WorldWideScience

Sample records for turbine fluid inlet

  1. Computational Fluid Dynamics (CFD) Simulation of Hypersonic Turbine-Based Combined-Cycle (TBCC) Inlet Mode Transition

    Science.gov (United States)

    Slater, John W.; Saunders, John D.

    2010-01-01

    Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.

  2. Design of airborne wind turbine and computational fluid dynamics analysis

    Science.gov (United States)

    Anbreen, Faiqa

    Wind energy is a promising alternative to the depleting non-renewable sources. The height of the wind turbines becomes a constraint to their efficiency. Airborne wind turbine can reach much higher altitudes and produce higher power due to high wind velocity and energy density. The focus of this thesis is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat with a capacity of 8-10 passengers. The idea of designing an airborne turbine is to take the advantage of higher velocities in the atmosphere. The Solidworks model has been analyzed numerically using Computational Fluid Dynamics (CFD) software StarCCM+. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) with K-epsilon turbulence model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine and the increase in air velocity at the throat. The analysis has been done using two ambient velocities of 12 m/s and 6 m/s. At 12 m/s inlet velocity, the velocity of air at the turbine has been recorded as 16 m/s. The power generated by the turbine is 61 kW. At inlet velocity of 6 m/s, the velocity of air at turbine increased to 10 m/s. The power generated by turbine is 25 kW.

  3. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    Mohapatra, Alok Ku; Sanjay

    2014-01-01

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (T i , C ), turbine inlet temperature (T i , T ), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum T i , T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  4. Endwall Treatment and Method for Gas Turbine

    Science.gov (United States)

    Hathaway, Michael D. (Inventor); Strazisar, Anthony J. (Inventor); Suder, Kenneth L. (Inventor)

    2006-01-01

    An endwall treatment for a gas turbine engine having at least one rotor blade extending from a rotatable hub and a casing circumferentially surrounding the rotor and the hub, the endwall treatment including, an inlet formed in an endwall of the gas turbine engine adapted to ingest fluid from a region of a higher-pressure fluid, an outlet formed in the endwall and located in a region of lower pressure than the inlet, wherein the inlet and the outlet are in a fluid communication with each other, the outlet being adapted to inject the fluid from the inlet in the region of lower pressure, and wherein the outlet is at least partially circumferentially offset relative to the inlet.

  5. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E

    2012-01-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  6. Unsteady flow characteristic analysis of turbine based combined cycle (TBCC inlet mode transition

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-09-01

    Full Text Available A turbine based combined cycle (TBCC propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition, at which point, the propulsion system performs a “mode transition” from the turbine to ramjet engine. Smooth inlet mode transition is accomplished when flow is diverted from one flowpath to the other, without experiencing unstart or buzz. The smooth inlet mode transition is a complex unsteady process and it is one of the enabling technologies for combined cycle engine to become a functional reality. In order to unveil the unsteady process of inlet mode transition, the research of over/under TBCC inlet mode transition was conducted through a numerical simulation. It shows that during the mode transition the terminal shock oscillates in the inlet. During the process of inlet mode transition mass flow rate and Mach number of turbojet flowpath reduce with oscillation. While in ramjet flowpath the flow field is non-uniform at the beginning of inlet mode transition. The speed of mode transition and the operation states of the turbojet and ramjet engines will affect the motion of terminal shock. The result obtained in present paper can help us realize the unsteady flow characteristic during the mode transition and provide some suggestions for TBCC inlet mode transition based on the smooth transition of thrust.

  7. Experimental study on effects of inlet boundary layer thickness and boundary layer fence in a turbine cascade

    International Nuclear Information System (INIS)

    Jun, Y. M.; Chung, J. T.

    2000-01-01

    The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency, It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the following research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than end wall loss so that it dominates secondary loss. In these cases the proper fence height is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations

  8. Evaluation of turbine microjet engine operating parameters in conditions conducive to inlet freezing

    Directory of Open Access Journals (Sweden)

    Markowski Jaroslaw

    2017-01-01

    Full Text Available The problem of turbine microjet engine operation is related to flight conditions of unmanned aircraft. These flights are often performed at low altitudes, where, in autumn and winter conditions, the air can be characterized by high humidity and low temperature. Such operating conditions may cause freezing the turbine engine inlet. In particular, this problem may be related to microengines, which most often are not equipped with a de-icing installation. Frosting of the inlet violates the air flow conditions at the engine inlet and may cause unstable operation and even outages, which eventually may lead to a loss of aircraft’s stability and breakdown. Therefore, an attempt was made to evaluate the changes in operational parameters of the turbine microjet engine under conditions leading to the freezing of the inlet. The engine test was performed in stationary conditions and the analysis of the obtained results are presented in this article.

  9. Experimental and numerical study on inlet and outlet conditions of a bulb turbine with considering free surface

    International Nuclear Information System (INIS)

    Zhao, Y P; Liao, W L; Feng, H D; Ruan, H; Luo, X Q

    2012-01-01

    For a bulb turbine, it has a low head and a big runner diameter, and the free surface influences the flow at the inlet and outlet of the turbine, which bring many problems such as vibration, cracks and cavitation to the turbine. Therefore, it is difficult to get the precise internal flow characteristics through a numerical simulation with conventional ideal flow conditions. In this paper, both numerical and experimental methods are adopted to investigate the flow characteristics at the inlet and outlet of the bulb turbine with considering free surface. Firstly, experimental and numerical studies in a low head pressure pipeline are conducted, and the corresponding boundary condition according with reality is obtained through the comparison between the model test result and the CFD simulation result. Then, through an analysis of the velocity and pressure fields at the inlet of the bulb turbine at different heads, the flow characteristics and rules at the entrance of the bulb turbine have been revealed with considering free surface; Finally, the performance predictions for a bulb turbine have been conducted by using the obtained flow rules at the inlet as the boundary condition of a turbine, and the causes that lead to non-uniform forces on blades, cavitation and vibration have been illustrated in this paper, which also provide a theory basis for an accurate numerical simulation and optimization design of a bulb turbine.

  10. Cogen-absorption plants for refrigeration purposes and turbine air inlet cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langreck, Juergen [Colibri bv (Netherlands)

    2000-04-01

    Most cogeneration systems produce power and heat but with absorption refrigeration plants (ARP) the products are power and 'cold'. An ARP driven by heat from a turbine exhaust can provide the cooling for the inlet air with very low consumption of electricity, consequently there is a significant increase in power output from the cogeneration unit. Two different ARP systems are currently available but the author describes only the ammonia-water system, which can achieve temperatures down to -60 degrees C. The article discusses the principle behind ARP, the capital cost and returns on investment, how the cogeneration plant is linked to the ARP, ARP for turbine inlet air cooling, and the potential applications of cogeneration-ARP.

  11. Impact of the use of a hybrid turbine inlet air cooling system in arid climates

    International Nuclear Information System (INIS)

    Al-Ansary, Hany A.; Orfi, Jamel A.; Ali, Mohamed E.

    2013-01-01

    Graphical abstract: Cooling the air entering the compressor section of a gas turbine is a proven method of increasing turbine power output, especially during peak summer demand, and it is increasingly being used in powerplants worldwide. Two turbine inlet air cooling (TIAC) systems are widely used: evaporative cooling and mechanical chilling. In this work, the prospects of using a hybrid turbine inlet air cooling (TIAC) system are investigated. The hybrid system consists of mechanical chilling followed by evaporative cooling. Such a system is capable of achieving a significant reduction in inlet air temperature that satisfies desired power output levels, while consuming less power than conventional mechanical chilling and less water than conventional evaporative cooling, thus combining the benefits of both approaches. Two hybrid system configurations are studied. In the first configuration, the first stage of the system uses water-cooled chillers that are coupled with dry coolers such that the condenser cooling water remains in a closed loop. In the second configuration, the first stage of the system uses water-cooled chillers but with conventional cooling towers. An assessment of the performance and economics of those two configurations is made by comparing them to conventional mechanical chilling and using realistic data. It was found that the TIAC systems are capable of boosting the power output of the gas turbine by 10% or more (of the power output of the ISO conditions). The cost operation analysis shows clearly the hybrid TIAC method with wet cooling has the advantage over the other methods and It would be profitable to install it in the new gas turbine power plants. The figure below shows a comparison of the water consumption for the three different cases. - Highlights: • New hybrid system for the turbine inlet air cooling is studied. • Hybrid system of mechanical chilling followed by evaporative cooling is used. • Hybrid turbine inlet air cooling

  12. Performance of a high-work low aspect ration turbine tested with a realistic inlet radial temperature profile

    Science.gov (United States)

    Stabe, R. G.; Whitney, W. J.; Moffitt, T. P.

    1984-01-01

    Experimental results are presented for a 0.767 scale model of the first stage of a two-stage turbine designed for a high by-pass ratio engine. The turbine was tested with both uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The inlet temperature profile was essentially mixed-out in the rotor. There was also substantial underturning of the exit flow at the mean diameter. Both of these effects were attributed to strong secondary flows in the rotor blading. There were no significant differences in the stage performance with either inlet condition when differences in tip clearance were considered. Performance was very close to design intent in both cases.

  13. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    Science.gov (United States)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  14. Performance of a high-work low aspect ratio turbine tested with a realistic inlet radial temperature profile

    Science.gov (United States)

    Stabe, R. G.; Whitney, W. J.; Moffitt, T. P.

    1984-01-01

    Experimental results are presented for a 0.767 scale model of the first stage of a two-stage turbine designed for a high by-pass ratio engine. The turbine was tested with both uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The inlet temperature profile was essentially mixed-out in the rotor. There was also substantial underturning of the exit flow at the mean diameter. Both of these effects were attributed to strong secondary flows in the rotor blading. There were no significant differences in the stage performance with either inlet condition when differences in tip clearance were considered. Performance was very close to design intent in both cases. Previously announced in STAR as N84-24589

  15. Summary of Investigations of the Use of Modified Turbine Inlet Conditions in a Binary Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mines, Gregory Lee

    2000-09-01

    Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

  16. Turbine lubrication fluid varnish mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Khalid [Pall Corporation, Port Washington, NY (United States)

    2010-04-15

    Varnish deposits on internal surfaces in turbine lube systems result in a number of adverse operational issues, especially the restriction and sticking of the moving parts of servo- or directional control valves, resulting in their malfunction. The lubrication fluid has limited solvency for the varnish-forming material, hence a typical turbine will have the majority of this material as deposits and a relatively small portion as suspension in the fluid phase, in quasi-equilibrium with the deposits. The lube system needs to be cleaned by removing the suspended varnish-forming material from the fluid phase, which allows the deposits to re-entrain into the fluid phase, until the majority of the transferable deposits are removed and the fluid carries no significant amount of the material to have any adverse effect. The methods used for the removal of varnish from turbine lube systems include chemical cleaning/flushing, electrostatic charge induced agglomeration/retention, and the adsorption of the varnish suspended in the oil on an adsorbent medium. The paper discusses an absorption-based removal method that utilizes a fibrous medium that has pronounced affinity for the removal and retention of the varnish-forming material from the fluid as well as the deposits from surfaces that are in quasi-equilibrium with the varnish precursors in the fluid. The filtration medium is a composite, made with cellulose bonded by specially formulated, temperature-cured resins. The absorptive medium exhibits high structural and chemical integrity and has been thoroughly tested on operating turbines, showing reduction in varnish levels from the critical range to below normal range in a relatively short time. The experience with the utilization of the absorptive medium in laboratory tests and in two operating turbines is presented. (orig.)

  17. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    Science.gov (United States)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  18. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    Science.gov (United States)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  19. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  20. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic

  1. Research on Darrieus-type hydraulic turbine for extra-low head hydropower utilization

    International Nuclear Information System (INIS)

    Furukawa, A; Watanabe, S; Okuma, K

    2012-01-01

    A Darrieus-type turbine has been investigated for extra-low head hydropower utilization. In the present paper, authors'research on Darrieus-type hydraulic turbine is briefly reviewed. The working principle of Darrieus turbine is explained with advantage of its simple structure, at first. Then the fluid-dynamic difference between rotating and linear motions of a blade in a uniform flow is clarified with guiding principle of high performance design of Darrieus turbine. Cavitation problem is also described. Next, effects of duct-casing, consisting of an intake, runner section and draft tube, are discussed and a simplified structure of Darrieus turbine is shown by installing the inlet nozzle. Finally, in the practical use, an adjustment of inlet nozzle section by lowering the inlet nozzle height is proposed when flow rate is varied temporally and seasonally.

  2. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  3. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  4. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  5. Review of fluid and control technology of hydraulic wind turbines

    Institute of Scientific and Technical Information of China (English)

    Maolin CAI; Yixuan WANG; Zongxia JIAO; Yan SHI

    2017-01-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines.The current state of hydraulic wind turbines as a new technology is described,and its basic fluid model and typical control method are expounded by comparing various study results.Finally,the advantages of hydraulic wind turbines are enumerated.Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  6. Review of fluid and control technology of hydraulic wind turbines

    Science.gov (United States)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  7. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    Science.gov (United States)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  8. Improving Ambient Wind Environments of a Cross-flow Wind Turbine near a Structure by using an Inlet Guide Structure and a Flow Deflector

    Institute of Scientific and Technical Information of China (English)

    Tadakazu TANINO; Shinichiro NAKAO; Genki UEBAYASHI

    2005-01-01

    A cross-flow wind turbine near a structure was tested for the performance. The results showed that the performance of a cross-flow wind turbine near a structure was up to 30% higher than the one without a structure.In addition, we tried to get higher performance of a cross-flow wind turbine by using an Inlet Guide Structure and a Flow Deflector. An Inlet Guide Structure was placed on the edge of a structure and a Flow Deflector was set near a cross-flow wind turbine and can improve ambient wind environments of the wind turbine, the maximum power coefficients were about 15 to 40% higher and the tip speed ratio range showing the high power coefficient was wide and the positive gradients were steep apparently.

  9. Performance of a high-work, low-aspect-ratio turbine stator tested with a realistic inlet radial temperature gradient

    Science.gov (United States)

    Stabe, Roy G.; Schwab, John R.

    1991-01-01

    A 0.767-scale model of a turbine stator designed for the core of a high-bypass-ratio aircraft engine was tested with uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The principal measurements were radial and circumferential surveys of stator-exit total temperature, total pressure, and flow angle. The stator-exit flow field was also computed by using a three-dimensional Navier-Stokes solver. Other than temperature, there were no apparent differences in performance due to the inlet conditions. The computed results compared quite well with the experimental results.

  10. Effects of inlet boundary conditions, on the computed flow in the Turbine-99 draft tube, using OpenFOAM and CFX

    Science.gov (United States)

    Nilsson, H.; Cervantes, M. J.

    2012-11-01

    The flow in the Turbine-99 Kaplan draft tube was thoroughly investigated at three workshops (1999, 2001, 2005), which aimed at determining the state of the art of draft tube simulations. The flow is challenging due to the different flow phenomena appearing simultaneously such as unsteadiness, separation, swirl, turbulence, and a strong adverse pressure gradient. The geometry and the experimentally determined inlet boundary conditions were provided to the Turbine-99 workshop participants. At the final workshop, angular resolved inlet velocity boundary conditions were provided. The rotating non-axi-symmetry of the inlet flow due to the runner blades was thus included. The effect of the rotating angular resolution was however not fully investigated at that workshop. The first purpose of this work is to further investigate this effect. Several different inlet boundary conditions are applied - the angular resolved experimental data distributed at the Turbine-99 workshop, the angular resolved results of a runner simulation with interpolated values using different resolution in the tangential and radial directions, and an axi-symmetric variant of the same numerical data. The second purpose of this work is to compare the results from the OpenFOAM and CFX CFD codes, using as similar settings as possible. The present results suggest that the experimental angular inlet boundary conditions proposed to the workshop are not adequate to simulate accurately the flow in the T-99 draft tube. The reason for this is that the experimental phase-averaged data has some important differences compared to the previously measured time-averaged data. Using the interpolated data from the runner simulation as inlet boundary condition however gives good results as long as the resolution of that data is sufficient. It is shown that the difference between the results using the angular-resolved and the corresponding symmetric inlet data is very small, suggesting that the importance of the angular

  11. Effects of inlet boundary conditions, on the computed flow in the Turbine-99 draft tube, using OpenFOAM and CFX

    International Nuclear Information System (INIS)

    Nilsson, H; Cervantes, M J

    2012-01-01

    The flow in the Turbine-99 Kaplan draft tube was thoroughly investigated at three workshops (1999, 2001, 2005), which aimed at determining the state of the art of draft tube simulations. The flow is challenging due to the different flow phenomena appearing simultaneously such as unsteadiness, separation, swirl, turbulence, and a strong adverse pressure gradient. The geometry and the experimentally determined inlet boundary conditions were provided to the Turbine-99 workshop participants. At the final workshop, angular resolved inlet velocity boundary conditions were provided. The rotating non-axi-symmetry of the inlet flow due to the runner blades was thus included. The effect of the rotating angular resolution was however not fully investigated at that workshop. The first purpose of this work is to further investigate this effect. Several different inlet boundary conditions are applied – the angular resolved experimental data distributed at the Turbine-99 workshop, the angular resolved results of a runner simulation with interpolated values using different resolution in the tangential and radial directions, and an axi-symmetric variant of the same numerical data. The second purpose of this work is to compare the results from the OpenFOAM and CFX CFD codes, using as similar settings as possible. The present results suggest that the experimental angular inlet boundary conditions proposed to the workshop are not adequate to simulate accurately the flow in the T-99 draft tube. The reason for this is that the experimental phase-averaged data has some important differences compared to the previously measured time-averaged data. Using the interpolated data from the runner simulation as inlet boundary condition however gives good results as long as the resolution of that data is sufficient. It is shown that the difference between the results using the angular-resolved and the corresponding symmetric inlet data is very small, suggesting that the importance of the angular

  12. Highlights from a Mach 4 Experimental Demonstration of Inlet Mode Transition for Turbine-Based Combined Cycle Hypersonic Propulsion

    Science.gov (United States)

    Foster, Lancert E.; Saunders, John D., Jr.; Sanders, Bobby W.; Weir, Lois J.

    2012-01-01

    NASA is focused on technologies for combined cycle, air-breathing propulsion systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments along with improved safety. Among the most critical TBCC enabling technologies are: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development and 3) innovative turbine based combined cycle integration. To address these challenges, NASA initiated an experimental mode transition task including analytical methods to assess the state-of-the-art of propulsion system performance and design codes. One effort has been the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE-LIMX) which is a fully integrated TBCC propulsion system with flowpath sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment was tested in the NASA GRC 10 by 10-Foot Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle engine issues including: (1) dual integrated inlet operability and performance issues-unstart constraints, distortion constraints, bleed requirements, and controls, (2) mode-transition sequence elements caused by switching between the turbine and the ramjet/scramjet flowpaths (imposed variable geometry requirements), and (3) turbine engine transients (and associated time scales) during transition. Testing of the initial inlet and dynamic characterization phases were completed and smooth mode transition was demonstrated. A database focused on a Mach 4 transition speed with limited off-design elements was developed and will serve to guide future TBCC system studies and to validate higher level analyses.

  13. Exergy, Economic and Environmental Analyses of Gas Turbine Inlet Air Cooling with a Heat Pump Using a Novel System Configuration

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Majdi Yazdi

    2015-10-01

    Full Text Available Gas turbines incur a loss of output power during hot seasons due to high ambient air temperatures, and input air cooling systems are often used to partly offset this problem. Here, results are reported for an investigation of the utilization of a heat pump to cool the inlet air of a gas turbine compressor. The analyses are carried out for two climates: the city of Yazd, Iran, which has a hot, arid climate, and Tehran, Iran, which has a temperate climate. The heat pump input power is obtained from the gas turbine. The following parameters are determined, with and without the heat pump: net output power, first and second law efficiencies, quantities and costs of environmental pollutants, entropy generation and power generation. The results suggest that, by using the air-inlet cooling system, the mean output power increases during hot seasons by 11.5% and 10% for Yazd and Tehran, respectively, and that the costs of power generation (including pollution costs decrease by 11% and 10% for Yazd and Tehran, respectively. Also, the rate of generation of pollutants such as NOx and CO decrease by about 10% for Yazd and 35% for Tehran, while the average annual entropy generation rate increases by 9% for Yazd and 7% for Tehran, through air-inlet cooling. The average increase of the system first law efficiency is 2% and of the system second law efficiency is 1.5% with the inlet-air cooling system.

  14. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  15. Integration of steam injection and inlet air cooling for a gas turbine generation system

    International Nuclear Information System (INIS)

    Wang, F.J.; Chiou, J.S.

    2004-01-01

    The temperature of exhaust gases from simple cycle gas turbine generation sets (GENSETs) is usually very high (around 500 deg. C), and a heat recovery steam generator (HRSG) is often used to recover the energy from the exhaust gases and generate steam. The generated steams can be either used for many useful processes (heating, drying, separation etc.) or used back in the power generation system for enhancing power generation capacity and efficiency. Two well-proven techniques, namely steam injection gas turbine (STIG) and inlet air cooling (IAC) are very effective features that can use the generated steam to improve the power generation capacity and efficiency. Since the energy level of the generated steam needed for steam injection is different from that needed by an absorption chiller to cool the inlet air, a proper arrangement is required to implement both the STIG and the IAC features into the simple cycle GENSET. In this study, a computer code was developed to simulate a Tai power's Frame 7B simple cycle GENSET. Under the condition of local summer weather, the benefits obtained from the system implementing both STIG and IAC features are more than a 70% boost in power and 20.4% improvement in heat rate

  16. Performance modeling of industrial gas turbines with inlet air filtration system

    Directory of Open Access Journals (Sweden)

    Samuel O. Effiom

    2015-03-01

    Full Text Available The effect of inlet air filtration on the performance of two industrial gas turbines (GT is presented. Two GTs were modeled similar to GE LM2500+ and Alstom GT13 E2-2012, using TURBOMATCH and chosen to operate at environmental conditions of Usan offshore oilfield and Maiduguri dessert in Nigeria. The inlet pressure recovered (Precov from the selected filters used in Usan offshore, and Maiduguri ranged between 98.36≤Precov≤99.51% and 98.67≤Precov≤99.56% respectively. At reduced inlet Precov by 98.36% (1.66 kPa and, at a temperature above 15 °C (ISA, a reduction of 16.9%, and 7.3% of power output and efficiency was obtained using GT13 E2-2012, while a decrease of 14.8% and 4.7% exist for power output and efficiency with GE LM2500+. In addition, a reduction in mass flow rate of air and fuel under the same condition was between 4.3≤mair≤10.6% and 10.4≤mfuel≤11.5% for GT13 E2-2012 and GE LM2500+, correspondingly. However, the GE LM2500+ was more predisposed to intake pressure drops since it functioned at a higher overall pressure ratio. The results obtained were found worthwhile and could be the basis for filter selection and efficient compressor housing design in the locations concerned.

  17. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James

    2016-11-01

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and

  18. Feasibility analysis of gas turbine inlet air cooling by means of liquid nitrogen evaporation for IGCC power augmentation

    International Nuclear Information System (INIS)

    Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Vaccari, Anna; Venturini, Mauro

    2015-01-01

    Integrated Gasification Combined Cycles (IGCC) are energy systems mainly composed of a gasifier and a combined cycle power plant. Since the gasification process usually requires oxygen as the oxidant, an Air Separation Unit (ASU) is also part of the plant. In this paper, a system for power augmentation in IGCC is evaluated. The system is based on gas turbine inlet air cooling by means of liquid nitrogen spray. In fact, nitrogen is a product of the ASU, but is not always exploited. In the proposed plant, the nitrogen is first liquefied to be used for inlet air cooling or stored for later use. This system is not characterized by the limits of water evaporative cooling systems (the lower temperature is limited by air saturation) and refrigeration cooling (the effectiveness is limited by the pressure drop in the heat exchanger). A thermodynamic model of the system is built by using a commercial code for energy conversion system simulation. A sensitivity analysis on the main parameters is presented. Finally the model is used to study the capabilities of the system by imposing the real temperature profiles of different sites for a whole year and by comparing to traditional inlet air cooling strategies. - Highlights: • Gas turbine inlet air cooling by means of liquid nitrogen spray. • Humidity condensation may form a fog which provides further power augmentation. • High peak and off peak electric energy price ratios make the system profitable

  19. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  20. Experimental modal analysis of the steam inlet pipe to the Chooz B1 high pressure turbine

    International Nuclear Information System (INIS)

    Guihot, O.; Anne, J.P.; Chartain, G.; Le Pironnec, D.

    1993-05-01

    This report presents the results of the modal analysis carried out on one of the steam inlet pipe of the high pressure turbine of the Chooz B1 power plant. This experimental analysis is made within the frame of the research and development project ''dynamical, acoustical and aerodynamical behaviour of the turbogenerator N4''. This research program provides amongst others, numerical studies with the software CIRCUS and ASTER, in order to verify the dynamical behaviour of the designed inlet pipe. The numerical models will be updated from results of the experimental modal analysis to improve the numerical representation of this pipe. All the identified modes in the frequency band [5.2000] Hz are presented in the report. The modal characteristics of the main modes are detailed. Further analysis have been made, in order ease the updating of the numerical models. They consisted in an analysis of the evolution of the dynamical behaviour due to a change of the boundary conditions of the inlet valve frame on one hand and resulting from the presence of an additional mass on the pipe, at the level of the middle flange, on the other hand. The analysis made in low frequency range shows that the pipe is thoroughly embedded in the frame of the high pressure turbine. On the other hand, the boundary conditions on the inlet valve frame are more difficult to determine, because the dynamical behaviour of the valve frame and the upper pipe can not be uncoupled from the considered pipe. The main shell modes of ranks 2, 3 and 4 have been very accurately identified. The most relevant modes to update the numerical models are given. (authors). 48 figs., 18 tabs., 4 refs

  1. Application study of magnetic fluid seal in hydraulic turbine

    International Nuclear Information System (INIS)

    Yu, Z Y; Zhang, W

    2012-01-01

    The waterpower resources of our country are abundant, and the hydroelectric power is developed, but at present the main shaft sealing device of hydraulic turbine is easy to wear and tear and the leakage is great. The magnetic fluid seal has the advantages of no contact, no wear, self-healing, long life and so on. In this paper, the magnetic fluid seal would be used in the main shaft of hydraulic turbine, the sealing structure was built the model, meshed the geometry, applied loads and solved by using MULTIPHYSICS in ANSYS software, the influence of the various sealing structural parameters such as tooth width, height, slot width, sealing gap on the sealing property were analyzed, the magnetic fluid sealing device suitable for large-diameter shaft and sealing water was designed, the sealing problem of the hydraulic turbine main shaft was solved effectively which will bring huge economic benefits.

  2. Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet

    Science.gov (United States)

    Putra Adnan, F.; Hartono, Firman

    2018-04-01

    In this paper, an aerodynamic design of a single stage gas generator axial turbine for small turbojet engine is explained. As per design requirement, the turbine should be able to deliver power output of 155 kW at 0.8139 kg/s gas mass flow, inlet total temperature of 1200 K and inlet total pressure of 335330 Pa. The design phase consist of several steps, i.e.: determination of velocity triangles in 2D plane, 2D blading design and 3D flow analysis at design point using Computational Fluid Dynamics method. In the determination of velocity triangles, two conditions are applied: zero inlet swirl (i.e. the gas flow enter the turbine at axial direction) and constant nozzle angle design (i.e. the inlet and outlet angle of the nozzle blade are constant from root to tip). The 2D approach in cascade plane is used to specify airfoil type at root, mean and tip of the blade based on inlet and outlet flow conditions. The 3D approach is done by simulating the turbine in full configuration to evaluate the overall performance of the turbine. The observed parameters including axial gap, stagger angle, and tip clearance affect its output power. Based on analysis results, axial gap and stagger angle are positively correlated with output power up to a certain point at which the power decreases. Tip clearance, however, gives inversely correlation with output power.

  3. Design and aerodynamic performance evaluation of a high-work mixed flow turbine stage

    Science.gov (United States)

    Neri, Remo N.; Elliott, Thomas J.; Marsh, David N.; Civinskas, Kestutis C.

    1994-01-01

    As axial and radial turbine designs have been pushed to their aerothermodynamic and mechanical limits, the mixed-flow turbine (MFT) concept has been projected to offer performance and durability improvements, especially when ceramic materials are considered. The objective of this NASA/U.S. Army sponsored mixed-flow turbine (AMFT) program was to determine the level of performance attainable with MFT technology within the mechanical constraints of 1997 projected ceramic material properties. The MFT geometry is similar to a radial turbine, exhibiting a large radius change from inlet to exit, but differing in that the inlet flowpath is not purely radial, nor axial, but mixed; it is the inlet geometry that gives rise to the name 'mixed-flow'. The 'mixed' orientation of the turbine inlet offers several advantages over radial designs by allowing a nonzero inlet blade angle yet maintaining radial-element blades. The oblique inlet not only improves the particle-impact survivability of the design, but improves the aerodynamic performance by reducing the incidence at the blade inlet. The difficulty, however, of using mixed-flow geometry lies in the scarcity of detailed data and documented design experience. This paper reports the design of a MFT stage designed with the intent to maximize aerodynamic performance by optimizing design parameters such as stage reaction, rotor incidence, flowpath shape, blade shape, vane geometry, and airfoil counts using 2-D, 3-D inviscid, and 3-D viscous computational fluid dynamics code. The aerodynamic optimization was accomplished while maintaining mechanical integrity with respect to vibration and stress levels in the rotor. A full-scale cold-flow rig test was performed with metallic hardware fabricated to the specifications of the hot ceramic geometry to evaluate the stage performance.

  4. INLET STRATIFICATION DEVICE

    DEFF Research Database (Denmark)

    2006-01-01

    An inlet stratification device (5) for a circuit circulating a fluid through a tank (1 ) and for providing and maintaining stratification of the fluid in the tank (1 ). The stratification de- vice (5) is arranged vertically in the tank (1) and comprises an inlet pipe (6) being at least partially...... formed of a flexible porous material and having an inlet (19) and outlets formed of the pores of the porous material. The stratification device (5) further comprises at least one outer pipe (7) surrounding the inlet pipe (6) in spaced relationship thereto and being at least partially formed of a porous...

  5. Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman

    International Nuclear Information System (INIS)

    Dawoud, B.; Zurigat, Y.H.; Bortmany, J.

    2005-01-01

    Gas-turbine inlet air cooling has been considered for boosting the power output during hot seasons. In this paper, the power requirements of several inlet air cooling techniques for gas-turbine power plants in two locations; namely, Marmul and Fahud, in Oman have been evaluated using typical meteorological year (TMY) data. The considered techniques are evaporative cooling, fogging cooling, absorption cooling using both LiBr-H 2 O and aqua-ammonia, and vapour-compression cooling systems. For evaporative cooling, an 88% approach to the wet-bulb temperature has been considered, compared with a 98% approach for fogging cooling. A design compressor inlet air temperature of 14 deg C has been assigned to LiBr-water chilling systems. For both aqua-ammonia absorption and vapour-compression refrigerating systems, a design compressor inlet air temperature of 8 deg C has been selected to avoid the formation of ice fragments as the air is drawn into the mouth of the compressor. These technologies have been compared with respect to their effectiveness in power boosting of small-size gas-turbine power plants used in two oil fields at Marmul and Fahud in the Sultanate of Oman. Fogging cooling is accompanied with 11.4% more electrical energy in comparison with evaporative cooling in both locations. The LiBr-H 2 O cooling offers 40% and 55% more energy than fogging cooling at Fahud and Marmul, respectively. Applying aqua-ammonia-water and vapour-compression cooling, a further annual energy production enhancement of 39% and 46% is expected in comparison with LiBr-H 2 O cooling at Fahud and Marmul, respectively

  6. Optimum design and thermodynamic analysis of a gas turbine and ORC combined cycle with recuperators

    International Nuclear Information System (INIS)

    Cao, Yue; Gao, Yike; Zheng, Ya; Dai, Yiping

    2016-01-01

    Highlights: • A GT-ORC combined cycle with recuperators was designed. • The effect of the ORC turbine inlet pressure on the combined cycle was examined. • Toluene was a more suitable working fluid for the GT-ORC combined cycle. • The GT-ORC combined cycle performed better than the GT-Rankine combined cycle. • The sensitivity analysis to the ambient temperature was completed. - Abstract: Gas turbines are widely used in distributed power generation because of their high efficiency, low pollution and low operational cost. To further utilize the waste heat from gas turbines, an organic Rankine cycle (ORC) was proposed as the bottoming cycle for gas turbines in this paper. Two recuperators were coupled with the combined cycle to increase the thermal efficiency, and aromatics were chosen as the working fluid for the bottoming cycle. This paper focused on the optimum design and thermodynamic analysis of the gas turbine and ORC (GT-ORC) combined cycle. Results showed that the net power and thermal efficiency of the ORC increased with the ORC turbine inlet pressure and achieved optimum values at a specific pressure based on the optimum criteria. Furthermore, compared with the GT-Rankine combined cycle, the GT-ORC combined cycle had better thermodynamic performance. Toluene was a more suitable working fluid for the GT-ORC combined cycle. Moreover, ambient temperature sensitivity simulations concluded that the GT-ORC combined cycle had a maximum thermal efficiency and the combined cycle net power was mainly determined by the topping gas turbine cycle.

  7. Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids

    International Nuclear Information System (INIS)

    Liu, Qiang; Duan, Yuanyuan; Yang, Zhen

    2013-01-01

    ORC (organic Rankine cycles) are promising systems for conversion of low temperature geothermal energy to electricity. The thermodynamic performance of the ORC with a wet cooling system is analyzed here using hydrocarbon working fluids driven by geothermal water from 100 °C to 150 °C and reinjection temperatures not less than 70 °C. The hydrocarbon working fluids are butane (R600), isobutane (R600a), pentane (R601), isopentane (R601a) and hexane. For each fluid, the ORC net power output first increases and then decreases with increasing turbine inlet temperature. The turbine inlet parameters are then optimized for the maximum power output. The ORC net power output increases as the condensation temperature decreases but the circulating pump power consumption increases especially for lower condensation temperatures at higher cooling water flow rates. The optimal condensation temperatures for the maximum plant power output are 29.45–29.75 °C for a cooling water inlet temperature of 20 °C and a pinch point temperature difference of 5 °C in the condenser. The maximum power is produced by an ORC using R600a at geothermal water inlet temperatures higher than 120 °C, followed by R245fa and R600 for reinjection temperatures not less than 70 °C. R600a also has the highest plant exergetic efficiency with the lowest turbine size factor. - Highlights: • ORC (organic Rankine cycles) using geothermal water from 100 to 150 °C and reinjection temperatures not less than 70 °C are analyzed. • Condensation temperatures optimized to maximize the plant power output. • An IHE (internal heat exchanger) gives higher plant power at low geothermal water temperatures and high reinjection temperatures. • ORC performance optimized considering the condensation and reinjection temperature. • R600a gives the best performance at the optimal turbine operating parameters

  8. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    International Nuclear Information System (INIS)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y.

    2014-01-01

    Flow characteristic curves are plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate. The flow characteristic curves are utilized to accurately test the performance of the control valve of turbine system to ensure the highest controllability and reliability of the power conversion system of large and small power plants. Turbine converts the kinetic energy of steam to mechanical energy of rotor blades in power conversion system. The electrical energy output from the generator of which the rotor is coupled with that of the turbine depends on the rotation velocity of the turbine bucket. The rotation velocity is proportional to the mass flow rate (steam or gas) to the turbine through valves and nozzles. The turbine comprises fast acting governing control valves and stop valves acting against the seat in the flow passage in the closed position. The turbine control valve regulates the mass flow rate entering the first nozzle of a turbine. The main function of stop valve is to close the fluid inlet rapidly in response to a fast close signal to swiftly cut off the flow through the valve inlet. Both these valves contribute attractively to improvement of the power system transient stability as well. To improve the efficiency of power conversion system many investigation have been done by researcher by focusing on the cycle layout or working fluid or by improving the flow path of the working fluid. The main focus is to find out the best option for combined cycle power plant by analyzing four different cycle configuration. Next research phase focused on different way to enhance the cycle efficiency. As the electrical power output from the generator is proportional to the mass flow rate to the turbine through the valve, it should preferably operate linearly. In reality, however, the valve has the various flow characteristics pursuant to the stem lift. Thus, the flow characteristic and control performance are needed to be designed

  9. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    Flow characteristic curves are plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate. The flow characteristic curves are utilized to accurately test the performance of the control valve of turbine system to ensure the highest controllability and reliability of the power conversion system of large and small power plants. Turbine converts the kinetic energy of steam to mechanical energy of rotor blades in power conversion system. The electrical energy output from the generator of which the rotor is coupled with that of the turbine depends on the rotation velocity of the turbine bucket. The rotation velocity is proportional to the mass flow rate (steam or gas) to the turbine through valves and nozzles. The turbine comprises fast acting governing control valves and stop valves acting against the seat in the flow passage in the closed position. The turbine control valve regulates the mass flow rate entering the first nozzle of a turbine. The main function of stop valve is to close the fluid inlet rapidly in response to a fast close signal to swiftly cut off the flow through the valve inlet. Both these valves contribute attractively to improvement of the power system transient stability as well. To improve the efficiency of power conversion system many investigation have been done by researcher by focusing on the cycle layout or working fluid or by improving the flow path of the working fluid. The main focus is to find out the best option for combined cycle power plant by analyzing four different cycle configuration. Next research phase focused on different way to enhance the cycle efficiency. As the electrical power output from the generator is proportional to the mass flow rate to the turbine through the valve, it should preferably operate linearly. In reality, however, the valve has the various flow characteristics pursuant to the stem lift. Thus, the flow characteristic and control performance are needed to be designed

  10. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    OpenAIRE

    Tan Jiqiu; Zhong Dingqing; Wang Qiong

    2014-01-01

    In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction fie...

  11. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  12. Integration of an Inter Turbine Burner to a Jet Turbine Engine

    Science.gov (United States)

    2013-03-01

    Technology AFRL = Air Force Research Laboratory EGV = Exit Guide Vane HPT = High-Pressure Turbine ID = Inner Diameter IGV = Inlet Guide Vane...been able to show computationally that the compressor exit guide vane (EGV) and the turbine inlet guide vane ( IGV ) could be combined into a single...turbine engine hot section. The red slashed out sections are, from left to right, the compressor exit vane, HPT IGV , and the stator between the HPT and

  13. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  14. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  15. Closed-cycle gas turbine working fluids

    International Nuclear Information System (INIS)

    Lee, J.C.; Campbell, J. Jr.; Wright, D.E.

    1981-01-01

    Characteristic requirements of a closed-cycle gas turbine (CCGT) working fluid were identified and the effects of their thermodynamic and transport properties on the CCGT cycle performance, required heat exchanger surface area and metal operating temperature, cycle operating pressure levels, and the turbomachinery design were investigated. Material compatibility, thermal and chemical stability, safety, cost, and availability of the working fluid were also considered in the study. This paper also discusses CCGT working fluids utilizing mixtures of two or more pure gases. Some mixtures of gases exhibit pronounced synergetic effects on their characteristic properties including viscosity, thermal conductivity and Prandtl number, resulting in desirable heat transfer properties and high molecular weights. 21 refs

  16. Modal Analysis on Fluid-Structure Interaction of MW-Level Vertical Axis Wind Turbine Tower

    Directory of Open Access Journals (Sweden)

    Tan Jiqiu

    2014-05-01

    Full Text Available In order to avoid resonance problem of MW-level vertical axis wind turbine induced by wind, a flow field model of the MW-level vertical axis wind turbine is established by using the fluid flow control equations, calculate flow’s velocity and pressure of the MW-level vertical axis wind turbine and load onto tower’s before and after surface, study the Modal analysis of fluid-structure interaction of MW-level vertical axis wind turbine tower. The results show that fluid-structure interaction field of MW- level vertical axis wind turbine tower has little effect on the modal vibration mode, but has a great effect on its natural frequency and the maximum deformation, and the influence will decrease with increasing of modal order; MW-level vertical axis wind turbine tower needs to be raised the stiffness and strength, its structure also needs to be optimized; In the case of satisfy the intensity, the larger the ratio of the tower height and wind turbines diameter, the more soft the MW-level vertical axis wind turbine tower, the lower its frequency.

  17. Thermodynamic analysis of turbine blade cooling on the performance of gas turbine cycle

    International Nuclear Information System (INIS)

    Sarabchi, K.; Shokri, M.

    2002-01-01

    Turbine inlet temperature strongly affects gas turbine performance. Today blade cooling technologies facilitate the use of higher inlet temperatures. Of course blade cooling causes some thermodynamic penalties that destroys to some extent the positive effect of higher inlet temperatures. This research aims to model and evaluate the performance of gas turbine cycle with air cooled turbine. In this study internal and transpiration cooling methods has been investigated and the penalties as the result of gas flow friction, cooling air throttling, mixing of cooling air flow with hot gas flow, and irreversible heat transfer have been considered. In addition, it is attempted to consider any factor influencing actual conditions of system in the analysis. It is concluded that penalties due to blade cooling decrease as permissible temperature of the blade surface increases. Also it is observed that transpiration method leads to better performance of gas turbine comparing to internal cooling method

  18. Design and Numerical Simulation of Radial Inflow Turbine Volute

    Science.gov (United States)

    Shah, Samip P.; Channiwala, S. A.; Kulshreshtha, D. B.; Chaudhari, Gaurang

    2014-12-01

    The volute of a radial inflow turbine has to be designed to ensure that the desired rotor inlet conditions like absolute Mach number, flow angle etc. are attained. For the reasonable performance of vaneless volute turbine care has to be taken for reduction in losses at an appropriate flow angle at the rotor inlet, in the direction of volute, whose function is to convert gas energy into kinetic energy and direct the flow towards the rotor inlet at an appropriate flow angle with reduced losses. In literature it was found that the incompressible approaches failed to provide free vortex and uniform flow at rotor inlet for compressible flow regimes. So, this paper describes a non-dimensional design procedure for a vaneless turbine volute for compressible flow regime and investigates design parameters, such as the distribution of area ratio and radius ratio as a function of azimuth angle. The nondimensional design is converted in dimensional form for three different volute cross sections. A commercial computational fluid dynamics code is used to develop numerical models of three different volute cross sections. From the numerical models, losses generation in the different volutes are identified and compared. The maximum pressure loss coefficient for Trapezoidal cross section is 0.1075, for Bezier-trapezoidal cross section is 0.0677 and for circular cross section is 0.0438 near tongue region, which suggested that the circular cross section will give a better efficiency than other types of volute cross sections.

  19. Efficient energy recovering air inlet system for an internal combustion engine

    NARCIS (Netherlands)

    2011-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  20. Efficient energy recovering air inlet system for an international combustion engine

    NARCIS (Netherlands)

    2013-01-01

    An air inlet system (10) for an internal combustion engine (200) is provided. The air inlet system comprises an air intake port (20), an air output port (30) for providing air for a combustion chamber (202) of the combustion engine (200), and a turbine (40). The turbine (40) is situated in between

  1. Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Mohammadkhani, F.; Shokati, N.; Mahmoudi, S.M.S.; Yari, M.; Rosen, M.A.

    2014-01-01

    An exergoeconomic analysis is reported for a combined system with a net electrical output of 299 MW in which waste heat from a Gas Turbine-Modular Helium Reactor (GT-MHR) is utilized by two Organic Rankine Cycles (ORCs). A parametric study is also done to reveal the effects on the exergoeconomic performance of the combined system of such significant parameters as compressor pressure ratio, turbine inlet temperature, temperatures of evaporators, pinch point temperature difference in the evaporators and degree of superheat at the ORC (Organic Rankine Cycle) turbines inlet. Finally the combined cycle performance is optimized from the viewpoint of exergoeconomics. The results show that the precooler, the intercooler and the ORC condensers exhibit the worst exergoeconomic performance. For the overall system, the exergoeconomic factor, the capital cost rate and the exergy destruction cost rate are determined to be 37.95%, 6876 $/h and 11,242 $/h, respectively. Also, it is observed that the unit cost of electricity produced by the GT-MHR turbine increases with increasing GT-MHR turbine inlet temperature but decreases as the other above mentioned parameters increase. - Highlights: • An exergoeconomic analysis is performed for the GT-MHR/ORC (Organic Rankine Cycle) combined cycle. • The effects of decision parameters on the exergoeconomic performance are studied. • The highest exergy destructions occur in the precooler, intercooler and condenser. • Superheating the working fluid at the ORC turbine inlet is not necessary. • Thermodynamic and exergoeconomic optimal conditions differ from each other

  2. Experimental investigation into the unsteady effects on non-axisymmetric turbine endwall contouring

    CSIR Research Space (South Africa)

    Dunn, Dwain I

    2010-01-01

    Full Text Available , but maintain the specific thrust. This is usually done by increasing the blade loading,hich increases the impact of the secondary flows on the turbine efficiency. Nomeclature Yaw angle ( ) C Velocity (m=s) CFD Computational Fluid Dynamics Isentropic... pressure turbines can be attributed to entropy generation in the annular boundary layer upstream, within and downstream of the blade row. A second component is caused by the mixing loss of the inlet boundary layer which gets amplified by the secondary...

  3. The combined effects of wall longitudinal heat conduction and inlet fluid flow maldistribution in crossflow plate-fin heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ranganayakulu, C. [Aeronautical Development Agency, Bangalore (India); Seetharamu, K.N. [School of Mechanical Engineering, Univ. of Southern Malaysia (KCP), Tronoh (Malaysia)

    2000-05-01

    An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effect of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow distribution on both hot and cold fluid sides is carried out using a finite element method. Using the fluid flow maldistribution models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction and flow nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance deteriorations are quite significant in some typical applications due to the combined effects of wall longitudinal heat conduction and inlet fluid flow nonuniformity on crossflow plate-fin heat exchanger. (orig.)

  4. Improvement of hydro-turbine draft tube efficiency using vortex generator

    Directory of Open Access Journals (Sweden)

    Xiaoqing Tian

    2015-07-01

    Full Text Available Computational fluid dynamics simulation was employed in a hydraulic turbine (from inlet tube to draft tube. The calculated turbine efficiencies were compared with measured results, and the relative error is 1.12%. In order to improve the efficiency of the hydraulic turbine, 15 kinds of vortex generators were installed at the vortex development section of the draft tube, and all of them were simulated using the same method. Based on the turbine efficiencies, distribution of streamlines, velocities, and pressures in the draft tube, an optimal draft tube was found, which can increase the efficiency of this hydraulic turbine more than 1.5%. The efficiency of turbine with the optimal draft tube, draft tube with four pairs of middle-sized vortex generator, and draft tube without vortex generator under different heads of turbine (5–14 m was calculated, and it was verified that these two kinds of draft tubes can increase the efficiency of this turbine in every situation.

  5. Parameterised Model of 2D Combustor Exit Flow Conditions for High-Pressure Turbine Simulations

    Directory of Open Access Journals (Sweden)

    Marius Schneider

    2017-12-01

    Full Text Available An algorithm is presented generating a complete set of inlet boundary conditions for Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD of high-pressure turbines to investigate their interaction with lean and rich burn combustors. The method shall contribute to understanding the sensitivities of turbine aerothermal performance in a systematic approach. The boundary conditions are based on a set of input parameters controlling velocity, temperature, and turbulence fields. All other quantities are derived from operating conditions and additional modelling assumptions. The algorithm is coupled with a CFD solver by applying the generated profiles as inlet boundary conditions. The successive steps to derive consistent flow profiles are described and results are validated against flow fields extracted from combustor CFD.

  6. The effects of inlet temperature and turbulence characteristics on the flow development inside a gas turbine exhaust diffuser

    Science.gov (United States)

    Bomela, Christian Loangola

    The overall industrial gas turbine efficiency is known to be influenced by the pressure recovery in the exhaust system. The design and, subsequently, the performance of an industrial gas turbine exhaust diffuser largely depend on its inflow conditions dictated by the turbine last stage exit flow state and the restraints of the diffuser internal geometry. Recent advances in Computational Fluid Dynamics (CFD) tools and the availability of computer hardware at an affordable cost made the virtual tool a very attractive one for the analysis of fluid flow through devices like a diffuser. In this backdrop, CFD analyses of a typical industrial gas turbine hybrid exhaust diffuser, consisting of an annular diffuser followed by a conical portion, have been carried out with the purpose of improving the performance of these thermal devices using an open-source CFD code "OpenFOAM". The first phase in the research involved the validation of the CFD approach using OpenFOAM by comparing CFD results against published benchmark experimental data. The numerical results closely captured the flow reversal and the separated boundary layer at the shroud wall where a steep velocity gradient has been observed. The standard k --epsilon turbulence model slightly over-predicted the mean velocity profile in the casing boundary layer while slightly under-predicted it in the reversed flow region. A reliable prediction of flow characteristics in this region is very important as the presence of the annular diffuser inclined wall has the most dominant effect on the downstream flow development. The core flow region and the presence of the hub wall have only a minor influence as reported by earlier experimental studies. Additional simulations were carried out in the second phase to test the veracity of other turbulence models; these include RNG k--epsilon, the SST k--o, and the Spalart-Allmaras turbulence models. It was found that a high resolution case with 47.5 million cells using the SST k

  7. CFD Modelling of a Pump as Turbine (PAT with Rounded Leading Edge Impellers for Micro Hydro Systems

    Directory of Open Access Journals (Sweden)

    Ismail Mohd Azlan

    2017-01-01

    Full Text Available A Pump as Turbine (PAT is one of micro hydro system components that is used to substitute a commercially available turbine due to its wide availability and low acquisition cost. However, PAT have high hydraulic losses due to differences in pump-turbine operation and hydraulic design. The fluid flowing inside the PAT is subjected to hydraulic losses due to the longer flow passage and unmatched fluid flow within the wall boundaries. This paper presents the effect of rounding the impeller leading edges of the pump on turbine performance. A CFD model of a PAT was designed to simulate virtual performance for the analysis. The aim of this study is to observe the internal hydraulic performance resulting from the changes in the performance characteristics. Highest efficiency was recorded at 17.0 l/s, an increase of 0.18%. The simulation results reveal that there is an improvement in hydraulic performance at overflow operation. The velocity vector visualization shows that there is a reduction in wake and consequently less flow separation along impeller flow passages. However, adjusting the sensitive impeller inlet geometry will also alter the velocity inlet vector and consequently change the velocity triangles for the turbo machinery system.

