WorldWideScience

Sample records for tupaia belangeri cd1d

  1. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes

    International Nuclear Information System (INIS)

    Sanada, Takahiro; Tsukiyama-Kohara, Kyoko; Yamamoto, Naoki; Ezzikouri, Sayeh; Benjelloun, Soumaya; Murakami, Shuko; Tanaka, Yasuhito; Tateno, Chise; Kohara, Michinori

    2016-01-01

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3–6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10"5 copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10"4-10"6 copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10"3 copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. - Highlights: • Primary hepatocytes were established from tupaia that is a novel HBV infection model. • Tupaia primary hepatocytes were susceptible for HBV infection. • The immunodeficient chimeric mice with tupaia hepatocytes were established. • The chimeric mice with tupaia hepatocytes were susceptible for HBV infection.

  2. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Takahiro [Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506 (Japan); Tsukiyama-Kohara, Kyoko, E-mail: kkohara@vet.kagoshima-u.ac.jp [Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima-city, Kagoshima 890-0065 (Japan); Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Kagoshima 890-0065 (Japan); Yamamoto, Naoki [Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506 (Japan); Ezzikouri, Sayeh; Benjelloun, Soumaya [Viral Hepatitis Laboratory, Virology Unit, Institut Pasteur du Maroc, 1, Louis Pasteur, Casablanca 20360 (Morocco); Murakami, Shuko; Tanaka, Yasuhito [Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-ku, Nagoya, Aichi 467-8601 (Japan); Tateno, Chise [PhoenixBio Co. Ltd., 3-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046 (Japan); Kohara, Michinori, E-mail: kohara-mc@igakuken.or.jp [Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506 (Japan)

    2016-01-08

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3–6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10{sup 5} copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10{sup 4}-10{sup 6} copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10{sup 3} copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. - Highlights: • Primary hepatocytes were established from tupaia that is a novel HBV infection model. • Tupaia primary hepatocytes were susceptible for HBV infection. • The immunodeficient chimeric mice with tupaia hepatocytes were established. • The chimeric mice with tupaia hepatocytes were susceptible for HBV infection.

  3. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes.

    Science.gov (United States)

    Sanada, Takahiro; Tsukiyama-Kohara, Kyoko; Yamamoto, Naoki; Ezzikouri, Sayeh; Benjelloun, Soumaya; Murakami, Shuko; Tanaka, Yasuhito; Tateno, Chise; Kohara, Michinori

    2016-01-08

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3-6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10(5) copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10(4)-10(6) copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10(3) copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Metabolism and thermoregulation in the tree shrew, Tupaia belangeri

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2012-05-01

    Full Text Available Maximum metabolic rate is a physiological limitation that is an important for animals' survival, reproduction and geographic. Basal metabolic rate (BMR, nonshivering thermogenesis (NST, and maximum metabolic rate (MMR were measured was in a small mammal species, Tupaia belangeri, which is a unique species of small-bodied mammals in the Oriental realm. Thermal neutral zone (TNZ was 30 - 35°C and BMR was 1.38±0.09 ml g-1 h-1. NST and MMR were 2.64±0.08 ml g-1 h-1 and 7.14±0.38 ml g-1 h-1 in summer, respectively. The ecophysiological properties of relatively high body temperature, wide TNZ, low BMR and thermogenic capacity enable this species to adapt to its environment.

  5. Tupaia belangeri as an experimental animal model for viral infection.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2014-01-01

    Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development.

  6. Enzyme activity, hormone concentration in tree shrew (Tupaia belangeri during cold acclimation

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2012-08-01

    Full Text Available Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in wild small mammals. The tree shrew (Tupaia belangeri, is a unique species of small mammals which is origin of island in the Oriental realm. The present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake, metabolism, uncoupling protein 1 (UCP1 in brown adipose tissue (BAT, and other biochemical characters of T. belangeri during cold exposure about 21 days. Our data demonstrate that cold acclimation induced a remarkable increase in body mass, a significant increase in energy intake and metabolic rate, and high expression of UCP1 in BAT of T. belangeri. Cold acclimation induced an increase in cytochrome c oxidase (COX and Thyroidhormones (T3/T4. These data supported that T. belangeri increased the body mass and increased energy intake and expenditure under cold acclimation. Increased expression of UCP1 was potentially involved in the regulation of energy metabolism and thermogenic capacity following cold acclimation. And it through changes in enzyme activity and hormone concentration under cold acclimation, and suggested temperature changes play an important role in the regulation of thermogenic capacity in tree shrew.

  7. Tree shrew (Tupaia belangeri as a novel laboratory disease animal model

    Directory of Open Access Journals (Sweden)

    Ji Xiao

    2017-05-01

    Full Text Available The tree shrew (Tupaia belangeri is a promising laboratory animal that possesses a closer genetic relationship to primates than to rodents. In addition, advantages such as small size, easy breeding, and rapid reproduction make the tree shrew an ideal subject for the study of human disease. Numerous tree shrew disease models have been generated in biological and medical studies in recent years. Here we summarize current tree shrew disease models, including models of infectious diseases, cancers, depressive disorders, drug addiction, myopia, metabolic diseases, and immune-related diseases. With the success of tree shrew transgenic technology, this species will be increasingly used in biological and medical studies in the future.

  8. Telemetric Study of Sleep Architecture and Sleep Homeostasis in the Day-Active Tree Shrew Tupaia belangeri

    NARCIS (Netherlands)

    Coolen, Alex; Hoffmann, Kerstin; Barf, R. Paulien; Fuchs, Eberhard; Meerlo, Peter

    2012-01-01

    Study Objectives: In this study the authors characterized sleep architecture and sleep homeostasis in the tree shrew, Tupaia belangeri, a small, omnivorous, day-active mammal that is closely related to primates. Design: Adult tree shrews were individually housed under a 12-hr light/12-hr dark cycle

  9. Body mass, Thermogenesis and energy metabolism in Tupaia belangeri during cold acclimation

    Directory of Open Access Journals (Sweden)

    Wan-long Zhu

    2012-05-01

    Full Text Available In order to study the relationship between energy strategies and environmental temperature, basal metabolic rate (BMR, nonshivering thermogenesis (NST, the total protein contents, mitochondrial protein contents, state and state respiratory ability, cytochrome C oxidase activity Ⅲ Ⅳ of liver, heart, diaphragm, gastrocnemius and brown adipose tissue (BAT, serum leptin level and serum thyroid hormone levels were measured in tree shrews (Tupaia belangeri during cold exposure (5±1oC for 1 day, 7 days,14days,21 days. The results showed that body mass increased, BMR and NST increased, the change of liver mitochondrial protein content was more acutely than total protein. The mitochondrial protein content of heart and BAT were significantly increased during cold-exposed, however the skeletal muscle more moderate reaction. The state Ⅲ and state Ⅳ mitochondrial respiration of these tissues were enhanced significantly than the control. The cytochrome C oxidase activity with cold acclimation also significantly increased except the gastrocnemius. Liver, muscle, BAT, heart and other organs were concerned with thermoregulation during the thermal regulation process above cold-exposed. There is a negative correlation between leptin level and body mass. These results suggested that T. belangeri enhanced thermogenic capacity during cold acclimation, and leptin participated in the regulation of energy balance and body weight in T. belangeri.

  10. Extensive characterization of Tupaia belangeri neuropeptidome using an integrated mass spectrometric approach.

    Science.gov (United States)

    Petruzziello, Filomena; Fouillen, Laetitia; Wadensten, Henrik; Kretz, Robert; Andren, Per E; Rainer, Gregor; Zhang, Xiaozhe

    2012-02-03

    Neuropeptidomics is used to characterize endogenous peptides in the brain of tree shrews (Tupaia belangeri). Tree shrews are small animals similar to rodents in size but close relatives of primates, and are excellent models for brain research. Currently, tree shrews have no complete proteome information available on which direct database search can be allowed for neuropeptide identification. To increase the capability in the identification of neuropeptides in tree shrews, we developed an integrated mass spectrometry (MS)-based approach that combines methods including data-dependent, directed, and targeted liquid chromatography (LC)-Fourier transform (FT)-tandem MS (MS/MS) analysis, database construction, de novo sequencing, precursor protein search, and homology analysis. Using this integrated approach, we identified 107 endogenous peptides that have sequences identical or similar to those from other mammalian species. High accuracy MS and tandem MS information, with BLAST analysis and chromatographic characteristics were used to confirm the sequences of all the identified peptides. Interestingly, further sequence homology analysis demonstrated that tree shrew peptides have a significantly higher degree of homology to equivalent sequences in humans than those in mice or rats, consistent with the close phylogenetic relationship between tree shrews and primates. Our results provide the first extensive characterization of the peptidome in tree shrews, which now permits characterization of their function in nervous and endocrine system. As the approach developed fully used the conservative properties of neuropeptides in evolution and the advantage of high accuracy MS, it can be portable for identification of neuropeptides in other species for which the fully sequenced genomes or proteomes are not available.

  11. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging.

    Science.gov (United States)

    Wei, Shu; Hua, Hai-Rong; Chen, Qian-Quan; Zhang, Ying; Chen, Fei; Li, Shu-Qing; Li, Fan; Li, Jia-Li

    2017-03-18

    Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5-hydroxymethylcytosine (5hmC) ten-eleven translocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews ( Tupaia belangeri chinensis ). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.

  12. Distribution of 239Pu in the skeleton of the tree shrew (Tupaia belangeri) between 15 and 50 months after injection

    International Nuclear Information System (INIS)

    Sontag, W.; Seidel, A.

    1987-01-01

    The macroscopic and microscopic distribution of intramuscularly injected, essentially monomeric, 239 Pu was studied in the skeleton of the adult tree shrew (Tupaia belangeri). Data for between 15 and 50 months after injection are presented and compared with data from earlier time points. Between 83 and 500 days after injection nuclide content and wet weight of the skeleton decreased to a constant level at about 55% of maximum. The microscopic distribution was analysed in distal femora, proximal humerus, proximal tibia and lumbar vertebra over the whole time; additionally at some selected time points proximal femur, femur shaft, distal humerus and distal tibia were analysed. The initial endosteal surface activity ranged from 3.8 to 5.3 Bq/cm 2 , decreased to a minimum at about 1000 days after injection and increased thereafter. Similar behaviour was found for dose rate near bone surfaces (initially about 0.075 Gy/day on endosteal surfaces). In deep bone and deep marrow the dose rate was negligible, about 0.008 Gy/day and 0.001 Gy/day, respectively. The average cumulative dose 1500 days after injection was about 67 Gy on the endosteum; six times greater than the cumulative dose calculated from the mean concentration of plutonium in the whole skeleton. Tupaia data are compared to monkeys, dogs and rats. (author)

  13. Establishment of an intermittent cold stress model using Tupaia belangeri and evaluation of compound C737 targeting neuron-restrictive silencer factor

    Science.gov (United States)

    Hai-Ying, Chi; Nagano, Kiori; Ezzikouri, Sayeh; Yamaguchi, Chiho; Kayesh, Mohammad Enamul Hoque; Rebbani, Khadija; Kitab, Bouchra; Nakano, Hirohumi; Kouji, Hiroyuki; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2016-01-01

    Previous studies have shown that intermittent cold stress (ICS) induces depression-like behaviors in mammals. Tupaia belangeri (the tree shrew) is the only experimental animal other than the chimpanzee that has been shown to be susceptible to infection by hepatitis B and C viruses. Moreover, full genome sequence analysis has revealed strong homology between host proteins in Tupaia and in humans and other primates. Tupaia neuromodulator receptor proteins are also known to have a high degree of homology with their corresponding primate proteins. Based on these similarities, we hypothesized that induction of ICS in Tupaia would provide a useful animal model of stress responses. We exposed young adult Tupaia to ICS and observed decreases in body temperature and body weight in both female and male Tupaia, suggesting that Tupaia are an appropriate animal model for ICS studies. We further examined the efficacy of a new small-molecule compound, C737, against the effects of ICS. C737 mimics the helical structure of neuron-restrictive silencer factor (NRSF/REST), which regulates a wide range of target genes involved in neuronal function and pain modulation. Treatment with C737 significantly reduced stress-induced weight loss in female Tupaia; these effects were stronger than those elicited by the antidepressant agomelatine. These results suggest that Tupaia represents a useful non-rodent ICS model. Our data also provide new insights into the function of NRSF/REST in stress-induced depression and other disorders with epigenetic influences or those with high prevalence in women. PMID:27041457

  14. Identification of the full-length β-actin sequence and expression profiles in the tree shrew (Tupaia belangeri).

    Science.gov (United States)

    Zheng, Yu; Yun, Chenxia; Wang, Qihui; Smith, Wanli W; Leng, Jing

    2015-02-01

    The tree shrew (Tupaia belangeri) diverges from the primate order (Primates) and is classified as a separate taxonomic group of mammals - Scandentia. It has been suggested that the tree shrew can be used as an animal model for studying human diseases; however, the genomic sequence of the tree shrew is largely unidentified. In the present study, we reported the full-length cDNA sequence of the housekeeping gene, β-actin, in the tree shrew. The amino acid sequence of β-actin in the tree shrew was compared to that of humans and other species; a simple phylogenetic relationship was discovered. Quantitative polymerase chain reaction (qPCR) and western blot analysis further demonstrated that the expression profiles of β-actin, as a general conservative housekeeping gene, in the tree shrew were similar to those in humans, although the expression levels varied among different types of tissue in the tree shrew. Our data provide evidence that the tree shrew has a close phylogenetic association with humans. These findings further enhance the potential that the tree shrew, as a species, may be used as an animal model for studying human disorders.

  15. Identification and characterization of toll-like receptors (TLRs) in the Chinese tree shrew (Tupaia belangeri chinensis).

    Science.gov (United States)

    Yu, Dandan; Wu, Yong; Xu, Ling; Fan, Yu; Peng, Li; Xu, Min; Yao, Yong-Gang

    2016-07-01

    In mammals, the toll-like receptors (TLRs) play a major role in initiating innate immune responses against pathogens. Comparison of the TLRs in different mammals may help in understanding the TLR-mediated responses and developing of animal models and efficient therapeutic measures for infectious diseases. The Chinese tree shrew (Tupaia belangeri chinensis), a small mammal with a close relationship to primates, is a viable experimental animal for studying viral and bacterial infections. In this study, we characterized the TLRs genes (tTLRs) in the Chinese tree shrew and identified 13 putative TLRs, which are orthologs of mammalian TLR1-TLR9 and TLR11-TLR13, and TLR10 was a pseudogene in tree shrew. Positive selection analyses using the Maximum likelihood (ML) method showed that tTLR8 and tTLR9 were under positive selection, which might be associated with the adaptation to the pathogen challenge. The mRNA expression levels of tTLRs presented an overall low and tissue-specific pattern, and were significantly upregulated upon Hepatitis C virus (HCV) infection. tTLR4 and tTLR9 underwent alternative splicing, which leads to different transcripts. Phylogenetic analysis and TLR structure prediction indicated that tTLRs were evolutionarily conserved, which might reflect an ancient mechanism and structure in the innate immune response system. Taken together, TLRs had both conserved and unique features in the Chinese tree shrew. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Molecular cloning and characterization of the full-length cDNA encoding the tree shrew (tupaia belangeri) CD28

    Science.gov (United States)

    Huang, Xiaoyan; Yan, Yan; Wang, Sha; Wang, Qinying; Shi, Jian; Shao, Zhanshe; Dai, Jiejie

    2017-11-01

    CD28 is one of the most important co-stimulatory molecules expressed by naive and primed T cells. The tree shrews (Tupaia belangeri), as an ideal animal model for analyzing mechanism of human diseases receiving extensive attentions, demands essential research tools, in particular in the study of cellular markers and monoclonal antibodies for immunological studies. However, little is known about tree shrew CD28 (tsCD28) until now. In this study, a 663 bp of the full-length CD28 cDNA, encoding a polypeptide of 220 amino acids was cloned from tree shrew spleen lymphocytes. The nucleotide sequence of the tsCD28 showed 85%, 76%, and 75% similarities with human, rat, and mouse, respectively, which showed the affinity relationship between tree shrew and human is much closer than between human and rodents. The open reading frame (ORF) sequence of tsCD28 gene was predicted to be in correspondence with the signal sequence, immunoglobulin variable-like (IgV) domain, transmembrane domain and cytoplasmic tail, respectively.We also analyzed its molecular characteristics with other mammals by using biology software such as Clustal W 2.0 and so forth. Our results showed that tsCD28 contained many features conserved in CD28 genes from other mammals, including conserved signal peptide and glycosylation sites, and several residues responsible for binding to the CD28R, and the tsCD28 amino acid sequence were found a close genetic relationship with human and monkey. The crystal structure and surface charge revealed most regions of tree shrew CD28 molecule surface charges are similar as human. However, compared with human CD28 (hCD28) regions, in some areas, the surface positive charge of tsCD28 was less than hCD28, which may affect antibody binding. The present study is the first report of cloning and characterization of CD28 in tree shrew. This study provides a theoretical basis for the further study the structure and function of tree shrew CD28 and utilize tree shrew as an effective

  17. Neural Progenitors in the Developing Neocortex of the Northern Tree Shrew (Tupaia belangeri Show a Closer Relationship to Gyrencephalic Primates Than to Lissencephalic Rodents

    Directory of Open Access Journals (Sweden)

    Sebastian Römer

    2018-04-01

    Full Text Available The neocortex is the most complex part of the mammalian brain and as such it has undergone tremendous expansion during evolution, especially in primates. The majority of neocortical neurons originate from distinct neural stem and progenitor cells (NPCs located in the ventricular and subventricular zone (SVZ. Previous studies revealed that the SVZ thickness as well as the abundance and distribution of NPCs, especially that of basal radial glia (bRG, differ markedly between the lissencephalic rodent and gyrencephalic primate neocortex. The northern tree shrew (Tupaia belangeri is a rat-sized mammal with a high brain to body mass ratio, which stands phylogenetically mid-way between rodents and primates. Our study provides – for the first time – detailed data on the presence, abundance and distribution of bRG and other distinct NPCs in the developing neocortex of the northern tree shrew (Tupaia belangeri. We show that the developing tree shrew neocortex is characterized by an expanded SVZ, a high abundance of Pax6+ NPCs in the SVZ, and a relatively high percentage of bRG at peak of upper-layer neurogenesis. We further demonstrate that key features of tree shrew neocortex development, e.g., the presence, abundance and distribution of distinct NPCs, are closer related to those of gyrencephalic primates than to those of ferret and lissencephalic rodents. Together, our study provides novel insight into the evolution of bRG and other distinct NPCs in the neocortex development of Euarchontoglires and introduces the tree shrew as a potential novel model organism in the area of human brain development and developmental disorders.

