, a correlation between the car speed and wind velocity was established using an anemometer. Placing a set of two micro wind turbines along with two micro generators on the rear end of the car trunk, the present study investigated the feasibility of generating electricity from these micro wind turbines while evaluating the effect of drag force on the performance of the car through the experimental approach and computational fluid dynamics (CFD simulations. Both approaches confirmed negligible effect of drag force on the vehicle performance in terms of gas mileage and changes in drag coefficient values. Following these studies, the micro wind turbines were also tested for electricity generation at various cruising speeds of the car ranging from 50 to 80 mph on the freeways. The voltage and power generated always showed an increasing trend with increasing the car speed, however they saturated when a cut off limit was setup with the voltage controllers. A maximum voltage of 3.5 V and a maximum current of 0.8 A were generated by each micro wind turbine when a cut off limit was used along with a load consisting of four LED bulbs in parallel with 3.5 V and 0.2 A rating each. On the other hand, when the tests were repeated without using the cut-off limit, a maximum voltage of 18.91 V and a maximum current

  18. Investigation of damping potential of strip damper on a real turbine blade

    NARCIS (Netherlands)

    Afzal, M.; Lopez Arteaga, I.; Kari, L.; Kharyton, V.

    2016-01-01

    This paper investigates the damping potential of strip dampers on a real turbine bladed disk. A 3D numerical friction contact model is used to compute the contact forces by means of the Alternate Frequency Time domain method. The Jacobian matrix required during the iterative solution is computed in

  19. VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING

    Institute of Scientific and Technical Information of China (English)

    LIU Demin; LIU Xiaobing

    2008-01-01

    The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/min, 500 r/min and 600 r/min are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.

  20. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  1. Response Analysis and Comparison of a Spar-Type Floating Offshore Wind Turbine and an Onshore Wind Turbine under Blade Pitch Controller Faults

    DEFF Research Database (Denmark)

    Etemaddar, M.; Blanke, Mogens; Gao, Z.

    2016-01-01

    in the controller dynamic link library and a short-term extreme response analysis is performed using the HAWC2 simulation tool.The main objectives of this paper are to investigate how different faults affect the performance of wind turbines for condition monitoring purposes and which differences exist...... in the structural responses between onshore and offshore floating wind turbines. Statistical analysis of the selected response parameters are conducted using the six1-hour stochastic samples for each load case.For condition monitoring purpose,the effects of faults on the responses at different wind speeds and fault...... amplitudes are investigated by comparing the same response under normal operation.The severities of the individual faults are categorized by the extreme values of structural loads and the structural components are sorted based on the magnitude of the fault effects on the extreme values.The pitch sensor fixed...

  2. Computational analysis of vertical axis wind turbine arrays

    Science.gov (United States)

    Bremseth, J.; Duraisamy, K.

    2016-10-01

    Canonical problems involving single, pairs, and arrays of vertical axis wind turbines (VAWTs) are investigated numerically with the objective of understanding the underlying flow structures and their implications on energy production. Experimental studies by Dabiri (J Renew Sustain Energy 3, 2011) suggest that VAWTs demand less stringent spacing requirements than their horizontal axis counterparts and additional benefits may be obtained by optimizing the placement and rotational direction of VAWTs. The flowfield of pairs of co-/counter-rotating VAWTs shows some similarities with pairs of cylinders in terms of wake structure and vortex shedding. When multiple VAWTs are placed in a column, the extent of the wake is seen to spread further downstream, irrespective of the direction of rotation of individual turbines. However, the aerodynamic interference between turbines gives rise to regions of excess momentum between the turbines which lead to significant power augmentations. Studies of VAWTs arranged in multiple columns show that the downstream columns can actually be more efficient than the leading column, a proposition that could lead to radical improvements in wind farm productivity.

  3. CFD-based design load analysis of 5MW offshore wind turbine

    Science.gov (United States)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  4. Computer investigations of the turbulent flow around a NACA2415 airfoil wind turbine

    Science.gov (United States)

    Driss, Zied; Chelbi, Tarek; Abid, Mohamed Salah

    2015-12-01

    In this work, computer investigations are carried out to study the flow field developing around a NACA2415 airfoil wind turbine. The Navier-Stokes equations in conjunction with the standard k-ɛ turbulence model are considered. These equations are solved numerically to determine the local characteristics of the flow. The models tested are implemented in the software "SolidWorks Flow Simulation" which uses a finite volume scheme. The numerical results are compared with experiments conducted on an open wind tunnel to validate the numerical results. This will help improving the aerodynamic efficiency in the design of packaged installations of the NACA2415 airfoil type wind turbine.

  5. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  6. Investigation of the stochastic subspace identification method for on-line wind turbine tower monitoring

    Science.gov (United States)

    Dai, Kaoshan; Wang, Ying; Lu, Wensheng; Ren, Xiaosong; Huang, Zhenhua

    2017-04-01

    Structural health monitoring (SHM) of wind turbines has been applied in the wind energy industry to obtain their real-time vibration parameters and to ensure their optimum performance. For SHM, the accuracy of its results and the efficiency of its measurement methodology and data processing algorithm are the two major concerns. Selection of proper measurement parameters could improve such accuracy and efficiency. The Stochastic Subspace Identification (SSI) is a widely used data processing algorithm for SHM. This research discussed the accuracy and efficiency of SHM using SSI method to identify vibration parameters of on-line wind turbine towers. Proper measurement parameters, such as optimum measurement duration, are recommended.

  7. Computational investigation of hydrokinetic turbine arrays in an open channel using an actuator disk-LES model

    Science.gov (United States)

    Kang, Seokkoo; Yang, Xiaolei; Sotiropoulos, Fotis

    2012-11-01

    While a considerable amount of work has focused on studying the effects and performance of wind farms, very little is known about the performance of hydrokinetic turbine arrays in open channels. Unlike large wind farms, where the vertical fluxes of momentum and energy from the atmospheric boundary layer comprise the main transport mechanisms, the presence of free surface in hydrokinetic turbine arrays inhibits vertical transport. To explore this fundamental difference between wind and hydrokinetic turbine arrays, we carry out LES with the actuator disk model to systematically investigate various layouts of hydrokinetic turbine arrays mounted on the bed of a straight open channel with fully-developed turbulent flow fed at the channel inlet. Mean flow quantities and turbulence statistics within and downstream of the arrays will be analyzed and the effect of the turbine arrays as means for increasing the effective roughness of the channel bed will be extensively discussed. This work was supported by Initiative for Renewable Energy & the Environment (IREE) (Grant No. RO-0004-12), and computational resources were provided by Minnesota Supercomputing Institute.

  8. Numerical investigation on the flow and power of small-sized multi-bladed straight Darrieus wind turbine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated, especially for the existence of dynamic stall. How to get better aerodynamic performance arouses lots of interests in the design procedure of a straight Darrieus wind turbine. In this paper, mainly the effects of number of blades and tip speed ratio are discussed. Based on the numerical investigation, an assumed asymmetric straight Darrieus wind turbine is proposed to improve the averaged power coefficient. As to the numerical method, the flow around the turbine is simulated by solving the 2D unsteady Navier-Stokes equation combined with continuous equation. The time marching method on a body-fitted coordinate system based on MAC (Marker-and-Cell) method is used. O-type grid is generated for the whole calculation domain. The characteristics of tangential and normal force are discussed related with dynamic stall of the blade. Averaged power coefficient per period of rotating is calculated to evaluate the eligibility of the turbine.

  9. Specific features of the flow structure in a reactive type turbine stage

    Science.gov (United States)

    Chernikov, V. A.; Semakina, E. Yu.

    2017-04-01

    The results of experimental studies of the gas dynamics for a reactive type turbine stage are presented. The objective of the studies is the measurement of the 3D flow fields in reference cross sections, experimental determination of the stage characteristics, and analysis of the flow structure for detecting the sources of kinetic energy losses. The integral characteristics of the studied stage are obtained by averaging the results of traversing the 3D flow over the area of the reference cross sections before and behind the stage. The averaging is performed using the conservation equations for mass, total energy flux, angular momentum with respect to the axis z of the turbine, entropy flow, and the radial projection of the momentum flux equation. The flow parameter distributions along the channel height behind the stage are obtained in the same way. More thorough analysis of the flow structure is performed after interpolation of the experimentally measured point parameter values and 3D flow velocities behind the stage. The obtained continuous velocity distributions in the absolute and relative coordinate systems are presented in the form of vector fields. The coordinates of the centers and the vectors of secondary vortices are determined using the results of point measurements of velocity vectors in the cross section behind the turbine stage and their subsequent interpolation. The approach to analysis of experimental data on aerodynamics of the turbine stage applied in this study allows one to find the detailed space structure of the working medium flow, including secondary coherent vortices at the root and peripheral regions of the air-gas part of the stage. The measured 3D flow parameter fields and their interpolation, on the one hand, point to possible sources of increased power losses, and, on the other hand, may serve as the basis for detailed testing of CFD models of the flow using both integral and local characteristics. The comparison of the numerical and

  10. Gas turbine structural mounting arrangement between combustion gas duct annular chamber and turbine vane carrier

    Science.gov (United States)

    Wiebe, David J.; Charron, Richard C.; Morrison, Jay A.

    2016-10-18

    A gas turbine engine ducting arrangement (10), including: an annular chamber (14) configured to receive a plurality of discrete flows of combustion gases originating in respective can combustors and to deliver the discrete flows to a turbine inlet annulus, wherein the annular chamber includes an inner diameter (52) and an outer diameter (60); an outer diameter mounting arrangement (34) configured to permit relative radial movement and to prevent relative axial and circumferential movement between the outer diameter and a turbine vane carrier (20); and an inner diameter mounting arrangement (36) including a bracket (64) secured to the turbine vane carrier, wherein the bracket is configured to permit the inner diameter to move radially with the outer diameter and prevent axial deflection of the inner diameter with respect to the outer diameter.

  11. Wind Turbine With Concentric Ducts

    Science.gov (United States)

    Muhonen, A. J.

    1983-01-01

    Wind Turbine device is relatively compact and efficient. Converging inner and outer ducts increase pressure difference across blades of wind turbine. Turbine shaft drives alternator housed inside exit cone. Suitable for installation on such existing structures as water towers, barns, houses, and commercial buildings.

  12. Review of control algorithms for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Spruce, C J; Markou, H; Leithead, W E; Dominguez Ruiz, S

    2005-07-01

    Innovative turbine control strategies could allow the improvements to cost and performance considered essential to reduce the cost of energy from offshore wind farms around the UK. This project reviewed and investigated the possibility for further development of a power control algorithm originally developed by NEG Micon Rotors Ltd for use with offshore wind turbines in the hope that more advanced algorithms would reduce the loads on, and hence the costs of, components such as the foundation/support structure, tower, blades and bedplate. Three models (simulation model, linearisation of the simulation model and control model) were produced in order to conduct the review. Application of these models produced the conclusion that the size of the latest generation of offshore wind turbines has now reached a level where performance is starting to be constrained by fundamental factors in the dynamics caused by the machine's physical size. It was also concluded that an ideal control strategy could achieve potential cost savings for the tower and support structure of 5-10% of the total cost of the turbine plus support structure. Further work to develop controllers to reduce loads in the tower and support structure is urged. The report considers non-linear simulation, the linear model, the control model, general operation of the controller, the drive train damping filter, torque control, pitch control and advanced algorithms, and makes detailed recommendations for future work.

  13. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  14. Wind turbines and seismic hazard: a state-of-the-art review

    DEFF Research Database (Denmark)

    Katsanos, Evangelos; Thöns, Sebastian; Georgakis, Christos T.

    2016-01-01

    , India, Southern Europe and East Asia) highlight the necessity for thorough consideration of the seismic implications on these energy harnessing systems. Along these lines, this state-of-the-art paper presents a comparative survey of the published research relevant to the seismic analysis, design......Wind energy is a rapidly growing field of renewable energy, and as such, intensive scientific and societal interest has been already attracted. Research on wind turbine structures has been mostly focused on the structural analysis, design and/or assessment of wind turbines mainly against normal...... and assessment of wind turbines. Based on numerical simulation, either deterministic or probabilistic approaches are reviewed, because they have been adopted to investigate the sensitivity of wind turbines’ structural capacity and reliability in earthquake-induced loading. The relevance of seismic hazard...

  15. Investigation of the interactions between wind turbines and radio systems aimed at establishing co-siting guidelines. Phase 1: Introduction and modelling of wind turbine scatter, appendices E, F and G

    International Nuclear Information System (INIS)

    Dabis, H.S.; Chignell, R.J.

    1997-01-01

    The potential for wind turbines to interfere with radio systems can be a source of conflict between radio operators and the wind energy community. In this report, the problem of accurately predicting the effects of wind turbines on radio systems with the aim of establishing guidelines for their installation is investigated. Initially models for the scatter mechanisms that occur at the wind turbine are developed. These models predict the wind turbine radar cross section and the modulation effects due to the rotation of the blades. Initial validation of these models is established by comparing the predicted results with a set of measurements obtained from experiments performed on a 20:1 scale model wind turbine. It is shown that generally these results agree well. These results are then used in the guideline formulation to compute, for specific radio systems, regions where wind turbines cannot be installed. Examples using realistic parameters for various radio systems are presented. Further validation of the derived models is required. (author)

  16. Structured Linear Parameter Varying Control of Wind Turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sloth, Christoffer; Stoustrup, Jakob

    2012-01-01

    High performance and reliability are required for wind turbines to be competitive within the energy market. To capture their nonlinear behavior, wind turbines are often modeled using parameter-varying models. In this chapter, a framework for modelling and controller design of wind turbines is pre...... in the controller synthesis are solved by an iterative LMI-based algorithm. The resulting controllers can also be easily implemented in practice due to low data storage and simple math operations. The performance of the LPV controllers is assessed by nonlinear simulations results....

  17. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata based wind turbine blade

    Directory of Open Access Journals (Sweden)

    Sudarsono S.

    2018-01-01

    Full Text Available In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM and material component is measured with Energy Dispersive X-ray spectrometer (EDS. The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  18. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata) based wind turbine blade

    Science.gov (United States)

    Sudarsono, S.; Purwanto; Sudarsono, Johny W.

    2018-02-01

    In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM) and material component is measured with Energy Dispersive X-ray spectrometer (EDS). The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  19. Investigation of the aerodynamics of an innovative vertical-axis wind turbine

    International Nuclear Information System (INIS)

    Kludzinska, K; Tesch, K; Doerffer, P

    2014-01-01

    This paper presents a preliminary three dimensional analysis of the transient aerodynamic phenomena occurring in the innovative modification of classic Savonius wind turbine. An attempt to explain the increased efficiency of the innovative design in comparison with the traditional solution is undertaken. Several vorticity measures such as enstrophy, absolute helicity and the integral of the velocity gradient tensor second invariant are proposed in order to evaluate and compare designs. Discussed criteria are related to the vortex structures and energy dissipation. These structures are generated by the rotor and may affect the efficiency. There are also different vorticity measure taking advantage of eigenvalues of the velocity gradient tensor.

  20. Experimental Investigation of A Twin Shaft Micro Gas-Turbine System

    International Nuclear Information System (INIS)

    Sadig, Hussain; Sulaiman, Shaharin Anwar; Ibrahim, Idris

    2013-01-01

    Due to the fast depletion of fossil fuels and its negative impact on the environment, more attention has been concentrated to find new resources, policies and technologies, which meet the global needs with regard to fuel sustainability and emissions. In this paper, as a step to study the effect of burning low calorific value fuels on gas-turbine performance; a 50 kW slightly pressurized non-premixed tubular combustor along with turbocharger based twin shaft micro gas-turbine was designed and fabricated. A series of tests were conducted to characterize the system using LPG fuel. The tests include the analysis of the temperature profile, pressure and combustor efficiency as well as air fuel ratio and speed of the second turbine. The tests showed a stable operation with acceptable efficiency, air fuel ratio, and temperature gradient for the single and twin shaft turbines.

  1. An Experimental and Theoretical Investigation of Micropiiting in Wind Turbine Gears and Bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Ahmet

    2012-03-28

    In this research study, the micro-pitting related contact failures of wind turbine gearbox components were investigated both experimentally and theoretically. On the experimental side, a twin-disk type test machine was used to simulate wind turbine transmission contacts in terms of their kinematic (rolling and sliding speeds), surface roughnesses, material parameters and lubricant conditions. A test matrix that represents the ranges of contact conditions of the wind turbine gear boxes was defined and executed to bring an empirical understanding to the micro-pitting problem in terms of key contact parameters and operating conditions. On the theoretical side, the first deterministic micro-pitting model based on a mixed elastohydrodynamic lubrication formulations and multi-axial near-surface crack initiation model was developed. This physics-based model includes actual instantaneous asperity contacts associated with real surface roughness profiles for predicting the onset of the micro-pit formation. The predictions from the theoretical model were compared to the experimental data for validation of the models. The close agreement between the model and measurements was demonstrated. With this, the proposed model can be deemed suitable for identifying the mechanisms leading to micro-pitting of gear and bearing surfaces of wind turbine gear boxes, including all key material, lubricant and surface engineering aspects of the problem, and providing solutions to these micro-pitting problems.

  2. Wind Turbine Blade Design System - Aerodynamic and Structural Analysis

    Science.gov (United States)

    Dey, Soumitr

    2011-12-01

    The ever increasing need for energy and the depletion of non-renewable energy resources has led to more advancement in the "Green Energy" field, including wind energy. An improvement in performance of a Wind Turbine will enhance its economic viability, which can be achieved by better aerodynamic designs. In the present study, a design system that has been under development for gas turbine turbomachinery has been modified for designing wind turbine blades. This is a very different approach for wind turbine blade design, but will allow it to benefit from the features inherent in the geometry flexibility and broad design space of the presented system. It starts with key overall design parameters and a low-fidelity model that is used to create the initial geometry parameters. The low-fidelity system includes the axisymmetric solver with loss models, T-Axi (Turbomachinery-AXIsymmetric), MISES blade-to-blade solver and 2D wing analysis code XFLR5. The geometry parameters are used to define sections along the span of the blade and connected to the CAD model of the wind turbine blade through CAPRI (Computational Analysis PRogramming Interface), a CAD neutral API that facilitates the use of parametric geometry definition with CAD. Either the sections or the CAD geometry is then available for CFD and Finite Element Analysis. The GE 1.5sle MW wind turbine and NERL NASA Phase VI wind turbine have been used as test cases. Details of the design system application are described, and the resulting wind turbine geometry and conditions are compared to the published results of the GE and NREL wind turbines. A 2D wing analysis code XFLR5, is used for to compare results from 2D analysis to blade-to-blade analysis and the 3D CFD analysis. This kind of comparison concludes that, from hub to 25% of the span blade to blade effects or the cascade effect has to be considered, from 25% to 75%, the blade acts as a 2d wing and from 75% to the tip 3D and tip effects have to be taken into account

  3. An LES study of vertical-axis wind turbine wakes aerodynamics

    Science.gov (United States)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  4. Turbulence and turbulence-generated structural loading in wind turbine clusters

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs

    2007-01-01

    of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms......Turbulence - in terms of standard deviation of wind speed fluctuations - and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to “wind farm flow......”. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence...

  5. Active load control techniques for wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.; Johnson, Scott J. (University of California, Davis, CA)

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  6. Probabilistic Fatigue Analysis of Jacket Support Structures for Offshore Wind Turbines Exemplified on Tubular Joints

    OpenAIRE

    Kelma, Sebastian; Schaumann, Peter

    2015-01-01

    The design of offshore wind turbines is usually based on the semi-probabilistic safety concept. Using probabilistic methods, the aim is to find an advanced structural design of OWTs in order to improve safety and reduce costs. The probabilistic design is exemplified on tubular joints of a jacket substructure. Loads and resistance are considered by their respective probability distributions. Time series of loads are generated by fully-coupled numerical simulation of the offshore wind turbine. ...

  7. Design methods to assess the resistance of Offshore wind Turbine Structures impacted by a ship

    OpenAIRE

    Echeverry Jaramillo, Sara; Le Sourne, Hervé; Bela, Andreea; Pire, Timothée; Rigo, Philippe

    2017-01-01

    The dynamic modes of jacket, monopile and Floating offshore wind turbines (FOWT) after a collision event are presented. The authors have developed simplified analytical formulations based on plastic limit analysis to assess the resistance of an offshore wind turbine jacket impacted by a ship. For the case of collisions with monopile foundations and FOWT, the crushing behavior and structure dynamics are studied by means of finite element simulations. Numerical results for both monopile and flo...

  8. Small Horizontal Axis Wind Turbine under High Speed Operation: Study of Power Evaluation

    Science.gov (United States)

    Moh. M. Saad, Magedi; Mohd, Sofian Bin; Zulkafli, Mohd Fadhli Bin; Abdullah, Aslam Bin; Rahim, Mohammad Zulafif Bin; Subari, Zulkhairi Bin; Rosly, Nurhayati Binti

    2017-10-01

    Mechanical energy is produced through the rotation of wind turbine blades by air that convert the mechanical energy into electrical energy. Wind turbines are usually designed to be use for particular applications and design characteristics may vary depending on the area of use. The variety of applications is reflected on the size of turbines and their infrastructures, however, performance enhancement of wind turbine may start by analyzing the small horizontal axis wind turbine (SHAWT) under high wind speed operation. This paper analyzes the implementations of SHAWT turbines and investigates their performance in both simulation and real life. Depending on the real structure of the rotor geometry and aerodynamic test, the power performance of the SHAWT was simulated using ANSYS-FLUENT software at different wind speed up to 33.33 m/s (120km/h) in order to numerically investigate the actual turbine operation. Dynamic mesh and user define function (UDF) was used for revolving the rotor turbine via wind. Simulation results were further validated by experimental data and hence good matching was yielded. And for reducing the energy producing cost, car alternator was formed to be used as a small horizontal wind turbine. As a result, alternator-based turbine system was found to be a low-cost solution for exploitation of wind energy.

  9. Consequences of variations in spatial turbulence characteristics for fatigue life time of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.

    1998-09-01

    The fatigue loading of turbines situated in complex terrain is investigated in order to determine the crucial parameters in the spatial structure of the turbulence in such situations. The parameter study is performed by means of numerical calculations, and it embraces three different wind turbine types, representing a pitch controlled concept, a stall controlled concept, and a stall controlled concept with an extremely flexible tower. For each of the turbine concepts, the fatigue load sensibility to the selected turbulence characteristics are investigated for three different mean wind speeds at hub height. The selected mean wind speeds represent the linear-, the stall-, and the post stall aerodynamic region for the stall controlled turbines and analogously the unregulated-, the partly regulated-, and the fully regulated regime for the pitch controlled turbine. Denoting the turbulence component in the mean wind direction by u, the lateral turbulence component by v, and the vertical turbulence component by w, the selected turbulence characteristics comprise the u-turbulence length scale, the ratio between the v- and w-turbulence intensities and the u-turbulence intensity, the uu-coherence decay factor, and finally the u-v and u-w cross-correlations. The turbulence length scale in the mean wind direction gives rise to significant modification of the fatigue loading on all the investigated wind turbine concepts, but for the other selected parameter variations, large individual differences exists between the turbines. With respect to sensitivity to the performed parameter variations, the Vestas V39 wind turbine is the most robust of the investigated turbines. The Nordtank 500/37 turbine, equipped with the (artificial) soft tower, is by far the most sensitive of the investigated turbine concepts - also much more sensitive than the conventional Nordtank 500/37 turbine equipped with a traditional tower. (au) 2 tabs., 43 ills., 7 refs.

  10. Airfoil for a turbine of a gas turbine engine

    Science.gov (United States)

    Liang, George

    2010-12-21

    An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

  11. Experimental investigations on inlet flow of ducted turbines. A contribution to turbine intake optimization; Experimentelle Untersuchungen zur Anstroemung von Rohrturbinen. Ein Beitrag zur Optimierung des Turbineneinlaufes

    Energy Technology Data Exchange (ETDEWEB)

    Godde, D. [Technische Univ. Muenchen, Obernach (Germany). Versuchsanstalt fuer Wasserbau und Wasserwirtschaft (Oskar-von-Miller-Institut)

    1994-12-31

    In the borderline region between hydraulic engineering and turbine technology, a wide range of conjectures on cause-effect relationships in connection with turbine inflow have existed for quite some time. It is remarkable that these conjectures, which are partly based on observations and `a feeling for hydraulics`, have not as yeet been subject to scientific scrutiny. This is more the remarkable when one considers the requirements specified by turbine manufacturers concerning the quality of the intake flow based upon such uncertain conjectures. However, extensive contructional measures are sometimes necessary to satisfy these requirements, which are also formulated in general terms in numerous publications. Within the scope of this treatise the new investigations in this field - at a model and a turbine test rig - concentrate on the separating pier, the trash rack and the adjoining convergence channel in the intake region of bulb turbines. The experimental results serve to clarify a number of relationships, partly negate or confirm previous assumptions and relativize some of the requirements. Although the results must be assessed in the light of model-specific restrictions and the characteristics of the turbines tested, they are nevertheless generally applicable to a certain degree owing to the wide scope of the investigations. (AKF) [Deutsch] Im Grenzbereich zwischen Wasserbau und Turbinentechnologie besteht seit geraumer Zeit zu Fragen der Turbinenanstroemung eine Reihe von Vermutungen ueber Ursache-Wirkung-Zusammenhaenge. Es ist bemerkenswert, dass diese zum Teil auf Beobachtungen und `hydraulischem Gefuehl` basierenden Deutungen bisher keiner wissenschaftlichen Ueberpruefung unterzogen wurden. Das ist um so bemerkenswerter, als auf der Grundlage solcher unsicheren Vermutungen seitens der Turbinenhersteller nun Anforderungen an die Stroemungsqualitaet im Einlaufbereich erhoben werden. Es erfordert aber mitunter grossen baulichen Aufwand, diese Forderungen zu

  12. Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M. J.; Sundaresan, M. J.

    2006-08-01

    This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

  13. Water turbine technology for small power stations

    Science.gov (United States)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  14. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    Energy Technology Data Exchange (ETDEWEB)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  15. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    . The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices......This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration...... in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  16. Vertical Axis Wind Turbine Design Load Cases Investigation and Comparison with Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    Galinos, Christos; Larsen, Torben J.; Aagaard Madsen, Helge

    2016-01-01

    The paper studies the applicability of the IEC 61400-1 ed.3, 2005 International Standard of wind turbine minimum design requirements in the case of an onshore Darrieus VAWT and compares the results of basic Design Load Cases (DLCs) with those of a 3-bladed HAWT. The study is based on aeroelastic...... computations using the HAWC2 aero-servo-elastic code A 2-bladed 5 MW VAWT rotor is used based on a modified version of the DeepWind rotor For the HAWT simulations the NREL 3-bladed 5 MW reference wind turbine model is utilized Various DLCs are examined including normal power production, emergency shut down...... and parked situations, from cut-in to cut-out and extreme wind conditions. The ultimate and 1 Hz equivalent fatigue loads of the blade root and turbine base bottom are extracted and compared in order to give an insight of the load levels between the two concepts. According to the analysis the IEC 61400-1 ed...

  17. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  18. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    Science.gov (United States)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  19. Review of control algorithms for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Spruce, C.J.; Markou, H.; Leithead, W.E.; Dominguez Ruiz, S.