  8. Design and experimental validation of the inlet guide vane system of a mini hydraulic bulb-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, L.M.C. [Department of Mechanical Engineering, Escola Superior de Tecnologia de Setubal, Polytechnic Institute of Setubal, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais,1049-001 Lisboa (Portugal); Gato, L.M.C.; Falcao, A.F.O. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais,1049-001 Lisboa (Portugal)

    2010-09-15

    The paper presents a fast design method for the inlet guide vanes of low-cost mini hydraulic bulb turbines. The guide vanes are positioned between two conical surfaces with a common vertex and have constant thickness distribution, except close to the leading and the trailing edges. The conical-walled inlet guide vane row is designed using a quasi-three-dimensional calculation method, by prescribing the angular-momentum distribution along the span at the outlet section of the guide vanes. The meridional through-flow is computed by a streamline curvature method and the blade-to-blade flow by a singularity surface method. The stagger angle and the vane camber are computed to fulfil the required design circulation and zero-incidence flow at the leading edge. The final vane shape is a single-curvature surface with straight leading and trailing edges. To validate the design method, a conical-walled inlet guide vane row nozzle-model with six fixed vanes was designed, manufactured and tested in an airflow rig. Traversing measurements along the circumferential and radial directions were made with a five-hole probe. The experimental results are compared with the prescribed design conditions and with numerical results from the three-dimensional inviscid and viscous flow computed with the FLUENT code. (author)

  9. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    藤井, 照重; 太田, 淳一; 赤川, 浩爾; 中村, 登志; 浅野, 等

    1990-01-01

    From the view point of energy saving and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. As one of the energy conversion expanders,there is a radial outflow reaction turbine(that is,Hero's turbine). Performance characteristics of Hero's turbine using subcooled hot water as a working fluid are clarified analytically and experimentally. It is found that:(a)there is an optimum rotational speed at which maximum turbine efficie...

  10. Fluid flow dynamics in MAS systems

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  11. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    Directory of Open Access Journals (Sweden)

    Liu Yan-Na

    2015-06-01

    Full Text Available In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  12. Design and numerical study of turbines operating with MDM as working fluid

    Science.gov (United States)

    Klonowicz, Piotr; Surwiło, Jan; Witanowski, Łukasz; Suchocki, Tomasz K.; Kozanecki, Zbigniew; Lampart, Piotr

    2015-12-01

    Design processes and numerical simulations have been presented for a few cases of turbines designated to work in ORC systems. The chosen working fluid isMDM. The considered design configurations include single stage centripetal reaction and centrifugal impulse turbines as well as multistage axial turbines. The power outputs vary from about 75 kW to 1 MW. The flow in single stage turbines is supersonic and requires special design of blades. The internal efficiencies of these configurations exceed 80% which is considered high for these type of machines. The efficiency of axial turbines exceed 90%. Possible turbine optimization directions have been also outlined in the work.

  13. An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Marinelli, Valerio

    2012-01-01

    A performance analysis of innovative solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle, with and without intercooling and regeneration, is presented. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it seems able to compete well with other more complex plants operating with different heat transfer fluids. -- Highlights: ► Innovative CPS solar plants, operating with air in open Joule–Brayton cycle, are proposed. ► They are attractive for their simplicity and present interesting values of global efficiency. ► They seem able to compete well with other more complex solar plants.

  14. Investigation of the fluid-structure interaction of a high head Francis turbine using OpenFOAM and Code_Aster

    Science.gov (United States)

    Eichhorn, M.; Doujak, E.; Waldner, L.

    2016-11-01

    The increasing energy consumption and highly stressed power grids influence the operating conditions of turbines and pump turbines in the present situation. To provide or use energy as quick as possible, hydraulic turbines are operated more frequent and over longer periods of time in lower part load at off-design conditions. This leads to a more turbulent behavior and to higher requirements of the strength of stressed components (e.g. runner, guide or stay vanes). The modern advantages of computational capabilities regarding numerical investigations allow a precise prediction of appearing flow conditions and thereby induced strains in hydraulic machines. This paper focuses on the calculation of the unsteady pressure field of a high head Francis turbine with a specific speed of nq ≈ 24 min-1 and its impact on the structure at different operating conditions. In the first step, unsteady numerical flow simulations are performed with the open-source CFD software OpenFOAM. To obtain the appearing dynamic flow phenomena, the entire machine, consisting of the spiral casing, the stay vanes, the wicket gate, the runner and the draft tube, is taken into account. Additionally, a reduced model without the spiral casing and with a simplified inlet boundary is used. To evaluate the accuracy of the CFD simulations, operating parameters such as head and torque are compared with the results of site measurements carried out on the corresponding prototype machine. In the second part, the obtained pressure fields are used for a fluid-structure analysis with the open-source Finite Element software Code_Aster, to predict the static loads on the runner.

  15. Background-Oriented Schlieren used in a hypersonic inlet test at NASA GRC

    Science.gov (United States)

    Clem, Michelle; Woike, Mark; Saunders, John

    2016-01-01

    Background Oriented Schlieren (BOS) is a derivative of the classical schlieren technology, which is used to visualize density gradients, such as shock wave structures in a wind tunnel. Changes in refractive index resulting from density gradients cause light rays to bend, resulting in apparent motion of a random background pattern. The apparent motion of the pattern is determined using cross-correlation algorithms (between no-flow and with-flow image pairs) producing a schlieren-like image. One advantage of BOS is its simplified setup which enables a larger field-of-view (FOV) than traditional schlieren systems. In the present study, BOS was implemented into the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) in the 10x10 Supersonic Wind Tunnel at NASA Glenn Research Center. The model hardware for the CCE LIMX accommodates a fully integrated turbine based combined cycle propulsion system. To date, inlet mode transition between turbine and ramjet operation has been successfully demonstrated. High-speed BOS was used to visualize the behavior of the flow structures shock waves during unsteady inlet unstarts, a phenomenon known as buzz. Transient video images of inlet buzz were recorded for both the ramjet flow path (high speed inlet) and turbine flow path (low speed inlet). To understand the stability limits of the inlet, operation was pushed to the point of unstart and buzz. BOS was implemented in order to view both inlets simultaneously, since the required FOV was beyond the capability of the current traditional schlieren system. An example of BOS data (Images 1-6) capturing inlet buzz are presented.

  16. Parametric simulation on enhancement of the Regenerative Gas Turbine performance by effect of Inlet Air Cooling system and Steam Injection

    Directory of Open Access Journals (Sweden)

    Aadel Abdulrazzaq Alkumait

    2016-02-01

    Full Text Available Iraq being one of the developing countries of the world considers energy efficiency and the impact of its generation on the environment an imperative process in improvement of its power generation policies. Iraq bearing high temperatures all year long results in reduction of air density, therefore, Inlet air Cooling and Steam Injection Gas Turbines are a striking addition to the regenerative gas turbines. Regenerating Gas turbines tend to have a high back work ratio and a high exhaust temperature, thus, it leads to a low efficiency in power generation in hotter climate. Moreover, STIG and IAC through fog cooling have known to be the best retrofitting methods available in the industry which improve the efficiency of generation from 30.5 to 43% and increase the power output from 22MW to 33.5MW as the outcomes of computer simulations reveal. Additionally, this happens without bringing about much extensive change to original features of the power generation cycle. Furthermore, STIG and spray coolers have also resulted in power boosting and exceeding generation efficiency of gas turbine power plant.

  17. Jet spoiler arrangement for wind turbine

    Science.gov (United States)

    Cyrus, J. D.; Kablec, E. G.; Klimas, P. C.

    1983-09-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stal conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  18. Jet spoiler arrangement for wind turbine

    Science.gov (United States)

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  19. Wind turbine operated sailboat

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.

    1990-07-31

    A wind powered boat is disclosed which incorporates a vertical axis rotary turbine. A shaft portion extends downwardly from the turbine to a water pump, with the boat being provided with a forwardly opening inlet and a rearwardly opening outlet from the water pump. When rotating, the turbine operates the pump by the shaft to draw in water through the inlet, thereby creating a low pressure area in front of the boat, and to force the water out through the outlet for propelling the boat. In a preferred embodiment, the boat has a catamaran construction or is a large ocean going vessel with enough width to provide a buffer to either side of the turbine, and the turbine is the Darrieus rotor type. The pump is a standard centrifugal type of pump. A self adjusting braking device for the turbine is also disclosed, which prevents over-rotation and is also capable of storing heat energy generated during braking. 4 figs.

  20. Performance Prediction of Darrieus-Type Hydroturbine with Inlet Nozzle Operated in Open Water Channels

    Science.gov (United States)

    Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.

    2016-11-01

    Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.

  1. Extensive use of computational fluid dynamics in the upgrading of hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; De Henau, V. [GEC Alsthom Electromechanical Inc., Tracy, PQ (Canada); Eremeef, R. [GEC Alsthom Neyrpic, Grenoble (France)

    1995-12-31

    The use of computational fluid flow dynamics (CFD) and the Navier Stokes equations by GEC Alsthom for turbine rehabilitation were discussed. The process of runner rehabilitation was discussed from a fluid flow perspective, which accounts for the spiral case-distributor set and draft tube. The Kootenay turbine rehabilitation was described with regard to it spiral case and stay vane. The numerical analysis used to model upstream components was explained. The influence of draft tube effects was emphasized as an important efficiency factor. The differences between draft tubes at Sir Adam Beck 2 and La Grande 2 were discussed. Computational fluid flow modelling was claimed to have produced global performance enhancements in a reasonably short time, and at a reasonable cost. 6 refs., 6 figs., 4 tabs.

  2. Research and development of cooled turbine for aircraft engines. Koku engine yo reikyaku turbine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Maya, T; Yamawaki, S [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-05-01

    For the turbine which is one of the principal elements of aircraft engine, progress in turbine use material development and cooling performance further heightened for the turbine are needed to grapple with the required heightening of turbine inlet temperature. In the present paper based on the turbine inlet temperature designed to be 1600[degree]C as a target, a two-dimensional model used for the turbine cooling performance test was structurally given together with the result of the above test which aimed at confirming the design calculation. As a result of cooling design for the turbine which was about 1600[degree]C in inlet temperature, the highest gas temperature was 1890 and 1470[degree]C on the stator blade and rotor blade, respectively. Both those blades were 0.66 and 0.62, respectively in cooling efficiency. To test the cooling performance, a two-dimensional cascade was tested with a doubly amplified model of cooling blade, the use of which could set its Reynolds number near that of the actual one. As compared with the actual operation, the test was made at low temperatures of 400 to 500[degree]C and low pressures of 0.02 to 0.03MPa. The test agreed with the design calculation in result. 4 refs., 8 figs.

  3. Development of a Fast Fluid-Structure Coupling Technique for Wind Turbine Computations

    DEFF Research Database (Denmark)

    Sessarego, Matias; Ramos García, Néstor; Shen, Wen Zhong

    2015-01-01

    Fluid-structure interaction simulations are routinely used in the wind energy industry to evaluate the aerodynamic and structural dynamic performance of wind turbines. Most aero-elastic codes in modern times implement a blade element momentum technique to model the rotor aerodynamics and a modal......, multi-body, or finite-element approach to model the turbine structural dynamics. The present paper describes a novel fluid-structure coupling technique which combines a threedimensional viscous-inviscid solver for horizontal-axis wind-turbine aerodynamics, called MIRAS, and the structural dynamics model...... used in the aero-elastic code FLEX5. The new code, MIRASFLEX, in general shows good agreement with the standard aero-elastic codes FLEX5 and FAST for various test cases. The structural model in MIRAS-FLEX acts to reduce the aerodynamic load computed by MIRAS, particularly near the tip and at high wind...

  4. A study on variations of the low cycle fatigue life of a high pressure turbine nozzle caused by inlet temperature profiles and installation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Aero-propulsion Research Office, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [School of Mechanical and Aerospace Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  5. A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Seo, Do Young [Pusan National Univ., Busan (Korea, Republic of)

    2015-11-15

    High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

  6. Multi-stage internal gear/turbine fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  7. The Spanwise Distribution of Losses in Prismatic Turbine Cascade with Non-Uniform Inlet Velocity Profile

    Czech Academy of Sciences Publication Activity Database

    Fürst, J.; Luxa, Martin; Šimurda, David

    2014-01-01

    Roč. 21, č. 2 (2014), s. 135-141 ISSN 1802-1484 R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : prismatic turbine cascade * losses * velocity profile Subject RIV: BK - Fluid Dynamics http://www.engineeringmechanics.cz/obsahy.html?R=21&C=2

  8. Reliability Based Design of Fluid Power Pitch Systems for Wind Turbines

    DEFF Research Database (Denmark)

    Liniger, Jesper; N. Soltani, Mohsen; Pedersen, Henrik Clemmensen

    2017-01-01

    Priority Number. The Failure Mode and Effect Criticality Analysis is based on past research concerning failure analysis of wind turbine drive trains. Guidelines are given to select the severity, occurrence and detection score that make up the risk priority number. The usability of the method is shown...... in a case study of a fluid power pitch system applied to wind turbines. The results show a good agreement to recent field failure data for offshore turbines where the dominating failure modes are related to valves, accumulators and leakage. The results are further used for making design improvements...

  9. Parametric Simulation on Enhancement of the Regenerative Gas Turbine Performance by Effect of Inlet Air Cooling System and Steam Injection

    Directory of Open Access Journals (Sweden)

    Aadel A. Alkumait

    2016-02-01

    Full Text Available Aadel Abdulrazzaq Alkumait/Tikrit Journal of Engineering Sciences 22(1 (201538-44Iraq being one of the developing countries of the world considers energy efficiency and the impact of its generation on the environment an imperative process in improvement of its power generation policies. Iraq bearing high temperatures all year long results in reduction of air density, therefore, Inlet air Cooling and Steam Injection Gas Turbines are a striking addition to the regenerative gas turbines. Regenerating Gas turbines tend to have a high back work ratio and a high exhaust temperature, thus, it leads to a low efficiency in power generation in hotter climate. Moreover, STIG and IAC through fog cooling have known to be the best retrofitting methods available in the industry which improve the efficiency of generation from 30.5 to 43% and increase the power output from 22MW to 33.5MW as the outcomes of computer simulations reveal. Additionally, this happens without bringing about much extensive change to original features of the power generation cycle. Furthermore, STIG and spray coolers have also resulted in power boosting and exceeding generation efficiency of gas turbine power plant.

  10. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    Science.gov (United States)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  11. The Influence of Inlet Asymmetry on Steam Turbine Exhaust Hood Flows.

    Science.gov (United States)

    Burton, Zoe; Hogg, Simon; Ingram, Grant L

    2014-04-01

    It has been widely recognized for some decades that it is essential to accurately represent the strong coupling between the last stage blades (LSB) and the diffuser inlet, in order to correctly capture the flow through the exhaust hoods of steam turbine low pressure cylinders. This applies to any form of simulation of the flow, i.e., numerical or experimental. The exhaust hood flow structure is highly three-dimensional and appropriate coupling will enable the important influence of this asymmetry to be transferred to the rotor. This, however, presents challenges as the calculation size grows rapidly when the full annulus is calculated. The size of the simulation means researchers are constantly searching for methods to reduce the computational effort without compromising solution accuracy. However, this can result in excessive computational demands in numerical simulations. Unsteady full-annulus CFD calculation will remain infeasible for routine design calculations for the foreseeable future. More computationally efficient methods for coupling the unsteady rotor flow to the hood flow are required that bring computational expense within realizable limits while still maintaining sufficient accuracy for meaningful design calculations. Research activity in this area is focused on developing new methods and techniques to improve accuracy and reduce computational expense. A novel approach for coupling the turbine last stage to the exhaust hood employing the nonlinear harmonic (NLH) method is presented in this paper. The generic, IP free, exhaust hood and last stage blade geometries from Burton et al. (2012. "A Generic Low Pressure Exhaust Diffuser for Steam Turbine Research,"Proceedings of the ASME Turbo Expo, Copenhagen, Denmark, Paper No. GT2012-68485) that are representative of modern designs, are used to demonstrate the effectiveness of the method. This is achieved by comparing results obtained with the NLH to those obtained with a more conventional mixing

  12. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  13. CFD Analysis of a Finite Linear Array of Savonius Wind Turbines

    Science.gov (United States)

    Belkacem, Belabes; Paraschivoiu, Marius

    2016-09-01

    Vertical axis wind turbines such as Savonius rotors have been shown to be suitable for low wind speeds normally associated with wind resources in all corners of the world. However, the efficiency of the rotor is low. This paper presents results of Computational Fluid Dynamics (CFD) simulations for an array of Savonius rotors that show a significant increase in efficiency. It looks at identifying the effect on the energy yield of a number of turbines placed in a linear array. Results from this investigation suggest that an increase in the energy yield could be achieved which can reach almost two times than the conventional Savonius wind turbine in the case of an array of 11turbines with a distance of 1.4R in between them. The effect of different TSR values and different wind inlet speeds on the farm has been studied for both a synchronous and asynchronous wind farm.

  14. Smart actuation of inlet guide vanes for small turbine engine

    Science.gov (United States)

    Rusovici, Razvan; Kwok Choon, Stephen T.; Sepri, Paavo; Feys, Joshuo

    2011-04-01

    Unmanned Aerial Vehicles (UAVs) have gained popularity over the past few years to become an indispensable part of aerial missions that include reconnaissance, surveillance, and communication [1]. As a result, advancements in small jet-engine performance are needed to increase the performance (range, payload and efficiency) of the UAV. These jet engines designed especially for UAV's are characterized by thrust force on the order of 100N and due to their size and weight limitations, may lack advanced flow control devices such as IGV [2]. The goal of the current study was to present a conceptual design of an IGV smart-material based actuation mechanism that would be simple, compact and lightweight. The compressor section of an engine increases the pressure and conditions the flow before the air enters the combustion chamber [3]. The airflow entering the compressor is often turbulent due to the high angle of incidence between engine inlet and free-stream velocity, or existing atmospheric turbulence. Actuated IGV are used to help control the relative angle of incidence of the flow that enters the engine compressor, thereby preventing flow separation, compressor stall and thus extending the compressor's operating envelope [4]. Turbine jet- engines which employ variable IGV were developed by Rolls Royce (Trent DR-900) and General Electric (J79).

  15. A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines

    Science.gov (United States)

    Pennacchi, P.; Borghesani, P.; Chatterton, S.

    2015-08-01

    Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system.

  16. Fluid Mechanics of Lean Blowout Precursors in Gas Turbine Combustors

    Directory of Open Access Journals (Sweden)

    T. M. Muruganandam

    2012-03-01

    Full Text Available Understanding of lean blowout (LBO phenomenon, along with the sensing and control strategies could enable the gas turbine combustor designers to design combustors with wider operability regimes. Sensing of precursor events (temporary extinction-reignition events based on chemiluminescence emissions from the combustor, assessing the proximity to LBO and using that data for control of LBO has already been achieved. This work describes the fluid mechanic details of the precursor dynamics and the blowout process based on detailed analysis of near blowout flame behavior, using simultaneous chemiluminescence and droplet scatter observations. The droplet scatter method represents the regions of cold reactants and thus help track unburnt mixtures. During a precursor event, it was observed that the flow pattern changes significantly with a large region of unburnt mixture in the combustor, which subsequently vanishes when a double/single helical vortex structure brings back the hot products back to the inlet of the combustor. This helical pattern is shown to be the characteristic of the next stable mode of flame in the longer combustor, stabilized by double helical vortex breakdown (VBD mode. It is proposed that random heat release fluctuations near blowout causes VBD based stabilization to shift VBD modes, causing the observed precursor dynamics in the combustor. A complete description of the evolution of flame near the blowout limit is presented. The description is consistent with all the earlier observations by the authors about precursor and blowout events.

  17. Potential performance improvement using a reacting gas (nitrogin tetroxide) as the working fluid in a closed Brayton cycle

    Science.gov (United States)

    Stochl, R. J.

    1979-01-01

    The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.

  18. Computational Fluid Dynamics based Fault Simulations of a Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Park, Kyoo-seon; Asim, Taimoor; Mishra, Rakesh

    2012-01-01

    Due to depleting fossil fuels and a rapid increase in the fuel prices globally, the search for alternative energy sources is becoming more and more significant. One of such energy source is the wind energy which can be harnessed with the use of wind turbines. The fundamental principle of wind turbines is to convert the wind energy into first mechanical and then into electrical form. The relatively simple operation of such turbines has stirred the researchers to come up with innovative designs for global acceptance and to make these turbines commercially viable. Furthermore, the maintenance of wind turbines has long been a topic of interest. Condition based monitoring of wind turbines is essential to maintain continuous operation of wind turbines. The present work focuses on the difference in the outputs of a vertical axis wind turbine (VAWT) under different operational conditions. A Computational Fluid Dynamics (CFD) technique has been used for various blade configurations of a VAWT. The results indicate that there is significant degradation in the performance output of wind turbines as the number of blades broken or missing from the VAWT increases. The study predicts the faults in the blades of VAWTs by monitoring its output.

  19. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.; Breward, C. J. W.; Howell, P. D.; Oliver, J. M.

    2012-01-01

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown

  20. Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement

    Directory of Open Access Journals (Sweden)

    Ayoub Abdollahi

    2017-03-01

    Full Text Available The fluid flow and heat transfer characteristics of laminar nanofluid flow in microchannel heat sink (MCHS with V-Type inlet/outlet arrangement are numerically studied. A constant heat flux boundary condition is applied on the base plate of MCHS and all the other surfaces of MCHS are insulated. Four different kinds of nanofluids are utilized as working fluids which are SiO2, Al2O3, ZnO and CuO dispersed in pure water as a base fluid. Three different volume fractions of 1%, 1.5% and 2% and three distinctive nanoparticle diameters of 30 nm, 40 nm and 60 nm were employed. The results specify that the SiO2 nanofluid has the uppermost heat transfer rate compared to other tested nanofluids. Increasing the nanoparticles volume fraction together with decreasing the nanoparticles diameter enhances the Nusselt number value. The pressure drop coefficient did not change significantly by using nanofluid with various volume fractions and varied nanoparticle diameters. Moreover, the results indicate that nanofluid can enhance the performance of MCHS with V-shaped inlet/outlet arrangement.

  1. CFD Analysis of a Finite Linear Array of Savonius Wind Turbines

    International Nuclear Information System (INIS)

    Belkacem, Belabes; Paraschivoiu, Marius

    2016-01-01

    Vertical axis wind turbines such as Savonius rotors have been shown to be suitable for low wind speeds normally associated with wind resources in all corners of the world. However, the efficiency of the rotor is low. This paper presents results of Computational Fluid Dynamics (CFD) simulations for an array of Savonius rotors that show a significant increase in efficiency. It looks at identifying the effect on the energy yield of a number of turbines placed in a linear array. Results from this investigation suggest that an increase in the energy yield could be achieved which can reach almost two times than the conventional Savonius wind turbine in the case of an array of 11turbines with a distance of 1.4R in between them. The effect of different TSR values and different wind inlet speeds on the farm has been studied for both a synchronous and asynchronous wind farm. (paper)

  2. Full Life Wind Turbine Gearbox Lubricating Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28

    Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition

  3. Studi Numerik Dua Dimensi Labyrinth Seal Turbin Uap Organic Rankine Cycle (ORC Type Straight-Through dengan Variasi Tekanan Inlet, Kecepatan Putaran Poros, Jarak Pitch, dan Tinggi Rongga

    Directory of Open Access Journals (Sweden)

    Fungki Setyo Yulianto

    2013-03-01

    Full Text Available ORC (Organic Rankine Cycle merupakan salah satu sistem pembangkit tenaga yang mampu memanfaatkan waste energy dengan menggunakan fluida organik yang mampu menguap pada temperatur dan tekanan rendah. Salah satu komponen utama pada sistem ORC adalah Turbin. Untuk mendapatkan efisiensi yang maksimal,  kebocoran fluida pada turbin uap harus di minimalisir. Untuk itulah di perlukan penggunaan labyrinth seal untuk mengurai kebocoran fluida R123 pada turbin uap ORC. Pada dunia Industri jenis labyrinth seal sangat banyak sekali, salah satunya adalah labyrinth seal tipe Straight-Through. Penelitian ini dilakukan dengan metode numerik (CFD software Fluent. Penelitian ini menggunakan variasi tekanan inlet yaitu 5, 10 dan 15 bar, putaran poros 0, 1500 dan 3000 rpm, panjang pitch 4 mm, 6 mm, 8 mm, 10 mm, serta tinggi rongga 3,415 mm, 3,915 mm dan 5,915 mm. Simulasi menggunakan model turbulensi k-ε RNG. Pada variasi tekanan inlet laju kebocoran paling besar terjadi pada tekanan 15 bar. Pada variasi putaran poros laju kebocoran terjadi berubah secara signifikan pada setiap variasi. Pada variasi tinggi rongga laju kebocoran paling kecil terjadi pada tinggi rongga 3,415 mm. Pada variasi panjang pitch, laju kebocoran paling kecil terjadi pada panjang pitch 10 mm.

  4. Coupled thermal-fluid analysis with flowpath-cavity interaction in a gas turbine engine

    Science.gov (United States)

    Fitzpatrick, John Nathan

    This study seeks to improve the understanding of inlet conditions of a large rotor-stator cavity in a turbofan engine, often referred to as the drive cone cavity (DCC). The inlet flow is better understood through a higher fidelity computational fluid dynamics (CFD) modeling of the inlet to the cavity, and a coupled finite element (FE) thermal to CFD fluid analysis of the cavity in order to accurately predict engine component temperatures. Accurately predicting temperature distribution in the cavity is important because temperatures directly affect the material properties including Young's modulus, yield strength, fatigue strength, creep properties. All of these properties directly affect the life of critical engine components. In addition, temperatures cause thermal expansion which changes clearances and in turn affects engine efficiency. The DCC is fed from the last stage of the high pressure compressor. One of its primary functions is to purge the air over the rotor wall to prevent it from overheating. Aero-thermal conditions within the DCC cavity are particularly challenging to predict due to the complex air flow and high heat transfer in the rotating component. Thus, in order to accurately predict metal temperatures a two-way coupled CFD-FE analysis is needed. Historically, when the cavity airflow is modeled for engine design purposes, the inlet condition has been over-simplified for the CFD analysis which impacts the results, particularly in the region around the compressor disc rim. The inlet is typically simplified by circumferentially averaging the velocity field at the inlet to the cavity which removes the effect of pressure wakes from the upstream rotor blades. The way in which these non-axisymmetric flow characteristics affect metal temperatures is not well understood. In addition, a constant air temperature scaled from a previous analysis is used as the simplified cavity inlet air temperature. Therefore, the objectives of this study are: (a) model the

  5. Mathematical Modelling of Fluid Flow in Cone and Cavitation Formation

    Directory of Open Access Journals (Sweden)

    Milada KOZUBKOVÁ

    2011-06-01

    Full Text Available Problem of cavitation is the undesirable phenomena occuring in the fluid flow in many hydraulic application (pumps, turbines, valves, etc.. Therefore this is in the focus of interest using experimental and mathematical methods. Based on cavitation modelling in Laval nozzle results and experience [1], [2], [4], following problem described as the water flow at the outlet from turbine blade wheel was solved. Primarily the problem is simplified into modelling of water flow in cone. Profiles of axial, radial and tangential velocity are defined on inlet zone. The value of pressure is defined on the outlet. Boundary conditions were defined by main investigator of the grant project – Energy Institute, Victor Kaplan’s Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology. The value of air volume was insignificant. Cavitation was solved by Singhal model of cavitation.

  6. Variable stator radial turbine

    Science.gov (United States)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  7. Design of a Rankine cycle operating with a passive turbine multi fluid

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Guilherme M., E-mail: guilhermeplacco@gmail.com [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Guimarães, Lamartine N.F., E-mail: guimarae@ieav.cta.br [Instituto de Estudo Avançados (CTA/IEAV), São José dos Campos, SP, (Brazil); Santos, Gabriela S. B., E-mail: siqueira.gsb@gmail.com [Universidade Paulista (UNIP), São José dos Campos, SP (Brazil)

    2017-07-01

    The Institute of Advanced Studies - IEAv, has been conducting a project called TERRA - 'Fast Advanced Reactors Technology', which aims to study the effects on the working of a Rankine cycle operating with a Multi Fluid Passive Turbine - TPMF. This turbine has the main characteristic operate bladeless using discs arranged in parallel along a rotating axis. After a thorough literature search, we have not found a previous operating Rankine cycle with this kind of turbine. Thus, the work presented here, began its development with few guidelines to follow. It will be presented, of a sucint way, of the design of the parts that makes up a Rankine cycle; the boundary conditions of the cycle; Data acquisition system; the development schedule; assembly of the components; some associated costs and project management. Experimental results thermal conduction through the cycle; the results of net power generated by the turbine and a comparison between thermal energy to mechanical energy in the turbine (efficiency curve). (author)

  8. Design of a Rankine cycle operating with a passive turbine multi fluid

    International Nuclear Information System (INIS)

    Placco, Guilherme M.; Guimarães, Lamartine N.F.; Santos, Gabriela S. B.

    2017-01-01

    The Institute of Advanced Studies - IEAv, has been conducting a project called TERRA - 'Fast Advanced Reactors Technology', which aims to study the effects on the working of a Rankine cycle operating with a Multi Fluid Passive Turbine - TPMF. This turbine has the main characteristic operate bladeless using discs arranged in parallel along a rotating axis. After a thorough literature search, we have not found a previous operating Rankine cycle with this kind of turbine. Thus, the work presented here, began its development with few guidelines to follow. It will be presented, of a sucint way, of the design of the parts that makes up a Rankine cycle; the boundary conditions of the cycle; Data acquisition system; the development schedule; assembly of the components; some associated costs and project management. Experimental results thermal conduction through the cycle; the results of net power generated by the turbine and a comparison between thermal energy to mechanical energy in the turbine (efficiency curve). (author)

  9. One-Way Fluid-Structure Interaction Simulation of an Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhi-Kui Wang

    2014-07-01

    Full Text Available The Fluid-Structure Interaction (FSI has gained great interest of scholars recently, meanwhile, extensive studies have been conducted by the virtue of numerical methods which have been implemented on wind turbine models. The blades of a wind turbine have been gained a deep insight into the FSI analyses, however, few studies have been conducted on the tower and nacelle, which are key components of the wind turbine, using this method. We performed the one-way FSI analysis on a 2-MW offshore wind turbine, using the Finite Volume Method (FVM with ANSYS CFX solver and the RNG k-ε turbulence model, to achieve a comprehensive cognition of it. The grid convergence was studied and verified in this study, and the torque value is chosen to determine the optimal case. The superior case, which was chosen to conduct the FSI analysis, with a relative error is only 2.15%, thus, the accuracy of results is credible.

  10. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    International Nuclear Information System (INIS)

    Huang, W D; Fan, H G; Chen, N X

    2012-01-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  11. Transient simulation of hydropower station with consideration of three-dimensional unsteady flow in turbine

    Science.gov (United States)

    Huang, W. D.; Fan, H. G.; Chen, N. X.

    2012-11-01

    To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.

  12. Study on an Axial Flow Hydraulic Turbine with Collection Device

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2014-01-01

    Full Text Available We propose a new type of portable hydraulic turbine that uses the kinetic energy of flow in open channels. The turbine comprises a runner with an appended collection device that includes a diffuser section in an attempt to improve the output by catching and accelerating the flow. With such turbines, the performance of the collection device, and a composite body comprising the runner and collection device were studied using numerical analysis. Among four stand-alone collection devices, the inlet velocity ratio was most improved by the collection device featuring an inlet nozzle and brim. The inlet velocity ratio of the composite body was significantly lower than that of the stand-alone collection device, owing to the resistance of the runner itself, the decreased diffuser pressure recovery coefficient, and the increased backpressure coefficient. However, at the maximum output tip speed ratio, the inlet velocity ratio and the loading coefficient were approximately 31% and 22% higher, respectively, for the composite body than for the isolated runner. In particular, the input power coefficient significantly increased (by approximately 2.76 times owing to the increase in the inlet velocity ratio. Verification tests were also conducted in a real canal to establish the actual effectiveness of the turbine.

  13. Fluid-Thermal-Structural Coupled Analysis of a Radial Inflow Micro Gas Turbine Using Computational Fluid Dynamics and Computational Solid Mechanics

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2014-01-01

    Full Text Available A three-dimensional fluid-thermal-structural coupled analysis for a radial inflow micro gas turbine is conducted. First, a fluid-thermal coupled analysis of the flow and temperature fields of the nozzle passage and the blade passage is performed by using computational fluid dynamics (CFD. The flow and heat transfer characteristics of different sections are analyzed in detail. The thermal load and the aerodynamic load are then obtained from the temperature field and the pressure distribution. The stress distributions of the blade are finally studied by using computational solid mechanics (CSM considering three cases of loads: thermal load, aerodynamics load combined with centrifugal load, and all the three types of loads. The detailed parameters of the flow, temperature, and the stress are obtained and analyzed. The numerical results obtained provide a useful knowledge base for further exploration of radial gas turbine design.

  14. Characteristics of reversible-pump turbines

    Energy Technology Data Exchange (ETDEWEB)

    Olimstad, Grunde

    2012-07-01

    The primary goal for this PhD project has been to investigate instability of reversible-pump turbines (RPTs) as a phenomenon and to find remedies to solve it. The instability occurs for turbines with s-shaped characteristics, unfavourable waterway and limited rotating inertia. It is only observed for certain operation pints at either high speed or low load. These correspond to ether high values of Ned or low values of Qed. The work done in this PhD thesis can be divided in to the three following categories. Investigate and understand the behaviour of a pump turbine: A model was designed in order to investigate the pump turbine behaviour related to its characteristics. This model was manufactured and measurements were performed in the laboratory. By using throttling valves or torque as input the full s-shaped characteristics was measured. When neither of these techniques is used, the laboratory system has unstable operation points which result in hysteresis behaviour. Global behaviour of the RPT in power plant system was investigated through analytical stability analysis and dynamic system simulations. The latter included both rigid and elastic representation of the water column. Turbine internal flow: The flow inside the runner was investigated by computer simulations (CFD). Two-dimensional analysis was used to study the inlet part of the runner. This showed that a vortex forming at the inlet is one of the causes for the unstable operation range. Measurements at different pressure levels showed that the characteristics were dependent on the Reynolds number at high Ned values in turbine mode. This means that the similarity of flows is not sufficiently described by constant Qed and Ned values at this part of the characteristics. Design modifications: The root of the stability problem was considered to be the runners geometric design at the inlet in turbine mode. Therefore different design parameters were investigated to find relations to the characteristics. Methods

  15. An improved model to evaluate thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines in open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Imineo, Francesco; Marinelli, Valerio

    2013-01-01

    An improved model to analyze the performance of solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle is presented. In the new model, the effect of the incident angle modifier is included, to take into account the variation of the optical efficiency with the incidence angle of the irradiance, and the effect of the reheating of the fluid also has been studied. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine, with and without reheating of the fluid in the solar field. When reheating is used, the efficiency of the plant is increased. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it is able to compete well with other more complex plants operating with different heat transfer fluids. - Highlights: ► An improved model to calculate an innovative CPS solar plant is presented. ► The plant works with air in an open Joule–Brayton cycle. ► The reheating of the air increases the thermodynamic efficiency. ► The plant is very simple and competes well with other more complex solar plants

  16. Evaluation of Working Fluids for Organic Rankine Cycle Based on Exergy Analysis

    Science.gov (United States)

    Setiawan, D.; Subrata, I. D. M.; Purwanto, Y. A.; Tambunan, A. H.

    2018-05-01

    One of the crucial aspects to determine the performance of Organic Rankine Cycle (ORC) is the selection of appropriate working fluids. This paper describes the simulative performance of several organic fluid and water as working fluid of an ORC based on exergy analysis with a heat source from waste heat recovery. The simulation was conducted by using Engineering Equation Solver (EES). The effect of several parameters and thermodynamic properties of working fluid was analyzed, and part of them was used as variables for the simulation in order to determine their sensitivity to the exergy efficiency changes. The results of this study showed that water is not appropriate to be used as working fluid at temperature lower than 130 °C, because the expansion process falls in saturated area. It was also found that Benzene had the highest exergy efficiency, i.e. about 10.49%, among the dry type working fluid. The increasing turbine inlet temperature did not lead to the increase of exergy efficiency when using organic working fluids with critical temperature near heat source temperature. Meanwhile, exergy efficiency decreasing linearly with the increasing condenser inlet temperature. In addition, it was found that working fluid with high latent heat of vaporization and specific heat exert in high exergy efficiency.

  17. Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2015-07-01

    Full Text Available The Savonius wind turbine is a type of vertical axis wind turbine (VAWTs that is simply composed of two or three arc-type blades which can generate power even under poor wind conditions. A modified Savonius wind turbine with novel blade shapes is introduced with the aim of increasing the power coefficient of the turbine. The effect of blade fullness, which is a main shape parameter of the blade, on the power production of a two-bladed Savonius wind turbine is investigated using transient computational fluid dynamics (CFD. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations with a renormalization group turbulent model. This numerical method is validated with existing experimental data and then utilized to quantify the performance of design variants. Results quantify the relationship between blade fullness and turbine performance with a blade fullness of 1 resulting in the highest coefficient of power, 0.2573. This power coefficient is 10.98% higher than a conventional Savonius turbine.

  18. Signal-based Gas Leakage Detection for Fluid Power Accumulators in Wind Turbines

    DEFF Research Database (Denmark)

    Liniger, Jesper; Sepehri, Nariman; N. Soltani, Mohsen

    2017-01-01

    This paper describes the development and application of a signal-based fault detection method for identifying gas leakage in hydraulic accumulators used in wind turbines. The method uses Multiresolution Signal Decomposition (MSD) based on wavelets for feature extraction from a~single fluid pressure...... measurement located close to the accumulator. Gas leakage is shown to create increased variations in this pressure signal. The Root Mean Square (RMS) of the detail coefficient Level 9 from the MSD is found as the most sensitive and robust fault indicator of gas leakage. The method is verified...... on an experimental setup allowing for the replication of the conditions for accumulators in wind turbines. Robustness is tested in a multi-fault environment where gas and external fluid leakage occurs simultaneously. In total, 24 experiments are performed, which show that the method is sensitive to gas leakage...

  19. Extensive use of computational fluid dynamics in the upgrading of hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.; Eremeef, R.; De Henau, V.

    1995-12-31

    Computational fluid dynamics codes, based on turbulent Navier-Stokes equations, allow evaluation of the hydraulic losses of each turbine component with precision. Using those codes with the new generation of computers enables a wide variety of component geometries to be modelled and compared to the original designs under flow conditions obtained from testing, at a reasonable cost and in a relatively short time. This paper reviews the actual method used in the design of a solution to a turbine rehabilitation project involving runner replacement, redesign of upstream components (stay vanes and wicket gates), and downstream components (draft tubes and runner outlets). The paper shows how computational fluid dynamics can help hydraulic engineers to obtain valuable information not only on performance enhancement but also on the phenomena that produce the enhancement, and to reduce the variety of modifications to be tested.

  20. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine

    Science.gov (United States)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.

    2016-05-01

    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine

  1. The comparative analysis of model and prototype test results of Bulb turbine

    International Nuclear Information System (INIS)

    Benisek, M; Bozic, I; Ignjatovic, B

    2010-01-01

    This paper presents the problem of the hydropower plant oblique water inflow and its influence on the turbines operation. Oblique water inflow on the low head hydropower plant with bulb turbines influences turbine characteristics. The characteristics change occurs due to swirl incidence in the turbine inlet which spreads to the guide vanes inlet. Downstream, the flow conditions change is caused in the turbine runner in relation to the flow conditions without swirl inflow. Special attention is paid to the phenomenon of swirl flow incidence in the turbine conduit. With the aim of presenting and analyzing the oblique water inflow consequences on the hydropower plant operation, the existing turbine model tests results, performed in the laboratories, and the in situ prototype testing results have been used.

  2. Model-based Estimation of Gas Leakage for Fluid Power Accumulators in Wind Turbines

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen

    2017-01-01

    for accumulators, namely gas leakage. The method utilizes an Extended Kalman Filter for joint state and parameter estimation with special attention to limiting the use of sensors to those commonly used in wind turbines. The precision of the method is investigated on an experimental setup which allows for operation...... of the accumulator similar to the conditions in a turbine. The results show that gas leakage is indeed detectable during start-up of the turbine and robust behavior is achieved in a multi-fault environment where both gas and external fluid leakage occur simultaneously. The estimation precision is shown...... to be sensitive to initial conditions for the gas temperature and volume....

  3. Dynamic Analysis of A 5-MW Tripod Offshare Wind Turbine by Considering Fluid-Structure Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-wei; LI Xin

    2017-01-01

    Fixed of fshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod of fshore wind turbine considering the pile–soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of of fshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of of fshore wind turbines fixed in deep seawater.

  4. Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction

    Science.gov (United States)

    Zhang, Li-wei; Li, Xin

    2017-10-01

    Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.

  5. Studi Eksperimen Perbandingan Pengaruh Variasi Tekanan Inlet Turbin danVariasi Pembebanan Terhadap Karakteristik Turbin Pada Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Dwi Dharma Risqiawan

    2013-12-01

    Full Text Available Sistem pembangkit listrik telah berinovasi pada saat ini untuk tetap memenuhi kebutuhan akan ketersediaan listrik salah satunya dengan Organic Rankine Cycle (ORC. Sistem ini terdiri dari empat komponen utama yaitu evaporator, turbin, kondensor, dan pompa.Fluida kerja dipompa ke evaporator untuk membangkitkan uap lalu digunakan menggerakkan turbin.Uap hasil ekspansi turbin dikondensasi dan dialirkan oleh pompa kembali ke evaporator.Sistem ini mampu memanfaatkan sumber energi yang memiliki temperatur dan tekanan rendah untuk membangkitkan uap fluida organik. Penelitian ini dilakukan untuk mengevaluasi kinerja turbin pada sistem ORC dengan memvariasikan tekanan masuk turbin dan pembebanan dengan menggunakan R-123 sebagai fluida kerja .Pengambilan data dilakukan dengan memvariasikan tekanan masuk turbin pada setiap variasi pembebanan generator.Pengamatan dilakukan hanya pada turbin untuk mengetahui karakteristik turbin yang digunakan saat ini.Pengambilan data dilakukan dengan R-123 sebagai fluida kerja. Dari eksperimen didapatkan temperatur masuk dan keluar turbin,kecepatan putaran turbin dalam rpm, dan enthalpy dapat diketahui. Enthalpy digunakan untuk mengitung kerja yang dihasilkan turbin, efisiensi turbin dan efisiensi sudu turbin.Pada tekanan masuk turbin 8 bar dan beban 1000 Watt data dengan nilai terbaik didapatkan.Hasil perhitungan data didapatkan kerja yang dihasilkan turbin yang terbesar adalah 5,4 KW. Hasil lain yang dapat diketahui adalah efisiensi turbin tertinggi 88%. Efisiensi sudu turbin tertinggi yang terhitung adalah 42,9%.

  6. DESIGN OF BACKWARD SWEPT TURBINE WHEEL FOR CRYOGENIC TURBOEXPANDER

    Directory of Open Access Journals (Sweden)

    BALAJI K. CHOUDHURY

    2014-08-01

    Full Text Available With support from the Department of Atomic Energy, our institute has initiated a programme on development and study of a low capacity (20 liters/hr. turboexpander based Nitrogen liquefier. Hence a process design was carried out and a turboexpander was designed to meet the requirement of the liquefier. The turboexpander is used for lowering the temperature of the process gas (Nitrogen by the isenthalpic expansion. The efficiency of the turboexpander mainly depends on the specific speed and specific diameter of the turbine wheel. The paper explains a general methodology for the design of any type of turbine wheel (radial, backward swept and forward swept for any pressure ratio with different process gases. The design of turbine wheel includes the determination of dimensions, blade profile and velocity triangles at inlet and outlet of the turbine wheel. Generally radial turbine wheels are used but in this case to achieve the high efficiency at desired speed, backward curved blades are used to maintain the Mach number of the process gas at the nozzle exit, close to unity. If the velocity of fluid exceeds the speed of sound, the flow gets choked leading to the creation of shock waves and flow at the exit of the nozzle will be non-isentropic.

  7. Performance analysis and optimization of power plants with gas turbines

    Science.gov (United States)

    Besharati-Givi, Maryam

    The gas turbine is one of the most important applications for power generation. The purpose of this research is performance analysis and optimization of power plants by using different design systems at different operation conditions. In this research, accurate efficiency calculation and finding optimum values of efficiency for design of chiller inlet cooling and blade cooled gas turbine are investigated. This research shows how it is possible to find the optimum design for different operation conditions, like ambient temperature, relative humidity, turbine inlet temperature, and compressor pressure ratio. The simulated designs include the chiller, with varied COP and fogging cooling for a compressor. In addition, the overall thermal efficiency is improved by adding some design systems like reheat and regenerative heating. The other goal of this research focuses on the blade-cooled gas turbine for higher turbine inlet temperature, and consequently, higher efficiency. New film cooling equations, along with changing film cooling effectiveness for optimum cooling air requirement at the first-stage blades, and an internal and trailing edge cooling for the second stage, are innovated for optimal efficiency calculation. This research sets the groundwork for using the optimum value of efficiency calculation, while using inlet cooling and blade cooling designs. In the final step, the designed systems in the gas cycles are combined with a steam cycle for performance improvement.

  8. Development of high temperature turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kitao; Nouse, Hiroyuki; Yoshida, Toyoaki; Minoda, Mitsuhiro; Matsusue, Katsutoshi; Yanagi, Ryoji

    1988-07-01

    For the contribution to the development of FJR710, high by-pass ratio turbofan engine, with the study for many years of the development of high efficiency turbine for the jet engine, the first technical prize from the Energy Resource Research Committee was awarded in April, 1988. This report introduced its technical contents. In order to improve the thermal efficiency and enlarge the output, it is very effective to raise the gas temperature at the inlet of gas turbine. For its purpose, by cooling the nozzle and moving blades and having those blades operate at lower temperature than that of the working limitation, they realized, for the first time in Japan, the technique of cooling turbine to heighten the operational gas temperature. By that technique, it was enabled to raise the gas temperature at the inlet of turbine, to 1,350/sup 0/C from 850/sup 0/C. This report explain many important points of study covering the basic test, visualizing flow experiment, material discussion and structural design in the process of development. (9 figs)

  9. Variable flexure-based fluid filter

    Science.gov (United States)

    Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  10. Fluid-structure interaction modeling of wind turbines: simulating the full machine

    Science.gov (United States)

    Hsu, Ming-Chen; Bazilevs, Yuri

    2012-12-01

    In this paper we present our aerodynamics and fluid-structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the "full machine"). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid-structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor-tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10-12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.

  11. Optimization of a Low Heat Load Turbine Nozzle Guide Vane

    National Research Council Canada - National Science Library

    Johnson, Jamie J

    2006-01-01

    .... However, future aircraft systems require ever increasing levels of gas-turbine inlet temperature causing the durability and reliability of turbine components to be an ever more important design concern...