  18. Experimental chronic hepatitis B infection of neonatal tree shrews (Tupaia belangeri chinensis: A model to study molecular causes for susceptibility and disease progression to chronic hepatitis in humans

    Directory of Open Access Journals (Sweden)

    Wang Qi

    2012-08-01

    Full Text Available Abstract Background Hepatitis B virus (HBV infection continues to be an escalating global health problem. Feasible and effective animal models for HBV infection are the prerequisite for developing novel therapies for this disease. The tree shrew (Tupaia is a small animal species evolutionary closely related to humans, and thus is permissive to certain human viral pathogens. Whether tree shrews could be chronically infected with HBV in vivo has been controversial for decades. Most published research has been reported on adult tree shrews, and only small numbers of HBV infected newborn tree shrews had been observed over short time periods. We investigated susceptibility of newborn tree shrews to experimental HBV infection as well as viral clearance over a protracted time period. Results Forty-six newborn tree shrews were inoculated with the sera from HBV-infected patients or tree shrews. Serum and liver samples of the inoculated animals were periodically collected and analyzed using fluorescence quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, Southern blot, and immunohistochemistry. Six tree shrews were confirmed and four were suspected as chronically HBV-infected for more than 48 (up to 228 weeks after inoculation, including three that had been inoculated with serum from a confirmed HBV-infected tree shrew. Conclusions Outbred neonatal tree shrews can be long-term chronically infected with HBV at a frequency comparable to humans. The model resembles human disease where also a smaller proportion of infected individuals develop chronic HBV related disease. This model might enable genetic and immunologic investigations which would allow determination of underlying molecular causes favoring susceptibility for chronic HBV infection and disease establishment vs. viral clearance.

  19. Pathogenesis of Hepatitis C Virus Infection in Tupaia belangeri▿†

    Science.gov (United States)

    Amako, Yutaka; Tsukiyama-Kohara, Kyoko; Katsume, Asao; Hirata, Yuichi; Sekiguchi, Satoshi; Tobita, Yoshimi; Hayashi, Yukiko; Hishima, Tsunekazu; Funata, Nobuaki; Yonekawa, Hiromichi; Kohara, Michinori

    2010-01-01

    The lack of a small-animal model has hampered the analysis of hepatitis C virus (HCV) pathogenesis. The tupaia (Tupaia belangeri), a tree shrew, has shown susceptibility to HCV infection and has been considered a possible candidate for a small experimental model of HCV infection. However, a longitudinal analysis of HCV-infected tupaias has yet to be described. Here, we provide an analysis of HCV pathogenesis during the course of infection in tupaias over a 3-year period. The animals were inoculated with hepatitis C patient serum HCR6 or viral particles reconstituted from full-length cDNA. In either case, inoculation caused mild hepatitis and intermittent viremia during the acute phase of infection. Histological analysis of infected livers revealed that HCV caused chronic hepatitis that worsened in a time-dependent manner. Liver steatosis, cirrhotic nodules, and accompanying tumorigenesis were also detected. To examine whether infectious virus particles were produced in tupaia livers, naive animals were inoculated with sera from HCV-infected tupaias, which had been confirmed positive for HCV RNA. As a result, the recipient animals also displayed mild hepatitis and intermittent viremia. Quasispecies were also observed in the NS5A region, signaling phylogenic lineage from the original inoculating sequence. Taken together, these data suggest that the tupaia is a practical animal model for experimental studies of HCV infection. PMID:19846521

  20. Impact of CD1d deficiency on metabolism.

    Directory of Open Access Journals (Sweden)

    Maya E Kotas

    Full Text Available Invariant natural killer T cells (iNKTs are innate-like T cells that are highly concentrated in the liver and recognize lipids presented on the MHC-like molecule CD1d. Although capable of a myriad of responses, few essential functions have been described for iNKTs. Among the many cell types of the immune system implicated in metabolic control and disease, iNKTs seem ideally poised for such a role, yet little has been done to elucidate such a possible function. We hypothesized that lipid presentation by CD1d could report on metabolic status and engage iNKTs to regulate cellular lipid content through their various effector mechanisms. To test this hypothesis, we examined CD1d deficient mice in a variety of metabolically stressed paradigms including high fat feeding, choline-deficient feeding, fasting, and acute inflammation. CD1d deficiency led to a mild exacerbation of steatosis during high fat or choline-deficient feeding, accompanied by impaired hepatic glucose tolerance. Surprisingly, however, this phenotype was not observed in Jα18⁻/⁻ mice, which are deficient in iNKTs but express CD1d. Thus, CD1d appears to modulate some metabolic functions through an iNKT-independent mechanism.

  1. Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri)

    OpenAIRE

    Wong, Peiyan; Kaas, Jon H.

    2009-01-01

    Tree shrews are small mammals that bear some semblance to squirrels, but are actually close relatives of primates. Thus, they have been extensively studied as a model for the early stages of primate evolution. In the present study, subdivisions of cortex were reconstructed from brain sections cut in the coronal, sagittal or horizontal planes, and processed for parvalbumin (PV), SMI-32 immunopositive neurofilament protein epitopes, vesicle glutamate transporter 2 (VGluT2), free ionic zinc, mye...

  2. Forming a complex with MHC class I molecules interferes with mouse CD1d functional expression.

    Directory of Open Access Journals (Sweden)

    Renukaradhya J Gourapura

    Full Text Available CD1d molecules are structurally similar to MHC class I, but present lipid antigens as opposed to peptides. Here, we show that MHC class I molecules physically associate with (and regulate the functional expression of mouse CD1d on the surface of cells. Low pH (3.0 acid stripping of MHC class I molecules resulted in increased surface expression of murine CD1d on antigen presenting cells as well as augmented CD1d-mediated antigen presentation to NKT cells. Consistent with the above results, TAP1-/- mice were found to have a higher percentage of type I NKT cells as compared to wild type mice. Moreover, bone marrow-derived dendritic cells from TAP1-/- mice showed increased antigen presentation by CD1d compared to wild type mice. Together, these results suggest that MHC class I molecules can regulate NKT cell function, in part, by masking CD1d.

  3. Bcl-xL regulates CD1d-mediated antigen presentation to NKT cells by altering CD1d trafficking through the endocytic pathway.

    Science.gov (United States)

    Subrahmanyam, Priyanka B; Carey, Gregory B; Webb, Tonya J

    2014-09-01

    NKT cells are a unique subset of T cells that recognize glycolipid Ags presented in the context of CD1d molecules. NKT cells mount strong antitumor responses and are a major focus in developing effective cancer immunotherapy. It is known that CD1d molecules are constantly internalized from the cell surface, recycled through the endocytic compartments, and re-expressed on the cell surface. However, little is known about the regulation of CD1d-mediated Ag processing and presentation in B cell lymphoma. Prosurvival factors of the Bcl-2 family, such as Bcl-xL, are often upregulated in B cell lymphomas and are intimately linked to sphingolipid metabolism, as well as the endocytic compartments. We hypothesized that Bcl-xL can regulate CD1d-mediated Ag presentation to NKT cells. We found that overexpression or induction of Bcl-xL led to increased Ag presentation to NKT cells. Conversely, the inhibition or knockdown of Bcl-xL led to decreased NKT cell activation. Furthermore, knockdown of Bcl-xL resulted in the loss of CD1d trafficking to lysosome-associated membrane protein 1(+) compartments. Rab7, a late endosomal protein, was upregulated and CD1d molecules accumulated in the Rab7(+) late endosomal compartment. These results demonstrate that Bcl-xL regulates CD1d-mediated Ag processing and presentation to NKT cells by altering the late endosomal compartment and changing the intracellular localization of CD1d. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.

    Science.gov (United States)

    Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G

    2015-01-01

    CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.

  5. CD1d-Restricted Type II NKT Cells Reactive With Endogenous Hydrophobic Peptides.

    Science.gov (United States)

    Nishioka, Yusuke; Masuda, Sakiko; Tomaru, Utano; Ishizu, Akihiro

    2018-01-01

    NKT cells belong to a distinct subset of T cells that recognize hydrophobic antigens presented by major histocompatibility complex class I-like molecules, such as CD1d. Because NKT cells stimulated by antigens can activate or suppress other immunocompetent cells through an immediate production of a large amount of cytokines, they are regarded as immunological modulators. CD1d-restricted NKT cells are classified into two subsets, namely, type I and type II. CD1d-restricted type I NKT cells express invariant T cell receptors (TCRs) and react with lipid antigens, including the marine sponge-derived glycolipid α-galactosylceramide. On the contrary, CD1d-restricted type II NKT cells recognize a wide variety of antigens, including glycolipids, phospholipids, and hydrophobic peptides, by their diverse TCRs. In this review, we focus particularly on CD1d-restricted type II NKT cells that recognize endogenous hydrophobic peptides presented by CD1d. Previous studies have demonstrated that CD1d-restricted type I NKT cells usually act as pro-inflammatory cells but sometimes behave as anti-inflammatory cells. It has been also demonstrated that CD1d-restricted type II NKT cells play opposite roles to CD1d-restricted type I NKT cells; thus, they function as anti-inflammatory or pro-inflammatory cells depending on the situation. In line with this, CD1d-restricted type II NKT cells that recognize type II collagen peptide have been demonstrated to act as anti-inflammatory cells in diverse inflammation-induction models in mice, whereas pro-inflammatory CD1d-restricted type II NKT cells reactive with sterol carrier protein 2 peptide have been demonstrated to be involved in the development of small vessel vasculitis in rats.

  6. Influence of lipid rafts on CD1d presentation by dendritic cells

    DEFF Research Database (Denmark)

    Peng, Wei; Martaresche, Cecile; Escande-Beillard, Nathalie

    2011-01-01

    corresponding to lipid rafts and we describe that alpha-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional...

  7. Human CD1d-Restricted Natural Killer T (NKT) Cell Cytotoxicity Against Myeloid Cells

    National Research Council Canada - National Science Library

    Chen, Xiuxu; Gumperz, Jenny E

    2006-01-01

    CD1d-restricted natural killer T cells (NKT cells) are a unique subpopulation of T lymphocytes that have been shown to be able to promote potent anti-tumor responses in a number of different murine (mouse...

  8. Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms.

    Science.gov (United States)

    Bagnara, Davide; Ibatici, Adalberto; Corselli, Mirko; Sessarego, Nadia; Tenca, Claudya; De Santanna, Amleto; Mazzarello, Andrea; Daga, Antonio; Corvò, Renzo; De Rossi, Giulio; Frassoni, Francesco; Ciccone, Ermanno; Fais, Franco

    2009-07-01

    CD1d is a monomorphic antigen presentation molecule expressed in several hematologic malignancies. Alpha-galactosylceramide (alpha-GalCer) is a glycolipid that can be presented to cytotoxic CD1d-restricted T cells. These reagents represent a potentially powerful tool for cell mediated immunotherapy. We set up an experimental model to evaluate the use of adoptively transferred cytotoxic CD1d-restricted T cells and alpha-GalCer in the treatment of mice engrafted with CD1d(+) lymphoid neoplastic cells. To this end the C1R cell line was transfected with CD1c or CD1d molecules. In addition, upon retroviral infection firefly luciferase was expressed on C1R transfected cell lines allowing the evaluation of tumor growth in xenografted immunodeficient NOD/SCID mice. The C1R-CD1d cell line was highly susceptible to specific CD1d-restricted T cell cytotoxicity in the presence alpha-GalCer in vitro. After adoptive transfer of CD1d-restricted T cells and alpha-GalCer to mice engrafted with both C1R-CD1c and C1R-CD1d, a reduction in tumor growth was observed only in CD1d(+) masses. In addition, CD1d-restricted T-cell treatment plus alpha-GalCer eradicated small C1R-CD1d(+) nodules. Immunohistochemical analysis revealed that infiltrating NKT cells were mainly observed in CD1d nodules. Our results indicate that ex vivo expanded cytotoxic CD1d-restricted T cells and alpha-GalCer may represent a new immunotherapeutic tool for treatment of CD1d(+) hematologic malignancies.

  9. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    Science.gov (United States)

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Targeted disruption of CD1d prevents NKT cell development in pigs.

    Science.gov (United States)

    Yang, Guan; Artiaga, Bianca L; Hackmann, Timothy J; Samuel, Melissa S; Walters, Eric M; Salek-Ardakani, Shahram; Driver, John P

    2015-06-01

    Studies in mice genetically lacking natural killer T (NKT) cells show that these lymphocytes make important contributions to both innate and adaptive immune responses. However, the usefulness of murine models to study human NKT cells is limited by the many differences between mice and humans, including that their NKT cell frequencies, subsets, and distribution are dissimilar. A more suitable model may be swine that share many metabolic, physiological, and growth characteristics with humans and are also similar for NKT cells. Thus, we analyzed genetically modified pigs made deficient for CD1d that is required for the development of Type I invariant NKT (iNKT) cells that express a semi-invariant T-cell receptor (TCR) and Type II NKT cells that use variable TCRs. Peripheral blood analyzed by flow cytometry and interferon-γ enzyme-linked immuno spot assays demonstrated that CD1d-knockout pigs completely lack iNKT cells, while other leukocyte populations remain intact. CD1d and NKT cells have been shown to be involved in shaping the composition of the commensal microbiota in mice. Therefore, we also compared the fecal microbiota profile between pigs expressing and lacking NKT cells. However, no differences were found between pigs lacking or expressing CD1d. Our results are the first to show that knocking-out CD1d prevents the development of NKT cells in a non-rodent species. CD1d-deficient pigs should offer a useful model to more accurately determine the contribution of NKT cells for human immune responses. They also have potential for understanding how NKT cells impact the health of commercial swine.

  11. The immunoregulatory role of CD1d-restricted natural killer T cells in disease.

    NARCIS (Netherlands)

    Vliet, van der HJ; Molling, J.W.; Blomberg - van der Flier, von B.M.E.; Nishi, N.; Kolgen, W; Eertwegh, van den A.J.M.; Pinedo, H.M.; Giaccone, G.; Scheper, R.J.

    2004-01-01

    Natural killer T (NKT) cells constitute a T cell subpopulation that shares several characteristics with NK cells. NKT cells are characterized by a narrow T cell antigen receptor (TCR) repertoire, recognize glycolipid antigen in the context of the monomorphic CD1d antigen-presenting molecule, and

  12. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2013-10-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.

  13. Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset.