    2005-07-01

    Innovative turbine control strategies could allow the improvements to cost and performance considered essential to reduce the cost of energy from offshore wind farms around the UK. This project reviewed and investigated the possibility for further development of a power control algorithm originally developed by NEG Micon Rotors Ltd for use with offshore wind turbines in the hope that more advanced algorithms would reduce the loads on, and hence the costs of, components such as the foundation/support structure, tower, blades and bedplate. Three models (simulation model, linearisation of the simulation model and control model) were produced in order to conduct the review. Application of these models produced the conclusion that the size of the latest generation of offshore wind turbines has now reached a level where performance is starting to be constrained by fundamental factors in the dynamics caused by the machine's physical size. It was also concluded that an ideal control strategy could achieve potential cost savings for the tower and support structure of 5-10% of the total cost of the turbine plus support structure. Further work to develop controllers to reduce loads in the tower and support structure is urged. The report considers non-linear simulation, the linear model, the control model, general operation of the controller, the drive train damping filter, torque control, pitch control and advanced algorithms, and makes detailed recommendations for future work.

  20. Preliminary design of offshore wind turbine support structures : The importance of proper mode shape estimation

    NARCIS (Netherlands)

    Van der Male, P.

    2013-01-01

    Offshore wind turbines are highly exposed to timevarying loads. For support structures, estimation of the fatigue damage during the lifetime of the structure is an essential design aspect. This already applies for the preliminary design stage. In determining the dynamic amplification in the

  1. Modern challenges for flow investigations in model hydraulic turbines on classical test rig

    International Nuclear Information System (INIS)

    Deschênes, C; Houde, S; Aeschlimann, V; Fraser, R; Ciocan, G D

    2014-01-01

    The BulbT project involved several investigations of flow phenomena in different parts of a model bulb turbine installed on the test rig of Laval University Laboratory. The aim is to create a comprehensive data base in order to increase the knowledge of the flow phenomena in this type of turbines and to validate or improve numerical flow simulation strategies. This validation being based on a kinematic comparison between experimental and numerical data, the project had to overcome challenges to facilitate the use of the experimental data for that purpose. Many parameters were checked, such as the test bench repeatability, the intrusiveness of a priori non-intrusive methods, the geometry of the runner and draft tube. This paper illustrates how some of those problematic were solved

  2. Characterization and comparative investigation of thermally insulating layers for the turbine and engine construction

    International Nuclear Information System (INIS)

    Steffens, H.D.; Fischer, U.

    1987-01-01

    The aim of the research project was to subject commercially produced thermal insulation layer systems, the use of which seems promising for engine and turbine construction, to standardized characterisation, testing and comparison. Suitable methods and procedures for this had to be developed, in order to be able to derive instructions for optimisation guidelines for the production of improved thermal insulation systems from the results of investigations. In the context of the research project, a computer-controlled thermal shock test rig was first developed, designed and built. This test rig was designed so that important test conditions, such as the heating and cooling speed could be varied reproducibly over wide ranges. Methods and procedures were worked out, which permit a comparative qualitative and quantitative characterisation of layers of thermal insulation. From metallographic investigations, the layer build-up, layer structure, porosity and crack morphology of the layers in the delivered state and after testing could be assessed and compared. X-ray fine structure investigations gave information on the type and quantity of the phases occurring in the ceramic layers. The results of thermal shock tests which were done at different temperature intervals depending on the substrate, could be correlated with the build-up of layers and supplied information on damage mechanisms and the course of failure. (orig.) With 57 figs., 16 tabs., 89 refs [de

  3. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability

    DEFF Research Database (Denmark)

    Tahani, Mojtaba; Rabbani, Ali; Kasaeian, Alibakhsh

    2017-01-01

    Recently, Savonius vertical axis wind turbines due to their capabilities and positive properties have gained a significant attention. The objective of this study is to design and model a Savonius-style vertical axis wind turbine with direct discharge flow capability in order to ventilate buildings...... to improve the discharge flow rate. Results indicate that the twist on Savonius wind rotor reduces the negative torque and improves its performance. According to the results, a twisted Savonius wind turbine with conical shaft is associated with 18% increase in power coefficient and 31% increase in discharge...... flowrate compared to simple Savonius wind turbine. Also, wind turbine with variable cut plane has a 12% decrease in power coefficient and 5% increase in discharge flow rate compared to simple Savonius wind turbine. Therefore, it can be inferred that twisted wind turbine with conical shaft indicated...

  4. Extended onshore control of a floating wind turbine with wave disturbance reduction

    DEFF Research Database (Denmark)

    Christiansen, S.; Knudsen, T.; Bak, Thomas

    2014-01-01

    Reaching for higher wind resources floating wind turbines are being investigated. Wave induced loads significantly increase for floating wind turbines, and applying conventional onshore control strategies to floating wind turbines has been shown to impose negative damped oscillations in fore......-aft due to the low natural frequency of the floating structure. We suggest a control loop extension of the onshore controller which stabilizes the system and reduces the wave disturbance. The result is improved performance in power fluctuations, blade pitch activity, and platform oscillations...

  5. Optimization of offshore wind turbine support structures using analytical gradient-based method

    OpenAIRE

    Chew, Kok Hon; Tai, Kang; Ng, E.Y.K.; Muskulus, Michael

    2015-01-01

    Design optimization of the offshore wind turbine support structure is an expensive task; due to the highly-constrained, non-convex and non-linear nature of the design problem. This report presents an analytical gradient-based method to solve this problem in an efficient and effective way. The design sensitivities of the objective and constraint functions are evaluated analytically while the optimization of the structure is performed, subject to sizing, eigenfrequency, extreme load an...

  6. Vibration-Based Damage Identification in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Damkilde, Lars

    Due to the existing trend of placing wind turbines in impassable terrain, for example, offshore, these structures constitute prime candidates for being subjected to structural health monitoring (SHM). The wind turbine blades have in particular been paid research attention [1] as these compose one...... of the most common and critical components to fail in the turbines [2]. The standard structural integrity assessment of blades is based on visual inspection, which requires the turbine in question to be stopped while inspections are conducted. This procedure is extremely costly and tedious, hence emphasizing...

  7. Materials of large wind turbine blades: Recent results in testing and modeling

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl; Nijssen, Rogier

    2012-01-01

    The reliability of rotor blades is the pre-condition for the development and wide use of large wind turbines. In order to accurately predict and improve the wind turbine blade behavior, three main aspects of the reliability and strength of rotor blades were considered: (i) development of methods...... of the effect of the microstructure of wind turbine blade composites on their strength and ways of microstructural optimization of the materials. By testing reference coupons, the effect of testing parameters (temperature and frequency) on the lifetime of blade composites was investigated, and the input data...... clustering, misalignments, interface properties and other factors on the strength and lifetime of the wind turbine blade materials were investigated in the micromechanical finite element simulations. The results described in this paper stem from the Rotor Structure and Materials task of the UPWIND project...

  8. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    , large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  9. Experimental investigation of fish downstream passage and turbine related fish mortality at an innovative hydro power setup

    International Nuclear Information System (INIS)

    Geiger, Franz; Cuchet, Mathilde; Rutschmann, Peter

    2016-01-01

    The fish downstream passage of small fish at the innovative TUM hydro shaft power plant concept was investigated experimentally. The behavior of 1974 inserted individuals of brown trout, grayling, barbel, minnow and bullhead of 45 mm to 220 mm body length was observed in a fully functional test setup which included a 35 kW Kaplan turbine and a horizontal screen with 20 mm bar clearance. The 24 h tests were conducted under nature like conditions whereas the laboratory environment also enabled targeted hydraulic situations and modifications of the bypass during the test series. A recapture rate of the fish of 99% and a subsequent 96 h observation period yielded detailed information about the migration behavior and instant as well as long term mortality. The results reveal the actual passage distribution of small fish between bypass and turbine and the turbine related injury and mortality rates in dependency of fish species, fish length, turbine discharge and bypass arrangement. General trends as well as species specific particularities could be deduced. The work confirms the suitability of the employed experimental approach and the ecological potential of the investigated hydro power plant concept. The behavioral barrier effect of the screen on small fish and the necessary of appropriate downstream migration corridor were proved and quantified. (authors)

  10. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1

  11. Application of fluid-structure coupling to predict the dynamic behavior of turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, B; Seidel, U [Voith Hydro Holding GmbH and Co. KG, Alexanderstr. 11, 89522 Heidenheim (Germany); Roth, S, E-mail: bjoern.huebner@voith.co [Laboratory for Hydraulic Machines, EPFL, Avenue de Cour 33 Bis, 1007 Lausanne (Switzerland)

    2010-08-15

    In hydro turbine design, fluid-structure interaction (FSI) may play an important role. Examples are flow induced inertia and damping effects, vortex induced vibrations in the lock-in vicinity, or hydroelastic instabilities of flows in deforming gaps (e.g. labyrinth seals). In contrast to aeroelasticity, hydroelastic systems require strongly (iteratively) coupled or even monolithic solution procedures, since the fluid mass which is moving with the structure (added-mass effect) is much higher and changes the dynamic behavior of submerged structures considerably. Depending on the mode shape, natural frequencies of a turbine runner in water may be reduced to less than 50% of the corresponding frequencies in air, and flow induced damping effects may become one or two orders of magnitude higher than structural damping. In order to reduce modeling effort and calculation time, the solution strategy has to be adapted precisely to a given application. Hence, depending on the problem to solve, different approximations may apply. Examples are the calculation of natural frequencies and response spectra in water using an acoustic fluid formulation, the determination of flow induced damping effects by means of partitioned FSI including complex turbulent flows, and the identification of hydroelastic instabilities using monolithic coupling of non-linear structural dynamics and water flow.

  12. On the structural behaviour of variable-geometry oval-trajectory Darrieus wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Otero, A.D. [College of Engineering, University of Buenos Aires, Paseo Colon 850, Buenos Aires C1063ACV (Argentina); Ponta, F.L. [Department of Mechanical Engineering - Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2009-03-15

    We developed a computational model based on a finite-element mixed formulation with quadratic isoparametric beam elements. We applied this model to the analysis of a blade-wagon: a novel structure characteristic of an innovative concept in wind-power called VGOT Darrieus turbine. We studied the structural behaviour of its main components: chassis, suspension and blade, using combinations of beam/bar elements in an appropriate assembling. We defined a set of parameters to characterize the structural behaviour which help to understand the contribution of the different components and assist the process of redesign. (author)

  13. Numerical investigation for one bad-behaved flow in a Pelton turbine

    International Nuclear Information System (INIS)

    Wei, X Z; Yang, K; Wang, H J; Gong, R Z; Li, D Y

    2015-01-01

    The gas-liquid two-phase flow in pelton turbines is very complicated, there are many kinds of bad-behaved flow in pelton turbines. In this paper, CFD numerical simulation for the pelton turbine was conducted using VOF two-phase model. One kind of bad-behaved flow caused by the two jets was captured, and the bad-behaved flow was analysed by torque on buckets. It can be concluded that the angle between the two jets and the value of ratio of runner diameter and jet diameter are important parameters for the bad-behaved flow. Furthermore, the reason why the efficiency of some multi-jet type turbines is very low can be well explained by the analysis of bad-behaved flow. Finally, some suggestions for improvement were also provided in present paper

  14. Numerical investigation for one bad-behaved flow in a Pelton turbine

    Science.gov (United States)

    Wei, X. Z.; Yang, K.; Wang, H. J.; Gong, R. Z.; Li, D. Y.

    2015-01-01

    The gas-liquid two-phase flow in pelton turbines is very complicated, there are many kinds of bad-behaved flow in pelton turbines. In this paper, CFD numerical simulation for the pelton turbine was conducted using VOF two-phase model. One kind of bad-behaved flow caused by the two jets was captured, and the bad-behaved flow was analysed by torque on buckets. It can be concluded that the angle between the two jets and the value of ratio of runner diameter and jet diameter are important parameters for the bad-behaved flow. Furthermore, the reason why the efficiency of some multi-jet type turbines is very low can be well explained by the analysis of bad-behaved flow. Finally, some suggestions for improvement were also provided in present paper.

  15. Dynamic behaviour of pump-turbine runner: From disk to prototype runner

    International Nuclear Information System (INIS)

    Huang, X X; Egusquiza, E; Valero, C; Presas, A

    2013-01-01

    In recent decades, in order to increase output power of hydroelectric turbomachinery, the design head and the flow rate of the hydraulic turbines have been increased greatly. This has led to serious vibratory problems. The pump-turbines have to work at various operation conditions to satisfy the requirements of the power grid. However, larger hydraulic forces will result in high vibration levels on the turbines, especially, when the machines operate at off-design conditions. Due to the economic considerations, the pump-turbines are built as light as possible, which will change the dynamic response of the structures. According to industrial cases, the fatigue damage of the pump-turbine runner induced by hydraulic dynamic forces usually happens on the outer edge of the crown, which is near the leading edges of blades. To better understand the reasons for this kind of fatigue, it is extremely important to investigate the dynamic response behaviour of the hydraulic turbine, especially the runner, by experimental measurement and numerical simulation. The pump-turbine runner has a similar dynamic response behaviour of the circular disk. Therefore, in this paper the dynamic response analyses for circular disks with different dimensions and disk-blades-disk structures were carried out to better understand the fundamental dynamic behaviour for the complex turbomachinery. The influences of the pattern and number of blades were discussed in detail

  16. Water turbine system and method of operation

    Science.gov (United States)

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  17. Investigations on the Effect of Radius Rotor in Combined Darrieus-Savonius Wind Turbine

    Directory of Open Access Journals (Sweden)

    Kaprawi Sahim

    2018-01-01

    Full Text Available Renewable sources of energy, abundant in availability, are needed to be exploited with adaptable technology. For wind energy, the wind turbine is very well adapted to generate electricity. Among the different typologies, small scale Vertical Axis Wind Turbines (VAWT present the greatest potential for off-grid power generation at low wind speeds. The combined Darrieus-Savonius wind turbine is intended to enhance the performance of the Darrieus rotor in low speed. In combined turbine, the Savonius buckets are always attached at the rotor shaft and the Darrieus blades are installed far from the shaft which have arm attaching to the shaft. A simple combined turbine offers two rotors on the same shaft. The combined turbine that consists of two Darrieus and Savonius blades was tested in wind tunnel test section with constant wind velocity and its performance was assessed in terms of power and torque coefficients. The study gives the effect of the radius ratio between Savonius and Darrieus rotor on the performance of the turbine. The results show that there is a significant influence on the turbine performance if the radius ratio was changed.

  18. A wind-tunnel investigation of wind-turbine wakes in different yawed and loading conditions

    Science.gov (United States)

    Bastankhah, Majid; Porté-Agel, Fernando

    2015-04-01

    Wind-turbine wakes have negative effects on wind-farm performance. They are associated with: (a) the velocity deficit, which reduces the generated power of downwind turbines; and (b) the turbulence level, which increases the fatigue loads on downwind turbines. Controlling the yaw angle of turbines can potentially improve the performance of wind farms by deflecting the wake away from downwind turbines. However, except for few studies, wakes of yawed turbines still suffer from the lack of systematic research. To fill this research gap, we performed wind-tunnel experiments in the recirculating boundary-layer wind tunnel at the WIRE Laboratory of EPFL to better understand the wakes of yawed turbines. High-resolution stereoscopic particle image-velocimetry (S-PIV) was used to measure three velocity components in a horizontal plane located downwind of a horizontal-axis, three-blade model turbine. A servo-controller was connected to the DC generator of the turbine, which allowed us to apply different loadings. The power and thrust coefficients of the turbine were also measured for each case. These power and thrust measurements together with the highly-resolved flow measurements enabled us to study different wake characteristics such as the energy entrainment from the outer flow into the wake, the wake deflection and the helicoidal tip vortices for yawed turbines.

  19. Wind turbines and idiopathic symptoms

    DEFF Research Database (Denmark)

    Blanes-Vidal, Victoria; Schwartz, Joel

    2016-01-01

    Whether or not wind turbines pose a risk to human health is a matter of heated debate. Personal reactions to other environmental exposures occurring in the same settings as wind turbines may be responsible of the reported symptoms. However, these have not been accounted for in previous studies. We...... investigated whether there is an association between residential proximity to wind turbines and idiopathic symptoms, after controlling for personal reactions to other environmental co-exposures. We assessed wind turbine exposures in 454 residences as the distance to the closest wind turbine (Dw) and number...... of wind turbines

  20. Finite element structural study of the VGOT wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Otero, A.D. [University of Buenos Aires (Argentina). College of Engineering; Ponta, F.L. [University of Illinois, Urbana, IL (United States). Dept. of Theoretical and Applied Mechanics

    2004-07-01

    We analyse the implementation of the finite element method to simulate the structural behaviour of the blade-wagons of variable-geometry oval-trajectory (VGOT) Darrieus wind turbines. The key feature of a VGOT machine is that each blade, instead of rotating around a central vertical axis, slides over rails mounted on a wagon formed by a tubular reticulated structure supported by standard train bogies. The structure should be designed to absorb the efforts in the vertical and traverse directions of the railroad due to the aerodynamic loads, the weight of the components and the centrifugal acceleration along the curved tracks. We show some results for the tip deflection and the tip torsion of the blade, the frontal and lateral angle variations in the blade bottom and the Von Misses tensions of five sample beams, all of them in function of the trajectory-length parameter; and some examples of the deformed configuration of the reticulated structure. (author)

  1. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading......The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered......, and when wind turbines are located in remote regions where the cost of inspections and repairs can be very high. From a structural viewpoint, wind turbine blades are subjected to very complex loading histories with coupled deformation modes. The long-term reliability of wind turbine blades requires...

  2. Design Concepts for Cooled Ceramic Composite Turbine Vane

    Science.gov (United States)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, VInod K.

    2015-01-01

    The objective of this work was to develop design concepts for a cooled ceramic vane to be used in the first stage of the High Pressure Turbine(HPT). To insure that the design concepts were relevant to the gas turbine industry needs, Honeywell International Inc. was subcontracted to provide technical guidance for this work. The work performed under this contract can be divided into three broad categories. The first was an analysis of the cycle benefits arising from the higher temperature capability of Ceramic Matrix Composite(CMC) compared with conventional metallic vane materials. The second category was a series of structural analyses for variations in the internal configuration of first stage vane for the High Pressure Turbine(HPT) of a CF6 class commercial airline engine. The third category was analysis for a radial cooled turbine vanes for use in turboshaft engine applications. The size, shape and internal configuration of the turboshaft engine vanes were selected to investigate a cooling concept appropriate to small CMC vanes.

  3. Aeroelastic impact of above-rated wave-induced structural motions on the near-wake stability of a floating offshore wind turbine rotor

    Science.gov (United States)

    Rodriguez, Steven; Jaworski, Justin

    2017-11-01

    The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.

  4. Evaluation on an influence to turbine generator installed on a concrete foundation structure affected by alkali-silica reaction

    International Nuclear Information System (INIS)

    Takeo Takakura; Takashi Momoo; Shigeru Harada; Yoshihisa Asai; Takashi Hosokawa

    2005-01-01

    A turbine generator to be evaluated is a one with 566 MW capacity installed on a reinforced concrete supporting structure having a table deck portion where equipments are installed and columns to support on the table deck. After the initial operation of this turbine generator started, a difference from the initial setting at an installation stage was found at turbine generator in the annual inspection on 1979. The turbine generator foundation (herein after TG foundation) had expanded mainly longitudinal direction, and it was confirmed this expansion occurred due to affected by Alkali-Silica reaction (herein after ASR) according to concrete core samples tests. The measurement for TG foundation such as displacements started at this time. On the other hand, bearing metal temperatures and shaft vibration for the turbine generator have been continuously monitored by supervisory from initial operation. No abnormal alarm or trips by extraordinary metal temperature or axle vibration of the turbine generator due to TG foundation expansion affected by ASR have been arisen. However it is required to confirm sounding of this turbine generator in order to safely operation. The purpose of this paper checked and examined allowable capacity of turbine generator and TG foundation, in order to operate continuously and safely. (authors)

  5. Coordinated Control of Cross-Flow Turbines

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  6. Prototype bucket foundation for wind turbines

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers...... and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental...... estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models...

  7. Numerical Investigation of Methane Combustion under Mixed Air-Steam Turbine Conditions

    NARCIS (Netherlands)

    Skevis, G.; Chrissanthopoulos, A.; Goussis, D.A.; Mastorakos, E.; Derksen, M.A.F.; Kok, Jacobus B.W.

    2004-01-01

    Lowering emissions from power generating gas turbines, while retaining efficiency and power output, constitutes a formidable task, both at fundamental and technical levels. Combined gas turbine cycles involving air humidification are particularly attractive, since they provide additional power with

  8. Stochastic dynamic response analysis of spar-type wind turbines with catenary or taut mooring systems

    Energy Technology Data Exchange (ETDEWEB)

    Karimirad, Madjid

    2011-03-15

    Floating wind turbines can be the most practical and economical way to extract the vast offshore wind energy resources at deep and intermediate water depths. The Norwegian Ministry of Petroleum and Energy is strongly committed to developing offshore wind technology that utilises available renewable energy sources. As the wind is steadier and stronger over the sea than over land, the wind industry recently moved to offshore areas. Analysis of the structural dynamic response of offshore wind turbines subjected to stochastic wave and wind loads is an important aspect of the assessment of their potential for power production and of their structural integrity. Of the concepts that have been proposed for floating wind turbines, spar-types such as the catenary moored spar (CMS) and tension leg spar (TLS) wind turbines seem to be well-suited to the harsh environmental conditions that exist in the North Sea. Hywind and Sway are two examples of such Norwegian concepts; they are based on the CMS and TLS, respectively. Floating wind turbines are sophisticated structures that are subjected to simultaneous wind and wave actions. The coupled nonlinear structural dynamics and motion response equations of these turbines introduce geometrical nonlinearities through the relative motions and velocities. Moreover, the hydrodynamic and aerodynamic loading of this type of structure is nonlinear. A floating wind turbine is a multi body aero-hydro-servo-elastic structural system; for such structures, the coupled nonlinear equations of motion considering nonlinear excitation and damping forces, including all wave- and wind-induced features, should be solved in the time domain. In this thesis, the motion and structural responses for operational and extreme environmental conditions were considered to investigate the performance and the structural integrity of spar-type floating wind turbines. The power production and the effects of aerodynamic and hydrodynamic damping, including wind

  9. Adaptive Backstepping Control of Lightweight Tower Wind Turbine

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Borup, Kasper Trolle; Niemann, Hans Henrik

    2015-01-01

    the angular deflection of the tower with respect to the vertical axis in response to variations in wind speed. The controller is shown to guarantee asymptotic tracking of the reference trajectory. The performance of the control system is evaluated through deterministic and stochastic simulations including......This paper investigates the feasibility of operating a wind turbine with lightweight tower in the full load region exploiting an adaptive nonlinear controller that allows the turbine to dynamically lean against the wind while maintaining nominal power output. The use of lightweight structures...... for towers and foundations would greatly reduce the construction cost of the wind turbine, however extra features ought be included in the control system architecture to avoid tower collapse. An adaptive backstepping collective pitch controller is proposed for tower point tracking control, i.e. to modify...

  10. Numerical Modeling and Experimental Analysis of Scale Horizontal Axis Marine Hydrokinetic (MHK) Turbines

    Science.gov (United States)

    Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto

    2013-11-01

    We investigate, through a combination of scale model experiments and numerical simulations, the evolution of the flow field around the rotor and in the wake of Marine Hydrokinetic (MHK) turbines. Understanding the dynamics of this flow field is the key to optimizing the energy conversion of single devices and the arrangement of turbines in commercially viable arrays. This work presents a comparison between numerical and experimental results from two different case studies of scaled horizontal axis MHK turbines (45:1 scale). In the first case study, we investigate the effect of Reynolds number (Re = 40,000 to 100,000) and Tip Speed Ratio (TSR = 5 to 12) variation on the performance and wake structure of a single turbine. In the second case, we study the effect of the turbine downstream spacing (5d to 14d) on the performance and wake development in a coaxial configuration of two turbines. These results provide insights into the dynamics of Horizontal Axis Hydrokinetic Turbines, and by extension to Horizontal Axis Wind Turbines in close proximity to each other, and highlight the capabilities and limitations of the numerical models. Once validated at laboratory scale, the numerical model can be used to address other aspects of MHK turbines at full scale. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  11. Experiences and results from Elkraft 1 MW wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Raben, N; Jensen, F V [SEAS Distribution A.m.b.A., Wind Power Dept., Haslev (Denmark); Oeye, S [DTU, Inst. for Energiteknik, Lyngby (Denmark); Markkilde Petersen, S; Antoniou, I [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The Elkraft 1 MW Demonstration wind turbine was at the time of installation in 1993 the largest stall controlled wind turbine in the world. It was constructed to allow accurate comparison of two different forms of operation: pitch control and stall control. A comprehensive programme for the investigation of the two operation modes was established. This paper presents the main experiences from five years of operation and measurements. For a three-year period the wind turbine was in operation in stall controlled mode. During this period the turbine faced problems of various significance. Especially lightning strikes and unusually poor wind conditions caused delays of the project. In early 1997, the wind turbine was modified to enable pitch controlled operation. The gearbox ratio was changed in order to allow higher rotor speed, the hydraulic system was altered and new control software was installed. Tests were carried out successfully during the spring of 1997 and the wind turbine has since been operating as a pitch controlled wind turbine. The most significant events and problems are presented and commented in this paper along with results from the measurement programme. The results cover both stall and pitch controlled operation and include power curves, annual energy production, structural loads, fatigue loads etc. (au) 10 refs.

  12. Model and prototype investigations of upper partial load unsteady phenomena on the Francis turbine designed for head up to 120 m

    International Nuclear Information System (INIS)

    Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" data-affiliation=" (OJSC Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" >Kuznetsov, I; Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" data-affiliation=" (OJSC Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" >Zakharov, A; Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" data-affiliation=" (OJSC Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" >Arm, V; Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" data-affiliation=" (OJSC Power Machines - LMZ, Saint-Petersburg, str. Vatutina 3A (Russian Federation))" >Akulaev, R

    2014-01-01

    The upper partial load unsteady phenomena are often observed at model tests for Francis turbine with high and middle specific speed. It is appears approximately between 7085% of optima point discharge for constant unit speed value and has accompanied by additional phenomenon with much higher frequency than draft tube vortex precession frequency and also runner rotational frequency. There are some discussions about nature of this phenomena and transposition of unsteady model test results to the prototype. In this paper are presented the results of above mentioned phenomena model investigations and some results of investigation at prototype turbine. Based on the results of model tests the following extensive data have been obtained: pressure fluctuation in the draft tube cone and spiral case, axial force fluctuations, it is demonstrated the significant influence of cavitation on upper partial load unsteady phenomena. The result of measurements of bearing vibrations and pressure pulsations are presented for prototype turbine at corresponded or very close operation points to model. In accordance with obtained data it is demonstrated that at upper partial load operation the unsteady phenomenon is observed as for the model also for the prototype turbine. On the base of model investigation has been demonstrated the influence of air admission and special design solutions to diminish unsteady phenomena at upper partial load range. All investigations were based on the physical experiment. Thus, based on model and prototype experimental investigations it is obtained additional information about upper partial load unsteady phenomenon and confirmed the transposition of model results to prototype turbine

  13. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    Institute of Scientific and Technical Information of China (English)

    W. Tian; A. Ozbay; X. D. Wang; H.Hu

    2017-01-01

    We examined experimentally the effects of incom-ing surface wind on the turbine wake and the wake interfer-ence among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experi-ment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incom-ing surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow char-acteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Varia-tions of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes charac-teristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake inter-ference for the turbines sited in onshore wind farms.