  12. Unsteady supercritical/critical dual flowpath inlet flow and its control methods

    Directory of Open Access Journals (Sweden)

    Jun LIU

    2017-12-01

    Full Text Available The characteristics of unsteady flow in a dual-flowpath inlet, which was designed for a Turbine Based Combined Cycle (TBCC propulsion system, and the control methods of unsteady flow were investigated experimentally and numerically. It was characterized by large-amplitude pressure oscillations and traveling shock waves. As the inlet operated in supercritical condition, namely the terminal shock located in the throat, the shock oscillated, and the period of oscillation was about 50 ms, while the amplitude was 6 mm. The shock oscillation was caused by separation in the diffuser. This shock oscillation can be controlled by extending the length of diffuser which reduces pressure gradient along the flowpath. As the inlet operated in critical condition, namely the terminal shock located at the shoulder of the third compression ramp, the shock oscillated, and the period of oscillation was about 7.5 ms, while the amplitude was 12 mm. At this condition, the shock oscillation was caused by an incompatible backpressure in the bleed region. It can be controlled by increasing the backpressure of the bleed region. Keywords: Airbreathing hypersonic vehicle, Dual flowpath inlet, Terminal shock oscillation, Turbine based combined cycle, Unsteady flow

  13. A Generalised Assessment of Working Fluids and Radial Turbines for Non-Recuperated Subcritical Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Martin T. White

    2018-03-01

    Full Text Available The aim of this paper is to conduct a generalised assessment of both optimal working fluids and radial turbine designs for small-scale organic Rankine cycle (ORC systems across a range of heat-source temperatures. The former has been achieved by coupling a thermodynamic model of subcritical, non-recperated cycles with the Peng–Robinson equation of state, and optimising the working-fluid and cycle parameters for heat-source temperatures ranging between 80 ° C and 360 ° C . The critical temperature of the working fluid is found to be an important parameter governing working-fluid selection. Moreover, a linear correlation between heat-source temperature and the optimal critical temperature that achieves maximum power output has been found for heat-source temperatures below 300 ° C ( T cr = 0.830 T hi + 41.27 . This correlation has been validated against cycle calculations completed for nine predefined working fluids using both the Peng–Robinson equation of state and using the REFPROP program. Ultimately, this simple correlation can be used to identify working-fluid candidates for a specific heat-source temperature. In the second half of this paper, the effect of the heat-source temperature on the optimal design of a radial-inflow turbine rotor for a 25 kW subcritical ORC system has been studied. As the heat-source temperature increases, the optimal blade-loading coefficient increases, whilst the optimal flow coefficient reduces. Furthermore, passage losses are dominant in turbines intended for low-temperature applications. However, at higher heat-source temperatures, clearance losses become more dominant owing to the reduced blade heights. This information can be used to identify the most direct route to efficiency improvements in these machines. Finally, it is observed that the transition from a conventional converging stator to a converging-diverging stator occurs at heat-source temperatures of approximately 165 ° C , whilst radially

  14. VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING

    Institute of Scientific and Technical Information of China (English)

    LIU Demin; LIU Xiaobing

    2008-01-01

    The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/min, 500 r/min and 600 r/min are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.

  15. Feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    Science.gov (United States)

    Vanfossen, G. J.

    1983-01-01

    A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.

  16. Air cooled turbine component having an internal filtration system

    Science.gov (United States)

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  17. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  18. Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions

    Energy Technology Data Exchange (ETDEWEB)

    Antheaume, Sylvain [Electricite de France, Recherche et Developpement, Laboratoire National d' Hydraulique et Environnement, 6 Quai Watier, 78400 Chatou (France); Maitre, Thierry; Achard, Jean-Luc [Laboratoire des Ecoulements Geophysiques et Industriels, BP 53, 38041 Grenoble (France)

    2008-10-15

    The present study deals with the efficiency of cross flow water current turbine for free stream conditions versus power farm conditions. In the first part, a single turbine for free fluid flow conditions is considered. The simulations are carried out with a new in house code which couples a Navier-Stokes computation of the outer flow field with a description of the inner flow field around the turbine. The latter is based on experimental results of a Darrieus wind turbine in an unbounded domain. This code is applied for the description of a hydraulic turbine. In the second part, the interest of piling up several turbines on the same axis of rotation to make a tower is investigated. Not only is it profitable because only one alternator is needed but the simulations demonstrate the advantage of the tower configuration for the efficiency. The tower is then inserted into a cluster of several lined up towers which makes a barge. Simulations show that the average barge efficiency rises as the distance between towers is decreased and as the number of towers is increased within the row. Thereby, the efficiency of a single isolated turbine is greatly increased when set both into a tower and into a cluster of several towers corresponding to possible power farm arrangements. (author)

  19. CFD Simulation and Optimization of Very Low Head Axial Flow Turbine Runner

    Directory of Open Access Journals (Sweden)

    Yohannis Mitiku Tobo

    2015-10-01

    Full Text Available The main objective of this work is Computational Fluid Dynamics (CFD modelling, simulation and optimization of very low head axial flow turbine runner  to be used to drive  a centrifugal pump of turbine-driven pump. The ultimate goal of the optimization is to produce a power of 1kW at head less than 1m from flowing  river to drive centrifugal pump using mechanical coupling (speed multiplier gear directly. Flow rate, blade numbers, turbine rotational speed, inlet angle are parameters used in CFD modeling,  simulation and design optimization of the turbine runner. The computed results show that power developed by a turbine runner increases with increasing flow rate. Pressure inside the turbine runner increases with flow rate but, runner efficiency increases for some flow rate and almost constant thereafter. Efficiency and power developed by a runner drops quickly if turbine speed increases due to higher pressure losses and conversion of pressure energy to kinetic energy inside the runner. Increasing blade number increases power developed but, efficiency does not increase always. Efficiency increases for some blade number and drops down due to the fact that  change in direction of the relative flow vector at the runner exit, which decreases the net rotational momentum and increases the axial flow velocity.

  20. Degradation of phosphate ester hydraulic fluid in power station turbines investigated by a three-magnet unilateral magnet array.

    Science.gov (United States)

    Guo, Pan; He, Wei; García-Naranjo, Juan C

    2014-04-14

    A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG) sequence and Inversion Recovery-prepared CPMG were employed for measuring the ¹H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a numeric program based on the Inverse Laplace Transformation. The long lifetime components of the transverse relaxation time T₂eff and longitudinal relaxation time T₁ were chosen to monitor the hydraulic fluid aging. The results demonstrate that an increase of the service time of the turbine oils clearly results in a decrease of T₂eff,long and T₁,long. This indicates that the T₂eff,long and T₁,long relaxation times, obtained from the unilateral magnetic resonance measurements, can be applied as indices for degradation of the hydraulic fluid in power station turbines.

  1. Feasibility Study of a Simulation Driven Approach for Estimating Reliability of Wind Turbine Fluid Power Pitch Systems

    DEFF Research Database (Denmark)

    Liniger, Jesper; Pedersen, Henrik Clemmensen; N. Soltani, Mohsen

    2018-01-01

    Recent field data indicates that pitch systems account for a substantial part of a wind turbines down time. Reducing downtime means increasing the total amount of energy produced during its lifetime. Both electrical and fluid power pitch systems are employed with a roughly 50/50 distribution. Fluid...... power pitch systems generally show higher reliability and have been favored on larger offshore wind turbines. Still general issues such as leakage, contamination and electrical faults make current systems work sub-optimal. Current field data for wind turbines present overall pitch system reliability...... and the reliability of component groups (valves, accumulators, pumps etc.). However, the failure modes of the components and more importantly the root causes are not evident. The root causes and failure mode probabilities are central for changing current pitch system designs and operational concepts to increase...

  2. Comparative Study on Uni- and Bi-Directional Fluid Structure Coupling of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Mesfin Belayneh Ageze

    2017-09-01

    Full Text Available The current trends of wind turbine blade designs are geared towards a longer and slender blade with high flexibility, exhibiting complex aeroelastic loadings and instability issues, including flutter; in this regard, fluid-structure interaction (FSI plays a significant role. The present article will conduct a comparative study between uni-directional and bi-directional fluid-structural coupling models for a horizontal axis wind turbine. A full-scale, geometric copy of the NREL 5MW blade with simplified material distribution is considered for simulation. Analytical formulations of the governing relations with appropriate approximation are highlighted, including turbulence model, i.e., Shear Stress Transport (SST k-ω. These analytical relations are implemented using Multiphysics package ANSYS employing Fluent module (Computational Fluid Dynamics (CFD-based solver for the fluid domain and Transient Structural module (Finite Element Analysis-based solver for the structural domain. ANSYS system coupling module also is configured to model the two fluid-structure coupling methods. The rated operational condition of the blade for a full cycle rotation is considered as a comparison domain. In the bi-directional coupling model, the structural deformation alters the angle of attack from the designed values, and by extension the flow pattern along the blade span; furthermore, the tip deflection keeps fluctuating whilst it tends to stabilize in the uni-directional coupling model.

  3. Electric fluid pump

    Science.gov (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  4. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    Science.gov (United States)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  5. A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Sørensen, Niels N.

    2012-01-01

    at the position of the wind turbine rotor to estimate correctly the power production and the rotor loading. The method proposed in this paper solves this issue by spreading the force on the direct neighbouring cells and applying an equivalent pressure jump at the cell faces. This can potentially open......This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent...

  6. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  7. Method and apparatus for preventing overspeed in a gas turbine

    Science.gov (United States)

    Walker, William E.

    1976-01-01

    A method and apparatus for preventing overspeed in a gas turbine in response to the rapid loss of applied load is disclosed. The method involves diverting gas from the inlet of the turbine, bypassing the same around the turbine and thereafter injecting the diverted gas at the turbine exit in a direction toward or opposing the flow of gas through the turbine. The injected gas is mixed with the gas exiting the turbine to thereby minimize the thermal shock upon equipment downstream of the turbine exit.

  8. The effect of inlet conditions on lean premixed gas turbine combustor performance

    Science.gov (United States)

    Vilayanur, Suresh Ravi

    The combustion community is today faced with the goal to reduce NOx at high efficiencies. This requirement has directed attention to the manner by which air and fuel are treated prior to and at the combustor inlet. This dissertation is directed to establishing the role of combustor inlet conditions on combustor performance, and to deriving an understanding of the relationship between inlet conditions and combustion performance. To investigate the complex effect of inlet parameters on combustor performance, (1) a test facility was designed and constructed, (2) hardware was designed and fabricated, (3) a statistically based technique was designed and applied, and (4) detailed in-situ measurements were acquired. Atmospheric tests were performed at conditions representative of industrial combustors: 670 K inlet preheat and an equivalence ratio of 0.47, and make the study immediately relevant to the combustion community. The effects of premixing length, fuel distribution, swirl angle, swirl vane thickness and swirl solidity were investigated. The detailed in-situ measurements were performed to form the database necessary to study the responsible mechanisms. A host of conventional and advanced diagnostics were used for the investigation. In situ measurements included the mapping of the thermal and velocity fields of the combustor, obtaining species concentrations inside the combustor, and quantifying the fuel-air mixing entering the combustor. Acoustic behavior of the combustor was studied, including the application of high speed videography. The results reveal that the principal statistically significant effect on NOx production is the inlet fuel distribution, and the principal statistically significant effect on CO production is the swirl strength. Elevated levels of NOx emission result when the fuel is weighted to the centerline. Eddies shedding off the swirler hub ignite as discrete packets, and due to the elevated concentrations of fuel, reach higher temperatures

  9. Preliminary Design and Computational Fluid Dynamics Analysis of Supercritical Carbon Dioxide Turbine Blade

    International Nuclear Information System (INIS)

    Jeong, Wi S.; Kim, Tae W.; Suh, Kune Y.

    2007-01-01

    The supercritical gas turbine Brayton cycle has been adopted in the secondary loop of the Generation IV Nuclear Energy Systems, and planned to be installed in power conversion cycles of the nuclear fusion reactors as well. The supercritical carbon dioxide (SCO 2 ) is one of widely considered fluids for this concept. The potential beneficiaries include the Secure Transportable Autonomous Reactor- Liquid Metal (STAR-LM), the Korea Advanced Liquid Metal Reactor (KALIMER) and Battery Omnibus Reactor Integral System (BORIS) which is being developed at the Seoul National University. The reason for these welcomed applications is that the SCO 2 Brayton cycle can achieve higher overall energy conversion efficiency than the steam turbine Rankine cycle. Seoul National University has recently been working on the SCO 2 based Modular Optimized Brayton Integral System (MOBIS). The MOBIS design power conversion efficiency is about 45%. Gas turbine design is crucial part in achieving this high efficiency. In this paper, the preliminary analysis on first stage of gas turbine was performed using CFX as a solver

  10. Theoretical research on working fluid selection for a high-temperature regenerative transcritical dual-loop engine organic Rankine cycle

    International Nuclear Information System (INIS)

    Tian, Hua; Liu, Lina; Shu, Gequn; Wei, Haiqiao; Liang, Xingyu

    2014-01-01

    Highlights: • Among all examined working fluids, toluene possesses the maximum W net , highest η e and η ec . • The increase of T 3 worsens system performance, decreasing W net , η e and η ec . • Condenser C LT and turbine T LT possesses the least system irreversibility. • Turbines and exhaust evaporators are optimization components. - Abstract: In this paper, a regenerative transcritical dual-loop organic Rankine cycle is proposed to recover the waste heat of the exhaust, engine coolant and all the residual heat of the HT loop. Double regenerators are adopted in this system. Transcritical cycles are used in both loops. Hexamethyldisiloxane (MM), octamethyl cyclotetrasiloxane (D 4 ), octamethyltrisiloxane (MDM), cyclohexane, toluene and n-decane are chosen as the candidate working fluids of the HT loop and R143a is chosen as the working fluid of the LT loop. Influences of inlet temperature of turbine T HT (T 3 ) on mass flow rates (m f,HT and m f,LT ), net output power (W net ), energy conversion efficiency (η ec ), volumetric expansion ratio (VER), ratio of power consumed to power output (COR) and component irreversibility are analyzed and performance comparison of these working fluids is also evaluated. Results show that toluene possesses the maximum W net (42.46 kW), highest η e (51.92%) and η ec (12.77%). The increase of T 3 worsens system performance, decreasing W net , η e and η ec . Condenser C LT and turbine T LT possess the least system irreversibility. In addition, turbines and exhaust evaporators are optimized components

  11. Contingency power for small turboshaft engines using water injection into turbine cooling air

    Science.gov (United States)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  12. Application of fluid-structure coupling to predict the dynamic behavior of turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, B; Seidel, U [Voith Hydro Holding GmbH and Co. KG, Alexanderstr. 11, 89522 Heidenheim (Germany); Roth, S, E-mail: bjoern.huebner@voith.co [Laboratory for Hydraulic Machines, EPFL, Avenue de Cour 33 Bis, 1007 Lausanne (Switzerland)

    2010-08-15

    In hydro turbine design, fluid-structure interaction (FSI) may play an important role. Examples are flow induced inertia and damping effects, vortex induced vibrations in the lock-in vicinity, or hydroelastic instabilities of flows in deforming gaps (e.g. labyrinth seals). In contrast to aeroelasticity, hydroelastic systems require strongly (iteratively) coupled or even monolithic solution procedures, since the fluid mass which is moving with the structure (added-mass effect) is much higher and changes the dynamic behavior of submerged structures considerably. Depending on the mode shape, natural frequencies of a turbine runner in water may be reduced to less than 50% of the corresponding frequencies in air, and flow induced damping effects may become one or two orders of magnitude higher than structural damping. In order to reduce modeling effort and calculation time, the solution strategy has to be adapted precisely to a given application. Hence, depending on the problem to solve, different approximations may apply. Examples are the calculation of natural frequencies and response spectra in water using an acoustic fluid formulation, the determination of flow induced damping effects by means of partitioned FSI including complex turbulent flows, and the identification of hydroelastic instabilities using monolithic coupling of non-linear structural dynamics and water flow.

  13. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    Science.gov (United States)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  14. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines

    International Nuclear Information System (INIS)

    Ghasemian, Masoud; Ashrafi, Z. Najafian; Sedaghat, Ahmad

    2017-01-01

    Highlights: • A review on CFD simulation technique for Darrieus wind turbines is provided. • Recommendations and guidelines toward reliable and accurate simulations are presented. • Different progresses in CFD simulation of Darrieus wind turbines are addressed. - Abstract: The global warming threats, the presence of policies on support of renewable energies, and the desire for clean smart cities are the major drives for most recent researches on developing small wind turbines in urban environments. VAWTs (vertical axis wind turbines) are most appealing for energy harvesting in the urban environment. This is attributed due to structural simplicity, wind direction independency, no yaw mechanism required, withstand high turbulence winds, cost effectiveness, easier maintenance, and lower noise emission of VAWTs. This paper reviews recent published works on CFD (computational fluid dynamic) simulations of Darrieus VAWTs. Recommendations and guidelines are presented for turbulence modeling, spatial and temporal discretization, numerical schemes and algorithms, and computational domain size. The operating and geometrical parameters such as tip speed ratio, wind speed, solidity, blade number and blade shapes are fully investigated. The purpose is to address different progresses in simulations areas such as blade profile modification and optimization, wind turbine performance augmentation using guide vanes, wind turbine wake interaction in wind farms, wind turbine aerodynamic noise reduction, dynamic stall control, self-starting characteristics, and effects of unsteady and skewed wind conditions.

  15. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.

    2015-01-01

    suitable control strategy and both the overall annual production and the average solar to electrical efficiency are estimated with an annual simulation. The results suggest that the introduction of binary working fluids enables to increase the solar system performance both in design and part-load operation....... cycle. The purpose of this paper is to optimize a low temperature organic Rankine cycle tailored for solar applications. The objective of the optimization is the maximization of the solar to electrical efficiency and the optimization parameters are the working fluid and the turbine inlet temperature...... and pressure. Both pure fluids and binary mixtures are considered as possible working fluids and thus one of the primary aims of the study is to evaluate whether the use of multi-component working fluids might lead to increased solar to electrical efficiencies. The considered configuration includes a solar...

  16. Future development of large steam turbines

    International Nuclear Information System (INIS)

    Chevance, A.

    1975-01-01

    An attempt is made to forecast the future of the large steam turbines till 1985. Three parameters affect the development of large turbines: 1) unit output; and a 2000 to 2500MW output may be scheduled; 2) steam quality: and two steam qualities may be considered: medium pressure saturated or slightly overheated steam (light water, heavy water); light enthalpie drop, high pressure steam, high temperature; high enthalpic drop; and 3) the quality of cooling supply. The largest range to be considered might be: open system cooling for sea-sites; humid tower cooling and dry tower cooling. Bi-fluid cooling cycles should be also mentioned. From the study of these influencing factors, it appears that the constructor, for an output of about 2500MW should have at his disposal the followings: two construction technologies for inlet parts and for high and intermediate pressure parts corresponding to both steam qualities; exhaust sections suitable for the different qualities of cooling supply. The two construction technologies with the two steam qualities already exist and involve no major developments. But, the exhaust section sets the question of rotational speed [fr

  17. Fluid- and structural mechanical study of the inflow of a steam turbine; Stroemungs- und strukturmechanische Untersuchung der Einstroemung einer Dampfturbine

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, Simon

    2011-06-22

    This work presents design guidelines for two categorically different concepts of a power plant turbine inlet duct; a ring-type inlet chamber and an inlet scroll. Subjects of the analysis are aerodynamic considerations of the flow field in the ducts as well as the impact of the chamber topology on the radial clearances influencing casing deformations in stationary and transient load cases. To show the reliability of the CFD-program used, calculated results are compared with measured data. The numerical method catches the main physical effects observed in the reference cases with high accuracy. The flow field in the ring-type inlet chamber strongly depends on the Reynolds number Re; according to Re a symmetrical or swirling flow field can be observed. The calculations indicate that measured values in test stands of inlet ducts with a Reynolds number that is not comparable to the full-size model should be examined carefully. The optimization of the ring-type inlet chamber leads to a geometry with minimum losses from an aerodynamic and mechanical point of view. The greatest benefit can be realized by an optimized flow into the downstream following stator blades. The analysis of the inlet scroll unveils a negative influence of eccentrically arranged pipe ends on the leakage losses. For the casings investigated a very compact design leads to minimum total losses. When choosing the scroll topology, the leakage losses should be minded, as the link between scroll size and casing deformation is not negligible. A comparison of both optimized inlet chambers shows that they have the same loss level. The selection of one concept should take into account stress distributions and the offsets of casing flanges including their consequences.

  18. Intercooler flow path for gas turbines: CFD design and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, A.K.; Gollahalli, S.R.; Carter, F.L. [Univ. of Oklahoma, Norman, OK (United States)] [and others

    1995-10-01

    The Advanced Turbine Systems (ATS) program was created by the U.S. Department of Energy to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for generating electricity. Intercooling or cooling of air between compressor stages is a feature under consideration in advanced cycles for the ATS. Intercooling entails cooling of air between the low pressure (LP) and high pressure (BP) compressor sections of the gas turbine. Lower air temperature entering the HP compressor decreases the air volume flow rate and hence, the compression work. Intercooling also lowers temperature at the HP discharge, thus allowing for more effective use of cooling air in the hot gas flow path. The thermodynamic analyses of gas turbine cycles with modifications such as intercooling, recuperating, and reheating have shown that intercooling is important to achieving high efficiency gas turbines. The gas turbine industry has considerable interest in adopting intercooling to advanced gas turbines of different capacities. This observation is reinforced by the US Navys Intercooled-Recuperative (ICR) gas turbine development program to power the surface ships. In an intercooler system, the air exiting the LP compressor must be decelerated to provide the necessary residence time in the heat exchanger. The cooler air must subsequently be accelerated towards the inlet of the HP compressor. The circumferential flow nonuniformities inevitably introduced by the heat exchanger, if not isolated, could lead to rotating stall in the compressors, and reduce the overall system performance and efficiency. Also, the pressure losses in the intercooler flow path adversely affect the system efficiency and hence, must be minimized. Thus, implementing intercooling requires fluid dynamically efficient flow path with minimum flow nonuniformities and consequent pressure losses.

  19. A condenser for very high power steam turbines

    International Nuclear Information System (INIS)

    Gardey, Robert.

    1973-01-01

    The invention relates to a condenser for very high power steam turbines under the masonry-block supporting the low-pressure stages of the turbine, that condenser comprises two horizontal aligned water-tube bundles passing through the steam-exhaust sleeves of the low-pressure stages, on both sides of a common inlet water box. The invention can be applied in particular to the 1000-2000 MW turbines of light water nuclear power stations [fr

  20. Numerical modeling of the effects of a free surface on the operating characteristics of Marine Hydrokinetic Turbines

    Science.gov (United States)

    Adamski, Samantha; Aliseda, Alberto

    2012-11-01

    Marine Hydrokinetic (MHK) turbines are a growing area of research in the renewable energy field because tidal currents are a highly predictable clean energy source. The presence of a free surface may influence the flow around the turbine and in the wake, critically affecting turbine performance and environmental effects through modification of wake physical variables. The characteristic Froude number that control these processes is still a matter of controversy, with the channel depth and turbine's depth, blade tip depth and diameter as potential candidates for a length scale used in literature. We use the Volume of Fluid model to track the free surface dynamics in a RANS simulation with a BEMT model of the turbine to understand the physics of the wake-free surface interactions. Pressure and flow rate boundary conditions for channel's inlet, outlet and air side have been tested in an effort to determine the optimum set of simulation conditions for MHK turbines in rivers or estuaries. Stability and accuracy in terms of power extraction and kinetic and potential energy budgets are considered. The goal of this research is to determine, quantitatively in non dimensional parameter space, the limit between negligible and significant free surface effects on MHK turbine analysis. Supported by DOE through the National Northwest Marine Renewable Energy Center.

  1. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    International Nuclear Information System (INIS)

    Roth, S; Hasmatuchi, V; Botero, F; Farhat, M; Avellan, F

    2010-01-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  2. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    Science.gov (United States)

    Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.

    2010-08-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  3. Experimental Combustion Dynamics Behavior of a Multi-Element Lean Direct Injection (LDI) Gas Turbine Combustor

    Science.gov (United States)

    Acosta, Waldo A.; Chang, Clarence T.

    2016-01-01

    An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72.

  4. Operation of a T63 Turbine Engine Using F24 Contaminated Skydrol 5 Hydraulic Fluid

    Science.gov (United States)

    2016-09-01

    hydraulic fluids were originally developed by the Douglas Aircraft Company during the 1940s to reduce fire risk from leaking high pressure mineral oil...thermal load demands in modern hydraulic systems and reduced density to lower weight impact on the aircraft. Eastman Chemical is the current producer of...AFRL-RQ-WP-TM-2016-0155 OPERATION OF A T63 TURBINE ENGINE USING F24 CONTAMINATED SKYDROL 5 HYDRAULIC FLUID Matthew J. Wagner (AFRL/RQTM) James

  5. Study of Flow Patterns in Radial and Back Swept Turbine Rotor under Design and Off-Design Conditions

    OpenAIRE

    Samip Shah; Salim Channiwala; Digvijay Kulshreshtha; Gaurang Chaudhari

    2016-01-01

    Paper details the numerical investigation of flow patterns in a conventional radial turbine compared with a back swept design for same application. The blade geometry of a designed turbine from a 25kW micro gas turbine was used as a baseline. A back swept blade was subsequently designed for the rotor, which departed from the conventional radial inlet blade angle to incorporate up to 25° inlet blade angle. A comparative numerical analysis between the two geometries is presented. While opera...

  6. Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Petit, O; Nilsson, H [Division of Fluid Mechanics, Chalmers University of Technology, Hoersalsvaegen 7A, SE-41296 Goeteborg (Sweden); Mulu, B; Cervantes, M, E-mail: olivierp@chalmers.s [Division of Fluid Mechanics, Luleaa University of Technology, SE-971 87 Luleaa (Sweden)

    2010-08-15

    The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Alvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.

  7. Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model

    Science.gov (United States)

    Petit, O.; Mulu, B.; Nilsson, H.; Cervantes, M.

    2010-08-01

    The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Älvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.

  8. Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model

    International Nuclear Information System (INIS)

    Petit, O; Nilsson, H; Mulu, B; Cervantes, M

    2010-01-01

    The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Alvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.

  9. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    Science.gov (United States)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  10. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  11. Experimental investigation on the off-design performance of a small-sized humid air turbine cycle

    International Nuclear Information System (INIS)

    Wei, Chenyu; Zang, Shusheng

    2013-01-01

    This research aimed to study the improvement of the gas turbine performance of a humid air turbine (HAT) cycle at low pressure ratio and at low turbine inlet temperature (TIT). To achieve this goal, an off-design performance test investigation was conducted on a small-sized, two-shaft gas turbine test rig. The test rig consisted of a centrifugal compressor, a centripetal turbine, an individual direct flow flame tube, a free power turbine, a dynamometer, and a saturator with structured packing. Two different conditions were considered for the test investigation: in Case I, the control system kept the fuel flow constant at 57 kg/h, and in Case II, the turbine inlet temperature was kept constant at 665 °C. In Case I, when the air humidity ratio increased from 30 g/kg dry air (DA) to 43 g/kg DA, the power output increased by 3 kW. At the same time, the turbine inlet temperature decreased by 19 °C, and the NO x emissions were reduced from 25 ppm to 16 ppm. In Case II, when the air humidity ratio increased from 48 g/kg DA to 57 g/kg DA, the power output increased by 9.5 kW. Based on the actual gas turbine parts, characteristics, and test conditions, the off-design performance of the HAT cycle was calculated. Upon comparing the measured and calculated results, the HAT cycle was found to perform better than the two-shaft cycle in terms of specific work, efficiency, and specific fuel consumption. The effect of performance improvement became more obvious as the air humidity ratio increased. Under the same inlet air flow, turbine inlet temperature, and power output, the surge margin on compressor curves became enlarged as the humidity ratio increased. The off-design performance of a HAT cycle with regenerator was also investigated. The results show that the highest efficiency can be increased by 3.1%, which will greatly improve the gas turbine performance. -- Highlights: ► We built a flexible small-size test rig of HAT cycle gas turbine and the real test data were

  12. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Computational fluid dynamics simulations are performed as part of a process to design a vortex generator array for a two-dimensional inlet for Mach 1.6. The objective is to improve total pressure recovery a on at the engine face of the inlet. Both vane-type and ramp-type vortex generators are examined.

  13. Computational fluid dynamics analysis in support of the simplex turbopump design

    Science.gov (United States)

    Garcia, Roberto; Griffin, Lisa W.; Benjamin, Theodore G.; Cornelison, Joni W.; Ruf, Joseph H.; Williams, Robert W.

    1994-01-01

    Simplex is a turbopump that is being developed at NASA/Marshall Space Flight Center (MSFC) by an in-house team. The turbopump consists of a single-stage centrifugal impeller, vaned-diffuser pump powered by a single-stage, axial, supersonic, partial admission turbine. The turbine is driven by warm gaseous oxygen tapped off of the hybrid motor to which it will be coupled. Rolling element bearings are cooled by the pumping fluid. Details of the configuration and operating conditions are given by Marsh. CFD has been used extensively to verify one-dimensional (1D) predictions, assess aerodynamic and hydrodynamic designs, and to provide flow environments. The complete primary flow path of the pump-end and the hot gas path of the turbine, excluding the inlet torus, have been analyzed. All CFD analyses conducted for the Simplex turbopump employed the pressure based Finite Difference Navier-Stokes (FDNS) code using a standard kappa-epsilon turbulence model with wall functions. More detailed results are presented by Garcia et. al. To support the team, loading and temperature results for the turbine rotor were provided as inputs to structural and thermal analyses, and blade loadings from the inducer were provided for structural analyses.

  14. The AGT 101 advanced automotive gas turbine

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  15. Gas turbine structural mounting arrangement between combustion gas duct annular chamber and turbine vane carrier

    Science.gov (United States)

    Wiebe, David J.; Charron, Richard C.; Morrison, Jay A.

    2016-10-18

    A gas turbine engine ducting arrangement (10), including: an annular chamber (14) configured to receive a plurality of discrete flows of combustion gases originating in respective can combustors and to deliver the discrete flows to a turbine inlet annulus, wherein the annular chamber includes an inner diameter (52) and an outer diameter (60); an outer diameter mounting arrangement (34) configured to permit relative radial movement and to prevent relative axial and circumferential movement between the outer diameter and a turbine vane carrier (20); and an inner diameter mounting arrangement (36) including a bracket (64) secured to the turbine vane carrier, wherein the bracket is configured to permit the inner diameter to move radially with the outer diameter and prevent axial deflection of the inner diameter with respect to the outer diameter.

  16. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.

    2012-08-10

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.

  17. Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Kim, Y.W.; Tong, T.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Injestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines featuring high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. A designer is concerned about the level of stresses in the turbine rotor disk and its durability, both of which are affected significantly by the disk temperature distribution. This distribution also plays a major role in the radial position of the blade tip and thus, in establishing the clearance between the tip and the shroud. To counteract mainstream gas ingestion as well as to cool the rotor and the stator disks, it is necessary to inject cooling air (bled from the compressor discharge) into the wheel space. Since this bleeding of compressor air imposes a penalty on the engine cycle performance, the designers of disk cavity cooling and sealing systems need to accomplish these tasks with the minimum possible amount of bleed air without risking disk failure. This requires detailed knowledge of the flow characteristics and convective heat transfer in the cavity. The flow in the wheel space between the rotor and stator disks is quite complex. It is usually turbulent and contains recirculation regions. Instabilities such as vortices oscillating in space have been observed in the flow. It becomes necessary to obtain both a qualitative understanding of the general pattern of the fluid motion as well as a quantitative map of the velocity and pressure fields.

  18. Investigation into the effects of operating conditions and design parameters on the creep life of high pressure turbine blades in a stationary gas turbine engine

    OpenAIRE

    Eshati, Samir; Abu, Abdullahi; Laskaridis, Panagiotis; Haslam, Anthony

    2011-01-01

    A physics–based model is used to investigate the relationship between operating conditions and design parameters on the creep life of a stationary gas turbine high pressure turbine (HPT) blade. A performance model is used to size the blade and to determine its stresses. The effects of radial temperature distortion, turbine inlet temperature, ambient temperature and compressor degradation on creep life are then examined. The results show variations in creep life and failure locat...

  19. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  20. Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling

    International Nuclear Information System (INIS)

    Shirazi, Ali; Najafi, Behzad; Aminyavari, Mehdi; Rinaldi, Fabio; Taylor, Robert A.

    2014-01-01

    In this study, a mathematical model of an ice thermal energy storage (ITES) system for gas turbine cycle inlet air cooling is developed and thermal, economic, and environmental (emissions cost) analyses have been applied to the model. While taking into account conflicting thermodynamic and economic objective functions, a multi-objective genetic algorithm is employed to obtain the optimal design parameters of the plant. Exergetic efficiency is chosen as the thermodynamic objective while the total cost rate of the system including the capital and operational costs of the plant and the social cost of emissions, is considered as the economic objective. Performing the optimization procedure, a set of optimal solutions, called a Pareto front, is obtained. The final optimal design point is determined using TOPSIS decision-making method. This optimum solution results in the exergetic efficiency of 34.06% and the total cost of 28.7 million US$ y −1 . Furthermore, the results demonstrate that inlet air cooling using an ITES system leads to 11.63% and 3.59% improvement in the output power and exergetic efficiency of the plant, respectively. The extra cost associated with using the ITES system is paid back in 4.72 years with the income received from selling the augmented power. - Highlights: • Mathematical model of an ITES system for a GT cycle inlet air cooling is developed. • Exergetic, economic and environmental analyses were performed on the developed model. • Exergy efficiency and total cost rate were considered as the objective functions. • The total cost rate involves the capital, maintenance, operational and emissions costs. • Multi-objective optimization was applied to obtain the Pareto front

  1. A Study on the Performance of the Split Reaction Water Turbine with Guide Ribs

    Science.gov (United States)

    Allen, Deuel H.; Villanueva, Eliseo P.

    2015-09-01

    The development of technologies that make use of renewable energy is of great significance presently. A new kind of turbine called Split Reaction Water Turbine (SRWT) using PVC pipes as material is a major contribution towards harnessing the energy potentials of small stream low head water resources. SRWTs of diameter to height ratio (D/H = 110 cm/160 cm) were tested at the MSU-IIT College of Engineering Fluid Engineering Laboratory. Data on volumetric flow and pressure head at the turbine inlet of the SRWT were recorded using National Instrument Data Processing System using LabView software. In later experiments, guide ribs were installed at the vane of the exit nozzles in order to determine the difference in the performance of the ribbed and the non-ribbed SRWT. Simulations of the running SRWT were conducted using SOLIDWORKS software. Results of the simulations aided in the thorough analyses of the data from the experimental runs. A comparison of data from the ribbed and non-ribbed SRWT shows that guide ribs were effective in directing the momentum of the exiting water to improve the speed of rotation. In this study, the increase in the speed of the Split Reaction Water Turbine was as much as 46%.

  2. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  3. Aerodynamic performance of winglets covering the tip gap inlet in a turbine cascade

    International Nuclear Information System (INIS)

    Lee, Sang Woo; Kim, Seon Ung; Kim, Kyoung Hoon

    2012-01-01

    Highlights: ► We test aerodynamics of PS and LEPS winglets for three winglet widths. ► PS winglet reduces tip leakage loss but increases loss in the passage vortex region. ► Mass-averaged loss reductions by PS and LEPS winglets are marginal. ► The loss reductions are much smaller than that by a cavity squealer tip. - Abstract: The aerodynamic performance of two different kinds of winglets covering the tip gap inlet of a plane tip, a “pressure-side” (PS) winglet and a “leading-edge and pressure-side” (LEPS) winglet, has been investigated in a turbine cascade. For a tip gap height-to-chord ratio of h/c = 2.0%, their width-to-pitch ratio is changed to be w/p = 2.64, 5.28, and 10.55%. The PS winglet reduces aerodynamic loss in the tip leakage vortex region as well as in an area downstream of the winglet-pressure surface corner, whereas it increases aerodynamic loss in the central area of the passage vortex region. The additional leading-edge winglet portion of the LEPS winglet reduces aerodynamic loss considerably on the casing wall side of the passage vortex region but delivers a noticeable aerodynamic loss increase on its mid-span side. These local trends are deepened with increasing w/p. However, the mass-averaged aerodynamic loss reductions by installing the PS and LEPS winglets in comparison with the baseline no winglet data are only marginal even for w/p = 10.55% and found much smaller than that by employing a cavity squealer tip.

  4. Steam turbine power plant having improved testing method and system for turbine inlet valves associated with downstream inlet valves preferably having feedforward position managed control

    International Nuclear Information System (INIS)

    Lardi, F.; Ronnen, U.G.

    1981-01-01

    A throttle valve test system for a large steam turbine functions in a turbine control system to provide throttle and governor valve test operations. The control system operates with a valve management capability to provide for pre-test governor valve mode transfer when desired, and it automatically generates feedforward valve position demand signals during and after valve tests to satisfy test and load control requirements and to provide smooth transition from valve test status to normal single or sequential governor valve operation. A digital computer is included in the control system to provide control and test functions in the generation of the valve position demand signals

  5. A study on flow development in an APU-style inlet and its effect on centrifugal compressor performance

    Science.gov (United States)

    Lou, Fangyuan

    The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary. A research facility for the purpose of performing an experimental investigation of the flow field inside an APU-style inlet was developed. A subcritical air ejector is used to continuously flow the inlet at desired corrected mass flow rates. The facility is capable of flowing the APU inlet over a wide range of corrected mass flow rate that matches the same Mach numbers as engine operating conditions. Additionally, improvement in the system operational steadiness was achieved by tuning the pressure controller using a PID control method and utilizing multi-layer screens downstream of the APU inlet. Less than 1% relative unsteadiness was achieved for full range operation. The flow field inside the rectangular-sectioned 90? bend of the APU-style inlet was measured using a 3-Component LDV system. The structures for both primary flow and the secondary flow inside the bend were resolved. Additionally, the effect of upstream geometry on the flow development in the downstream bend was also investigated. Furthermore, a Single Stage Centrifugal Compressor research facility was developed at Purdue University in collaboration with Honeywell to operate the APU-style inlet at engine conditions with a compressor. To operate the facility, extensive infrastructure for facility health monitoring and performance control (including lubrication

  6. Computational Fluid Dynamics Modeling Three-Dimensional Unsteady Turbulent Flow and Excitation Force in Partial Admission Air Turbine

    Directory of Open Access Journals (Sweden)

    Yonghui Xie

    2013-01-01

    Full Text Available Air turbines are widely used to convert kinetic energy into power output in power engineering. The unsteady performance of air turbines with partial admission not only influences the aerodynamic performance and thermodynamic efficiency of turbine but also generates strong excitation force on blades to impair the turbine safely operating. Based on three-dimensional viscous compressible Navier-stokes equations, the present study employs RNG (Renormalization group k-ε turbulence model with finite volume discretization on air turbine with partial admission. Numerical models of four different admission rates with full annulus are built and analyzed via CFD (computational fluid dynamics modeling unsteady flows. Results indicate that the unsteady time-averaged isentropic efficiency is lower than the steady isentropic efficiency, and this difference rises as unsteady isentropic efficiency fluctuates stronger when the admission rate is reduced. The rotor axial and tangential forces with time are provided for all four admission rates. The low frequency excitation forces generated by partial admission are extraordinarily higher than the high frequency excitation forces by stator wakes.

  7. Thermal Fluid Engineering

    International Nuclear Information System (INIS)

    Jang, Byeong Ju

    1984-01-01

    This book is made up of 5 chapters. They are fluid mechanics, fluid machines, Industrial thermodynamics, steam boiler and steam turbine. It introduces hydrostatics, basic theory of fluid movement and law of momentum. It also deals with centrifugal pump, axial flow pump, general hydraulic turbine, and all phenomena happening in the pump. It covers the law of thermodynamics, perfect gas, properties of steam, and flow of gas and steam and water tube boiler. Lastly it explains basic format, theory, loss and performance as well as principle part of steam turbine.

  8. Turbine component having surface cooling channels and method of forming same

    Science.gov (United States)

    Miranda, Carlos Miguel; Trimmer, Andrew Lee; Kottilingam, Srikanth Chandrudu

    2017-09-05

    A component for a turbine engine includes a substrate that includes a first surface, and an insert coupled to the substrate proximate the substrate first surface. The component also includes a channel. The channel is defined by a first channel wall formed in the substrate and a second channel wall formed by at least one coating disposed on the substrate first surface. The component further includes an inlet opening defined in flow communication with the channel. The inlet opening is defined by a first inlet wall formed in the substrate and a second inlet wall defined by the insert.

  9. Optimum Performance Enhancing Strategies of the Gas Turbine Based on the Effective Temperatures

    Directory of Open Access Journals (Sweden)

    Ibrahim Thamir K.

    2016-01-01

    Full Text Available Gas turbines (GT have come to play a significant role in distributed energy systems due to its multi-fuel capability, compact size and low environmental impact and reduced cost. Nevertheless, the low electrical efficiency, typically about 30% (LHV, is an important obstruction to the development of the GT plants. New strategies are designed for the GT plant, to increase the overall performance based on the operational modeling and optimization of GT power plants. The enhancing strategies effect on the GT power plant’s performance (with intercooler, two-shaft, reheat and regenerative based on the real power plant of GT. An analysis based on thermodynamics has been carried out on the modifications of the cycle configurations’ enhancements. Then, the results showed the effect of the ambient and turbine inlet temperatures on the performance of the GT plants to select an optimum strategy for the GT. The performance model code to compare the strategies of the GT plants were developed utilizing the MATLAB software. The results show that, the best thermal efficiency occurs in the intercooler-regenerative-reheated GT strategy (IRHGT; it decreased from 51.5 to 48%, when the ambient temperature increased (from 273 to 327K. Furthermore, the thermal efficiency of the GT for the strategies without the regenerative increased (about 3.3%, while thermal efficiency for the strategies with regenerative increased (about 22% with increased of the turbine inlet temperature. The lower thermal efficiency occurs in the IHGT strategy, while the higher thermal efficiency occurs in the IRHGT strategy. However, the power output variation is more significant at a higher value of the turbine inlet temperature. The simulation model gives a consistent result compared with Baiji GT plant. The extensive modeling performed in this study reveals that; the ambient temperature and turbine inlet temperature are strongly influenced on the performance of GT plant.

  10. RTOD- RADIAL TURBINE OFF-DESIGN PERFORMANCE ANALYSIS

    Science.gov (United States)

    Glassman, A. J.

    1994-01-01

    The RTOD program was developed to accurately predict radial turbine off-design performance. The radial turbine has been used extensively in automotive turbochargers and aircraft auxiliary power units. It is now being given serious consideration for primary powerplant applications. In applications where the turbine will operate over a wide range of power settings, accurate off-design performance prediction is essential for a successful design. RTOD predictions have already illustrated a potential improvement in off-design performance offered by rotor back-sweep for high-work-factor radial turbines. RTOD can be used to analyze other potential performance enhancing design features. RTOD predicts the performance of a radial turbine (with or without rotor blade sweep) as a function of pressure ratio, speed, and stator setting. The program models the flow with the following: 1) stator viscous and trailing edge losses; 2) a vaneless space loss between the stator and the rotor; and 3) rotor incidence, viscous, trailing-edge, clearance, and disk friction losses. The stator and rotor viscous losses each represent the combined effects of profile, endwall, and secondary flow losses. The stator inlet and exit and the rotor inlet flows are modeled by a mean-line analysis, but a sector analysis is used at the rotor exit. The leakage flow through the clearance gap in a pivoting stator is also considered. User input includes gas properties, turbine geometry, and the stator and rotor viscous losses at a reference performance point. RTOD output includes predicted turbine performance over a specified operating range and any user selected flow parameters. The RTOD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 100K of 8 bit bytes. The RTOD program was developed in 1983.

  11. Integral Engine Inlet Particle Separator. Volume 2. Design Guide

    Science.gov (United States)

    1975-08-01

    herein will be used in the design of integral inlet particle separators for future Army aircraft gas turbine engines. Apprupriate technical personnel...into the comprensor at some future date. 5. A typical scavenge vane design Js; shown in Figures 85 and 86. The important features of the scavenge...service passageweys, for cooling of oil, and for directing sand and air into the scroll. Orientetion of the vanes is set by collection efficiency

  12. Application of computational fluid dynamics (CFD) simulation in a vertical axis wind turbine (VAWT) system

    Science.gov (United States)

    Kao, Jui-Hsiang; Tseng, Po-Yuan

    2018-01-01

    The objective of this paper is to describe the application of CFD (Computational fluid dynamics) technology in the matching of turbine blades and generator to increase the efficiency of a vertical axis wind turbine (VAWT). A VAWT is treated as the study case here. The SST (Shear-Stress Transport) k-ω turbulence model with SIMPLE algorithm method in transient state is applied to solve the T (torque)-N (r/min) curves of the turbine blades at different wind speed. The T-N curves of the generator at different CV (constant voltage) model are measured. Thus, the T-N curves of the turbine blades at different wind speed can be matched by the T-N curves of the generator at different CV model to find the optimal CV model. As the optimal CV mode is selected, the characteristics of the operating points, such as tip speed ratio, revolutions per minute, blade torque, and efficiency, can be identified. The results show that, if the two systems are matched well, the final output power at a high wind speed of 9-10 m/s will be increased by 15%.

  13. Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Leyte, R.; Zamora-Mata, J.M.; Torres-Aldaco, A. [Universidad Autonoma Metropolitana-Iztapalapa, Departamento de Ingenieria de Procesos e Hidraulica, San Rafael Atlixco 186, Col Vicentina 09340, Iztapalapa, Mexico, D.F. (Mexico); Toledo-Velazquez, M. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica, Seccion de Estudios de Posgrado e Investigacion, Laboratorio de Ingenieria Termica e Hidraulica Aplicada, Unidad Profesional Adolfo Lopez Mateos, Edificio 5, 3er piso SEPI-ESIME, C.P. 07738, Col. Lindavista, Mexico D.F. (Mexico); Salazar-Pereyra, M. [Tecnologico de Estudios Superiores de Ecatepec, Division de Ingenieria Mecatronica e Industrial, Posgrado en Ciencias en Ingenieria Mecatronica, Av. Tecnologico s/n, Col. Valle de Anahuac, C.P. 55210, Ecatepec de Morelos, Estado de Mexico (Mexico)

    2010-02-15

    This paper addresses the impact of excess air on turbine inlet temperature, power, and thermal efficiency at different pressure ratios. An explicit relationship is developed to determine the turbine inlet temperature as a function of excess air, pressure ratio and relative humidity. The effect of humidity on the calculation of excess air to achieve a pre-established power output is analyzed and presented. Likewise it is demonstrated that dry air calculations provide a valid upper bound for the performance of a gas turbine under a wet environment. (author)

  14. Analysis of the pump-turbine S characteristics using the detached eddy simulation method

    Science.gov (United States)

    Sun, Hui; Xiao, Ruofu; Wang, Fujun; Xiao, Yexiang; Liu, Weichao

    2015-01-01

    Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.

  15. Advanced Instrumentation for Measuring Fluid-Structure Coupling Phenomena in the Guide Vanes Cascade of a Pump-Turbine Scale Model

    OpenAIRE

    Roth, Steven; Hasmatuchi, Vlad; Botero, Francisco; Farhat, Mohamed; Avellan, François

    2010-01-01

    In the present study, the fluid-structure coupling is investigated in the guide vanes of a pump-turbine scale model placed in one of the test rigs of the Laboratory for Hydraulic Machines (EPFL) in Lausanne. The paper focuses on the advanced instrumentation used to get reliable and complete fluid-structure coupling results. Semi-conductor strain gages are installed on three guide vanes which are especially weakened to account for stronger fluid-structure coupling phenomena. These are statical...

  16. Cooling system with compressor bleed and ambient air for gas turbine engine

    Science.gov (United States)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  17. Parametric Analysis of a Two-Shaft Aeroderivate Gas Turbine of 11.86 MW

    Directory of Open Access Journals (Sweden)

    R. Lugo-Leyte

    2015-08-01

    Full Text Available The aeroderivate gas turbines are widely used for power generation in the oil and gas industry. In offshore marine platforms, the aeroderivative gas turbines provide the energy required to drive mechanically compressors, pumps and electric generators. Therefore, the study of the performance of aeroderivate gas turbines based on a parametric analysis is relevant to carry out a diagnostic of the engine, which can lead to operational as well as predictive and/or corrective maintenance actions. This work presents a methodology based on the exergetic analysis to estimate the irrevesibilities and exergetic efficiencies of the main components of a two-shaft aeroderivate gas turbine. The studied engine is the Solar Turbine Mars 100, which is rated to provide 11.86 MW. In this engine, the air is compressed in an axial compressor achieving a pressure ratio of 17.7 relative to ambient conditions and a high pressure turbine inlet temperature of 1220 °C. Even if the thermal efficiency associated to the pressure ratio of 17.7 is 1% lower than the maximum thermal efficiency, the irreversibilities related to this pressure ratio decrease approximately 1 GW with respect to irreversibilities of the optimal pressure ratio for the thermal efficiency. In addition, this paper contributes to develop a mathematical model to estimate the high turbine inlet temperature as well as the pressure ratio of the low and high pressure turbines.

  18. Optimal sensor placement for control of a supersonic mixed-compression inlet with variable geometry

    Science.gov (United States)

    Moore, Kenneth Thomas

    A method of using fluid dynamics models for the generation of models that are useable for control design and analysis is investigated. The problem considered is the control of the normal shock location in the VDC inlet, which is a mixed-compression, supersonic, variable-geometry inlet of a jet engine. A quasi-one-dimensional set of fluid equations incorporating bleed and moving walls is developed. An object-oriented environment is developed for simulation of flow systems under closed-loop control. A public interface between the controller and fluid classes is defined. A linear model representing the dynamics of the VDC inlet is developed from the finite difference equations, and its eigenstructure is analyzed. The order of this model is reduced using the square root balanced model reduction method to produce a reduced-order linear model that is suitable for control design and analysis tasks. A modification to this method that improves the accuracy of the reduced-order linear model for the purpose of sensor placement is presented and analyzed. The reduced-order linear model is used to develop a sensor placement method that quantifies as a function of the sensor location the ability of a sensor to provide information on the variable of interest for control. This method is used to develop a sensor placement metric for the VDC inlet. The reduced-order linear model is also used to design a closed loop control system to control the shock position in the VDC inlet. The object-oriented simulation code is used to simulate the nonlinear fluid equations under closed-loop control.