    Science.gov (United States)

    Dasgupta, Suryasarathi; Kumar, Vipin

    2016-08-01

    Type II natural killer T cells (NKT) are a subset of the innate-like CD1d-restricted lymphocytes that are reactive to lipid antigens. Unlike the type I NKT cells, which express a semi-invariant TCR, type II NKT cells express a broader TCR repertoire. Additionally, other features, such as their predominance over type I cells in humans versus mice, the nature of their ligands, CD1d/lipid/TCR binding, and modulation of immune responses, distinguish type II NKT cells from type I NKT cells. Interestingly, it is the self-lipid-reactivity of type II NKT cells that has helped define their physiological role in health and in disease. The discovery of sulfatide as one of the major antigens for CD1d-restricted type II NKT cells in mice has been instrumental in the characterization of these cells, including the TCR repertoire, the crystal structure of the CD1d/lipid/TCR complex, and their function. Subsequently, several other glycolipids and phospholipids from both endogenous and microbial sources have been shown to activate type II NKT cells. The activation of a specific subset of type II NKT cells following administration with sulfatide or lysophosphatidylcholine (LPC) leads to engagement of a dominant immunoregulatory pathway associated with the inactivation of type I NKT cells, conventional dendritic cells, and inhibition of the proinflammatory Th1/Th17 cells. Thus, type II NKT cells have been shown to be immunosuppressive in autoimmune diseases, inflammatory liver diseases, and in cancer. Knowing their relatively higher prevalence in human than type I NKT cells, understanding their biology is imperative for health and disease.

  14. [Sulfatide-loaded CD1d tetramer to detect typeII NKT cells in mice].

    Science.gov (United States)

    Zhang, Gu-qin; Nie, Han-xiang; Yang, Jiong; Yu, Hong-ying

    2012-07-01

    To create a method of detecting typeII natural killer T (NKT) cells of mice. Biotinylated mouse CD1d monomers were mixed with sulfatide at a molar ratio of 1:3 (protein:lipid) and incubated at room temperature overnight, and then 80 μg of streptavidin-PE was added into 200 μg of the CD1d-sulfatide mixture and incubated at room temperature for 4 h to get sulfatide/CD1d tetramer. Flow cytometry was used to detect the percentage of typeII NKT cells in mononuclear cells (MNCs) of lung and spleen of normal mice, as well as the percentage of typeII NKT cells in spleen MNCs of mice after stimulated with sulfatide. In normal mice, the percentage of typeII NKT cells accounted for (0.875±0.096)% and (1.175±0.263)% in MNCs of spleen and lung; the percentage in spleen MNCs after activated with sulfatide was (2.75±0.603)%, which significantly increased as compared with that in normal mice (PNKT cells in mice.

  15. CD1d deficiency inhibits the development of abdominal aortic aneurysms in LDL receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Gijs H M van Puijvelde

    Full Text Available An abdominal aortic aneurysm (AAA is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these inflammatory cells into tissues and thereby contributing to the development of AAA is angiotensin II (Ang II. We demonstrate that a deficiency in CD1d dependent NKT cells under hyperlipidemic conditions (LDLr-/-CD1d-/- mice results in a strong decline in the severity of angiotensin II induced aneurysm formation when compared with LDLr-/- mice. In addition, we show that Ang II amplifies the activation of NKT cells both in vivo and in vitro. We also provide evidence that type I NKT cells contribute to AAA development by inducing the expression of matrix degrading enzymes in vSMCs and macrophages, and by cytokine dependently decreasing vSMC viability. Altogether, these data prove that CD1d-dependent NKT cells contribute to AAA development in the Ang II-mediated aneurysm model by enhancing aortic degradation, establishing that therapeutic applications which target NKT cells can be a successful way to prevent AAA development.

  16. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor

    Energy Technology Data Exchange (ETDEWEB)

    López-Sagaseta, Jacinto; Sibener, Leah V.; Kung, Jennifer E.; Gumperz, Jenny; Adams, Erin J. (UC); (UW-MED)

    2014-10-02

    Invariant Natural Killer T (iNKT) cells use highly restricted {alpha}{beta} T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted {alpha}1 helix resulting in an open A pocket. Binding of the iNKT TCR requires a 7-{angstrom} displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d-LPC is anchored by the conserved positioning of the CDR3{alpha} loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3{beta} and J{beta} segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.

  17. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction

    OpenAIRE

    Shin, Jung Hoon; Park, Se-Ho

    2013-01-01

    CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although ?-galactosylceramide (?-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-? by NKT cells, concomitant with a d...

  18. Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant

    OpenAIRE

    Li, Xiangming; Fujio, Masakazu; Imamura, Masakazu; Wu, Douglass; Vasan, Sandhya; Wong, Chi-Huey; Ho, David D.; Tsuji, Moriya

    2010-01-01

    The glycolipid α-galactosylceramide (α-GalCer) has been shown to bind CD1d molecules to activate invariant natural killer T (iNKT) cells, and subsequently induce activation of various immune-competent cells, including dendritic cells, thereby providing a significant adjuvant effect for various vaccines. However, in phase I clinical trials, α-GalCer was shown to display only marginal biological activity. In our search for a glycolipid that can exert more potent stimulatory activity against iNK...

  19. CD1d expression and invariant NKT cell responses in herpesvirus infections

    Directory of Open Access Journals (Sweden)

    Rusung eTan

    2015-06-01

    Full Text Available Invariant natural killer T (iNKT cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor (TCR and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease.

  20. Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant.

    Science.gov (United States)

    Li, Xiangming; Fujio, Masakazu; Imamura, Masakazu; Wu, Douglass; Vasan, Sandhya; Wong, Chi-Huey; Ho, David D; Tsuji, Moriya

    2010-07-20

    The glycolipid alpha-galactosylceramide (alpha-GalCer) has been shown to bind CD1d molecules to activate invariant natural killer T (iNKT) cells, and subsequently induce activation of various immune-competent cells, including dendritic cells, thereby providing a significant adjuvant effect for various vaccines. However, in phase I clinical trials, alpha-GalCer was shown to display only marginal biological activity. In our search for a glycolipid that can exert more potent stimulatory activity against iNKT cells and dendritic cells and produce an adjuvant effect superior to alpha-GalCer, we performed step-wise screening assays on a focused library of 25 alpha-GalCer analogues. Assays included quantification of the magnitude of stimulatory activity against human iNKT cells in vitro, binding affinity to human and murine CD1d molecules, and binding affinity to the invariant t cell receptor of human iNKT cells. Through this rigorous and iterative screening process, we have identified a lead candidate glycolipid, 7DW8-5, that exhibits a superior adjuvant effect than alpha-GalCer on HIV and malaria vaccines in mice.

  1. A potent adjuvant effect of a CD1d-binding NKT cell ligand in human immune system mice.

    Science.gov (United States)

    Li, Xiangming; Huang, Jing; Kaneko, Izumi; Zhang, Min; Iwanaga, Shiroh; Yuda, Masao; Tsuji, Moriya

    2017-01-01

    A CD1d-binding invariant natural killer T (iNKT)-cell stimulatory glycolipid, namely 7DW8-5, is shown to enhance the efficacy of radiation-attenuated sporozoites (RAS)-based malaria vaccine in mice. In the current study, we aim to determine whether 7DW8-5 can display a potent adjuvant effect in human immune system (HIS) mice. HIS-A2/hCD1d mice, which possess both functional human iNKT cells and CD8+ T cells, were generated by the transduction of NSG mice with adeno-associated virus serotype 9 expressing genes that encode human CD1d molecules and HLA-A*0201, followed by the engraftment of human hematopoietic stem cells. The magnitudes of human iNKT-cell response against 7DW8-5 and HLA-A*0201-restricted human CD8+ T-cell response against a human malaria antigen in HIS-A2/hCD1d mice were determined by using human CD1d tetramer and human HLA-A*0201 tetramer, respectively. We found that 7DW8-5 stimulates human iNKT cells in HIS-A2/hCD1d mice, as well as those derived from HIS-A2/hCD1d mice in vitro. We also found that 7DW8-5 significantly increases the level of a human malarial antigen-specific HLA-A*0201-restricted human CD8+ T-cell response in HIS-A2/hCD1d mice. Our study indicates that 7DW8-5 can display a potent adjuvant effect on RAS vaccine-induced anti-malarial immunity by augmenting malaria-specific human CD8+ T-cell response.

  2. TCRα-TCRβ pairing controls recognition of CD1d and directs the development of adipose NKT cells.

    Science.gov (United States)

    Vieth, Joshua A; Das, Joy; Ranaivoson, Fanomezana M; Comoletti, Davide; Denzin, Lisa K; Sant'Angelo, Derek B

    2017-01-01

    The interaction between the T cell antigen receptor (TCR) expressed by natural killer T cells (NKT cells) and the antigen-presenting molecule CD1d is distinct from interactions between the TCR and major histocompatibility complex (MHC). Our molecular modeling suggested that a hydrophobic patch created after TCRα-TCRβ pairing has a role in maintaining the conformation of the NKT cell TCR. Disruption of this patch ablated recognition of CD1d by the NKT cell TCR but not interactions of the TCR with MHC. Partial disruption of the patch, while permissive to the recognition of CD1d, significantly altered NKT cell development, which resulted in the selective accumulation of adipose-tissue-resident NKT cells. These results indicate that a key component of the TCR is essential for the development of a distinct population of NKT cells.

  3. Critical role for invariant chain in CD1d-mediated selection and maturation of Vα14-invariant NKT cells.

    Science.gov (United States)

    Sillé, Fenna C M; Martin, Constance; Jayaraman, Pushpa; Rothchild, Alissa; Besra, Gurdyal S; Behar, Samuel M; Boes, Marianne

    2011-09-30

    The development and maturation of Vα14 invariant (i)NKT cells in mice requires CD1d-mediated lipid antigen presentation in the thymus and the periphery. Cortical thymocytes mediate positive selection, while professional APCs are involved in thymic negative selection and in terminal maturation of iNKT cells in the periphery. CD1d requires entry in the endosomal pathway to allow antigen acquisition for assembly as lipid/CD1d complexes for display to iNKT cells. This process involves tyrosine-based sorting motifs in the CD1d cytoplasmic tail and invariant chain (Ii) that CD1d associates with in the endoplasmic reticulum. The function of Ii in iNKT cell thymic development and peripheral maturation had not been fully understood. Using mice deficient in Ii and the Ii-processing enzyme cathepsin S (catS), we addressed this question. Ii(-/-) mice but not catS(-/-) mice developed significantly fewer iNKT cells in thymus, that were less mature as measured by CD44 and NK1.1 expression. Ii(-/-) mice but not catS(-/-) mice developed fewer Vβ7(+) cells in their iNKT TCR repertoire than WT counterparts, indicative of a change in endogenous glycolipid antigen/CD1d-mediated iNKT cell selection. Finally, using a Mycobacterium tuberculosis infection model in macrophages, we show that iNKT developed in Ii(-/-) but not catS(-/-) mice have defective effector function. Our data support a role for professional APCs expressing Ii, but no role for catS in the thymic development and peripheral terminal maturation of iNKT cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. B Cell Help by CD1d-Rectricted NKT Cells

    Directory of Open Access Journals (Sweden)

    Livia Clerici

    2015-10-01

    Full Text Available B cell activation and antibody production against foreign antigens is a central step of host defense. This is achieved via highly regulated multi-phase processes that involve a variety of cells of both innate and adaptive arms of the immune system. MHC class II-restricted CD4+ T cells specific for peptide antigens, which acquire professional follicular B cell helper functions, have been long recognized as key players in this process. Recent data, however, challenge this paradigm by showing the existence of other helper cell types. CD1d restricted NKT cells specific for lipid antigens are one such new player and can coopt bona fide follicular helper phenotypes. Their role in helping antigen-specific B cell response to protein antigens, as well as to the so called “help-less” antigens that cannot be recognized by T follicular helper cells, is being increasingly elucidated, highlighting their potential pathophysiological impact on the immune response, as well as on the design of improved vaccine formulations.

  5. Functional CD1d and/or NKT cell invariant chain transcript in horse, pig, African elephant and guinea pig, but not in ruminants.

    Science.gov (United States)

    Looringh van Beeck, Frank A; Reinink, Peter; Hermsen, Roel; Zajonc, Dirk M; Laven, Marielle J; Fun, Axel; Troskie, Milana; Schoemaker, Nico J; Morar, Darshana; Lenstra, Johannes A; Vervelde, Lonneke; Rutten, Victor P M G; van Eden, Willem; Van Rhijn, Ildiko

    2009-04-01

    CD1d-restricted invariant natural killer T cells (NKT cells) have been well characterized in humans and mice, but it is unknown whether they are present in other species. Here we describe the invariant TCR alpha chain and the full length CD1d transcript of pig and horse. Molecular modeling predicts that porcine (po) invariant TCR alpha chain/poCD1d/alpha-GalCer and equine (eq) invariant TCR alpha chain/eqCD1d/alpha-GalCer form complexes that are highly homologous to the human complex. Since a prerequisite for the presence of NKT cells is the expression of CD1d protein, we performed searches for CD1D genes and CD1d transcripts in multiple species. Previously, cattle and guinea pig have been suggested to lack CD1D genes. The CD1D genes of European taurine cattle (Bos taurus) are known to be pseudogenes because of disrupting mutations in the start codon and in the donor splice site of the first intron. Here we show that the same mutations are found in six other ruminants: African buffalo, sheep, bushbuck, bongo, N'Dama cattle, and roe deer. In contrast, intact CD1d transcripts were found in guinea pig, African elephant, horse, rabbit, and pig. Despite the discovery of a highly homologous NKT/CD1d system in pig and horse, our data suggest that functional CD1D and CD1d-restricted NKT cells are not universally present in mammals.

  6. Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Anna; Mondoc, Emma

    2011-01-01

    NKT cells in the mouse recognize antigen in the context of the MHC class I-like molecule CD1d and play an important role in peripheral tolerance and protection against autoimmune and other diseases. NKT cells are usually activated by CD1d-presented lipid antigens. However, peptide recognition...... in the context of CD1 has also been documented, although no self-peptide ligands have been reported to date. Here, we have identified an endogenous peptide that is presented by CD1d to activate mouse NKT cells. This peptide, the immunodominant epitope from mouse collagen type II (mCII707-721), was not associated...... with either MHC class I or II. Activation of CD1d-restricted mCII707-721-specific NKT cells was induced via TCR signaling and classical costimulation. In addition, mCII707-721-specific NKT cells induced T cell death through Fas/FasL, in an IL-17A-independent fashion. Moreover, mCII707-721-specific NKT cells...

  7. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells

    DEFF Research Database (Denmark)

    Blomqvist, Maria; Rhost, Sara; Teneberg, Susann

    2009-01-01

    The glycosphingolipid sulfatide (SO(3)-3Galbeta1Cer) is a demonstrated ligand for a subset of CD1d-restricted NKT cells, which could regulate experimental autoimmune encephalomyelitis, a murine model for multiple sclerosis, as well as tumor immunity and experimental hepatitis. Native sulfatide...

  8. Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice.

    Science.gov (United States)

    Liu, Yawei; Teige, Anna; Mondoc, Emma; Ibrahim, Saleh; Holmdahl, Rikard; Issazadeh-Navikas, Shohreh

    2011-01-01

    NKT cells in the mouse recognize antigen in the context of the MHC class I-like molecule CD1d and play an important role in peripheral tolerance and protection against autoimmune and other diseases. NKT cells are usually activated by CD1d-presented lipid antigens. However, peptide recognition in the context of CD1 has also been documented, although no self-peptide ligands have been reported to date. Here, we have identified an endogenous peptide that is presented by CD1d to activate mouse NKT cells. This peptide, the immunodominant epitope from mouse collagen type II (mCII707-721), was not associated with either MHC class I or II. Activation of CD1d-restricted mCII707-721-specific NKT cells was induced via TCR signaling and classical costimulation. In addition, mCII707-721-specific NKT cells induced T cell death through Fas/FasL, in an IL-17A-independent fashion. Moreover, mCII707-721-specific NKT cells suppressed a range of in vivo inflammatory conditions, including delayed-type hypersensitivity, antigen-induced airway inflammation, collagen-induced arthritis, and EAE, which were all ameliorated by mCII707-721 vaccination. The findings presented here offer new insight into the intrinsic roles of NKT cells in health and disease. Given the results, endogenous collagen peptide activators of NKT cells may offer promise as novel therapeutics in tissue-specific autoimmune and inflammatory diseases.

  9. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein (MTP)

    DEFF Research Database (Denmark)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus

    2014-01-01

    -dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are upregulated in early adipogenesis, and are transcriptionally...... presenting cells (APCs), which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis....