  14. Numerical and experimental investigation of the self-inducing turbine aeration capacity

    International Nuclear Information System (INIS)

    Achouri, Ryma; Dhaouadi, Hatem; Mhiri, Hatem; Bournot, Philippe

    2014-01-01

    Highlights: • Numerical and experimental study of k L a coefficient of a self-inducing turbine. • Validation of experimental results. • Numerical study of k L a variation with the variation of impeller submersion and blade inclination. • Numerical study of the flow field and hydrodynamic parameters. - Abstract: Self-inducing turbines are a model of mixers that ensure the aeration of a fluid field without using a sparger and a surface aerator. Nevertheless, this type of turbines remain quite complicated in terms of behavior of the fluid within the tank, and its actual aeration capacity varies depending on the type of turbine used. The studied turbine is self-inducing and made of three blades and each blade contains five holes. In this work, we evaluated experimentally – using the technique of dynamic oxygenation and deoxygenating – the aeration capacity of our impeller by calculating the volumetric mass transfer coefficient k L a for various submergences and various inclination angles of the blade. This work was then validated by a numerical modeling using the commercial code Fluent, and the flow within the tank as well as the evolution of the hydrodynamic parameters was also studied. The simulation is steady state with a VOF multiphase model and the realizable k–ε turbulence model. We finally concluded that k L a decreases with the increase of the inclination angle and with the increase of the submergence of our turbine. We could also study the hydrodynamic parameters of the flow such as the power number, the aeration number and the shear rate

  15. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine...

  16. Wind Turbine Control: Robust Model Based Approach

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood

    . Wind turbines are the most common wind energy conversion systems and are hoped to be able to compete economically with fossil fuel power plants in near future. However this demands better technology to reduce the price of electricity production. Control can play an essential part in this context....... This is because, on the one hand, control methods can decrease the cost of energy by keeping the turbine close to its maximum efficiency. On the other hand, they can reduce structural fatigue and therefore increase the lifetime of the wind turbine. The power produced by a wind turbine is proportional...... to the square of its rotor radius, therefore it seems reasonable to increase the size of the wind turbine in order to capture more power. However as the size increases, the mass of the blades increases by cube of the rotor size. This means in order to keep structural feasibility and mass of the whole structure...

  17. Seismic analysis of offshore wind turbines on bottom-fixed support structures.

    Science.gov (United States)

    Alati, Natale; Failla, Giuseppe; Arena, Felice

    2015-02-28

    This study investigates the seismic response of a horizontal axis wind turbine on two bottom-fixed support structures for transitional water depths (30-60 m), a tripod and a jacket, both resting on pile foundations. Fully coupled, nonlinear time-domain simulations on full system models are carried out under combined wind-wave-earthquake loadings, for different load cases, considering fixed and flexible foundation models. It is shown that earthquake loading may cause a significant increase of stress resultant demands, even for moderate peak ground accelerations, and that fully coupled nonlinear time-domain simulations on full system models are essential to capture relevant information on the moment demand in the rotor blades, which cannot be predicted by analyses on simplified models allowed by existing standards. A comparison with some typical design load cases substantiates the need for an accurate seismic assessment in sites at risk from earthquakes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. A Take Stock of Turbine Blades Failure Phenomenon

    Science.gov (United States)

    Roy, Abhijit

    2018-02-01

    Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.

  19. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    Science.gov (United States)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  20. Structural design optimization of a morphing trailing edge flap for wind turbine blades

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Lin, Yu-Huan; Aagaard Madsen, Helge

    A flap actuation system, the Controllable Rubber Trailing Edge Flap (CRTEF), for distributed load control on a wind turbine blade had been developed in the period from 2006 to 2013 at DTU (http://www.induflap.dk/). The purpose of the presented work is to optimize the structural design of the flex......A flap actuation system, the Controllable Rubber Trailing Edge Flap (CRTEF), for distributed load control on a wind turbine blade had been developed in the period from 2006 to 2013 at DTU (http://www.induflap.dk/). The purpose of the presented work is to optimize the structural design...... of the flexible part of the CRTEF based on a realistic blade section geometry in order to meet the required objectives and constraints. The objectives include the deflection requirements and the energy efficiency, while the constraints include the bending stiffness of the structure, the local shape deformations......, critical material strength, and manufacturing limitations. A model with arches forming concave on the flap surface and enclosing the voids to be pressurized results in the bending movement of the flap when pressure is applied on the voids to straighten the arches. The model is designed using SolidWorks...

  1. Optimal design of marine steam turbine

    International Nuclear Information System (INIS)

    Liu Chengyang; Yan Changqi; Wang Jianjun

    2012-01-01

    The marine steam turbine is one of the key equipment in marine power plant, and it tends to using high power steam turbine, which makes the steam turbine to be heavier and larger, it causes difficulties to the design and arrangement of the steam turbine, and the marine maneuverability is seriously influenced. Therefore, it is necessary to apply optimization techniques to the design of the steam turbine in order to achieve the minimum weight or volume by means of finding the optimum combination of design parameters. The math model of the marine steam turbine design calculation was established. The sensitivities of condenser pressure, power ratio of HP turbine with LP turbine, and the ratio of diameter with height at the end stage of LP turbine, which influence the weight of the marine steam turbine, were analyzed. The optimal design of the marine steam turbine, aiming at the weight minimization while satisfying the structure and performance constraints, was carried out with the hybrid particle swarm optimization algorithm. The results show that, steam turbine weight is reduced by 3.13% with the optimization scheme. Finally, the optimization results were analyzed, and the steam turbine optimization design direction was indicated. (authors)

  2. Integrated Approach Using Condition Monitoring and Modeling to Investigate Wind Turbine Gearbox Design: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Guo, Y.

    2015-03-01

    Vibration-based condition monitoring (CM) of geared utility-scale turbine drivetrains has been used by the wind industry to help improve operation and maintenance (O&M) practices, increase turbine availability, and reduce O&M cost. This study is a new endeavor that integrates the vibration-based CM technique with wind turbine gearbox modeling to investigate various gearbox design options. A teamof researchers performed vibration-based CM measurements on a damaged wind turbine gearbox with a classic configuration, (i.e., one planetary stage and two parallel stages). We observed that the acceleration amplitudes around the first-order sidebands of the intermediate stage gear set meshing frequency were much lower than that measured at the high-speed gear set, and similar difference wasalso observed in a healthy gearbox. One factor for a reduction at the intermediate stage gear set is hypothesized to be the soft sun-spline configuration in the test gearbox. To evaluate this hypothesis, a multibody dynamic model of the healthy test gearbox was first developed and validated. Relative percent difference of the first-order sidebands--of the high-speed and intermediate stagegear-meshing frequencies--in the soft and the rigid sun spline configurations were compared. The results verified that the soft sun-spline configuration can reduce the sidebands of the intermediate stage gear set and also the locating bearing loads. The study demonstrates that combining vibration-based CM with appropriate modeling can provide insights for evaluating different wind turbinegearbox design options.

  3. Numerical and in-situ investigations of water hammer effects in Drava river Kaplan turbine hydropower plants

    International Nuclear Information System (INIS)

    Bergant, A; Gregorc, B; Gale, J

    2012-01-01

    This paper deals with critical flow regimes that may induce unacceptable water hammer in Kaplan turbine hydropower plants. Water hammer analysis should be performed for normal, emergency and catastrophic operating conditions. Hydropower plants with Kaplan turbines are usually comprised of relatively short inlet and outlet conduits. The rigid water hammer theory can be used for this case. For hydropower plants with long penstocks the elastic water hammer should be used. Some Kaplan turbine units are installed in systems with long open channels. In this case, water level oscillations in the channels should be carefully investigated. Computational results are compared with results of measurements in recently rehabilitated seven Drava river hydroelectric power plants in Slovenia. Water hammer in the six power plants is controlled by appropriate adjustment of the wicket gates and runner blades closing/opening manoeuvres. Due to very long inflow and outflow open channels in Zlatolicje HPP a special vaned pressure regulating device attenuates extreme pressures in Kaplan turbine flow-passage system and controls unsteady flow in both open channels. Comparisons of results include normal operating regimes. The agreement between computed and measured results is reasonable.

  4. Numerical and in-situ investigations of water hammer effects in Drava river Kaplan turbine hydropower plants

    Science.gov (United States)

    Bergant, A.; Gregorc, B.; Gale, J.

    2012-11-01

    This paper deals with critical flow regimes that may induce unacceptable water hammer in Kaplan turbine hydropower plants. Water hammer analysis should be performed for normal, emergency and catastrophic operating conditions. Hydropower plants with Kaplan turbines are usually comprised of relatively short inlet and outlet conduits. The rigid water hammer theory can be used for this case. For hydropower plants with long penstocks the elastic water hammer should be used. Some Kaplan turbine units are installed in systems with long open channels. In this case, water level oscillations in the channels should be carefully investigated. Computational results are compared with results of measurements in recently rehabilitated seven Drava river hydroelectric power plants in Slovenia. Water hammer in the six power plants is controlled by appropriate adjustment of the wicket gates and runner blades closing/opening manoeuvres. Due to very long inflow and outflow open channels in Zlatoličje HPP a special vaned pressure regulating device attenuates extreme pressures in Kaplan turbine flow-passage system and controls unsteady flow in both open channels. Comparisons of results include normal operating regimes. The agreement between computed and measured results is reasonable.

  5. Definition of a 5MW/61.5m wind turbine blade reference model.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  6. Noise immission from wind turbines

    International Nuclear Information System (INIS)

    1999-01-01

    The project has dealt with practical ways to reduce the influence of background noise caused by wind acting on the measuring microphones. The uncertainty of measured noise emission (source strength) has been investigated. The main activity was a Round Robin Test involving measurements by five laboratories at the same wind turbine. Each laboratory brought its own instrumentation and performed the measurements and analyses according to their interpretation. The tonality of wind turbine noise is an essential component of the noise impact on the environment. In the present project the uncertainty in the newest existing methods for assessing tonality was investigated. The project included noise propagation measurements in different weather conditions around wind turbines situated in different types of terrain. The results were used to validate a noise propagation model developed in the project. Finally, the project also included a study with listeners evaluating recordings of wind turbine noise. The results are intended as guidance for wind turbine manufacturers in identifying the aspects of wind turbine noise most important to annoyance. (author)

  7. Wind turbine structural dynamics - a review of the principles for modern power generation, onshore and offshore

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, J. van der; Molenaar, D.-P.

    2002-07-01

    Wind turbines for electricity production have two seemingly opposing constraints; they need to be structural secure yet of low cost. To meet the first constraint, it would be an obvious choice to design a stiff structure of consequently large mass but this would drive up the cost. By reducing the mass a more cost effective turbine can be realized. However, such lightweight structures are by definition more flexible. To design a cost effective flexible system, thorough understanding of the dynamics is essential. This paper reviews the theoretical basics of the dynamic design options and applies these to realistic situations, including offshore machines under wave action. The wind energy converter and the support structure form an integrated dynamic system that must be developed in mutual interdependency and close co-operation. This paper provides a contribution to this integration process by extending the design approach initiated in the Opti-OW ECS study and the work of Kuhn. (author)

  8. Effects of gain-scheduling methods in a classical wind turbine controller on wind turbine aeroservoelastic modes and loads

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Henriksen, Lars Christian; Hansen, Morten Hartvig

    2014-01-01

    The eects of dierent gain-scheduling methods for a classical wind turbine controller, operating in full load region, on the wind turbine aeroservoelastic modes and loads are investigated in this work. The dierent techniques are derived looking at the physical problem to take into account the chan......The eects of dierent gain-scheduling methods for a classical wind turbine controller, operating in full load region, on the wind turbine aeroservoelastic modes and loads are investigated in this work. The dierent techniques are derived looking at the physical problem to take into account...

  9. Potential scour for marine current turbines based on experience of offshore wind turbine

    International Nuclear Information System (INIS)

    Chen, L; Lam, W H; Shamsuddin, A H

    2013-01-01

    The oceans have tremendous untapped natural resources. These sources are capable to make significant contribution to our future energy demands. Marine current energy offers sustainable and renewable alternative to conventional sources. Survival problems of Marine Current Turbines (MCTs) need to be addressed due to the harsh marine environment. The analogous researches in wind turbine have been conducted. Some of the results and knowledge are transferable to marine current energy industry. There still exist some gaps in the state of knowledge. Scour around marine structures have been well recognised as an engineering issue as scour is likely to cause structural instability. This paper aims to review different types of foundation of MCTs and potential scour and scour protection around these foundations based on the experience of offshore wind turbine farm.

  10. The calculation of fluid-structure interaction and fatigue analysis for Francis turbine runner

    International Nuclear Information System (INIS)

    Wang, X F; Li, H L; Zhu, F W

    2012-01-01

    Francis turbine, as a widely used hydro turbine, is especially suited for the hydropower station with high hydraulic head and higher hydraulic head. For such turbine generator units all around the world, the crack streaks usually come out after a long time use and the resulted accidents may cause huge losses. Hence, it is meaningful to refine the design assuring the stability and safety of the Francis turbine. In this paper, the stiffness and strength as well as the fatigue life of the Francis turbine are studied. Concerning on the turbine of one certain hydropower station, the flow field inside the turbine are first simulated and the pressure distribution around the blades are derived. Meanwhile, the stress distributions of the blades are also obtained. Based on these, the fatigue analyses are applied on the turbine. According to the results of fatigue analyses, some optimal designs on the turbine are verified. The results show that with the optimal designs, the hydraulic performances of the turbine do not change too much while the maximum stress on the turbine decrease and the fatigue life increase as well.

  11. Aerodynamic investigation of winglets on wind turbine blades using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Jeppe; Soerensen, Niels N.

    2006-02-15

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets. Results show that adding a winglet to the existing blade increase the force distribution on the outer approx 14 % of the blade leading to increased produced power of around 0.6% to 1.4% for wind speeds larger than 6 m/s. This has to be compared to the increase in thrust of around 1.0% to 1.6%. Pointing the winglet downstream increases the power production even further. The effect of sweep and cant angles is not accounted for in the present investigation and could improve the winglets even more. (au)

  12. Results from Investigations of Torsional Vibration in Turbine Set Shaft Systems

    Science.gov (United States)

    Taradai, D. V.; Deomidova, Yu. A.; Zile, A. Z.; Tomashevskii, S. B.

    2018-01-01

    The article generalizes the results obtained from investigations of torsional vibration in the shaft system of the T-175/210-12.8 turbine set installed at the Omsk CHPP-5 combined heat and power plant. Three different experimental methods were used to determine the lowest natural frequencies of torsional vibration excited in the shaft system when the barring gear is switched into operation, when the generator is synchronized with the grid, and in response to unsteady disturbances caused by the grid and by the turbine control and steam admission system. It is pointed out that the experimental values of the lowest natural frequencies (to the fourth one inclusively) determined using three different methods were found to be almost completely identical with one another, even though the shaft system was stopped in the experiments carried out according to one method and the shaft system rotated at the nominal speed in those carried out according to two other methods. The need to further develop the experimental methods for determining the highest natural frequencies is substantiated. The values of decrements for the first, third, and fourth natural torsional vibration modes are obtained. A conclusion is drawn from a comparison between the calculated and experimental data on the shaft system's static twisting about the need to improve the mathematical models for calculating torsional vibration. The measurement procedure is described, and the specific features pertinent to the way in which torsional vibration manifests itself as a function of time and turbine set operating mode under the conditions of its long-term operation are considered. The fundamental measurement errors are analyzed, and their influence on the validity of measured parameters is evaluated. With an insignificant level of free and forced torsional vibrations set up under the normal conditions of turbine set and grid operation, it becomes possible to exclude this phenomenon from the list of main factors

  13. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  14. Effect of duct geometry on Wells turbine performance

    International Nuclear Information System (INIS)

    Shaaban, S.; Abdel Hafiz, A.

    2012-01-01

    Highlights: ► A Wells turbine duct design in the form of venturi duct is proposed and investigated. ► Optimum duct geometry is identified. ► Up to 14% increase of the turbine power can be achieved using the optimized duct geometry. ► Up to 9% improve of the turbine efficiency is attained by optimizing the turbine duct geometry. ► The optimized duct geometry results in tangible delay of the turbine stalling point. - Abstract: Wells turbines can represent important source of renewable energy for many countries. An essential disadvantage of Wells turbines is their low aerodynamic efficiency and consequently low power produced. In order to enhance the Wells turbine performance, the present research work proposes the use of a symmetrical duct in the form of a venturi tube with turbine rotor located at throat. The effects of duct area ratio and duct angle are investigated in order to optimize Wells turbine performance. The turbine performance is numerically investigated by solving the steady 3D incompressible Reynolds Averaged Navier–Stocks equation (RANS). A substantial improve of the turbine performance is achieved by optimizing the duct geometry. Increasing both the duct area ratio and duct angle increase the acceleration and deceleration upstream and downstream the rotor respectively. The accelerating flow with thinner boundary layer thickness upstream the rotor reduces the flow separation on the rotor suction side. The downstream diffuser reduces the interaction between tip leakage flow and blade suction side. Up to 14% increase in turbine power and 9% increase in turbine efficiency are achieved by optimizing the duct geometry. On other hand, a tangible delay of the turbine stall point is also detected.

  15. Study of cavitation in hydro turbines. A review

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pardeep; Saini, R.P. [Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee 247667 (India)

    2010-01-15

    Reaction turbines basically Francis turbines and propeller/Kaplan turbines are suitable for medium and low head hydropower sites. The management of the small hydropower plants is an important factor, for achieving higher efficiency of hydro turbines with time. Turbines show declined performance after few years of operation, as they get severely damaged due to various reasons. One of the important reasons is erosive wear of the turbines due to cavitation. Reaction turbines, however are more prone to cavitation especially Francis turbines where a zone in the operating range is seriously affected by cavitation and considered as forbidden zone. Cavitation is a phenomenon which manifests itself in the pitting of the metallic surfaces of turbine parts because of the formation of cavities. In the present paper, studies undertaken in this field by several investigators have been discussed extensively. Based on literature survey various aspects related to cavitation in hydro turbines, different causes for the declined performance and efficiency of the hydro turbines and suitable remedial measures suggested by various investigators have been discussed. (author)

  16. Structural modelling of composite beams with application to wind turbine rotor blades

    DEFF Research Database (Denmark)

    Couturier, Philippe

    The ever changing structure and growing size of wind turbine blades put focus on the accuracy and flexibility of design tools. The present thesis is organized in four parts - all concerning the development of efficient computational methods for the structural modelling of composite beams which...... will support future growth in the rotor size.The first part presents a two-node beam element formulation, based on complementary elastic energy, valid for fully coupled beams with variable cross-section properties.The element stiffness matrix is derived by use of the six equilibrium states of the element...

  17. Numerical analysis and experimental investigation of modalproperties for the gearbox in wind turbine

    Institute of Scientific and Technical Information of China (English)

    Pengxing; YI; Peng; HUANG; Tielin; SHI

    2016-01-01

    Wind turbine gearbox (WTG), which functionsas an accelerator, ensures theof wind turbine systems.performance and service lifeThis paper examines thedistinctive modal properties of WTGs through finiteelement (FE) and experimental modal analyses. Thestudy is performed in two parts. First, a whole systemmodel is developed to investigate the first 10 modalfrequencies and mode shapes of WTG using flexible multi-body modeling techniques. Given the complex structureand operating conditions of WTG, this study applies springelements to the model and quantifies how the beatings andgear pair interactions affect the dynamic characteristics ofWTGs. Second, the FE modal results are validated throughexperimental modal analyses of a 1.5 WM WTG using thefrequency response function method of single pointexcitation and multi-point response. The natural frequen-cies from the FE and experimental modal analyses showfavorable agreement and reveal that the characteristicfrequency of the studied gearbox avoids its eigen-frequency very well.

  18. Baseline investigations of bats and birds at Wind Turbine Test Centre Østerild

    DEFF Research Database (Denmark)

    The Department of Bioscience, Aarhus University was commissioned by the Danish Nature Agency to undertake a bat and bird monitoring programme prior to the construction of a national test centre for wind turbines near Østerild in Thy, Denmark. The occurrence and activity level of bats in Østerild...... Plantation and the vicinity were monitored in summer and autumn 2011. Bats were recorded on 57-100% of surveyed nights at individual wind turbine sites, ponds and lakes. A total of seven species were recorded. Pond bats were recorded at all sites and throughout the survey period in the plantation. Whooper...... swan, taiga bean goose, pink-footed goose and common crane were included as focal species in the ornithological investigations. In addition, species specific data on all bird species occurring regularly in the study area were collected. On the basis of a preliminary assessment of collision risk...

  19. Aeroelastic analysis of large horizontal wind turbine baldes?

    Institute of Scientific and Technical Information of China (English)

    Di TANG; Zhiliang LU; Tongqing GUO

    2016-01-01

    A nonlinear aeroelastic analysis method for large horizontal wind turbines is described. A vortex wake method and a nonlinear ?nite element method (FEM) are coupled in the approach. The vortex wake method is used to predict wind turbine aero-dynamic loads of a wind turbine, and a three-dimensional (3D) shell model is built for the rotor. Average aerodynamic forces along the azimuth are applied to the structural model, and the nonlinear static aeroelastic behaviors are computed. The wind rotor modes are obtained at the static aeroelastic status by linearizing the coupled equations. The static aeroelastic performance and dynamic aeroelastic responses are calculated for the NH1500 wind turbine. The results show that structural geometrical nonlinearities signi?cantly reduce displacements and vibration amplitudes of the wind turbine blades. Therefore, structural geometrical nonlinearities cannot be neglected both in the static aeroelastic analysis and dynamic aeroelastic analysis.

  20. Interactions Between Channel Topography and Hydrokinetic Turbines: Sediment Transport, Turbine Performance, and Wake Characteristics

    Science.gov (United States)

    Hill, Craig Steven

    Accelerating marine hydrokinetic (MHK) renewable energy development towards commercial viability requires investigating interactions between the engineered environment and its surrounding physical and biological environments. Complex and energetic hydrodynamic and morphodynamic environments desired for such energy conversion installations present difficulties for designing efficient yet robust sustainable devices, while permitting agency uncertainties regarding MHK device environmental interactions result in lengthy and costly processes prior to installing and demonstrating emerging technologies. A research program at St. Anthony Falls Laboratory (SAFL), University of Minnesota, utilized multi-scale physical experiments to study the interactions between axial-flow hydrokinetic turbines, turbulent open channel flow, sediment transport, turbulent turbine wakes, and complex hydro-morphodynamic processes in channels. Model axial-flow current-driven three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. Device-induced local scour was monitored over several hydraulic conditions and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. Complimentary experiments were performed in a realistic meandering outdoor research channel with active sediment transport to investigate device interactions with bedform migration and secondary turbulent flow patterns in asymmetric channel environments. The suite of experiments undertaken during this research program at SAFL in multiple channels with stationary and mobile substrates under a variety of turbine configurations provides an in-depth investigation into how axial-flow hydrokinetic devices respond to turbulent channel flow and topographic complexity, and how they impact local and far-field sediment transport characteristics

  1. Comparative Study on Uni- and Bi-Directional Fluid Structure Coupling of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Mesfin Belayneh Ageze

    2017-09-01

    Full Text Available The current trends of wind turbine blade designs are geared towards a longer and slender blade with high flexibility, exhibiting complex aeroelastic loadings and instability issues, including flutter; in this regard, fluid-structure interaction (FSI plays a significant role. The present article will conduct a comparative study between uni-directional and bi-directional fluid-structural coupling models for a horizontal axis wind turbine. A full-scale, geometric copy of the NREL 5MW blade with simplified material distribution is considered for simulation. Analytical formulations of the governing relations with appropriate approximation are highlighted, including turbulence model, i.e., Shear Stress Transport (SST k-ω. These analytical relations are implemented using Multiphysics package ANSYS employing Fluent module (Computational Fluid Dynamics (CFD-based solver for the fluid domain and Transient Structural module (Finite Element Analysis-based solver for the structural domain. ANSYS system coupling module also is configured to model the two fluid-structure coupling methods. The rated operational condition of the blade for a full cycle rotation is considered as a comparison domain. In the bi-directional coupling model, the structural deformation alters the angle of attack from the designed values, and by extension the flow pattern along the blade span; furthermore, the tip deflection keeps fluctuating whilst it tends to stabilize in the uni-directional coupling model.

  2. An aeroelastic analysis of the Darrieus wind turbine

    Science.gov (United States)

    Meyer, E. E.; Smith, C. E.

    1983-12-01

    The stability of a single Darrieus wind turbine blade spinning in still air is investigated using linearized equations of motion. The three most dangerous flutter modes are characterized for a one-parameter family of blades. In addition, the influence of blade density, mass and aerodynamic center offsets, and structural damping is presented.

  3. Two-way Fluid-Structure Interaction Simulation of a Micro Horizontal Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yi-Bao Chen

    2015-01-01

    Full Text Available A two-way Fluid-Structure Interaction (FSI analyses performed on a micro horizontal axis wind turbine (HAWT which coupled the CFX solver with Structural solver in ANSYS Workbench was conducted in this paper. The partitioned approach-based non-conforming mesh methods and the k-ε turbulence model were adopted to perform the study. Both the results of one-way and two-way FSI analyses were presented and compared with each other, and discrepancy of the results, especially the mechanical properties, were analysed. Grid convergence which is crucial to the results was performed, and the relationship between the inner flow field domain (rotational domain and the number of grids (number of cells, elements was verified for the first time. Dynamical analyses of the wind turbine were conducted using the torque as a reference value, to verify the rationality of the model which dominates the accuracy of results. The optimal case was verified and used to conduct the study, thus, the results derived from the simulation of the FSI are accurate and credible.

  4. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  5. Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Seong-Won Choi

    2014-01-01

    Full Text Available This paper presents the experimental results of active-sensing structural health monitoring (SHM techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrant further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  6. Evaluation of different turbine concepts for wind power

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Sandra; Bernhoff, Hans; Leijon, Mats [Swedish Centre for Renewable Electric Energy Conversion, Division for Electricity and Lightning Research, Box 534, 751 21 Uppsala (Sweden)

    2008-06-15

    Every year the number of installed wind power plants in the world increases. The horizontal axis wind turbine is the most common type of turbine but there exist other types. Here, three different wind turbines are considered; the horizontal axis wind turbine and two different concepts of vertical axis wind turbines; the Darrieus turbine and the H-rotor. This paper aims at making a comparative study of these three different wind turbines from the most important aspects including structural dynamics, control systems, maintenance, manufacturing and electrical equipment. A case study is presented where three different turbines are compared to each other. Furthermore, a study of blade areas for different turbines is presented. The vertical axis wind turbine appears to be advantageous to the horizontal axis wind turbine in several aspects. (author)

  7. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand......, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...

  8. Characteristics of reversible-pump turbines

    Energy Technology Data Exchange (ETDEWEB)

    Olimstad, Grunde

    2012-07-01

    The primary goal for this PhD project has been to investigate instability of reversible-pump turbines (RPTs) as a phenomenon and to find remedies to solve it. The instability occurs for turbines with s-shaped characteristics, unfavourable waterway and limited rotating inertia. It is only observed for certain operation pints at either high speed or low load. These correspond to ether high values of Ned or low values of Qed. The work done in this PhD thesis can be divided in to the three following categories. Investigate and understand the behaviour of a pump turbine: A model was designed in order to investigate the pump turbine behaviour related to its characteristics. This model was manufactured and measurements were performed in the laboratory. By using throttling valves or torque as input the full s-shaped characteristics was measured. When neither of these techniques is used, the laboratory system has unstable operation points which result in hysteresis behaviour. Global behaviour of the RPT in power plant system was investigated through analytical stability analysis and dynamic system simulations. The latter included both rigid and elastic representation of the water column. Turbine internal flow: The flow inside the runner was investigated by computer simulations (CFD). Two-dimensional analysis was used to study the inlet part of the runner. This showed that a vortex forming at the inlet is one of the causes for the unstable operation range. Measurements at different pressure levels showed that the characteristics were dependent on the Reynolds number at high Ned values in turbine mode. This means that the similarity of flows is not sufficiently described by constant Qed and Ned values at this part of the characteristics. Design modifications: The root of the stability problem was considered to be the runners geometric design at the inlet in turbine mode. Therefore different design parameters were investigated to find relations to the characteristics. Methods

  9. Metallurgical investigation of disc cracking in the LP-2 turbine at a nuclear power station. Final report

    International Nuclear Information System (INIS)

    Burghard, H.C.