  19. Intracycle angular velocity control of cross-flow turbines

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian

    2017-08-01

    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  20. Development and Implementation of Mechanistic Terry Turbine Models in RELAP-7 to Simulate RCIC Normal Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC (Reactor Core Isolation Cooling) systems in Fukushima accidents and extend BWR RCIC and PWR AFW (Auxiliary Feed Water) operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia’s original work [1], have been developed and implemented in the RELAP-7 code to simulate the RCIC system. In 2016, our effort has been focused on normal working conditions of the RCIC system. More complex off-design conditions will be pursued in later years when more data are available. In the Sandia model, the turbine stator inlet velocity is provided according to a reduced-order model which was obtained from a large number of CFD (computational fluid dynamics) simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine stator inlet. The models include both an adiabatic expansion process inside the nozzle and a free expansion process outside of the nozzle to ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input information for the Terry turbine rotor model. The analytical models for the nozzle were validated with experimental data and benchmarked with CFD simulations. The analytical models generally agree well with the experimental data and CFD simulations. The analytical models are suitable for implementation into a reactor system analysis code or severe accident code as part of mechanistic and dynamical models to understand the RCIC behaviors. The newly developed nozzle models and modified turbine rotor model according to the Sandia’s original work have been implemented into RELAP-7, along with the original Sandia Terry turbine model. A new pump model has also been developed and implemented to couple with the Terry turbine model. An input

  1. Aerodynamic performance of winglets covering the tip gap inlet in a turbine cascade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Woo, E-mail: swlee@kumoh.ac.kr [Department of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Kim, Seon Ung; Kim, Kyoung Hoon [Department of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk 730-701 (Korea, Republic of)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We test aerodynamics of PS and LEPS winglets for three winglet widths. Black-Right-Pointing-Pointer PS winglet reduces tip leakage loss but increases loss in the passage vortex region. Black-Right-Pointing-Pointer Mass-averaged loss reductions by PS and LEPS winglets are marginal. Black-Right-Pointing-Pointer The loss reductions are much smaller than that by a cavity squealer tip. - Abstract: The aerodynamic performance of two different kinds of winglets covering the tip gap inlet of a plane tip, a 'pressure-side' (PS) winglet and a 'leading-edge and pressure-side' (LEPS) winglet, has been investigated in a turbine cascade. For a tip gap height-to-chord ratio of h/c = 2.0%, their width-to-pitch ratio is changed to be w/p = 2.64, 5.28, and 10.55%. The PS winglet reduces aerodynamic loss in the tip leakage vortex region as well as in an area downstream of the winglet-pressure surface corner, whereas it increases aerodynamic loss in the central area of the passage vortex region. The additional leading-edge winglet portion of the LEPS winglet reduces aerodynamic loss considerably on the casing wall side of the passage vortex region but delivers a noticeable aerodynamic loss increase on its mid-span side. These local trends are deepened with increasing w/p. However, the mass-averaged aerodynamic loss reductions by installing the PS and LEPS winglets in comparison with the baseline no winglet data are only marginal even for w/p = 10.55% and found much smaller than that by employing a cavity squealer tip.

  2. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  3. Fiscal 1980 Sunshine Project research report. Removal technology of H{sub 2}S; 1980 nendo ryuka suiso jokyo gijutsu no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report summarizes the fiscal 1980 research result on removal process and equipment of H{sub 2}S from condensate and waste gas of turbine inlet steam and turbine outlet condensers of geothermal power plants. In the research on continuous measurement method of H{sub 2}S in geothermal steam, the continuous measurement equipment was completed by improving the heat conduction type steam qualitative dilution equipment developed in last year. The test result of this equipment in Onikobe geothermal power plant gave interesting data showing cyclic fluctuation of H{sub 2}S concentration. In the research on treatment of turbine inlet steam, both physical and chemical treatments were unpractical because of their very expensive costs. In the research on treatment of turbine outlet fluid by selecting RET method for waste gas and diffusion method for condensate, the field test result by using real fluid in geothermal power plants made it possible to select the optimum process according to conditions of turbine outlet fluid, and to estimate removal costs of H{sub 2}S precisely. (NEDO)

  4. Effect of blade sweep on inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2015-02-01

    Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.

  5. Hydrocoil Turbine Performance at 3 m, 4 m, and 5 m Head Analysis Using Computational Fluid Dynamics Method

    Science.gov (United States)

    Luthfie, A. A.; Pratiwi, S. E.; Hidayatulloh, P.

    2018-03-01

    Indonesia is a country which has abundant renewable energy resources, comprises of water, solar, geothermal, wind, bioenergy, and ocean energy. Utilization of water energy through MHP is widely applied in remote areas in Indonesia. This utilization requires a water-converting device known as a water turbine. Rosefsky (2010) developed a water turbine known as the Hydrocoil turbine. This turbine is an axial turbine which is a modification of screw turbine. This turbine has a pitch length that decreases in the direction of the water flow and is able to work at relatively low water flow and head. The use of Hydrocoil turbine has not been widely applied in Indonesia, therefore this research is focused on analyzing the performance of Hydrocoil turbine. The analysis was performed using Computational Fluid Dynamics (CFD) method. Hydrocoil turbine performance analysis was performed at 3 m, 4 m, and 5 m head respectively as well as rotational speed variations of 100 rpm, 300 rpm, 500 rpm, 700 rpm, 900 rpm, 1,100 rpm, 1,300 rpm, 1,500 rpm, 1,700 rpm, and 1,900 rpm. Based on simulation result, the largest power generated by the turbine at 3 m head is 1,134.06 W, while at 4 m and 5 m are 1,722.39 W and 2,231.49 W respectively. It is also found that the largest turbine’s efficiency at 3 m head is 93.22% while at 4 m and 5 m head are 94.6% and 89.88% respectively. The result also shows that the larger the head the greater the operational rotational speed range.

  6. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  7. HTR plus modern turbine technology for higher efficiencies

    International Nuclear Information System (INIS)

    Barnert, H.; Kugeler, K.

    1996-01-01

    The recent efficiency race for natural gas fired power plants with gas-plus steam-turbine-cycle, is shortly reviewed. The question 'can the HTR compete with high efficiencies?' is answered: Yes, it can - in principle. The gas-plus steam-turbine cycle, also called combi-cycle, is proposed to be taken into consideration here. A comparative study on the efficiency potential is made; it yields 54.5% at 1,050 deg. C gas turbine-inlet temperature. The mechanisms of release versus temperature in the HTR are summarized from the safety report of the HTR MODUL. A short reference is made to the experiences from the HTR-Helium Turbine Project HHT, which was performed in the Federal Republic of Germany in 1968 to 1981. (author). 8 figs,. 1 tab

  8. HTR plus modern turbine technology for higher efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Barnert, H; Kugeler, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik

    1996-08-01

    The recent efficiency race for natural gas fired power plants with gas-plus steam-turbine-cycle, is shortly reviewed. The question `can the HTR compete with high efficiencies?` is answered: Yes, it can - in principle. The gas-plus steam-turbine cycle, also called combi-cycle, is proposed to be taken into consideration here. A comparative study on the efficiency potential is made; it yields 54.5% at 1,050 deg. C gas turbine-inlet temperature. The mechanisms of release versus temperature in the HTR are summarized from the safety report of the HTR MODUL. A short reference is made to the experiences from the HTR-Helium Turbine Project HHT, which was performed in the Federal Republic of Germany in 1968 to 1981. (author). 8 figs,. 1 tab.

  9. Performance and Adaptive Surge-Preventing Acceleration Prediction of a Turboshaft Engine under Inlet Flow Distortion

    Directory of Open Access Journals (Sweden)

    Cao Dalu

    2017-01-01

    Full Text Available The intention of this paper is to research the inlet flow distortion influence on overall performance of turboshaft engine and put forward a method called Distortion Factor Item (DFI to improve the fuel supply plan for surge-preventing acceleration when turboshaft engine suddenly encounters inlet flow distortion. Based on the parallel compressor theory, steady-state and transition-state numerical simulation model of turboshaft engine with sub-compressor model were established for researching the influence of inlet flow distortion on turboshaft engine. This paper made a detailed analysis on the compressor operation from the aspects of performance and stability, and then analyzed the overall performance and dynamic response of the whole engine under inlet flow distortion. Improved fuel supply plan with DFI method was applied to control the acceleration process adaptively when encountering different inlet flow distortion. Several simulation examples about extreme natural environments were calculated to testify DFI method’s environmental applicability. The result shows that the inlet flow distortion reduces the air inflow and decreases the surge margin of compressor, and increase the engine exhaust loss. Encountering inlet flow distortion has many adverse influences such as sudden rotor acceleration, turbine inlet temperature rise and power output reduction. By using improved fuel supply plan with DFI, turboshaft engine above-idle acceleration can avoid surge effectively under inlet flow distortion with environmental applicability.

  10. Behavior of the turbine - regenerating preheaters functional assembly

    International Nuclear Information System (INIS)

    Bigu, Melania; Nita, Iulian Pavel; Tenescu, Mircea

    2004-01-01

    In the classical calculation of pressure distribution in the turbine-regenerating heaters' assembly a uniform distribution of feedwater enthalpy rise at each regenerating preheating step is usually assumed. This is accurately enough as a basis of designing of the preheating installation operating at rated power regime. But at partial regimes this is not totally valid since the preheaters are already shaped and the quasi-equal distribution does not satisfy the equation system describing the heat transfer correlations in these installations. A more detailed analysis shows that pressure in the feeding line preheaters and the bleeding steam flow rates at the turbine outlets are described physically by solving simultaneously the equations of hydrodynamic flow through the turbine and the equations of the heat transfer in the preheaters of the feedwater preheating line. This work approaches this more accurate solving method at least from a theoretical standing point; two cases are illustrated in the annexes of the work: a case of a secondary circuit with a single regenerating inlet and a case with two regenerating inlets. A classical - Panzer method of transformation of a many regenerative stages scheme may lead to one or another of the above cases. (authors)

  11. A Comparative Computational Fluid Dynamics Study on an Innovative Exhaust Air Energy Recovery Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    Seyedsaeed Tabatabaeikia

    2016-05-01

    Full Text Available Recovering energy from exhaust air systems of building cooling towers is an innovative idea. A specific wind turbine generator was designed in order to achieve this goal. This device consists of two Giromill vertical axis wind turbines (VAWT combined with four guide vanes and two diffuser plates. It was clear from previous literatures that no comprehensive flow behavior study had been carried out on this innovative device. Therefore, the working principle of this design was simulated using the Analysis System (ANSYS Fluent computational fluid dynamics (CFD package and the results were compared to experimental ones. It was perceived from the results that by introducing the diffusers and then the guide vanes, the overall power output of the wind turbine was improved by approximately 5% and 34%, respectively, compared to using VAWT alone. In the case of the diffusers, the optimum angle was found to be 7°, while for guide vanes A and B, it was 70° and 60° respectively. These results were in good agreement with experimental results obtained in the previous experimental study. Overall, it can be concluded that exhaust air recovery turbines are a promising form of green technology.

  12. Velocity and pressure measurements in guide vane clearance gap of a low specific speed Francis turbine

    Science.gov (United States)

    Thapa, B. S.; Dahlhaug, O. G.; Thapa, B.

    2016-11-01

    In Francis turbine, a small clearance gap between the guide vanes and the cover plates is usually required to pivot guide vanes as a part of governing system. Deflection of cover plates and erosion of mating surfaces causes this gap to increase from its design value. The clearance gap induces the secondary flow in the distributor system. This effects the main flow at the runner inlet, which causes losses in efficiency and instability. A guide vane cascade of a low specific speed Francis turbine has been developed for experimental investigations. The test setup is able to produce similar velocity distributions at the runner inlet as that of a reference prototype turbine. The setup is designed for particle image velocimetry (PIV) measurements from the position of stay vane outlet to the position of runner inlet. In this study, velocity and pressure measurements are conducted with 2 mm clearance gap on one side of guide vane. Leakage flow is observed and measured together with pressure measurements. It is concluded that the leakage flow behaves as a jet and mixes with the main flow in cross-wise direction and forms a vortex filament. This causes non-uniform inlet flow conditions at runner blades.

  13. Gas turbines and operation of gas turbines 2011; Gasturbinen und Gasturbinenbetrieb 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the VGB Conference at 11th and 12th May, 2011 in Offenbach/Main (Federal Republic of Germany), the following lectures were held: (1) The future of high temperature gas turbines in power plants (Konrad Vogeler); (2) Development of reliable thermal barrier coatings for high-loaded turbine and combustor parts (Hans-Peter Bossmann); (3) CCPP Irsching 4 with gas turbine SGT5-8000H, on the way to 60 % CC efficiency (Willibald Fischer); (4) First test results of MAN's new 6 MW gas turbine (Markus Beukenberg); (5) Design characteristics and key thermodynamic parameters of the recuperated 4 MW solar turbines Mercury 50 gas turbines: - Economics and environmental feasibility, - operating experience in combined cycle applications with recuperation (Ulrich Stang); (6) Medium size gas turbines - OEM concept for continued reduction of life cycle costs (Vladimir Navrotsky); (7) Fracture mechanical analysis on fatigue failures of gas turbine components: - Root cause analysis - fracture mechanics - stress corrosion cracking - examples of failure analysis (Peter Verstraete); (8) The effectiveness of blade superalloy reheat treatment (Michael Wood); (9) An innovative combustion technology for high efficient gas turbines (Christian Oliver Paschereit); (10) Damping of thermo-acoustic vibrations in gas turbine combustion chambers (Sermed Sadig); (11) Alstom GT13E2 combustor upgrade for Vattenfalls Berlin Mitte combined heat and power plant (Klaus Doebbeling); (12) Optimisation of air inlet filtration for dust, rain and humidity (Heiko Manstein); (13) Life cycle cost reduction through high efficiency membrane based air intake filters (Helmut Krah); (14) Status and impact of national, European and international standardization on GT plants; GT standardizing status quo? (Gerd Weber); (15) Technical and thermodynamic aspects of compresssed air energy storage (Peter Radgen); (16) Requirements on the gas turbine in the course of time - intelligent OEM-concepts to ensure reliable

  14. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    Science.gov (United States)

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2015-07-14

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  15. Condensation phenomena in a turbine blade passage

    International Nuclear Information System (INIS)

    Skillings, S.A.

    1989-02-01

    The mechanisms associated with the formation and growth of water droplets in the large low-pressure (LP) turbines used for electrical power generation are poorly understood and recent measurements have indicated that an unusually high loss is associated with the initial nucleation of these droplets. In order to gain an insight into the phenomena which arise in the turbine situation, some experiments were performed to investigate the behaviour of condensing steam flows in a blade passage. This study has revealed the fundamental significance of droplet nucleation in modifying the single-phase flow structure and results are presented which show the change in shock wave pattern when inlet superheat and outlet Mach number are varied. The trailing-edge shock wave structure appears considerably more robust towards variation of inlet superheat than purely one-dimensional considerations may suggest and the inadequacies of adopting a one-dimensional theory to analyse multi-dimensional condensing flows are demonstrated. Over a certain range of outlet Mach numbers an oscillating shock wave will establish in the throat region of the blade passage and this has been shown to interact strongly with droplet nucleation, resulting in a considerably increased mean droplet size. The possible implications of these results for turbine performance are also discussed. (author)

  16. Rotary turbine for reduced flows

    Energy Technology Data Exchange (ETDEWEB)

    Florio, G.; Scornaienchi, N.M. (Calabria Univ., Arcavacata di Rende (Italy). Dipt. di Meccanica)

    1988-06-01

    The principal characteristics of the steam turbine are its simple design (and therefore low fabrication cost) and capability of handling very small rates in the order grams/s. Another important characteristic is that the deflector channel receives fluid without incidence for any value of relative velocity. This allows for a wider field of application as compared with bladed turbines. Taking into account losses due to the fact that the fluid works at relatively high velocities for long sections and to fluid leakage, efficiencies have been estimated at about 40%.

  17. Efficient, Low Pressure Ratio Propulsor for Gas Turbine Engines

    Science.gov (United States)

    Gallagher, Edward J. (Inventor); Monzon, Byron R. (Inventor)

    2018-01-01

    A gas turbine engine includes a bypass flow passage that has an inlet and defines a bypass ratio in a range of approximately 8.5 to 13.5. A fan is arranged within the bypass flow passage. A first turbine is a 5-stage turbine and is coupled with a first shaft, which is coupled with the fan. A first compressor is coupled with the first shaft and is a 3-stage compressor. A second turbine is coupled with a second shaft and is a 2-stage turbine. The fan includes a row of fan blades that extend from a hub. The row includes a number (N) of the fan blades, a solidity value (R) at tips of the fab blades, and a ratio of N/R that is from 14 to 16.

  18. Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system

    International Nuclear Information System (INIS)

    Mohammadi, Amin; Kasaeian, Alibakhsh; Pourfayaz, Fathollah; Ahmadi, Mohammad Hossein

    2017-01-01

    Highlights: • Thermodynamic analysis of a hybrid CCHP system. • Sensitivity analysis is performed on the most important parameters of the system. • Pressure ratio and gas turbine inlet temperature are the most effective parameters. - Abstract: Hybrid power systems are gained more attention due to their better performance and higher efficiency. Widespread use of these systems improves environmental situation as they reduce the amount of fossil fuel consumption. In this paper a hybrid system composed of a gas turbine, an ORC cycle and an absorption refrigeration cycle is proposed as a combined cooling, heating and power system for residential usage. Thermodynamic analysis is applied on the system. Also a parametric analysis is carried out to investigate the effect of different parameters on the system performance and output cooling, heating and power. The results show that under design conditions, the proposed plant can produce 30 kW power, 8 kW cooling and almost 7.2 ton hot water with an efficiency of 67.6%. Moreover, parametric analysis shows that pressure ratio and gas turbine inlet temperature are the most important and influential parameters. After these two, ORC turbine inlet temperature is the most effective parameter as it can change both net output power and energy efficiency of the system.

  19. Computational study of the effects of shroud geometric variation on turbine performance in a 1.5-stage high-loaded turbine

    Science.gov (United States)

    Jia, Wei; Liu, Huoxing

    2013-10-01

    Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall. Besides, shroud leakage flow is one of the dominant sources of secondary flow in turbomachinery, which not only causes a deterioration of useful work but also a penalty on turbine efficiency. It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution significantly different to those measured. Even so, the influence of shroud leakage flow is seldom taken into consideration during the routine of turbine design due to insufficient understanding of its impact on end wall flows and turbine performance. In order to evaluate the impact of tip shroud geometry on turbine performance, a 3D computational investigation for 1.5-stage turbine with shrouded blades was performed in this paper. The following geometry parameters were varied respectively: Inlet cavity length and exit cavity length

  20. Design of an efficient space constrained diffuser for supercritical CO2 turbines

    Science.gov (United States)

    Keep, Joshua A.; Head, Adam J.; Jahn, Ingo H.

    2017-03-01

    Radial inflow turbines are an arguably relevant architecture for energy extraction from ORC and supercritical CO 2 power cycles. At small scale, design constraints can prescribe high exit velocities for such turbines, which lead to high kinetic energy in the turbine exhaust stream. The inclusion of a suitable diffuser in a radial turbine system allows some exhaust kinetic energy to be recovered as static pressure, thereby ensuring efficient operation of the overall turbine system. In supercritical CO 2 Brayton cycles, the high turbine inlet pressure can lead to a sealing challenge if the rotor is supported from the rotor rear side, due to the seal operating at rotor inlet pressure. An alternative to this is a cantilevered layout with the rotor exit facing the bearing system. While such a layout is attractive for the sealing system, it limits the axial space claim of any diffuser. Previous studies into conical diffuser geometries for supercritical CO 2 have shown that in order to achieve optimal static pressure recovery, longer geometries of a shallower cone angle are necessitated when compared to air. A diffuser with a combined annular-radial arrangement is investigated as a means to package the aforementioned geometric characteristics into a limited space claim for a 100kW radial inflow turbine. Simulation results show that a diffuser of this design can attain static pressure rise coefficients greater than 0.88. This confirms that annular-radial diffusers are a viable design solution for supercritical CO2 radial inflow turbines, thus enabling an alternative cantilevered rotor layout.

  1. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  2. Lubricants : the lifeblood of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Y. [Petro-Canada, Calgary, AB (Canada)

    2009-07-01

    With the significant investments in wind turbine equipment, companies need to exercise due diligence when it comes to the types of lubricants and fluids used. Mechanical and equipment issues can often be eliminated with improved maintenance practices and the appropriate selection of lubricants. This presentation discussed lubricants as being the lifeblood of wind turbines. The presentation first provided an overview and discussed wind turbine trends and application trends. The technical aspects of fluid formation were presented. Lubrication maintenance practices and oil monitoring were discussed. Last, key industry tests, and OEM specifications for bearings, gearboxes, and wind turbines were identified. It was concluded that improved maintenance practices in combination with the correct lubricant selection can address several operating problems. figs.

  3. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrea Meroni

    2016-04-01

    Full Text Available Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study, which was performed in order to show the advantages of the adopted methodology. Part A presents a one-dimensional turbine model and the results of the validation using two experimental test cases from literature. The first case is a subsonic turbine operated with air and investigated at the University of Hannover. The second case is a small, supersonic turbine operated with an organic fluid and investigated by Verneau. In the first case, the results of the turbine model are also compared to those obtained using computational fluid dynamics simulations. The results of the validation suggest that the model can predict values of efficiency within ± 1.3%-points, which is in agreement with the reliability of classic turbine loss models such as the Craig and Cox correlations used in the present study. Values similar to computational fluid dynamics simulations at the midspan were obtained in the first case of validation. Discrepancy below 12 % was obtained in the estimation of the flow velocities and turbine geometry. The values are considered to be within a

  4. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    Science.gov (United States)

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  5. Self-validated calculation of characteristics of a Francis turbine and the mechanism of the S-shape operational instability

    International Nuclear Information System (INIS)

    Zhang, Z; Titzschkau, M

    2012-01-01

    A calculation method has been presented to accurately estimate the characteristics of a Francis turbine. Both the shock loss at the impeller inlet and the swirling flow loss at the Impeller exit have been confirmed to dominantly influence the turbine characteristics and particularly the hydraulic efficiency. Both together totally govern the through flow of water through the impeller being at the rest. Calculations have been performed for the flow rate, the shaft torque and the hydraulic efficiency and compared with the available measurements on a model turbine. Excellent agreements have been achieved. Some other interesting properties of the turbine characteristics could also be derived from the calculations and verified by experiments. For this reason and because of not using any unreliable assumptions the calculation method has been confirmed to be self-validated. The operational instability in the upper range of the rotational speed, known as the S-shape instability, is ascribed to the total flow separation and stagnation at the impeller inlet. In that range of the rotational speed, the operation of the Francis turbine oscillates between pump and turbine mode.

  6. Thermal performance of gas turbine power plant based on exergy analysis

    International Nuclear Information System (INIS)

    Ibrahim, Thamir K.; Basrawi, Firdaus; Awad, Omar I.; Abdullah, Ahmed N.; Najafi, G.; Mamat, Rizlman; Hagos, F.Y.

    2017-01-01

    Highlights: • Modelling theoretical framework for the energy and exergy analysis of the Gas turbine. • Investigated the effects of ambient temperature on the energy and exergy performance. • The maximum exergy loss occurs in the gas turbine components. - Abstract: This study is about energy and exergy analysis of gas turbine power plant. Energy analysis is more quantitatively while exergy analysis is about the same but with the addition of qualitatively. The lack quality of the thermodynamic process in the system leads to waste of potential energy, also known as exergy destruction which affects the efficiency of the power plant. By using the first and second law of thermodynamics, the model for the gas turbine power plant is built. Each component in the thermal system which is an air compressor, combustion chamber and gas turbine play roles in affecting the efficiency of the gas turbine power plant. The exergy flow rate for the compressor (AC), the combustion chamber (CC) and the gas turbine (GT) inlet and outlet are calculated based on the physical exergy and chemical exergy. The exergy destruction calculation based on the difference between the exergy flow in and exergy flow out of the component. The combustion chamber has the highest exergy destruction. The air compressor has 94.9% and 92% of exergy and energy efficiency respectively. The combustion chamber has 67.5% and 61.8% of exergy and energy efficiency respectively while gas turbine has 92% and 82% of exergy and energy efficiency respectively. For the overall efficiency, the plant has 32.4% and 34.3% exergy and energy efficiency respectively. To enhance the efficiency, the intake air temperature should be reduced, modify the combustion chamber to have the better air-fuel ratio and increase the capability of the gas turbine to receive high inlet temperature.

  7. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research related to hydrogen gas turbines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu. Suiso gas turbine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper describes development of hydrogen gas turbines from among the comprehensive discussions on hydrogen utilizing subsystems. Hydrogen and oxygen gas turbine cycle has varying optimal conditions of plant efficiency depending on fuel patterns. The regenerative cycle may have the turbine inlet temperature at about 1,000 degrees C. The inlet pressure would be ten and odds atmospheric pressure. It is better to keep the inlet temperature higher in order to obtain high specific power. Reduction of power generation cost in using this plant requires that construction cost be decreased, and the specific power be increased if the plant efficiency (in other words, running cost) is assumed constant. Further development is required on technologies to use higher temperatures and pressures. For that purpose, discussions should be given on material development, structural design, and inspection. Hydrogen gas turbines, which present low pollution depending on combustion methods, have great significance for such social problem as environmental contamination. In terms of economy, since hydrogen gas turbines depend on efficiency and fuel unit cost, the evaluation thereon may vary depending on how well the regenerative gas turbines have been established, in addition to future change in hydrogen price and the technologies to use higher temperatures and pressures. (NEDO)

  8. Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-12

    This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for

  9. Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade

    Science.gov (United States)

    Giel, P. W.; Thurman, D. R.; Lopez, I.; Boyle, R. J.; VanFossen, G. J.; Jett, T. A.; Camperchioli, W. P.; La, H.

    1996-01-01

    Three-dimensional flow field measurements are presented for a large scale transonic turbine blade cascade. Flow field total pressures and pitch and yaw flow angles were measured at an inlet Reynolds number of 1.0 x 10(exp 6) and at an isentropic exit Mach number of 1.3 in a low turbulence environment. Flow field data was obtained on five pitchwise/spanwise measurement planes, two upstream and three downstream of the cascade, each covering three blade pitches. Three-hole boundary layer probes and five-hole pitch/yaw probes were used to obtain data at over 1200 locations in each of the measurement planes. Blade and endwall static pressures were also measured at an inlet Reynolds number of 0.5 x 10(exp 6) and at an isentropic exit Mach number of 1.0. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet and because of the high degree of flow turning. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification.

  10. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    International Nuclear Information System (INIS)

    Fiereder, R; Riemann, S; Schilling, R

    2010-01-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  11. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Energy Technology Data Exchange (ETDEWEB)

    Fiereder, R; Riemann, S; Schilling, R, E-mail: fiereder@lhm.mw.tum.d [Department of Fluid Mechanics, Technische Universitaet Muenchen Bolzmannstrasse 15, Garching, 85748 (Germany)

    2010-08-15

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  12. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    Science.gov (United States)

    Fiereder, R.; Riemann, S.; Schilling, R.

    2010-08-01

    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  13. Chemical impurity monitoring in the turbine environment at ANO-1. Final report

    International Nuclear Information System (INIS)

    Bour, D.P.

    1982-05-01

    An overview is presented here of three independent measurement campaigns for trace impurities in the secondary side water/steam of ANO-1, a PWR containing a once-through steam generator. The measurements took place in 1978-1979 between two turbine disc cracking incidents near the point of first condensation in the low pressure turbines. Turbine disc cracking occurred despite maintenance of conditions near the turbine manufacturers recommended limits. Measurements focused on sodium, chloride, and sulfate. The primary source of contamination was found to be the condensate polishing plant. Major improvements were seen to result from changes in regeneration procedures. Turbine damage may be the result of acid conditions at the Wilson Line since chloride and sulfate were enriched relative to sodium in the LP turbine inlet steam

  14. Admiralty Inlet Pilot Tidal Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig [Public Utility District No. 1 of Snohomish County, Everett, WA (United States)

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  15. Dependence of cycle optimal configuration for closed gas turbines on thermodynamic properties of working fluids

    International Nuclear Information System (INIS)

    Andryushchenko, A.I.; Dubinin, A.B.; Krylov, E.E.

    1988-01-01

    The problem of choice of working fluids for NPP closed gas turbines (CGT) is discussed. Thermostable in the working temperature range, chemically inert relatively to structural materials, fire- and explosion - proof substances, radiation-resistant and having satisfactory neutron-physical characteristics are used as the working fluids. Final choice of a gas as a working fluid is exercised based on technical and economic comparison of different variants at optimum thermodynamic cycle and parameters for each gas. The character and degree of the effect of thermodynamic properties of gases on configuration of reference cycles of regenerative CGT are determined. It is established that efficiency and optimum parameters in nodal points of the reference cycle are specified by the degree of removing the compression processes from the critical point. Practical importance of the obtained results presupposes the possibility of rapid estimation of the efficiency of using a gas without multiparametric optimization

  16. Achievement report for fiscal 1989. Research and development of ceramic gas turbine (Regenerative single-shaft axial-flow turbine for cogeneration); 1989 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Cogeneration yo saisei ichijikushiki jikuryu turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-05-01

    With an objective to research and develop a 300-kW class regenerative single-shaft axial-flow turbine having inlet temperature of 1,350 degrees C and thermal efficiency of 42% or higher, activities were performed in the following three fields: 1) heat resistant ceramic members, 2) elementary technologies, and 3) studies on design, prototype fabrication, and operation. In Item 1, a mass production technology was discussed on stator blades and heat transfer pipes for a heat exchanger as the component manufacturing technology, and injection molding conditions were studied and mechanical strength measurement was performed on rotor blades of a separate type axial-flow turbine. In addition, a molding condition producing no cracks was discovered in an integrated type axial-flow turbine whose embedded section has a tapered shape, and the mass production technology was discussed. With regard to the bonding technology, preliminary discussions were given on bonding agents under a prerequisite that a bonding agent shall be used. In Item 2, detailed discussions were launched on the turbine, combustor, heat exchanger, and compressor, including shape decision on the turbine, for example, by using aerodynamic analysis, In Item 3, the basic design was performed following the conceptual design, and a metallic turbine was designed. (NEDO)

  17. Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle

    Directory of Open Access Journals (Sweden)

    Lingen Chen

    2012-01-01

    Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.

  18. 1000 MW steam turbine for Temelin nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    Before the end 1991 the delivery was completed of the main parts (3 low-pressure sections and 1 high-pressure section, all of double-flow design) of the first full-speed (3000 r.p.m.) 1000 MW steam turbine for saturated admission steam for the Temelin nuclear power plant. Description of the turbine design and of new technologies and tools used in the manufacture are given. Basic technical parameters of the steam turbine are as follows: maximum output of steam generators 6060 th -1 ; maximum steam flow into turbine 5494.7 th -1 ; output of turbo-set 1024 MW; steam conditions before the turbine inlet: pressure 5.8 MPa, temperature 273.3 degC, steam wetness 0.5%; nominal temperature of cooling water 21 degC; temperature of feed water 220.8 degC; maximum consumption of heat from turbine for heating at 3-stage heating of heating water 60/150 degC. (Z.S.) 7 figs., 2 refs

  19. Two-way Fluid-Structure Interaction Simulation of a Micro Horizontal Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yi-Bao Chen

    2015-01-01

    Full Text Available A two-way Fluid-Structure Interaction (FSI analyses performed on a micro horizontal axis wind turbine (HAWT which coupled the CFX solver with Structural solver in ANSYS Workbench was conducted in this paper. The partitioned approach-based non-conforming mesh methods and the k-ε turbulence model were adopted to perform the study. Both the results of one-way and two-way FSI analyses were presented and compared with each other, and discrepancy of the results, especially the mechanical properties, were analysed. Grid convergence which is crucial to the results was performed, and the relationship between the inner flow field domain (rotational domain and the number of grids (number of cells, elements was verified for the first time. Dynamical analyses of the wind turbine were conducted using the torque as a reference value, to verify the rationality of the model which dominates the accuracy of results. The optimal case was verified and used to conduct the study, thus, the results derived from the simulation of the FSI are accurate and credible.

  20. Experimental Testing and Computational Fluid Dynamics Simulation of Maple Seeds and Performance Analysis as a Wind Turbine

    Science.gov (United States)

    Holden, Jacob R.

    Descending maple seeds generate lift to slow their fall and remain aloft in a blowing wind; have the wings of these seeds evolved to descend as slowly as possible? A unique energy balance equation, experimental data, and computational fluid dynamics simulations have all been developed to explore this question from a turbomachinery perspective. The computational fluid dynamics in this work is the first to be performed in the relative reference frame. Maple seed performance has been analyzed for the first time based on principles of wind turbine analysis. Application of the Betz Limit and one-dimensional momentum theory allowed for empirical and computational power and thrust coefficients to be computed for maple seeds. It has been determined that the investigated species of maple seeds perform near the Betz limit for power conversion and thrust coefficient. The power coefficient for a maple seed is found to be in the range of 48-54% and the thrust coefficient in the range of 66-84%. From Betz theory, the stream tube area expansion of the maple seed is necessary for power extraction. Further investigation of computational solutions and mechanical analysis find three key reasons for high maple seed performance. First, the area expansion is driven by maple seed lift generation changing the fluid momentum and requiring area to increase. Second, radial flow along the seed surface is promoted by a sustained leading edge vortex that centrifuges low momentum fluid outward. Finally, the area expansion is also driven by the spanwise area variation of the maple seed imparting a radial force on the flow. These mechanisms result in a highly effective device for the purpose of seed dispersal. However, the maple seed also provides insight into fundamental questions about how turbines can most effectively change the momentum of moving fluids in order to extract useful power or dissipate kinetic energy.

  1. Luminescent Measurement Systems for the Investigation of a Scramjet Inlet-Isolator

    Directory of Open Access Journals (Sweden)

    Azam Che Idris

    2014-04-01

    Full Text Available Scramjets have become a main focus of study for many researchers, due to their application as propulsive devices in hypersonic flight. This entails a detailed understanding of the fluid mechanics involved to be able to design and operate these engines with maximum efficiency even at their off-design conditions. It is the objective of the present cold-flow investigation to study and analyse experimentally the mechanics of the fluid structures encountered within a generic scramjet inlet at M = 5. Traditionally, researchers have to rely on stream-thrust analysis, which requires the complex setup of a mass flow meter, a force balance and a heat transducer in order to measure inlet-isolator performance. Alternatively, the pitot rake could be positioned at inlet-isolator exit plane, but this method is intrusive to the flow, and the number of pitot tubes is limited by the model size constraint. Thus, this urgent need for a better flow diagnostics method is addressed in this paper. Pressure-sensitive paint (PSP has been applied to investigate the flow characteristics on the compression ramp, isolator surface and isolator sidewall. Numerous shock-shock interactions, corner and shoulder separation regions, as well as shock trains were captured by the luminescent system. The performance of the scramjet inlet-isolator has been shown to improve when operated in a modest angle of attack.

  2. Effect of inlet cone pipe angle in catalytic converter

    Science.gov (United States)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  3. Sensitivity-Based Simulation Software for Optimization of Turbine Blade Cooling Strategies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In recent years, there has been a tendency to use ever-higher gas turbine inlet temperatures, resulting in ever-higher heat loads necessitating efficient cooling....

  4. Application of microturbines to control emissions from associated gas

    Science.gov (United States)

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  5. Improving the efficiency of gas turbine systems with volumetric solar receivers

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina; Sánchez-Delgado, Sergio; Marugán-Cruz, Carolina; Santana, Domingo

    2017-01-01

    Highlights: • Study of small and large-scale solar-combined cycle plants with volumetric receivers. • Increase of inlet temperature of combustion air using solar energy. • The combustion exergy efficiency starts to decrease over a certain temperature. • Indications obtained from the energy and exergy analyses differ. - Abstract: The combustion process of gas turbine systems is typically associated with the highest thermodynamic inefficiencies among the system components. A method to increase the efficiency of a combustor and, consequently that of the gas turbine, is to increase the temperature of the entering combustion air. This measure reduces the consumption of fuel and improves the environmental performance of the turbine. This paper studies the incorporation of a volumetric solar receiver into existing gas turbines in order to increase the temperature of the inlet combustion air to 800 °C and 1000 °C. For the first time, detailed thermodynamic analyses involving both energy and exergy principles of both small-scale and large-scale hybrid (solar-combined cycle) power plants including volumetric receivers are realized. The plants are based on real gas turbine systems, the base operational characteristics of which are derived and reported in detail. It is found that the indications obtained from the energy and exergy analyses differ. The addition of the solar plant achieves an increase in the exergetic efficiency when the conversion of solar radiation into thermal energy (i.e., solar plant efficiency) is not accounted for in the definition of the overall plant efficiency. On the other hand, it is seen that it does not have a significant effect on the energy efficiency. Nevertheless, when the solar efficiency is included in the definition of the overall efficiency of the plants, the addition of the solar receiver always leads to an efficiency reduction. It is found that the exergy efficiency of the combustion chamber depends on the varying air

  6. Small hydraulic turbine drives

    Science.gov (United States)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  7. Comprehensive experimental and numerical analysis of instability phenomena in pump turbines

    International Nuclear Information System (INIS)

    Gentner, Ch; Sallaberger, M; Widmer, Ch; Bobach, B-J; Jaberg, H; Schiffer, J; Senn, F; Guggenberger, M

    2014-01-01

    ). For several wicket gate positions, the flow fields in the vane-less space at runner inlet observed in the experiment are compared with the results of unsteady CFD flow simulations. Physical phenomena are visualized and insight to flow phenomena is given. Analyses using both results of simulation and measurement allow deriving a consistent explanation of the fluid mechanical mechanisms leading to the S-shaped instability of pump turbines

  8. Dynamic modeling of gas turbines in integrated gasification fuel cell systems

    Science.gov (United States)

    Maclay, James Davenport

    2009-12-01

    Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles

  9. Numerical and Experimental Investigations of Design Parameters Defining Gas Turbine Nozzle Guide Vane Endwall Heat Transfer

    OpenAIRE

    Rubensdörffer, Frank G.

    2006-01-01

    The primary requirements for a modern industrial gas turbine consist of a continuous trend of an increasing efficiency combined with very low emissions in a robust, cost-effective manner. To fulfil these tasks a high turbine inlet temperature together with advanced dry low NOX combustion chambers are employed. These dry low NOX combustion chambers generate a rather flat temperature profile compared to previous generation gas turbines, which have a rather parabolic temperature profile before t...

  10. Empirical method to calculate Clinch River Breeder Reactor (CRBR) inlet plenum transient temperatures

    International Nuclear Information System (INIS)

    Howarth, W.L.

    1976-01-01

    Sodium flow enters the CRBR inlet plenum via three loops or inlets. An empirical equation was developed to calculate transient temperatures in the CRBR inlet plenum from known loop flows and temperatures. The constants in the empirical equation were derived from 1/4 scale Inlet Plenum Model tests using water as the test fluid. The sodium temperature distribution was simulated by an electrolyte. Step electrolyte transients at 100 percent model flow were used to calculate the equation constants. Step electrolyte runs at 50 percent and 10 percent flow confirmed that the constants were independent of flow. Also, a transient was tested which varied simultaneously flow rate and electrolyte. Agreement of the test results with the empirical equation results was good which verifies the empirical equation

  11. Influence of fluid viscosity on vortex cavitation at a suction pipe inlet

    International Nuclear Information System (INIS)

    Ezure, Toshiki; Ito, Kei; Kamide, Hideki; Kameyama, Yuri; Kunugi, Tomoaki

    2016-01-01

    Cavitation is a highly important issue in various fluid machineries. In the design of an advanced loop-type sodium-cooled fast reactor in Japan, vortex cavitation is also a significant issue for the integrity of the reactor structure. Thus, an evaluation method for vortex cavitation is required. In this study, vortex cavitation at a single suction pipe inlet was studied under several different viscosity conditions including its transient behavior. The intermittent occurrence behaviors of vortex cavitation were grasped by visualization measurements. The experimental results showed that the influence of the kinematic viscosity was obvious under a high kinematic viscosity. However, the influence became smaller with decreasing kinematic viscosity. From these results, the non-dimensional circulation, which was defined as the ratio of the local circulation to the kinematic viscosity, was deduced as an evaluation parameter to estimate the influence of the kinematic viscosity. Cavitation factors at transition points from continuous occurrence to intermittent occurrences were also evaluated as representative points where vortex cavitation occurs. Then, the occurrences of vortex cavitation were expressed as a relation between the cavitation factor at transition points and the non-dimensional circulation. As a result, it was clarified that the cavitation factor at transition points increased linearly in relatively small non-dimensional circulation, while it was nearly constant in relatively large non-dimensional circulation. (author)

  12. The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms

    OpenAIRE

    Xiang, J.; Siddiqui, A.H.; Meng, H.

    2014-01-01

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic qu...

  13. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  14. Nuclear research reactor IEA-R1 heat exchanger inlet nozzle flow - a preliminary study

    International Nuclear Information System (INIS)

    Angelo, Gabriel; Andrade, Delvonei Alves de; Fainer, Gerson; Angelo, Edvaldo

    2009-01-01

    As a computational fluid mechanics training task, a preliminary model was developed. ANSYS-CFX R code was used in order to study the flow at the inlet nozzle of the heat exchanger of the primary circuit of the nuclear research reactor IEA-R1. The geometry of the inlet nozzle is basically compounded by a cylinder and two radial rings which are welded on the shell. When doing so there is an offset between the holes through the shell and the inlet nozzle. Since it is not standardized by TEMA, the inlet nozzle was chosen for a preliminary study of the flow. Results for the proposed model are presented and discussed. (author)

  15. Wind Turbine Loads Induced by Terrain and Wakes: An Experimental Study through Vibration Analysis and Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2017-11-01

    Full Text Available A wind turbine is a very well-known archetype of energy conversion system working at non-stationary regimes. Despite this, a deep mechanical comprehension of wind turbines operating in complicated conditions is still challenging, especially as regards the analysis of experimental data. In particular, wind turbines in complex terrain represent a very valuable testing ground because of the possible combination of wake effects among nearby turbines and flow accelerations caused by the terrain morphology. For these reasons, in this work, a cluster of four full-scale wind turbines from a very complex site is studied. The object of investigation is vibrations, at the level of the structure (tower and drive-train. Data collected by the on-board condition monitoring system are analyzed and interpreted in light of the knowledge of wind conditions and operating parameters collected by the Supervisory Control And Data Acquisition (SCADA. A free flow Computational Fluid Dynamics (CFD simulation is also performed, and it allows one to better interpret the vibration analysis. The main outcome is the interpretation of how wakes and flow turbulences appear in the vibration signals, both at the structural level and at the drive-train level. Therefore, this wind to gear approach builds a connection between flow phenomena and mechanical phenomena in the form of vibrations, representing a precious tool for assessing loads in different working conditions.

  16. AGT101 Advanced Gas Turbine Technology update

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.L.; Kidwell, J.R.; Kreiner, D.M.

    1986-01-01

    The Garrett/Ford Advanced Gas Turbine Technology Development Program, designated AGT101, has made significant progress during 1985 encompassing ceramic engine and ceramic component testing. Engine testing has included full speed operation to 100,000 rpm and 1149C (2100F) turbine inlet temperature, initial baseline performance mapping and ceramic combustor start and steady state operation. Over 380 hours of test time have been accumulated on four development engines. High temperature foil bearing coatings have passed rig test and a thick precious metal foil coating selected for engine evaluation. Ceramic structures have been successfully rig tested at 1371C (2500F) for over 27 hours.

  17. Computational Fluid Dynamics Analysis of Supercritical Carbon Dioxide Turbine

    International Nuclear Information System (INIS)

    Kim, Tae W.; Kim, Nam H.; Suh, Kune Y.; Kim, Seung O.

    2006-01-01

    The supercritical carbon dioxide (SCO 2 ) gas turbine Brayton cycle has been not only adopted in the secondary loop of the Generation IV nuclear energy systems but also planned to be installed in the high efficiency power conversion cycles of the nuclear fusion reactors. The potential beneficiaries include the Korea Advanced Liquid Metal Reactor (KALIMER), Korea Superconducting Tokamak Advanced Research (KSTAR) and International Thermonuclear Experimental Reactor (ITER). The reason for these welcomed applications is that the cycle can achieve the overall energy conversion efficiency as high as 45%. The SCO 2 turbine efficiency is one of the major parameters affecting the overall Brayton cycle efficiency. Thus, optimal turbine design determines the economics of the Generation IV as well as the future nuclear fission and fusion energy industry. Seoul National University has recently been working on the SCO 2 based Modular Optimized Brayton Integral System (MOBIS). MOBIS includes the Gas Advanced Turbine Operation Study (GATOS), the Loop Operating Brayton Optimization Study (LOBOS), the Nonsteady Operation Multidimensional Online Simulator (NOMOS), and the Turbine Advanced Compressor Operation Study (TACOS). This paper presents first results from GATOS

  18. Development of superalloys for 1700 C ultra-efficient gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Hiroshi [National Institute for Materials Science, Tsukuba, Ibaraki (Japan). High Temperature Materials Center

    2010-07-01

    Mitigation of global warming is one of the most outstanding issues for the humankind. The Japanese government announced that it will reduce its greenhouse gas emissions by 25% from the 1990 level by 2020 as a medium-term goal. One of the promising approaches to achieving this is to improve the efficiency of thermal power plants emitting one-third of total CO{sub 2} gas in Japan. The key to improving the thermal efficiency is high temperature materials with excellent temperature capabilities allowing higher inlet gas temperatures. In this context, new single crystal superalloys for turbine blades and vanes, new coatings and turbine disk superalloys have been successfully developed for various gas turbine applications, typically 1700 C ultra-efficient gas turbines for next generation combine cycle power plants. (orig.)

  19. Air/fuel supply system for use in a gas turbine engine

    Science.gov (United States)

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  20. A numerical study on an optimum design of a Cross-flow type Power Turbine (CPT)

    International Nuclear Information System (INIS)

    Ha, Jin Ho; Kim, Chul Ho

    2008-01-01

    A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is commonly used system for the generation electricity in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of the electric power generation of the model wind turbine developing in this project is 12volts-150A/H(about 1.8Kw). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and exit flow angle of the housing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the model impeller blade and CFD technique was incorporated to have performance analysis of the design model power turbine for the optimum design of the geometry of the Cross-flow Power Turbine impeller and Casing. In CFD, Navier-Stokes equation is solved with the SIMPLEC method in a general coordinates system. Realizable k-ε turbulent model with MARS scheme was used for evaluating torque of each blade in the Cross-flow Power Turbine (CPT). From the result, the designed CPT with 24 impeller blades at α=40 .deg. and β=85 .deg. of turbine blade angle was estimated to generate 1.2Nm of the indicated torque and 200watts of the indicated power. On the basis of the rules of similarity, the generating power capacity of the real size CPT that is eight times longer than the model impeller is predicted to have an 1.6kW of the output power (about 12V-130A/H or 24V-65A/H)

  1. Inlet Geomorphology Evolution

    Science.gov (United States)

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  2. Fluid moderator control system reactor internals distribution system

    International Nuclear Information System (INIS)

    Fensterer, H.F.; Klassen, W.E.; Veronesi, L.; Boyle, D.E.; Salton, R.B.

    1987-01-01

    This patent describes a spectral shift pressurized water nuclear reactor employing a low neutron moderating fluid for the spectral shift including a reactor pressure vessel, a core comprising a plurality of fuel assemblies, a core support plate, apparatus comprising means for penetrating the reactor vessel for introducing the moderating fluid into the reactor vessel. Means associated with the core support plate for directly distributing the moderating fluid to and from the fuel assemblies comprises at least one inlet flow channel in the core plate; branch inlet feed lines connect to the inlet flow channel in the core plate; vertical inlet flow lines flow connected to the branch inlet feed lines; each vertical flow line communicates with a fuel assembly; the distribution means further comprise lines serving as return flow lines, each of which is connected to one of the fuel assemblies; branch exit flow lines in the core plate flow connected to the return flow lines of the fuel assembly; and at least one outlet flow channel flow connected to the branch exit flow lines; and a flow port interposed between the penetration means and the distribution means for flow connecting the penetration means with the distribution means

  3. JET ENGINE INLET DISTORTION SCREEN AND DESCRIPTOR EVALUATION

    Directory of Open Access Journals (Sweden)

    Jiří Pečinka

    2017-02-01

    Full Text Available Total pressure distortion is one of the three basic flow distortions (total pressure, total temperature and swirl distortion that might appear at the inlet of a gas turbine engine (GTE during operation. Different numerical parameters are used for assessing the total pressure distortion intensity and extent. These summary descriptors are based on the distribution of total pressure in the aerodynamic interface plane. There are two descriptors largely spread around the world, however, three or four others are still in use and can be found in current references. The staff at the University of Defence decided to compare the most common descriptors using basic flow distortion patterns in order to select the most appropriate descriptor for future department research. The most common descriptors were identified based on their prevalence in widely accessible publications. The construction and use of these descriptors are reviewed in the paper. Subsequently, they are applied to radial, angular, and combined distortion patterns of different intensities and with varied mass flow rates. The tests were performed on a specially designed test bench using an electrically driven standalone industrial centrifugal compressor, sucking air through the inlet of a TJ100 small turbojet engine. Distortion screens were placed into the inlet channel to create the desired total pressure distortions. Of the three basic distortions, only the total pressure distortion descriptors were evaluated. However, both total and static pressures were collected using a multi probe rotational measurement system.