  10. The effect of intracellular trafficking of CD1d on the formation of TCR repertoire of NKT cells.

    Science.gov (United States)

    Shin, Jung Hoon; Park, Se-Ho

    2014-05-01

    CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire.

  11. Tree shrews (tupaia belangeri exhibit novelty preference in the novel location memory task with 24-hour retention periods.

    Directory of Open Access Journals (Sweden)

    Jayakrishnan H R Nair

    2014-04-01

    Full Text Available Novelty preference is pervasive in mammalian species, and describes an inherent tendency to preferentially explore novelty. The novel location memory task studied here assesses the ability of animals to form accurate memories of a spatial configuration, consisting of several identical objects placed within an arena. Tree shrews were first familiarized with a particular object configuration during several sessions, and then an object was displaced during a test session. Tree shrews exhibited enhanced exploration when confronted with this novel configuration. The most reliable indicator associated with novelty preference was an enhancement in directed exploration towards the novel object, although we also observed a non-specific overall increase in exploration in one experiment. During the test session, we also observed an exploration of the location, which had previously been occupied by the displaced object, an effect termed empty quadrant. Our behavioral findings suggest multiple stages of spatial memory formation in tree shrews that are associated with various forms of behavioral responses to novelty. Reduced novelty preference has been linked to major depressive disorder in human patients. Given the established social conflict depression model in tree shrews, we anticipate that the study of the neural circuits of novelty preference and their malfunction during depression may have implications for understanding or treating depression in humans.

  12. The extended family of CD1d-restricted T cells: sifting through a mixed bag of TCRs, antigens and functions

    Directory of Open Access Journals (Sweden)

    Elodie eMacho-Fernandez

    2015-07-01

    Full Text Available Natural killer T (NKT cells comprise a family of specialized T cells that recognize lipid antigens presented by CD1d. Based on their T cell receptor (TCR usage and antigen-specificities, CD1d-restricted NKT cells have been divided into two main subsets: type I NKT cells that use a canonical invariant TCR α-chain and recognize α-galactosylceramide (α-GalCer, and type II NKT cells that use a more diverse αβ TCR repertoire and do not recognize α-GalCer. In addition, α-GalCer-reactive NKT cells that use non-canonical αβ TCRs and CD1d-restricted T cells that use γδ or δ/αβ TCRs have recently been identified, revealing further diversity among CD1d-restricted T cells. Importantly, in addition to their distinct antigen specificities, functional differences are beginning to emerge between the different members of the CD1d-restricted T cell family. In this review, while using type I NKT cells as comparison, we will focus on type II NKT cells and the other non-invariant CD1d-restricted T cell subsets, and discuss our current understanding of the antigens they recognize, the formation of stimulatory CD1d/antigen complexes, the modes of TCR-mediated antigen recognition, and the mechanisms and consequences of their activation that underlie their function in antimicrobial responses, antitumor immunity, and autoimmunity.

  13. The Extended Family of CD1d-Restricted NKT Cells: Sifting through a Mixed Bag of TCRs, Antigens, and Functions.

    Science.gov (United States)

    Macho-Fernandez, Elodie; Brigl, Manfred

    2015-01-01

    Natural killer T (NKT) cells comprise a family of specialized T cells that recognize lipid antigens presented by CD1d. Based on their T cell receptor (TCR) usage and antigen specificities, CD1d-restricted NKT cells have been divided into two main subsets: type I NKT cells that use a canonical invariant TCR α-chain and recognize α-galactosylceramide (α-GalCer), and type II NKT cells that use a more diverse αβ TCR repertoire and do not recognize α-GalCer. In addition, α-GalCer-reactive NKT cells that use non-canonical αβ TCRs and CD1d-restricted T cells that use γδ or δ/αβ TCRs have recently been identified, revealing further diversity among CD1d-restricted T cells. Importantly, in addition to their distinct antigen specificities, functional differences are beginning to emerge between the different members of the CD1d-restricted T cell family. In this review, while using type I NKT cells as comparison, we will focus on type II NKT cells and the other non-invariant CD1d-restricted T cell subsets, and discuss our current understanding of the antigens they recognize, the formation of stimulatory CD1d/antigen complexes, the modes of TCR-mediated antigen recognition, and the mechanisms and consequences of their activation that underlie their function in antimicrobial responses, anti-tumor immunity, and autoimmunity.

  14. Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant

    OpenAIRE

    Padte, Neal N.; Li, Xiangming; Tsuji, Moriya; Vasan, Sandhya

    2010-01-01

    Natural killer T (NKT) cells are known to play a role against certain microbial infections, including malaria and HIV, two major global infectious diseases. Strategies that acn harness and amplify the immunotherapeutic potential of NKT cells can serve as powerful tools in the fight against such diseases. 7DW8-5, a novel glycolipid, may be one such tool. The interaction of 7DW8-5 with CD1d molecules induces activation of NKT cells, thereby activating various immune-competent cells including de...

  15. Relationships between Th1 or Th2 iNKT cell activity and structures of CD1d-antigen complexes: meta-analysis of CD1d-glycolipids dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Xavier Laurent

    2014-11-01

    Full Text Available A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius. Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000 interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total involving eight different ligands (conducted in triplicate in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1.

  16. CD1d knockout mice exhibit aggravated contact hypersensitivity responses due to reduced interleukin-10 production predominantly by regulatory B cells

    DEFF Research Database (Denmark)

    Fjelbye, Jonas; Antvorskov, Julie C; Buschard, Karsten

    2015-01-01

    .05) and peritoneal cavity (80.8% decrease; P challenge, which suggests an important regulatory and protective role of CD1d-dependent NKT cells in CHS in our model, at least in part via regulation of IL-10 producing B(regs) ....... knockout (CD1d KO) and wild-type (Wt) mice after contact allergen exposure. For induction of CHS, C57BL/6 CD1d KO mice (n = 6) and C57BL/6 Wt mice (n = 6) were sensitised with 1% (w/v) dinitrochlorobenzene (DNCB) or vehicle for three consecutive days and subsequently challenged with a single dose of 0...

  17. CD1d-dependent NKT cells play a protective role in acute and chronic arthritis models by ameliorating antigen-specific Th1 responses

    DEFF Research Database (Denmark)

    Teige, Anna; Bockermann, Robert; Hasan, Maruf

    2010-01-01

    -induced arthritis (AIA) and collagen-induced arthritis (CIA), to evaluate acute and chronic arthritis in CD1d knockout mice and mice depleted of NK1.1(+) cells. CD1d-deficient mice developed more severe AIA compared with wild-type littermates, with a higher degree of inflammation and proteoglycan depletion. Chronic...... arthritis in CIA was also worse in the absence of CD1d-dependent NKTs. Elevated levels of Ag-specific IFN-gamma production accompanied these findings rather than changes in IL-17alpha. Depletion of NK1.1(+) cells supported these findings in AIA and CIA. This report provides support for CD1d-dependent NKTs...

  18. CD1d-unrestricted NKT cells are endowed with a hybrid function far superior than that of iNKT cells.

    Science.gov (United States)

    Farr, Alexander R; Wu, Weisheng; Choi, Bongkum; Cavalcoli, James D; Laouar, Yasmina

    2014-09-02

    Invariant natural killer T (iNKT) cells to date represent the best example of cells known to have a hybrid function, representing both innate and adaptive immunity. Shared phenotypic similarities with NK cells together with a rapid response to a cytokine stimulus and a productive TCR engagement are the features that underline the hybrid nature of iNKT cells. Using these criteria, we provide molecular and functional evidence demonstrating that CD1d-independent (CD1d(ind)) NKT cells, a population of CD1d-unrestricted NKT cells, are endowed with a hybrid function far superior to that of iNKT cells: (i) an extensive shared program with NK cells, (ii) a closer Euclidian distance with NK cells, and (iii) the ability to respond to innate stimuli (Poly:IC) with cytotoxic potential in the same manner as NK cells identify a hybrid feature in CD1d(ind)NKT cells that truly fulfills the dual function of an NK and a T cell. Our finding that CD1d(ind)NKT cells are programmed to act like NK cells in response to innate signals while being capable of adaptive responses is unprecedented, and thus might reemphasize CD1d-unrestricted NKT cells as a subset of lymphocytes that could affect biological processes of antimicrobial and tumor immunity in a unique way.

  19. Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant.

    Science.gov (United States)

    Padte, Neal N; Li, Xiangming; Tsuji, Moriya; Vasan, Sandhya

    2011-08-01

    Natural killer T (NKT) cells are known to play a role against certain microbial infections, including malaria and HIV, two major global infectious diseases. Strategies that can harness and amplify the immunotherapeutic potential of NKT cells can serve as powerful tools in the fight against such diseases. 7DW8-5, a novel glycolipid, may be one such tool. The interaction of 7DW8-5 with CD1d molecules induces activation of NKT cells, thereby activating various immune-competent cells including dendritic cells (DCs) to provide a significant adjuvant effect for several vaccines. This review discusses the discovery and characterization of 7DW8-5 and the practical considerations of its preclinical and clinical development as a potential glycolipid adjuvant for candidate malaria and HIV vaccines. Copyright © 2010. Published by Elsevier Inc.

  20. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice.

    Directory of Open Access Journals (Sweden)

    Karsten Buschard

    Full Text Available BACKGROUND: Ethanol ('alcohol' is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. METHODS: The study included cellular in vitro tests using α-galactosylceramide (αGalCer, and in vivo NOD mice experiments detecting diabetes incidence and performing behavioural and bacterial analyses. RESULTS: Alcohol in concentrations from 0.6% to 2.5% increased IL-2 production from NKT cells stimulated with αGalCer by 60% (p<0.05. CD1d expressed on HeLa cells contained significantly increasing amounts of αGalCer with increasing concentrations of alcohol, suggesting that alcohol facilitated the passive loading of αGalCer to CD1d. NOD mice were found to tolerate 5% ethanol in their drinking water without signs of impairment in liver function. Giving this treatment, the diabetes incidence declined significantly. Higher numbers of CD3+CD49b+ NKT cells were found in spleen and liver of the alcohol treated compared to the control mice (p<0.05, whereas the amount of CD4+Foxp3+ regulator T cells did not differ. Increased concentrations of IFN-γ were detected in 24-hour blood samples of alcohol treated mice. Behavioural studies showed no change in attitude of the ethanol-consuming mice, and bacterial composition of caecum samples was not affected by alcohol, disqualifying these as protective mechanisms. CONCLUSION: Alcohol facilitates the uptake of glycolipids and the stimulation of NKT cells, which are known to counteract Type 1 diabetes development. We propose that this is the acting mechanism by which treatment with alcohol reduces the incidence of diabetes in NOD mice. This is corroborated by epidemiology showing beneficial effect of alcohol to reduce the severity of atherosclerosis and related diseases.

  1. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-09-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis. Copyright © 2014 by The American Association of Immunologists, Inc.

  2. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells.

    Science.gov (United States)

    Khan, Adnan R; Amu, Sylvie; Saunders, Sean P; Hams, Emily; Blackshields, Gordon; Leonard, Martin O; Weaver, Casey T; Sparwasser, Tim; Sheils, Orla; Fallon, Padraic G

    2015-06-01

    B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    Science.gov (United States)

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  4. CD1d-dependent expansion of NKT follicular helper cells in vivo and in vitro is a product of cellular proliferation and differentiation.

    Science.gov (United States)

    Rampuria, Pragya; Lang, Mark L

    2015-05-01

    NKT follicular helper cells (NKTfh cells) are a recently discovered functional subset of CD1d-restricted NKT cells. Given the potential for NKTfh cells to promote specific antibody responses and germinal center reactions, there is much interest in determining the conditions under which NKTfh cells proliferate and/or differentiate in vivo and in vitro. We confirm that NKTfh cells expressing the canonical semi-invariant Vα14 TCR were CXCR5(+)/ICOS(+)/PD-1(+)/Bcl6(+) and increased in number following administration of the CD1d-binding glycolipid α-galactosylceramide (α-GC) to C57Bl/6 mice. We show that the α-GC-stimulated increase in NKTfh cells was CD1d-dependent since the effect was diminished by reduced CD1d expression. In vivo and in vitro treatment with α-GC, singly or in combination with IL-2, showed that NKTfh cells increased in number to a greater extent than total NKT cells, but proliferation was near-identical in both populations. Acquisition of the NKTfh phenotype from an adoptively transferred PD-1-depleted cell population was also evident, showing that peripheral NKT cells differentiated into NKTfh cells. Therefore, the α-GC-stimulated, CD1d-dependent increase in peripheral NKTfh cells is a result of cellular proliferation and differentiation. These findings advance our understanding of the immune response following immunization with CD1d-binding glycolipids. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Co-localization of a CD1d-binding glycolipid with a radiation-attenuated sporozoite vaccine in LN-resident DCs for a robust adjuvant effect

    OpenAIRE

    Li, Xiangming; Kawamura, Akira; Andrews, Chasity D.; Miller, Jessica L.; Wu, Douglass; Tsao, Tiffany; Zhang, Min; Oren, Deena; Padte, Neal N.; Porcelli, Steven A.; Wong, Chi-Huey; Kappe, Stefan H. I.; Ho, David D.; Tsuji, Moriya

    2015-01-01

    A CD1d-binding glycolipid, α-Galactosylceramide (αGalCer), activates invariant natural killer T (iNKT) cells and acts as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying nearly 100-fold stronger CD1d binding affinity. In the present study, 7DW8-5 was found to exert a more potent adjuvant effect than αGalCer for a vaccine based on radiation-attenuated sporozoites (RAS) of a rodent malaria parasite, Plasmodium yoelii, also referred to a...

  6. Bacillus anthracis lethal toxin disrupts TCR signaling in CD1d-restricted NKT cells leading to functional anergy.

    Directory of Open Access Journals (Sweden)

    Sunil K Joshi

    2009-09-01

    Full Text Available Exogenous CD1d-binding glycolipid (alpha-Galactosylceramide, alpha-GC stimulates TCR signaling and activation of type-1 natural killer-like T (NKT cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT on NKT cells both in vivo and in vitro. LT is a binary toxin known to suppress host immune responses during anthrax disease and intoxicates cells by protective antigen (PA-mediated intracellular delivery of lethal factor (LF, a potent metalloprotease. We observed that NKT cells expressed anthrax toxin receptors (CMG-2 and TEM-8 and bound more PA than other immune cell types. A sub-lethal dose of LT administered in vivo in C57BL/6 mice decreased expression of the activation receptor NKG2D by NKT cells but not by NK cells. The in vivo administration of LT led to decreased TCR-induced cytokine secretion but did not affect TCR expression. Further analysis revealed LT-dependent inhibition of TCR-stimulated MAP kinase signaling in NKT cells attributable to LT cleavage of the MAP kinase kinase MEK-2. We propose that Bacillus anthracis-derived LT causes a novel form of functional anergy in NKT cells and therefore has potential for contributing to immune evasion by the pathogen.

  7. Cross-talk between cd1d-restricted nkt cells and γδ cells in t regulatory cell response

    Directory of Open Access Journals (Sweden)

    Huber Sally A

    2011-01-01

    Full Text Available Abstract CD1d is a non-classical major histocompatibility class 1-like molecule which primarily presents either microbial or endogenous glycolipid antigens to T cells involved in innate immunity. Natural killer T (NKT cells and a subpopulation of γδ T cells expressing the Vγ4 T cell receptor (TCR recognize CD1d. NKT and Vγ4 T cells function in the innate immune response via rapid activation subsequent to infection and secrete large quantities of cytokines that both help control infection and modulate the developing adaptive immune response. T regulatory cells represent one cell population impacted by both NKT and Vγ4 T cells. This review discusses the evidence that NKT cells promote T regulatory cell activation both through direct interaction of NKT cell and dendritic cells and through NKT cell secretion of large amounts of TGFβ, IL-10 and IL-2. Recent studies have shown that CD1d-restricted Vγ4 T cells, in contrast to NKT cells, selectively kill T regulatory cells through a caspase-dependent mechanism. Vγ4 T cell elimination of the T regulatory cell population allows activation of autoimmune CD8+ effector cells leading to severe cardiac injury in a coxsackievirus B3 (CVB3 myocarditis model in mice. CD1d-restricted immunity can therefore lead to either immunosuppression or autoimmunity depending upon the type of innate effector dominating during the infection.

  8. Retinoic acid induction of CD1d expression primes chronic lymphocytic leukemia B cells for killing by CD8+ invariant natural killer T cells.