    1982-07-01

    An investigation of combined face cracking and rim cracking in discs of an LP steam turbine rotor was performed. The incident in question involved the development of major cracks in the hub/web transition on the outlet face of the disc as well as major cracking of the blade attachment steeples. Both types of cracking occurred in the No. 1 discs at both ends of a particular rotor. The program was based on a metallurgical evaluation of hub and rim samples of discs removed from the turbine rotor after approximately 31,000 hours of operation. In-depth metallographic and fractographic examinations of representative face cracks and rim cracks were conducted. In addition, the mechanical properties and chemical composition of each of the disc samples were determined. Analyses of crack surface deposits and bulk turbine deposits were also performed

  10. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    Science.gov (United States)

    Campbell,; Christian X. , Morrison; Jay, A [Oviedo, FL

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  11. Optimal Risk-Based Inspection Planning for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Rangel-Ramirez, Jose G.; Sørensen, John Dalsgaard

    2008-01-01

    , inspection and maintenance activities are developed. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod types of wind turbine support structures. Based oil risk-based inspection planning methods used for oil & gas installations, a framework......Wind turbines for electricity production have increased significantly the last years both in production capability and size. This development is expected to continue also in the coining years. The Support structure for offshore wind turbines is typically a steel structure consisting of a tower...... for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore wind turbines are considered: usually the wind loading are dominating the wave loading, wake effects in wind farms are important and the reliability level is typically significantly lower than...

  12. Frequency-domain characteristics of aerodynamic loads of offshore floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Borg, Michael; Collu, M.

    2015-01-01

    The re-emerging interest in vertical axis wind turbines for floating offshore applications has led to a need to investigate the relatively complex dynamics of such floating offshore structures. Through the use of a coupled model of dynamics this article investigates the frequency......-domain characteristics of floating vertical axis wind turbine aerodynamic loads. The impact of platform induced motion on aerodynamic loads is discussed in detail, with results indicating an increase in aerodynamic loads of several orders of magnitude over the range of frequencies usually containing significant wave...

  13. Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades

    Science.gov (United States)

    Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.

    1999-01-01

    A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.

  14. Torsional Stiffness Effects on the Dynamic Stability of a Horizontal Axis Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Min-Soo Jeong

    2013-04-01

    Full Text Available Aeroelastic instability problems have become an increasingly important issue due to the increased use of larger horizontal axis wind turbines. To maintain these large structures in a stable manner, the blade design process should include studies on the dynamic stability of the wind turbine blade. Therefore, fluid-structure interaction analyses of the large-scaled wind turbine blade were performed with a focus on dynamic stability in this study. A finite element method based on the large deflection beam theory is used for structural analysis considering the geometric nonlinearities. For the stability analysis, a proposed aerodynamic approach based on Greenberg’s extension of Theodorsen’s strip theory and blade element momentum method were employed in conjunction with a structural model. The present methods proved to be valid for estimations of the aerodynamic responses and blade behavior compared with numerical results obtained in the previous studies. Additionally, torsional stiffness effects on the dynamic stability of the wind turbine blade were investigated. It is demonstrated that the damping is considerably influenced by variations of the torsional stiffness. Also, in normal operating conditions, the destabilizing phenomena were observed to occur with low torsional stiffness.

  15. Numerical Investigation of the Internal Flow in a Banki Turbine

    Directory of Open Access Journals (Sweden)

    Jesús De Andrade

    2011-01-01

    Full Text Available The paper refers to the numerical analysis of the internal flow in a hydraulic cross-flow turbine type Banki. A 3D-CFD steady state flow simulation has been performed using ANSYS CFX codes. The simulation includes nozzle, runner, shaft, and casing. The turbine has a specific speed of 63 (metric units, an outside runner diameter of 294 mm. Simulations were carried out using a water-air free surface model and k-ε turbulence model. The objectives of this study were to analyze the velocity and pressure fields of the cross-flow within the runner and to characterize its performance for different runner speeds. Absolute flow velocity angles are obtained at runner entrance for simulations with and without the runner. Flow recirculation in the runner interblade passages and shocks of the internal cross-flow cause considerable hydraulic losses by which the efficiency of the turbine decreases significantly. The CFD simulations results were compared with experimental data and were consistent with global performance parameters.

  16. Investigation of a ceramic vane with a metal disk thermal and mechanical contact in a gas turbine impeller

    Directory of Open Access Journals (Sweden)

    Resnick S.V.

    2015-01-01

    Full Text Available Promising directions of a new generation gas turbine engines development include using in gas turbines ceramic materials blades with high strength, thermal and chemical stability. One of the serious problems in developing such motors is insufficient knowledge of contact phenomena occurring in ceramic and metal details connection nodes. This work presents the numerical modeling results of thermal processes on ceramic and metal details rough boundaries. The investigation results are used in conducting experimental researches in conditions reproducing operating.

  17. Real-time monitoring and structural control of a wind turbine using a rocking system

    DEFF Research Database (Denmark)

    Caterino, Nicola; Spizzuoco, Mariacristina; Georgakis, Christos T.

    2016-01-01

    The design of a semi-active (SA) control system to mitigate wind induced structural demand to high wind turbine towers is discussed herein. A variable restraint at the base, able to modify in real time its mechanical properties according to the instantaneous response of the tower, is proposed...

  18. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrea Meroni

    2016-04-01

    Full Text Available Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study, which was performed in order to show the advantages of the adopted methodology. Part A presents a one-dimensional turbine model and the results of the validation using two experimental test cases from literature. The first case is a subsonic turbine operated with air and investigated at the University of Hannover. The second case is a small, supersonic turbine operated with an organic fluid and investigated by Verneau. In the first case, the results of the turbine model are also compared to those obtained using computational fluid dynamics simulations. The results of the validation suggest that the model can predict values of efficiency within ± 1.3%-points, which is in agreement with the reliability of classic turbine loss models such as the Craig and Cox correlations used in the present study. Values similar to computational fluid dynamics simulations at the midspan were obtained in the first case of validation. Discrepancy below 12 % was obtained in the estimation of the flow velocities and turbine geometry. The values are considered to be within a

  19. Investigation of the Impact of the Upstream Induction Zone on LIDAR Measurement Accuracy for Wind Turbine Control Applications using Large-Eddy Simulation

    International Nuclear Information System (INIS)

    Simley, Eric; Pao, Lucy Y; Gebraad, Pieter; Churchfield, Matthew

    2014-01-01

    Several sources of error exist in lidar measurements for feedforward control of wind turbines including the ability to detect only radial velocities, spatial averaging, and wind evolution. This paper investigates another potential source of error: the upstream induction zone. The induction zone can directly affect lidar measurements and presents an opportunity for further decorrelation between upstream wind and the wind that interacts with the rotor. The impact of the induction zone is investigated using the combined CFD and aeroelastic code SOWFA. Lidar measurements are simulated upstream of a 5 MW turbine rotor and the true wind disturbances are found using a wind speed estimator and turbine outputs. Lidar performance in the absence of an induction zone is determined by simulating lidar measurements and the turbine response using the aeroelastic code FAST with wind inputs taken far upstream of the original turbine location in the SOWFA wind field. Results indicate that while measurement quality strongly depends on the amount of wind evolution, the induction zone has little effect. However, the optimal lidar preview distance and circular scan radius change slightly due to the presence of the induction zone

  20. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  1. Numerical simulation of hydrodynamics in a pump-turbine at off-design operating conditions in turbine mode

    International Nuclear Information System (INIS)

    Yan, J P; Seidel, U; Koutnik, J

    2012-01-01

    The hydrodynamics of a reduced-scaled model of a radial pump-turbine is investigated under off-design operating conditions, involving runaway and 'S-shape' turbine brake curve at low positive discharge. It is a low specific speed pump-turbine machine of Francis type with 9 impeller blades and 20 stay vanes as well as 20 guide vanes. The computational domain includes the entire water passage from the spiral casing inlet to the draft tube outlet. Completely structured hexahedral meshes generated by the commercial software ANSYS-ICEM are employed. The unsteady incompressible simulations are performed using the commercial code ANSYS-CFX13. For turbulence modeling the standard k-ε model is applied. The numerical results at different operating points are compared to the experimental results. The predicted pressure amplitude is in good agreement with the experimental data and the amplitude of normal force on impeller is in reasonable range. The detailed analysis reveals the onset of the flow instabilities when the machine is brought from a regular operating condition to runaway and turbine break mode. Furthermore, the rotating stall phenomena are well captured at runaway condition as well as low discharge operating condition with one stall cell rotating inside and around the impeller with about 70% of its frequency. Moreover, the rotating stall is found to be the effect of rotating flow separations developed in several consecutive impeller channels which lead to their blockage. The reliable simulation of S-curve characteristics in pump-turbines is a basic requirement for design and optimization at off-design operating conditions.

  2. Experimental investigations of the unsteady flow in a Francis turbine draft tube cone

    International Nuclear Information System (INIS)

    Baya, A; Muntean, S; Campian, V C; Cuzmos, A; Diaconescu, M; Balan, G

    2010-01-01

    Operating Francis turbines at partial discharge is often hindered by the development of the helical vortex (so-called vortex rope) downstream the runner, in the draft tube cone. The unsteady pressure field induced by precessing vortex rope leads to pressure fluctuations. The paper presents the experimental investigations of the unsteady pressure field generated by precessing vortex rope and its associated pressure fluctuations into a draft tube of the Francis turbine operating at partial discharge. In situ measurements are performed in order to evaluate the pressure fluctuations and vortex rope frequency at partial load operation. Three pressure taps are installed on the cone wall of the draft tube in order to record the unsteady pressure. As a result, the Fourier spectra are obtained in order to evaluate the amplitude of pressure fluctuations and vortex rope frequency. Moreover, the wall pressure recovery along to the draft tube cone is acquired. Finally, conclusions are drawn in order to present the vortex rope effects.

  3. Experimental investigations of the unsteady flow in a Francis turbine draft tube cone

    Energy Technology Data Exchange (ETDEWEB)

    Baya, A [Department of Hydraulic Machinery, ' Politehnica' University of Timisoara Bv. Mihai Viteazu 1, RO-300222, Timisoara (Romania); Muntean, S [Centre of Advanced Research in Engineering Sciences, Romanian Academy - Timisoara Branch Bv. Mihai Viteazu 24, RO-300223, Timisoara (Romania); Campian, V C; Cuzmos, A [Research Center in Hydraulics, Automation and Heat Transfer, ' Eftimie Murgu' University of Resita P-ta. Traian Vuia 1-4, RO-320085, Resita (Romania); Diaconescu, M; Balan, G, E-mail: abaya@mh.mec.upt.r [Ramnicu Valcea Subsidiary, S.C. Hidroelectrica S.A. Str. Decebal 11, RO-240255, Ramnicu Valcea (Romania)

    2010-08-15

    Operating Francis turbines at partial discharge is often hindered by the development of the helical vortex (so-called vortex rope) downstream the runner, in the draft tube cone. The unsteady pressure field induced by precessing vortex rope leads to pressure fluctuations. The paper presents the experimental investigations of the unsteady pressure field generated by precessing vortex rope and its associated pressure fluctuations into a draft tube of the Francis turbine operating at partial discharge. In situ measurements are performed in order to evaluate the pressure fluctuations and vortex rope frequency at partial load operation. Three pressure taps are installed on the cone wall of the draft tube in order to record the unsteady pressure. As a result, the Fourier spectra are obtained in order to evaluate the amplitude of pressure fluctuations and vortex rope frequency. Moreover, the wall pressure recovery along to the draft tube cone is acquired. Finally, conclusions are drawn in order to present the vortex rope effects.

  4. Condensation phenomena in a turbine blade passage

    International Nuclear Information System (INIS)

    Skillings, S.A.

    1989-02-01

    The mechanisms associated with the formation and growth of water droplets in the large low-pressure (LP) turbines used for electrical power generation are poorly understood and recent measurements have indicated that an unusually high loss is associated with the initial nucleation of these droplets. In order to gain an insight into the phenomena which arise in the turbine situation, some experiments were performed to investigate the behaviour of condensing steam flows in a blade passage. This study has revealed the fundamental significance of droplet nucleation in modifying the single-phase flow structure and results are presented which show the change in shock wave pattern when inlet superheat and outlet Mach number are varied. The trailing-edge shock wave structure appears considerably more robust towards variation of inlet superheat than purely one-dimensional considerations may suggest and the inadequacies of adopting a one-dimensional theory to analyse multi-dimensional condensing flows are demonstrated. Over a certain range of outlet Mach numbers an oscillating shock wave will establish in the throat region of the blade passage and this has been shown to interact strongly with droplet nucleation, resulting in a considerably increased mean droplet size. The possible implications of these results for turbine performance are also discussed. (author)

  5. Numerical Investigation of the Interaction between Mainstream and Tip Shroud Leakage Flow in a 2-Stage Low Pressure Turbine

    Science.gov (United States)

    Jia, Wei; Liu, Huoxing

    2014-06-01

    The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.

  6. An investigation of volute cross-sectional shape on turbocharger turbine under pulsating conditions in internal combustion engine

    International Nuclear Information System (INIS)

    Yang, Mingyang; Martinez-Botas, Ricardo; Rajoo, Srithar; Yokoyama, Takao; Ibaraki, Seiichi

    2015-01-01

    Highlights: • Cycle averaged efficiency is higher for the volute A (low aspect ratio). • More distorted flow in volute B is the reason for performance deterioration. • Flow in volute B (high aspect ratio) is more sensitive to pulsating flow. - Abstract: Engine downsizing is a proven method for CO_2 reduction in Internal Combustion Engine (ICE). A turbocharger, which reclaims the energy from the exhaust gas to boost the intake air, can effectively improve the power density of the engine thus is one of the key enablers to achieve the engine downsizing. Acknowledging its importance, many research efforts have gone into improving a turbocharger performance, which includes turbine volute. The cross-section design of a turbine volute in a turbocharger is usually a compromise between the engine level packaging and desired performance. Thus, it is beneficial to evaluate the effects of cross-sectional shape on a turbine performance. This paper presents experimental and computational investigation of the influence of volute cross-sectional shape on the performance of a radial turbocharger turbine under pulsating conditions. The cross-sectional shape of the baseline volute (denoted as Volute B) was optimized (Volute A) while the annulus distribution of area-to-radius ratio (A/R) for the two volute configurations are kept the same. Experimental results show that the turbine with the optimized volute A has better cycle averaged efficiency under pulsating flow conditions, for different loadings and frequencies. The advantage of performance is influenced by the operational conditions. After the experiment, a validated unsteady computational fluid dynamics (CFD) modeling was employed to investigate the mechanism by which performance differs between the baseline volute and the optimized version. Computational results show a stronger flow distortion in spanwise direction at the rotor inlet with the baseline volute. Furthermore, compared with the optimized volute, the flow

  7. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  8. Smart Wind Turbine: Analysis and Autonomous Flap

    OpenAIRE

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure, thereby driving the loads and the design of turbines in general and blades in particular. In response to this, several control mechanisms have been applied to wind turbines since the generation of s...

  9. Pitot-tube turbine as wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    Naake, L

    1978-10-19

    The use of the Pitot tube turbine as a wind power station is an application of the well known Pitot tube with the turbines built into jet engines. The novelty of this invention lies in the combined nozzle and turbine unit, where the wind is caught in the funnel opening, is accelerated in the narrow flow zone and then acts on the turbine blades. Due to the acceleration, a greater torque is exerted on the turbine than in free air flow. The Pitot tube turbine consists of a casing with a turbine inside, which is fixed by guide vane supports to the casing and which contains one or two stage turbine blades and electrical generators. The whole structure with the rotor is set on a sub-frame and rotation is contained by control surfaces. The subframe can be used as a building.

  10. 14 CFR 33.27 - Turbine, compressor, fan, and turbosupercharger rotors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine, compressor, fan, and... Turbine, compressor, fan, and turbosupercharger rotors. (a) Turbine, compressor, fan, and... affect turbine, compressor, fan, and turbosupercharger rotor structural integrity will not be exceeded in...

  11. Wind turbines and health

    International Nuclear Information System (INIS)

    Rideout, K.; Copes, R.; Bos, C.

    2010-01-01

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  12. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, H.S.

    2010-01-01

    Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....

  13. Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes

    Directory of Open Access Journals (Sweden)

    Ziying Yu

    2018-03-01

    Full Text Available The wind turbine wakes impact the efficiency and lifespan of the wind farm. Therefore, to improve the wind plant performance, research on wind plant control is essential. The actuator line model (ALM is proposed to simulate the wind turbine efficiently. This research investigates the National Renewable Energy Laboratory 5 Million Watts (NREL 5-MW wind turbine wakes with Open Field Operation and Manipulation (OpenFOAM using ALM. Firstly, a single NREL 5-MW turbine is simulated. The comparison of the power and thrust with Fatigue, Aerodynamics, Structures, and Turbulence (FAST shows a good agreement below the rated wind speed. The information relating to wind turbine wakes is given in detail. The top working status is proved at the wind speed of 8 m/s and the downstream distance of more than 5 rotor diameters (5D. Secondly, another case with two NREL 5-MW wind turbines aligned is also carried out, in which 7D is validated as the optimum distance between the two turbines. The result also shows that the upstream wind turbine has an obvious influence on the downstream one.

  14. Numerical Investigation on Effect of Immersed Blade Depth on the Performance of Undershot Water Turbines

    Directory of Open Access Journals (Sweden)

    Yah Nor Fadilah

    2016-01-01

    Full Text Available Energy, especially electricity, plays a vital role in global social and economic development. High annual rain rate in Malaysia seems a good potential for electricity generation especially through small hydro powers. Undershot water turbines are one of the hydropower turbines used for many years. However, the effect of blade depth immersed in the flowing water is not fully investigated. Therefore, the purpose of this paper is to study the effect of immersed blade depth for straight blade undershot water turbine in power generation by using Computational Fluid Dynamics (CFD method. ANSYS CFX 15.0 was used to perform three dimensional analysis under steady state, incompressible, and non-isothermal conditions. The water wheel with number of blades of 6 and four different immersed depth was applied for each simulation. There are four different immersed depth was applied to each simulation, which are 20 mm, 40 mm, 60 mm and 80 mm. From the simulation result, it was found that the optimum immersed depth is 40 mm where the torque load and power generated were 0.264 N.m and 1.318 Watt respectively.

  15. Assessing spacing impact on coherent features in a wind turbine array boundary layer

    Directory of Open Access Journals (Sweden)

    N. Ali

    2018-02-01

    Full Text Available As wind farms become larger, the spacing between turbines becomes a significant design consideration that can impose serious economic constraints. To investigate the turbulent flow structures in a 4 × 3 Cartesian wind turbine array boundary layer (WTABL, a wind tunnel experiment was carried out parameterizing the streamwise and spanwise wind turbine spacing. Four cases are chosen spacing turbines by 6 or 3D in the streamwise direction, and 3 or 1.5D in the spanwise direction, where D = 12 cm is the rotor diameter. Data are obtained experimentally using stereo particle image velocimetry. Mean streamwise velocity showed maximum values upstream of the turbine with the spacing of 6 and 3D in the streamwise and spanwise direction, respectively. Fixing the spanwise turbine spacing to 3D, variations in the streamwise spacing influence the turbulent flow structure and the power available to following wind turbines. Quantitative comparisons are made through spatial averaging, shifting measurement data and interpolating to account for the full range between devices to obtain data independent of array spacing. The largest averaged Reynolds stress is seen in cases with spacing of 3D × 3D. Snapshot proper orthogonal decomposition (POD was employed to identify the flow structures based on the turbulence kinetic energy content. The maximum turbulence kinetic energy content in the first POD mode is seen for turbine spacing of 6D × 1.5D. The flow upstream of each wind turbine converges faster than the flow downstream according to accumulation of turbulence kinetic energy by POD modes, regardless of spacing. The streamwise-averaged profile of the Reynolds stress is reconstructed using a specific number of modes for each case; the case of 6D × 1.5D spacing shows the fastest reconstruction to compare the rate of reconstruction of statistical profiles. Intermediate modes are also used to reconstruct the averaged profile and show that the

  16. Prototype bucket foundation for wind turbines - natural frequency estimation

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    The first full scale prototype bucket foundation for wind turbines has been installed in October 2002 at Aalborg University offshore test facility in Frederikshavn, Denmark. The suction caisson and the wind turbine have been equipped with an online monitoring system, consisting of 15 accelerometers and a real-time data-acquisition system. The report concerns the in service performance of the wind turbine, with focus on estimation of the natural frequencies of the structure/foundation. The natural frequencies are initially estimated by means of experimental Output-only Modal analysis. The experimental estimates are then compared with numerical simulations of the suction caisson foundation and the wind turbine. The numerical model consists of a finite element section for the wind turbine tower and nacelle. The soil-structure interaction of the soil-foundation section is modelled by lumped-parameter models capable of simulating dynamic frequency dependent behaviour of the structure-foundation system. (au)

  17. Specific features of steam turbine design at LMZ

    International Nuclear Information System (INIS)

    Pichugin, I.I.; Tsvetkov, A.M.; Simkin, M.S.

    1993-01-01

    General structural layouts of the condensation steam turbines produced by the Leningrad metalworks (LM) are considered. Currently LM produced 50 types and modifications of steam turbines with the capacity from 30 up to 1200 MW. Problems of turbine efficiency and ways of the flow section improvement are discussed

  18. Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design

    International Nuclear Information System (INIS)

    Li, Yan; Ren, Xiao-dong

    2016-01-01

    Highlights: • The thermodynamic analysis of an ORC system is introduced. • A radial turbine design method has been proposed based on the real gas model. • A radial turbine with R123 is designed and numerically analyzed. - Abstract: Energy and environment issue set utilizing low-grade heat noticed. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. As a critical component of ORC system, the turbine selection has an enormous influence on the system performance. This paper carries out a study on the thermodynamic analysis of ORC system and the aerodynamic design of an organic radial turbine. The system performance is evaluated with various working fluids. The aerodynamic design of the organic radial-inflow turbine is focused due to the high molecule weight and the low sound speed of the organic working fluid. An aerodynamic and profile design system is developed. A radial-inflow turbine with R123 as the working fluid is designed and the numerical analysis is conducted. The simulation results indicate that the shock wave caused by the high expansion ratio in the nozzle is well controlled. Compared with the one-dimensional design results, the performance of the radial-inflow turbine in this paper reaches the design requirements.

  19. Windmills in Danish waters - an investigation of the visual effects related to the positioning of wind turbines on the sea bed

    International Nuclear Information System (INIS)

    1994-12-01

    Investigations have shown that the visual consequences of setting up wind turbines on the sea bed are much greater than those following location on the land. One option is to locate them so far out to sea that they can hardly be seen from the coast but the investigation showed that it is impossible to place them anywhere in Danish coastal waters where they would be out of view from the land. Although it should be possible to locate windmills in coastal waters in such a way that it could be aesthetically acceptable, it is feared that local attitudes could be tentative. The general conditions of significance for evaluating the aesthetic effects of locating wind turbines at sea are described and the main principles of regional planning in coastal areas are explained in addition to the potentials for being able to judge the visual consequences from a viewpoint that is placed out at sea. Various examples of marine positionings of wind turbines at different distances from the coastline are described and evaluated. It is asserted that some Danish marine locations for wind turbines can be found that will have only limited visual consequences. Some of these are near to the coast and a considerable number of wind turbines could be placed there. The document is illustrated with large coloured photographs and maps of Danish coastal areas. (AB)

  20. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... and uncertainties are quantified. Further, estimation of annual failure probability for structural components taking into account possible faults in electrical or mechanical systems is considered. For a representative structural failure mode, a probabilistic model is developed that incorporates grid loss failures...

  1. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  2. Thermodynamic analysis of turbine blade cooling on the performance of gas turbine cycle

    International Nuclear Information System (INIS)

    Sarabchi, K.; Shokri, M.

    2002-01-01

    Turbine inlet temperature strongly affects gas turbine performance. Today blade cooling technologies facilitate the use of higher inlet temperatures. Of course blade cooling causes some thermodynamic penalties that destroys to some extent the positive effect of higher inlet temperatures. This research aims to model and evaluate the performance of gas turbine cycle with air cooled turbine. In this study internal and transpiration cooling methods has been investigated and the penalties as the result of gas flow friction, cooling air throttling, mixing of cooling air flow with hot gas flow, and irreversible heat transfer have been considered. In addition, it is attempted to consider any factor influencing actual conditions of system in the analysis. It is concluded that penalties due to blade cooling decrease as permissible temperature of the blade surface increases. Also it is observed that transpiration method leads to better performance of gas turbine comparing to internal cooling method

  3. Breaking wave impact forces on truss support structures for offshore wind turbines

    Science.gov (United States)

    Cieślikiewicz, Witold; Gudmestad, Ove T.; Podrażka, Olga

    2014-05-01

    Due to depletion of the conventional energy sources, wind energy is becoming more popular these days. Wind energy is being produced mostly from onshore farms, but there is a clear tendency to transfer wind farms to the sea. The foundations of offshore wind turbines may be truss structures and might be located in shallow water, where are subjected to highly varying hydrodynamic loads, particularly from plunging breaking waves. There are models for impact forces prediction on monopiles. Typically the total wave force on slender pile from breaking waves is a superposition of slowly varying quasi-static force, calculated from the Morison equation and additional dynamical, short duration force due to the impact of the breaker front or breaker tongue. There is not much research done on the truss structures of wind turbines and there are still uncertainties on slamming wave forces, due to plunging breaking waves on those structures. Within the WaveSlam (Wave slamming forces on truss structures in shallow water) project the large scale tests were carried out in 2013 at the Large Wave Flume in Forschungszentrum Küste (FZK) in Hannover, Germany. The following institutions participated in this initiative: the University of Stavanger and the Norwegian University of Science and Technology (project management), University of Gdańsk, Poland, Hamburg University of Technology and the University of Rostock, Germany and Reinertsen AS, Norway. This work was supported by the EU 7th Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV. The main aim of the experiment was to investigate the wave slamming forces on truss structures, development of new and improvement of existing methods to calculate forces from the plunging breakers. The majority of the measurements were carried out for regular waves with specified frequencies and wave heights as well as for the irregular waves based on JONSWAP spectrum. The truss structure was equipped with both

  4. Experimental investigation of vortex control with an axial jet in the draft tube of a model pump-turbine

    International Nuclear Information System (INIS)

    Kirschner, O; Schmidt, H; Ruprecht, A; Mader, R; Meusburger, P

    2010-01-01

    The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.

  5. Experimental investigation of vortex control with an axial jet in the draft tube of a model pump-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, O; Schmidt, H; Ruprecht, A [Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart, Pfaffenwaldring 10, 70550 Stuttgart (Germany); Mader, R; Meusburger, P, E-mail: kirschner@ihs.uni-stuttgart.d [Vorarlberger Illwerke A G, atloggstrasse 36, 6780 Schruns (Austria)

    2010-08-15

    The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.