  4. Computational Fluid Dynamics Analysis of Supercritical Carbon Dioxide Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae W.; Kim, Nam H.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of); Kim, Seung O. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The supercritical carbon dioxide (SCO{sub 2}) gas turbine Brayton cycle has been not only adopted in the secondary loop of the Generation IV nuclear energy systems but also planned to be installed in the high efficiency power conversion cycles of the nuclear fusion reactors. The potential beneficiaries include the Korea Advanced Liquid Metal Reactor (KALIMER), Korea Superconducting Tokamak Advanced Research (KSTAR) and International Thermonuclear Experimental Reactor (ITER). The reason for these welcomed applications is that the cycle can achieve the overall energy conversion efficiency as high as 45%. The SCO{sub 2} turbine efficiency is one of the major parameters affecting the overall Brayton cycle efficiency. Thus, optimal turbine design determines the economics of the Generation IV as well as the future nuclear fission and fusion energy industry. Seoul National University has recently been working on the SCO{sub 2} based Modular Optimized Brayton Integral System (MOBIS). MOBIS includes the Gas Advanced Turbine Operation Study (GATOS), the Loop Operating Brayton Optimization Study (LOBOS), the Nonsteady Operation Multidimensional Online Simulator (NOMOS), and the Turbine Advanced Compressor Operation Study (TACOS). This paper presents first results from GATOS.

  5. Computational Fluid Dynamics Analysis of Supercritical Carbon Dioxide Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae W.; Kim, Nam H.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of); Kim, Seung O. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    The supercritical carbon dioxide (SCO{sub 2}) gas turbine Brayton cycle has been not only adopted in the secondary loop of the Generation IV nuclear energy systems but also planned to be installed in the high efficiency power conversion cycles of the nuclear fusion reactors. The potential beneficiaries include the Korea Advanced Liquid Metal Reactor (KALIMER), the Korea Superconducting Tokamak Advanced Research (KSTAR) as well as the International Thermonuclear Experimental Reactor (ITER). The reason for these welcomed applications is that the cycle can achieve the overall energy conversion efficiency as high as 45%. The SCO{sub 2} turbine efficiency is one of the major parameters affecting the overall Brayton cycle efficiency. Thus, optimal turbine design determines the economics of the Generation IV as well as the future nuclear fission and fusion energy industry. Seoul National University has recently been working on the SCO{sub 2} based Modular Optimized Brayton Integral System (MOBIS). MOBIS includes the Gas Advanced Turbine Operation Study (GATOS), the Loop Operating Brayton Optimization Study (LOBOS), the Nonsteady Operation Multidimensional Online Simulator (NOMOS), and the Turbine Advanced Compressor Operation Study (TACOS). This paper presents results from GATOS.

  6. Performance improvement of a cross-flow hydro turbine by air layer effect

    International Nuclear Information System (INIS)

    Choi, Y D; Yoon, H Y; Inagaki, M; Ooike, S; Kim, Y J; Lee, Y H

    2010-01-01

    The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively.The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

  7. Post-processing computational fluid dynamic simulations of gas turbine combustor

    International Nuclear Information System (INIS)

    Sturgess, G.J.; Inko-Tariah, W.P.C.; James, R.H.

    1986-01-01

    The flowfield in combustors for gas turbine engines is extremely complex. Numerical simulation of such flowfields using computational fluid dynamics techniques has much to offer the design and development engineer. It is a difficult task, but it is one which is now being attempted routinely in the industry. The results of such simulations yield enormous amounts of information from which the responsible engineer has to synthesize a comprehensive understanding of the complete flowfield and the processes contained therein. The complex picture so constructed must be distilled down to the essential information upon which rational development decisions can be made. The only way this can be accomplished successfully is by extensive post-processing of the calculation. Post processing of a simulation relies heavily on computer graphics, and requires the enhancement provided by color. The application of one such post-processor is presented, and the strengths and weaknesses of various display techniques are illustrated

  8. System and method for improving performance of a fluid sensor for an internal combustion engine

    Science.gov (United States)

    Kubinski, David [Canton, MI; Zawacki, Garry [Livonia, MI

    2009-03-03

    A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.

  9. Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades

    Science.gov (United States)

    Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.

    1999-01-01

    A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.

  10. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  11. Extended fuel cycle operation for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Silvestri, G.J. Jr.

    1978-01-01

    A nuclear steam turbine power plant system having an arrangement therein for extended fuel cycle operation is described. The power plant includes a turbine connected at its inlet to a source of motive fluid having a predetermined pressure associated therewith. The turbine has also connected thereto an extraction conduit which extracts steam from a predetermined location therein for use in an associated apparatus. A bypass conduit is provided between a point upstream of the inlet and the extraction conduit. A flow control device is provided within the bypass conduit and opens when the pressure of the motive steam supply drops beneath the predetermined pressure as a result of reactivity loss within the nuclear reactor. Opening of the bypass conduit provides flow to the associated apparatus and at the same time provides an increased flow orifice to maintain fluid flow rate at a predetermined level

  12. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  13. How to compute the power of a steam turbine with condensation, knowing the steam quality of saturated steam in the turbine discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Albarran, Manuel Jaime; Krever, Marcos Paulo Souza [Braskem, Sao Paulo, SP (Brazil)

    2009-07-01

    To compute the power and the thermodynamic performance in a steam turbine with condensation, it is necessary to know the quality of the steam in the turbine discharge and, information of process variables that permit to identifying with high precision the enthalpy of saturated steam. This paper proposes to install an operational device that will expand the steam from high pressure point on the shell turbine to atmosphere, both points with measures of pressure and temperature. Arranging these values on the Mollier chart, it can be know the steam quality value and with this data one can compute the enthalpy value of saturated steam. With the support of this small instrument and using the ASME correlations to determine the equilibrium temperature and knowing the discharge pressure in the inlet of surface condenser, the absolute enthalpy of the steam discharge can be computed with high precision and used to determine the power and thermodynamic efficiency of the turbine. (author)

  14. Optimization of fog inlet air cooling system for combined cycle power plants using genetic algorithm

    International Nuclear Information System (INIS)

    Ehyaei, Mehdi A.; Tahani, Mojtaba; Ahmadi, Pouria; Esfandiari, Mohammad

    2015-01-01

    In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year. - Highlights: • To model the combined cycle power plant equipped with fog inlet air cooling method. • To conduct both exergy and economic analyses for better understanding. • To conduct a complete optimization using a genetic algorithm to determine the optimal design parameters of the system

  15. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  16. Turbine design and application volumes 1, 2, and 3

    Science.gov (United States)

    Glassman, Arthur J. (Editor)

    1994-01-01

    NASA has an interest in turbines related primarily to aeronautics and space applications. Airbreathing turbine engines provide jet and turboshaft propulsion, as well as auxiliary power for aircraft. Propellant-driven turbines provide rocket propulsion and auxiliary power for spacecraft. Closed-cycle turbine engines using inert gases, organic fluids, and metal fluids have been studied for providing long-duration electric power for spacecraft. Other applications of interest for turbine engines include land-vehicle (cars, trucks, buses, trains, etc.) propulsion power and ground-based electrical power. In view of the turbine-system interest and efforts at Lewis Research Center, a course entitled 'Turbine Design and Application' was presented during 1968-69 as part of the In-house Graduate Study Program. The course was somewhat revised and again presented in 1972-73. Various aspects of turbine technology were covered including thermodynamic and fluid-dynamic concepts, fundamental turbine concepts, velocity diagrams, losses, blade aerodynamic design, blade cooling, mechanical design, operation, and performance. The notes written and used for the course have been revised and edited for publication. Such a publication can serve as a foundation for an introductory turbine course, a means for self-study, or a reference for selected topics. Any consistent set of units will satisfy the equations presented. Two commonly used consistent sets of units and constant values are given after the symbol definitions. These are the SI units and the U.S. customary units. A single set of equations covers both sets of units by including all constants required for the U.S. customary units and defining as unity those not required for the SI units. Three volumes are compiled into one.

  17. Factors that affect the calibration of turbines in single-phase flow

    International Nuclear Information System (INIS)

    Piper, T.C.

    1977-05-01

    Basic turbine operation in single-phase flow is related. Causes and relative magnitudes of retarding torque are given for two sizes of turbines when used for water flow measurement. An equation for slip caused by retarding torques is given. Evaluation of turbine slip behavior at the turbine low flow region shows that bearing retarding torques, change in flow patterns, or other effects can predominate in the relatively large changes in the calibration ''constant'' that occurs there. Fluid lubricity is singled out as an important fluid property in certain types of bearings and flow. Temperature induced changes in turbine size are shown to cause calibration changes if a turbine is used at a temperature significantly different than that at which it was calibrated

  18. Factors that affect the calibration of turbines in single-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Piper, T. C.

    1977-05-01

    Basic turbine operation in single-phase flow is related. Causes and relative magnitudes of retarding torque are given for two sizes of turbines when used for water flow measurement. An equation for slip caused by retarding torques is given. Evaluation of turbine slip behavior at the turbine low flow region shows that bearing retarding torques, change in flow patterns, or other effects can predominate in the relatively large changes in the calibration ''constant'' that occurs there. Fluid lubricity is singled out as an important fluid property in certain types of bearings and flow. Temperature induced changes in turbine size are shown to cause calibration changes if a turbine is used at a temperature significantly different than that at which it was calibrated.

  19. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    Science.gov (United States)

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide

    2017-01-01

    Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed

  20. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  1. OECD/NRC BWR Turbine Trip Benchmark: Simulation by POLCA-T Code

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and three-dimensional (3-D) neutron kinetics core models. Participation in the OECD/NRC BWR Turbine Trip (TT) Benchmark is a part of our efforts toward the code's validation. The paper describes the objectives for TT analyses and gives a brief overview of the developed plant system input deck and 3-D core model.The results of exercise 1, system model without netronics, are presented. Sensitivity studies performed cover the maximal time step, turbine stop valve position and mass flow, feedwater temperature, and steam bypass mass flow. Results of exercise 2, 3-D core neutronic and thermal-hydraulic model with boundary conditions, are also presented. Sensitivity studies include the core inlet temperature, cladding properties, and direct heating to core coolant and bypass.The entire plant model was validated in the framework of the benchmark's phase 3. Sensitivity studies include the effect of SCRAM initialization and carry-under. The results obtained - transient fission power and its initial axial distribution and steam dome, core exit, lower and upper plenum, main steam line, and turbine inlet pressures - showed good agreement with measured data. Thus, the POLCA-T code capabilities for correct simulation of pressurizing transients with very fast power were proved

  2. Turbine-99 unsteady simulations - Validation

    International Nuclear Information System (INIS)

    Cervantes, M J; Andersson, U; Loevgren, H M

    2010-01-01

    The Turbine-99 test case, a Kaplan draft tube model, aimed to determine the state of the art within draft tube simulation. Three workshops were organized on the matter in 1999, 2001 and 2005 where the geometry and experimental data were provided as boundary conditions to the participants. Since the last workshop, computational power and flow modelling have been developed and the available data completed with unsteady pressure measurements and phase resolved velocity measurements in the cone. Such new set of data together with the corresponding phase resolved velocity boundary conditions offer new possibilities to validate unsteady numerical simulations in Kaplan draft tube. The present work presents simulation of the Turbine-99 test case with time dependent angular resolved inlet velocity boundary conditions. Different grids and time steps are investigated. The results are compared to experimental time dependent pressure and velocity measurements.

  3. Turbine-99 unsteady simulations - Validation

    Science.gov (United States)

    Cervantes, M. J.; Andersson, U.; Lövgren, H. M.

    2010-08-01

    The Turbine-99 test case, a Kaplan draft tube model, aimed to determine the state of the art within draft tube simulation. Three workshops were organized on the matter in 1999, 2001 and 2005 where the geometry and experimental data were provided as boundary conditions to the participants. Since the last workshop, computational power and flow modelling have been developed and the available data completed with unsteady pressure measurements and phase resolved velocity measurements in the cone. Such new set of data together with the corresponding phase resolved velocity boundary conditions offer new possibilities to validate unsteady numerical simulations in Kaplan draft tube. The present work presents simulation of the Turbine-99 test case with time dependent angular resolved inlet velocity boundary conditions. Different grids and time steps are investigated. The results are compared to experimental time dependent pressure and velocity measurements.

  4. Heat transfer and flow characteristics on a gas turbine shroud.

    Science.gov (United States)

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.

  5. One-dimensional pulse-flow modeling of a twin-scroll turbine

    International Nuclear Information System (INIS)

    Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.

    2016-01-01

    This paper presents a revised one-dimensional (1D) pulse flow modeling of twin-scroll turbocharger turbine under pulse flow operating conditions. The proposed methodology in this paper provides further consideration for the turbine partial admission performance during model characterization. This gives rise to significant improvement on the model pulse flow prediction quality compared to the previous model. The results show that a twin-scroll turbine is not operating at full admission throughout the in-phase pulse flow conditions. Instead, they are operating at unequal admission state due to disparity in the magnitude of turbine inlet flow. On the other hand, during out-of-phase pulse flow, a twin-scroll turbine is working at partial admission state for majority of the pulse cycle. An amended mathematical correlation in calculating the twin-scroll turbine partial admission characteristics is also presented in the paper. The impact of its accuracy on the pulse flow model prediction is explored. - Highlights: • Paper presents a 1D modeling for twin-scroll turbine under pulsating flow. • Predicted pulse pressure propagation is in good agreement with experimental data. • A methodology is proposed to consider the turbine partial admission performance. • Prediction shows twin-scroll turbine operates at unequal admission during in-phase flow. • During out-of-phase flow a twin-scroll turbine mainly operates at partial admission.

  6. Design and performance analysis of gas and liquid radial turbines

    Science.gov (United States)

    Tan, Xu

    In the first part of the research, pumps running in reverse as turbines are studied. This work uses experimental data of wide range of pumps representing the centrifugal pumps' configurations in terms of specific speed. Based on specific speed and specific diameter an accurate correlation is developed to predict the performances at best efficiency point of the centrifugal pump in its turbine mode operation. The proposed prediction method yields very good results to date compared to previous such attempts. The present method is compared to nine previous methods found in the literature. The comparison results show that the method proposed in this paper is the most accurate. The proposed method can be further complemented and supplemented by more future tests to increase its accuracy. The proposed method is meaningful because it is based both specific speed and specific diameter. The second part of the research is focused on the design and analysis of the radial gas turbine. The specification of the turbine is obtained from the solar biogas hybrid system. The system is theoretically analyzed and constructed based on the purchased compressor. Theoretical analysis results in a specification of 100lb/min, 900ºC inlet total temperature and 1.575atm inlet total pressure. 1-D and 3-D geometry of the rotor is generated based on Aungier's method. 1-D loss model analysis and 3-D CFD simulations are performed to examine the performances of the rotor. The total-to-total efficiency of the rotor is more than 90%. With the help of CFD analysis, modifications on the preliminary design obtained optimized aerodynamic performances. At last, the theoretical performance analysis on the hybrid system is performed with the designed turbine.

  7. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine

    International Nuclear Information System (INIS)

    Yin, Juan; Su, Shi; Yu, Xin Xiang; Weng, Yiwu

    2010-01-01

    Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO 2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.

  8. Experimental analysis of pressurised humidification tower for humid air gas turbine cycles. Part A: Experimental campaign

    International Nuclear Information System (INIS)

    Pedemonte, A.A.; Traverso, A.; Massardo, A.F.

    2008-01-01

    One of the most interesting methods of water introduction in a gas turbine circuit is represented by the humid air turbine cycle (HAT). In the HAT cycle, the humidification can be provided by a pressurised saturator (i.e. humidification tower or saturation tower), this solution being known to offer several attractive features. This part A is focused on an experimental study of a pressurised humidification tower, with structured packing inside. After a description of the test rig employed to carry out the measuring campaign, the results relating to the thermodynamic process are presented and discussed. The experimental campaign was carried out over 162 working points, covering a relatively wide range of possible operating conditions. Details about measured data are provided in the appendix. It is shown that the saturator's behaviour, in terms of air outlet humidity and temperature, is primarily driven by, in decreasing order of relevance, the inlet water temperature, the inlet water over inlet dry air mass flow ratio and the inlet air temperature. Finally, the exit relative humidity is shown to be consistently over 100%, which may be explained partially by measurement accuracy and droplet entrainment, and partially by the non-ideal behaviour of air-steam mixtures close to saturation

  9. On the Response of a Micro Wind Turbine to Wind-Speed Change

    OpenAIRE

    烏谷, 隆; 渡辺, 公彦; 大屋, 裕二

    2004-01-01

    To improve the efficiency of a wind turbine, it is more effective to use high-speed wind. A method collecting wind to get high-speed wind was experimentally studied. It was found that the brimmed diffuser was a good device to get high-speed wind. The brimmed diffuser accelerated approaching wind, and wind speed near its inlet became about 1.7 times. Using this brimmed diffuser, we have made a new micro wind turbine and been carrying out field experiment. In order realize the properties of the...

  10. 3D fluid-structure modelling and vibration analysis for fault diagnosis of Francis turbine using multiple ANN and multiple ANFIS

    Science.gov (United States)

    Saeed, R. A.; Galybin, A. N.; Popov, V.

    2013-01-01

    This paper discusses condition monitoring and fault diagnosis in Francis turbine based on integration of numerical modelling with several different artificial intelligence (AI) techniques. In this study, a numerical approach for fluid-structure (turbine runner) analysis is presented. The results of numerical analysis provide frequency response functions (FRFs) data sets along x-, y- and z-directions under different operating load and different position and size of faults in the structure. To extract features and reduce the dimensionality of the obtained FRF data, the principal component analysis (PCA) has been applied. Subsequently, the extracted features are formulated and fed into multiple artificial neural networks (ANN) and multiple adaptive neuro-fuzzy inference systems (ANFIS) in order to identify the size and position of the damage in the runner and estimate the turbine operating conditions. The results demonstrated the effectiveness of this approach and provide satisfactory accuracy even when the input data are corrupted with certain level of noise.

  11. The gas turbine: Present technology and future developments

    International Nuclear Information System (INIS)

    Minghetti, E.

    1997-03-01

    The gas turbine is the most widely used prime mover all over the world for either power generation or mechanical drive applications. The above fact is due to the recent great improvements that have been done especially in terms of efficiency, availability and reliability. The future for gas turbine technological development looks very promising. In fact, although tremendous growth has already taken place, there is still the potential for dramatic improvements in performance. Compared with the competitive prime movers (conventional steam power plants and reciprocating piston engines) the gas turbine technology is younger and still following a strong growth curve. The coming decades will witness the continued increasing in turbine inlet temperature, the development of new materials and refrigeration systems and the commercialization of inter cooled system and steam cooled turbines. With the very soon introduction of the G and H technology, expected single and combined cycle efficiencies for heavy duty machines are respectively 40% and 60%, while maintaining 'single digit' levels in pollutant emissions. In this report are given wide information on gas turbine present technology (Thermodynamics, features, design, performances, emission control, applications) and are discussed the main lines for the future developments. Finally are presented the research and technological development activities on gas turbine of Italian National Agency for new Technology Energy and the Environment Energy Department

  12. A technology development summary for the AGT101 Advanced Gas Turbine Program

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.L.; Kidwell, J.R.; Kreiner, D.M.

    1987-01-01

    Since the program initiation in October 1979, the Garrett/Ford Advanced Gas Turbine Program, designated AGT101, has made significant progress in developing ceramic technology for gas turbine applications. Successful component development has resulted in engine tests with an all ceramic hot section to temperatures up to 2200F (1204C) and full speed operation to 100,000 rpm (turbine rotor tip speed of 2300 ft/sec (701 m/s)). An 85-hour test was performed on an all ceramic engine at 2200F (1204C) turbine inlet temperature. These engine tests represent important first steps in the development of ceramic materials and technology. Engine evaluation was preceded by important component development. Activities included aerodynamic component evaluation and development of a high temperature foil bearing to support the ceramic turbine rotor. Development of low leakage regenerator seals and static ceramic seals in this high temperature environment were critical to engine performance.

  13. Exergy and Environmental Impact Assessment between Solar Powered Gas Turbine and Conventional Gas Turbine Power Plant

    OpenAIRE

    Rajaei, Ali; Barzegar Avval, Hasan; Eslami, Elmira

    2016-01-01

    Recuperator is a heat exchanger that is used in gas turbine power plants to recover energy from outlet hot gases to heat up the air entering the combustion chamber. Similarly, the combustion chamber inlet air can be heated up to temperatures up to 1000 (°C) by solar power tower (SPT) as a renewable and environmentally benign energy source. In this study, comprehensive comparison between these two systems in terms of energy, exergy, and environmental impacts is carried out. Thermodynamic simul...

  14. The coal-fired gas turbine locomotive - A new look

    Science.gov (United States)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.

    1983-01-01

    Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.

  15. Hydraulic design development of Xiluodu Francis turbine

    International Nuclear Information System (INIS)

    Wang, Y L; Li, G Y; Shi, Q H; Wang, Z N

    2012-01-01

    Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.

  16. Preliminary study of Low-Cost Micro Gas Turbine

    Science.gov (United States)

    Fikri, M.; Ridzuan, M.; Salleh, Hamidon

    2016-11-01

    The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.

  17. Optimization high vortex finder of cyclone separator with computational fluids dynamics simulation

    Directory of Open Access Journals (Sweden)

    Ni Ketut Caturwati

    2017-01-01

    Full Text Available Cyclone separator is an equipment that separates particles contained in the fluid without using filters. The dust particles in the flue gases can be separated by utilizing centrifugal forces and different densities of particles, so that the exhaust gases to be cleaner before discharged into the environment. In this paper carried out a simulation by Computational of Fluids Dynamics to determine the number of particles that can be separated in several cyclone separator which has a ratio body diameter against vortex finder high varied as : 1:0.5 ; 1:0.75 ; 1:1 ; 1:1.25 and 1:1.5. Fluid inlet are air with antrachite impurity particles that are commonly found in the exhaust gases from tire manufacturers with inlet velocities varied as: 15 m/s and 30 m/s. The results of simulation show the fluids with 15 m/s of inlet velocity is generate particle separation value is higher than the fluids with 30 m/s inlet velocity for ratio of body diameter and height vortex finder a: 1:0.5 and 1:1.5. For both of inlet velocities the best ratio of body diameter and height vortex finder is 1:1.25, where it has the highest values of percentage trapped particles about 86% for 30 m/s input velocity and also for 15 m/s input velocity.

  18. CFD-Driven Valve Shape Optimization for Performance Improvement of a Micro Cross-Flow Turbine

    Directory of Open Access Journals (Sweden)

    Endashaw Tesfaye Woldemariam

    2018-01-01

    Full Text Available Turbines are critical parts in hydropower facilities, and the cross-flow turbine is one of the widely applied turbine designs in small- and micro-hydro facilities. Cross-flow turbines are relatively simple, flexible and less expensive, compared to other conventional hydro-turbines. However, the power generation efficiency of cross-flow turbines is not yet well optimized compared to conventional hydro-turbines. In this article, a Computational Fluid Dynamics (CFD-driven design optimization approach is applied to one of the critical parts of the turbine, the valve. The valve controls the fluid flow, as well as determines the velocity and pressure magnitudes of the fluid jet leaving the nozzle region in the turbine. The Non-Uniform Rational B-Spline (NURBS function is employed to generate construction points for the valve profile curve. Control points from the function that are highly sensitive to the output power are selected as optimization parameters, leading to the generation of construction points. Metamodel-assisted and metaheuristic optimization tools are used in the optimization. Optimized turbine designs from both optimization methods outperformed the original design with regard to performance of the turbine. Moreover, the metamodel-assisted optimization approach reduced the computational cost, compared to its counterpart.

  19. Achievement report for fiscal 1998. Research and development of ceramic gas turbine (Regenerative single-shaft ceramic gas turbine for cogeneration); 1998 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Cogeneration yo saiseishiki ichijiku ceramic gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    Efforts are exerted to develop a 300kW-class ceramic gas turbine with a turbine inlet temperature of 1350 degrees C and thermal efficiency of 42% or higher. The soundness in strength of the ceramic rotor blades and their fastening structure is confirmed. Rotor blade cushion thickness is found to decrease in start-and-stop repetitions in the initial period, but not thereafter. The exhaust diffuser and exhaust path shape are studied and improved for an increase in output, which improves turbine efficiency by 1.7%. Under the operating conditions of 1350 degrees C and full load, NOx emissions and combustion efficiency prove to be 5.6ppm and 99.9%. Even in the case using a large-diameter liner with its combustion efficiency under light load improved, the ultimate target value is achieved. Studies are further conducted on centrifugal stage loss reduction towards the ultimate goal set for the compressor. The diffuser shape is improved and the shroud clearance is reduced, and insulation efficiency of 81.1% is attained at the designing stage. In a test run of a pilot ceramic gas turbine in which temperature finally arrives at 1350 degrees C, engine thermal efficiency of 35% and shaft output of 282kW are achieved. (NEDO)

  20. The calculation of fluid-structure interaction and fatigue analysis for Francis turbine runner

    International Nuclear Information System (INIS)

    Wang, X F; Li, H L; Zhu, F W

    2012-01-01

    Francis turbine, as a widely used hydro turbine, is especially suited for the hydropower station with high hydraulic head and higher hydraulic head. For such turbine generator units all around the world, the crack streaks usually come out after a long time use and the resulted accidents may cause huge losses. Hence, it is meaningful to refine the design assuring the stability and safety of the Francis turbine. In this paper, the stiffness and strength as well as the fatigue life of the Francis turbine are studied. Concerning on the turbine of one certain hydropower station, the flow field inside the turbine are first simulated and the pressure distribution around the blades are derived. Meanwhile, the stress distributions of the blades are also obtained. Based on these, the fatigue analyses are applied on the turbine. According to the results of fatigue analyses, some optimal designs on the turbine are verified. The results show that with the optimal designs, the hydraulic performances of the turbine do not change too much while the maximum stress on the turbine decrease and the fatigue life increase as well.

  1. CFD for wind and tidal offshore turbines

    CERN Document Server

    Montlaur, Adeline

    2015-01-01

    The book encompasses novel CFD techniques to compute offshore wind and tidal applications. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in the field of CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments, amongst other topics.

  2. An audit of aerodynamic loss in a double entry turbine under full and partial admission

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Peter, E-mail: peter.newton03@imperial.ac.uk [Department of Mechanical Engineering, Imperial College London, London (United Kingdom); Copeland, Colin, E-mail: c.copeland@imperial.ac.uk [Department of Mechanical Engineering, Imperial College London, London (United Kingdom); Martinez-Botas, Ricardo, E-mail: r.botas@imperial.ac.uk [Department of Mechanical Engineering, Imperial College London, London (United Kingdom); Seiler, Martin, E-mail: martin.a.seiler@ch.abb.com [ABB Turbo Systems Ltd., Baden (Switzerland)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A study of the loss inside a mixed flow, double entry turbocharger turbine. Black-Right-Pointing-Pointer Both full and partial admission conditions are discussed and compared. Black-Right-Pointing-Pointer Under partial admission the rotor wheel was found to act in a fully unsteady manner. Black-Right-Pointing-Pointer The inter-space region was a major area of loss generation under partial admission. - Abstract: The current study investigates the sources of loss inside a mixed flow, double entry turbocharger turbine under steady inlet conditions in both full and partial admission. Under normal on-engine operation, it is likely that both limbs in a double entry device will be fed by exhaust pulsations which are out of phase meaning that the turbine will spend most or all of the time with unbalanced flow through each limb. In the extreme case one limb will be flowing whilst the other is stagnant, this is the partial admission condition. Even under steady state inlet conditions, unequal admission is an important effect to study on the way to fully understanding pulsed operation of a double entry device. This paper presents 3D computational analyses of the flow inside a double entry turbine under both full and partial admission. The computational results are compared to experimental results of and . The distribution of loss within the turbine is evaluated for each computational condition by means of entropy production. In the full admission case the most significant area of loss was found to be in the tip region. Under the partial admission condition the flow regime is very different. In this case the rotor wheel was found to be acting in a fully unsteady manner, with the flow being unable to reach a fully developed state throughout the flowing section of the volute. The most significant area of entropy generation in the partial admission case was associated with interaction of the flows in each sector of the volute, this

  3. CO{sub 2} expansion work recovery by impulse turbine

    Energy Technology Data Exchange (ETDEWEB)

    Toendell, Espen

    2006-07-01

    This study focuses on refrigeration processes with relatively low cooling capacities and hereby low circulation rates. The presented theory for turbines focuses on work extraction in impulse turbines. For an impulse turbine, the optimal rotational speed gives a turbine blade tip speed equal to half the nozzle jet velocity. With small volume flow rates, the turbine will have small dimensions, and hereby the rotational speed will be high. Together with principles for work extraction, the losses in the turbine were discussed. The main losses are nozzle losses (Friction and incomplete flashing), rotational losses, disc friction, windage, changing angles, non-rotational losses, fluid friction between jet and turbine blade, jet not hitting turbine blade, mechanical losses in bearings. A literature survey was made to show some examples on two-phase turbines and to create a theoretical basis for fluid expansion in a nozzle. The literature survey on two-phase expanders showed some examples on Helium expanders with small dimensions and good efficiencies. Compared to a helium expander, a CO{sub 2} expander will be working on a higher pressure, and hereby some extra losses must be expected. Some work on expander for R134a was also referred. That work was however focused on high cooling capacities, which means that the R134a expander will have much higher mass flow than the CO{sub 2} expander in this study. The literature survey on fluid expansion and nucleation showed that the critical radius is important in nucleation. The critical radius is dependent on the surface tension and the difference between the liquid saturation pressure and the local pressure. For the current study, understanding of nucleation will be important in order to understand the function of the nozzle. Finally some models for critical flow were presented (author) (ml)

  4. The feasibility of water injection into the turbine coolant to permit gas turbine contingency power for helicopter application

    Science.gov (United States)

    Van Fossen, G. J.

    1983-01-01

    It is pointed out that in certain emergency situations it may be desirable to obtain power from a helicopter engine at levels greater than the maximum rating. Yost (1976) has reported studies concerning methods of power augmentation in the one engine inoperative (OEI) case. It was found that a combination of water/alcohol injection into the inlet and overtemperature/overspeed could provide adequate emergency power. The present investigation is concerned with the results of a feasibility study which analytically investigated the maximum possible level of augmentation with constant gas generator turbine stress rupture life as a constraint. In the proposed scheme, the increased engine output is obtained by turbine overtemperature, however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water.

  5. Aero-Thermo-Structural Analysis of Inlet for Rocket Based Combined Cycle Engines

    Science.gov (United States)

    Shivakumar, K. N.; Challa, Preeti; Sree, Dave; Reddy, Dhanireddy R. (Technical Monitor)

    2000-01-01

    NASA has been developing advanced space transportation concepts and technologies to make access to space less costly. One such concept is the reusable vehicles with short turn-around times. The NASA Glenn Research Center's concept vehicle is the Trailblazer powered by a rocket-based combined cycle (RBCC) engine. Inlet is one of the most important components of the RBCC engine. This paper presents fluid flow, thermal, and structural analysis of the inlet for Mach 6 free stream velocity for fully supersonic and supercritical with backpressure conditions. The results concluded that the fully supersonic condition was the most severe case and the largest stresses occur in the ceramic matrix composite layer of the inlet cowl. The maximum tensile and the compressive stresses were at least 3.8 and 3.4, respectively, times less than the associated material strength.

  6. Improved Hypersonic Inlet Performance Using Validated Strut Compression Designs

    Science.gov (United States)

    Bulman, M. J.; Stout, P. W.; Fernandez, R.

    1997-01-01

    Aerojet is currently executing two Strutjet propulsion contracts: one a Rocket Based Combined Cycle (RBCC) engine for a NASA-Marshall Space Flight Center (MSFC) Advanced Reusable Transportation Technology (ARTT) program, the second a Dual Mode Ram/Scramjet engine for a USAF Wright Laboratories Storable Fuel Scramjet Flow Path Concepts program. The engines employed in both programs operate at supersonic and low hypersonic speeds and use inlets employing forebody external and sidewall compression. Aerojet has developed and validated a successful design methodology applicable to these inlet types. Design features include an integrated vehicle forebody, external side compression struts, strut sidewall and throat bleed, a throat shock trap, and variable geometry internal contraction. Computation Fluid Dynamic (CFD) predictions and test data show these inlets allow substantially increased flow turning angles over other designs. These increased flow turning angles allow shorter and lighter engines than current designs, which in turn enables higher performing vehicles with broad operating characteristics. This paper describes the designs of two different inlets evaluated by the NASA-MSFC and USAF programs, discusses the results of wind tunnel tests performed by NASA-Lewis Research Center, and provides correlations of test data with CFD predictions. Parameters of interest include low Mach number starting capability, start sensitivity as a function of back pressure at various contraction ratios, flow turning angles, strut and throat bleed effects, and pressure recovery at various Mach numbers.

  7. Dynamics and control modeling of the closed-cycle gas turbine (GT-HTGR) power plant

    International Nuclear Information System (INIS)

    Bardia, A.

    1980-02-01

    The simulation if presented for the 800-MW(e) two-loop GT-HTGR plant design with the REALY2 transient analysis computer code, and the modeling of control strategies called for by the inherently unique operational requirements of a multiple loop GT-HTGR is described. Plant control of the GT-HTGR is constrained by the nature of its power conversion loops (PCLs) in which the core cooling flow and the turbine flow are directly related and thus changes in flow affect core cooling as well as turbine power. Additionally, the high thermal inertia of the reactor core precludes rapid changes in the temperature of the turbine inlet flow

  8. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    International Nuclear Information System (INIS)

    Ko, P; Kurosawa, S

    2014-01-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine

  9. Numerical simulation of turbulence flow in a Kaplan turbine -Evaluation on turbine performance prediction accuracy-

    Science.gov (United States)

    Ko, P.; Kurosawa, S.

    2014-03-01

    The understanding and accurate prediction of the flow behaviour related to cavitation and pressure fluctuation in a Kaplan turbine are important to the design work enhancing the turbine performance including the elongation of the operation life span and the improvement of turbine efficiency. In this paper, high accuracy turbine and cavitation performance prediction method based on entire flow passage for a Kaplan turbine is presented and evaluated. Two-phase flow field is predicted by solving Reynolds-Averaged Navier-Stokes equations expressed by volume of fluid method tracking the free surface and combined with Reynolds Stress model. The growth and collapse of cavitation bubbles are modelled by the modified Rayleigh-Plesset equation. The prediction accuracy is evaluated by comparing with the model test results of Ns 400 Kaplan model turbine. As a result that the experimentally measured data including turbine efficiency, cavitation performance, and pressure fluctuation are accurately predicted. Furthermore, the cavitation occurrence on the runner blade surface and the influence to the hydraulic loss of the flow passage are discussed. Evaluated prediction method for the turbine flow and performance is introduced to facilitate the future design and research works on Kaplan type turbine.

  10. MAINTAINANCE OF KAPLAN TURBINE TO ENHANCE THE EFFICIENCY

    OpenAIRE

    Mr. Shakti Prasanna Khadanga*; Nitish Kumar; Milind Kumar Singh; L. Raj Kumar

    2016-01-01

    Hydro power plant is the source of renewable energy which leads to reduction in burning of fossil fuels. So the environment is no longer polluted. This project depicts how sediment erosion occurs in Kaplan turbine and the various components of Kaplan turbine where actually erosion takes place. It reduces efficiency [7] and life of hydro power turbine but also causes problems in operations and maintenance. We conducted some necessary test on Kaplan turbine in fluid power laboratory. We are d...

  11. Master equation and runaway speed of the Francis turbine

    Science.gov (United States)

    Zhang, Zh.

    2018-04-01

    The master equation of the Francis turbine is derived based on the combination of the angular momentum (Euler) and the energy laws. It relates the geometrical design of the impeller and the regulation settings (guide vane angle and rotational speed) to the discharge and the power output. The master equation, thus, enables the complete characteristics of a given Francis turbine to be easily computed. While applying the energy law, both the shock loss at the impeller inlet and the swirling loss at the impeller exit are taken into account. These are main losses which occur at both the partial load and the overloads and, thus, dominantly influence the characteristics of the Francis turbine. They also totally govern the discharge of the water through the impeller when the impeller is found in the standstill. The computations have been performed for the discharge, the hydraulic torque and the hydraulic efficiency. They were also compared with the available measurements on a model turbine. Excellent agreement has been achieved. The computations also enable the runaway speed of the Francis turbine and the related discharge to be determined as a function of the setting angle of the guide vanes.

  12. Fluid dynamic computations of the flue-gas channel in an evaporative gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Engdar, Ulf

    1999-12-01

    A new pilot power plant, based on an advanced thermodynamic cycle, called Evaporative Gas Turbine (EvGT), has been erected at the department for Heat- and Power Engineering, Lund University. The pilot plant is a part of the Evaporative Gas Turbine project, a cooperation between universities and industry in Sweden. The fluid dynamics layout of the plant is not optimized and hence no pressure drop reduction modifications have been made on the plant. A pressure drop will decrease the efficiency of the plant. Temperature measurements have shown that there maybe is a temperature stratification of the flow on the flue-gas side downstream the recuperator. A temperature stratification will influence the measurements and heat exchangers. The objective of this thesis is to investigate pressure drops and temperature stratification in the flue-gas channel between the recuperator and the economizer at the present pilot plant. Further, suggest modifications that can reduce pressure drops and/or a temperature stratification of the flow. The way of dealing with these problems was to utilize computational fluid dynamics (CFD), which makes it possible to compute the flue-gas channel in detail. The CFD-computations were conducted with a commercial computer program, called Star-CD. The pressure drop was calculated as the sum of the static- and the dynamic- pressure drop. No information about the shape of the temperature stratification was available to investigate whether a stratification will sustain or vanish. Therefore, two different temperature profiles was applied at the outlet of the recuperator. To compare modifications with the present plant, concerning the temperature stratification, a temperature rms-value was utilized as a measure of the deviation from a flow with constant temperature over a cross-section. The computations show that the pressure drop in the flue-gas channel is small compared to the pressure drop over the recuperator. Therefore, no pressure drop reducing

  13. Advanced Combustion Systems for Next Generation Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  14. Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle

    International Nuclear Information System (INIS)

    Wang Wenhua; Chen Lingen; Sun Fengrui; Wu Chih

    2003-01-01

    In this paper, the theory of finite time thermodynamics is used in the performance analysis of an irreversible closed intercooled regenerated Brayton cycle coupled to variable temperature heat reservoirs. The analytical formulae for dimensionless power and efficiency, as functions of the total pressure ratio, the intercooling pressure ratio, the component (regenerator, intercooler, hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies and the thermal capacity rates of the working fluid and the heat reservoirs, the pressure recovery coefficients, the heat reservoir inlet temperature ratio, and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio, are derived. The intercooling pressure ratio is optimized for optimal power and optimal efficiency, respectively. The effects of component (regenerator, intercooler and hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies, the pressure recovery coefficients, the heat reservoir inlet temperature ratio and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio on optimal power and its corresponding intercooling pressure ratio, as well as optimal efficiency and its corresponding intercooling pressure ratio are analyzed by detailed numerical examples. When the heat transfers between the working fluid and the heat reservoirs are executed ideally, the pressure drop losses are small enough to be neglected and the thermal capacity rates of the heat reservoirs are infinite, the results of this paper replicate those obtained in recent literature

  15. High fluid shear strain causes injury in silver shark: Preliminary implications for Mekong hydropower turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, L. J. [New South Wales Department of Primary Industries, Narrandera Fisheries Centre, Narrandera NSW Australia; Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Thorncraft, G. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Phonekhampheng, O. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Boys, C. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay NSW Australia; Navarro, A. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Robinson, W. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Brown, R. [Pacific Northwest National Laboratory, Richland WA USA; Deng, Z. D. [Pacific Northwest National Laboratory, Richland WA USA

    2017-02-09

    Fluid shear arises when two bodies of water, travelling at different velocities, intersect. Fish entrained at the interface of these two water masses will experience shear stress; which can be harmful. The stress magnitude is dependent on waterbody mass and velocity; with the fish impact largely related to body size. Elevated shear stress occurs where rapidly flowing water passes near spillways, across screens, within turbine draft tubes or other passage routes. A flume was used to determine critical tolerances of silver shark (Balantiocheilos melanopterus) to different shear stress rates generated by a high velocity jet. Fish experienced higher levels of injury and mortality as shear stress was increased. Excessive shear forces had damaging impacts on fish. Mortality occurred at shear levels higher that 600/s. It is important that developers should attempt to model potential shear profiles expected during turbine passage in selected designs. These data will be critical to determine potential impacts on fish. If the likelihood of adverse impact is high, then alternative designs which have lower shear stress could be explored.

  16. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Yourong Li

    2012-08-01

    Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

  17. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  18. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    Science.gov (United States)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  19. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    Science.gov (United States)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  20. CFD analysis of a Darrieus wind turbine

    Science.gov (United States)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  1. The Development of Duct for a Horizontal Axis Turbine Using CFD

    Science.gov (United States)

    Ghani, Mohamad Pauzi Abdul; Yaacob, Omar; Aziz, Azliza Abdul

    2010-06-01

    Malaysia is heavily dependent on the fossil fuels to satisfy its energy demand. Nowadays, renewable energy which has attracted great interest is marine current energy, which extracted by a device called a device called marine current turbine. This energy resource has agreat potential to be exploited on a large scale because of its predictability and intensity. This paper will focus on developing a Horizontal Axis Marine Current Turbine (HAMCT) rotor to extract marine current energy suitable for Malaysian sea conditions. This work incorporates the characteristic of Malaysia's ocean of shallow water and low speed current in developing the turbines. The HAMCT rotor will be developed and simulated using CAD and CFD software for various combination of inlet and oulet duct design. The computer simulation results of the HAMCT being developed will be presented.

  2. Recent technology on steam turbine performance improvement

    International Nuclear Information System (INIS)

    Hirada, M.; Watanabe, E.; Tashiro, H.

    1991-01-01

    Continuous efforts have been made to improve turbine efficiency by applying the latest aerodynamic technologies to meet the energy saving requirement. In recent years, there has been considerable improvement in the field of computational fluid dynamics and these new technologies have been applied to the new blade design for HP, IP and LP turbines. Experimental verification for the new blade in turbine tests has established the overall turbine performance improvement and the excellent correspondence of flow pattern to the predicted value. This paper introduces the latest design technologies for the newly developed high efficiency blade and the verification test results

  3. Detection of oral streptococci in dental unit water lines after therapy with air turbine handpiece: biological fluid retraction more frequent than expected.

    Science.gov (United States)

    Petti, Stefano; Moroni, Catia; Messano, Giuseppe Alessio; Polimeni, Antonella

    2013-03-01

    Oral streptococci detected in water from dental unit water lines (DUWLs) are a surrogate marker of patients' biological fluid retraction during therapy. We investigated oral streptococci detection rate in DUWLs in a representative sample of private offices in real-life conditions. Samples of nondisinfected water (100 ml) were collected from the DUWL designated for the air turbine handpiece in 81 dental units, immediately after dental treatment of patients with extensive air turbine handpiece use. Water was filtered and plated on a selective medium for oral streptococci and, morphologically, typical colonies of oral streptococci were counted. The lowest detection limit was 0.01 CFU/ml. The oral streptococci detection rate was 72% (95% CI: 62-81%), with a mean level of 0.7 CFU/ml. Oral streptococci detection was not affected by handpiece age or dental treatment type, but was associated with dental unit age. Biological fluid retraction into DUWLs during patient treatment and, possibly, the risk for patient-to-patient blood- or air-borne pathogen transmission are more frequent than expected.

  4. A CFD Study on Inlet Plenum Flow Field of Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Lee, Won Jae; Chang, Jong Hwa

    2005-01-01

    High temperature gas cooled reactor, largely divided into two types of PBR (Pebble Bed Reactor) and PMR (Prismatic Modular Reactor), has becomes great interest of researchers in connection with the hydrogen production. KAERI has started a project to develop the gas cooled reactor for the hydrogen production and has been doing in-depth study for selecting the reactor type between PBR and PMR. As a part of the study, PBMR (Pebble Bed Modular Reactor) was selected as a reference PBR reactor for the CFD analysis and the flow field of its inlet plenum was simulated with computational fluid dynamics program CFX5. Due to asymmetrical arrangement of pipes to the inlet plenum, non-uniform flow distribution has been expected to occur, giving rise to non-uniform power distribution at the core. Flow fields of different arrangement of inlet pipes were also investigated, as one of measures to reduce the non-uniformity

  5. Performance estimation of Tesla turbine applied in small scale Organic Rankine Cycle (ORC) system

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei; Li, Xue-song

    2017-01-01

    Highlights: • One-dimensional model of the Tesla turbine is improved and applied in ORC system. • Working fluid properties and system operating conditions impact efficiency. • The influence of turbine efficiency on ORC system performance is evaluated. • Potential of using Tesla turbine in ORC systems is estimated. - Abstract: Organic Rankine Cycle (ORC) system has been proven to be an effective method for the low grade energy utilization. In small scale applications, the Tesla turbine offers an attractive option for the organic expander if an efficient design can be achieved. The Tesla turbine is simple in structure and is easy to be manufactured. This paper improves the one-dimensional model for the Tesla turbine, which adopts a non-dimensional formulation that identifies the dimensionless parameters that dictates the performance features of the turbine. The model is used to predict the efficiency of a Tesla turbine that is applied in a small scale ORC system. The influence of the working fluid properties and the operating conditions on the turbine performance is evaluated. Thermodynamic analysis of the ORC system with different organic working fluids and under various operating conditions is conducted. The simulation results reveal that the ORC system can generate a considerable net power output. Therefore, the Tesla turbine can be regarded as a potential choice to be applied in small scale ORC systems.

  6. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles. [performance prediction and energy conversion efficiency of gas turbines in electric power plants (thermodynamic cycles)

    Science.gov (United States)

    Amos, D. J.; Grube, J. E.

    1976-01-01

    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.

  7. Program for aerodynamic performance tests of helium gas compressor model of the gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Kunimoto, Kazuhiko; Yan, Xing; Itaka, Hidehiko; Mori, Eiji

    2003-01-01

    Research and development program for helium gas compressor aerodynamics was planned for the power conversion system of the Gas Turbine High Temperature Reactor (GTHTR300). The axial compressor with polytropic efficiency of 90% and surge margin more than 30% was designed with 3-dimensional aerodynamic design. Performance and surge margin of the helium gas compressor tends to be lower due to the higher boss ratio which makes the tip clearance wide relative to the blade height, as well as due to a larger number of stages. The compressor was designed on the basis of methods and data for the aerodynamic design of industrial open-cycle gas-turbine. To validate the design of the helium gas compressor of the GTHTR300, aerodynamic performance tests were planned, and a 1/3-scale, 4-stage compressor model was designed. In the tests, the performance data of the helium gas compressor model will be acquired by using helium gas as a working fluid. The maximum design pressure at the model inlet is 0.88 MPa, which allows the Reynolds number to be sufficiently high. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  8. Steam temperature variation behind a turbine steam separator-superheater during NPP start-up

    International Nuclear Information System (INIS)

    Lejzerovich, A.Sh.; Melamed, A.D.

    1979-01-01

    To determine necessary parameters of the steam temperature automatic regulator behind the steam separator-rheater supe (SSS) of an NPP turbine the static and dynamic characteristics of the temperature change behind the SSS were studied experimentally. The measurements were carried out at the K-220-44 turbine of the Kolskaja NPP in the case of both varying turbine loads and the flow rate of the heating vapor. Disturbances caused by the opening of the regulating valve at the inlet of the heating vapor are investigated as well. It is found that due to a relatively high inertiality of the SSS a rather simple structure of the start-up steam temperature regulators behind the SSS in composition with automatated driving systems of the turbine start-up without regard for the change of the dynamic characteristics can be used

  9. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    International Nuclear Information System (INIS)

    Han, Feng Hui; Mao, Yi Jun; Tan, Ji Jian

    2016-01-01

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets

  10. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng Hui; Mao, Yi Jun [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an (China); Tan, Ji Jian [Dept. of Research and Development, Shenyang Blower Works Group Co., Ltd., Shenyang (China)

    2016-11-15

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets.

  11. Influence of precooling cooling air on the performance of a gas turbine combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ik Hwan; Kang, Do Won; Kang, Soo Young; Kim, Tong Seop [Inha Univ., Incheon (Korea, Republic of)

    2012-02-15

    Cooling of hot sections, especially the turbine nozzle and rotor blades, has a significant impact on gas turbine performance. In this study, the influence of precooling of the cooling air on the performance of gas turbines and their combined cycle plants was investigated. A state of the art F class gas turbine was selected, and its design performance was deliberately simulated using detailed component models including turbine blade cooling. Off design analysis was used to simulate changes in the operating conditions and performance of the gas turbines due to precooling of the cooling air. Thermodynamic and aerodynamic models were used to simulate the performance of the cooled nozzle and rotor blade. In the combined cycle plant, the heat rejected from the cooling air was recovered at the bottoming steam cycle to optimize the overall plant performance. With a 200K decrease of all cooling air stream, an almost 1.78% power upgrade due to increase in main gas flow and a 0.70 percent point efficiency decrease due to the fuel flow increase to maintain design turbine inlet temperature were predicted.