    Science.gov (United States)

    Ghnewa, Yasmeen G; O'Reilly, Vincent P; Vandenberghe, Elisabeth; Browne, Paul V; McElligott, Anthony M; Doherty, Derek G

    2017-10-01

    Invariant natural killer T (iNKT) cells are cytotoxic T cells that respond to glycolipid antigens presented by CD1d. Therapeutic activation of iNKT cells with α-galactosylceramide (α-GalCer) can prevent and reverse tumor growth in mice and clinical trials involving α-GalCer-stimulated iNKT cells are ongoing in humans. B cells express CD1d, however, we show that CD1d expression is reduced on B cells from patients with chronic lymphocytic leukemia (CLL). B cells from CLL patients pulsed with α-GalCer failed to stimulate cytolytic degranulation by iNKT cell lines, but could present the more potent glycolipid analogue, 7DW8-5. Retinoic acid receptor-α (RAR-α) agonists induced CD1d expression by CLL B cells, restoring their ability to present α-GalCer to CD8α + iNKT cells, resulting in cytolytic degranulation. Thus, RAR-α agonists can augment the anti-tumor activities of iNKT cells against CLL cells in vitro. Their inclusion in iNKT cell-based therapies may benefit patients with CLL. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The response of CD1d-restricted invariant NKT cells to microbial pathogens and their products

    Directory of Open Access Journals (Sweden)

    Luc eVan Kaer

    2015-05-01

    Full Text Available Invariant natural killer T (iNKT cells become activated during a wide variety of infections. This includes organisms lacking cognate CD1d-binding glycolipid antigens recognized by the semi-invariant T cell receptor of iNKT cells. Additional studies have shown that iNKT cells also become activated in vivo in response to microbial products such as bacterial lipopolysaccharide, a potent inducer of cytokine production in antigen-presenting cells (APCs. Other studies have shown that iNKT cells are highly responsive to stimulation by cytokines such as interleukin-12. These findings have led to the concept that microbial pathogens can activate iNKT cells either directly via glycolipids, or indirectly by inducing cytokine production in APCs. iNKT cells activated in this manner produce multiple cytokines that can influence the outcome of infection, usually in favor of the host, although potent iNKT cell activation may contribute to an uncontrolled cytokine storm and sepsis. One aspect of the response of iNKT cells to microbial pathogens is that it is short-lived and followed by an extended time period of unresponsiveness to reactivation. This refractory period may represent a means to avoid chronic activation and cytokine production by iNKT cells, thus protecting the host against some of the negative effects of iNKT cell activation, but potentially putting the host at risk for secondary infections. These effects of microbial pathogens and their products on iNKT cells are not only important for understanding the role of these cells in immune responses against infections but also for the development of iNKT cell-based therapies.

  10. Invariant NKT cells and CD1d(+) cells amass in human omentum and are depleted in patients with cancer and obesity.

    LENUS (Irish Health Repository)

    Lynch, Lydia

    2012-02-01

    Invariant NKT (iNKT) cells recognize lipid antigens presented by CD1d and respond rapidly by killing tumor cells and release cytokines that activate and regulate adaptive immune responses. They are essential for tumor rejection in various mouse models, but clinical trials in humans involving iNKT cells have been less successful, partly due to their rarity in humans compared with mice. Here we describe an accumulation of functional iNKT cells in human omentum, a migratory organ with healing properties. Analysis of 39 omental samples revealed that T cells are the predominant lymphoid cell type and of these, 10% expressed the invariant Valpha24Jalpha18 TCR chain, found on iNKT cells, higher than in any other human organ tested to date. About 15% of omental hematopoietic cells expressed CD1d, compared with 1% in blood (p<0.001). Enriched omental iNKT cells killed CD1d(+) targets and released IFN-gamma and IL-4 upon activation. Omental iNKT-cell frequencies were lower in patients with severe obesity (p=0.005), and with colorectal carcinoma (p=0.004) compared with lean healthy subjects. These data suggest a novel role for the omentum in immune regulation and tumor immunity and identify it as a potential source of iNKT cells for therapeutic use.

  11. Differential Recognition of CD1d-[alpha]-Galactosyl Ceramide by the V[beta]8.2 and V[beta]7 Semi-invariant NKT T Cell Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pellicci, Daniel G.; Patel, Onisha; Kjer-Nielsen, Lars; Pang, Siew Siew; Sullivan, Lucy C.; Kyparissoudis, Konstantinos; Brooks, Andrew G.; Reid, Hugh H.; Gras, Stephanie; Lucet, Isabelle S.; Koh, Ruide; Smyth, Mark J.; Mallevaey, Thierry; Matsuda, Jennifer L.; Gapin, Laurent; McCluskey, James; Godfrey, Dale I.; Rossjohn, Jamie; PMCI-A; Monash; UCHSC; Melbourne

    2009-09-02

    The semi-invariant natural killer T cell receptor (NKT TCR) recognizes CD1d-lipid antigens. Although the TCR{alpha} chain is typically invariant, the {beta} chain expression is more diverse, where three V{beta} chains are commonly expressed in mice. We report the structures of V{alpha}14-V{beta}8.2 and V{alpha}14-V{beta}7 NKT TCRs in complex with CD1d-{alpha}-galactosylceramide ({alpha}-GalCer) and the 2.5 {angstrom} structure of the human NKT TCR-CD1d-{alpha}-GalCer complex. Both V{beta}8.2 and V{beta}7 NKT TCRs and the human NKT TCR ligated CD1d-{alpha}-GalCer in a similar manner, highlighting the evolutionarily conserved interaction. However, differences within the V{beta} domains of the V{beta}8.2 and V{beta}7 NKT TCR-CD1d complexes resulted in altered TCR{beta}-CD1d-mediated contacts and modulated recognition mediated by the invariant {alpha} chain. Mutagenesis studies revealed the differing contributions of V{beta}8.2 and V{beta}7 residues within the CDR2{beta} loop in mediating contacts with CD1d. Collectively we provide a structural basis for the differential NKT TCR V{beta} usage in NKT cells.

  12. Co-localization of a CD1d-binding glycolipid with a radiation-attenuated sporozoite vaccine in LN-resident DCs for a robust adjuvant effect

    Science.gov (United States)

    Li, Xiangming; Kawamura, Akira; Andrews, Chasity D.; Miller, Jessica L.; Wu, Douglass; Tsao, Tiffany; Zhang, Min; Oren, Deena; Padte, Neal N.; Porcelli, Steven A.; Wong, Chi-Huey; Kappe, Stefan H. I.; Ho, David D.; Tsuji, Moriya

    2015-01-01

    A CD1d-binding glycolipid, α-Galactosylceramide (αGalCer), activates invariant natural killer T (iNKT) cells and acts as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying nearly 100-fold stronger CD1d binding affinity. In the present study, 7DW8-5 was found to exert a more potent adjuvant effect than αGalCer for a vaccine based on radiation-attenuated sporozoites (RAS) of a rodent malaria parasite, Plasmodium yoelii, also referred to as irradiated P. yoelii sporozoites (IrPySpz). 7DW8-5 had a superb adjuvant effect only when the glycolipid and IrPySpz were conjointly administered intramuscularly (i.m.). Therefore, we evaluated the impact of distinctly different biodistribution patterns of αGalCer and 7DW8-5 on their respective adjuvant activities. While both glycolipids induce a similar cytokine response in sera of mice injected intravenously, after i.m. injection, αGalCer induces a systemic cytokine response, whereas 7DW8-5 is locally trapped by CD1d expressed by dendritic cells (DCs) in draining lymph nodes (dLNs). Moreover, the i.m. co-administration of 7DW8-5 with IrPySpz results in the recruitment of DCs to dLNs and the activation and maturation of DCs. These events cause the potent adjuvant effect of 7DW8-5, resulting in the enhancement of the CD8+ T-cell response induced by IrPySpz, and, ultimately, improved protection against malaria. Our study is the first to show that the co-localization of a CD1d-binding iNKT-cell stimulatory glycolipid and a vaccine, like RAS, in dLN-resident DCs upon i.m. conjoin administration governs the potency of the adjuvant effect of the glycolipid. PMID:26254338

  13. Colocalization of a CD1d-Binding Glycolipid with a Radiation-Attenuated Sporozoite Vaccine in Lymph Node-Resident Dendritic Cells for a Robust Adjuvant Effect.

    Science.gov (United States)

    Li, Xiangming; Kawamura, Akira; Andrews, Chasity D; Miller, Jessica L; Wu, Douglass; Tsao, Tiffany; Zhang, Min; Oren, Deena; Padte, Neal N; Porcelli, Steven A; Wong, Chi-Huey; Kappe, Stefan H I; Ho, David D; Tsuji, Moriya

    2015-09-15

    A CD1d-binding glycolipid, α-Galactosylceramide (αGalCer), activates invariant NK T cells and acts as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying nearly 100-fold stronger CD1d binding affinity. In the current study, 7DW8-5 was found to exert a more potent adjuvant effect than αGalCer for a vaccine based on radiation-attenuated sporozoites of a rodent malaria parasite, Plasmodium yoelii, also referred to as irradiated P. yoelii sporozoites (IrPySpz). 7DW8-5 had a superb adjuvant effect only when the glycolipid and IrPySpz were conjointly administered i.m. Therefore, we evaluated the effect of distinctly different biodistribution patterns of αGalCer and 7DW8-5 on their respective adjuvant activities. Although both glycolipids induce a similar cytokine response in sera of mice injected i.v., after i.m. injection, αGalCer induces a systemic cytokine response, whereas 7DW8-5 is locally trapped by CD1d expressed by dendritic cells (DCs) in draining lymph nodes (dLNs). Moreover, the i.m. coadministration of 7DW8-5 with IrPySpz results in the recruitment of DCs to dLNs and the activation and maturation of DCs. These events cause the potent adjuvant effect of 7DW8-5, resulting in the enhancement of the CD8(+) T cell response induced by IrPySpz and, ultimately, improved protection against malaria. Our study is the first to show that the colocalization of a CD1d-binding invariant NK T cell-stimulatory glycolipid and a vaccine, like radiation-attenuated sporozoites, in dLN-resident DCs upon i.m. conjoint administration governs the potency of the adjuvant effect of the glycolipid. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. The interaction between regulatory T cells and NKT cells in the liver: a CD1d bridge links innate and adaptive immunity.

    Science.gov (United States)

    Hua, Jing; Liang, Shuwen; Ma, Xiong; Webb, Tonya J; Potter, James P; Li, Zhiping

    2011-01-01

    Regulatory T cells (Tregs) and natural killer T (NKT) cells are two distinct lymphocyte subsets that independently regulate hepatic adaptive and innate immunity, respectively. In the current study, we examine the interaction between Tregs and NKT cells to understand the mechanisms of cross immune regulation by these cells. The frequency and function of Tregs were evaluated in wild type and NKT cell deficient (CD1dko) mice. In vitro lymphocyte proliferation and apoptosis assays were performed with NKT cells co-cultured with Tregs. The ability of Tregs to inhibit NKT cells in vivo was examined by adoptive transfer of Tregs in a model of NKT cell mediated hepatitis. CD1dko mice have a significant reduction in hepatic Tregs. Although, the Tregs from CD1dko mice remain functional and can suppress conventional T cells, their ability to suppress activation induced NKT cell proliferation and to promote NKT cell apoptosis is greatly diminished. These effects are CD1d dependent and require cell to cell contact. Adoptive transfer of Tregs inhibits NKT cell-mediated liver injury. NKT cells promote Tregs, and Tregs inhibit NKT cells in a CD1d dependent manner requiring cell to cell contact. These cross-talk immune regulations provide a linkage between innate and adaptive immunity.

  15. Co-localization of a CD1d-binding glycolipid with an adenovirus-based malaria vaccine for a potent adjuvant effect.

    Science.gov (United States)

    Li, Xiangming; Huang, Jing; Kawamura, Akira; Funakoshi, Ryota; Porcelli, Steven A; Tsuji, Moriya

    2017-05-31

    A CD1d-binding, invariant (i) natural killer T (NKT)-cell stimulatory glycolipid, α-Galactosylceramide (αGalCer), has been shown to act as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying a higher binding affinity for CD1d molecule and more potent adjuvant activity than αGalCer. In the present study, 7DW8-5 co-administered intramuscularly (i.m.) with a recombinant adenovirus expressing a Plasmodium yoelii circumsporozoite protein (PyCSP), AdPyCS, has led to a co-localization of 7DW8-5 and a PyCSP in draining lymph nodes (dLNs), particularly in dendritic cells (DCs). This occurrence initiates a cascade of events, such as the recruitment of DCs to dLNs and their activation and maturation, and the enhancement of the ability of DCs to prime CD8+ T cells induced by AdPyCS and ultimately leading to a potent adjuvant effect and protection against malaria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Morphological distinctiveness of Javan Tupaia hypochrysa (Scandentia, Tupaiidae)

    Science.gov (United States)

    Sargis, Eric J.; Woodman, Neal; Morningstar, Natalie C.; Reese, Aspen T.; Olson, Link E.

    2013-01-01

    The common treeshrew, Tupaia glis, represents a species complex with a complicated taxonomic history. It is distributed mostly south of the Isthmus of Kra on the Malay Peninsula and surrounding islands. In our recent revision of a portion of this species complex, we did not fully assess the population from Java (T. “glis” hypochrysa) because of our limited sample. Herein, we revisit this taxon using multivariate analyses in comparisons with T. glis, T. chrysogaster of the Mentawai Islands, and T. ferruginea from Sumatra. Analyses of both the manus and skull of Javan T. “glis” hypochrysa show it to be most similar to T. chrysogaster and distinct from both T. glis and T. ferruginea. Yet, the Javan population and T. chrysogaster have different mammae counts, supporting recognition of T. hypochrysa as a distinct species. The change in taxonomic status of T. hypochrysa has conservation implications for both T. glis and this Javan endemic.

  17. A CD1d-dependent lipid antagonist to NKT cells ameliorates atherosclerosis in ApoE-/- mice by reducing lesion necrosis and inflammation.

    Science.gov (United States)

    Li, Yi; Kanellakis, Peter; Hosseini, Hamid; Cao, Anh; Deswaerte, Virginie; Tipping, Peter; Toh, Ban-Hock; Bobik, Alex; Kyaw, Tin

    2016-02-01

    Atherosclerosis-related deaths from heart attacks and strokes remain leading causes of global mortality, despite the use of lipid-lowering statins. Thus, there is an urgent need to develop additional therapies. Reports that NKT cells promote atherosclerosis and an NKT cell CD1d-dependent lipid antagonist (DPPE-PEG350, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N[methoxy(polyethyleneglycol)-350]) reduces allergen-induced inflammation led us to investigate its therapeutic potential in preventing the development and progression of experimental atherosclerosis. DPPE-PEG350 was administered to hyperlipidaemic ApoE(-/-) mice with/without established atherosclerosis. Atherosclerosis and immune cells were assessed in the aortic sinus lesions. Lesion expression of monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) responsible for inflammatory immune cell recruitment as well as mRNA expression of IFNγ and its plasma levels were investigated. Necrotic cores and lesion smooth muscle and collagen contents important in plaque stability were determined as were plasma lipid levels. DPPE-PEG350 reduced atherosclerosis development and delayed progression of established atherosclerosis without affecting plasma lipids. CD4 and CD8 T cells and B cells in atherosclerotic lesions were decreased in DPPE-PEG350-treated mice. Lesion MCP-1 and VCAM-1 protein expression and necrotic core size were reduced without affecting lesion smooth muscle and collagen content. IFNγ and lymphocytes were unaffected by the treatment. The attenuation of progression of established atherosclerosis together with reduced development of atherosclerosis in hyperlipidaemic mice by the NKT antagonist, without affecting NKT cell or other lymphocyte numbers, suggests that targeting lesion inflammation via CD1d-dependent activation of NKT cells using DPPE-PEG350 has a therapeutic potential in treating atherosclerosis. Published on behalf of the European Society of

  18. The role of CD1d-restricted NKT cells in the clearance of Pseudomonas aeruginosa from the lung is dependent on the host genetic background.