  6. Studies on the crossed flow type MHD turbines

    International Nuclear Information System (INIS)

    Hori, Toshihiro; Katsurai, Makoto

    1981-01-01

    The studies on crossed flow type MHD turbines were performed to improve its characteristics. Two-dimensional models were considered for the analytical studies. To compensate the edge effect of magnetic field, the magnetic field gradient by tapering was considered. An iron-core structure and an air-core structure were investigated. It was found that the ideal characteristics can be obtained when there is the tapered length more than one wave length. Various methods for the improvement of magnetic field were studied in the case of practical crossed flow type MHD turbines. The methods were the adjustment with an iron-core, and the adoption of a curved channel. It can be expected to obtain the internal efficiency of more than 70 percent, when the number of pole-pairs is more than 10 and the radius of curvature of a few times of rotor radius is given to a curved channel. (Kato, T.)

  7. Numerical investigation of airfoils for small wind turbine applications

    Directory of Open Access Journals (Sweden)

    Natarajan Karthikeyan

    2016-01-01

    Full Text Available A detailed numerical investigation of the aerodynamic performance on the five airfoils namely Mid321a, Mid321b, Mid321c, Mid321d, and Mid321e were carried out at Reynolds numbers ranging from 0.5×105 to 2.5×105. The airfoils used for small wind turbines are designed for Reynolds number ranges between 3×105 and 5×105 and the blades are tend to work on off-design conditions. The blade element moment method was applied to predict the aerodynamic loads, power coefficient, and blade parameters for the airfoils. Based on the evaluate data, it was found that Mid321c airfoil has better lift to drag ratio over the range of Reynolds numbers and attained maximum power coefficient of 0.4487 at Re = 2×105.

  8. Very Low Head Turbine Deployment in Canada

    International Nuclear Information System (INIS)

    Kemp, P; Williams, C; Sasseville, Remi; Anderson, N

    2014-01-01

    The Very Low Head (VLH) turbine is a recent turbine technology developed in Europe for low head sites in the 1.4 - 4.2 m range. The VLH turbine is primarily targeted for installation at existing hydraulic structures to provide a low impact, low cost, yet highly efficient solution. Over 35 VLH turbines have been successfully installed in Europe and the first VLH deployment for North America is underway at Wasdell Falls in Ontario, Canada. Deployment opportunities abound in Canada with an estimated 80,000 existing structures within North America for possible low-head hydro development. There are several new considerations and challenges for the deployment of the VLH turbine technology in Canada in adapting to the hydraulic, environmental, electrical and social requirements. Several studies were completed to determine suitable approaches and design modifications to mitigate risk and confirm turbine performance. Diverse types of existing weirs and spillways pose certain hydraulic design challenges. Physical and numerical modelling of the VLH deployment alternatives provided for performance optimization. For this application, studies characterizing the influence of upstream obstacles using water tunnel model testing as well as full-scale prototype flow dynamics testing were completed. A Cold Climate Adaptation Package (CCA) was developed to allow year-round turbine operation in ice covered rivers. The CCA package facilitates turbine extraction and accommodates ice forces, frazil ice, ad-freezing and cold temperatures that are not present at the European sites. The Permanent Magnet Generator (PMG) presents some unique challenges in meeting Canadian utility interconnection requirements. Specific attention to the frequency driver control and protection requirements resulted in a driver design with greater over-voltage capability for the PMG as well as other key attributes. Environmental studies in Europe included fish friendliness testing comprised of multiple in

  9. Very Low Head Turbine Deployment in Canada

    Science.gov (United States)

    Kemp, P.; Williams, C.; Sasseville, Remi; Anderson, N.

    2014-03-01

    The Very Low Head (VLH) turbine is a recent turbine technology developed in Europe for low head sites in the 1.4 - 4.2 m range. The VLH turbine is primarily targeted for installation at existing hydraulic structures to provide a low impact, low cost, yet highly efficient solution. Over 35 VLH turbines have been successfully installed in Europe and the first VLH deployment for North America is underway at Wasdell Falls in Ontario, Canada. Deployment opportunities abound in Canada with an estimated 80,000 existing structures within North America for possible low-head hydro development. There are several new considerations and challenges for the deployment of the VLH turbine technology in Canada in adapting to the hydraulic, environmental, electrical and social requirements. Several studies were completed to determine suitable approaches and design modifications to mitigate risk and confirm turbine performance. Diverse types of existing weirs and spillways pose certain hydraulic design challenges. Physical and numerical modelling of the VLH deployment alternatives provided for performance optimization. For this application, studies characterizing the influence of upstream obstacles using water tunnel model testing as well as full-scale prototype flow dynamics testing were completed. A Cold Climate Adaptation Package (CCA) was developed to allow year-round turbine operation in ice covered rivers. The CCA package facilitates turbine extraction and accommodates ice forces, frazil ice, ad-freezing and cold temperatures that are not present at the European sites. The Permanent Magnet Generator (PMG) presents some unique challenges in meeting Canadian utility interconnection requirements. Specific attention to the frequency driver control and protection requirements resulted in a driver design with greater over-voltage capability for the PMG as well as other key attributes. Environmental studies in Europe included fish friendliness testing comprised of multiple in

  10. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  11. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  12. Design and Evaluation of Glass/epoxy Composite Blade and Composite Tower Applied to Wind Turbine

    Science.gov (United States)

    Park, Hyunbum

    2018-02-01

    In the study, the analysis and manufacturing of small class wind turbine blade was performed. In the structural design, firstly the loading conditions are defined through the load case analysis. The proposed structural configuration of blade has a sandwich type composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. And also, this work proposes a design procedure and results of tower for the small scale wind turbine systems. Structural analysis of blade including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the finite element method, the load spectrum analysis and the Miner rule. Moreover, investigation on structural safety of tower was verified through structural analysis by FEM. The manufacturing of blade and tower was performed based on structural design. In order to investigate the designed structure, the structural tests were conducted and its results were compared with the calculated results. It is confirmed that the final proposed blade and tower meet the design requirements.

  13. Reliability-Based Planning of Inspection, Operation and Maintenance for Offshore Oil & Gas Structures and Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based cost-optimal planning of inspection, maintenance and operation has many applications. In this paper applications for planning of inspections for oil & gas jacket structures and of operation and maintenance of offshore wind turbines are described and illustrated by examples....

  14. Study on the Interaction between Two Hydrokinetic Savonius Turbines

    Directory of Open Access Journals (Sweden)

    Kailash Golecha

    2012-01-01

    Full Text Available Savonius turbine is simple in design and easy to fabricate at a lower cost. The drag is the basic driving force for Savonius turbine. Savonius turbines are mainly used for the small-scale electricity generation in remote areas. In real life, multiple Savonius turbines are to be arranged to form a farm to scale up the electricity generation. So, it is important to study the interaction among them to avoid the power loss due to negative interaction between turbines. The purpose of this investigation is to examine closely the effect of interaction between two Savonius turbines arranged in line. Experimental investigations are carried out to study the mutual interaction between turbines with water as the working medium at a Reynolds number of 1.2×105 based on the diameter of the turbine. Influence of separation gap between the two Savonius turbines is studied by varying the separation gap ratio (/ from 3 to 8. As the separation gap ratio increases from 3 to 8, becomes lesser the mutual interaction between the turbines. Results conclude that two turbines placed at a separation gap ratio of 8 performed independently without affecting the performance of each other.

  15. Insight analysis of biplane Wells turbine performance

    International Nuclear Information System (INIS)

    Shaaban, S.

    2012-01-01

    Highlights: ► Downstream rotor reduces overall turbine efficiency during normal operation. ► Recirculation behind downstream rotor significantly reduces the torque delivered by the turbine. ► Upstream rotor significantly affects downstream rotor performance even at high gap to chord ratios. ► Downstream rotor produces only 10–30% of the turbine power despite its feasible exergy level. ► The downstream rotor significantly delays turbine start up. - Abstract: Wells turbines are very promising in converting wave energy. Improving the design and performance of Wells turbines requires deep understanding of the energy conversion process and losses mechanisms of these energy convertors. The performance of a biplane Wells turbine having 45° stagger angle between rotors is numerically investigated. The turbine performance is simulated by solving the steady 3D incompressible Reynolds Averaged Navier–Stocks equation (RANS). The present numerical investigation shows that the upstream rotor significantly affects the downstream rotor performance even at high gap-to-chord ratio (G/c = 1.4). The contribution of the downstream rotor in the overall biplane Wells turbine performance is limited. The downstream rotor torque represents 10–30% of the total turbine torque and the upstream rotor efficiency is 1.5–5 times the downstream rotor efficiency at normal operating conditions. Exergy analysis shows that the downstream rotor is the main component that reduces the turbine second law efficiency. The blade exergy increases from hub to tip and decreases from leading edge to trailing edge. Therefore, 3D blade profile optimization is essential for substantial improvement of the energy conversion process. Improving the design of the inter-rotors zone can significantly improve biplane Wells turbine performance. Future biplane Wells turbine designs should focus essentially on improving the downstream rotor performance.

  16. Reliability of wind turbine subassemblies

    NARCIS (Netherlands)

    Spinato, F.; Tavner, P.J.; Bussel, van G.J.W.; Koutoulakos, E.

    2009-01-01

    We have investigated the reliability of more than 6000 modern onshore wind turbines and their subassemblies in Denmark and Germany over 11 years and particularly changes in reliability of generators, gearboxes and converters in a subset of 650 turbines in Schleswig Holstein, Germany. We first start

  17. An Integrated Procedure for the Structural Design of a Composite Rotor-Hydrofoil of a Water Current Turbine (WCT)

    Science.gov (United States)

    Oller Aramayo, S. A.; Nallim, L. G.; Oller, S.

    2013-12-01

    This paper shows an integrated structural design optimization of a composite rotor-hydrofoil of a water current turbine by means the finite elements method (FEM), using a Serial/Parallel mixing theory (Rastellini et al. Comput. Struct. 86:879-896, 2008, Martinez et al., 2007, Martinez and Oller Arch. Comput. Methods. 16(4):357-397, 2009, Martinez et al. Compos. Part B Eng. 42(2011):134-144, 2010) coupled with a fluid-dynamic formulation and multi-objective optimization algorithm (Gen and Cheng 1997, Lee et al. Compos. Struct. 99:181-192, 2013, Lee et al. Compos. Struct. 94(3):1087-1096, 2012). The composite hydrofoil of the turbine rotor has been design using a reinforced laminate composites, taking into account the optimization of the carbon fiber orientation to obtain the maximum strength and lower rotational-inertia. Also, these results have been compared with a steel hydrofoil remarking the different performance on both structures. The mechanical and geometrical parameters involved in the design of this fiber-reinforced composite material are the fiber orientation, number of layers, stacking sequence and laminate thickness. Water pressure in the rotor of the turbine is obtained from a coupled fluid-dynamic simulation (CFD), whose detail can be found in the reference Oller et al. (2012). The main purpose of this paper is to achieve a very low inertia rotor minimizing the start-stop effect, because it is applied in axial water flow turbine currently in design by the authors, in which is important to take the maximum advantage of the kinetic energy. The FEM simulation codes are engineered by CIMNE (International Center for Numerical Method in Engineering, Barcelona, Spain), COMPack for the solids problem application, KRATOS for fluid dynamic application and RMOP for the structural optimization. To validate the procedure here presented, many turbine rotors made of composite materials are analyzed and three of them are compared with the steel one.

  18. Robust, Gain-Scheduled Control of Wind Turbines

    DEFF Research Database (Denmark)

    Østergaard, Kasper Zinck

    Wind turbines are today large and efficient machines, which are combined into wind farms operating on par with conventional power plants. When looking back, this is significantly different from the status only a few years ago, when wind turbines were sold mainly to private people. This change...... in turbine owners has resulted in a new focus on operational reliability instead of turbine size. This research deals with investigating model-based gain-scheduling control of wind turbines by use of linear parameter varying (LPV) methods. The numerical challenges grow quickly with the model size...

  19. Investigation of piezoelectric flaps for load alleviation using CFD; Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, J.C.

    2010-03-15

    Cost efficient wind power generation demands for large wind turbines with a long lifetime. These demands place high interests on sophisticated load control techniques such as deformable trailing edge flaps. In this work a previously tested prototype airfoil was investigated by using the 2D incompressible RANS solver EllipSys2D. The prototype was built with a Risoe-B1-18 airfoil where piezoelectric actuators THUNDER TH-6R were attached at the trailing edge to realize a movable flap. The results of the simulation were compared to measurements of the previous wind tunnel test and comprehensive steady state computations were conducted to gain information about the general airfoil properties. The model was subsequently used to investigate aero-servo-elastic effects on the 2D airfoil section exposed to a fluctuating inflow. It is explained how a fluctuating inflow was simulated with EllipSys2D and how the CFD solver was coupled with a 3 DOF structural model and with two different control algorithms. Control 1 used the measured AOA in front of the LE as input, Control 2 used the pressure difference between suction and pressure side as input. The model showed a substantial load reduction potential for the present prototype airfoil. For a wind step from 10 m/s to 10.5 m/s the standard deviation of the structural deflection normal to the rotor plane could be reduced with up to 98 % (Control 1) and 96 % (Control 2). A 4 s turbulent inflow with TI=2.2 % could be reduced with up to 81 % (Control 1) and 82 % (Control 2). For a 12 s inflow with TI=2.4 % the standard deviation could be reduced with up to 68 % (Control 1) and 67 % (Control 2). The influence of possible time lags inside the control loop on the reduction potential of the prototype was also investigated. For a 12 s inflow with a tripled turbulence intensity of TI=7.7 % the prototype airfoil could still reach a reduction of up to 54 %. For an extended flap range of -6 to +6 degrees the reduction could be returned to 66

  20. Investigation of HP Turbine Blade Failure in a Military Turbofan Engine

    Science.gov (United States)

    Mishra, R. K.; Thomas, Johny; Srinivasan, K.; Nandi, Vaishakhi; Bhatt, R. Raghavendra

    2017-04-01

    Failure of a high pressure (HP) turbine blade in a military turbofan engine is investigated to determine the root cause of failure. Forensic and metallurgical investigations are carried out on the affected blades. The loss of coating and the presence of heavily oxidized intergranular fracture features including substrate material aging and airfoil curling in the trailing edge of a representative blade indicate that the coating is not providing adequate oxidation protection and the blade material substrate is not suitable for the application at hand. Coating spallation followed by substrate oxidation and aging leading to intergranular cracking and localized trailing edge curling is the root cause of the blade failure. The remaining portion of the blade fracture surface showed ductile overload features in the final failure. The damage observed in downstream components is due to secondary effects.

  1. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2011-05-15

    During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic effects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Risoe DTU optimization software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplified way allowing fast conceptual design studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an effective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coefficient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization. (Author)

  2. Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

    2000-06-01

    The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

  3. Applied modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Pedersen, H.B.; Kristensen, O.J.D.

    2003-01-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Differentequipment for mounting the accelerometers...... is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use ofaccelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded...... and unloaded wind turbine blade. During this campaign the modal analysis are performed on ablade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Øyes blade_EV1...

  4. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models...

  5. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites - Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Ren, Fei [ORNL; Tan, Ting [ORNL; Mandell, John [Montana State University; Agastra, Pancasatya [Montana State University

    2011-11-01

    To build increasingly larger, lightweight, and robust wind turbine blades for improved power output and cost efficiency, durability of the blade, largely resulting from its structural composites selection and aerodynamic shape design, is of paramount concern. The safe/reliable operation of structural components depends critically on the selection of materials that are resistant to damage and failure in the expected service environment. An effective surveillance program is also necessary to monitor the degradation of the materials in the course of service. Composite materials having high specific strength/stiffness are desirable for the construction of wind turbines. However, most high-strength materials tend to exhibit low fracture toughness. That is why the fracture toughness of the composite materials under consideration for the manufacture of the next generation of wind turbines deserves special attention. In order to achieve the above we have proposed to develop an innovative technology, based on spiral notch torsion test (SNTT) methodology, to effectively investigate the material performance of turbine blade composites. SNTT approach was successfully demonstrated and extended to both epoxy and glass fiber composite materials for wind turbine blades during the performance period. In addition to typical Mode I failure mechanism, the mixed-mode failure mechanism induced by the wind turbine service environments and/or the material mismatch of the composite materials was also effectively investigated using SNTT approach. The SNTT results indicate that the proposed protocol not only provides significant advance in understanding the composite failure mechanism, but also can be readily utilized to assist the development of new turbine blade composites.

  6. An investigation into turbine ventilators as a potential environmental control measure to minimise the risk of transmission of TB

    CSIR Research Space (South Africa)

    Salie, F

    2012-10-01

    Full Text Available , noon and afternoon. The tests were performed between February and April 2011, which presented typical Pretoria summer days. The turbine ventilator was then tested in a laboratory environment, under wind, buoyancy and a combination of wind... of the turbine ventilator The wind speeds were low, ranging from 0 to 0.5 m/s, and the temperature differential tested was in the range of 6 to 9.3?C. The in-duct velocities and centre-line velocities were investigated under these laboratory conditions...

  7. Effect of chord-to-diameter ratio on vertical-axis wind turbine wake development

    Science.gov (United States)

    Parker, Colin M.; Araya, Daniel B.; Leftwich, Megan C.

    2017-12-01

    The wake structure of a vertical-axis wind turbine (VAWT) is strongly dependent on the tip-speed ratio, λ, or the tangential speed of the turbine blade relative to the incoming wind speed. The geometry of a turbine can influence λ, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. To investigate this relationship, we present the results of an experiment to characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter ( D), to blade chord ( c), which was chosen to be D/c = 3, 6, and 9. For a fixed freestream Reynolds number based on the blade chord of Re_c = 1.6× 10^3, both two-component particle image velocimetry (PIV) and single-component hot-wire anemometer measurements are taken at the horizontal mid-plane in the wake of each turbine. PIV measurements are ensemble averaged in time and phase averaged with each rotation of the turbine. Hot-wire measurement points are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine.

  8. Hydraulic Evaluation and Optimisation of T. Basses Wave Turbine

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter

    The present study investigates designs of the wing profiles and layouts of the wave turbine in order to optimize the design. Furthermore, the overall power production capability of the device has been estimated for the selected wing profiles and turbine layout.......The present study investigates designs of the wing profiles and layouts of the wave turbine in order to optimize the design. Furthermore, the overall power production capability of the device has been estimated for the selected wing profiles and turbine layout....

  9. WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics; TOPICAL

    International Nuclear Information System (INIS)

    Smith, K.

    2001-01-01

    Through the National Renewable Energy Laboratory (NREL), the United States Department of Energy (DOE) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. This program will explore advanced technologies that may reduce the cost of energy (COE) from wind turbines. The initial step in the WindPACT program is a series of preliminary scaling studies intended to determine the optimum sizes for future turbines, help define sizing limits for certain critical technologies, and explore the potential for advanced technologies to contribute to reduced COE as turbine scales increase. This report documents the results of Technical Area 2-Turbine Rotor and Blade Logistics. For this report, we investigated the transportation, assembly, and crane logistics and costs associated with installation of a range of multi-megawatt-scale wind turbines. We focused on using currently available equipment, assembly techniques, and transportation system capabilities and limitations to hypothetically transport and install 50 wind turbines at a facility in south-central South Dakota

  10. Effects of Turbine Spacings in Very Large Wind Farms

    DEFF Research Database (Denmark)

    farm. LES simulations of large wind farms are performed with full aero-elastic Actuator Lines. The simulations investigate the inherent dynamics inside wind farms in the absence of atmospheric turbulence compared to cases with atmospheric turbulence. Resulting low frequency structures are inherent...... in wind farms for certain turbine spacings and affect both power production and loads...

  11. Experimental investigation of the turbulent axisymmetric wake with rotation generated by a wind turbine

    Science.gov (United States)

    Dufresne, Nathaniel P.

    An experimental investigation of the axial and azimuthal (swirl) velocity field in the wake of a single 3-bladed wind turbine with rotor diameter of 0.91m was conducted, up to 20 diameters downstream. The turbine was positioned in the free stream, near the entrance of the 6m x 2.7m cross section of the University of New Hampshire (UNH) Flow Physics Facility. Velocity measurements were conducted at different rotor loading conditions with blade tip-speed ratios from 2.0 to 2.8. A Pitot-static tube and constant temperature hot-wire anemometer with a multi-wire sensor were used to measure velocity fields. An equilibrium similarity theory for the turbulent axisymmetric wake with rotation was outlined, and first evidence for a new scaling function for the mean swirling velocity component, Wmax ∝ x-1 ∝ U3/2o a was found; where W represents swirl, x represents downstream distance, and Uo, represents the centerline velocity deficit in the wake.

  12. Comparative study of Danish and foreign wind turbine economics

    International Nuclear Information System (INIS)

    Godtfredsen, F.

    1993-02-01

    This comparative study indicates that Denmark still is the leading nation in wind turbine technology in regard to economics as well as energy output and nacelle weight per swept rotor area. For roughness class 1, the levellized socioeconomic costs of wind power from Danish wind turbines is DKK 0.396 - 0.536 per kWh compared with production costs of DKK 0.525 for the most economic of the foreign wind turbines investigated. Furthermore it is pointed out, that there seems to be no correlation between generator capacity or swept rotor area and costs of windpower for the wind turbines investigated. Nevertheless there are arguments for the statement that large scale wind turbines will be relatively more economic in the future. Danish wind turbine manufacturers only produce tree-bladed, stall- or pitch regulated wind turbines with constant rotational speed. In Holland, Germany and UK two-bladed wind turbines and turbines with variable speed has been introduced. Still the new concepts are less economic, but not without future interest. (au)

  13. Experimental validation of a numerical 3-D finite model applied to wind turbines design under vibration constraints: TREVISE platform

    Science.gov (United States)

    Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi

    2018-04-01

    With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.

  14. An investigation of nucleating flows of steam in a cascade of turbine blading: Effect of overall pressure ratios

    International Nuclear Information System (INIS)

    Bakhtar, F.; Savage, R.A.

    1993-01-01

    In the course of expansion of steam in turbines the state path crosses the saturation line and the fluid becomes a two-phase mixture. To reproduce turbine nucleating and wet conditions realistically requires a supply of supercooled steam which can be obtained under blow down conditions. An experimental short duration cascade tunnel working on this principle has been constructed. The blade profile studied is that of a typical nozzle The paper is one of a set and describes the surface pressure measurements carried out to investigate the effect of the overall pressure ratio on the performance of the blade

  15. Development of a structure-dependent materials model for complex high-temperature loads: Turbine blades of IN 738 LC

    International Nuclear Information System (INIS)

    1989-01-01

    In the framework of a material research programme of the Federal Ministry for Research and Technology a joint project of 10 institutes has started. It aims at developing new concepts for high-temperature components. A subtask is concerned with the internally cooled turbine blade of IN 738 LC for stationary gas turbines. The envisaged procedure for the development of the design conception and the level of knowledge concerning the influencing parameters of the structure and the mechanical behaviour at high operating temperatures are reported on. (orig.) [de

  16. A wind turbine hybrid simulation framework considering aeroelastic effects

    Science.gov (United States)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  17. Gas turbine

    International Nuclear Information System (INIS)

    Yang, Ok Ryong

    2004-01-01

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  18. Viscous and Aeroelastic Effects on Wind Turbine Blades. The VISCEL Project. Part II: Aeroelastic Stability Investigations

    Science.gov (United States)

    Chaviaropoulos, P. K.; Soerensen, N. N.; Hansen, M. O. L.; Nikolaou, I. G.; Aggelis, K. A.; Johansen, J.; Gaunaa, Mac; Hambraus, T.; Frhr. von Geyr, Heiko; Hirsch, Ch.; Shun, Kang; Voutsinas, S. G.; Tzabiras, G.; Perivolaris, Y.; Dyrmose, S. Z.

    2003-10-01

    The recent introduction of ever larger wind turbines poses new challenges with regard to understanding the mechanisms of unsteady flow-structure interaction. An important aspect of the problem is the aeroelastic stability of the wind turbine blades, especially in the case of combined flap/lead-lag vibrations in the stall regime. Given the limited experimental information available in this field, the use of CFD techniques and state-of-the-art viscous flow solvers provides an invaluable alternative towards the identification of the underlying physics and the development and validation of sound engineering-type aeroelastic models. Navier-Stokes-based aeroelastic stability analysis of individual blade sections subjected to combined pitch/flap or flap/lead-lag motion has been attempted by the present consortium in the framework of the concluded VISCEL JOR3-CT98-0208 Joule III project.

  19. Steam temperature variation behind a turbine steam separator-superheater during NPP start-up

    International Nuclear Information System (INIS)

    Lejzerovich, A.Sh.; Melamed, A.D.

    1979-01-01

    To determine necessary parameters of the steam temperature automatic regulator behind the steam separator-rheater supe (SSS) of an NPP turbine the static and dynamic characteristics of the temperature change behind the SSS were studied experimentally. The measurements were carried out at the K-220-44 turbine of the Kolskaja NPP in the case of both varying turbine loads and the flow rate of the heating vapor. Disturbances caused by the opening of the regulating valve at the inlet of the heating vapor are investigated as well. It is found that due to a relatively high inertiality of the SSS a rather simple structure of the start-up steam temperature regulators behind the SSS in composition with automatated driving systems of the turbine start-up without regard for the change of the dynamic characteristics can be used

  20. Detection of cavitation in hydraulic turbines

    Science.gov (United States)

    Escaler, Xavier; Egusquiza, Eduard; Farhat, Mohamed; Avellan, François; Coussirat, Miguel

    2006-05-01

    An experimental investigation has been carried out in order to evaluate the detection of cavitation in actual hydraulic turbines. The methodology is based on the analysis of structural vibrations, acoustic emissions and hydrodynamic pressures measured in the machine. The proposed techniques have been checked in real prototypes suffering from different types of cavitation. In particular, one Kaplan, two Francis and one Pump-Turbine have been investigated in the field. Additionally, one Francis located in a laboratory has also been tested. First, a brief description of the general features of cavitation phenomenon is given as well as of the main types of cavitation occurring in hydraulic turbines. The work presented here is focused on the most important ones which are the leading edge cavitation due to its erosive power, the bubble cavitation because it affects the machine performance and the draft tube swirl that limits the operation stability. Cavitation detection is based on the previous understanding of the cavity dynamics and its location inside the machine. This knowledge has been gained from flow visualisations and measurements in laboratory devices such as a high-speed cavitation tunnel and a reduced scale turbine test rig. The main techniques are the study of the high frequency spectral content of the signals and of their amplitude demodulation for a given frequency band. Moreover, low frequency spectral content can also be used in certain cases. The results obtained for the various types of cavitation found in the selected machines are presented and discussed in detail in the paper. Conclusions are drawn about the best sensor, measuring location, signal processing and analysis for each type of cavitation, which serve to validate and to improve the detection techniques.

  1. Gas turbine electric generator

    International Nuclear Information System (INIS)

    Nemoto, Masaaki; Yuhara, Tetsuo.

    1993-01-01

    When troubles are caused to a boundary of a gas turbine electric generator, there is a danger that water as an operation medium for secondary circuits leaks to primary circuits, to stop a plant and the plant itself can not resume. Then in the present invention, helium gases are used as the operation medium not only for the primary circuits but also for the secondary circuits, to provide so-called a direct cycle gas turbine system. Further, the operation media of the primary and secondary circuits are recycled by a compressor driven by a primary circuit gas turbine, and the turbine/compressor is supported by helium gas bearings. Then, problems of leakage of oil and water from the bearings or the secondary circuits can be solved, further, the cooling device in the secondary circuit is constituted as a triple-walled tube structure by way of helium gas, to prevent direct leakage of coolants into the reactor core even if cracks are formed to pipes. (N.H.)

  2. An optimal tuning strategy for tidal turbines.

    Science.gov (United States)

    Vennell, Ross

    2016-11-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.