  12. Design of Shrouded Airborne Wind Turbine & CFD Analysis

    Science.gov (United States)

    Anbreen, Faiqa; Faiqa Anbreen Collaboration

    2015-11-01

    The focus is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat. The idea of designing an airborne turbine is to take the advantage of different velocity layers in the atmosphere. The blades have been designed using NREL S826 airfoil, which has coefficient of lift CL of 1.4 at angle of attack, 6°. The value selected for CP is 0.8. The rotor diameter is 7.4 m. The balloon (shroud) has converging-diverging nozzle design, to increase the mass flow rate through the rotor. The ratio of inlet area to throat area, Ai/At is 1.31 and exit area to throat area, Ae/At is1.15. The Solidworks model has been analyzed numerically using CFD. The software used is StarCCM +. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) K- ɛ model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine. Stress analysis has been done using Nastran. From the simulations, the torque generated by the turbine is approximately 800N-m and angular velocity is 21 rad/s.

  13. Wet-steam erosion of steam turbine disks and shafts

    International Nuclear Information System (INIS)

    Averkina, N. V.; Zheleznyak, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.; Shishkin, V. I.

    2011-01-01

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  14. Inlet Geomorphology Evolution Work Unit

    Science.gov (United States)

    2015-10-30

    Coastal Inlets Research Program Inlet Geomorphology Evolution Work Unit The Inlet Geomorphology Evolution work unit of the CIRP develops methods...morphologic response. Presently, the primary tool of the Inlet Geomorphology Evolution work unit is the Sediment Mobility Tool (SMT), which allows the user

  15. CFD simulation of pressure and discharge surge in Francis turbine at off-design conditions

    International Nuclear Information System (INIS)

    Chirkov, D; Avdyushenko, A; Panov, L; Bannikov, D; Cherny, S; Skorospelov, V; Pylev, I

    2012-01-01

    A hybrid 1D-3D CFD model is developed for the numerical simulation of pressure and discharge surge in hydraulic power plants. The most essential part – the turbine itself – is simulated directly using 3D unsteady equations of turbulent motion of fluid-vapor mixture, while the rest of the hydraulic system is simulated in frames of 1D hydro-acoustic model. Thus the model accounts for the main factors responsible for excitation and propagation of pressure and discharge waves in hydraulic power plant. Boundary conditions at penstock inlet and draft tube outlet are discussed in detail. Then simulations of dynamic behavior at part load and full load operating points are performed. It is shown that the numerical model is able to capture self-excited oscillations in full load conditions. The influence of penstock length and flow structure behind the runner are investigated. The presented approach seems to be a promising tool for prediction and investigation the dynamic behavior in hydraulic power plants.

  16. Design of Radial Inflow Turbine for 30 kW Microturbine

    Directory of Open Access Journals (Sweden)

    Sangsawangmatum Thanate

    2017-01-01

    Full Text Available Microturbines are small gas turbines that have the capacity range of 25-300 kW. The main components of microturbine are compressor, turbine, combustor and recuperator. This research paper focuses on the design of radial inflow turbine that operates in 30 kW microturbine. In order to operate the 30 kW microturbine with the back work ratio of 0.5, the radial inflow turbine should be designed to produce power at 60 kW. With the help of theory of turbo-machinery and the analytical methods, the design parameters are derived. The design results are constructed in 3D geometry. The 3D fluid-geometry is validated by computational fluid dynamics (CFD simulation. The simulation results show the airflow path, the temperature distribution, the pressure distribution and Mach number. According to the simulation results, there is no flow blockage between vanes and no shock flow occurs in the designed turbine.

  17. Combustor nozzles in gas turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  18. Fast power cycle for fusion reactors

    International Nuclear Information System (INIS)

    Powell, J.; Fillo, J.; Makowitz, H.

    1978-01-01

    The unique, deep penetration capability of 14 MeV neutrons produced in DT fusion reactions allows the generation of very high temperature working fluid temperatures in a thermal power cycle. In the FAST (Fusion Augmented Steam Turbine) power cycle steam is directly superheated by the high temperature ceramic refractory interior of the blanket, after being generated by heat extracted from the relatively cool blanket structure. The steam is then passed to a high temperature gas turbine for power generation. Cycle studies have been carried out for a range of turbine inlet temperatures [1600 0 F to 3000 0 F (870 to 1650 0 C)], number of reheats, turbine mechanical efficiency, recuperator effectiveness, and system pressure losses. Gross cycle efficiency is projected to be in the range of 55 to 60%, (fusion energy to electric power), depending on parameters selected. Turbine inlet temperatures above 2000 0 F, while they do increase efficiency somewhat, are not necessarily for high cycle efficiency

  19. Numerical simulation of hydrodynamics in a pump-turbine at off-design operating conditions in turbine mode

    International Nuclear Information System (INIS)

    Yan, J P; Seidel, U; Koutnik, J

    2012-01-01

    The hydrodynamics of a reduced-scaled model of a radial pump-turbine is investigated under off-design operating conditions, involving runaway and 'S-shape' turbine brake curve at low positive discharge. It is a low specific speed pump-turbine machine of Francis type with 9 impeller blades and 20 stay vanes as well as 20 guide vanes. The computational domain includes the entire water passage from the spiral casing inlet to the draft tube outlet. Completely structured hexahedral meshes generated by the commercial software ANSYS-ICEM are employed. The unsteady incompressible simulations are performed using the commercial code ANSYS-CFX13. For turbulence modeling the standard k-ε model is applied. The numerical results at different operating points are compared to the experimental results. The predicted pressure amplitude is in good agreement with the experimental data and the amplitude of normal force on impeller is in reasonable range. The detailed analysis reveals the onset of the flow instabilities when the machine is brought from a regular operating condition to runaway and turbine break mode. Furthermore, the rotating stall phenomena are well captured at runaway condition as well as low discharge operating condition with one stall cell rotating inside and around the impeller with about 70% of its frequency. Moreover, the rotating stall is found to be the effect of rotating flow separations developed in several consecutive impeller channels which lead to their blockage. The reliable simulation of S-curve characteristics in pump-turbines is a basic requirement for design and optimization at off-design operating conditions.

  20. Variable Pitch Darrieus Water Turbines

    Science.gov (United States)

    Kirke, Brian; Lazauskas, Leo

    In recent years the Darrieus wind turbine concept has been adapted for use in water, either as a hydrokinetic turbine converting the kinetic energy of a moving fluid in open flow like an underwater wind turbine, or in a low head or ducted arrangement where flow is confined, streamtube expansion is controlled and efficiency is not subject to the Betz limit. Conventional fixed pitch Darrieus turbines suffer from two drawbacks, (i) low starting torque and (ii) shaking due to cyclical variations in blade angle of attack. Ventilation and cavitation can also cause problems in water turbines when blade velocities are high. Shaking can be largely overcome by the use of helical blades, but these do not produce large starting torque. Variable pitch can produce high starting torque and high efficiency, and by suitable choice of pitch regime, shaking can be minimized but not entirely eliminated. Ventilation can be prevented by avoiding operation close to a free surface, and cavitation can be prevented by limiting blade velocities. This paper summarizes recent developments in Darrieus water turbines, some problems and some possible solutions.

  1. Effect of a dual inlet channel on cell loading in microfluidics.

    Science.gov (United States)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2014-11-01

    Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new " upstream inlet " to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4(+) T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in

  2. Steady and Unsteady Velocity Measurements in a Small Turbocharger Turbine with Computational Validation

    Science.gov (United States)

    Karamanis, N.; Palfreyman, D.; Arcoumanis, C.; Martinez-Botas, R. F.

    2006-07-01

    The detailed flow characteristics of three high-pressure-ratio mixed-flow turbines were investigated under both steady and pulsating flow conditions. Two rotors featured a constant inlet blade angle, one with 12 blades and the second with 10. The third rotor was shorter and had a nominally constant incidence angle. The rotors find application on an automotive high-speed large commercial diesel turbocharger. The steady flow entering and exiting the blades has been quantified by a laser Doppler velocimetry system. The measurements were performed at a plane 3.0-mm ahead of the rotor leading edge and 9.5-mm downstream the rotor trailing edge. The turbine test conditions corresponded to the peak efficiency point at two rotational speeds, 29,400 and 41,300-rpm. The results were resolved in a blade-to-blade sense to examine fully the nature of the flow at turbocharger representative conditions. A correlation between the combined effects of incidence and exit flow angle with the isentropic efficiency has been verified. Regarding pulsating flow, the velocity data and their corresponding instantaneous velocity triangles were resolved in a blade-to-blade sense to understand better the complex phenomenon. The results highlighted the potential of a nominally constant incidence design to absorb better the inadequacy of the volute to discharge the exhaust gas uniformly along the blade leading edge. A double vortex rotating in a clockwise sense propagated on the plane normal to the meridional direction. This should be attributed to the effect of the passing blade that was acting as a blockage to the flow. The phenomenon was more pronounced near the suction and pressure surfaces of the blade, but diminished at the mid-passage region where the flow exhibited its best level of guidance. The full mixed flow turbine stage under transient conditions was modelled firstly with a 'steady' inlet and secondly with a 'pulsating' inlet boundary condition. In both cases comparison was made to

  3. Generation of useful energy from process fluids using the biphase turbine

    Science.gov (United States)

    Helgeson, N. L.

    1981-01-01

    The six largest energy consuming industries in the United States were surveyed to determine the energy savings that could result from applying the Biphase turbine to industrial process streams. A national potential energy savings of 58 million barrels of oil per year (technical market) was identified. This energy is recoverable from flashing gas liquid process streams and is separate and distinct from exhaust gas waste heat recovery. The industries surveyed in this program were the petroleum chemical, primary metals, paper and pulp, stone-clay-glass, and food. It was required to determine the applicability of the Biphase turbine to flashing operations connected with process streams, to determine the energy changes associated with these flashes if carried out in a Biphase turbine, and to determine the suitability (technical and economical feasibility) of applying the Biphase turbine to these processes.

  4. Evaluation of effect of inlet distortion on aerodynamic performance of helium gas compressor for gas turbine high temperature reactor (GTHTR300). Contract research

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Yan, Xing; Kurokouchi, Naohiro; Kunitomi, Kazuhiko

    2006-02-01

    Because the main pipe is connected perpendicular to the flow direction inside the distributing header in the inlet casing of the helium gas compressor design of GTHTR300, the main flow flowing into the header tends to separate from the header wall and to cause reverse flow, which increases flow resistance in the header. This phenomenon increases the total pressure loss in the header and inlet distortion, which is considered to deteriorate the aerodynamic performance of the compressor. Tests were carried out to evaluate the effects of inlet distortion on aerodynamic performance of compressor by using a 1/3-scale helium gas compressor model by varying a level of inlet distortion. Flow was injected from the wall of header to make circumferential velocities uniform before and after the reverse flow region to dissipate the separation and reverse flow. At the design point, inlet distortion was reduced by 2-3% by injection, which resulted in increasing adiabatic efficiency of blade section by 0.5%. A modified flow rate at surge point was lowered from 10.0 kg/s to 9.6 kg/s. At the same time, pressure loss of the inlet casing was reduced by 3-5 kPa, which is equivalent to adiabatic efficiency improvement around 0.8%. By setting orifice at the inlet of the inlet casing, the level of inlet distortion became 3% higher and the adiabatic efficiency of blade section became 1% higher at the design point. The modified flow rate at surge point increased from 10.6 to 10.9 kg/s. A new correlation between inlet distortion and adiabatic efficiency of blade section at the rated flow rate was derived based on compressor-in-parallel model and fitted to the test results. An overall adiabatic efficiency of full-scale compressor was predicted 90.2% based on the test results of efficiency and Reynolds number correlation, which was close to 89.7% that was predicted by test calibrated design through-flow code. (author)

  5. Steam turbine controls and their integration into power plants

    International Nuclear Information System (INIS)

    Kure-Jensen, J.; Hanisch, R.

    1989-01-01

    The main functions of a modern steam turbine control system are: speed and acceleration control during start-up; initialization of generator excitation; synchronization and application of load; pressure control of various forms: inlet, extraction backpressure, etc.; unloading and securing of the turbine; sequencing of the above functions under constraint of thermal stress overspeed protection during load rejection and emergencies; protection against serious hazards, e.g., loss of oil pressure, high bearing vibration; and testing of valves and vitally important protection functions. It is characteristic of the first group of functions that they must be performed with high control bandwidth, or very high reliability, or both, to ensure long-term satisfactory service of the turbine. It is for these reasons that GE has, from the very beginning of the technology, designed and provided the controls and protection for its units, starting with mechanical and hydraulic devices and progressing to analog electrohydraulic systems introduced in the 1960s, and now continuing with all-digital electrohydraulic systems

  6. Multi-spectral pyrometer for gas turbine blade temperature measurement

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  7. Thermodynamic assessment of integrated biogas-based micro-power generation system

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Barzegaravval, Hasan; Wahid, Mazlan Abdul; Ganjehkaviri, Abdolsaeid; Sies, Mohsin Mohd

    2016-01-01

    attributed to the variation of temperature discrepancy between gas turbine exhaust temperature and ORC working fluid. Both first and second law efficiency of the combined cycle increases with the enhancement of inlet pressure of ORC turbine due to the mitigation of exergy destruction in heat exchanger. The rate of power generation in ORC increases by the enhancement of ORC turbine inlet pressure, however overall exergy destruction of the cycle decreases slightly.

  8. Wind turbines - generating noise or electricity?

    International Nuclear Information System (INIS)

    Russell, Eric

    1999-01-01

    Wind turbine technology has made great strides in the past few years. Annual energy output is up by two orders of magnitude and nacelle weight and noise has been halved. Computational fluid dynamics has paid a part in advancing knowledge of air flow and turbulence around wind generators. Current research is focused on how to increase turbine size and improve efficiency. A problem is that while larger wind turbines will produce cheaper electricity, the noise problem will mean that the number of acceptable sites will decrease. The biggest wind generators will need about 800 m clearance from the nearest house. (UK)

  9. Enhanced efficiency steam turbine blading - for cleaner coal plant

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, A.; Bell, D.; Cao, C.; Fowler, R.; Oliver, P.; Greenough, C.; Timmis, P. [ALSTOM Power, Rugby (United Kingdom)

    2005-03-01

    The aim of this project was to increase the efficiency of the short height stages typically found in high pressure steam turbine cylinders. For coal fired power plant, this will directly lead to a reduction in the amount of fuel required to produce electrical power, resulting in lower power station emissions. The continual drive towards higher cycle efficiencies demands increased inlet steam temperatures and pressures, which necessarily leads to shorter blade heights. Further advances in blading for short height stages are required in order to maximise the benefit. To achieve this, an optimisation of existing 3 dimensional designs was carried out and a new 3 dimensional fixed blade for use in the early stages of the high pressure turbine was developed. 28 figs., 5 tabs.

  10. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  11. Development of a 5kw Francis Turbine Runner Using Computation ...

    African Journals Online (AJOL)

    A small scale Francis turbine runner for a turbine located at Awba dam in the University of Ibadan with designed head and flow rate of 6m and 0.244m3/s is designed. The basic design of the Francis turbine runner is completed based on basic fluid dynamics turbo machinery principles. A 2-D and 3-D steady state, ...

  12. Installations having pressurised fluid circuits

    International Nuclear Information System (INIS)

    Rigg, S.; Grant, J.

    1977-01-01

    Reference is made to nuclear installations having pressurised coolant flow circuits. Breaches in such circuits may quickly result in much damage to the plant. Devices such as non-return valves, orifice plates, and automatically operated shut-off valves have been provided to prevent or reduce fluid flow through a breached pipe line, but such devices have several disadvantages; they may present large restrictions to normal flow of coolant, and may depend on the operation of ancillary equipment, with consequent delay in bringing them into operation in an emergency. Other expedients that have been adopted to prevent or reduce reverse flow through an upstream breach comprise various forms of hydraulic counter flow brakes. The arrangement described has at least one variable fluid brake comprising a fluidic device connected into a duct in the pressurised circuit, the device having an inlet, an outlet, a vortex chamber between the inlet and outlet, a control jet for introducing fluid into the vortex chamber, connections communicating the inlet and the outlet into one part of the circuit and the control jet into another region at a complementary pressure so that, in the event of a breach in the circuit in one region, fluid passes from the other region to enter the vortex chamber to stimulate pressure to create a flow restricting vortex in the chamber that reduces flow through the breach. The system finds particular application to stream generating pressure tube reactors, such as the steam generating heavy water reactor at UKAEA, Winfrith. (U.K.)

  13. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle

    International Nuclear Information System (INIS)

    Al Jubori, Ayad; Daabo, Ahmed; Al-Dadah, Raya K.; Mahmoud, Saad; Ennil, Ali Bahr

    2016-01-01

    Highlights: • One and three-dimensional analysis with real gas properties are integrated. • Micro axial and radial-inflow turbines configurations are investigated. • Five organic working fluids are considered. • The maximum total isentropic efficiency of radial-inflow turbine 83.85%. • The maximum ORC thermal efficiency based on radial-inflow turbine is 10.60%. - Abstract: Most studies on the organic Rankine cycle (ORC) focused on parametric studies and selection working fluids to maximize the performance of organic Rankine cycle but without attention for turbine design features which are crucial to achieving them. The rotational speed, expansion ratio, mass flow rate and turbine size have markedly effect on turbine performance. For this purpose organic Rankine cycle modeling, mean-line design and three-dimensional computational fluid dynamics analysis were integrated for both micro axial and radial-inflow turbines with five organic fluids (R141b, R1234yf, R245fa, n-butane and n-pentane) for realistic low-temperature heat source <100 °C like solar and geothermal energy. Three-dimensional simulation is performed using ANSYS"R"1"7-CFX where three-dimensional Reynolds-averaged Navier-Stokes equations are solved with k-omega shear stress transport turbulence model. Both configurations of turbines are designed at wide range of mass flow rate (0.1–0.5) kg/s for each working fluid. The results showed that n-pentane has the highest performance at all design conditions where the maximum total-to-total efficiency and power output of radial-inflow turbine are 83.85% and 8.893 kW respectively. The performance of the axial turbine was 83.48% total-to-total efficiency and 8.507 kW power output. The maximum overall size of axial turbine was 64.685 mm compared with 70.97 mm for radial-inflow turbine. R245fa has the lowest overall size for all cases. The organic Rankine cycle thermal efficiency was about 10.60% with radial-inflow turbine and 10.14% with axial turbine

  14. Determination of turbine runner dynamic behaviour under operating condition by a two-way staggered fluid-structureinteraction method

    International Nuclear Information System (INIS)

    Dompierre, F; Sabourin, M

    2010-01-01

    This paper presents the application of the two-way fluid-structure interaction method introduced by ANSYS to calculate the dynamic behaviour of a Francis turbine runner under operating condition. This time-dependant calculation directly takes into account characteristics of the flow and particularly the pressure fluctuations caused by the rotor-stator interaction. This formulation allows the calculation of the damping forces of the whole system implicitly. Thereafter, the calculated dynamic stress can be used for a fatigue analysis. A verification of the mechanical and fluid simulations used as input for the fluid-structure interaction calculation is first performed. Subsequently, a connection of these two independent simulations is made. A validation according to the hydraulic conditions is made with the measurements from the scale model testing. Afterwards, the static displacement of the runner under the hydraulic load is compared with the results of a classical static analysis for verification purposes. Finally, the natural frequencies deduced by the post-processing of the dynamic portion of the runner displacement with respect to time are compared with the natural frequencies obtained from a classical acoustic modal analysis. All comparisons show a good agreement with experimental data or results obtained with conventional methods.

  15. Determination of turbine runner dynamic behaviour under operating condition by a two-way staggered fluid-structureinteraction method

    Energy Technology Data Exchange (ETDEWEB)

    Dompierre, F; Sabourin, M, E-mail: frederick.dompierre@power.alstom.co [Alstom Power Systems, Hydro 1350 chemin Saint-Roch, Sorel-Tracy (Quebec), J3R 5P9 (Canada)

    2010-08-15

    This paper presents the application of the two-way fluid-structure interaction method introduced by ANSYS to calculate the dynamic behaviour of a Francis turbine runner under operating condition. This time-dependant calculation directly takes into account characteristics of the flow and particularly the pressure fluctuations caused by the rotor-stator interaction. This formulation allows the calculation of the damping forces of the whole system implicitly. Thereafter, the calculated dynamic stress can be used for a fatigue analysis. A verification of the mechanical and fluid simulations used as input for the fluid-structure interaction calculation is first performed. Subsequently, a connection of these two independent simulations is made. A validation according to the hydraulic conditions is made with the measurements from the scale model testing. Afterwards, the static displacement of the runner under the hydraulic load is compared with the results of a classical static analysis for verification purposes. Finally, the natural frequencies deduced by the post-processing of the dynamic portion of the runner displacement with respect to time are compared with the natural frequencies obtained from a classical acoustic modal analysis. All comparisons show a good agreement with experimental data or results obtained with conventional methods.

  16. Three dimensional optimization of small-scale axial turbine for low temperature heat source driven organic Rankine cycle

    International Nuclear Information System (INIS)

    Al Jubori, Ayad; Al-Dadah, Raya K.; Mahmoud, Saad; Bahr Ennil, A.S.; Rahbar, Kiyarash

    2017-01-01

    Highlights: • Three-dimensional optimization of axial turbine stage is presented. • Six organic fluids suitable for low-temperature heat source are considered. • Three-dimensional optimization has been done for each working fluid. • The results showed highlight the potential of optimization technique. • The performance of optimized turbine has been improved off-design conditions. - Abstract: Advances in optimization techniques can be used to enhance the performance of turbines in various applications. However, limited work has been reported on using such optimization techniques to develop small-scale turbines for organic Rankine cycles. This paper investigates the use of multi-objective genetic algorithm to optimize the stage geometry of a small-axial subsonic turbine. This optimization is integrated with organic Rankine cycle analysis using wide range of high density organic working fluids like R123, R134a, R141b, R152a, R245fa and isobutane suitable for low temperature heat sources <100 °C such as solar energy to achieve the best turbine design and highest organic Rankine cycle efficiency. The isentropic efficiency of the turbine in most of the reported organic Rankine cycle studies was assumed constant, while the current work allows the turbine isentropic efficiency to change (dynamic value) with both operating conditions and working fluids. Three-dimensional computational fluid dynamics analysis and multi-objective genetic algorithm optimization were performed using three-dimensional Reynolds-averaged Navier-Stokes equations with k-omega shear stress transport turbulence model in ANSYS"R"1"7-CFX and design exploration for various working fluids. The optimization was carried out using eight design parameters for the turbine stage geometry optimization including stator and rotor number of blades, rotor leading edge beta angle, trailing edge beta angle, stagger angle, throat width, trailing half wedge angle and shroud tip clearance. Results showed that

  17. Effect of flow rate distribution at the inlet on hydrodynamic mixing in narrow rectangular multi-channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Chen Bingde; Wang Xiaojun

    2008-01-01

    Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)

  18. Geomorphic Analysis of Mattituck Inlet and Goldsmith Inlet, Long Island, New York

    National Research Council Canada - National Science Library

    Morgan, Michael J; Kraus, Nicholas C; McDonald, Jodi M

    2005-01-01

    This study of Mattituck Inlet and Goldsmith Inlet, Long Island, NY, covers the historic and geomorphic background, literature, field measurements, numerical modeling of tidal circulation, and analysis...

  19. Design of Large Wind Turbines using Fluid-Structure Coupling Technique

    DEFF Research Database (Denmark)

    Sessarego, Matias

    Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely carried out in the wind energy field using computational tools known as aero-elastic codes. Most aero-elastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics......-dimensional viscous-inviscid interactive method, MIRAS, with the dynamics model used in the aero-elastic code FLEX5. Following the development of MIRAS-FLEX, a surrogate optimization methodology using MIRAS alone has been developed for the aerodynamic design of wind-turbine rotors. Designing a rotor using...... a computationally expensive MIRAS instead of an inexpensive BEM code represents a challenge, which is resolved by using the proposed surrogate-based approach. The approach is unique because most aerodynamic wind-turbine rotor design codes use the more common and inexpensive BEM technique. As a verification case...

  20. Development of small ceramic gas turbines for cogeneration

    International Nuclear Information System (INIS)

    1998-01-01

    Details of the project at NEDO to develop 300 kW ceramic gas turbines with a thermal efficiency of ≥42% at a turbine inlet temperature (TIT) of 1,350 o C. The project is part of the 'New Sunshine Projects' promoted by Japan's Agency of Industrial Science and Technology and the Ministry of International Trade and Industry. So far, a thermal efficiency of 37% at a TIT of 1,280 o C has been achieved by a basic ceramic gas turbine (CGT). Work to develop pilot CGTs to achieve the final target is being carried out alongside research and development of ceramic parts and improved performance of ceramic components for CGTs. One group of engine and ceramic manufacturers is developing a single shaft regenerative cycle CGT (CGT 301) and a second group a double shaft type (CGT 302). The heat-resistant ceramic parts, nitrogen oxide emissions and performance of these two prototypes are outlined and the properties of the ceramic materials used are indicated. Market estimates and economics are noted

  1. Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design

    International Nuclear Information System (INIS)

    Li, Yan; Ren, Xiao-dong

    2016-01-01

    Highlights: • The thermodynamic analysis of an ORC system is introduced. • A radial turbine design method has been proposed based on the real gas model. • A radial turbine with R123 is designed and numerically analyzed. - Abstract: Energy and environment issue set utilizing low-grade heat noticed. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. As a critical component of ORC system, the turbine selection has an enormous influence on the system performance. This paper carries out a study on the thermodynamic analysis of ORC system and the aerodynamic design of an organic radial turbine. The system performance is evaluated with various working fluids. The aerodynamic design of the organic radial-inflow turbine is focused due to the high molecule weight and the low sound speed of the organic working fluid. An aerodynamic and profile design system is developed. A radial-inflow turbine with R123 as the working fluid is designed and the numerical analysis is conducted. The simulation results indicate that the shock wave caused by the high expansion ratio in the nozzle is well controlled. Compared with the one-dimensional design results, the performance of the radial-inflow turbine in this paper reaches the design requirements.

  2. Numerical Simulations of Vortex Shedding in Hydraulic Turbines

    Science.gov (United States)

    Dorney, Daniel; Marcu, Bogdan

    2004-01-01

    Turbomachines for rocket propulsion applications operate with many different working fluids and flow conditions. Oxidizer boost turbines often operate in liquid oxygen, resulting in an incompressible flow field. Vortex shedding from airfoils in this flow environment can have adverse effects on both turbine performance and durability. In this study the effects of vortex shedding in a low-pressure oxidizer turbine are investigated. Benchmark results are also presented for vortex shedding behind a circular cylinder. The predicted results are compared with available experimental data.

  3. Development of 1800 rpm, 43in. blade for large steam turbine

    International Nuclear Information System (INIS)

    Kuroda, Michio; Yamazaki, Yoshiaki; Namura, Kiyoshi; Taki, Takamitsu; Ninomiya, Satoshi.

    1978-01-01

    In the turbines for nuclear power generation, the inlet conditions of steam is low pressure and low temperature as compared with the turbines for thermal power generation, therefore generally the required steam flow rate is much more. It is the main problem to cope with this steam of large flow rate effectively with long final stage blades and to make a turbine compact. This newly developed blade aims at the turbines from 1100 to 1300 MW class for nuclear power generation and those of 1000 MW class for thermal power generation, and it is the first low revolution, long blade in Japan used for large capacity machines of 60 Hz. Hereinafter, the outline of various examinations carried out at the time of the tests on this blade and the features of this blade are described. There is large margin in the exhaust area with this blade, therefore the turbines with large power output and good performance can be produced. The loss of exhaust energy at turbine exit can be reduced, and thermal efficiency can be raised. Large capacity machines from 1100 to 1300 MW class can be manufactured with six-flow exhaust, tandem compound turbines. In order to confirm the reliability, the vibration characteristics of the blade were investigated in the test of this time, and also the overspeed test and endurance test were carried out. (Kako, I.)

  4. Shared technologies in the development of the Titan 250 gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Knodle, M.S.; Novaresi, M.A. [Solar Turbines Inc., San Diego, CA (United States). Titan Gas Turbine Systems Division

    2009-07-01

    Development of the Titan 250 industrial gas turbine system began in 2005 in response to demands from the petroleum industry and electricity producers for higher performance industrial gas turbine products in the 15-30 MW (25,000-45,000 hp) power range. The Titan 250 is Solar Turbine's most powerful package and its evolutionary hybrid-type design approach was based on shared aerodynamic, thermal, mechanical, and combustion technologies borrowed from the Taurus 65TM, Titan 130TM, and Mercury 50TM gas turbine systems. It produces 50 per cent more power than the Titan 130, while providing 40 per cent shaft efficiency with significantly fewer emissions. Thorough combustion system testing, use of proven materials, and hot section cooling provided a solid design basis. The engine is a two-shaft design that includes a 16-stage axial-flow compressor, a dry low emissions combustor for low NOx and CO output, a two-stage gas producer turbine operating at a turbine rotor inlet temperature of 1204 degrees C, and a three-stage, all-shrouded blade power turbine for maximum efficiency. The design also minimizes maintenance intervals to increase equipment availability. The gas turbine and gas compressor have been tested in component, subsystem, and full-scale development, and will be starting field operation in late 2009 to verify performance and mechanical integrity under all operating conditions. 3 refs., 1 tab., 26 figs.

  5. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    OpenAIRE

    FUJII, Terushige; OHTA, Jun-ichi; AKAGAWA, Koji; NAKAMURA, Toshi; ASANO, Hitoshi

    1992-01-01

    From the viewpoint of energy conservation and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. Among energy conversion device,there is a radial outflow reaction turbine,i.e.,Hero's turbine. Performance characteristics of Hero's turbine are analytically and experimentally clarified for flashing expansion of initially subcooled hot water. It is found that: (a)there is an optimum number of revolutions at which maximum tubine e...

  6. Analysis of thermal cycles and working fluids for power generation in space

    International Nuclear Information System (INIS)

    Tarlecki, Jason; Lior, Noam; Zhang Na

    2007-01-01

    Production of power in space for terrestrial use is of great interest in view of the rapidly rising power demand and its environmental impacts. Space also offers a very low temperature, making it a perfect heat sink for power plants, thus offering much higher efficiencies. This paper focuses on the evaluation and analysis of thermal Brayton, Ericsson and Rankine power cycles operating at space conditions on several appropriate working fluids. Under the examined conditions, the thermal efficiency of Brayton cycles reaches 63%, Ericsson 74%, and Rankine 85%. These efficiencies are significantly higher than those for the computed or real terrestrial cycles: by up to 45% for the Brayton, and 17% for the Ericsson; remarkably 44% for the Rankine cycle even when compared with the best terrestrial combined cycles. From the considered working fluids, the diatomic gases (N 2 and H 2 ) produce somewhat better efficiencies than the monatomic ones in the Brayton and Rankine cycles. The Rankine cycles require radiator areas that are larger by up to two orders of magnitude than those required for the Brayton and Ericsson cycles. The results of the analysis of the sensitivity of the cycle performance parameters to major parameters such as turbine inlet temperature and pressure ratio are presented, equations or examining the effects of fluid properties on the radiator area and pressure drop were developed, and the effects of the working fluid properties on cycle efficiency and on the power production per unit radiator area were explored to allow decisions on the optimal choice of working fluids

  7. Research on the flow field of undershot cross-flow water turbines using experiments and numerical analysis

    International Nuclear Information System (INIS)

    Nishi, Y; Inagaki, T; Li, Y; Omiya, R; Hatano, K

    2014-01-01

    The purpose of this research is to develop a water turbine appropriate for low-head open channels in order to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of the cross-flow runner to open channels as an undershot water turbine has come under consideration and, to this end, a significant simplification was attained by removing the casings. However, the flow field of undershot cross-flow water turbines possesses free surfaces. This means that with the variation in the rotational speed, the water depth around the runner will change and flow field itself is significantly altered. Thus it is necessary to clearly understand the flow fields with free surfaces in order to improve the performance of this turbine. In this research, the performance of this turbine and the flow field were studied through experiments and numerical analysis. The experimental results on the performance of this turbine and the flow field were consistent with the numerical analysis. In addition, the inlet and outlet regions at the first and second stages of this water turbine were clarified

  8. The Effect of Flowing Water on Turbine Rotor Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Ida

    2010-07-01

    There is a lack of standardized rules on how the fluid in the turbine should be included in rotor models of hydraulic machinery. This thesis is an attempt to shed some light on this issue. We approach the problem from two viewpoints, situated at place at a hydropower plant and by mathematical analysis. One goal of the thesis is to develop a measurement system that monitors the instantaneous pressure at several locations of a runner blade on a 10 MW Kaplan prototype in Porjus along Lule river. Paper A outlines the development of the measurement system and the instrumentation of the runner blade. Miniature piezo-resistive pressure transducers were mounted flush to the surface. If instrumentation is successful, the pressure field of the runner blade could be measured simultaneously as the loads and displacements of the guide bearings and the generator. The second objective is concerned with how the motion-induced fluid force affects the dynamic behaviour of the rotor. Inertia and angular momentum of the fluid and shrouding are expected to influence the dynamic behaviour of the turbine. Paper B scrutinizes this assumption by presenting a simple fluid-rotor model that captures the effects of inertia and angular momentum of the fluid on the motion of a confined cylinder. The simplicity of the model allows for powerful analytical solution methods. The results show that fluid inertia, angular momentum and shrouding of hydraulic turbines could have substantial effects on lateral rotor vibrations. This calls for further investigation with a more complex fluid-rotor model that accounts for flexural bending modes.

  9. CFD modeling of a vertical-axis wind turbine for efficiency improvement and climate change mitigation

    International Nuclear Information System (INIS)

    Ajedegba, J.O.; Rosen, M.A.; Naterer, G.F.; Tsang, E.

    2009-01-01

    Wind power can help mitigate climate change. Computational fluid dynamics (CFD) is used here to simulate and analyze the Zephyr vertical axis wind turbine and to assess how it reduces greenhouse gas emissions. Fluid flow through the turbine is simulated to predict its performance. A multiple reference frame model capability of CFD is used to express the turbine power output as a function of the wind free stream velocity and the rotor rotational speed. The results suggest the wind turbine could significantly reduce energy demand and greenhouse gas emissions in urban and rural settings relative to conventional power systems. (author)

  10. Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units

    International Nuclear Information System (INIS)

    Fang, Fang; Wei, Le

    2011-01-01

    The control system of boiler-turbine unit plays an important role in improving efficiency and reducing emissions of power generation unit. The nonlinear, coupling and uncertainty of the unit caused by varying working conditions should be fully considered during the control system design. This paper presents an efficient control scheme based on backstepping theory for improving load adaptability of boiler-turbines in wide operation range. The design process of the scheme includes model preprocessing, control Lyapunov functions selection, interlaced computation of adaptive control laws, etc. For simplification and accuracy, differential of steam pipe inlet pressure and integral terms of target errors are adopted. Also, to enhance practicality, implementation steps of the scheme are proposed. A practical nonlinear model of a 500 MW coal-fired boiler-turbine unit is used to test the efficiency of the proposed scheme in different conditions.

  11. Research of performance prediction to energy on hydraulic turbine

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Li, Q F; Han, W; Su, Q M

    2012-01-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  12. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet

    Science.gov (United States)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined, where the second cone of a two cone center body collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  13. Evaluation of the quality of gas turbine inlets in a gas power plan

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2013-12-01

    .Conclusion: Based on mass distribution of particles, the highest concentration belongs to particles with diameter of less than 4.7 µ. These particles could damage turbine blades, especially due to the presence of sodium and potassium as corrosive elements in this range (200 µg/m3. Therefore,this range of particle size must be considered in selecting the air intake filtration system.

  14. Design of a new urban wind turbine airfoil using a pressure-load inverse method

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, J.C.C.; Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Marques da Silva, F. [LNEC - Laboratorio Nacional de Engenharia Civil, Av. Brasil, 101, 1700-066 Lisboa (Portugal); Estanqueiro, A.I. [INETI - Instituto Nacional de Engenharia, Tecnologia e Inovacao Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal)

    2009-12-15

    This paper presents the design methodology of a new wind turbine airfoil that achieves high performance in urban environment by increasing the maximum lift. For this purpose, an inverse method was applied to obtain a new wind turbine blade section with constant pressure-load along the chord, at the design inlet angle. In comparison with conventional blade section designs, the new airfoil has increased maximum lift, reduced leading edge suction peak and controlled soft-stall behaviour, due to a reduction of the adverse pressure gradient on the suction side. Wind tunnel experimental results confirmed the computational results. (author)

  15. Wind turbine generators having wind assisted cooling systems and cooling methods

    Science.gov (United States)

    Bagepalli, Bharat [Niskayuna, NY; Barnes, Gary R [Delanson, NY; Gadre, Aniruddha D [Rexford, NY; Jansen, Patrick L [Scotia, NY; Bouchard, Jr., Charles G.; Jarczynski, Emil D [Scotia, NY; Garg, Jivtesh [Cambridge, MA

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  16. Bottoming micro-Rankine cycles for micro-gas turbines

    International Nuclear Information System (INIS)

    Invernizzi, Costante; Iora, Paolo; Silva, Paolo

    2007-01-01

    This paper investigates the possibility of enhancing the performances of micro-gas turbines through the addition of a bottoming organic Rankine cycle which recovers the thermal power of the exhaust gases typically available in the range of 250-300 o C. The ORC cycles are particularly suitable for the recovery of heat from sources at variable temperatures, and for the generation of medium to small electric power. With reference to a micro-gas turbine with a size of about 100 kWe, a combined configuration could increase the net electric power by about 1/3, yielding an increase of the electrical efficiency of up to 40%. A specific analysis of the characteristics of different classes of working fluids is carried out in order to define a procedure to select the most appropriate fluid, capable of satisfying both environmental (ozone depletion potential, global warming potential) and technical (flammability, toxicity, fluid critical temperature and molecular complexity) concerns. Afterwards, a thermodynamic analysis is performed to ascertain the most favourable cycle thermodynamic conditions, from the point of view of heat recovery. Furthermore, a preliminary design of the ORC turbine (number of stages, outer diameter and rotational speed) is carried out

  17. Humidification tower for humid air gas turbine cycles: Experimental analysis

    International Nuclear Information System (INIS)

    Traverso, A.

    2010-01-01

    In the HAT (humid air turbine) cycle, the humidification of compressed air can be provided by a pressurised saturator (i.e. humidification tower or saturation tower), this solution being known to offer several attractive features. This work is focused on an experimental study of a pressurised humidification tower, with structured packing. After a description of the test rig employed to carry out the measuring campaign, the results relating to the thermodynamic process are presented and discussed. The experimental campaign was carried out over 162 working points, covering a relatively wide range of possible operating conditions. It is shown that the saturator behaviour, in terms of air outlet humidity and temperature, is primarily driven by, in decreasing order of relevance, the inlet water temperature, the inlet water over inlet dry air mass flow ratio and the inlet air temperature. The exit relative humidity is consistently over 100%, which may be explained partially by measurement accuracy and droplet entrainment, and partially by the non-ideal behaviour of air-steam mixtures close to saturation. Experimental results have been successfully correlated using a set of new non-dimensional groups: such a correlation is able to capture the air outlet temperature with a standard deviation σ = 2.8 K.

  18. Experimental investigations on inlet flow of ducted turbines. A contribution to turbine intake optimization; Experimentelle Untersuchungen zur Anstroemung von Rohrturbinen. Ein Beitrag zur Optimierung des Turbineneinlaufes

    Energy Technology Data Exchange (ETDEWEB)

    Godde, D. [Technische Univ. Muenchen, Obernach (Germany). Versuchsanstalt fuer Wasserbau und Wasserwirtschaft (Oskar-von-Miller-Institut)

    1994-12-31

    In the borderline region between hydraulic engineering and turbine technology, a wide range of conjectures on cause-effect relationships in connection with turbine inflow have existed for quite some time. It is remarkable that these conjectures, which are partly based on observations and `a feeling for hydraulics`, have not as yeet been subject to scientific scrutiny. This is more the remarkable when one considers the requirements specified by turbine manufacturers concerning the quality of the intake flow based upon such uncertain conjectures. However, extensive contructional measures are sometimes necessary to satisfy these requirements, which are also formulated in general terms in numerous publications. Within the scope of this treatise the new investigations in this field - at a model and a turbine test rig - concentrate on the separating pier, the trash rack and the adjoining convergence channel in the intake region of bulb turbines. The experimental results serve to clarify a number of relationships, partly negate or confirm previous assumptions and relativize some of the requirements. Although the results must be assessed in the light of model-specific restrictions and the characteristics of the turbines tested, they are nevertheless generally applicable to a certain degree owing to the wide scope of the investigations. (AKF) [Deutsch] Im Grenzbereich zwischen Wasserbau und Turbinentechnologie besteht seit geraumer Zeit zu Fragen der Turbinenanstroemung eine Reihe von Vermutungen ueber Ursache-Wirkung-Zusammenhaenge. Es ist bemerkenswert, dass diese zum Teil auf Beobachtungen und `hydraulischem Gefuehl` basierenden Deutungen bisher keiner wissenschaftlichen Ueberpruefung unterzogen wurden. Das ist um so bemerkenswerter, als auf der Grundlage solcher unsicheren Vermutungen seitens der Turbinenhersteller nun Anforderungen an die Stroemungsqualitaet im Einlaufbereich erhoben werden. Es erfordert aber mitunter grossen baulichen Aufwand, diese Forderungen zu

  19. Validations of CFD against detailed velocity and pressure measurements in water turbine runner flow

    Science.gov (United States)

    Nilsson, H.; Davidson, L.

    2003-03-01

    This work compares CFD results with experimental results of the flow in two different kinds of water turbine runners. The runners studied are the GAMM Francis runner and the Hölleforsen Kaplan runner. The GAMM Francis runner was used as a test case in the 1989 GAMM Workshop on 3D Computation of Incompressible Internal Flows where the geometry and detailed best efficiency measurements were made available. In addition to the best efficiency measurements, four off-design operating condition measurements are used for the comparisons in this work. The Hölleforsen Kaplan runner was used at the 1999 Turbine 99 and 2001 Turbine 99 - II workshops on draft tube flow, where detailed measurements made after the runner were used as inlet boundary conditions for the draft tube computations. The measurements are used here to validate computations of the flow in the runner.The computations are made in a single runner blade passage where the inlet boundary conditions are obtained from an extrapolation of detailed measurements (GAMM) or from separate guide vane computations (Hölleforsen). The steady flow in a rotating co-ordinate system is computed. The effects of turbulence are modelled by a low-Reynolds number k- turbulence model, which removes some of the assumptions of the commonly used wall function approach and brings the computations one step further.

  20. Why do Cross-Flow Turbines Stall?

    Science.gov (United States)

    Cavagnaro, Robert; Strom, Benjamin; Polagye, Brian

    2015-11-01

    Hydrokinetic turbines are prone to instability and stall near their peak operating points under torque control. Understanding the physics of turbine stall may help to mitigate this undesirable occurrence and improve the robustness of torque controllers. A laboratory-scale two-bladed cross-flow turbine operating at a chord-based Reynolds number ~ 3 ×104 is shown to stall at a critical tip-speed ratio. Experiments are conducting bringing the turbine to this critical speed in a recirculating current flume by increasing resistive torque and allowing the rotor to rapidly decelerate while monitoring inflow velocity, torque, and drag. The turbine stalls probabilistically with a distribution generated from hundreds of such events. A machine learning algorithm identifies stall events and indicates the effectiveness of available measurements or combinations of measurements as predictors. Bubble flow visualization and PIV are utilized to observe fluid conditions during stall events including the formation, separation, and advection of leading-edge vortices involved in the stall process.

  1. Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine

    International Nuclear Information System (INIS)

    Han, Wei; Chen, Qiang; Lin, Ru-mou; Jin, Hong-guang

    2015-01-01

    Highlights: • We develop an off-design model for a CCP system driven by gas turbine. • An alternative operating strategy is proposed to improve the system performance. • Off-design performance of the combined cooling and power system (CCP) is enhanced. • Effects of both the different operating strategy are analyzed and compared. • Performance enhancement mechanism of the proposed operating strategy is presented. - Abstract: A small-scale combined cooling and power (CCP) system usually serves district air conditioning apart from power generation purposes. The typical system consists of a gas turbine and an exhaust gas-fired absorption refrigerator. The surplus heat of the gas turbine is recovered to generate cooling energy. In this way, the CCP system has a high overall efficiency at the design point. However, the CCP system usually runs under off-design conditions because the users’ demand varies frequently. The operating strategy of the gas turbine will affect the thermodynamic performance of itself and the entire CCP system. The operating strategies for gas turbines include the reducing turbine inlet temperature (TIT) and the compressor inlet air throttling (IAT). A CCP system, consisting of an OPRA gas turbine and a double effects absorption refrigerator, is investigated to identify the effects of different operating strategies. The CCP system is simulated based on the partial-load model of gas turbine and absorption refrigerator. The off-design performance of the CCP system is compared under different operating strategies. The results show that the IAT strategy is the better one. At 50% rated power output of the gas turbine, the IAT operating strategy can increase overall system efficiency by 10% compared with the TIT strategy. In general, the IAT operating strategy is suited for other gas turbines. However, the benefits of IAT should be investigated in the future, when different gas turbine is adopted. This study may provide a new operating

  2. Air extraction in gas turbines burning coal-derived gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  3. Experiences with the hydraulic design of the high specific speed Francis turbine

    International Nuclear Information System (INIS)

    Obrovsky, J; Zouhar, J

    2014-01-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between n s =425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper

  4. Experiences with the hydraulic design of the high specific speed Francis turbine

    Science.gov (United States)

    Obrovsky, J.; Zouhar, J.

    2014-03-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between ns=425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper.

  5. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas

    Science.gov (United States)

    Johnsen, R. L.; Namkoong, D.; Edkin, R. A.

    1971-01-01

    The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.

  6. Inlet design for high-speed propfans

    Science.gov (United States)

    Little, B. H., Jr.; Hinson, B. L.

    1982-01-01

    A two-part study was performed to design inlets for high-speed propfan installation. The first part was a parametric study to select promising inlet concepts. A wide range of inlet geometries was examined and evaluated - primarily on the basis of cruise thrust and fuel burn performance. Two inlet concepts were than chosen for more detailed design studies - one apropriate to offset engine/gearbox arrangements and the other to in-line arrangements. In the second part of this study, inlet design points were chosen to optimize the net installed thrust, and detailed design of the two inlet configurations was performed. An analytical methodology was developed to account for propfan slipstream effects, transonic flow efects, and three-dimensional geometry effects. Using this methodology, low drag cowls were designed for the two inlets.

  7. Unsteady Reynolds-averaged Navier-Stokes simulations of inlet distortion in the fan system of a gas-turbine aero-engine

    Science.gov (United States)

    Spotts, Nathan

    As modern trends in commercial aircraft design move toward high-bypass-ratio fan systems of increasing diameter with shorter, nonaxisymmetric nacelle geometries, inlet distortion is becoming common in all operating regimes. The distortion may induce aerodynamic instabilities within the fan system, leading to catastrophic damage to fan blades, should the surge margin be exceeded. Even in the absence of system instability, the heterogeneity of the flow affects aerodynamic performance significantly. Therefore, an understanding of fan-distortion interaction is critical to aircraft engine system design. This thesis research elucidates the complex fluid dynamics and fan-distortion interaction by means of computational fluid dynamics (CFD) modeling of a complete engine fan system; including rotor, stator, spinner, nacelle and nozzle; under conditions typical of those encountered by commercial aircraft. The CFD simulations, based on a Reynolds-averaged Navier-Stokes (RANS) approach, were unsteady, three-dimensional, and of a full-annulus geometry. A thorough, systematic validation has been performed for configurations from a single passage of a rotor to a full-annulus system by comparing the predicted flow characteristics and aerodynamic performance to those found in literature. The original contributions of this research include the integration of a complete engine fan system, based on the NASA rotor 67 transonic stage and representative of the propulsion systems in commercial aircraft, and a benchmark case for unsteady RANS simulations of distorted flow in such a geometry under realistic operating conditions. This study is unique in that the complex flow dynamics, resulting from fan-distortion interaction, were illustrated in a practical geometry under realistic operating conditions. For example, the compressive stage is shown to influence upstream static pressure distributions and thus suppress separation of flow on the nacelle. Knowledge of such flow physics is

  8. Computational Analysis of Supercritical Carbon Dioxide Gas Turbine for Liquid Metal Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wi S.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2008-10-15

    Energy demands at a remote site are increased as the world energy requirement diversifies so that they should generate power on their own site. A Small Modular Reactor (SMR) becomes a viable option for these sites. Generally, the economic feasibility of a high power reactor is greater than that for SMR. As a result the supercritical fluid driven Brayton cycle is being considered for a power conversion system to increase economic competitiveness of SMR. The Brayton cycle efficiency is much higher than that for the Rankine cycle. Moreover, the components of the Brayton cycle are smaller than Rankine cycle's due to high heat capacity when a supercritical fluid is adopted. A lead (Pb) cooled SMR, BORIS, and a supercritical fluid driven Brayton cycle, MOBIS, are being developed at the Seoul National University (SNU). Dostal et al. have compared some advanced power cycles and proposed the use of a supercritical carbon dioxide (SCO{sub 2}) driven Brayton cycle. According to their suggestion SCO{sub 2} is adopted as a working fluid for MOBIS. The turbo machineries are most important components for the Brayton cycle. The turbo machineries of Brayton cycle consists of a turbine to convert kinetic energy of the fluid into mechanical energy of the shaft, and a compressor to recompress and recover the driving force of the working fluid. Therefore, turbine performance is one of the pivotal factors in increasing the cycle efficiency. In MOBIS a supercritical gas turbine is designed in the Gas Advanced Turbine Operation (GATO) and analyzed in the Turbine Integrated Numerical Analysis (TINA). A three-dimensional (3D) numerical analysis is employed for more detailed design to account for the partial flow which the one-dimensional (1D) analysis cannot consider.