    Science.gov (United States)

    Benoit, Patrick; Sigounas, Vaia Yioula; Thompson, Jenna L; van Rooijen, Nico; Poynter, Matthew E; Wargo, Matthew J; Boyson, Jonathan E

    2015-06-01

    Pseudomonas aeruginosa is an important human opportunistic pathogen, accounting for a significant fraction of hospital-acquired lung infections. CD1d-restricted NKT cells comprise an unusual innate-like T cell subset that plays important roles in both bacterial and viral infections. Previous reports have differed in their conclusions regarding the role of NKT cells in clearance of P. aeruginosa from the lung. Since there is significant strain-dependent variation in NKT cell number and function among different inbred strains of mice, we investigated whether the role of NKT cells was dependent on the host genetic background. We found that NKT cells did indeed play a critical role in the clearance of P. aeruginosa from the lungs of BALB/c mice but that they played no discernible role in clearance from the lungs of C57BL/6 mice. We found that the strain-dependent role of NKT cells was associated with significant strain-dependent differences in cytokine production by lung NKT cells and that impaired clearance of P. aeruginosa in BALB/c CD1d(-/-) mice was associated with an increase in neutrophil influx to the lung and increased levels of proinflammatory cytokines and chemokines after infection. Finally, we found that the role of alveolar macrophages was also dependent on the genetic background. These data provide further support for a model in which the unusually high level of variability in NKT cell number and function among different genetic backgrounds may be an important contributor to infectious-disease susceptibility and pathology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. CD1d-restricted IFN-γ-secreting NKT cells promote immune complex-induced acute lung injury by regulating macrophage-inflammatory protein-1α production and activation of macrophages and dendritic cells.

    Science.gov (United States)

    Kim, Ji Hyung; Chung, Doo Hyun

    2011-02-01

    Immune complex-induced acute lung injury (IC-ALI) has been implicated in various pulmonary disease states. However, the role of NKT cells in IC-ALI remains unknown. Therefore, we explored NKT cell functions in IC-ALI using chicken egg albumin and anti-chicken egg albumin IgG. The bronchoalveolar lavage fluid of CD1d(-/-) and Jα18(-/-) mice contained few Ly6G(+)CD11b(+) granulocytes, whereas levels in B6 mice were greater and were increased further by α-galactosyl ceramide. IFN-γ and MIP-1α production in the lungs was greater in B6 than CD1d(-/-) mice. Adoptive transfer of wild type (WT) but not IFN-γ-, MIP-1α-, or FcγR-deficient NKT cells into CD1d(-/-) mice caused recruitment of inflammatory cells to the lungs. Moreover, adoptive transfer of IFN-γR-deficient NKT cells enhanced MIP-1α production and cell recruitment in the lungs of CD1d(-/-) or CD1d(-/-)IFN-γ(-/-) mice, but to a lesser extent than WT NKT cells. This suggests that IFN-γ-producing NKT cells enhance MIP-1α production in both an autocrine and a paracrine manner. IFN-γ-deficient NKT cells induced less IL-1β and TNF-α production by alveolar macrophages and dendritic cells in CD1d(-/-) mice than did WT NKT cells. Taken together, these data suggest that CD1d-restricted IFN-γ-producing NKT cells promote IC-ALI by producing MIP-1α and enhancing proinflammatory cytokine production by alveolar macrophages and dendritic cells.

  20. [Proportion and significance of CD1d(hi)CD5⁺CD19⁺ regulatory B cell in peripheral blood of patients with neuromyelitis optica].

    Science.gov (United States)

    Yang, Fen; Huang, Dehui; Cheng, Chen; Wu, Weiping

    2015-03-01

    To detect the proportion of CD1d(hi)CD5⁺CD19⁺ regulatory B cells (Bregs) in peripheral blood of the patients with neuromyelitis optica (NMO), and explore whether CD1d(hi)CD5⁺CD19⁺ Bregs can play a role as a biomarker in the diagnosis of NMO versus multiple sclerosis (MS). Flow cytometry was performed to detect the proportion of CD1d(hi)CD5⁺CD19⁺ Bregs in peripheral blood from 44 cases of NMO, 38 cases of MS, and 30 healthy controls. The serum level of aquaporin-4 antibody (AQP4-Ab) of patients with NMO was detected by indirect immunofluorescence assay. The proportion of CD1d(hi)CD5⁺CD19⁺ Bregs in CD19⁺ B cells and lymphocytes was significantly lower in NMO group than in MS and control groups; however, there was no significant difference between MS group and control group. The proportion of CD1d(hi)CD5⁺CD19⁺ Bregs in CD19⁺ B cells and lymphocytes was lower in AQP4-Ab-positive NMO patients than in AQP4-Ab-negative NMO patients, and the difference was statistically significant. CD1d(hi)CD5⁺CD19⁺ Bregs may be a biomarker in the differential diagnosis of NMO versus MS.

  1. Zbtb7b (Th-POK) regulates the development of IL-17 producing CD1d-restricted mouse NKT-cells

    Science.gov (United States)

    Enders, Anselm; Stankovic, Sanda; Teh, Charis; Uldrich, Adam P.; Yabas, Mehmet; Juelich, Torsten; Altin, John A.; Frankenreiter, Sandra; Bergmann, Hannes; Roots, Carla M.; Kyparissoudis, Konstantinos; Goodnow, Chris C.; Godfrey, Dale I.

    2012-01-01

    CD1d-dependent NKT-cells represent a heterogeneous family of effector T-cells including CD4+CD8− and CD4−CD8− subsets, that respond to glycolipid antigens with rapid and potent cytokine production. NKT-cell development is regulated by a unique combination of factors, however very little is known about factors that control the development of NKT subsets. Here, we analyze a novel mouse strain (helpless) with a mis-sense mutation in the BTB-POZ domain of Zbtb7b and demonstrate that this mutation has dramatic, intrinsic effects on development of NKT-cell subsets. Although NKT-cell numbers are similar in Zbtb7b mutant mice, these cells are hyperproliferative and most lack CD4 and instead express CD8. Moreover, the majority of Zbtb7b mutant NKT-cells in the thymus are RORγt+ and a high frequency produce IL-17 while very few produce IFN-γ or other cytokines, sharply contrasting the profile of normal NKT-cells. Mice heterozygous for the helpless mutation also have reduced numbers of CD4+ NKT-cells and increased production of IL-17 without an increase in CD8+ cells, suggesting that Zbtb7b acts at multiple stages of NKT-cell development. These results reveal Zbtb7b as a critical factor genetically pre-determining the balance of effector subsets within the NKT-cell population. PMID:23105140

  2. ZBTB7B (Th-POK) regulates the development of IL-17-producing CD1d-restricted mouse NKT cells.

    Science.gov (United States)

    Enders, Anselm; Stankovic, Sanda; Teh, Charis; Uldrich, Adam P; Yabas, Mehmet; Juelich, Torsten; Altin, John A; Frankenreiter, Sandra; Bergmann, Hannes; Roots, Carla M; Kyparissoudis, Konstantinos; Goodnow, Chris C; Godfrey, Dale I

    2012-12-01

    CD1d-dependent NKT cells represent a heterogeneous family of effector T cells including CD4(+)CD8(-) and CD4(-)CD8(-) subsets that respond to glycolipid Ags with rapid and potent cytokine production. NKT cell development is regulated by a unique combination of factors, however very little is known about factors that control the development of NKT subsets. In this study, we analyze a novel mouse strain (helpless) with a mis-sense mutation in the BTB-POZ domain of ZBTB7B and demonstrate that this mutation has dramatic, intrinsic effects on development of NKT cell subsets. Although NKT cell numbers are similar in Zbtb7b mutant mice, these cells are hyperproliferative and most lack CD4 and instead express CD8. Moreover, the majority of ZBTB7B mutant NKT cells in the thymus are retinoic acid-related orphan receptor γt positive, and a high frequency produce IL-17 while very few produce IFN-γ or other cytokines, sharply contrasting the profile of normal NKT cells. Mice heterozygous for the helpless mutation also have reduced numbers of CD4(+) NKT cells and increased production of IL-17 without an increase in CD8(+) cells, suggesting that ZBTB7B acts at multiple stages of NKT cell development. These results reveal ZBTB7B as a critical factor genetically predetermining the balance of effector subsets within the NKT cell population.

  3. A soluble form of CTLA-4 is present in paediatric patients with acute lymphoblastic leukaemia and correlates with CD1d+ expression.

    Directory of Open Access Journals (Sweden)

    Rita Simone

    Full Text Available CTLA-4 is a key factor in regulating and maintaining self tolerance, providing a negative signal to the T cell and thus limiting immune responses. Several polymorphisms within the CTLA-4 gene have been associated with an increased risk of developing autoimmune diseases and, very recently, with susceptibility to human cancer. Acute lymphoblastic leukemia is a clonal disorder of lymphoid progenitors representing the most frequent malignancy of childhood. Here, we show the presence at significantly elevated levels of a circulating soluble form of CTLA-4 in 70% of B-ALL pediatric patients with active disease, the positive correlation between the percentage of leukemic B lymphocytes and the amount of serum sCTLA-4, and the expression of sCTLA-4 transcript by B cells in patients. Finally, a correlation between CD1d expression (a negative prognostic marker and the sCTLA-4 in B-ALL patients was observed. This suggests a possible role of this soluble molecule as a marker of progression or severity of the neoplastic disease.

  4. NKG2D performs two functions in invariant NKT cells: direct TCR-independent activation of NK-like cytolysis and co-stimulation of activation by CD1d.

    Science.gov (United States)

    Kuylenstierna, Carlotta; Björkström, Niklas K; Andersson, Sofia K; Sahlström, Peter; Bosnjak, Lidija; Paquin-Proulx, Dominic; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Moll, Markus; Sandberg, Johan K

    2011-07-01

    Invariant NKT cells are important in the activation and regulation of immune responses. They can also function as CD1d-restricted killer cells. However, the role of activating innate NK-cell receptors expressed on NKT cells in triggering cytolytic function is poorly characterized. Here, we initially confirmed that the cellular stress-ligand receptor NKG2D is expressed on CD4- NKT cells, whereas most CD4+ NKT cells lack this receptor. Interestingly, NKG2D+ NKT cells frequently expressed perforin, and both NKG2D and perforin localized at the site of contact with NKG2D ligand-expressing target cells. CD4- NKT cells degranulated in response to NKG2D engagement in a redirected activation assay independent of stimulation via their invariant TCR. NKT cells killed P815 cells coated with anti-NKG2D mAb and CD1d-negative K562 tumor target cells in an NKG2D-dependent manner. Furthermore, NKG2D engagement co-stimulated TCR-mediated NKT-cell activation in response to endogenous CD1d-presented ligands or suboptimal levels of anti-CD3 triggering. These data indicate that the CD4- subset of human NKT cells can mediate direct lysis of target cells via NKG2D engagement independent of CD1d, and that NKG2D also functions as a co-stimulatory receptor in these cells. NKG2D thus plays both a direct and a co-stimulatory role in the activation of NKT cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells.

    Science.gov (United States)

    Luoma, Adrienne M; Castro, Caitlin D; Mayassi, Toufic; Bembinster, Leslie A; Bai, Li; Picard, Damien; Anderson, Brian; Scharf, Louise; Kung, Jennifer E; Sibener, Leah V; Savage, Paul B; Jabri, Bana; Bendelac, Albert; Adams, Erin J

    2013-12-12

    The nature of the antigens recognized by γδ T cells and their potential recognition of major histocompatibility complex (MHC)-like molecules has remained unclear. Members of the CD1 family of lipid-presenting molecules are suggested ligands for Vδ1 TCR-expressing γδ T cells, the major γδ lymphocyte population in epithelial tissues. We crystallized a Vδ1 TCR in complex with CD1d and the self-lipid sulfatide, revealing the unusual recognition of CD1d by germline Vδ1 residues spanning all complementarity-determining region (CDR) loops, as well as sulfatide recognition separately encoded by nongermline CDR3δ residues. Binding and functional analysis showed that CD1d presenting self-lipids, including sulfatide, was widely recognized by gut Vδ1+ γδ T cells. These findings provide structural demonstration of MHC-like recognition of a self-lipid by γδ T cells and reveal the prevalence of lipid recognition by innate-like T cell populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Crystal Structures of Mouse CD1d-IGb3 Complex And Its Cognate Valpha14 T Cell Receptor Suggest a Model for Dual Recognition of Foreign And Self Glycolipids

    Energy Technology Data Exchange (ETDEWEB)

    Zajonc, D.M.; Saveage, P.B.; Bendelac, A.; Wilson, I.A.; Teyton, L.

    2009-05-28

    The semi-invariant Valpha14Jalpha18 T cell receptor (TCR) is expressed by regulatory NKT cells and has the unique ability to recognize chemically diverse ligands presented by CD1d. The crystal structure of CD1d complexed to a natural, endogenous ligand, isoglobotrihexosylceramide (iGb3), illustrates the extent of this diversity when compared to the binding of potent, exogenous ligands, such as alpha-galactosylceramide (alpha-GalCer). A single mode of recognition for these two classes of ligands would then appear problematic for a single T cell receptor. However, the Valpha14 TCR adopts two different conformations in the crystal where, in one configuration, the presence of a larger cavity between the two CDR3 regions could accommodate iGb3 and, in the other, a smaller cavity fits alpha-GalCer more snugly. Alternatively, the extended iGb3 headgroup could be 'squashed' upon docking of the TCR and accommodated between the CD1 and TCR surfaces. Thus, the same TCR may adopt alternative modes of recognition for these foreign and self-ligands for NKT cell activation.

  7. Ectoparasite of Tupaia glis (Scandentia: Tupaiidae from Lingai agricultural area, Terengganu

    Directory of Open Access Journals (Sweden)

    Muhammad Hafiz Sulaiman

    2016-01-01

    Full Text Available Objective: To investigate ectoparasite fauna on the common tree shrew [Tupaia glis (T. glis] in Lingai agriculture area, Terengganu. Methods: The sampling was conducted once a month with five consecutive days from November 2012 to February 2013. Five mammal cage traps (60 cm × 30 cm × 30 cm and 30 rat cage traps (45 cm × 15 cm × 15 cm baited with banana, salt fish or fleshy-grilled coconut were used. One line transect was built and each trap was set up along the line transect with 5 m intervals. Ectoparasite was collected by combing host’s fur vigorously and kept in vials containing 70% ethanol. Results: Out of 23 hosts examined, 20 individuals (87% of T. glis in Lingai agricultural area were infested by three species of ticks and two species of mites. It was found that Laelaps echidninus showed higher mean intensity (5 as compared to the other ectoparasites. However, the prevalence was higher on Ixodes sp. (43.5% though its mean intensity was among the lowest (1.9 from the rest. Conclusions: This study provides useful information of ectoparasite fauna infesting T. glis in the agricultural area. It is important to have knowledge regarding what type of ectoparasite infests small animals in agricultural area, which in turn can assist responsible agencies to take precaution if epidemic outbreaks caused by tick-borne zoonotic diseases occur in the future.

  8. Aspects of masticatory form and function in common tree shrews, Tupaia glis.

    Science.gov (United States)

    Fish, D R

    1983-04-01

    Tree shrews have relatively primitive tribosphenic molars that are apparently similar to those of basal eutherians; thus, these animals have been used as a model to describe mastication in early mammals. In this study the gross morphology of the bony skull, joints, dentition, and muscles of mastication are related to potential jaw movements and cuspal relationships. Potential for complex mandibular movements is indicated by a mobile mandibular symphysis, shallow mandibular fossa that is large compared to its resident condyle, and relatively loose temporomandibular joint ligaments. Abrasive tooth wear is noticeable, and is most marked at the first molars and buccal aspects of the upper cheek teeth distal to P2. Muscle morphology is basically similar to that previously described for Tupaia minor and Ptilocercus lowii. However, in T. glis, an intraorbital part of deep temporalis has the potential for inducing lingual translation of its dentary, and the large medial pterygoid has extended its origin anteriorly to the floor of the orbit, which would enhance protrusion. The importance of the tongue and hyoid muscles during mastication is suggested by broadly expanded anterior bellies of digastrics, which may assist mylohyoids in tensing the floor of the mouth during forceful tongue actions, and by preliminary electromyography, which suggests that masticatory muscles alone cannot fully account for jaw movements in this species.

  9. Microvascularization in trigeminal ganglion of the common tree shrew (Tupaia glis).

    Science.gov (United States)

    Kongstaponkit, S; Pradidarcheep, W; Toutip, S; Chunhabundit, P; Somana, R

    1997-01-01

    Since there is only a limited number of studies of the blood supply to the trigeminal ganglion (TG) in mammalian species, the TG from 16 common tree shrews (Tupaia glis) were investigated by light microscope, transmission electron microscope (TEM) and the corrosion cast technique in conjunction with scanning electron microscope (SEM). It was found that the TG contained clusters of neurons in the peripheral region whereas the bundles of nerve fibers were located more centrally. Each ganglionic neuron had a concentric nucleus and was ensheathed by satellite cells. It was noted that blood vessels of a continuous type were predominantly found in the area where the neurons were densely located and were much less frequently observed in the area occupied by nerve fibers. With TEM, the TG was shown to be mainly associated with large neurons containing big nuclei and prominent nucleoli. The blood supply of the TG is derived from the most rostral branch of the pontine artery, from the stapedial artery or sometimes from the supraorbital artery, and from the accessory meningeal artery which is a branch of the maxillary artery passing through the foramen ovale. These arteries give off branches and become capillary networks in the ganglion before draining blood to the peripheral region. The veins at the medial border drained into the cavernous sinus directly or through the inferior hypophyseal vein, while those at the lateral side of the ganglion carried the blood into the pterygoid plexus via an accessory meningeal vein. The veins along the trigeminal nerve root joined the posterior part of the cavernous sinus. These studies establish a unique anatomical distribution of the TG blood supply in the tree shrew and the utility of the cast/SEM technique in discerning detailed features of the blood supply in the nervous system.