  3. Experimental Vision Studies of Flow and Structural Effects on Wind Turbines

    DEFF Research Database (Denmark)

    Najafi, Nadia

    In the present thesis, two modern vision technologies are developed and used to study wind turbines: 1- Stereo vision to study vibrations and dynamics of the Vertical Axes Wind Turbine (VAWT) via operational modal analysis (OMA) 2- Background-oriented Schlieren (BOS) method to study the tip...... vortices that are shed from a Horizontal Axis Wind Turbine (HAWT) blades The thesis starts with an introduction to the stereo vision and OMA and is followed by two practical implementations of the basics derived in the introduction. In the first experiment, we developed the image processing tools...... a Nordtank horizontal axis wind turbine based on the density gradient in the vortex. The BOS method does not need complicated equipment such as special cameras or seeded flow, which makes it a convenient method to study large scale flows. However, the challenging part in the current case is the small...

  4. 14 CFR 29.939 - Turbine engine operating characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in flight to determine that no adverse characteristics (such as stall, surge, of flameout) are...

  5. 14 CFR 27.939 - Turbine engine operating characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in flight to determine that no adverse characteristics (such as stall, surge, or flameout) are...

  6. 3D fluid-structure modelling and vibration analysis for fault diagnosis of Francis turbine using multiple ANN and multiple ANFIS

    Science.gov (United States)

    Saeed, R. A.; Galybin, A. N.; Popov, V.

    2013-01-01

    This paper discusses condition monitoring and fault diagnosis in Francis turbine based on integration of numerical modelling with several different artificial intelligence (AI) techniques. In this study, a numerical approach for fluid-structure (turbine runner) analysis is presented. The results of numerical analysis provide frequency response functions (FRFs) data sets along x-, y- and z-directions under different operating load and different position and size of faults in the structure. To extract features and reduce the dimensionality of the obtained FRF data, the principal component analysis (PCA) has been applied. Subsequently, the extracted features are formulated and fed into multiple artificial neural networks (ANN) and multiple adaptive neuro-fuzzy inference systems (ANFIS) in order to identify the size and position of the damage in the runner and estimate the turbine operating conditions. The results demonstrated the effectiveness of this approach and provide satisfactory accuracy even when the input data are corrupted with certain level of noise.

  7. Interactive flow field around two Savonius turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shigetomi, Akinari; Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi [Laboratory for Flow Control, Division of Energy and Environmental System, Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628 (Japan)

    2011-02-15

    The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines. (author)

  8. Simulation of a flexible wind turbine response to a grid fault

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2007-01-01

    The purpose of this work is to illustrate the impact of a grid fault on the mechanical loads of a wind turbine. Grid faults generate transients in the generator electromagnetic torque, which are propagated in the wind turbine, stressing its mechanical components. Grid faults are normally simulated...... in power system simulation tools applying simplified mechanical models of the drive train. This paper presents simulations of the wind turbine load response to grid faults with an advanced aeroelastic computer code (HAWC2). The core of this code is an advanced model for the flexible structure of the wind...... turbines, taking the flexibility of the tower, blades and other components of the wind turbines into account. The effect of a grid fault on the wind turbine flexible structure is assessed for a typical fixed speed wind turbine, equipped with an induction generator....

  9. Effects of geometric non-linearity on energy release rates in a realistic wind turbine blade cross section

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert; Belloni, Federico

    2015-01-01

    Most wind turbine rotor blades comprise several adhesively connected sub-components typically made from glass fibre reinforced polymer composite materials. It is a well-known fact that wind turbine blades are prone to fail in their adhesive joints. However, owing to the complexity...... of their structural behaviour, little is known about the root causes of adhesive joint failure. This paper investigates the effects of geometrical non-linearity on energy release rates (ERRs) of transversely oriented cracks present in the adhesive joints of a wind turbine rotor blade. Utilising a computationally...

  10. Performance of Partial and Cavity Type Squealer Tip of a HP Turbine Blade in a Linear Cascade

    Directory of Open Access Journals (Sweden)

    Levent Kavurmacioglu

    2018-01-01

    Full Text Available Three-dimensional highly complex flow structure in tip gap between blade tip and casing leads to inefficient turbine performance due to aerothermal loss. Interaction between leakage vortex and secondary flow structures is the substantial source of that loss. Different types of squealer tip geometries were tried in the past, in order to improve turbine efficiency. The current research deals with comparison of partial and cavity type squealer tip concepts for higher aerothermal performance. Effects of squealer tip have been examined comprehensively for an unshrouded HP turbine blade tip geometry in a linear cascade. In the present paper, flow structure through the tip gap was comprehensively investigated by computational fluid dynamic (CFD methods. Numerical calculations were obtained by solving three-dimensional, incompressible, steady, and turbulent form of the Reynolds-averaged Navier-Stokes (RANS equations using a general purpose and three-dimensional viscous flow solver. The two-equation turbulence model, shear stress transport (SST, has been used. The tip profile belonging to the Pennsylvania State University Axial Flow Turbine Research Facility (AFTRF was used to create an extruded solid model of the axial turbine blade. For identifying optimal dimensions of squealer rim in terms of squealer height and squealer width, our previous studies about aerothermal investigation of cavity type squealer tip were utilized. In order to obtain the mesh, an effective parametric generation has been utilized using a multizone structured mesh. Numerical calculations indicate that partial and cavity squealer designs can be effective to reduce the aerodynamic loss and heat transfer to the blade tip. Future efforts will include novel squealer shapes for higher aerothermal performance.

  11. An analytical investigation of the performance of wind-turbines with gyrocopter-like rotors

    Energy Technology Data Exchange (ETDEWEB)

    Kentfield, J.A.C.; Brophy, D.C. [Univ. of Calgary, Alberta (Canada)

    1997-12-31

    The performance was predicted of a wind-turbine, intended for electrical power generation, the rotor of which is similar in configuration to the rotor of an autogyro or gyrocopter as originated by Cierva. Hence the rotor axis of spin is tilted downwind, for maximum power production, by an angle of 40{degrees} to 50{degrees} relative to the vertical with power regulation by modulation of the tilt angle. Because the rotor of a Cierva turbine generates lift the simple, non-twisted, fixed-pitch blades {open_quotes}fly{close_quotes} and are self supporting thereby eliminating flap-wise bending moments when the blades are hinged at their roots. It was found from the analysis that it is possible to reduce tower bending moments substantially relative to a conventional horizontal axis turbine of equal power output and also, for equal maximum hub heights and blade tip altitudes, a Cierva turbine is capable, at a prescribed wind speed, of a greater power output than a conventional horizontal axis machine.

  12. Smart Wind Turbine : Analysis and Autonomous Flap

    NARCIS (Netherlands)

    Bernhammer, L.O.

    2015-01-01

    Wind turbines convert kinetic energy of the wind into electrical energy. Unfortunately, this process is everything but constant, as the wind source shows large fluctuations with high and low frequencies. This turbulence, together with the wind shear and yawed inflow, excites the turbine structure,

  13. Modeling and Simulation of a Wind Turbine Driven Induction Generator Using Bond Graph

    Directory of Open Access Journals (Sweden)

    Lachouri Abderrazak

    2015-12-01

    Full Text Available The objective of this paper is to investigate the modelling and simulation of wind turbine applied on induction generator with bond graph methodology as   a graphical and multi domain approach. They provide a precise and unambiguous modelling tool, which allows for the specification of hierarchical physical structures. The paper begins with an introduction to the bond graphs technique, followed by an implementation of the wind turbine model. Simulation results illustrate the simplified system response obtained using the 20-sim software.

  14. Structural Health Monitoring of Wind Turbine Blades: Acoustic Source Localization Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omar Mabrok Bouzid

    2015-01-01

    Full Text Available Structural health monitoring (SHM is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1 the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2 localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field.

  15. Investigation of Methane Oxy-Fuel Combustion in a Swirl-Stabilised Gas Turbine Model Combustor

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-05-01

    Full Text Available CO2 has a strong impact on both operability and emission behaviours in gas turbine combustors. In the present study, an atmospheric, preheated, swirl-stabilised optical gas turbine model combustor rig was employed. The primary objectives were to analyse the influence of CO2 on the fundamental characteristics of combustion, lean blowout (LBO limits, CO emission and flame structures. CO2 dilution effects were examined with three preheating temperatures (396.15, 431.15, and 466.15 K. The fundamental combustion characteristics were studied utilising chemical kinetic simulations. To study the influence of CO2 on the operational range of the combustor, equivalence ratio (Ф was varied from stoichiometric conditions to the LBO limits. CO emissions were measured at the exit of the combustor using a water-cooled probe over the entire operational range. The flame structures and locations were characterised by performing CH chemiluminescence imaging. The inverse Abel transformation was used to analyse the CH distribution on the axisymmetric plane of the combustor. Chemical kinetic modelling indicated that the CO2 resulted in a lower reaction rate compared with the CH4/air flame. Fundamental combustion properties such as laminar flame speed, ignition delay time and blowout residence time were found to be affected by CO2. The experimental results revealed that CO2 dilution resulted in a narrower operational range for the equivalence ratio. It was also found that CO2 had a strong inhibiting effect on CO burnout, which led to a higher concentration of CO in the combustion exhaust. CH chemiluminescence showed that the CO2 dilution did not have a significant impact on the flame structure.

  16. Turbulence and turbulence-generated structural loading in wind turbine clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Sten

    2007-01-15

    Turbulence, in terms of standard deviation of wind speed fluctuations, and other flow characteristics are different in the interior of wind farms relative to the free flow and action must be taken to ensure sufficient structural sustainability of the wind turbines exposed to 'wind farm flow'. The standard deviation of wind speed fluctuations is a known key parameter for both extreme- and fatigue loading, and it is argued and found to be justified that a model for change in turbulence intensity alone may account for increased fatigue loading in wind farms. Changes in scale of turbulence and horizontal flow-shear also influence the dynamic response and thus fatigue loading. However, these parameters are typically negatively or positively correlated with the standard deviation of wind speed fluctuations, which therefore can, if need be, represent these other variables. Thus, models for spatially averaged turbulence intensity inside the wind farm and direct-wake turbulence intensity are being devised and a method to combine the different load situations is proposed. The combination of the load cases implies a weighting method involving the slope of the considered material's Woehler curve. In the context, this is novel and necessary to avoid excessive safety for fatigue estimation of the structure's steel components, and non-conservatism for fibreglass components. The proposed model offers significant reductions in computational efforts in the design process. The status for the implementation of the model is that it became part of the Danish standard for wind turbine design DS 472 (2001) in August 2001 and it is part of the corresponding international standard, IEC61400-1 (2005). Also, extreme loading under normal operation for wake conditions and the efficiency of very large wind farms are discussed. (au)

  17. Anomaly Detection Techniques for the Condition Monitoring of Tidal Turbines

    Science.gov (United States)

    2014-09-29

    turbine design includes many horizontal and vertical axis solutions, some with major structural and operational variations (Aly & El-Hawary, 2011...However, a common focus is the horizontal axis design, holding many similarities with a standard wind turbine . Maintenance on tidal turbines ...However, despite similarities between tidal and wind power turbine design, the operating environment is vastly different. Water is over 800 times

  18. Investigation of Separation Control in Low Pressure Turbine Using Pulsed Vortex Generator Jets (Postprint)

    National Research Council Canada - National Science Library

    Woods, N; Boxx, I; Sondergaard, R; McQuilling, M; Wolf, M

    2006-01-01

    ...) injected over the suction surface of the Pack-B turbine blade is reported. Blade Reynolds numbers in the turbine cascade match those that occur in aircraft engines while at high altitude cruise...

  19. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  20. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  1. Mechanical Design, Analysis, and Testing of a Two-Bladed Wind Turbine Hub

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J.

    2002-06-01

    Researchers at the National Wind Technology Center (NWTC) in Golden, Colorado, began performing the Unsteady Aerodynamics Experiment in 1993 to better understand the unsteady aerodynamics and structural responses of horizontal-axis wind turbines. The experiment consists of an extensively instrumented, downwind, three-bladed, 20-kilowatt wind turbine. In May 1995, I received a request from the NWTC to design a two-bladed hub for the experiment. For my thesis, I present the results of the mechanical design, analysis, and testing of the hub. The hub I designed is unique because it runs in rigid, teetering, or independent blade-flapping modes. In addition, the design is unusual because it uses two servomotors to pitch the blades independently. These features are used to investigate new load reduction, noise reduction, blade pitch optimization, and yaw control techniques for two-bladed turbines. I used a methodology by G. Phal and W. Bietz to design the hub. The hub meets all the performance specifications except that it achieves only 90% of the specified teeter range. In my thesis, I focus on the analysis and testing of the hub body. I performed solid-mechanics calculations, ran a finite-element analysis simulation, and experimentally investigated the structural integrity of the hub body.

  2. Mitigation of mechanical loads of NREL 5MW wind turbine tower

    International Nuclear Information System (INIS)

    Nam, Yoonsu; Im, Chang Hee

    2012-01-01

    As the size of a wind turbine increases, the mechanical structure has to have an increasing mechanical stiffness that is sufficient to withstand mechanical fatigue loads over a lifespan of more than 20 years. However, this leads to a heavier mechanical design, which means a high material cost during wind turbine manufacturing. Therefore, lightweight design of a wind turbine is an important design constraint. Usually, a lightweight mechanical structure has low damping. Therefore, if it is subjected to a disturbance, it will oscillate continuously. This study deals with the active damping control of a wind turbine tower. An algorithm that mitigates the mechanical loads of a wind turbine tower is introduced. The effectiveness of this algorithm is verified through a numerical simulation using GH Bladed, which is a commercial aero elastic code for wind turbines

  3. Dynamic Properties of Offshore Wind Turbine Foundations

    DEFF Research Database (Denmark)

    Damgaard, Mads

    ages structurally over its service life. Well-covered in the field of earthquake engineering, the dynamic response of civil engineering structures is highly dependent on the impedance of the soil–foundation system. For offshore wind turbine applications, however, the hysteretical and geometrical......, there is a general consensus that offshore wind-generated electricity is still too expensive to be competitive with conventional energy sources. As a consequence, the overall weight of the turbine and foundation is kept to a minimum resulting in a flexible and dynamically active structural system—even at low...

  4. Technical diagnostics of steam turbines

    International Nuclear Information System (INIS)

    Vlckova, B.; Drahy, J.

    1987-01-01

    This paper deals with practical experience in application of technical diagnostics methods to steam turbines, in particular using pedestal and shaft vibration measurements as well as estimation of bearing metal temperature and ultrasound emission signals. An estimation of effectiveness of the diagnostics methods used is given on the basis of experimental investigations made on a 30-MW turbine. (author)

  5. Applied modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Broen Pedersen, H.; Dahl Kristensen, O.J.

    2003-02-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Different equipment for mounting the accelerometers are investigated and the most suitable are chosen. Different excitation techniques are tried during experimental campaigns. After a discussion the pendulum hammer were chosen, and a new improved hammer was manufactured. Some measurement errors are investigated. The ability to repeat the measured results is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use of accelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded and unloaded wind turbine blade. During this campaign the modal analysis are performed on a blade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Oeyes blade{sub E}V1 program. (au)

  6. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  7. A plastic stress intensity factor approach to turbine disk structural integrity assessment

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2016-07-01

    Full Text Available This study based on a new fracture mechanics parameter is concerned with assessing the integrity of cracked steam turbine disk which operate under startup-shutdown cyclic loading conditions. Damage accumulation and growth in service have occurred on the inner surface of slot fillet of key. In order to determine elastic-plastic fracture mechanics parameters full-size stress-strain state analysis of turbine disk was performed for a quote-elliptical part-through cracks under considering loading conditions. As a result distributions of elastic and plastic stress intensity factors along crack front in slot fillet of key of turbine disk depending on surface crack form are defined. An engineering approach to the prediction of carrying capacity of cracked turbine disk which is sensitive to the loading history at maintenance is proposed. The predictions of the rate of crack growth and residual lifetime of steam turbine disk are compared for elastic and elastic-plastic solutions. It is shown that the previously proposed elastic crack growth models provide overestimate the lifetime with respect to the present one. An advantage to use the plastic stress intensity factor to characterize the fracture resistance as the self-dependent unified parameter for a variety of turbine disk configurations rather than the magnitude of the elastic stress intensity factors alone is discussed.

  8. Technologies for evaluating fish passage through turbines

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, Thomas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-10-01

    This study evaluated the feasibility of two types of technologies to observe fish and near neutrally buoyant drogues as they move through hydropower turbines. Existing or reasonably modified light-emitting and ultrasonic technologies were used to observe flow patterns, the response of fish to flow, and interactions between fish and turbine structures with good spatial and temporal accuracy. This information can be used to assess the biological benefits of turbine design features such as reductions in gaps at the tips and hub of turbine runner blades, reshaping wicket gates and stay vanes, modifications to draft tube splitter piers, and design changes that enhance egress through the powerhouse and tailrace.

  9. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  10. Experimental investigation of the flow near the ram element in the brush turbine

    Directory of Open Access Journals (Sweden)

    Schmirler M.

    2015-01-01

    Full Text Available The paper focuses on the investigating of the parameters of the fluid flow around the brush turbine ram element. The flow field was evaluated qualitatively by observing changes in density using a Schlieren method. It was also evaluated the influence of the element geometry on the total aerodynamic force of the element. The aerodynamic force was measured directly using a special aerodynamic balance. The aim of the project was to find the simplest element geometry with a maximum force effect and achieve an increase in overall efficiency and reduce the manufacturing costs.

  11. O?shore ?oating wind turbine and its dynamic problems?

    Institute of Scientific and Technical Information of China (English)

    Renchuan ZHU; Guoping MIAO; Ju FAN; Hua LIU

    2016-01-01

    Green energy sources and ocean wind power are plentiful in deep sea. More and more o?shore wind power plants are constructed in the deep water over hundred meters below the surface. While o?shore ?oating wind turbine system is working, wind turbine, ?oating foundation, and mooring system a?ect each other with wind, waves, and currents acting on them. Various o?shore ?oating wind turbine systems and the encoun-tered environmental loads are brie?y reviewed and discussed. It is di?cult and crucial to comprehensively analyze the aerodynamic-hydrodynamic-service system-structure un-der the coupling e?ect of o?shore ?oating wind turbine system. The environmental ?ow ?eld, structure scale, and rational applications of theories and approaches should be well considered in advance.

  12. Strength Analysis of a Large-Size Supporting Structure for an Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Niklas Karol

    2017-04-01

    Full Text Available The offshore wind power industry is the branch of electric energy production from renewable sources which is most intensively developed in EU countries. At present, there is a tendency to install larger-power wind turbines at larger distances from the seashore, on relatively deep waters. Consequently, technological solutions for new supporting structures intended for deeper water regions are undergoing rapid development now. Various design types are proposed and analysed, starting from gravitational supports (GBS, through monopiles and 3D frame structures (jackets, tripods, and ending with floating and submerged supports anchored to the seabed by flexible connectors, including TLP type solutions.

  13. Turbine blade having a constant thickness airfoil skin

    Science.gov (United States)

    Marra, John J

    2012-10-23

    A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.

  14. 3D-PTV around Operational Wind Turbines

    Science.gov (United States)

    Brownstein, Ian; Dabiri, John

    2016-11-01

    Laboratory studies and numerical simulations of wind turbines are typically constrained in how they can inform operational turbine behavior. Laboratory experiments are usually unable to match both pertinent parameters of full-scale wind turbines, the Reynolds number (Re) and tip speed ratio, using scaled-down models. Additionally, numerical simulations of the flow around wind turbines are constrained by the large domain size and high Re that need to be simulated. When these simulations are preformed, turbine geometry is typically simplified resulting in flow structures near the rotor not being well resolved. In order to bypass these limitations, a quantitative flow visualization method was developed to take in situ measurements of the flow around wind turbines at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. The apparatus constructed was able to seed an approximately 9m x 9m x 5m volume in the wake of the turbine using artificial snow. Quantitative measurements were obtained by tracking the evolution of the artificial snow using a four camera setup. The methodology for calibrating and collecting data, as well as preliminary results detailing the flow around a 2kW vertical-axis wind turbine (VAWT), will be presented.

  15. Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor

    Science.gov (United States)

    Deng, Xiaowen; Xing, Li; Yin, Hong; Tian, Feng; Zhang, Qun

    2018-03-01

    Multiple-swirlers structure is commonly adopted for combustion design strategy in heavy duty gas turbine. The multiple-swirlers structure might shorten the flame brush length and reduce emissions. In engineering application, small amount of gas fuel is distributed for non-premixed combustion as a pilot flame while most fuel is supplied to main burner for premixed combustion. The effect of fuel distribution on the flow and temperature field related to the combustor performance is a significant issue. This paper investigates the fuel distribution effect on the combustor performance by adjusting the pilot/main burner fuel percentage. Five pilot fuel distribution schemes are considered including 3 %, 5 %, 7 %, 10 % and 13 %. Altogether five pilot fuel distribution schemes are computed and deliberately examined. The flow field and temperature field are compared, especially on the multiple-swirlers flow field. Computational results show that there is the optimum value for the base load of combustion condition. The pilot fuel percentage curve is calculated to optimize the combustion operation. Under the combustor structure and fuel distribution scheme, the combustion achieves high efficiency with acceptable OTDF and low NOX emission. Besides, the CO emission is also presented.

  16. Dense Array Optimization of Cross-Flow Turbines

    Science.gov (United States)

    Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.

  17. Water channel experiments of a novel fully-passive flapping-foil turbine

    Science.gov (United States)

    Boudreau, Matthieu; Dumas, Guy; Rahimpour, Mostafa; Oshkai, Peter

    2016-11-01

    Experiments have been conducted to assess the performances of a fully-passive flapping-foil hydrokinetic turbine for which the blade's motions are stemming from the interaction between the blade's elastic supports (springs and dampers) and the flow field. Previous numerical studies conducted by Peng & Zhu (2009) and Zhu (2012) have proved that a simplified version of such a turbine can extract a substantial amount of energy from the flow while offering the potential to greatly simplify the complex mechanical apparatus needed to constrain and link the blade's pitching and heaving motions in the case of the more classical flapping-foil turbine (e.g., Kinsey et al., 2011). Based on the promising numerical investigations of Veilleux (2014) and Veilleux & Dumas (2016), who proposed a more general version of this novel concept, a prototype has been built and tested in a water channel at a chord Reynolds number of 17,000. Periodic motions of large amplitudes have been observed leading to interesting energy harvesting efficiencies reaching 25% for some specific sets of structural parameters. The sensitivity of the turbine's dynamics to each of the seven structural parameters appearing in the equations of motion has been experimentally evaluated around a case close to the optimal one. Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged by the authors.

  18. TurbinAID

    International Nuclear Information System (INIS)

    Moradian, M.A.; Chow, M.P.; Osborne, R.L.; Jenkins, M.A.

    1991-01-01

    The Westinghouse Turbine Artificial Intelligence Diagnostics system or TurbinAID, can diagnose both thermodynamic and mechanical component anomalies within the turbine, and around the turbine cycle. any monitoring system can detect that a variable is in an abnormal state, but TurbinAID can also indicate the cause, and provide recommended corrective action(s). The TurbinAID Expert Systems utilize multiple sensor and variable inputs, and their interdependencies in the generation of a diagnosis. The system performs sensor validation as part of the data acquisition scheme. The TurbinAID system has been in operation for several years. This paper describes the monitoring and diagnostic functions provided by TurbinAID, and how the utility industry both nuclear and fossil, can utilize the system to enhance unit operation

  19. Investigation of a Novel Turbulence Model and Using Leading-Edge Slots for Improving the Aerodynamic Performance of Airfoils and Wind Turbines

    Science.gov (United States)

    Beyhaghi, Saman

    Because of the problems associated with increase of greenhouse gases, as well as the limited supplies of fossil fuels, the transition to alternate, clean, renewable sources of energy is inevitable. Renewable sources of energy can be used to decrease our need for fossil fuels, thus reducing impact to humans, other species and their habitats. The wind is one of the cleanest forms of energy, and it can be an excellent candidate for producing electrical energy in a more sustainable manner. Vertical- and Horizontal-Axis Wind Turbines (VAWT and HAWT) are two common devices used for harvesting electrical energy from the wind. Due to the development of a thin boundary layer over the ground surface, the modern commercial wind turbines have to be relatively large to be cost-effective. Because of the high manufacturing and transportation costs of the wind turbine components, it is necessary to evaluate the design and predict the performance of the turbine prior to shipping it to the site, where it is to be installed. Computational Fluid Dynamics (CFD) has proven to be a simple, cheap and yet relatively accurate tool for prediction of wind turbine performance, where the suitability of different designs can be evaluated at a low cost. High accuracy simulation methods such as Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) are developed and utilized in the past decades. Despite their superior importance in large fluid domains, they fail to make very accurate predictions near the solid surfaces. Therefore, in the present effort, the possibility of improving near-wall predictions of CFD simulations in the near-wall region by using a modified turbulence model is also thoroughly investigated. Algebraic Stress Model (ASM) is employed in conjunction with Detached Eddy Simulation (DES) to improve Reynolds stresses components, and consequently predictions of the near-wall velocities and surface pressure distributions. The proposed model shows a slightly better performance

  20. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region

    Science.gov (United States)

    Bastankhah, M.; Porté-Agel, F.

    2017-06-01

    Comprehensive wind tunnel experiments were carried out to study the interaction of a turbulent boundary layer with a wind turbine operating under different tip-speed ratios and yaw angles. Force and power measurements were performed to characterize the variation of thrust force (both magnitude and direction) and generated power of the wind turbine under different operating conditions. Moreover, flow measurements, collected using high-resolution particle-image velocimetry as well as hot-wire anemometry, were employed to systematically study the flow in the upwind, near-wake, and far-wake regions. These measurements provide new insights into the effect of turbine operating conditions on flow characteristics in these regions. For the upwind region, the results show a strong lateral asymmetry under yawed conditions. For the near-wake region, the evolution of tip and root vortices was studied with the use of both instantaneous and phase-averaged vorticity fields. The results suggest that the vortex breakdown position cannot be determined based on phase-averaged statistics, particularly for tip vortices under turbulent inflow conditions. Moreover, the measurements in the near-wake region indicate a complex velocity distribution with a speed-up region in the wake center, especially for higher tip-speed ratios. In order to elucidate the meandering tendency of far wakes, particular focus was placed on studying the characteristics of large turbulent structures in the boundary layer and their interaction with wind turbines. Although these structures are elongated in the streamwise direction, their cross sections are found to have a size comparable to the rotor area, so that they can be affected by the presence of the turbine. In addition, the study of spatial coherence in turbine wakes reveals that any statistics based on streamwise velocity fluctuations cannot provide reliable information about the size of large turbulent structures in turbine wakes due to the effect of wake

  1. The Electromagnetic Impact of Wind Turbines

    Science.gov (United States)

    2015-07-06

    Applied Project 4. TITLE AND SUBTITLE THE ELECTROMAGNETIC IMPACT OF WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Gregory Sasarita and Charles R...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) The objective of this project was to investigate the impact that a wind turbine can have on

  2. Development of a Wind Turbine Test Rig and Rotor for Trailing Edge Flap Investigation: Static Flap Angles Case

    International Nuclear Information System (INIS)

    Abdelrahman, Ahmed; Johnson, David A

    2014-01-01

    One of the strategies used to improve performance and increase the life-span of wind turbines is active flow control. It involves the modification of the aerodynamic characteristics of a wind turbine blade by means of moveable aerodynamic control surfaces. Trailing edge flaps are relatively small moveable control surfaces placed at the trailing edge of a blade's airfoil that modify the lift of a blade or airfoil section. An instrumented wind turbine test rig and rotor were specifically developed to enable a wide-range of experiments to investigate the potential of trailing edge flaps as an active control technique. A modular blade based on the S833 airfoil was designed to allow accurate instrumentation and customizable settings. The blade is 1.7 meters long, had a constant 178mm chord and a 6° pitch. The modular aerodynamic parts were 3D printed using plastic PC-ABS material. The blade design point was within the range of wind velocities in the available large test facility. The wind facility is a large open jet wind tunnel with a maximum velocity of 11m/s in the test area. The capability of the developed system was demonstrated through an initial study of the effect of stationary trailing edge flaps on blade load and performance. The investigation focused on measuring the changes in flapwise bending moment and power production for different trailing edge flap spanwise locations and deflection angles. The relationship between the load reduction and deflection angle was linear as expected from theory and the highest reduction was caused by the flap furthest from the rotor center. Overall, the experimental setup proved to be effective in measuring small changes in flapwise bending moment within the wind turbine blade and will provide insight when (active) flap control is targeted

  3. Simulation of wind turbine wakes using the actuator line technique.

    Science.gov (United States)

    Sørensen, Jens N; Mikkelsen, Robert F; Henningson, Dan S; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J

    2015-02-28

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Concurrent Aeroservoelastic Design and Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Tibaldi, Carlo

    This work develops and investigates methods to integrate controllers in the wind turbine design process and to perform wind turbine optimization. These techniques can exploit the synergy between wind turbine components and generate new design solutions. Two frameworks to perform wind turbine...... optimization design are presented. These tools handle workflows to model a wind turbine and to evaluate loads and performances under specific conditions. Three approaches to evaluate loads are proposed and integrated in the optimization codes. The first method is based on time domain simulations, the second...... simulations, allows the selection of any controller parameter. The methods to evaluate loads and the pole-placement technique are then employed to carry out wind turbine optimization design from an aeroservoelastic prospective. Several analysis of the NREL 5 MW Reference Wind Turbine and the DTU 10 MW...