  9. Computational Analysis of Supercritical Carbon Dioxide Gas Turbine for Liquid Metal Cooled Reactor

    International Nuclear Information System (INIS)

    Jeong, Wi S.; Suh, Kune Y.

    2008-01-01

    Energy demands at a remote site are increased as the world energy requirement diversifies so that they should generate power on their own site. A Small Modular Reactor (SMR) becomes a viable option for these sites. Generally, the economic feasibility of a high power reactor is greater than that for SMR. As a result the supercritical fluid driven Brayton cycle is being considered for a power conversion system to increase economic competitiveness of SMR. The Brayton cycle efficiency is much higher than that for the Rankine cycle. Moreover, the components of the Brayton cycle are smaller than Rankine cycle's due to high heat capacity when a supercritical fluid is adopted. A lead (Pb) cooled SMR, BORIS, and a supercritical fluid driven Brayton cycle, MOBIS, are being developed at the Seoul National University (SNU). Dostal et al. have compared some advanced power cycles and proposed the use of a supercritical carbon dioxide (SCO 2 ) driven Brayton cycle. According to their suggestion SCO 2 is adopted as a working fluid for MOBIS. The turbo machineries are most important components for the Brayton cycle. The turbo machineries of Brayton cycle consists of a turbine to convert kinetic energy of the fluid into mechanical energy of the shaft, and a compressor to recompress and recover the driving force of the working fluid. Therefore, turbine performance is one of the pivotal factors in increasing the cycle efficiency. In MOBIS a supercritical gas turbine is designed in the Gas Advanced Turbine Operation (GATO) and analyzed in the Turbine Integrated Numerical Analysis (TINA). A three-dimensional (3D) numerical analysis is employed for more detailed design to account for the partial flow which the one-dimensional (1D) analysis cannot consider

  10. Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the Organic Rankine Cycle (ORC) system

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei; Ren, Xiaodong

    2016-01-01

    Highlights: • The efficiency prediction is based on the velocity triangle and loss models. • The efficiency selection has a big influence on the working fluid selection. • The efficiency selection has a big influence on system parameter determination. - Abstract: The radial-inflow turbine is a common choice for the power output in the Organic Rankine Cycle (ORC) system. Its efficiency is related to the working fluid property and the system operating condition. Generally, the radial-inflow turbine efficiency is assumed to be a constant value in the conventional ORC system analysis. Few studies focus on the influence of the radial-inflow turbine efficiency selection on the system design and analysis. Actually, the ORC system design and the radial-inflow turbine design are coupled with each other. Different thermal parameters of the ORC system would lead to different radial-inflow turbine design and then different turbine efficiency, and vice versa. Therefore, considering the radial-inflow turbine efficiency prediction in the ORC system design can enhance its reliability and accuracy. In this paper, a one-dimensional analysis model for the radial-inflow turbine in the ORC system is presented. The radial-inflow turbine efficiency prediction in this model is based on the velocity triangle and loss models, rather than a constant efficiency assumption. The influence of the working fluid property and the system operating condition on the turbine performance is evaluated. The thermodynamic analysis of the ORC system with a model predicted turbine efficiency and a constant turbine efficiency is conducted and the results are compared with each other. It indicates that the turbine efficiency selection has a significant influence on the working fluid selection and the system parameter determination.

  11. Report on research and development achievements in fiscal 1979 in Sunshine Project. Development of a hydrogen sulfide removing technology; 1979 nendo ryuka suiso jokyo gijutsu no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    Development is made on a technology to treat waste gas and fluid such as condensate generated from steam on a turbine inlet side and from the condenser on an outlet side of a geothermal power plant turbine. The technology shall remove hydrogen sulfide at a removing rate of 90% or higher. This paper describes the achievements in fiscal 1979. Physical treatment in treating the steam on the turbine inlet side needs discussion on reducing the cost, while chemical treatment had the cost still higher. With regard to waste gas from treating fluid downstream the turbine, the RET method agrees with the conventionally hypothesized prerequisites, and the reliability in its application has been enhanced. High-concentration hydrogen sulfide, and carbon dioxide containing simulated gas were used to test the RET method, where the reaction characteristics of an RET catalyst was found capable of maintaining the very stable performance for an extended period of time. An air bubble column is suitable as a suction column type. A simulated condensate with H{sub 2}S at 10 mg/L and temperature of 40 degrees C was used for an engineering test using a discharge column. It was possible to estimate a standard discharge condition. Effects of pH and NaHCO{sub 3} in the condensate requires discussions in the future using actual fluids. Fundamental experiments were carried out on a method to continually analyze hydrogen sulfide contained in geothermal steam. (NEDO)

  12. Brayton rotating units for space reactor power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Bruno M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Dept., The Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2009-09-15

    Designs and analyses models of centrifugal-flow compressor and radial-inflow turbine of 40.8kW{sub e} Brayton Rotating Units (BRUs) are developed for 15 and 40 g/mole He-Xe working fluids. Also presented are the performance results of a space power system with segmented, gas cooled fission reactor heat source and three Closed Brayton Cycle loops, each with a separate BRU. The calculated performance parameters of the BRUs and the reactor power system are for shaft rotational speed of 30-55 krpm, reactor thermal power of 120-471kW{sub th}, and turbine inlet temperature of 900-1149 K. With 40 g/mole He-Xe, a power system peak thermal efficiency of 26% is achieved at rotation speed of 45 krpm, compressor and turbine inlet temperatures of 400 and 1149 K and 0.93 MPa at exit of the compressor. The corresponding system electric power is 122.4kW{sub e}, working fluid flow rate is 1.85 kg/s and the pressure ratio and polytropic efficiency are 1.5% and 86.3% for the compressor and 1.42% and 94.1% for the turbine. For the same nominal electrical power of 122.4kW{sub e}, decreasing the molecular weight of the working fluid (15 g/mole) decreases its flow rate to 1.03 kg/s and increases the system pressure to 1.2 MPa. (author)

  13. Performance analysis of a counter-rotating tubular type micro-turbine by experiment and CFD

    International Nuclear Information System (INIS)

    Lee, N J; Choi, J W; Hwang, Y H; Kim, Y T; Lee, Y H

    2012-01-01

    Micro hydraulic turbines have a growing interest because of its small and simple structure, as well as a high possibility of using in micro and small hydropower applications. The differential pressure existing in city water pipelines can be used efficiently to generate electricity in a way similar to that of energy being generated through gravitational potential energy in dams. The pressure energy in the city pipelines is often wasted by using pressure reducing valves at the inlet of water cleaning centers. Instead of using the pressure reducing valves, a micro counter-rotating hydraulic turbine can be used to make use of the pressure energy. In the present paper, a counter-rotating tubular type micro-turbine is studied, with the front runner connected to the generator stator and the rear runner connected to the generator rotor. The performance of the turbine is investigated experimentally and numerically. A commercial ANSYS CFD code was used for numerical analysis.

  14. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; Barmak, K.; Chan, H.M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  15. CFD code calibration and inlet-fairing effects on a 3D hypersonic powered-simulation model

    Science.gov (United States)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure dam. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing-inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flowfield differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.

  16. 3D CFD Analysis of a Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Andrea Alaimo

    2015-04-01

    Full Text Available To analyze the complex and unsteady aerodynamic flow associated with wind turbine functioning, computational fluid dynamics (CFD is an attractive and powerful method. In this work, the influence of different numerical aspects on the accuracy of simulating a rotating wind turbine is studied. In particular, the effects of mesh size and structure, time step and rotational velocity have been taken into account for simulation of different wind turbine geometries. The applicative goal of this study is the comparison of the performance between a straight blade vertical axis wind turbine and a helical blade one. Analyses are carried out through the use of computational fluid dynamic ANSYS® Fluent® software, solving the Reynolds averaged Navier–Stokes (RANS equations. At first, two-dimensional simulations are used in a preliminary setup of the numerical procedure and to compute approximated performance parameters, namely the torque, power, lift and drag coefficients. Then, three-dimensional simulations are carried out with the aim of an accurate determination of the differences in the complex aerodynamic flow associated with the straight and the helical blade turbines. Static and dynamic results are then reported for different values of rotational speed.

  17. Design optimization of axial flow hydraulic turbine runner: Part I - an improved Q3D inverse method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi-three-dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre-computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright

  18. Aerodynamic Effects of Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations

    Science.gov (United States)

    Flegel, Ashlie Brynn; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The high turbulence study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Downstream total pressure and exit angle data were acquired for ten incidence angles ranging from +15.8 to 51.0. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12105 to 2.12106 and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 0.25 - 0.4 for the low Tu tests and 8- 15 for the high Tu study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitchyaw probe located in a survey plane 7 axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall

  19. The study of the influence of the diameter ratio and blade number to the performance of the cross flow wind turbine by using 2D computational fluid dynamics modeling

    Science.gov (United States)

    Tjahjana, Dominicus Danardono Dwi Prija; Purbaningrum, Pradityasari; Hadi, Syamsul; Wicaksono, Yoga Arob; Adiputra, Dimas

    2018-02-01

    Cross flow turbine can be one of the alternative energies for regions with low wind speed. Collision between wind and the blades which happened two times caused the cross flow turbine to have high power coefficient. Some factors that influence the turbine power coefficient are diameter ratio and blade number. The objective of the research was to study the effect of the diameter ratio and the blade number to the cross flow wind turbine performance. The study was done in two dimensional (2D) computational fluid dynamics (CFD) simulation method using the ANSYS-Fluent software. The turbine diameter ratio were 0.58, 0.63, 0.68 and 0.73. The diameter ratio resulting in the highest power coefficient value was then simulated by varying the number of blades, namely 16, 20 and 24. Each variation was tested on the wind speed of 2 m/s and at the tip speed ratio (TSR) of 0.1 to 0.4 with the interval of 0.1. The wind turbine with the ratio diameter of 0.68 and the number of blades of 20 generated the highest power coefficient of 0.5 at the TSR of 0.3.

  20. Thermodynamic Analysis of Simple Gas Turbine Cycle with Multiple Regression Modelling and Optimization

    Directory of Open Access Journals (Sweden)

    Abdul Ghafoor Memon

    2014-03-01

    Full Text Available In this study, thermodynamic and statistical analyses were performed on a gas turbine system, to assess the impact of some important operating parameters like CIT (Compressor Inlet Temperature, PR (Pressure Ratio and TIT (Turbine Inlet Temperature on its performance characteristics such as net power output, energy efficiency, exergy efficiency and fuel consumption. Each performance characteristic was enunciated as a function of operating parameters, followed by a parametric study and optimization. The results showed that the performance characteristics increase with an increase in the TIT and a decrease in the CIT, except fuel consumption which behaves oppositely. The net power output and efficiencies increase with the PR up to certain initial values and then start to decrease, whereas the fuel consumption always decreases with an increase in the PR. The results of exergy analysis showed the combustion chamber as a major contributor to the exergy destruction, followed by stack gas. Subsequently, multiple regression models were developed to correlate each of the response variables (performance characteristic with the predictor variables (operating parameters. The regression model equations showed a significant statistical relationship between the predictor and response variables.

  1. Investigation of cool down processes in a NPP turbine of the K-1000-60/1500 type

    International Nuclear Information System (INIS)

    Pereverzev, D.A.; Lebedev, A.G.; Palej, V.A.

    1985-01-01

    Methods of mathematical simulation were used to investigate cooling-off dynamics of separate NPP turbine parts of the K-1000-60/1500 type during shutdowns of different duration. Investigations indicated that a flange section of horizontal external casing joint in the steam inlet zone of the intermediate pressure casing is a main place limiting duration of turbine starting regime. When strengthening thermal protection of branch pipes, turbine start-up time (after shutdown during 72-168 h) can be reduced by 0.25-0.3 h; if also pick-ups are isolated than reduction of start-up duration will constitute 0.5-0.7 h. During shutdowns of shorter duration all critical assemblies will not limit in practice time of starting regime

  2. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  3. Numerical simulation of the fluid flow between blades and around the turbine blade

    International Nuclear Information System (INIS)

    Donevski, Bozin; Antoska, Vesna; Chodkiewicz, Ryszard

    2006-01-01

    In this paper are presented the results of investigations of the flow in turbine cascade giving a contribution to development of both numerical method and upgrading the mathematical model describing the physics of the flow in the turbine cascade. The objective is to classified the influenced factors which affects the efficiency of the work of the turbine stage at defined thermodynamics properties of the flow. The numerical computation is conducted on the turbine model of two stage using CFD commercial computer code CF-TascFlow, based on solving of Navier-Stokes equation with applying a standard ?-? SST (Short-Stress Transport) turbulence model. Results of the numerical computation are discussed in the paper.

  4. Numerical simulation of the fluid flow between blades and around the turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Donevski, Bozin; Antoska, Vesna [Faculty of Technical Science, University St. Kliment Ohridski, Bitola (Macedonia, The Former Yugoslav Republic of); Chodkiewicz, Ryszard [Institute of Turbomachinery, Technical University of Lodz (Poland)

    2006-07-01

    In this paper are presented the results of investigations of the flow in turbine cascade giving a contribution to development of both numerical method and upgrading the mathematical model describing the physics of the flow in the turbine cascade. The objective is to classified the influenced factors which affects the efficiency of the work of the turbine stage at defined thermodynamics properties of the flow. The numerical computation is conducted on the turbine model of two stage using CFD commercial computer code CF-TascFlow, based on solving of Navier-Stokes equation with applying a standard ?-? SST (Short-Stress Transport) turbulence model. Results of the numerical computation are discussed in the paper.

  5. Performance analysis of organic Rankine cycles using different working fluids

    Directory of Open Access Journals (Sweden)

    Zhu Qidi

    2015-01-01

    Full Text Available Low-grade heat from renewable or waste energy sources can be effectively recovered to generate power by an organic Rankine cycle (ORC in which the working fluid has an important impact on its performance. The thermodynamic processes of ORCs using different types of organic fluids were analyzed in this paper. The relationships between the ORC’s performance parameters (including evaporation pressure, condensing pressure, outlet temperature of hot fluid, net power, thermal efficiency, exergy efficiency, total cycle irreversible loss, and total heat-recovery efficiency and the critical temperatures of organic fluids were established based on the property of the hot fluid through the evaporator in a specific working condition, and then were verified at varied evaporation temperatures and inlet temperatures of the hot fluid. Here we find that the performance parameters vary monotonically with the critical temperatures of organic fluids. The values of the performance parameters of the ORC using wet fluids are distributed more dispersedly with the critical temperatures, compared with those of using dry/isentropic fluids. The inlet temperature of the hot fluid affects the relative distribution of the exergy efficiency, whereas the evaporation temperature only has an impact on the performance parameters using wet fluid.

  6. Thermal expansion measurement of turbine and main steam piping by using strain gages in power plants

    International Nuclear Information System (INIS)

    Na, Sang Soo; Chung, Jae Won; Bong, Suk Kun; Jun, Dong Ki; Kim, Yun Suk

    2000-01-01

    One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shaft alignment problem which sometimes is changed by thermal expansion and external force, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants

  7. Computational modelling of an operational wind turbine and validation with LIDAR

    Science.gov (United States)

    Creech, Angus; Fruh, Wolf-Gerrit; Clive, Peter

    2010-05-01

    We present a computationally efficient method to model the interaction of wind turbines with the surrounding flow, where the interaction provides information on the power generation of the turbine and the generated wake behind the turbine. The turbine representation is based on the principle of an actuator volume, whereby the energy extraction and balancing forces on the fluids are formulated as body forces which avoids the extremely high computational costs of boundary conditions and forces. Depending on the turbine information available, those forces can be derived either from published turbine performance specifications or from their rotor and blade design. This turbine representation is then coupled to a Computational Fluid Dynamics package, in this case the hr-adaptive Finite-Element code Fluidity from Imperial College, London. Here we present a simulation of an operational 950kW NEG Micon NM54 wind turbine installed in the west of Scotland. The calculated wind is compared with LIDAR measurements using a Galion LIDAR from SgurrEnergy. The computational domain extends over an area of 6km by 6km and a height of 750m, centred on the turbine. The lower boundary includes the orography of the terrain and surface roughness values representing the vegetation - some forested areas and some grassland. The boundary conditions on the sides are relaxed Dirichlet conditions, relaxed to an observed prevailing wind speed and direction. Within instrumental errors and model limitations, the overall flow field in general and the wake behind the turbine in particular, show a very high degree of agreement, demonstrating the validity and value of this approach. The computational costs of this approach are such that it is possible to extend this single-turbine example to a full wind farm, as the number of required mesh nodes is given by the domain and then increases only linearly with the number of turbines

  8. Sampling efficiency of modified 37-mm sampling cassettes using computational fluid dynamics.

    Science.gov (United States)

    Anthony, T Renée; Sleeth, Darrah; Volckens, John

    2016-01-01

    In the U.S., most industrial hygiene practitioners continue to rely on the closed-face cassette (CFC) to assess worker exposures to hazardous dusts, primarily because ease of use, cost, and familiarity. However, mass concentrations measured with this classic sampler underestimate exposures to larger particles throughout the inhalable particulate mass (IPM) size range (up to aerodynamic diameters of 100 μm). To investigate whether the current 37-mm inlet cap can be redesigned to better meet the IPM sampling criterion, computational fluid dynamics (CFD) models were developed, and particle sampling efficiencies associated with various modifications to the CFC inlet cap were determined. Simulations of fluid flow (standard k-epsilon turbulent model) and particle transport (laminar trajectories, 1-116 μm) were conducted using sampling flow rates of 10 L min(-1) in slow moving air (0.2 m s(-1)) in the facing-the-wind orientation. Combinations of seven inlet shapes and three inlet diameters were evaluated as candidates to replace the current 37-mm inlet cap. For a given inlet geometry, differences in sampler efficiency between inlet diameters averaged less than 1% for particles through 100 μm, but the largest opening was found to increase the efficiency for the 116 μm particles by 14% for the flat inlet cap. A substantial reduction in sampler efficiency was identified for sampler inlets with side walls extending beyond the dimension of the external lip of the current 37-mm CFC. The inlet cap based on the 37-mm CFC dimensions with an expanded 15-mm entry provided the best agreement with facing-the-wind human aspiration efficiency. The sampler efficiency was increased with a flat entry or with a thin central lip adjacent to the new enlarged entry. This work provides a substantial body of sampling efficiency estimates as a function of particle size and inlet geometry for personal aerosol samplers.

  9. Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions

    International Nuclear Information System (INIS)

    Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.

    2014-01-01

    Highlights: • 3D CFD modeling of a turbocharger turbine with pulsating flow. • Characterization based on turbine speed and frequency. • Speed has higher influence on turbine performance compared to frequency. • Detailed localized flow behavior are shown for better understanding. - Abstract: The ever-increasing demand for low carbon applications in automotive industry has intensified the development of highly efficient engines and energy recovery devices. Even though there are significant developments in the alternative powertrains such as full electric, their full deployment is hindered by high costing and unattractive life-cycle energy and emission balance. Thus powertrain based on highly efficient internal combustion engines are still considered to be the mainstream for years to come. Traditionally, turbocharger has been an essential tool to boost the engine power, however in recent years it is seen as an enabling technology for engine downsizing. It is a well-known fact that a turbocharger turbine in an internal combustion engine operates in a highly pulsating exhaust flow. There are numerous studies looking into the complex interaction of the pulsating exhaust gas within the turbocharger turbine, however the phenomena is still not fully integrated into the design stage. Industry practice is still to design and match the turbine to an engine based on steady performance maps. The current work is undertaken with the mind to move one step closer towards fully integrating the pulsating flow performance into the turbocharger turbine design. This paper presents the development efforts and results from a full 3-D CFD model of a turbocharger turbine stage. The simulations were conducted at 30,000 rpm and 48,000 rpm (50% and 80% design speed respectively) for both 20 Hz and 80 Hz pulsating flow inlet conditions. Complete validation procedure using cold-flow experimental data is also described. The temporal and spatial resolutions of the incidence angle at the

  10. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, Monty [ORPC Alaska, LLC, Anchorage, AK (United States)

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the

  11. Parametric Analysis of a Hypersonic Inlet using Computational Fluid Dynamics

    Science.gov (United States)

    Oliden, Daniel

    For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study of turbulence models is presented and concludes that the k-kl-omega transition and SST transition turbulence model have the best correlation. Downstream of the flare's shockwave, good correlation is found for all boundary layer profiles, with some slight discrepancies of the static temperature near the surface. Simulated flow fields on a blunt cone with flare above Mach 10 are compared with experimental data from CUBRC LENS hypervelocity shock tunnel. Lack of vibrational non-equilibrium calculations causes discrepancies in heat flux near the leading edge. Temperature profiles, where non-equilibrium effects are dominant, are compared with the dissociation of molecules to show the effects of dissociation on static temperature. Following the validation studies is a parametric analysis of a hypersonic inlet from Mach 6 to 20. Compressor performance is investigated for numerous cowl leading edge locations up to speeds of Mach 10. The variable cowl study showed positive trends in compressor performance parameters for a range of Mach numbers that arise from maximizing the intake of compressed flow. An interesting phenomenon due to the change in shock wave formation for different Mach numbers developed inside the cowl that had a negative influence on the total pressure recovery. Investigation of the hypersonic inlet at different altitudes is performed to study the effects of Reynolds number, and consequently, turbulent viscous effects on compressor performance. Turbulent boundary layer separation was noted as the cause for a change in compressor performance parameters due to a change in Reynolds number. This effect would not be

  12. Blade-to-coolant heat-transfer results and operating data from a natural-convection water-cooled single-stage turbine

    Science.gov (United States)

    Diaguila, Anthony J; Freche, John C

    1951-01-01

    Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.

  13. A Biomimetic Ultrasonic Whistle for Use as a Bat Deterrent on Wind Turbines

    Science.gov (United States)

    Sievert, Paul; Seyed-Aghazadeh, Banafsheh; Carlson, Daniel; Dowling, Zara; Modarres-Sadeghi, Yahya

    2016-11-01

    As wind energy continues to gain worldwide prominence, more and more turbines are detrimentally influencing bat colonies. In 2012 alone, an estimated 600,000 bats were killed by wind turbines in the United States. Bats show a tendency to fly towards turbines. The objective of this work is to deter bats from the proximity of the swept area of operational wind turbine blades. Established field studies have shown that bats avoid broadband ultrasonic noise on the same frequency spectrum as their echolocation chirps. A biomimetic ultrasonic pulse generator for use as a bat deterrent on wind turbines is designed and studied experimentally. This device, which works based on the fundamentals of flow-induced oscillations of a flexible sheet is a whistle-like device inspired by a bat larynx, mechanically powered via air flow on a wind turbine blade. Current device prototypes have proven robust at producing ultrasound across the 20 - 70 kHz range for flow inlet velocities of 4 - 14 m/s. Ultimately, a deterrent as described here could provide a reliable, cost-effective means of alerting bats to the presence of moving turbine blades, reducing bat mortality at wind facilities, and reducing regulatory uncertainty for wind facility developers. The financial support provided by the US Department of Energy, and the Massachusetts Clean Energy center is acknowledged.

  14. Efforts to reduce mortality to hydroelectric turbine-passed fish: locating and quantifying damaging shear stresses.

    Science.gov (United States)

    Cada, Glenn; Loar, James; Garrison, Laura; Fisher, Richard; Neitzel, Duane

    2006-06-01

    Severe fluid forces are believed to be a source of injury and mortality to fish that pass through hydroelectric turbines. A process is described by which laboratory bioassays, computational fluid dynamics models, and field studies can be integrated to evaluate the significance of fluid shear stresses that occur in a turbine. Areas containing potentially lethal shear stresses were identified near the stay vanes and wicket gates, runner, and in the draft tube of a large Kaplan turbine. However, under typical operating conditions, computational models estimated that these dangerous areas comprise less than 2% of the flow path through the modeled turbine. The predicted volumes of the damaging shear stress zones did not correlate well with observed fish mortality at a field installation of this turbine, which ranged from less than 1% to nearly 12%. Possible reasons for the poor correlation are discussed. Computational modeling is necessary to develop an understanding of the role of particular fish injury mechanisms, to compare their effects with those of other sources of injury, and to minimize the trial and error previously needed to mitigate those effects. The process we describe is being used to modify the design of hydroelectric turbines to improve fish passage survival.

  15. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  16. Characterization of the pneumatic behavior of a novel spouted bed apparatus with two adjustable gas inlets

    NARCIS (Netherlands)

    Gryczka, O.; Heinrich, S.; Miteva, V.; Deen, N.G.; Kuipers, J.A.M.; Jacob, M.; Morl, L.

    2008-01-01

    Recently the importance of spouted bed technology has significantly increased in the context of drying processes as well as granulation, agglomeration or coating processes. Within this work the fluid dynamics of a novel spouted bed plant with two adjustable gas inlets is investigated. By analysis of

  17. An investigation of volute cross-sectional shape on turbocharger turbine under pulsating conditions in internal combustion engine

    International Nuclear Information System (INIS)

    Yang, Mingyang; Martinez-Botas, Ricardo; Rajoo, Srithar; Yokoyama, Takao; Ibaraki, Seiichi

    2015-01-01

    Highlights: • Cycle averaged efficiency is higher for the volute A (low aspect ratio). • More distorted flow in volute B is the reason for performance deterioration. • Flow in volute B (high aspect ratio) is more sensitive to pulsating flow. - Abstract: Engine downsizing is a proven method for CO_2 reduction in Internal Combustion Engine (ICE). A turbocharger, which reclaims the energy from the exhaust gas to boost the intake air, can effectively improve the power density of the engine thus is one of the key enablers to achieve the engine downsizing. Acknowledging its importance, many research efforts have gone into improving a turbocharger performance, which includes turbine volute. The cross-section design of a turbine volute in a turbocharger is usually a compromise between the engine level packaging and desired performance. Thus, it is beneficial to evaluate the effects of cross-sectional shape on a turbine performance. This paper presents experimental and computational investigation of the influence of volute cross-sectional shape on the performance of a radial turbocharger turbine under pulsating conditions. The cross-sectional shape of the baseline volute (denoted as Volute B) was optimized (Volute A) while the annulus distribution of area-to-radius ratio (A/R) for the two volute configurations are kept the same. Experimental results show that the turbine with the optimized volute A has better cycle averaged efficiency under pulsating flow conditions, for different loadings and frequencies. The advantage of performance is influenced by the operational conditions. After the experiment, a validated unsteady computational fluid dynamics (CFD) modeling was employed to investigate the mechanism by which performance differs between the baseline volute and the optimized version. Computational results show a stronger flow distortion in spanwise direction at the rotor inlet with the baseline volute. Furthermore, compared with the optimized volute, the flow

  18. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    Science.gov (United States)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  19. An experimental evaluation of the performance deficit of an aircraft engine starter turbine

    Science.gov (United States)

    Haas, J. E.; Roelke, R. J.; Hermann, P.

    1980-01-01

    An experimental investigation is presented to determine the aerodynamic performance deficit of a 13.5 - centimeter-tip-diameter aircraft engine starter turbine. The two-phased evaluation comprised both the stator and the stage performance, and the experimental design is described in detail. Data obtained from the investigation of three honeycomb shrouds clearly showed that the filled honeycomb reached a total efficiency of 0.868, 8.2 points higher than the open honeycomb shroud, at design equivalent conditions of speed and blade-jet speed ratio. It was concluded that the use of an open honeycomb shroud caused the large performance deficit for the starter turbine. Further research is suggested to ascertain stator inlet boundary layer measurements.

  20. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  1. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  2. Heat generation by a wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Corten, G.P. [ECN Wind, Petten (Netherlands)

    2001-01-01

    It will be shown that an actuator disk operating in wind turbine mode extracts more energy from the fluid than can be transferred into useful energy. At the Lanchester-Betz limit the decrease of the kinetic energy in the wind is converted by 2 /3 into useful power and by 1 /3 into heat. Behind the wind turbine the outer flow and the flow that has passed the actuator disk will mix. In this process momentum is conserved but part of the kinetic energy will dissipate in heat via viscous shear. 7 refs.

  3. Robust control of speed and temperature in a power plant gas turbine.

    Science.gov (United States)

    Najimi, Ebrahim; Ramezani, Mohammad Hossein

    2012-03-01

    In this paper, an H(∞) robust controller has been designed for an identified model of MONTAZER GHAEM power plant gas turbine (GE9001E). In design phase, a linear model (ARX model) which is obtained using real data has been applied. Since the turbine has been used in a combined cycle power plant, its speed and also the exhaust gas temperature should be adjusted simultaneously by controlling fuel signals and compressor inlet guide vane (IGV) position. Considering the limitations on the system inputs, the aim of the control is to maintain the turbine speed and the exhaust gas temperature within desired interval under uncertainties and load demand disturbances. Simulation results of applying the proposed robust controller on the nonlinear model of the system (NARX model), fairly fulfilled the predefined aims. Simulations also show the improvement in the performance compared to MPC and PID controllers for the same conditions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Device to lower NOx in a gas turbine engine combustion system

    Science.gov (United States)

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  5. Systematic flow manipulation by a deflector-turbine array

    Science.gov (United States)

    Mandre, Shreyas; Mangan, Niall M.

    2017-11-01

    Wind and hydrokinetic turbines are often installed in the wake of upstream turbines that limit the energy incident on the downstream ones. In two-dimensions, we describe how an array can deflect the wake away and redirect more energy to itself. Using inviscid fluid dynamics, we formulate the definitions of ``deflectors'' and ``turbines'' as elements that introduce bound and shed vorticity in the flow, respectively. To illustrate the flow manipulation, we consider a deflector-turbine array constrained to a line segment aligned with the freestream and acting as an internal boundary. We impose profiles of bound and shed vorticity on this segment that parameterize the flow deflection and the wake deficit respectively, and analyze the resulting flow using inviscid fluid dynamics. We find that the power extracted by the array is the product of two components: (i) the deflected kinetic energy incident on the array, and (ii) the array efficiency, or its ability to extract a fraction of the incident energy, both of which vary with deflection strength. The array efficiency decreases slightly with increasing deflection from about 57% at weak deflection to 39% at high deflection. This decrease is outweighed by an increase in the incident kinetic energy due to deflection. Funded by the Advanced Research Projects Agency - Energy.

  6. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  7. Multiscale Space-Time Computational Methods for Fluid-Structure Interactions

    Science.gov (United States)

    2015-09-13

    thermo-fluid analysis of a ground vehicle and its tires ST-SI Computational Analysis of a Vertical - Axis Wind Turbine We have successfully...of a vertical - axis wind turbine . Multiscale Compressible-Flow Computation with Particle Tracking We have successfully tested the multiscale...Tezduyar, Spenser McIntyre, Nikolay Kostov, Ryan Kolesar, Casey Habluetzel. Space–time VMS computation of wind - turbine rotor and tower aerodynamics

  8. Method for extending the unrestricted operating range of condensing steam turbines

    International Nuclear Information System (INIS)

    Csaba, G.; Bannerth, Cs.

    2009-01-01

    The allowed condenser temperature of the condensing steam turbines is determined by the design parameters of the steam turbine (casing geometry, exhaust area, blade length, blade angle, blade profile etc.). The fluctuations of condenser temperature may lead to reduced power output of the condensing steam turbine. Solutions where the low pressure turbine casings have the same exhaust area can be kept in operation at narrow condenser temperature range without restrictions. Exceeding the mentioned temperature range the exhaust hood temperature restriction, undergoing the temperature range choking point restriction appears causing increased operation cost. The aim of the paper is to present a condensing steam turbine - direct-contact condenser system that can extend the unrestricted operating range. The examined system consists of more parallelly connected low pressure turbine casings so-called diabolo that having at least two exhausts separated at the steam side. The exhausts, utilizing varying input-temperature coolant, are connected to the condensers that are separated at the steam side and serially connected at the coolant side. The casings have the same inlet areas while the exhausts have different areas resulting different volume flows and temperature operating range. The economic advantage of this solution approaches the savings between the serially connected direct-contact condensers and condensers in parallel of a dry cooling system. It can be proven by a simple calculation using the ambient air temperature duration diagram that is presented in the paper. (author)

  9. An experimental investigation on fluid dynamics of an automotive torque converter

    Science.gov (United States)

    Dong, Yu

    The objective of the automotive torque converter fluid dynamics experimental investigation is to understand the flow field inside the torque converter, improve the performance, and increase the fuel economy of vehicles. A high-frequency response five-hole probe was developed for the unsteady flow measurement. The dynamic performance of this probe was examined, and the corresponding data processing technique was also developed. The accuracy of this probe unsteady flow measurement was assessed using a hot-film sensor and a high-frequency response total pressure Pitot probe. The pump passage relative flow field was measured by a rotating five-hole probe system at three chord-wise locations. The rotating probe system is designed and developed for both pump and turbine flow measurement, and it was proved to be accurate and successful. A strong secondary flow is observed to dominate the flow structure at the pump mid-chord. At the pump 3/4 chord, the flow concentration on the pressure side is clearly observed. The secondary flow is found to change direction of rotation between the 3/4 chord and the 4/4 chord. High losses are found in the core-suction corner "wake" flow. The pump exit and turbine exit unsteady flow fields were measured by a high-frequency response five-hole probe in the stationary frame. At the pump exit, the flow is concentrated on the pressure side due to the strong secondary flow in the pump passage. A strong secondary flow is observed. At the turbine exit, a fully developed flow is found caused by the turbulent mixing. The stator exit steady flow was measured by a conventional five-hole probe. A strong secondary flow is found due to the inlet vorticity and axial velocity deficit near the core. The radially inward velocity and the secondary flow produce a large radial transport of mass flow in the stator passage. The stator passage flow is found to be turbulent at the normal operating condition by the measurement using the surface hot-film sensors

  10. Mathematical simulation of fluid flow and analysis of flow pattern in the flow path of low-head Kaplan turbine

    Directory of Open Access Journals (Sweden)

    A. V. Rusanov

    2016-12-01

    Full Text Available The results of numerical investigation of spatial flow of viscous incompressible fluid in flow part of Kaplan turbine PL20 Kremenchug HPP at optimum setting angle of runner blade φb = 15° and at maximum setting angle φb = 35° are shown. The flow simulation has been carried out on basis of numerical integration of the Reynolds equations with an additional term containing artificial compressibility. The differential two-parameter model of Menter (SST has been applied to take into account turbulent effects. Numerical integration of the equations is carried out using an implicit quasi-monotone Godunov type scheme of second - order accuracy in space and time. The calculations have been conducted with the help of the software system IPMFlow. The analysis of fluid flow in the flow part elements is shown and the values of hydraulic losses and local cavitation coefficient have been obtained. Comparison of calculated and experimental results has been carried out.

  11. Computational investigation of hydrokinetic turbine arrays in an open channel using an actuator disk-LES model

    Science.gov (United States)

    Kang, Seokkoo; Yang, Xiaolei; Sotiropoulos, Fotis

    2012-11-01

    While a considerable amount of work has focused on studying the effects and performance of wind farms, very little is known about the performance of hydrokinetic turbine arrays in open channels. Unlike large wind farms, where the vertical fluxes of momentum and energy from the atmospheric boundary layer comprise the main transport mechanisms, the presence of free surface in hydrokinetic turbine arrays inhibits vertical transport. To explore this fundamental difference between wind and hydrokinetic turbine arrays, we carry out LES with the actuator disk model to systematically investigate various layouts of hydrokinetic turbine arrays mounted on the bed of a straight open channel with fully-developed turbulent flow fed at the channel inlet. Mean flow quantities and turbulence statistics within and downstream of the arrays will be analyzed and the effect of the turbine arrays as means for increasing the effective roughness of the channel bed will be extensively discussed. This work was supported by Initiative for Renewable Energy & the Environment (IREE) (Grant No. RO-0004-12), and computational resources were provided by Minnesota Supercomputing Institute.

  12. Operation window and part-load performance study of a syngas fired gas turbine

    International Nuclear Information System (INIS)

    He, Fen; Li, Zheng; Liu, Pei; Ma, Linwei; Pistikopoulos, Efstratios N.

    2012-01-01

    Integrated coal gasification combined cycle (IGCC) provides a great opportunity for clean utilization of coal while maintaining the advantage of high energy efficiency brought by gas turbines. A challenging problem arising from the integration of an existing gas turbine to an IGCC system is the performance change of the gas turbine due to the shift of fuel from natural gas to synthesis gas, or syngas, mainly consisting of carbon monoxide and hydrogen. Besides the change of base-load performance, which has been extensively studied, the change of part-load performance is also of great significance for the operation of a gas turbine and an IGCC plant. In this paper, a detailed mathematical model of a syngas fired gas turbine is developed to study its part-load performance. A baseline is firstly established using the part-load performance of a natural gas fired gas turbine, then the part-load performance of the gas turbine running with different compositions of syngas is investigated and compared with the baseline. Particularly, the impacts of the variable inlet guide vane, the degree of fuel dilution, and the degree of air bleed are investigated. Results indicate that insufficient cooling of turbine blades and a reduced compressor surge margin are the major factors that constrain the part-load performance of a syngas fired gas turbine. Results also show that air bleed from the compressor can greatly improve the working condition of a syngas fired gas turbine, especially for those fired with low lower heating value syngas. The regulating strategy of a syngas fired gas turbine should also be adjusted in accordance to the changes of part-load performance, and a reduced scope of constant TAT (turbine exhaust temperature) control mode is required.

  13. Arrangement for adjusting the load of a turbine system

    International Nuclear Information System (INIS)

    Aanstadt, O.J.

    1974-01-01

    The invention relates to an adjustment arrangement for steam turbines with at least two stages. The inlet of steam into the two stages is adjusted by means of independant valves, and an adjustment circuit is provided for each of said valves for adjusting same so as to ensure a suitable distribution of power between the stages. The adjustment is carried out by measuring the power generated between the stages thus eliminating the influence of inaccuracies in the valves. This can be applied, in particular, to nuclear power stations [fr

  14. Calcul de l'amortissement ajoute par l'eau sur une aube de turbine hydroelectrique

    Science.gov (United States)

    Gauthier, Jean-Philippe

    This master's thesis considers kinetic and potential energy transfer from a submerged structure to the surrounding fluid flow, here referred as fluid added damping. The goal is to determine the value of this parameter for a hydroelectric turbine blade with the idea of getting better fatigue life estimates for such machines. In order to achieve this, a methodology based on modal analysis and numerical simulations of fluid flows has been developed. Prescribing an oscillatory motion of the structure in the flow simulation avoids the need for computationally intensive two-way fluid-structure coupling. This method has been validated using a test case from ANDRITZ HYDRO, then successfully applied to the blade of a propeller turbine owned by Hydro-Quebec.

  15. LQR Feedback Control Development for Wind Turbines Featuring a Digital Fluid Power Transmission System

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2016-01-01

    with a DFP motor, which has been combined with the NREL 5-MW reference wind turbine model. A classical variable speed control strategy for wind speeds below rated is proposed for the turbine, where the pump displacement is fixed and the digital motor displacement is varied for pressure control. The digital...... for such digital systems are complicated by its non-smooth behavior. In this paper a control design approach for a digital displacement machine® is proposed and a performance analysis of a wind turbine using a DFP transmission is presented. The performance evaluation is based on a dynamic model of the transmission...... invariant model. Using full-field flow wind profiles as input, the design approach and control performance is verified by simulation in the dynamic model of the wind turbine featuring the DFP transmission. Additionally, the performance is compared to that of the conventional NREL reference turbine...

  16. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models...

  17. A Tale of Two Inlets: Tidal Currents at Two Adjacent Inlets in the Indian River Lagoon

    Science.gov (United States)

    Webb, B. M.; Weaver, R. J.

    2012-12-01

    The tidal currents and hydrography at two adjacent inlets of the Indian River Lagoon estuary (Florida) were recently measured using a personal watercraft-based coastal profiling system. Although the two inlets—Sebastian Inlet and Port Canaveral Inlet—are separated by only 60 km, their characteristics and dynamics are quite unique. While Sebastian Inlet is a shallow (~4 m), curved inlet with a free connection to the estuary, Port Canaveral Inlet is dominated by a deep (~13 m), straight ship channel and has limited connectivity to the Banana River through a sector gate lock. Underway measurements of tidal currents were obtained using a bottom tracking acoustic Doppler current profiler; vertical casts of hydrography were obtained with a conductivity-temperature-depth profiling instrument; and continuous underway measurements of surface water hydrography were made using a Portable SeaKeeper system. Survey transects were performed to elucidate the along-channel variability of tidal flows, which appears to be significant in the presence of channel curvature. Ebb and flood tidal currents in Sebastian Inlet routinely exceeded 2.5 m/s from the surface to the bed, and an appreciable phase lag exists between tidal stage and current magnitude. The tidal currents at Port Canaveral Inlet were much smaller (~0.2 m/s) and appeared to be sensitive to meteorological forcing during the study period. Although the lagoon has free connections to the ocean 145 km to the north and 45 km to the south, Sebastian Inlet likely drains much of the lagoon to its north, an area of ~550 sq. km.

  18. Transient CFD simulation of a Francis turbine startup

    International Nuclear Information System (INIS)

    Nicolle, J; Morissette, J F; Giroux, A M

    2012-01-01

    To assess the life expectancy of hydraulic turbines, it is essential to obtain the loading on the blades, especially during transient operations known to be the most damaging. This paper presents a simplified CFD setup to model the startup phase of a Francis turbine while it goes from rest to speed no-load condition. The fluid domain included one distributor sector coupled with one runner passage. The guide vane motion and change in the angular velocity were included in a commercial code with user functions. Comparisons between numerical results and measurements acquired on a full-size turbine showed that most of the flow physics occurring during startup were captured.

  19. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit

    2015-01-01

    Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... free-surface elevation equally well, the one-mode model can still be utilized for the design of TLD. Parametric optimization of the TLD is carried out based on the one-mode model, and the optimized damper effectively improves the dynamic response of wind turbine blades....

  20. The influence of a cubic building on a roof mounted wind turbine

    OpenAIRE

    Micallef, D.; Sant, Tonio; Simao Ferreira, C.

    2016-01-01

    The performance of a wind turbine located above a cubic building is not well understood. This issue is of fundamental importance for the design of small scale wind turbines. One variable which is of particular importance in this respect is the turbine height above roof level. In this work, the power performance of a small wind turbine is assessed as a function of the height above the roof of a generic cubic building. A 3D Computational Fluid Dynamics model of a 10m x 10m x 10m building is use...

  1. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

  2. Analysing the Possible Ways for Short-Term Forcing Gas Turbine Engines in Auxiliary Power Unit

    Directory of Open Access Journals (Sweden)

    N. I. Trotskii

    2016-01-01

    Full Text Available Using a gas turbine energy unit as an example, the article discusses possible ways for forcing the short-term gas turbine engines (GTE. The introduction explains the need for forcing the air transport and marine GTE in specific driving conditions and offers the main methods. Then it analyzes the three main short-term forcing methods according to GTE power, namely: precompressor water injection, a short-term rise in temperature after the combustion chamber, and feeding an additional compressed air into combustion chamber from the reserve cylinders.The analysis of the water injection method to force a GTE presents the main provisions and calculation results of the cycle, as a function of engine power on the amount of water injected into compressor inlet. It is shown that with water injection into compressor inlet in an amount of 1% of the total airflow there is a 17% power increase in the compressor. It also lists the main implementation problems of this method and makes a comparison with the results of other studies on the water injection into compressor.Next, the article concerns the GTE short-term forcing method through the pre-turbine short-term increase in the gas temperature. The article presents the calculation results of the cycle as a function of the power and the fuel-flow rate on the gas temperature at the turbine inlet. It is shown that with increasing temperature by 80 degrees the engine power increases by 11.2% and requires 11% more fuel. In the analysis of this method arises an issue of thermal barrier coating on the blade surface. The article discusses the most common types of coatings and their main shortcomings. It lists the main challenges and some ways of their solving when using this method to implement the short-term forcing.The last method under consideration is GTE short-term forcing by feeding the compressed air into the combustion chamber from the additional reserve cylinders. It should be noted that this method is

  3. Variable geometry for supersonic mixed-compression inlets

    Science.gov (United States)

    Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.

    1974-01-01

    Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.

  4. Experimental Evaluation of Cermet Turbine Stator Blades for Use at Elevated Gas Temperatures

    Science.gov (United States)

    Chiarito, Patrick T.; Johnston, James R.

    1959-01-01

    The suitability of cermets for turbine stator blades of a modified turbojet engine was determined at an average turbine-inlet-gas temperature of 2000 F. Such an increase in temperature would yield a premium in thrust from a service engine. Because the cermet blades require no cooling, all the available compressor bleed air could be used to cool a turbine made from conventional ductile alloys. Cermet blades were first run in 100-hour endurance tests at normal gas temperatures in order to evaluate two methods for mounting them. The elevated gas-temperature test was then run using the method of support considered best for high-temperature operation. After 52 hours at 2000 F, one of the group of four cermet blades fractured probably because of end loads resulting from thermal distortion of the spacer band of the nozzle diaphragm. Improved design of a service engine would preclude this cause of premature failure.

  5. Bulb turbine operating at medium head: XIA JIANG case study

    Science.gov (United States)

    Loiseau, F.; Desrats, C.; Petit, P.; Liu, J.

    2012-11-01

    With lots of references for 4-blade bulb turbines, such as these of Wu Jin Xia (4 units - 36.1 MW per unit - 9.2 m rated head), Chang Zhou (15 units - 46.7 MW per unit - 9.5 m rated head) and Tong Wan (4 units - 46.2 MW per unit - 11 m rated head), ALSTOM Power Hydro is one of the major suppliers of bulb turbines operating under medium head for the Chinese market. ALSTOM Power Hydro has been awarded in November 2010 a contract by Jiang Xi Province Xia Jiang Water Control Project Headquarters to equip Xia Jiang's new hydropower plant. The power dam is located on the Gan Jiang river, at about 160 km away from Nan Chang town in South Eastern China. The supply will consist in 5 bulb units including the furniture of both the turbine and its generator, for a total capacity of 200 MW, under a rated net head of 8.6 m. The prototype turbine is a 7.8 m diameter runner, rotating at 71.4 rpm speed. For this project, ALSTOM has proposed a fully new design of 4-blade bulb runner. This paper outlines the main steps of the hydraulic development. First of all, a fine tuning of the blade geometry was performed to enhance the runner behaviour at high loads and low heads, so that to fulfill the demanding requirements of efficiencies and maximum output. The challenge was also to keep an excellent cavitation behaviour, especially at the outer blade diameter in order to avoid cavitation erosion on the prototype. The shape of the blade was optimized by using the latest tools in computational fluid dynamics. Steady state simulations of the distributor and the runner were performed, in order to simulate more accurately the pressure fields on the blade and the velocity distribution at the outlet of the runner. Moreover, draft tube computations have been performed close to the design point and at higher loads. Then, a model fully homologous with the prototype was manufactured and tested at ALSTOM's laboratory in Grenoble (France). The model test results confirmed the predicted ones: the

  6. Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment

    Science.gov (United States)

    Paxson, Daniel E.; Naples, Andrew

    2017-01-01

    An analysis is presented of an experimental rig comprising a rotating detonation engine (RDE) with bypass flow coupled to a downstream turbine. The analysis used a validated computational fluid dynamics RDE simulation combined with straightforward algebraic mixing equations for the bypass flow. The objectives of the analysis were to supplement and interpret the necessarily sparse measurements from the rig, and to assess the performance of the RDE itself (which was not instrumented in this installation). The analysis is seen to agree reasonably well with available data. It shows that the RDE is operating in an unusual fashion, with subsonic flow throughout the exhaust plane. The detonation event itself is producing a total pressure rise relative to the pre-detonative pressure; however, the length of the device and the substantial flow restriction at the inlet yield an overall pressure loss. This is not surprising since the objective of the rig test was primarily aimed at investigating RDEturbine interactions, and not on performance optimization. Furthermore, the RDE was designed for fundamental detonation studies and not performance. Nevertheless, the analysis indicates that with some small alterations to the design, an RDE with an overall pressure rise is possible.

  7. Optimization of power generation from shrouded wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)

    2013-07-01

    In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  8. Experimental and Numerical Simulations Predictions Comparison of Power and Efficiency in Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Laura Castro

    2011-01-01

    Full Text Available On-site power and mass flow rate measurements were conducted in a hydroelectric power plant (Mexico. Mass flow rate was obtained using Gibson's water hammer-based method. A numerical counterpart was carried out by using the commercial CFD software, and flow simulations were performed to principal components of a hydraulic turbine: runner and draft tube. Inlet boundary conditions for the runner were obtained from a previous simulation conducted in the spiral case. The computed results at the runner's outlet were used to conduct the subsequent draft tube simulation. The numerical results from the runner's flow simulation provided data to compute the torque and the turbine's power. Power-versus-efficiency curves were built, and very good agreement was found between experimental and numerical data.