  10. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews

    NARCIS (Netherlands)

    Keuker, J.I.H.; de Biurrun, G.; Luiten, P.G.M.; Fuchs, E.

    2004-01-01

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many

  11. CD1d deficiency inhibits the development of abdominal aortic aneurysms in LDL receptor deficient mice

    NARCIS (Netherlands)

    van Puijvelde, Gijs H. M.; Foks, Amanda C.; van Bochove, Rosemarie E.; Bot, Ilze; Habets, Kim L. L.; de Jager, Saskia C.; ter Borg, Mariëtte N. D.; van Osch, Puck; Boon, Louis; Vos, Mariska; de Waard, Vivian; Kuiper, Johan

    2018-01-01

    An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these

  12. B Cell Help by CD1d-Rectricted NKT Cells

    OpenAIRE

    Livia Clerici; Giulia Casorati; Paolo Dellabona

    2015-01-01

    B cell activation and antibody production against foreign antigens is a central step of host defense. This is achieved via highly regulated multi-phase processes that involve a variety of cells of both innate and adaptive arms of the immune system. MHC class II-restricted CD4+ T cells specific for peptide antigens, which acquire professional follicular B cell helper functions, have been long recognized as key players in this process. Recent data, however, challenge this paradigm by showing th...

  13. Morphological and molecular characteristics of Malayfilaria sofiani Uni, Mat Udin & Takaoka n. g., n. sp. (Nematoda: Filarioidea) from the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia) in Peninsular Malaysia.

    Science.gov (United States)

    Uni, Shigehiko; Mat Udin, Ahmad Syihan; Agatsuma, Takeshi; Saijuntha, Weerachai; Junker, Kerstin; Ramli, Rosli; Omar, Hasmahzaiti; Lim, Yvonne Ai-Lian; Sivanandam, Sinnadurai; Lefoulon, Emilie; Martin, Coralie; Belabut, Daicus Martin; Kasim, Saharul; Abdullah Halim, Muhammad Rasul; Zainuri, Nur Afiqah; Bhassu, Subha; Fukuda, Masako; Matsubayashi, Makoto; Harada, Masashi; Low, Van Lun; Chen, Chee Dhang; Suganuma, Narifumi; Hashim, Rosli; Takaoka, Hiroyuki; Azirun, Mohd Sofian

    2017-04-20

    The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia). We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing. Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews. The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in

  14. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice

    DEFF Research Database (Denmark)

    Buschard, Karsten; Hansen, Axel Jacob Kornerup; Jensen, Karen

    2011-01-01

    Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules.......Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules....

  15. Alcohol facilitates CD1d loading, subsequent activation of NKT cells, and reduces the incidence of diabetes in NOD mice

    NARCIS (Netherlands)

    K. Buschard (Karsten); A.K. Hansen; K. Jensen (Karen); D.J. Lindenbergh-Kortleve (Dicky); L.F. de Ruiter (Lilian); T.C. Krohn (Thomas); M.R. Hufeldt (Majbritt); F.K. Vogensen (Finn); B. Aasted (Bent); T. Osterbye (Thomas); B.O. Roep (Bart); C.J. de Haar (Colin); E.E.S. Nieuwenhuis (Edward)

    2011-01-01

    textabstractBackground: Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. Methods: The study included cellular in vitro tests using α-galactosylceramide (αGalCer), and in vivo NOD mice

  16. Characterization of the Interaction of Staphylococcal Entertoxin B with CD1d Expressed in Human Renal Proximal Tubule Epithelial Cells

    Science.gov (United States)

    2015-02-04

    underscored by its influences on the performances of natural killer T- cells and thereby mediates the innate and adaptive immune systems. Results... cells to the non- lymphoid cell types derived from kidney [13], spleen [14], lungs [15], and gut [16]. Recent findings demonstrating the translocation...pathogenesis has been in- vestigated in the past, primarily focused on the lymphoid cells [37-41], while the knowledge gap exists in compre- hending

  17. Critical role for CD1d-restricted invariant NKT cells in stimulating intrahepatic CD8 T-cell responses to liver antigen

    NARCIS (Netherlands)

    Sprengers, Dave; Sillé, Fenna C. M.; Derkow, Katja; Besra, Gurdyal S.; Janssen, Harry L. A.; Schott, Eckart; Boes, Marianne

    2008-01-01

    V alpha14 invariant natural killer T cells (iNKT) are localized in peripheral tissues such as the liver rather than lymphoid tissues. Therefore, their role in modulating the stimulation of conventional, major histocompatibility complex (MHC)-restricted T-cell responses has remained ambiguous. We

  18. Posture does not matter! Paw usage and grasping paw preference in a small-bodied rooting quadrupedal mammal.

    Science.gov (United States)

    Joly, Marine; Scheumann, Marina; Zimmermann, Elke

    2012-01-01

    Recent results in birds, marsupials, rodents and nonhuman primates suggest that phylogeny and ecological factors such as body size, diet and postural habit of a species influence limb usage and the direction and strength of limb laterality. To examine to which extent these findings can be generalised to small-bodied rooting quadrupedal mammals, we studied trees shrews (Tupaia belangeri). We established a behavioural test battery for examining paw usage comparable to small-bodied primates and tested 36 Tupaia belangeri. We studied paw usage in a natural foraging situation (simple food grasping task) and measured the influence of varying postural demands (triped, biped, cling, sit) on paw preferences by applying a forced-food grasping task similar to other small-bodied primates. Our findings suggest that rooting tree shrews prefer mouth over paw usage to catch food in a natural foraging situation. Moreover, we demonstrated that despite differences in postural demand, tree shrews show a strong and consistent individual paw preference for grasping across different tasks, but no paw preference at a population level. Tree shrews showed less paw usage than small-bodied quadrupedal and arboreal primates, but the same paw preference. Our results confirm that individual paw preferences remain constant irrespective of postural demand in some small-bodied quadrupedal non primate and primate mammals which do not require fine motoric control for manipulating food items. Our findings suggest that the lack of paw/hand preference for grasping food at a population level is a universal pattern among those species and that the influence of postural demand on manual lateralisation in quadrupeds may have evolved in large-bodied species specialised in fine manipulations of food items.

  19. Posture does not matter! Paw usage and grasping paw preference in a small-bodied rooting quadrupedal mammal.

    Directory of Open Access Journals (Sweden)

    Marine Joly

    Full Text Available BACKGROUND: Recent results in birds, marsupials, rodents and nonhuman primates suggest that phylogeny and ecological factors such as body size, diet and postural habit of a species influence limb usage and the direction and strength of limb laterality. To examine to which extent these findings can be generalised to small-bodied rooting quadrupedal mammals, we studied trees shrews (Tupaia belangeri. METHODOLOGY/PRINCIPAL FINDINGS: We established a behavioural test battery for examining paw usage comparable to small-bodied primates and tested 36 Tupaia belangeri. We studied paw usage in a natural foraging situation (simple food grasping task and measured the influence of varying postural demands (triped, biped, cling, sit on paw preferences by applying a forced-food grasping task similar to other small-bodied primates. Our findings suggest that rooting tree shrews prefer mouth over paw usage to catch food in a natural foraging situation. Moreover, we demonstrated that despite differences in postural demand, tree shrews show a strong and consistent individual paw preference for grasping across different tasks, but no paw preference at a population level. CONCLUSIONS/SIGNIFICANCE: Tree shrews showed less paw usage than small-bodied quadrupedal and arboreal primates, but the same paw preference. Our results confirm that individual paw preferences remain constant irrespective of postural demand in some small-bodied quadrupedal non primate and primate mammals which do not require fine motoric control for manipulating food items. Our findings suggest that the lack of paw/hand preference for grasping food at a population level is a universal pattern among those species and that the influence of postural demand on manual lateralisation in quadrupeds may have evolved in large-bodied species specialised in fine manipulations of food items.

  20. Taxonomy Icon Data: Javan tree shrew [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Javan tree shrew Tupaia javanica Chordata/Vertebrata/Mammalia/Theria/Eutheria/etc. Tupaia_java...nica_L.png Tupaia_javanica_NL.png Tupaia_javanica_S.png Tupaia_javanica_NS.png http://bioscienced...bc.jp/taxonomy_icon/icon.cgi?i=Tupaia+javanica&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tupaia+java...nica&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tupaia+javanica&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tupaia+javanica&t=NS ...

  1. Isolation and identification of symbiotic bacteria from the skin, mouth, and rectum of wild and captive tree shrews.

    Science.gov (United States)

    Li, Gui; Lai, Ren; Duan, Gang; Lyu, Long-Bao; Zhang, Zhi-Ye; Liu, Huang; Xiang, Xun

    2014-11-18

    Endosymbionts influence many aspects of their hosts' health conditions, including physiology, development, immunity, metabolism, etc. Tree shrews (Tupaia belangeri chinensis) have attracted increasing attention in modeling human diseases and therapeutic responses due to their close relationship with primates. To clarify the situation of symbiotic bacteria from their body surface, oral cavity, and anus, 12 wild and 12 the third generation of captive tree shrews were examined. Based on morphological and cultural characteristics, physiological and biochemical tests, as well as the 16S rDNA full sequence analysis, 12 bacteria strains were isolated and identified from the wild tree shrews: body surface: Bacillus subtilis (detection rate 42%), Pseudomonas aeruginosa (25%), Staphlococcus aureus (33%), S. Epidermidis (75%), Micrococcus luteus (25%), Kurthia gibsonii (17%); oral cavity: Neisseria mucosa (58%), Streptococcus pneumonia (17%); anus: Enterococcus faecalis (17%), Lactococus lactis (33%), Escherichia coli (92%), Salmonella typhosa (17%); whereas, four were indentified from the third generation captive tree shrews: body surface: S. epidermidis (75%); oral cavity: N.mucosa (67%); anus: L. lactis (33%), E. coli (100%). These results indicate that S. epidermidis, N. mucosa, L. lactis and E. coli were major bacteria in tree shrews, whereas, S. aureus, M. luteus, K. gibsonii, E. faecalis and S. typhosa were species-specific flora. This study facilitates the future use of tree shrews as a standard experimental animal and improves our understanding of the relationship between endosymbionts and their hosts.

  2. Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex.

    Science.gov (United States)

    Sonnay, Sarah; Poirot, Jordan; Just, Nathalie; Clerc, Anne-Catherine; Gruetter, Rolf; Rainer, Gregor; Duarte, João M N

    2018-03-01

    Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (V NT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of V NT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes. © 2017 Wiley Periodicals, Inc.

  3. Molecular evolution of the neurohypophysial hormone precursors in mammals: Comparative genomics reveals novel mammalian oxytocin and vasopressin analogues.

    Science.gov (United States)

    Wallis, Michael

    2012-11-01

    Among vertebrates the neurohypophysial hormones show considerable variation. However, in eutherian mammals they have been considered rather conserved, with arginine vasopressin (AVP) and oxytocin (OT) in all species except pig and some relatives, where lysine vasopressin replaces AVP. The availability of genomic data for a wide range of mammals makes it possible to assess whether these peptides and their precursors may be more variable in Eutheria than previously suspected. A survey of these data confirms that AVP and OT occur in most eutherians, but with exceptions. In a New-World monkey (marmoset, Callithrix jacchus) and in tree shrew (Tupaia belangeri), Pro(8)OT replaces OT, confirming a recent report for these species. In armadillo (Dasypus novemcinctus) Leu(3)OT replaces OT, while in tenrec (Echinops telfairi) Thr(4)AVP replaces AVP. In these two species there is also evidence for additional genes/pseudogenes, encoding much-modified forms of AVP, but in most other eutherian species there is no evidence for additional neurohypophysial hormone genes. Evolutionary analysis shows that sequences of eutherian neurohypophysial hormone precursors are generally strongly conserved, particularly those regions encoding active peptide and neurophysin. The close association between OT and VP genes has led to frequent gene conversion of sequences encoding neurophysins. A monotreme, platypus (Ornithorhynchus anatinus) has genes for OT and AVP, organized tail-to-tail as in eutherians, but in marsupials 3-4 genes are present for neurohypophysial hormones, organized tail-to-head as in lower vertebrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Identification and Characterization of Liver MicroRNAs of the Chinese Tree Shrew via Deep Sequencing.

    Science.gov (United States)

    Feng, Yue; Feng, Yue-Mei; Feng, Yang; Lu, Caixia; Liu, Li; Sun, Xiaomei; Dai, Jiejie; Xia, Xueshan

    2015-10-01

    Chinese tree shrew (Tupaia belangeri chinensis) is a small animal that possess many features, which are valuable in biomedical research, as experimental models. Currently, there are numerous attempts to utilize tree shrews as models for hepatitis C virus (HCV) infection. This study aimed to construct a liver microRNA (miRNA) data of the tree shrew. Three second filial generation tree shrews were used in this study. Total RNA was extracted from each liver of the tree shrew and equal quality mixed, then reverse-transcribed to complementary DNA (cDNA). The cDNAs were amplified by polymerase chain reaction and subjected to high-throughput sequencing. A total of 2060 conserved miRNAs were identified through alignment with the mature miRNAs in miRBase 20.0 database. The gene ontology and Kyoto encyclopedia of genes and genomes analyses of the target genes of the miRNAs revealed several candidate miRNAs, genes and pathways that may involve in the process of HCV infection. The abundance of miR-122 and Let-7 families and their other characteristics provided us more evidences for the utilization of this animal, as a potential model for HCV infection and other related biomedical research. Moreover, 80 novel microRNAs were predicted using the software Mireap. The top 3 abundant miRNAs were validated in other tree samples, based on stem-loop quantitative reverse transcription-polymerase chain reaction. According to the liver microRNA data of Chinese tree shrew, characteristics of the miR-122 and Let-7 families further highlight the suitability of tree shrew as the animal model in HCV research.

  5. System for Rapid, Precise Modulation of Intraocular Pressure, toward Minimally-Invasive In Vivo Measurement of Intracranial Pressure.

    Directory of Open Access Journals (Sweden)

    Max A Stockslager

    Full Text Available Pathologic changes in intracranial pressure (ICP are commonly observed in a variety of medical conditions, including traumatic brain injury, stroke, brain tumors, and glaucoma. However, current ICP measurement techniques are invasive, requiring a lumbar puncture or surgical insertion of a cannula into the cerebrospinal fluid (CSF-filled ventricles of the brain. A potential alternative approach to ICP measurement leverages the unique anatomy of the central retinal vein, which is exposed to both intraocular pressure (IOP and ICP as it travels inside the eye and through the optic nerve; manipulating IOP while observing changes in the natural pulsations of the central retinal vein could potentially provide an accurate, indirect measure of ICP. As a step toward implementing this technique, we describe the design, fabrication, and characterization of a system that is capable of manipulating IOP in vivo with <0.1 mmHg resolution and settling times less than 2 seconds. In vitro tests were carried out to characterize system performance. Then, as a proof of concept, we used the system to manipulate IOP in tree shrews (Tupaia belangeri while video of the retinal vessels was recorded and the caliber of a selected vein was quantified. Modulating IOP using our system elicited a rapid change in the appearance of the retinal vein of interest: IOP was lowered from 10 to 3 mmHg, and retinal vein caliber sharply increased as IOP decreased from 7 to 5 mmHg. Another important feature of this technology is its capability to measure ocular compliance and outflow facility in vivo, as demonstrated in tree shrews. Collectively, these proof-of-concept demonstrations support the utility of this system to manipulate IOP for a variety of useful applications in ocular biomechanics, and provide a framework for further study of the mechanisms of retinal venous pulsation.