  5. Methodology for wind turbine blade geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Perfiliev, D.

    2013-11-01

    Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)

  6. Investigation of the effects of platform motion on the aerodynamics of a floating offshore wind turbine

    Institute of Scientific and Technical Information of China (English)

    万德成

    2016-01-01

    Along with the flourishing of the wind energy industry, floating offshore wind turbines have aroused much interest among the academia as well as enterprises. In this paper, the effects of the supporting platform motion on the aerodynamics of a floating wind turbine are studied using the open source CFD framework OpenFOAM. The platform motion responses, including surge, heave and pitch, are superimposed onto the rotation of the wind turbine. Thrust and torque on the wind turbine are compared and analysed for the cases of different platform motion patterns together with the flow field. It is shown that the movement of the supporting platform can have large influences on a floating offshore wind turbine and thus needs to be considered carefully during the design process.

  7. Electric power from vertical-axis wind turbines

    Science.gov (United States)

    Touryan, K. J.; Strickland, J. H.; Berg, D. E.

    1987-12-01

    Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.

  8. Experimental investigation into the unsteady effects on non-axisymmetric turbine endwall contouring

    CSIR Research Space (South Africa)

    Dunn, Dwain I

    2010-01-01

    Full Text Available , but maintain the specific thrust. This is usually done by increasing the blade loading,hich increases the impact of the secondary flows on the turbine efficiency. Nomeclature Yaw angle ( ) C Velocity (m=s) CFD Computational Fluid Dynamics Isentropic... pressure turbines can be attributed to entropy generation in the annular boundary layer upstream, within and downstream of the blade row. A second component is caused by the mixing loss of the inlet boundary layer which gets amplified by the secondary...

  9. Intracycle angular velocity control of cross-flow turbines

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian

    2017-08-01

    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  10. Research and development of cooled turbine for aircraft engines. Koku engine yo reikyaku turbine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Maya, T; Yamawaki, S [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    For the turbine which is one of the principal elements of aircraft engine, progress in turbine use material development and cooling performance further heightened for the turbine are needed to grapple with the required heightening of turbine inlet temperature. In the present paper based on the turbine inlet temperature designed to be 1600[degree]C as a target, a two-dimensional model used for the turbine cooling performance test was structurally given together with the result of the above test which aimed at confirming the design calculation. As a result of cooling design for the turbine which was about 1600[degree]C in inlet temperature, the highest gas temperature was 1890 and 1470[degree]C on the stator blade and rotor blade, respectively. Both those blades were 0.66 and 0.62, respectively in cooling efficiency. To test the cooling performance, a two-dimensional cascade was tested with a doubly amplified model of cooling blade, the use of which could set its Reynolds number near that of the actual one. As compared with the actual operation, the test was made at low temperatures of 400 to 500[degree]C and low pressures of 0.02 to 0.03MPa. The test agreed with the design calculation in result. 4 refs., 8 figs.

  11. Lighter-than-air wind turbines in remote communities

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, M.; Ferguson, F.; Akhiwu, K. [Magenn Power Inc., Ottawa, ON (Canada)

    2008-07-01

    This paper presented the 100 kW Magenn Air Rotor System (MARS) drag-type wind turbine system that is based on lighter-than-air technology. It consists of an axisymmetric helium-filled core balloon, anchored to the ground via a tether containing high-tenacity fibers as well as copper conductors. The torque for the rotation is provided by sails fixed to the surface of the balloon. A winch on the ground allows the tether to be reeled in and out up to a height of 300 m. The feasibility of using the system in 2 specific local community-owned power network was investigated. The results of initial testing were discussed. Highly consistent winds at 300 m altitude were found to result in power densities 3 to 4 times what is available to a conventional 100 kW wind turbine. The inflatable structures reduce capital costs as well as equipment and shipping costs associated with installation in remote areas. It was concluded that the MARS system is very simple to install and despite its large size, no cranes or oversized vehicles are needed to deploy the system. The high-altitude wind power using tethered wind turbine devices has the potential to open up new wind resources in areas that are not served by conventional turbines. 6 refs., 3 tabs., 2 figs.

  12. Health Effects Related to Wind Turbine Noise Exposure

    DEFF Research Database (Denmark)

    Schmidt, Jesper Hvass; Klokker, Mads

    2014-01-01

    BACKGROUND: Wind turbine noise exposure and suspected health-related effects thereof have attracted substantial attention. Various symptoms such as sleep-related problems, headache, tinnitus and vertigo have been described by subjects suspected of having been exposed to wind turbine noise...... existing statistically-significant evidence indicating any association between wind turbine noise exposure and tinnitus, hearing loss, vertigo or headache. LIMITATIONS: Selection bias and information bias of differing magnitudes were found to be present in all current studies investigating wind turbine...

  13. An optimal tuning strategy for tidal turbines

    Science.gov (United States)

    2016-01-01

    Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870

  14. Micro-turbines

    International Nuclear Information System (INIS)

    Tashevski, Done

    2003-01-01

    In this paper a principle of micro-turbines operation, type of micro-turbines and their characteristics is presented. It is shown their usage in cogeneration and three generation application with the characteristics, the influence of more factors on micro-turbines operation as well as the possibility for application in Macedonia. The paper is result of the author's participation in the training program 'Micro-turbine technology' in Florida, USA. The characteristics of different types micro-turbines by several world producers are shown, with accent on US micro-turbines producers (Capstone, Elliott). By using the gathered Author's knowledge, contacts and the previous knowledge, conclusions and recommendations for implementation of micro-turbines in Macedonia are given. (Author)

  15. Structural damage detection in wind turbine blades based on time series representations of dynamic responses

    Science.gov (United States)

    Hoell, Simon; Omenzetter, Piotr

    2015-03-01

    The development of large wind turbines that enable to harvest energy more efficiently is a consequence of the increasing demand for renewables in the world. To optimize the potential energy output, light and flexible wind turbine blades (WTBs) are designed. However, the higher flexibilities and lower buckling capacities adversely affect the long-term safety and reliability of WTBs, and thus the increased operation and maintenance costs reduce the expected revenue. Effective structural health monitoring techniques can help to counteract this by limiting inspection efforts and avoiding unplanned maintenance actions. Vibration-based methods deserve high attention due to the moderate instrumentation efforts and the applicability for in-service measurements. The present paper proposes the use of cross-correlations (CCs) of acceleration responses between sensors at different locations for structural damage detection in WTBs. CCs were in the past successfully applied for damage detection in numerical and experimental beam structures while utilizing only single lags between the signals. The present approach uses vectors of CC coefficients for multiple lags between measurements of two selected sensors taken from multiple possible combinations of sensors. To reduce the dimensionality of the damage sensitive feature (DSF) vectors, principal component analysis is performed. The optimal number of principal components (PCs) is chosen with respect to a statistical threshold. Finally, the detection phase uses the selected PCs of the healthy structure to calculate scores from a current DSF vector, where statistical hypothesis testing is performed for making a decision about the current structural state. The method is applied to laboratory experiments conducted on a small WTB with non-destructive damage scenarios.

  16. Fatigue-Damage Estimation and Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control......, the inclusion of fatigue-damage within feedback control loops is of special interest. Four strategies in total are proposed in this work: three for the wind turbine level and one for the wind farm level. On one hand, the three strategies in the turbine level are based on hysteresis operators and strive......-damage estimation in wind turbine components, to the mixed objective operation of wind energy conversion systems, and to the synthesis of control strategies that include hysteresis operators....

  17. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    Energy Technology Data Exchange (ETDEWEB)

    Foust, J. [Voith Hydro, Inc., York, PA (USA); Hecker, G. [Alden Research Laboratory, Inc., Holden, MA (USA); Li, S. [Alden Research Laboratory, Inc., Holden, MA (USA); Allen, G. [Alden Research Laboratory, Inc., Holden, MA (USA)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall

  18. Turbines for nuclear power plants. 2.ed.

    International Nuclear Information System (INIS)

    Troyanovskij, B.M.

    1978-01-01

    In the second edition of the book considered are practically all the main problems of calculation and operation of turbines and turbine installations of nuclear power plants. As compared to the first edition, essentially addes is the reproduction of the problem on combined generation of heat and electric energy. Also represented is detailed material on methods of preliminary evaluation of turbine effectiveness. Considered are peculiarities of turbine operation on wet steam and the basis of their thermal calculation. Much attention is payed to the problem of wet stream current in the turbine elements and wetness effect on their characteristics. Problems of wetness separation and moving blade erosion as well as other turbine elements are extracted in a special section. Given are structural schemes of different methods of innerchannel and periphery wet removal as well as experimental materials on their effectiveness. Given are descriptions and critical analysis of a great number of typical constructions of nuclear power plant steam turbines, produced by native plants as well as by the main foreign firms. Considered also are constructions of outside separators and steam superheaters. Separately given is the problem of rotation frequency choise of nuclear power plant wet steam turbines. Represented are materials on turbine installation tests, considered are the problems of turbine starting and manoeuvrability, analyzed are their typical jailures and damages. One of the sections of the book is devoted to gas turbine installations of nuclear power plants. Different material on this theme scattered before in various sources is summarized in the book

  19. The Department of Energy (DOE) research program in structural analysis of vertical-axis wind turbines

    Science.gov (United States)

    Sullivan, W. N.

    The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major structural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.

  20. Performance Investigation of A Mix Wind Turbine Using A Clutch Mechanism At Low Wind Speed Condition

    Science.gov (United States)

    Jamanun, M. J.; Misaran, M. S.; Rahman, M.; Muzammil, W. K.

    2017-07-01

    Wind energy is one of the methods that generates energy from sustainable resources. This technology has gained prominence in this era because it produces no harmful product to the society. There is two fundamental type of wind turbine are generally used this day which is Horizontal axis wind turbine (HAWT) and Vertical axis wind turbine (VAWT). The VAWT technology is more preferable compare to HAWT because it gives better efficiency and cost effectiveness as a whole. However, VAWT is known to have distinct disadvantage compared to HAWT; self-start ability and efficiency at low wind speed condition. Different solution has been proposed to solve these issues which includes custom design blades, variable angle of attack mechanism and mix wind turbine. A new type of clutch device was successfully developed in UMS to be used in a mix Savonius-Darrieus wind turbine configuration. The clutch system which barely audible when in operation compared to a ratchet clutch system interconnects the Savonius and Darrieus rotor; allowing the turbine to self-start at low wind speed condition as opposed to a standalone Darrieus turbine. The Savonius height were varied at three different size in order to understand the effect of the Savonius rotor to the mix wind turbine performance. The experimental result shows that the fabricated Savonius rotor show that the height of the Savonius rotor affecting the RPM for the turbine. The swept area (SA), aspect ratio (AR) and tip speed ratio (TSR) also calculated in this paper. The highest RPM recorded in this study is 90 RPM for Savonius rotor 0.22-meter height at 2.75 m/s. The Savonius rotor 0.22-meter also give the highest TSR for each range of speed from 0.75 m/s, 1.75 m/s and 2.75 m/s where it gives 1.03 TSR, 0.76 TSR, and 0.55 TSR.

  1. Structural health monitoring tools for late and end of life management of offshore wind turbines

    DEFF Research Database (Denmark)

    McGugan, Malcolm; McKirdy, Scott

    2016-01-01

    The late and end of life stages in an offshore wind turbines (OWT) life cycle have unique features that must be considered. The initial focus on risks associated with start-up issues due to design, manufacturing or process elements gives way to a stable period of operation and maintenance...... margins and the predominance of low redundancy structures, accurate structural health monitoring can play a strong role in safe management and enable increased operating time at end of life and decommissioning. Late life operations of offshore wind farms can pose significant challenges, balancing...

  2. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  3. Numerical investigation of the variable nozzle effect on the mixed flow turbine performance characteristics

    Science.gov (United States)

    Meziri, B.; Hamel, M.; Hireche, O.; Hamidou, K.

    2016-09-01

    There are various matching ways between turbocharger and engine, the variable nozzle turbine is the most significant method. The turbine design must be economic with high efficiency and large capacity over a wide range of operational conditions. These design intents are used in order to decrease thermal load and improve thermal efficiency of the engine. This paper presents an original design method of a variable nozzle vane for mixed flow turbines developed from previous experimental and numerical studies. The new device is evaluated with a numerical simulation over a wide range of rotational speeds, pressure ratios, and different vane angles. The compressible turbulent steady flow is solved using the ANSYS CFX software. The numerical results agree well with experimental data in the nozzleless configuration. In the variable nozzle case, the results show that the turbine performance characteristics are well accepted in different open positions and improved significantly in low speed regime and at low pressure ratio.

  4. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...... to one third of the total cost of energy. Reduction of Operation & Maintenance costs will result in significant cost savings and result in cheaper electricity production. Operation & Maintenance processes mainly involve actions related to replacements or repair. Identifying the right times when...

  5. Power density investigations for the large wind turbines' grid-side press-pack IGBT 3L-NPC-VSCs

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2012-01-01

    -thermal models are required to be derived, implemented, and utilized. In this study, employed as a grid-side medium voltage full-scale voltage source converters (VSCs) in a multi-MW wind turbine, press-pack IGBT three-level neutral-point-clamped VSC (3L-NPC-VSC), 3L active NPC-VSC (3L-ANPC-VSC), and 3L neutral......Power density is the important design criterion in wind turbine converter design provided that satisfactory converter performance is guaranteed. In order to assess a converter in terms of power density, which is dependent on converter electrical and thermal behaviors, converter electro......-point-piloted VSC (3L-NPP-VSC) are characterized in terms of converter operating principles, physical structure, power loss, and DC bus capacitor size for establishing the basis for converter electro-thermal modeling. Via the practical implementations of the converter electro-thermal models in a computation...

  6. Economics for wind turbines in Denmark. Investments, operation and maintenance costs for selected vintages of turbines

    International Nuclear Information System (INIS)

    Hjuler Jensen, P.; Morthorst, P.E.; Skriver, S.; Rasmussen, M.; Larsen, H.; Hansen, L.H.; Nielsen, P.; Lemming, J.

    2002-10-01

    During the last two decades of operational experience with wind turbines in Denmark, a number of investigations on wind energy economics have been carried out on behalf of the Danish Energy Agency. The aim of this study has been to analyse the development of investments cost, O and M-cost, insurance costs etc. including the economic and technical lifetime of wind turbines. Based on a questionnaire and an existing database, time series for O and M-cost components are established going back to the early 80's. These time series are used to analyse the development of O and M-costs during the lifetime of different turbine sizes and vintages. A major issue of the project is to use the results achieved for older turbines (55kW to 150 kW) to establish an expected development of O and M-costs for newer larger turbines, typically of the 500kW to 750kW sizes. (au)

  7. Grid fault and design-basis for wind turbines - Final report

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Markou, Helen

    , have been performed and compared for two cases, i.e. one when the turbine is immediately disconnected from the grid when a grid fault occurs and one when the turbine is equipped with a fault ride-through controller and therefore it is able to remain connected to the grid during the grid fault......This is the final report of a Danish research project “Grid fault and design-basis for wind turbines”. The objective of this project has been to assess and analyze the consequences of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines....... The fulfillment of the grid connection requirements poses challenges for the design of both the electrical system and the mechanical structure of wind turbines. The development of wind turbine models and novel control strategies to fulfill the TSO’s requirements are of vital importance in this design. Dynamic...

  8. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants

    Science.gov (United States)

    AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali

    2018-05-01

    Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by

  9. Damping Wind and Wave Loads on a Floating Wind Turbine

    DEFF Research Database (Denmark)

    Christiansen, Søren; Bak, Thomas; Knudsen, Torben

    2013-01-01

    Offshore wind energy capitalizes on the higher and less turbulent wind speeds at sea. To enable deployment of wind turbines in deep-water locations, structures are being explored, where wind turbines are placed on a floating platform. This combined structure presents a new control problem, due......, and we show the influence that both wind speed, wave frequencies and misalignment between wind and waves have on the system dynamics. A new control model is derived that extends standard turbine models to include the hydrodynamics, additional platform degrees of freedom, the platform mooring system...

  10. 'Wind turbine syndrome': fact or fiction?

    Science.gov (United States)

    Farboud, A; Crunkhorn, R; Trinidade, A

    2013-03-01

    Symptoms, including tinnitus, ear pain and vertigo, have been reported following exposure to wind turbine noise. This review addresses the effects of infrasound and low frequency noise and questions the existence of 'wind turbine syndrome'. This review is based on a search for articles published within the last 10 years, conducted using the PubMed database and Google Scholar search engine, which included in their title or abstract the terms 'wind turbine', 'infrasound' or 'low frequency noise'. There is evidence that infrasound has a physiological effect on the ear. Until this effect is fully understood, it is impossible to conclude that wind turbine noise does not cause any of the symptoms described. However, many believe that these symptoms are related largely to the stress caused by unwanted noise exposure. There is some evidence of symptoms in patients exposed to wind turbine noise. The effects of infrasound require further investigation.

  11. Study of turbine and guide vanes integration to enhance the performance of cross flow vertical axis wind turbine

    Science.gov (United States)

    Wibowo, Andreas; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi; Situmorang, Marcelinus Risky Clinton

    2018-02-01

    The main purpose of this study is to investigate the best configuration between guide vanes and cross flow vertical axis wind turbine with variation of several parameters including guide vanes tilt angle and the number of turbine and guide vane blades. The experimental test were conducted under various wind speed and directions for testing cross flow wind turbine, consisted of 8, 12 and 16 blades. Two types of guide vane were developed in this study, employing 20° and 60° tilt angle. Both of the two types of guide vane had three variations of blade numbers which had same blade numbers variations as the turbines. The result showed that the configurations between 60° guide vane with 16 blade numbers and turbine with 16 blade numbers had the best configurations. The result also showed that for certain configuration, guide vane was able to increase the power generated by the turbine significantly by 271.39% compared to the baseline configuration without using of guide vane.

  12. Calculation and design of steel bearing structure for wind turbine

    Directory of Open Access Journals (Sweden)

    Bešević Miroslav

    2014-01-01

    Full Text Available Wind represents directed movement of the air and is caused by differences in atmospheric pressure which are caused by uneven heating of air masses. Global and local winds can be distinguished. Global winds have high altitude, while local winds occur in the ground layer of the atmosphere. Given that the global wings have high altitude they cannot be used as propellant for wind generators, but they should be known for their effects on the winds in the lower atmosphere. Modern wind turbines are made with a horizontal axle that has a system for the swiveling axis in the horizontal plane for tracking wind direction changes. They can have different number of blades, but for larger forces three blades are commonly used because they provide the greatest efficiency. Rotor diameter of these turbines depends on the strength and it ranges from 30 m for the power of 300 kW to 115 m for the power of 5 MW. Wind turbines are mounted on vertical steel tower which can be high even more than 100 m. Depending on the diameter of the turbine rotor, column is usually built as steel conical and less often as a steel-frame. This study includes analysis and design of steel tower for wind generator made by manufacturer Vestas, type V112 3MW HH 119 (power 3.2 MW for the construction of wind farm 'Kovačica'.

  13. Optimization and Reliability Problems in Structural Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    are discussed. Limit state equations are presented for fatigue limit states and for ultimate limit states with extreme wind load, and illustrated by bending failure. Illustrative examples are presented, and as a part of the results optimal reliability levels are obtained which corresponds to an annual...... reliability index equal to 3. An example with fatigue failure indicates that the reliability level is almost the same for single wind turbines and for wind turbines in wind farms if the wake effects are modeled equivalently in the design equation and the limit state equation....

  14. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  15. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T; Brask, M H [DEFU (Denmark); Jensen, F V; Raben, N [SEAS (Denmark); Saxov, J [Nordjyllandsvaerket (Denmark); Nielsen, L [Vestkraft (Denmark); Soerensen, P E [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  16. Turbine stage model

    International Nuclear Information System (INIS)

    Kazantsev, A.A.

    2009-01-01

    A model of turbine stage for calculations of NPP turbine department dynamics in real time was developed. The simulation results were compared with manufacturer calculations for NPP low-speed and fast turbines. The comparison results have shown that the model is valid for real time simulation of all modes of turbines operation. The model allows calculating turbine stage parameters with 1% accuracy. It was shown that the developed turbine stage model meets the accuracy requirements if the data of turbine blades setting angles for all turbine stages are available [ru

  17. Health effects related to wind turbine noise exposure: a systematic review.

    Science.gov (United States)

    Schmidt, Jesper Hvass; Klokker, Mads

    2014-01-01

    Wind turbine noise exposure and suspected health-related effects thereof have attracted substantial attention. Various symptoms such as sleep-related problems, headache, tinnitus and vertigo have been described by subjects suspected of having been exposed to wind turbine noise. This review was conducted systematically with the purpose of identifying any reported associations between wind turbine noise exposure and suspected health-related effects. A search of the scientific literature concerning the health-related effects of wind turbine noise was conducted on PubMed, Web of Science, Google Scholar and various other Internet sources. All studies investigating suspected health-related outcomes associated with wind turbine noise exposure were included. Wind turbines emit noise, including low-frequency noise, which decreases incrementally with increases in distance from the wind turbines. Likewise, evidence of a dose-response relationship between wind turbine noise linked to noise annoyance, sleep disturbance and possibly even psychological distress was present in the literature. Currently, there is no further existing statistically-significant evidence indicating any association between wind turbine noise exposure and tinnitus, hearing loss, vertigo or headache. Selection bias and information bias of differing magnitudes were found to be present in all current studies investigating wind turbine noise exposure and adverse health effects. Only articles published in English, German or Scandinavian languages were reviewed. Exposure to wind turbines does seem to increase the risk of annoyance and self-reported sleep disturbance in a dose-response relationship. There appears, though, to be a tolerable level of around LAeq of 35 dB. Of the many other claimed health effects of wind turbine noise exposure reported in the literature, however, no conclusive evidence could be found. Future studies should focus on investigations aimed at objectively demonstrating whether or not

  18. Methodology for testing subcomponents; background and motivation for subcomponent testing of wind turbine rotor blades

    DEFF Research Database (Denmark)

    Antoniou, Alexandros; Branner, Kim; Lekou, D.J.

    2016-01-01

    This report aims to provide an overview of the design methodology followed by wind turbine blade structural designers, along with the testing procedure on full scale blades which are followed by testing laboratories for blade manufacturers as required by the relevant standards and certification...... bodies’ recommendations for design and manufacturing verification. The objective of the report is not to criticize the design methodology or testing procedure and the standards thereof followed in the wind energy community, but to identify those items offered by state of the art structural design tools...... investigations performed are based on the INNWIND.EU reference 10MW horizontal axis wind turbine [1]. The structural properties and material and layout definition used within IRPWIND are defined in the INNWIND.EU report [2]. The layout of the report includes a review of the structural analysis models used...

  19. Performance analysis of a counter-rotating tubular type micro-turbine by experiment and CFD

    International Nuclear Information System (INIS)

    Lee, N J; Choi, J W; Hwang, Y H; Kim, Y T; Lee, Y H

    2012-01-01

    Micro hydraulic turbines have a growing interest because of its small and simple structure, as well as a high possibility of using in micro and small hydropower applications. The differential pressure existing in city water pipelines can be used efficiently to generate electricity in a way similar to that of energy being generated through gravitational potential energy in dams. The pressure energy in the city pipelines is often wasted by using pressure reducing valves at the inlet of water cleaning centers. Instead of using the pressure reducing valves, a micro counter-rotating hydraulic turbine can be used to make use of the pressure energy. In the present paper, a counter-rotating tubular type micro-turbine is studied, with the front runner connected to the generator stator and the rear runner connected to the generator rotor. The performance of the turbine is investigated experimentally and numerically. A commercial ANSYS CFD code was used for numerical analysis.

  20. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  1. Fundamentals for remote structural health monitoring of wind turbine blades - a preproject. Annex C. Fibre transducer for damage detection in adhesive layers of wind turbine blades

    DEFF Research Database (Denmark)

    Sendrup, P.

    2002-01-01

    displacement transducer for detection of damage in adhesive layers of wind turbine blades. It was chosen to base the transducer on the fibre optic micro-bend principle. The report contains the result of measurementsand optical simulations of light transmittance through optical fibres with micro......-bends and a suggestion for a micro-bend transducer design specifically suitable for detection of damage in adhesive layers between larger composite structures, as the shellsin a wind turbine blade. Such a damage will cause the joined parts to move slightly relative to each other, and the transducer is designed to change...... optic micro-bend transducer would be in the range between0.5%/um to 1 %/um depending on the number of bends on the fibre. A measurement on the final transducer showed that the sensitivity was 1.2 %/um. A large 50 % change in transmittance, that is easy to measure, is then obtained for displacements...

  2. Sound wave contours around wind turbine arrays

    International Nuclear Information System (INIS)

    Van Beek, A.; Van Blokland, G.J.

    1993-02-01

    Noise pollution is an important factor in selecting suitable sites for wind turbines in order to realize 1000 MW of wind power as planned by the Dutch government for the year 2000. Therefore an accurate assessment of wind turbine noise is important. The amount of noise pollution from a wind turbine depends on the wind conditions. An existing standard method to assess wind turbine noise is supplemented and adjusted. In the first part of the investigation the method was developed and applied for a solitary sound source. In the second part attention is paid to the use of the method for wind turbine arrays. It appears that the adjusted method results in a shift of the contours of the permitted noise level. In general the contours are 15-25% closer to the wind farm, which means that the minimal permitted distance between houses and wind turbine arrays can be reduced. 14 figs., 1 tab., 4 appendices, 7 refs

  3. Imitation of the characteristics of the wind turbine based on DC motor

    Institute of Scientific and Technical Information of China (English)

    LIU Qihui; HE Yikang; ZHAO Rende

    2007-01-01

    This paper analyzed the operating principles and power and torque characteristics of the wind turbine and the direct current motor(DC motor),and investigated the operating characteristics of the wind turbine compared to that of the DC motor.The torque imitation scheme,which has good performance and high feasibility,together with the whole wind turbine imitation system,was provided.The wind turbine imitation system includes not only a hardware platform composed of PC,data-collection board and thyristor-based velocity-regulator,but also monitor software of wind turbine imitation.The experimental results of different occasions verify the correctness and feasibility of the wind turbine imitation scheme proposed in this paper,which provided a valid idea for wind turbine imitation and investigation of wind power generation techniques in the laboratory.