  9. Bottoming organic Rankine cycle for a small scale gas turbine: A comparison of different solutions

    International Nuclear Information System (INIS)

    Clemente, Stefano; Micheli, Diego; Reini, Mauro; Taccani, Rodolfo

    2013-01-01

    Highlights: ► The ORC bottoming section for a commercial micro gas turbine has been studied. ► Six different organic working fluids have been considered and compared. ► The preliminary designs of both axial and radial turbines have been developed. ► Also scroll and reciprocating expanders have been analyzed for comparison. ► The best suited machine has to be selected after a detailed analysis in each case. - Abstract: Recently, several efforts have been devoted to the improvement of the thermal efficiency of small gas turbines, in order to approach the typical values of the internal combustion engines in the same range of power. One possibility is represented by a combined cycle, obtained coupling the gas turbine to a bottoming organic Rankine cycle (ORC). This paper deals with the definition of the main features of an ORC system aimed to recover heat from a 100 kWe commercial gas turbine with internal recuperator. After the optimization of the thermodynamic cycles, involving a comparison between six working fluids, different expanders are analyzed, with the aim of detecting, if possible, the best suited machine. First, single stage turbines, in both radial and axial flow configuration, are designed specifically for each considered fluid, in particular investigating the opportunity of mounting the ORC expander directly on the high-speed shaft of the gas turbine. Then, the performances of these dynamic machines are compared with those of positive displacement expanders, such as scroll devices, obtainable from commercial HVAC compressor with minor revisions, and reciprocating ones, here newly designed

  10. Blade number impact on pressure and performance of archimedes screw turbine using CFD

    Science.gov (United States)

    Maulana, Muhammad Ilham; Syuhada, Ahmad; Nawawi, Muhammad

    2018-02-01

    Many rivers in Indonesia can be used as source of mini/micro hydro power plant using low head turbine. The most suitable type of turbine used in fluid flow with low head is the Archimedes screw turbine. The Archimedes screw hydro turbine is a relative newcomer to the small-scale hydropower that can work efficiently on heads as low as 10 meter. In this study, the performance of Archimedes water turbines that has different blade numbers that are thoroughly evaluated to obtain proper blade configuration. For this purpose, numerical simulations are used to predict the pressure changes that occur along the turbine. The simulation results show that turbines with an amount of two blades have more sloping pressure distribution so that it has better stability.

  11. Self-starting aerodynamics analysis of vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Jianyang Zhu

    2015-12-01

    Full Text Available Vertical axis wind turbine is a special type of wind-force electric generator which is capable of working in the complicated wind environment. The self-starting aerodynamics is one of the most important considerations for this kind of turbine. This article aims at providing a systematic synthesis on the self-starting aerodynamic characteristics of vertical axis wind turbine based on the numerical analysis approach. First, the physical model of vertical axis wind turbine and its parameter definitions are presented. Secondary, the interaction model between the vertical axis wind turbine and fluid is developed by using the weak coupling approach; the numerical data of this model are then compared with the wind tunnel experimental data to show its feasibility. Third, the effects of solidity and fixed pitch angle on the self-starting aerodynamic characteristics of the vertical axis wind turbine are analyzed systematically. Finally, the quantification effects of the solidity and fixed pitch angle on the self-starting performance of the turbine can be obtained. The analysis in this study will provide straightforward physical insight into the self-starting aerodynamic characteristics of vertical axis wind turbine.

  12. A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD

    OpenAIRE

    Naeimi Hessamedin; Domiry Ganji Davood; Gorji Mofid; Javadirad Ghasem; Keshavarz Mojtaba

    2011-01-01

    Nowadays, computational fluid dynamics codes (CFD) are prevalently used to simulate the gas dynamics in many fluid piping systems such as steam and gas turbines, inlet and exhaust in internal combustion engines. In this paper, a CFD software is used to obtain the total energy losses in adiabatic compressible flow at compact exhaust manifold junction. A steady state onedimensional adiabatic compressible flow with friction model has been applied to subtract the straight pipe friction loss...

  13. A study on the propagation of measurement uncertainties into the result on a turbine performance test

    International Nuclear Information System (INIS)

    Cho, Soo Yong; Park, Chan Woo

    2004-01-01

    Uncertainties generated from the individual measured variables have an influence on the uncertainty of the experimental result through a data reduction equation. In this study, a performance test of a single stage axial type turbine is conducted, and total-to-total efficiencies are measured at the various off-design points in the low pressure and cold state. Based on an experimental apparatus, a data reduction equation for turbine efficiency is formulated and six measured variables are selected. Codes are written to calculate the efficiency, the uncertainty of the efficiency, and the sensitivity of the efficiency uncertainty by each of the measured quantities. The influence of each measured variable on the experimental result is figured out. Results show that the largest Uncertainty Magnification Factor (UMF) value is obtained by the inlet total pressure among the six measured variables, and its value is always greater than one. The UMF values of the inlet total temperature, the torque, and the RPM are always one. The Uncertainty Percentage Contribution (UPC) of the RPM shows the lowest influence on the uncertainty of the turbine efficiency, but the UPC of the torque has the largest influence to the result among the measured variables. These results are applied to find the correct direction for meeting an uncertainty requirement of the experimental result in the planning or development phase of experiment, and also to offer ideas for preparing a measurement system in the planning phase

  14. Performance test of a bladeless turbine for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Steidel, R.; Weiss, H.

    1976-03-24

    The Possell bladeless turbine was tested at the LLL Geothermal Test Facility to evaluate its potential for application in the total flow process. Test description and performance data are given for 3000, 3500, 4000, and 4500 rpm. The maximum engine efficiency observed was less than 7 percent. It is concluded that the Possell turbine is not a viable candidate machine for the conversion of geothermal fluids by the total flow process. (LBS)

  15. Design optimization of a vaneless ``fish-friendly'' swirl injector for small water turbines

    Science.gov (United States)

    Airody, Ajith; Peterson, Sean D.

    2015-11-01

    Small-scale hydro-electric plants are attractive options for powering remote sites, as they draw energy from local bodies of water. However, the environmental impact on the aquatic life drawn into the water turbine is a concern. To mitigate adverse consequences on the local fauna, small-scale water turbine design efforts have focused on developing ``fish-friendly'' facilities. The components of these turbines tend to have wider passages between the blades when compared to traditional turbines, and the rotors are designed to spin at much lower angular velocities, thus allowing fish to pass through safely. Galt Green Energy has proposed a vaneless casing that provides the swirl component to the flow approaching the rotor, eliminating the need for inlet guide vanes. We numerically model the flow through the casing using ANSYS CFX to assess the evolution of the axial and circumferential velocity symmetry and uniformity in various cross-sections within and downstream of the injector. The velocity distributions, as well as the pressure loss through the injector, are functions of the pitch angle and number of revolutions of the casing. Optimization of the casing design is discussed via an objective function consisting of the velocity and pressure performance measures.

  16. FY 2000 report on the results of the leading R and D on MGC ultra high efficiency turbine system technology; 2000 nendo MGC chokokoritsu turbine system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The R and D were conducted with the aim of using melt-growth composite materials (MGC) as structural members of the gas turbine system for power generation, etc., and the results of the FY 2000 results were summed up. As to the heightening of performance of MGC materials, improvement in high temperature strength, fracture toughness and thermal shock resistance was obtained by making the material structure minute by increasing the mold descending speed in ternary system MGC materials. Concerning the enlarging technology, trially manufactured were a large sample of 53mm diameter and a thin plate of 40mm width x 80mm height x 6mm thickness. In the study of evaluation of mechanical/physical characteristics of MGC materials, the following were indicated: AYZ ternary system MGC materials were twice higher in bending strength than Al{sub 2}O{sub 3}/YAG binary system, and were equal in creep characteristics at 1,700 degrees C to Al{sub 2}O{sub 3}/YAG. The applicability to turbine stationary blade was shown. In the system study, by applying MGC materials to gas turbine stationary blade, small- and medium-size gas turbine cycles were set up which have plant gross thermal efficiency of 38% at turbine inlet temperature of 1,700 degrees C. (NEDO)

  17. Wind lens technology and its application to wind and water turbine and beyond

    OpenAIRE

    Ohya Yuji; Karasudani Takashi; Nagai Tomoyuki; Watanabe Koichi

    2017-01-01

    Wind lens is a new type of wind power system consisting of a simple brimmed ring structure that surrounds the rotor causing greater wind to pass through the turbine. As a consequence, the turbine's efficiency of capturing energy from the wind gets dramatically increased. A Wind lens turbine can generate 2–5 times the power of an existing wind turbine given at the same rotor diameter and incoming wind speed. This fluid dynamical effect is also effective in the water. We have developed 1–3 kW W...

  18. Experimental investigation on effect of inlet velocity ratios for 3-D temperature fluctuation caused by coaxial-jet flow

    International Nuclear Information System (INIS)

    Cao Qiong; Lu Daogang; Zhang Pan; Shi Wenbo; Tian Lu

    2012-01-01

    An experiment was performed to study the effect of inlet velocity ratios for 3-D temperature fluctuation caused by coaxial-jet flows based on the 3-D temperature and 2-D velocity fields. The experiment results show that the mixing behavior is completed at the bottom of test section in R<1 condition. The averaged temperatures at the bottom of the flow field are asymmetric in Rinlet velocity ratios, the gradients of cold fluid temperatures decrease in height direction, while those of hot fluid temperatures increase. In R>1 condition, the intensities of temperature fluctuations are less than those in R≤1 conditions. The strong temperature fluctuations occur in the regions between the hot and cold flow, as well as between the hot flow and environmental flow in this case. The frequencies of temperature fluctuations are less than 7 Hz. (authors)

  19. Forty years of experience on closed-cycle gas turbines

    International Nuclear Information System (INIS)

    Keller, C.

    1978-01-01

    Forty years of experience on closed-cycle gas turbines (CCGT) is emphasized to substantiate the claim that this prime-mover technology is well established. European fossil-fired plants with air as the working fluid have been individually operated over 100,000 hours, have demonstrated very high availability and reliability, and have been economically successful. Following the initial success of the small air closed cycle gas turbine plants, the next step was the exploitation of helium as the working fluid for plants above 50 MWe. The first fossil fired combined power and heat plant at Oberhausen, using a helium turbine, plays an important role for future nuclear systems and this is briefly discussed. The combining of an HTGR and an advanced proven power conversion system (CCGT) represents the most interesting and challenging project. The key to acceptance of the CCGT in the near term is the introduction of a small nuclear cogeneration plant (100 to 300 MWe) that utilizes the waste heat, demonstrating a very high fuel utilization efficiency: aspects of such a plant are outlined. (author)

  20. Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    2000-01-01

    Full Text Available Film cooling for turbine airfoil leading edges has been a common practice for at least 35 years as turbine inlet gas temperatures and pressures have continually increased along with cooling air temperatures for higher engine cycle efficiency. With substantial engine cycle performance improvements from higher gas temperatures, it has become increasingly necessary to film cool nozzle and rotor blade leading edges since external heat transfer coefficients and thus heat load are the highest in this airfoil region. Optimum cooling air requirements in this harsh environment has prompted a significant number of film cooling investigations and analytical studies reported over the past 25 years from academia, industry and government agencies. Substantial progress has been made in understanding the complex nature of leading edge film cooling from airfoil cascades, simulated airfoil leading edges and environment. This bibliography is a report of the open-literature references available which provide information on the complex aero–thermo interaction of leading edge gaseous film cooling with mainstream flow. From much of this investigative information has come successful operational leading edge film cooling design systems capable of sustaining airfoil leading edge durability in very hostile turbine environments.

  1. Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade With Large Incidence and Reynolds Number Variations

    Science.gov (United States)

    Flegel, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to -51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.12×10(exp 5) to 2.12×10(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At

  2. Parametric analysis and optimization for a combined power and refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Jiangfeng; Dai Yiping; Gao Lin

    2008-01-01

    A combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the absorption refrigeration cycle. This combined cycle uses a binary ammonia-water mixture as the working fluid and produces both power output and refrigeration output simultaneously with only one heat source. A parametric analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of the combined cycle. It is shown that heat source temperature, environment temperature, refrigeration temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. A parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The optimized exergy efficiency is 43.06% under the given condition

  3. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  4. Chronostratigraphic Analysis of Geomorphic Features within the Former Sinepuxent Inlet: A Wave-Dominated Tidal Inlet along Assateague Island, MD, USA

    Science.gov (United States)

    Seminack, C.; McBride, R.; Petruny, L. M.

    2017-12-01

    The former Sinepuxent Inlet, located along the mixed-energy, wave-dominated Assateague Island, MD-VA, USA, contains some of the most robust recurved-spit ridges along the span of the barrier island. In addition, this former tidal inlet exhibits a poorly developed flood-tidal delta containing at least two sets of curvilinear ridges known as "washarounds". Historical maps and nautical charts indicate that the former Sinepuxent Inlet was open from 1755 to 1832. However, previous studies conducted at the former Sinepuxent Inlet hypothesized that the site was exposed to episodic breaching events because of the extensive width of the former inlet throat, constrained by the northern and southern recurved-spit ridges. A total of 16 sediment cores, 10 optically stimulated luminescence (OSL) samples, and three 14C samples (mixed benthic foraminifera and eastern mud snail [Ilyanassa obsolete]) were collected from the former Sinepuxent Inlet to place morphostratigraphic units into a chronological context. Six OSL samples were collected from the northern and southern recurved-spit ridges at mean sea level (MSL) to constrain genesis ages. Southern recurved-spit ages varied more than their northern counterparts, ranging from 1640 to 1990 AD. The northern recurved-spit ridges varied in age from 1770 to 1900 AD. Two OSL samples collected from flood-tidal delta ridges yielded ages from 1680 to 2000 AD. In addition, two 14C samples collected at 128 and 101 cm below MSL within the inlet throat yielded ages between 1720 and post-1950 AD. Ultimately, these dates overlap with the inlet activity phase as indicated in historical documents. Conversely, two OSL samples (155 and 201 cm below MSL) and one 14C sample (134 cm below MSL) collected from the inlet throat returned ages between 760 and 1465 AD. The contrast in ages between the older inlet throat and subaerial ridge samples supports the hypothesis that the former Sinepuxent Inlet was reactivated numerous times. Thus, the three age

  5. Mixed-flow vertical tubular hydraulic turbine. Determination of proper design duty point

    Energy Technology Data Exchange (ETDEWEB)

    Sirok, B. [Ljubljana Univ. (Slovenia). Faculty of Mechanical Engineering; Bergant, A. [Litostroj Power, d.o.o., Ljubljana (Slovenia); Hoefler, E.

    2011-12-15

    A new vertical single-regulated mixed-flow turbine with conical guide apparatus and without spiral casing is presented in this paper. Runner blades are fixed to the hub and runner band and resemble to the Francis type runner of extremely high specific speed. Due to lack of information and guidelines for the design of a new turbine, a theoretical model was developed in order to determinate the design duty point, i.e. to determine the optimum narrow operation range of the turbine. It is not necessary to know the kinematic conditions at the runner inlet, but only general information on the geometry of turbine flow-passage, meridional contour of the runner and blading, the number of blades and the turbine speed of rotation. The model is based on the integral tangential lift coefficient, which is the average value over the entire runner blading. The results are calculated for the lift coefficient 0.5 and 0.6, for the flow coefficient range from 0.2 to 0.36, for the number of the blades between 5 and 13, and are finally presented in the Cordier diagram (specific speed vs. specific diameter). Calculated results of the turbine optimum operation in Cordier diagram correspond very well to the adequate area of Kaplan turbines with medium and low specific speed and extends into the area of Francis turbines with high specific speed. Presented model clearly highlights the parameters that affect specific load of the runner blade row and therefore the optimum turbine operation (discharge - turbine head). The presented method is not limited to a specific reaction type of the hydraulic turbine. The method can therefore be applied to a wide range from mixed-flow (radial-axial) turbines to the axial turbines. Applicability of the method may be considered as a tool in the first stage of the turbine design i.e. when designing the meridional geometry and selecting the number of blades according to calculated operating point. Geometric and energy parameters are generally defined to an

  6. Ways of TPP and NPP powerful steam turbine blade erosion decreasing in low flow rate regimes

    International Nuclear Information System (INIS)

    Khrabrov, P.V.; Khaimov, V.A.; Matveenko, V.A.

    1986-01-01

    A systematized approach to the problem of efficient cooling of flow passage and exhaust parts of TPP and NPP steam turbines and prevention of erosion wear of inlet and outlet edges of operating blades is presented. Methods for LP casing cooling and sources of erosion-hazard moisture as well as the main technological and design measures to decrease the erosion of blades are determined

  7. Magnetic power piston fluid compressor

    Science.gov (United States)

    Gasser, Max G. (Inventor)

    1994-01-01

    A compressor with no moving parts in the traditional sense having a housing having an inlet end allowing a low pressure fluid to enter and an outlet end allowing a high pressure fluid to exit is described. Within the compressor housing is at least one compression stage to increase the pressure of the fluid within the housing. The compression stage has a quantity of magnetic powder within the housing, is supported by a screen that allows passage of the fluid, and a coil for selectively providing a magnetic field across the magnetic powder such that when the magnetic field is not present the individual particles of the powder are separated allowing the fluid to flow through the powder and when the magnetic field is present the individual particles of the powder pack together causing the powder mass to expand preventing the fluid from flowing through the powder and causing a pressure pulse to compress the fluid.

  8. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet. [Supersonic Cruise Aircraft Research

    Science.gov (United States)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined where the second cone of a two cone centerbody collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  9. Design and development of nautilus whorl-wind turbine

    Science.gov (United States)

    R, Pramod; Kumar, G. B. Veeresh; Harsha, P. Sai Sri; Kumar, K. A. Udaya

    2017-07-01

    Our life is directly related to energy and its consumption, and the issues of energy research are extremely important and highly sensitive. Scientists and researchers attempt to accelerate solutions for wind energy generation, design parameters under the influence of novel policies adopted for energy management and the concerns for global warming and climate change. The objective of this study is to design a small wind turbine that is optimized for the constraints that come with residential use. The study is aimed at designing a wind turbine for tapping the low speed wind in urban locations. The design process includes the selection of the wind turbine type and the determination of the blade airfoil, finding the maximum drag model and manufacturing of the turbine economically. In this study, the Nautilus turbine is modeled, simulated and the characteristic curves are plotted. The cutting in wind speed for the turbine is around 1m/s. The turbine rotates in a range of 20 rpm to 500 rpm at wind speeds 1m/s to 10m/s On a below average day at noon where the wind speed are usually low the turbine recorded an rpm of 120 (average value) at 4m/s wind speeds. This study focuses on a computational fluid dynamics analysis of compressible radially outward flow.

  10. A Novel Dual-Rotor Turbine for Increased Wind Energy Capture

    International Nuclear Information System (INIS)

    Rosenberg, A; Selvaraj, S; Sharma, A

    2014-01-01

    Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints. Aerodynamic interactions between turbines in a wind farm also lead to significant loss of wind farm efficiency. A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these two losses. A DRWT is designed that uses an existing turbine rotor for the main rotor, while the secondary rotor is designed using a high lift-to-drag ratio airfoil. Reynolds Averaged Navier- Stokes computational fluid dynamics simulations are used to optimize the design. Large eddy simulations confirm the increase energy capture potential of the DRWT. Wake comparisons however do not show enhanced entrainment of axial momentum

  11. Aerodynamic instabilities in governing valves of steam turbines

    International Nuclear Information System (INIS)

    Richard, J.M.; Pluviose, M.

    1991-01-01

    The capacity of a.c. turbogenerators in a Pressurized Water Reactor (PWR) is regulated by means of governing valves located at the inlet of the high-pressure turbine. The conditions created in these valves (due to the throttling of the steam) involve the generation of a jet structure, possibly supersonic. Aerodynamic instabilities could potentially excite the mechanical structure. These aerodynamic phenomena are studied in this paper by means of a two-dimensional numerical model. Viscous effects are taken into account with heuristic criteria on separation and reattachment. Detailed experimental analysis of the flow behaviour is compared with the numerical prediction of stability limits. (Author)

  12. Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Perez-Blanco, Horacio

    2015-01-01

    A thermodynamic analysis of cogeneration of power and refrigeration activated by low-grade sensible energy is presented in this work. An organic Rankine cycle (ORC) for power production and a vapor compression cycle (VCC) for refrigeration using the same working fluid are linked in the analysis, including the limiting case of cold production without net electricity production. We investigate the effects of key parameters on system performance such as net power production, refrigeration, and thermal and exergy efficiencies. Characteristic indexes proportional to the cost of heat exchangers or of turbines, such as total number of transfer units (NTU tot ), size parameter (SP) and isentropic volumetric flow ratio (VFR) are also examined. Three important system parameters are selected, namely turbine inlet temperature, turbine inlet pressure, and the flow division ratio. The analysis is conducted for several different working fluids. For a few special cases, isobutane is used for a sensitivity analysis due to its relatively high efficiencies. Our results show that the system has the potential to effectively use low grade thermal sources. System performance depends both on the adopted parameters and working fluid. - Highlights: • Waste heat utilization can reduce emissions of carbon dioxide. • The ORC/VCC cycle can deliver power and/or refrigeration using waste heat. • Efficiencies and size parameters are used for cycle evaluation. • The cycle performance is studied for eight suitable refrigerants. Isobutane is used for a sensitivity analysis. • The work shows that the isobutene cycle is quite promising.

  13. Experimental evaluation of SWCNT-water nanofluid as a secondary fluid in a refrigeration system

    International Nuclear Information System (INIS)

    Vasconcelos, Adriano Akel; Cárdenas Gómez, Abdul Orlando; Bandarra Filho, Enio Pedone; Parise, José Alberto Reis

    2017-01-01

    Highlights: • SWCNT-water nanofluid was used as secondary fluid for a refrigeration system. • For a given HTFS mass flow rate and inlet temperature, nanofluid performed better than base fluid. • Total power consumption was not significantly affected by volume concentration. • Nanoparticle volume fraction ranged from 0 to 0.21%. - Abstract: SWCNT-water (single walled carbon nanotube) nanofluid was tested as a secondary fluid for a 4–9 kW indirect vapor compression refrigeration system. The evaporator, with boiling refrigerant HCFC-22 extracting heat from the nanofluid, was of the brazed plate counter-flow type. A semi-hermetic compressor, an electronic expansion valve (EEV) and an air-cooled condenser were the other main components of the refrigeration cycle. Tests were carried out with the experimental apparatus operating over a range of different volumetric fractions of nanoparticles (0–0.21%) as well as nanofluid inlet temperatures (30–40 °C) and mass flow rates (40–80 g/s). Overall, the performance of the system working with nanofluid as a secondary fluid was superior to that where just the base fluid (i.e., pure water) circulated in the secondary fluid loop, at the same mass flow rate and inlet temperature. The enhanced thermal conductivity of the nanofluid is believed to be the main reason why the refrigeration system with the nanofluid loop, if compared to that with pure water, presented a higher refrigerating capacity.

  14. Improving the economy-of-scale of small organic rankine cycle systems through appropriate working fluid selection

    International Nuclear Information System (INIS)

    White, Martin; Sayma, Abdulnaser I.

    2016-01-01

    Highlights: • Novel system model coupling turbine and ORC system performance. • Contour plots to characterise working fluid and turbine performance. • Changing working fluid can expand pump and turbine operating envelope. • Possible to improve the economy-of-scale through optimal working fluid selection. - Abstract: Organic Rankine cycles (ORC) are becoming a major research area within the field of sustainable energy systems. However, a major challenge facing the widespread implementation of small and mini-scale ORC systems is the economy-of-scale. To overcome this challenge requires single components that can be manufactured in large volumes and then implemented into a wide variety of different applications where the heat source conditions may vary. The aim of this paper is to investigate whether working fluid selection can improve the current economy-of-scale by enabling the same system components to be used in multiple ORC systems. This is done through coupling analysis and optimisation of the energy process, with a performance map for a small-scale ORC radial turbine. The performance map, obtained using CFD, is adapted to account for additional loss mechanisms not accounted for in the original CFD simulation before being non-dimensionalised using a modified similitude theory developed for subsonic ORC turbines. The updated performance map is then implemented into a thermodynamic model, enabling the construction of a single performance contour that displays the range of heat source conditions that can be accommodated by the existing turbine whilst using a particular working fluid. Constructing this performance map for a range of working fluids, this paper demonstrates that through selecting a suitable working fluid, the same turbine can efficiently utilise heat sources between 360 and 400 K, with mass flow rates ranging between 0.5 and 2.75 kg/s respectively. This corresponds to using the same turbine in ORC applications where the heat available ranges

  15. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    Science.gov (United States)

    Lundberg, Wayne

    2010-05-04

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  16. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    Science.gov (United States)

    Lundberg, Wayne

    2010-08-24

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  17. Coastal inlets and tidal basins

    NARCIS (Netherlands)

    De Vriend, H.J.; Dronkers, J.; Stive, M.J.F.; Van Dongeren, A.; Wang, J.H.

    2002-01-01

    lecture note: Tidal inlets and their associated basins (lagoons) are a common feature of lowland coasts all around the world. A significant part ofthe world's coastlines is formed by barrier island coasts, and most other tidal coasts are interrupted by estuaries and lagoon inlets. These tidal

  18. Combustion heating value gas in a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G [CTDD, British Coal Corporation, Cheltenham (United Kingdom); Cannon, M [European Gas Turbines Ltd., Lincoln (United Kingdom)

    1997-12-31

    Advanced coal and/or biomass based power generation systems offer the potential for high efficiency electricity generation with minimum environmental impact. An important component for many of these advanced power generation cycles is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at turbine inlet temperatures of typically 1 100 - 1 260 deg C and with minimum pollutant emissions, is a key issue. A phased combustor development programme is under-way burning low calorific value fuel gas (3.6 - 4.1 MJ/m{sup 3}) with low emissions, particularly NO{sub x} derived from fuel-bound nitrogen. The first and second phases of the combustor development programme have been completed. The first phase used a generic tubo-annular, prototype combustor based on conventional design principles. Combustor performance for this first prototype combustor was encouraging. The second phase assessed five design variants of the prototype combustor, each variant achieving a progressive improvement in combustor performance. The operating conditions for this assessment were selected to represent a particular medium sized industrial gas turbine operating as part of an Air Blown Gasification Cycle (ABGC). The test conditions assessed therefore included the capability to operate the combustor using natural gas as a supplementary fuel, to suit one possible start-up procedure for the cycle. The paper presents a brief overview of the ABGC development initiative and discusses the general requirements for a gas turbine operating within such a cycle. In addition, it presents full combustor performance results for the second phase of turbine combustor development and discusses the rationale for the progressive design modifications made within that programme. The strategy for the further development of the combustor to burn low calorific value fuel gas with very low conversion of fuel-bound nitrogen to NO{sub x} is presented. (orig.) 6 refs.

  19. Combustion heating value gas in a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G. [CTDD, British Coal Corporation, Cheltenham (United Kingdom); Cannon, M. [European Gas Turbines Ltd., Lincoln (United Kingdom)

    1996-12-31

    Advanced coal and/or biomass based power generation systems offer the potential for high efficiency electricity generation with minimum environmental impact. An important component for many of these advanced power generation cycles is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at turbine inlet temperatures of typically 1 100 - 1 260 deg C and with minimum pollutant emissions, is a key issue. A phased combustor development programme is under-way burning low calorific value fuel gas (3.6 - 4.1 MJ/m{sup 3}) with low emissions, particularly NO{sub x} derived from fuel-bound nitrogen. The first and second phases of the combustor development programme have been completed. The first phase used a generic tubo-annular, prototype combustor based on conventional design principles. Combustor performance for this first prototype combustor was encouraging. The second phase assessed five design variants of the prototype combustor, each variant achieving a progressive improvement in combustor performance. The operating conditions for this assessment were selected to represent a particular medium sized industrial gas turbine operating as part of an Air Blown Gasification Cycle (ABGC). The test conditions assessed therefore included the capability to operate the combustor using natural gas as a supplementary fuel, to suit one possible start-up procedure for the cycle. The paper presents a brief overview of the ABGC development initiative and discusses the general requirements for a gas turbine operating within such a cycle. In addition, it presents full combustor performance results for the second phase of turbine combustor development and discusses the rationale for the progressive design modifications made within that programme. The strategy for the further development of the combustor to burn low calorific value fuel gas with very low conversion of fuel-bound nitrogen to NO{sub x} is presented. (orig.) 6 refs.

  20. PIV Measurements of Flows around the Wind Turbines with a Flanged-Diffuser Shroud

    Institute of Scientific and Technical Information of China (English)

    Kazuhiko Toshimitsu; Koutarou Nishikawa; Wataru Haruki; Shinichi Oono; Manabu Takao; Yuji Ohya

    2008-01-01

    The wind turbines with a flanged-diffuser shroud -so called "wind lens turbine"- are developed as one of high performance wind turbines by Ohya et al. In order to investigate the flow characteristics and flow acceleration, the paper presents the flow velocity measurements of a long-type and a compact-type wind turbines with a flanged-diffuser shroud by particle image velocimetry. In the case of the long type wind turbine, the velocity vec-tors of the inner flow field of the diffuser for turbine blades rotating and no blades rotating are presented at Rey-nolds number, 0.9x105. Furthermore the flow fields between with and without rotating are compared. Through the PIV measurement results, one can realize that the turbine blades rotating affects as suppress the disturbance and the flow separation near the inner wall of the diffuser. The time average velocity vectors are made on the av-erage of the instantaneous velocity data. There are two large vortices in downstream region of the diffuser. One vortex behind the flange acts as suck in wind to the diffuser and raise the inlet flow velocity. Another large vortex appears in downstream. It might be act as blockage vortex of main flow. The large blockage vortex is not clear in the instantaneous velocity vectors, however it exists clearly in the time average flow field. The flow field around the wind turbine with a compact-type flanged-diffuser shroud is also investigated. The flow pattern behind the flange of the compact-type turbine is the same as the long-type one. It means that the effect of flow acceleration is caused by the unsteady vortices behind the flange. The comparison with CFD and PIV results of meridional time-average streamlines after the compact-type diffuser is also presented.

  1. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparison to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  2. Static and dynamic modelling of gas turbines in advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Jan-Olof

    1998-12-01

    Gas turbines have been in operation for at least 50 years. The engine is used for propulsion of aircraft and high speed ships. It is used for power production in remote locations and for peak load and emergency situations. Gas turbines have been used in combined cycles for 20 to 30 years. Highly efficient power plants based on gas turbines are a competitive option for the power industry today. The thermal efficiency of the simple cycle gas turbine has increased due to higher turbine inlet temperatures and improved compressor and expander designs. Equally important are the improved cycles in which the gas turbine operates. One example is the combined cycle that uses steam for turbine cooling. Steam is extracted from the bottoming cycle, then used as airfoil coolant in a closed loop and returned to the bottoming cycle. The Evaporative Gas Turbine (EvGT), also known as the Humid Air Turbine (HAT), is another advanced cycle. A mixture of air and water vapour is used as working media. Air from the compressor outlet is humidified and then preheated in a recuperator prior to combustion. The static and dynamic performance is changed when the gas turbine is introduced in an evaporative cycle. The cycle is gaining in popularity, but so far it has not been demonstrated. A Swedish joint program to develop the cycle has been in operation since 1993. As part of the program, a small pilot plant is being erected at the Lund Institute of Technology (LTH). The plant is based on a 600 kW gas turbine, and demonstration of the EvGT cycle started autumn 1998 and will continue, in the present phase, for one year. This thesis presents static and dynamic models for traditional gas turbine components, such as, the compressor, combustor, expander and recuperator. A static model for the humidifier is presented, based on common knowledge for atmospheric humidification. All models were developed for the pilot plant at LTH with the objective to support evaluation of the process and individual

  3. Improving the performances of gas turbines operated on natural gas in combined cycle power plants with application of mathematical models

    International Nuclear Information System (INIS)

    Dimkovski, Sasho

    2014-01-01

    The greater energy demand by today society sets a number of new challenges in the energy sector. The climate extremes impose new modes of operation of the power plants, with high flexibility in production. Combined cycle co generative power plants are the latest trend in the energy sector. Their high prevalence is due to the great efficiency and the good environmental characteristics. The main work horse in these cogeneration plants is the gas turbine, which power production and efficiency strongly depends on the external climate conditions. In warmer periods when there is increased demand for electricity, the power production from the gas turbines significantly declines. Because of the high electricity demand from the grid and reduced power production from the gas turbines at the same time, the need for application of appropriate technology for preserving the performances and power of the gas turbines arises. This master thesis explores different methods to improve the power in gas turbines by cooling the air on the compressor inlet, analyzing their applicability and effectiveness in order to choose the optimal method for power augmentation for the climatic conditions in the city Skopje. The master thesis gives detailed analysis of the weather in Skopje and the time frame in which the chosen method is applicable. At the end in the master thesis, the economic feasibility of the given method for power augmentation is clearly calculated, using a model of a power plant and calculating the resulting amount of gained energy, the amount of the initial investment, the cost for maintenance and operation of the equipment. By these calculations the period for initial return of investment is obtained. As an added benefit the positive environmental impacts of the applied technology for inlet air cooling is analyzed. (author)

  4. A computational fluid dynamics simulation framework for ventricular catheter design optimization.

    Science.gov (United States)

    Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A

    2017-11-10

    OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using

  5. Application of a power recovery system to gas turbine exhaust gases

    International Nuclear Information System (INIS)

    Baudat, N.P.; James, O.R.

    1979-01-01

    This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower

  6. Numerical investigation of aerodynamic performance of darrieus wind turbine based on the magnus effect

    Directory of Open Access Journals (Sweden)

    L Khadir

    2016-10-01

    Full Text Available The use of several developmental approaches is the researchers’ major preoccupation with the DARRIEUS wind turbine. This paper presents the first approach and results of a wide computational investigation on the aerodynamics of a vertical axis DARRIEUS wind turbine based on the MAGNUS effect. Consequently, wind tunnel tests were carried out to ascertain overall performance of the turbine and two-dimensional unsteady computational fluid dynamics (CFD models were generated to help understand the aerodynamics of this new performance. Accordingly, a moving mesh technique was used where the geometry of the turbine blade was cylinders. The turbine model was created in Gambit modeling software and then read into fluent software for fluid flow analysis. Flow field characteristics are investigated for several values of tip speed ratio (TSR, in this case we generated a new rotational speed ratio between the turbine and cylinder (δ = ωC/ωT. This new concept based on the MAGNUS approach provides the best configuration for better power coefficient values. The positive results of Cp obtained in this study are used to generate energy; on the other hand, the negative values of Cp could be used in order to supply the engines with energy.

  7. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  8. Active Robust Control of Elastic Blade Element Containing Magnetorheological Fluid

    Science.gov (United States)

    Sivrioglu, Selim; Cakmak Bolat, Fevzi

    2018-03-01

    This research study proposes a new active control structure to suppress vibrations of a small-scale wind turbine blade filled with magnetorheological (MR) fluid and actuated by an electromagnet. The aluminum blade structure is manufactured using the airfoil with SH3055 code number which is designed for use on small wind turbines. An interaction model between MR fluid and the electromagnetic actuator is derived. A norm based multi-objective H2/H∞ controller is designed using the model of the elastic blade element. The H2/H∞ controller is experimentally realized under the impact and steady state aerodynamic load conditions. The results of experiments show that the MR fluid is effective for suppressing vibrations of the blade structure.

  9. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  10. Power and efficiency optimization for combined Brayton and inverse Brayton cycles

    International Nuclear Information System (INIS)

    Zhang Wanli; Chen Lingen; Sun Fengrui

    2009-01-01

    A thermodynamic model for open combined Brayton and inverse Brayton cycles is established considering the pressure drops of the working fluid along the flow processes and the size constraints of the real power plant using finite time thermodynamics in this paper. There are 11 flow resistances encountered by the gas stream for the combined Brayton and inverse Brayton cycles. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, combustion inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances control the air flow rate and the net power output. The relative pressure drops associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle. The analytical formulae about the relations between power output, thermal conversion efficiency, and the compressor pressure ratio of the top cycle are derived with the 11 pressure drop losses in the intake, compression, combustion, expansion, and flow process in the piping, the heat transfer loss to the ambient, the irreversible compression and expansion losses in the compressors and the turbines, and the irreversible combustion loss in the combustion chamber. The performance of the model cycle is optimized by adjusting the compressor inlet pressure of the bottom cycle, the air mass flow rate and the distribution of pressure losses along the flow path. It is shown that the power output has a maximum with respect to the compressor inlet pressure of the bottom cycle, the air mass flow rate or any of the overall pressure drops, and the maximized power output has an additional maximum with respect to the compressor pressure

  11. Optimization of the Runner for Extremely Low Head Bidirectional Tidal Bulb Turbine

    Directory of Open Access Journals (Sweden)

    Yongyao Luo

    2017-06-01

    Full Text Available This paper presents a multi-objective optimization procedure for bidirectional bulb turbine runners which is completed using ANSYS Workbench. The optimization procedure is able to check many more geometries with less manual work. In the procedure, the initial blade shape is parameterized, the inlet and outlet angles (β1, β2, as well as the starting and ending wrap angles (θ1, θ2 for the five sections of the blade profile, are selected as design variables, and the optimization target is set to obtain the maximum of the overall efficiency for the ebb and flood turbine modes. For the flow analysis, the ANSYS CFX code, with a SST (Shear Stress Transport k-ω turbulence model, has been used to evaluate the efficiency of the turbine. An efficient response surface model relating the design parameters and the objective functions is obtained. The optimization strategy was used to optimize a model bulb turbine runner. Model tests were carried out to validate the final designs and the design procedure. For the four-bladed turbine, the efficiency improvement is 5.5% in the ebb operation direction, and 2.9% in the flood operation direction, as well as 4.3% and 4.5% for the three-bladed turbine. Numerical simulations were then performed to analyze the pressure pulsation in the pressure and suction sides of the blade for the prototype turbine with optimal four-bladed and three-bladed runners. The results show that the runner rotational frequency (fn is the dominant frequency of the pressure pulsations in the blades for ebb and flood turbine modes, and the gravitational effect, rather than rotor-stator interaction (RSI, plays an important role in a low head horizontal axial turbine. The amplitudes of the pressure pulsations on the blade side facing the guide vanes varies little with the water head. However, the amplitudes of the pressure pulsations on the blade side facing the diffusion tube linearly increase with the water head. These results could provide

  12. Cooling system at the compressors air inlet of the gas turbines from the Tula`s combined cycle central; Sistema de enfriamiento en la succion del compresor de las turbinas de gas de la central de ciclo combinado de Tula

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez F, Oscar [Comision Federal de Electricidad, Tula (Mexico); Romero Paredes, Hernando; Vargas, Martin; Gomez, Jose Francisco [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico)

    1996-12-31

    It has been formerly evaluated that it is possible to enhance notably the electric power generation in gas turbine power plants by cooling the air at the compressor inlet. It has been pointed out that provided a source of waste heat is available it can be very attractive the use of absorption refrigeration systems. In this paper the technical and the economical benefits of bringing the air inlet temperature down 8 Celsius degrees of the four gas turbines of the Combined Cycle Central of Tula, in the State of Hidalgo (combined cycle central-Tula) are evaluated. The results show that it is possible to achieve an efficiency enhancement of at least 1%, and that in very warm days up to 48 additional Megawatts can be generated, or about 10% of the installed capacity. The final economic result is very encouraging and an annual economical benefit in the order of 50 million pesos can be obtained and the refrigeration units can be amortized in approximately one year. [Espanol] Se ha evaluado anteriormente que es posible mejorar notablemente la capacidad de generacion electrica en plantas que utilizan turbinas de gas, mediante el enfriamiento del aire de succion del compresor. Se ha senalado que en la medida en que se encuentre disponible una fuente termica de desecho puede ser muy atractivo el uso de sistemas de refrigeracion por absorcion. En el presente trabajo se evaluan los beneficios tecnicos y economicos que puede tener el llevar el aire de succion hasta una temperatura de 8 grados Celsius, de las cuatro unidades de gas de la Central de Ciclo Combinado de Tula, Hidalgo (CCC-Tula). Los resultados muestran que es posible alcanzar un aumento en la eficiencia de al menos 1% y que se pueden generar, en dias muy calurosos, hasta 48 MW extras, equivalente al 10% de la capacidad instalada. El resultado economico final es muy alentador y puede llegar a tenerse un beneficio economico del orden de los 50 millones de pesos anuales y las unidades de refrigeracion podran pagarse en

  13. Cooling system at the compressors air inlet of the gas turbines from the Tula`s combined cycle central; Sistema de enfriamiento en la succion del compresor de las turbinas de gas de la central de ciclo combinado de Tula

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez F, Oscar [Comision Federal de Electricidad, Tula (Mexico); Romero Paredes, Hernando; Vargas, Martin; Gomez, Jose Francisco [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico)

    1997-12-31

    It has been formerly evaluated that it is possible to enhance notably the electric power generation in gas turbine power plants by cooling the air at the compressor inlet. It has been pointed out that provided a source of waste heat is available it can be very attractive the use of absorption refrigeration systems. In this paper the technical and the economical benefits of bringing the air inlet temperature down 8 Celsius degrees of the four gas turbines of the Combined Cycle Central of Tula, in the State of Hidalgo (combined cycle central-Tula) are evaluated. The results show that it is possible to achieve an efficiency enhancement of at least 1%, and that in very warm days up to 48 additional Megawatts can be generated, or about 10% of the installed capacity. The final economic result is very encouraging and an annual economical benefit in the order of 50 million pesos can be obtained and the refrigeration units can be amortized in approximately one year. [Espanol] Se ha evaluado anteriormente que es posible mejorar notablemente la capacidad de generacion electrica en plantas que utilizan turbinas de gas, mediante el enfriamiento del aire de succion del compresor. Se ha senalado que en la medida en que se encuentre disponible una fuente termica de desecho puede ser muy atractivo el uso de sistemas de refrigeracion por absorcion. En el presente trabajo se evaluan los beneficios tecnicos y economicos que puede tener el llevar el aire de succion hasta una temperatura de 8 grados Celsius, de las cuatro unidades de gas de la Central de Ciclo Combinado de Tula, Hidalgo (CCC-Tula). Los resultados muestran que es posible alcanzar un aumento en la eficiencia de al menos 1% y que se pueden generar, en dias muy calurosos, hasta 48 MW extras, equivalente al 10% de la capacidad instalada. El resultado economico final es muy alentador y puede llegar a tenerse un beneficio economico del orden de los 50 millones de pesos anuales y las unidades de refrigeracion podran pagarse en

  14. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  15. Recent run-time experience and investigation of impurities in turbines circuit of Helium plant of SST-1

    International Nuclear Information System (INIS)

    Panchal, P.; Panchal, R.; Patel, R.

    2013-01-01

    One of the key sub-systems of Steady State superconducting Tokamak (SST-1) is cryogenic 1.3 kW at 4.5 K Helium refrigerator/liquefier system. The helium plant consists of 3 nos. of screw compressors, oil removal system, purifier and cold-box with 3 turbo expanders (turbines) and helium cold circulator. During the recent SST-1 plasma campaigns, we observed high pressure drop of the order of 3 bar between the wheel outlet of turbine A and the wheel inlet of turbine - B. This was significant higher values of pressures drop across turbines, which reduced the speed of turbine A and B and in turn reduced the overall plant capacity. The helium circuits in the plant have 10-micron filter at the mouth of turbine - B. Initially, major suspects of such high blockage are assumed to be air-impurity, dust particles or collapse of filter. Several breaks in plant operation have been taken to warm up the turbines circuits up to 90 K to remove condensation of air-impurities at filter. Still this exercise did not solve blockage of filter in turbine circuits. A detailed investigation exercise with air/water regeneration and rinsing of cold box as well as purification of helium gas in buffer tanks are carried out to remove air impurities from cold-box. A trial run of cold box was executed in liquefier mode with turbines up to cryogenic temperatures and solved blockage in turbine circuits. The paper describes run-time experience of helium plant with helium impurity in turbine circuits, methods to remove impurity, demonstration of turbine performance and lessons learnt during this operation. (author)

  16. Reconstruction of paleo-inlet dynamics using sedimentologic analyses, geomorphic features, and benthic foraminiferal assemblages: former ephemeral inlets of Cedar Island, Virginia, USA

    Science.gov (United States)

    McBride, R.; Wood, E. T.

    2017-12-01

    Cedar Island, VA is a low-profile, washover-dominated barrier island that has breached at least three times in the past sixty years. Cedar Island Inlet, a former wave-dominated tidal inlet, was open for the following time periods: 1) 1956-1962, 2) 1992-1997, and 3) 1998-2007. Air photos, satellite imagery, and geomorphic features (i.e., relict flood tidal deltas, recurved-spit ridges) record the spatial and temporal extent of the three ephemeral inlets. Based on three sediment vibracores, benthic foraminiferal and sedimentologic analyses offer high resolution insights of inlet dynamics and lifecycle evolution. Four foraminiferal biofacies are completely dominated by Elphidium excavatum (54-100%) and contain unique assemblages of accessory species based on cluster analyses: tidal inlet floor (low abundance estuarine and shelf species; 23% Haynesina germanica); flood tidal delta/inlet fill (high abundance estuarine and shelf species; 2% Buccella frigida, 2% Ammonia parkinsoniana, and 2% Haynesina germanica); high-energy inlet fill (low abundance, low diversity shelf species; 9% Elphidium gunteri); and washover/beach/aeolian (low abundance, predominantly shelf species; 3% Buccella frigida and 3% Ammonia parkinsoniana). The estuarine biofacies is barren of all foraminifera. Grain size trends indicate a first order coarsening-upward succession with second order coarsening- and fining-upwards packages in inlet throat deposits, while a first order fining-upward succession is observed in flood tidal delta deposits with two second order coarsening-upward packages in the proximal flood tidal delta. Contrary to typical wave-dominated tidal inlets that open, migrate laterally in the direction of net longshore transport, and close, the 1998-2007 tidal inlet, and possibly the 1956-1962 inlet, migrated laterally and rotated, whereas the 1992-1997 inlet remained stationary and did not rotate. In the vicinity of the vibracores, preserved deposits are attributed to the 1956-1962 and

  17. DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    NEIL K. MCDOUGALD

    2005-04-30

    nanoSTAR technology. A mechanically simple single zone injector can be used in Solar Turbine's Taurus 60 engine. (3) Rig testing of single monolithic injectors demonstrated sub 3 ppmv NOX and sub 10 ppmv CO and UHC emissions (all corrected to 15% O2) at Taurus 60 full-load pressure and combustion air inlet temperature. (4) Testing of two nanoSTAR injectors in Solar Turbine's sector rig demonstrated the ability for injectors to survive when fired in close proximity at Taurus 60 full load pressure and combustion air inlet temperature. (5) Sector rig tests demonstrated emissions performance and range of operability consistent with single injector rig tests. Alzeta has committed to the commercialization of nanoSTAR injectors and has sufficient production capability to conclude development and meet initial demand.

  18. Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids

    Science.gov (United States)

    Oder, Robin R.; Jamison, Russell E.

    2010-02-09

    A magnetic separator vessel (1) for separating magnetic particles from non-magnetic fluid includes a separation chamber having an interior and exterior wall, a top and bottom portion; a magnet (3) having first and second poles (2) positioned adjacent to the exterior wall, wherein the first pole is substantially diametrically opposed to the second pole; a inlet port (5) is directed into the top portion of the separation chamber, wherein the inlet port (5) is positioned adjacent to one of the first and second poles (2), wherein the inlet port (5) is adapted to transfer a mixture into the separation chamber; an underflow port (6) in communication with the bottom portion, wherein the underflow port (6) is adapted to receive the magnetic particles; and an overflow port (9) in communication with the separation chamber, wherein the overflow port (9) is adapted to receive the non-magnetic fluid.

  19. Numerical study on coolant flow distribution at the core inlet for an integral pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Peng, Min Jun; Xia, Genglei; Lv, Xing; Li, Ren [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin (China)

    2017-02-15

    When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

  20. Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine

    Science.gov (United States)

    Zhang, L.; Zhuge, W. L.; Peng, J.; Liu, S. J.; Zhang, Y. J.

    2013-12-01

    In general, the method proposed by Whitfield and Baines is adopted for the turbine preliminary design. In this design procedure for the turbine blade trailing edge geometry, two assumptions (ideal gas and zero discharge swirl) and two experience values (WR and γ) are used to get the three blade trailing edge geometric parameters: relative exit flow angle β6, the exit tip radius R6t and hub radius R6h for the purpose of maximizing the rotor total-to-static isentropic efficiency. The method above is established based on the experience and results of testing using air as working fluid, so it does not provide a mathematical optimal solution to instruct the optimization of geometry parameters and consider the real gas effects of the organic, working fluid which must be taken into consideration for the ORC turbine design procedure. In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency ηts, and the blade trailing edge geometric parameters for a small scale ORC turbine with working fluid R123 are optimized based on this method. The mathematical optimal solution to minimize the exit kinetic energy is deduced, which can be used to design and optimize the exit shroud/hub radius and exit blade angle. And then, the influence of blade trailing edge geometric parameters on turbine efficiency ηts are analysed and the optimal working ranges of these parameters for the equations are recommended in consideration of working fluid R123. This method is used to modify an existing ORC turbine exit kinetic energy loss from 11.7% to 7%, which indicates the effectiveness of the method. However, the internal passage loss increases from 7.9% to 9.4%, so the only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters, such as the recommended ranges that the value of γ is at 0.3 to 0.4, and the value