  4. Probabilistic characterization of wind turbine blades via aeroelasticity and spinning finite element formulation

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2012-04-01

    Wind energy is an increasingly important component of this nation's renewable energy portfolio, however safe and economical wind turbine operation is a critical need to ensure continued adoption. Safe operation of wind turbine structures requires not only information regarding their condition, but their operational environment. Given the difficulty inherent in SHM processes for wind turbines (damage detection, location, and characterization), some uncertainty in conditional assessment is expected. Furthermore, given the stochastic nature of the loading on turbine structures, a probabilistic framework is appropriate to characterize their risk of failure at a given time. Such information will be invaluable to turbine controllers, allowing them to operate the structures within acceptable risk profiles. This study explores the characterization of the turbine loading and response envelopes for critical failure modes of the turbine blade structures. A framework is presented to develop an analytical estimation of the loading environment (including loading effects) based on the dynamic behavior of the blades. This is influenced by behaviors including along and across-wind aero-elastic effects, wind shear gradient, tower shadow effects, and centrifugal stiffening effects. The proposed solution includes methods that are based on modal decomposition of the blades and require frequent updates to the estimated modal properties to account for the time-varying nature of the turbine and its environment. The estimated demand statistics are compared to a code-based resistance curve to determine a probabilistic estimate of the risk of blade failure given the loading environment.

  5. Review of contemporary wind turbine concepts and their market

    International Nuclear Information System (INIS)

    Hansen, Anca D.; Iov, Florin; Blaabjerg, Frede; Hansen, Lars H.

    2004-01-01

    The main aim of this paper is to investigate the market penetration and share of different wind turbine concepts during the years 1998-2002, a period when the increase in the wind power capacity is starting to mark an abrupt evolution (more than two GW per year). A detailed overview is performed based on suppliers market data and concept evaluation for each individual wind turbine type sold by the Top Ten suppliers over the selected five years. The investigation is processing information on a total number of approximately 90 wind turbine types from 13 different manufacturers, which have been on the Top Ten list of wind turbine suppliers during 1998 to 2002. The analysis is based on very comprehensive data, which cover approximately 76% of the accumulated world wind power installed at the end of 2002. The paper also provides an overall perspective on the contemporary wind turbine concepts, classified with respect to both their speed control ability and to their power control type. Trends for wind turbine concepts are discussed. (Author)

  6. Studi Eksperimental Perancangan Turbin Air Terapung Tipe Helical Blade

    OpenAIRE

    Muhammad, Andi Haris; Had, Abdul Latief; Terti, Wayan

    2016-01-01

    This research describes the design of floating helical water turbine for electric power generation in free flow and low head water operation. The design involves the use of strips attached to the blades of turbine. The efficiency of turbine (??) investigation was carried out using empirical formulas. The rotation of turbine (n) of the calculation with variation strips angles (450, 900, and 1350) were obtained through captive model tests carried out in towing tank. The result indicated the eff...

  7. Deformation behaviour of turbine foundations

    International Nuclear Information System (INIS)

    Koch, W.; Klitzing, R.; Pietzonka, R.; Wehr, J.

    1979-01-01

    The effects of foundation deformation on alignment in turbine generator sets have gained significance with the transition to modern units at the limit of design possibilities. It is therefore necessary to obtain clarification about the remaining operational variations of turbine foundations. Static measurement programmes, which cover both deformation processes as well as individual conditions of deformation are described in the paper. In order to explain the deformations measured structural engineering model calculations are being undertaken which indicate the effect of limiting factors. (orig.) [de

  8. Multimodel Robust Control for Hydraulic Turbine

    OpenAIRE

    Osuský, Jakub; Števo, Stanislav

    2014-01-01

    The paper deals with the multimodel and robust control system design and their combination based on M-Δ structure. Controller design will be done in the frequency domain with nominal performance specified by phase margin. Hydraulic turbine model is analyzed as system with unstructured uncertainty, and robust stability condition is included in controller design. Multimodel and robust control approaches are presented in detail on hydraulic turbine model. Control design approaches are compared a...

  9. Analysis of the Flicker Level Produced by a Fixed-Speed Wind Turbine

    Science.gov (United States)

    Suppioni, Vinicius; P. Grilo, Ahda

    2013-10-01

    In this article, the analysis of the flicker emission during continuous operation of a mid-scale fixed-speed wind turbine connected to a distribution system is presented. Flicker emission is investigated based on simulation results, and the dependence of flicker emission on short-circuit capacity, grid impedance angle, mean wind speed, and wind turbulence is analyzed. The simulations were conducted in different programs in order to provide a more realistic wind emulation and detailed model of mechanical and electrical components of the wind turbine. Such aim is accomplished by using FAST (Fatigue, Aerodynamics, Structures, and Turbulence) to simulate the mechanical parts of the wind turbine, Simulink/MatLab to simulate the electrical system, and TurbSim to obtain the wind model. The results show that, even for a small wind generator, the flicker level can limit the wind power capacity installed in a distribution system.

  10. Reducing uncertainty in wind turbine blade health inspection with image processing techniques

    Science.gov (United States)

    Zhang, Huiyi

    Structural health inspection has been widely applied in the operation of wind farms to find early cracks in wind turbine blades (WTBs). Increased numbers of turbines and expanded rotor diameters are driving up the workloads and safety risks for site employees. Therefore, it is important to automate the inspection process as well as minimize the uncertainties involved in routine blade health inspection. In addition, crack documentation and trending is vital to assess rotor blade and turbine reliability in the 20 year designed life span. A new crack recognition and classification algorithm is described that can support automated structural health inspection of the surface of large composite WTBs. The first part of the study investigated the feasibility of digital image processing in WTB health inspection and defined the capability of numerically detecting cracks as small as hairline thickness. The second part of the study identified and analyzed the uncertainty of the digital image processing method. A self-learning algorithm was proposed to recognize and classify cracks without comparing a blade image to a library of crack images. The last part of the research quantified the uncertainty in the field conditions and the image processing methods.

  11. Wind turbine noise propagation modelling: An unsteady approach

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects of unste...... Pressure Level (SPL).......Wind turbine sound generation and propagation phenomena are inherently time dependent, hence tools that incorporate the dynamic nature of these two issues are needed for accurate modelling. In this paper, we investigate the sound propagation from a wind turbine by considering the effects...... of unsteady flow around it and time dependent source characteristics. For the acoustics modelling we employ the Parabolic Equation (PE) method while Large Eddy Simulation (LES) as well as synthetically generated turbulence fields are used to generate the medium flow upon which sound propagates. Unsteady...

  12. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines

    International Nuclear Information System (INIS)

    Ghasemian, Masoud; Ashrafi, Z. Najafian; Sedaghat, Ahmad

    2017-01-01

    Highlights: • A review on CFD simulation technique for Darrieus wind turbines is provided. • Recommendations and guidelines toward reliable and accurate simulations are presented. • Different progresses in CFD simulation of Darrieus wind turbines are addressed. - Abstract: The global warming threats, the presence of policies on support of renewable energies, and the desire for clean smart cities are the major drives for most recent researches on developing small wind turbines in urban environments. VAWTs (vertical axis wind turbines) are most appealing for energy harvesting in the urban environment. This is attributed due to structural simplicity, wind direction independency, no yaw mechanism required, withstand high turbulence winds, cost effectiveness, easier maintenance, and lower noise emission of VAWTs. This paper reviews recent published works on CFD (computational fluid dynamic) simulations of Darrieus VAWTs. Recommendations and guidelines are presented for turbulence modeling, spatial and temporal discretization, numerical schemes and algorithms, and computational domain size. The operating and geometrical parameters such as tip speed ratio, wind speed, solidity, blade number and blade shapes are fully investigated. The purpose is to address different progresses in simulations areas such as blade profile modification and optimization, wind turbine performance augmentation using guide vanes, wind turbine wake interaction in wind farms, wind turbine aerodynamic noise reduction, dynamic stall control, self-starting characteristics, and effects of unsteady and skewed wind conditions.

  13. Development of high temperature turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kitao; Nouse, Hiroyuki; Yoshida, Toyoaki; Minoda, Mitsuhiro; Matsusue, Katsutoshi; Yanagi, Ryoji

    1988-07-01

    For the contribution to the development of FJR710, high by-pass ratio turbofan engine, with the study for many years of the development of high efficiency turbine for the jet engine, the first technical prize from the Energy Resource Research Committee was awarded in April, 1988. This report introduced its technical contents. In order to improve the thermal efficiency and enlarge the output, it is very effective to raise the gas temperature at the inlet of gas turbine. For its purpose, by cooling the nozzle and moving blades and having those blades operate at lower temperature than that of the working limitation, they realized, for the first time in Japan, the technique of cooling turbine to heighten the operational gas temperature. By that technique, it was enabled to raise the gas temperature at the inlet of turbine, to 1,350/sup 0/C from 850/sup 0/C. This report explain many important points of study covering the basic test, visualizing flow experiment, material discussion and structural design in the process of development. (9 figs)

  14. Aero-acoustics noise assessment for Wind-Lens turbine

    International Nuclear Information System (INIS)

    Hashem, I.; Mohamed, M.H.; Hafiz, A.A.

    2017-01-01

    This paper introduces an aero-acoustic computational study that investigates the noise caused by one of the most promising wind energy conversion concepts, namely the 'Wind-Lens' technology. The hybrid method - where the flow field and acoustic field are solved separately, was deemed to be an appropriate tool to compute this study. The need to investigate this phenomenon increased gradually, since the feasibility of utilizing Wind-Lens turbine within densely populated cities and urban areas depends largely on their noise generation. Ffowcs Williams-Hawkings (FW-H) equation and its integral solution are used to predict the noise radiating to the farfield. CFD Simulations of transient three-dimensional flow field using (URANS) unsteady Reynolds-averaged Navier-Stokes equations are computed to acquire the acoustic sources location and sound intensity. Then, the noise propagates from the before-mentioned sources to pre-defined virtual microphones positioned in different locations. ANSYS-FLUENT is used to calculate the flow field on and around such turbines which is required for the FW-H code. Some effective parameters are investigated such as Wind-Lens shape, brim height and tip speed ratio. Comparison of the noise emitted from the bare wind turbine and different types of Wind-Lens turbine reveals that, the Wind-Lens generates higher noise intensity. - Highlights: • Aero-acoustic noise generated by wind turbines are one of the major challenges. • Noise from wind turbine equipped with a brimmed diffuser is investigated. • A computational aero-acoustic study using the hybrid method is introduced. • Effective parameters are studied such Wind-Lens shape, brim height and speed ratio. • The optimal shape has a moderate power coefficient and the less noise generation.

  15. Wind turbine concept market penetration over 10 years (1995-2004)

    International Nuclear Information System (INIS)

    Hansen, Anca D.; Hansen, Lars H.

    2006-01-01

    The aim of this article is to investigate the market penetration and share of different wind turbine concepts during the years 1995-2004, a period that represents the maturational era of the modern wind power industry. A detailed overview is given based on suppliers' market data and concept evaluation for each individual wind turbine type sold by the Top Ten suppliers over the selected decade. The investigation is processing information on approximately 160 wind turbine types from 22 different manufacturers that have featured in the Top Ten list of wind turbine suppliers during 1995-2004. The analysis is based on comprehensive data covering approximately 97% of the cumulative wind power installed worldwide at the end of 2004. The article also provides an overall perspective on contemporary wind turbine concepts, classified with respect to both their speed control ability and power control type. Current and future trends for wind turbine concepts are discussed. (Author)

  16. Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fingersh, Lee J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Loth, Eric [University of Virginia; Kaminski, Meghan [University of Virginia; Qin, Chao [University of Virginia; Griffith, D. Todd [Sandia National Laboratories

    2017-06-09

    A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3 wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.

  17. Ultimate strength of a large wind turbine blade

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt

    2009-01-01

    reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load...... carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing......The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural...

  18. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Shun-Peng Zhu

    2017-06-01

    Full Text Available Combined high and low cycle fatigue (CCF generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF resulting from high frequency vibrations and low cycle fatigue (LCF from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  19. Seismic structural fragility investigation for the Zion Nuclear Power Plant. Seismic safety margins research program (phase 1)

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.

    1981-10-01

    An evaluation of the seismic capacity of the essential structures for the Zion Nuclear Power Plant in Zion, Illinois, was conducted as part of the Seismic Safety Margins Research Program (SSMRP). The structures included the reactor containment building, the turbine/auxiliary building, and the crib house (intake structure). The evaluation was devoted to seismically induced failures rather than those resulting from combined Loss of Coolant Accident (LOCA) or other extreme load combinations. The seismic loads used in the investigation were based on elastic analyses. The loads for the reactor containment and turbine/auxiliary buildings were developed by Lawrence Livermore Laboratory using time history analyses. The loads used for the crib house were the original seismic design loads developed by Sargent and Lundy. No non-linear seismic analyses were conducted. The seismic capacity of the structures accounted for the actual concrete and steel material properties including the aging of the concrete. Median centered properties were used throughout the evaluation including levels of damping considered appropriate for structures close to collapse as compared to the more conservative values used for design. The inelastic effects were accounted for using ductility modified response spectrum techniques based on system ductility ratios expected for structures near collapse. Sources of both inherent randomness and uncertainties resulting from lack of knowledge or approximations in analytical modelling were considered in developing the dispersion of the structural dynamic characteristics. Coefficients of variation were developed assuming lognormal distributions for all variables. The earthquake levels for many of the seismically induced failure modes are so high as to be considered physically incredible. (author)

  20. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  1. Variable stator radial turbine

    Science.gov (United States)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  2. Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)

    Science.gov (United States)

    Fitzgerald, Breiffni; Sarkar, Saptarshi; Staino, Andrea

    2018-04-01

    Modern multi-megawatt wind turbines are composed of slender, flexible, and lightly damped blades and towers. These components exhibit high susceptibility to wind-induced vibrations. As the size, flexibility and cost of the towers have increased in recent years, the need to protect these structures against damage induced by turbulent aerodynamic loading has become apparent. This paper combines structural dynamic models and probabilistic assessment tools to demonstrate improvements in structural reliability when modern wind turbine towers are equipped with active tuned mass dampers (ATMDs). This study proposes a multi-modal wind turbine model for wind turbine control design and analysis. This study incorporates an ATMD into the tower of this model. The model is subjected to stochastically generated wind loads of varying speeds to develop wind-induced probabilistic demand models for towers of modern multi-megawatt wind turbines under structural uncertainty. Numerical simulations have been carried out to ascertain the effectiveness of the active control system to improve the structural performance of the wind turbine and its reliability. The study constructs fragility curves, which illustrate reductions in the vulnerability of towers to wind loading owing to the inclusion of the damper. Results show that the active controller is successful in increasing the reliability of the tower responses. According to the analysis carried out in this paper, a strong reduction of the probability of exceeding a given displacement at the rated wind speed has been observed.

  3. Turbinate surgery

    Science.gov (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery; Nasal obstruction - turbinate surgery ... There are several types of turbinate surgery: Turbinectomy: All or ... This can be done in several different ways, but sometimes a ...

  4. New airfoil sections for straight bladed turbine

    Science.gov (United States)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine.

  5. New airfoil sections for straight bladed turbine

    International Nuclear Information System (INIS)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine

  6. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Rovey

    2012-09-21

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit

  7. Numerical and Experimental Investigations of Design Parameters Defining Gas Turbine Nozzle Guide Vane Endwall Heat Transfer

    OpenAIRE

    Rubensdörffer, Frank G.

    2006-01-01

    The primary requirements for a modern industrial gas turbine consist of a continuous trend of an increasing efficiency combined with very low emissions in a robust, cost-effective manner. To fulfil these tasks a high turbine inlet temperature together with advanced dry low NOX combustion chambers are employed. These dry low NOX combustion chambers generate a rather flat temperature profile compared to previous generation gas turbines, which have a rather parabolic temperature profile before t...

  8. Steam Turbine Flow Path Seals (a Review)

    Science.gov (United States)

    Neuimin, V. M.

    2018-03-01

    Various types of shroud, diaphragm, and end seals preventing idle leak of working steam are installed in the flow paths of steam turbine cylinders for improving their efficiency. Widely known labyrinth seals are most extensively used in the Russian turbine construction industry. The category of labyrinth seals also includes seals with honeycomb inserts. The developers of seals with honeycomb inserts state that the use of such seals makes it possible to achieve certain gain due to smaller leaks of working fluid and more reliable operation of the system under the conditions in which the rotor rotating parts may rub against the stator elements. However, a positive effect can only be achieved if the optimal design parameters of the honeycomb structure are fulfilled with due regard to the specific features of its manufacturing technology and provided that this structure is applied in a goal-seeking manner in the seals of steam and gas turbines and compressors without degrading their vibration stability. Calculated and preliminary assessments made by experts testify that the replacement of conventional labyrinth seals by seals with honeycomb inserts alone, due to which the radial gaps in the shroud seal can be decreased from 1.5 to 0.5 mm, allows the turbine cylinder efficiency to be increased at the initial stage by approximately 1% with the corresponding gain in the turbine set power output. The use of rectangular-cellular seals may result, according to estimates made by their developers, in a further improvement of turbine efficiency by 0.5-1.0%. The labor input required to fabricate such seals is six to eight times smaller than that to fabricate labyrinth seals with honeycomb inserts. Recent years have seen the turbine construction companies of the United States and Germany advertising the use of abradable (sealing) coatings (borrowed from the gas turbine construction technology) in the turbine designs instead of labyrinth seals. The most efficient performance of

  9. Stress analysis of composite wind turbine blade by finite element method

    Science.gov (United States)

    Yeh, Meng-Kao; Wang, Chen-Hsu

    2017-10-01

    In this study, the finite element analysis software ANSYS was used to analyze the composite wind turbine blade. The wind turbine blade model used is adopted from the 5 MW model of US National Renewable Energy Laboratory (NREL). The wind turbine blade is a sandwich structure, comprising outermost carbon fiber cloth/epoxy composites, the inner glass fiber/vinylester layers, and PVC foam core, together with stiffeners. The wind pressure is converted into the load on the blade structure. The stress distribution and deformation of wind turbine blade were obtained by considering different pitch angles and at different angular positions. The Tsai-Hill criterion was used to determine the failure of wind turbine blade. The results show that at the 0° pitch angle, the wind turbine blade is subjected to the largest combined load and therefore the stress is the largest; with the increasing pitch angle, the load gradually decreases and the stress is also smaller. The stress and displacement are the greatest when the wind blade is located at 120° angular position from its highest vertex.

  10. Vibration analysis of 1 MW gearbox for the Avedoere wind turbine. Test bed measurements

    International Nuclear Information System (INIS)

    Crone, A.

    1995-03-01

    The investigations had several purposes: Firstly, to determine and evaluate the structure-borne noise source strength of the gearbox, which is relevant for the final gear noise emission from the wind turbine. Secondly, to select the potentially least noisy gear set out of two, which have been made for the output gear stage. And Thirdly, to obtain the natural vibration modes of the gearbox structure, in order to determine if the structure-borne noise, transmitted to the wind turbine structure, will be amplified due to resonance conditions. Additional vibration tests were carried out. Among these, trials of 'in situ' measurement of the Transmission Error of the output gear stage, and measurements of the torsional vibrations of the input and output shaft. The test of the two output gear sets (from Flender AG and ELKRAFT A.m.b.A.) had the aim to determine the least noisy one of two different tooth profiles. Both gear sets were intended for the Avedoere Wind Turbine when it, in its first period of operation, is going to operate as a stall regulated turbine. After the first mesurements and the exchange of the Flender-designed gear set with the ELKRAFT-designed gear set, troubles with the backmost bearing of the intermediate shaft arose. The evaluation of the structure-borne noise source strength (expressed as the vibration velocity level), has in general been made at load conditions which correspond to the conditions in the wind turibne at a wind speed of 8 m/s, 10 m above terrain (v 10 ). This condition, is the one normally used when the noise emission from wind turbines is evaluated. At the comparison of the two gear sets against each other, the influence of the torque load on the source strength has also been considered. This comparison may indicate the load at which the profile correction is most effective, and may determine the noise potential of the gearbox at wind speeds lower than 8 m/s, which could also be of interest

  11. Composite Structural Analysis of Flat-Back Shaped Blade for Multi-MW Class Wind Turbine

    Science.gov (United States)

    Kim, Soo-Hyun; Bang, Hyung-Joon; Shin, Hyung-Ki; Jang, Moon-Seok

    2014-06-01

    This paper provides an overview of failure mode estimation based on 3D structural finite element (FE) analysis of the flat-back shaped wind turbine blade. Buckling stability, fiber failure (FF), and inter-fiber failure (IFF) analyses were performed to account for delamination or matrix failure of composite materials and to predict the realistic behavior of the entire blade region. Puck's fracture criteria were used for IFF evaluation. Blade design loads applicable to multi-megawatt (MW) wind turbine systems were calculated according to the Germanischer Lloyd (GL) guideline and the International Electrotechnical Commission (IEC) 61400-1 standard, under Class IIA wind conditions. After the post-processing of final load results, a number of principal load cases were selected and converted into applied forces at the each section along the blade's radius of the FE model. Nonlinear static analyses were performed for laminate failure, FF, and IFF check. For buckling stability, linear eigenvalue analysis was performed. As a result, we were able to estimate the failure mode and locate the major weak point.

  12. Effect of Trailing Edge Damage on Full-Scale Wind Turbine Blade Failure

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Branner, Kim

    2015-01-01

    Modern wind turbine rotor blades are normally assembled from large parts bonded together by adhesive joints. The structural parts of wind turbine blades are usually made of composite materials, where sandwich core materials as well as fibre composites are used. For most of the modern wind turbine...

  13. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  14. Transient stability with grid connection and wind turbine drive-train effects

    DEFF Research Database (Denmark)

    Fajardo-R, Luis A.; Medina, Aurelio; Iov, Florin

    2009-01-01

    This paper assesses transient stability of grid-connected wind turbines, combining grid-connection, wind turbine flexibility, and induction generator stability features. Through a grid-connected 2 MW wind turbine cage-generator, the investigation is conducted to identify the critical clearing time...

  15. Study of wind turbine foundations in cold climates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This report provides an overview of the processes at work in soil in cold climates and their effect on wind turbine foundations. Havsnaes wind farm consists of 48 turbines located in Jaemtland county in central Sweden. Havsnaes has provided an appropriate research environment to investigate the engineering challenges related to the design and construction of wind turbine foundations in sub-arctic conditions and the experienced gained from this project informs this report.

  16. Computational study of the effects of shroud geometric variation on turbine performance in a 1.5-stage high-loaded turbine

    Science.gov (United States)

    Jia, Wei; Liu, Huoxing

    2013-10-01

    Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall. Besides, shroud leakage flow is one of the dominant sources of secondary flow in turbomachinery, which not only causes a deterioration of useful work but also a penalty on turbine efficiency. It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution significantly different to those measured. Even so, the influence of shroud leakage flow is seldom taken into consideration during the routine of turbine design due to insufficient understanding of its impact on end wall flows and turbine performance. In order to evaluate the impact of tip shroud geometry on turbine performance, a 3D computational investigation for 1.5-stage turbine with shrouded blades was performed in this paper. The following geometry parameters were varied respectively: Inlet cavity length and exit cavity length

  17. Bird casualties and wind turbines near the Kreekrak sluices of Zeeland

    International Nuclear Information System (INIS)

    Musters, C.J.M.; Noordervliet, M.A.W.; Ter Keurs, W.J.

    1995-03-01

    The impact of wind turbines on birds was investigated for an estuary, situated near the North Sea coast in the Dutch province of Zeeland, with large amount of bird migration. Five 250 kW, three-bladed 25m, 40 rpm turbines were installed on the western side of a dike. The distance between the turbines is 125 m. Since 1 April 1990 the turbines have been in action almost continuously. The study on the title subject was set up to investigate the number of bird casualties caused by the five wind turbines near the sluices of Kreekrak and the number that may be expected to be caused by a total of 20 turbines. The study also focused on the number of casualties among rare birds in relation to those among the common birds as a result of the wind turbines in the Kreekrak area. An area of 125 x 125 m around each wind turbine, consisting partly of land and partly of water, was searched for dead birds every other day during a period of one year (28 April 1990 - 29 April 1991). During this one-year period, the bodies of 26 birds of 17 different species were found; six birds were certainly or almost certainly killed by the turbines. In three other cases, the birds may have died because of the turbines, while in the case of eight birds, it was not possible to determine the cause of death. The remaining nine birds were not killed by the wind turbines. The annual number of bird victims expected following the installation of 20 wind turbines was estimated at a minimum of 7 and a maximum of 142. For each species a correlation was found between the number of victims and the estimated number of visitors to the area. This suggests that the rare species among the birds were not excessively endangered by the turbines. The number of bird casualties per turbine was low in comparison with the results of other Dutch investigations. On the basis of these results, it is concluded that there is no reason to advise against increasing the number of wind turbines near the sluices of Kreekrak to 20. 3

  18. Vortex system studies on small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern; Dahlberg, Jan-Aake [Swedish Defence Research Agency, Stockholm (Sweden). Div. of Aeronautics, FFA

    2003-10-01

    The wind tunnel experiment reported included a small wind turbine setup and smoke to visualize the trailing tip vortices for different wind turbine configurations. Several combinations of tunnel wind speeds and tip speed ratios generated a database where the end result functions were radius and pitch, of the tip vortex spirals, versus the downstream coordinate. The Reynolds number in the experiment was very low compared to that of full size turbines. The results should therefore be seen as valid only for low Reynolds numbers. The models were 18 and 25 cm diameter turbines. This is thought to be complementary to the information obtained in similar wind tunnel investigations for much larger models. The database is meant to be a fundamental tool for the construction of practical aerodynamic induction methods. Such methods typically employ the Biot-Savart law has been shown to lead to a flow field, which deviates considerably from that of reality. E.g. concentration into tip vortices does not happen when the flow is simulated with Biot-Savart law only. Thus, a combination of the induction method and its modification, based on investigations such as the one reported, is foreseen to replace the widely used Blade Element Momentum method for wind turbine loads and performance prediction.

  19. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    , connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control......This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built...

  20. Aero-structural optimization of wind turbine blades using a reduced set of design load cases including turbulence

    DEFF Research Database (Denmark)

    Sessarego, Matias; Shen, Wen Zhong

    2018-01-01

    Modern wind turbine aero-structural blade design codes generally use a smaller fraction of the full design load base (DLB) or neglect turbulent inflow as defined by the International Electrotechnical Commission standards. The current article describes an automated blade design optimization method...... based on surrogate modeling that includes a very large number of design load cases (DLCs) including turbulence. In the present work, 325 DLCs representative of the full DLB are selected based on the message-passing-interface (MPI) limitations in Matlab. Other methods are currently being investigated, e.......g. a Python MPI implementation, to overcome the limitations in Matlab MPI and ultimately achieve a full DLB optimization framework. The reduced DLB and the annual energy production are computed using the state-of-the-art aero-servo-elastic tool HAWC2. Furthermore, some of the interior dimensions of the blade...