  6. Pulvinar projections to the striatum and amygdala

    Directory of Open Access Journals (Sweden)

    Jonathan D Day-Brown

    2010-11-01

    Full Text Available Visually-guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as blindsight. Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC and pulvinar nucleus. To define potential pathways that underlie behavioral responses to unperceived visual stimuli, we examined the projections from the pulvinar nucleus to the striatum and amygdala in the tree shrew (Tupaia belangeri, a species considered to be a protypical primate. The tree shrew brain has a large pulvinar nucleus that contains two SC-recipient subdivisions; the dorsal (Pd and central (Pc pulvinar both receive topographic (specific projections from SC, and Pd receives an additional nontopographic (diffuse projection from SC (Chomsung et al., 2008; JCN 510:24-46. Anterograde and retrograde tract tracing revealed that both Pd and Pc project to the caudate and putamen, and Pd, but not Pc, additionally projects to the lateral amygdala. Using immunocytochemical staining for substance P (SP and parvalbumin (PV to reveal the patch/matrix organization of tree shrew striatum, we found that SP-rich/PV-poor patches interlock with a PV-rich/SP-poor matrix. Confocal microscopy revealed that tracer-labeled pulvinostriatal terminals preferentially innervate the matrix. Electron microscopy revealed that the postsynaptic targets of tracer-labeled pulvino-striatal and pulvino-amygdala terminals are spines, demonstrating that the pulvinar nucleus projects to the spiny output cells of the striatum matrix and the lateral amygdala, potentially relaying: 1 topographic visual information from SC to striatum to aid in guiding precise movements, and 2 nontopographic visual information from SC to the amygdala alerting the animal to potentially dangerous visual images.

  7. Structural Analysis Of CD59 Of Chinese Tree Shrew: A New Reference Molecule For Human Immune System Specific CD59 Drug Discovery.

    Science.gov (United States)

    Panda, Subhamay; Kumari, Leena; Panda, Santamay

    2017-11-17

    Chinese tree shrews (Tupaia belangeri chinensis) bear several characteristics that are considered to be very crucial for utilizing in animal experimental models in biomedical research. Subsequent to the identification of key aspects and signaling pathways in nervous and immune systems, it is revealed that tree shrews acquires shared common as well as unique characteristics, and hence offers a genetic basis for employing this animal as a prospective model for biomedical research. CD59 glycoprotein, commonly referred to as MAC-inhibitory protein (MAC-IP), membrane inhibitor of reactive lysis (MIRL), or protectin, is encoded by the CD59 gene in human beings. It is the member of the LY6/uPAR/alpha-neurotoxin protein family. With this initial point the objective of this study was to determine a comparative composite based structure of CD59 of Chinese tree shrew. The additional objective of this study was to examine the distribution of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, hydrophobicity molecular surface analysis and electrostatic potential analysis with the assistance of several bioinformatical analytical tools. CD59 Amino acid sequence of Chinese tree shrew collected from the online database system of National Centre for Biotechnology Information. SignalP 4.0 online server was employed for detection of signal peptide instance within the protein sequence of CD59. Molecular model structure of CD59 protein was generated by the Iterative Threading ASSEmbly Refinement (I-TASSER) suite. The confirmation for three-dimensional structural model was evaluated by structure validation tools. Location of negatively and positively charged amino acid over molecular modeled structure, distribution of secondary structural elements, and hydrophobicity molecular surface analysis was performed with the help of Chimera tool. Electrostatic potential analysis was carried out with the adaptive Poisson

  8. Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts.

    Science.gov (United States)

    Liu, Wei; Krump, Nathan A; MacDonald, Margo; You, Jianxin

    2018-02-15

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse ( Mus musculus ), rabbit ( Oryctolagus cuniculus ), rat ( Rattus norvegicus ), chimpanzee ( Pan troglodytes ), rhesus macaque ( Macaca mulatta ), patas monkey ( Erythrocebus patas ), common woolly monkey ( Lagothrix lagotricha ), red-chested mustached tamarin ( Saguinus labiatus ), and tree shrew ( Tupaia belangeri ). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression. IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel

  9. CD4+ type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes

    DEFF Research Database (Denmark)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank

    2012-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic ß cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry ...

  10. Animal models for HCV and HBV studies

    Directory of Open Access Journals (Sweden)

    Isabelle Chemin

    2007-02-01

    the infectivity of infectious clones of HCV without chimpanzees. Chimpanzees became infected when RNA transcripts from molecular clones were inoculated directly into the liver. The infection generated by such transfection did not differ significantly from that observed in animals infected intravenously with wild-type HCV. It furthermore permits true homologous challenge in studies of protective immunity and in testing the efficacy of vaccine candidates.

    Finally, this in vivo transfection system has made it possible to test for the first time the importance of genetic elements for HCV infectivity.

    Although chimpanzees are the only animals fully permissive for HBV infection, their use for research purpose is severely limited by the high costs and strong ethical constrains. The only alternative source of HBV-permissive hepatocytes is the Asian tree shrew Tupaia belangeri. Though experimental infection of these squirrel-like mammals, phylogenetically related to primates, results only in a mild, transient replication, primary hepatocytes isolated from T. belangeri turned out to be a reliable tool for in vitro HBV infection experiments.

    Along with invaluable infection studies in chimpanzees, avian and mammalian HBV-related viruses continue to offer ample opportunities for studies in naturally occurring hosts. In general, most of our progresses in hepatitis B virus research are based on infection studies with two HBV-related animal viruses: the woodchuck HBV (WHV, which infects the Eastern American woodchuck (Marmota monax, and the duck HBV (DHBV, which infects Peking ducks. Both animal models have been essential for understanding various steps of viral life-cycle and factors involved in establishment of virus

  11. Crosstalk between type II NKT cells and T cells leads to spontaneous chronic inflammatory liver disease.

    Science.gov (United States)

    Weng, Xiufang; He, Ying; Visvabharathy, Lavanya; Liao, Chia-Min; Tan, Xiaosheng; Balakumar, Arjun; Wang, Chyung-Ru

    2017-10-01

    Natural killer T (NKT) cells are CD1d-restricted innate-like T cells that modulate innate and adaptive immune responses. Unlike the well-characterized invariant/type I NKT cells, type II NKT cells with a diverse T cell receptor repertoire are poorly understood. This study defines the pathogenic role of type II NKT cells in the etiology of chronic liver inflammation. Transgenic mice with the Lck promoter directing CD1d overexpression on T cells in Jα18 wild-type (Lck-CD1dTgJα18 + ; type I NKT cell sufficient) and Jα18-deficient (Lck-CD1dTgJα18 o , type I NKT cell deficient) mice were analyzed for liver pathology and crosstalk between type II NKT cells and conventional T cells. CD1d expression on T cells in peripheral blood samples and liver sections from autoimmune hepatitis patients and healthy individuals were also examined. Lck-CD1dTgJα18 o and Lck-CD1dTgJα18 + mice developed similar degrees of liver pathology resembling chronic autoimmune hepatitis in humans. Increased CD1d expression on T cells promoted the activation of type II NKT cells and other T cells. This resulted in T h 1-skewing and impaired T h 2 cytokine production in type II NKT cells. Dysfunction of type II NKT cells was accompanied by conventional T cell activation and pro-inflammatory cytokine production, leading to a hepatic T/B lymphocyte infiltration, elevated autoantibodies and hepatic injury in Lck-CD1dTg mice. A similar mechanism could be extended to humans as CD1d expression is upregulated on activated human T cells and increased presence of CD1d-expressing T cells was observed in autoimmune hepatitis patients. Our data reveals enhanced crosstalk between type II NKT cells and conventional T cells, leading to a T h 1-skewed inflammatory milieu, and consequently, to the development of chronic autoimmune liver disease. Lay summary: CD1d overexpression on T cells enhances crosstalk between type II NKT cells and T cells, resulting in their aberrant activation and leading to the

  12. Innate-like control of human iNKT cell autoreactivity via the hypervariable CDR3beta loop.

    Directory of Open Access Journals (Sweden)

    Gediminas Matulis

    2010-06-01

    Full Text Available Invariant Natural Killer T cells (iNKT are a versatile lymphocyte subset with important roles in both host defense and immunological tolerance. They express a highly conserved TCR which mediates recognition of the non-polymorphic, lipid-binding molecule CD1d. The structure of human iNKT TCRs is unique in that only one of the six complementarity determining region (CDR loops, CDR3beta, is hypervariable. The role of this loop for iNKT biology has been controversial, and it is unresolved whether it contributes to iNKT TCR:CD1d binding or antigen selectivity. On the one hand, the CDR3beta loop is dispensable for iNKT TCR binding to CD1d molecules presenting the xenobiotic alpha-galactosylceramide ligand KRN7000, which elicits a strong functional response from mouse and human iNKT cells. However, a role for CDR3beta in the recognition of CD1d molecules presenting less potent ligands, such as self-lipids, is suggested by the clonal distribution of iNKT autoreactivity. We demonstrate that the human iNKT repertoire comprises subsets of greatly differing TCR affinity to CD1d, and that these differences relate to their autoreactive functions. These functionally different iNKT subsets segregate in their ability to bind CD1d-tetramers loaded with the partial agonist alpha-linked glycolipid antigen OCH and structurally different endogenous beta-glycosylceramides. Using surface plasmon resonance with recombinant iNKT TCRs and different ligand-CD1d complexes, we demonstrate that the CDR3beta sequence strongly impacts on the iNKT TCR affinity to CD1d, independent of the loaded CD1d ligand. Collectively our data reveal a crucial role for CDR3beta for the function of human iNKT cells by tuning the overall affinity of the iNKT TCR to CD1d. This mechanism is relatively independent of the bound CD1d ligand and thus forms the basis of an inherent, CDR3beta dependent functional hierarchy of human iNKT cells.

  13. Neurofibromin 1 Impairs Natural Killer T-Cell-Dependent Antitumor Immunity against a T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Jianyun Liu

    2018-01-01

    Full Text Available Neurofibromin 1 (NF1 is a tumor suppressor gene encoding a Ras GTPase that negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms of antitumor immunity, CD1d-dependent natural killer T (NKT cells play an important role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and Type-II NKT cells impair host antitumor immunity. We have previously shown that CD1d-mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of NKT cells, we analyzed the NKT-cell population as well as the functional expression of CD1d in Nf1+/− mice. Nf1+/− mice were found to have similar levels of NKT cells as wildtype (WT littermates. Interestingly, however, reduced CD1d expression was observed in Nf1+/− mice compared with their WT littermates. When inoculated with a T-cell lymphoma in vivo, Nf1+/− mice survived longer than their WT littermates. Furthermore, blocking CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/− mice. In contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/− mice, but not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.

  14. Role of Natural Killer Cells in the Innate Immune System After Intraportal Islet Transplantation in Mice.

    Science.gov (United States)

    Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H

    Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. [Regulatory B cells activated by CpG-ODN combined with anti-CD40 monoclonal antibody inhibit CD4(+)T cell proliferation].

    Science.gov (United States)

    Wang, Keng; Tao, Lei; Su, Jianbing; Zhang, Yueyang; Zou, Binhua; Wang, Yiyuan; Li, Xiaojuan

    2016-09-01

    Objective To observe the immunosuppressive function of regulatory B cells (Bregs) in vitro after activated by CpG oligodeoxynucleotide (CpG-ODN) and anti-CD40 mAb. Methods Mice splenic CD5(+)CD1d(high)B cells and CD5(-)CD1d(low)B cells were sorted by flow cytometry. These B cells were first stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours, and then co-cultured with purified CD4(+)T cells. The interleukin 10 (IL-10) expression in the activated Bregs and other B cell subset, as well as the proliferation and interferon γ (IFN-γ) expression in the CD4(+) T cells activated by anti-CD3 mAb plus anti-CD28 mAb were determined by flow cytometry. Results CD5(+)CD1d(high) B cells activated by CpG-ODN plus anti-CD40 mAb blocked the up-regulated CD4(+)T proliferation and significantly reduced the IFN-γ level. At the same time, activated CD5(-)CD1d(low)B cells showed no inhibitory effect on CD4(+)T cells. Further study revealed that IL-10 expression in the CD5(+)CD1d(high) B cells were much higher than that in the CD5(-)CD1d(low)B cells after stimulated with CpG-ODN combined with anti-CD40 mAb for 24 hours. Conclusion CD5(+)CD1d(high) B cells activated by CpG-ODN combined with anti-CD40 mAb have immune inhibitory effects on CD4(+)T cell activation in vitro , which possibly due to IL-10 secretion.

  16. iNKT Cells and Their potential Lipid Ligands during Viral Infection

    Directory of Open Access Journals (Sweden)

    Anunya eOpasawatchai

    2015-07-01

    Full Text Available Invariant natural killer T (iNKT cells are a unique population of lipid reactive CD1d restricted innate-like T lymphocytes. Despite being a minor population, they serve as an early source of cytokines and promote immunological crosstalk thus bridging innate and adaptive immunity. Diseases ranging from allergy, autoimmunity, and cancer as well as infectious diseases, including viral infection, have been reported to be influenced by iNKT cells. However, it remains unclear how iNKT cells are activated during viral infection, as virus derived lipid antigens have not been reported. Cytokines may activate iNKT cells during infections from influenza and murine cytomegalovirus (MCMV, although CD1d dependent activation is evident in other viral infections. Several viruses, such as dengue virus (DENV, induce CD1d upregulation which correlates with iNKT cell activation. In contrast, Herpes simplex virus type 1 (HSV-1, Human immunodeficiency virus (HIV, Epstein-Barr virus (EBV and Human papiloma virus (HPV promote CD1d downregulation as a strategy to evade iNKT cell recognition. These observations suggest the participation of a CD1d-dependent process in the activation of iNKT cells in response to viral infection. Endogenous lipid ligands, including phospholipids as well as glycosphingolipids, such as glucosylceramide have been proposed to mediate iNKT cell activation. Pro-inflammatory signals produced during viral infection may stimulate iNKT cells through enhanced CD1d dependent endogenous lipid presentation. Furthermore, viral infection may alter lipid composition and inhibit endogenous lipid degradation. Recent advances in this field are reviewed.

  17. Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease.

    Science.gov (United States)

    Maricic, Igor; Girardi, Enrico; Zajonc, Dirk M; Kumar, Vipin

    2014-11-01

    Lipids presented by the MHC class I-like molecule, CD1d, are recognized by NK T (NKT) cells, which can be broadly categorized into two subsets. The well-characterized type I NKT cells express a semi-invariant TCR and can recognize both α- and β-linked glycolipids, whereas type II NKT cells are less well studied, express a relatively diverse TCR repertoire, and recognize β-linked lipids. Recent structural studies have shown a distinct mode of recognition of a self-glycolipid sulfatide bound to CD1d by a type II NKT TCR. To further characterize Ag recognition by these cells, we have used the structural data and screened other small molecules able to bind to CD1d and activate type II NKT cells. Using plate-bound CD1d and APC-based Ag presentation assay, we found that phospholipids such as lysophosphatidylcholine (LPC) can stimulate the sulfatide-reactive type II NKT hybridoma Hy19.3 in a CD1d-dependent manner. Using plasmon resonance studies, we found that this type II NKT TCR binds with CD1d-bound LPC with micromolar affinities similar to that for sulfatide. Furthermore, LPC-mediated activation of type II NKT cells leads to anergy induction in type I NKT cells and affords protection from Con A-induced hepatitis. These data indicate that, in addition to self-glycolipids, self-lysophospholipids are also recognized by type II NKT cells. Because lysophospholipids are involved during inflammation, our findings have implications for not only understanding activation of type II NKT cells in physiological settings, but also for the development of immune intervention in inflammatory diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  18. IFN-γ-producing NKT cells exacerbate sepsis by enhancing C5a generation via IL-10-mediated inhibition of CD55 expression on neutrophils.

    Science.gov (United States)

    Kim, Ji Hyung; Oh, Sae Jin; Ahn, Sehee; Chung, Doo Hyun

    2014-07-01

    A role for NKT cells has been implicated in sepsis, but the mechanism by which NKT cells contribute to sepsis remains unclear. Here, we examined WT and NKT-cell-deficient mice of C57BL/6 background during cecal ligation and puncture-induced sepsis. The levels of C5a, IFN-γ, and IL-10 were higher in the serum and peritoneal fluid of WT mice than in those of CD1d(-/-) mice, while the mortality rate was lower in CD1d(-/-) mice than in WT mice. C5a blockade decreased mortality of WT mice during sepsis, whereas it did not alter that of CD1d(-/-) mice. As assessed by intracellular staining, NKT cells expressed IFN-γ, while neutrophils expressed IL-10. Upon coculture, IL-10-deficient NKT cells enhanced IL-10 production by WT, but not IFN-γR-deficient, neutrophils. Meanwhile, CD1d(-/-) mice exhibited high CD55 expression on neutrophils during sepsis, whereas those cells from WT mice expressed minimal levels of CD55. Recombinant IL-10 administration into CD1d(-/-) mice reduced CD55 expression on neutrophils. Furthermore, adoptive transfer of sorted WT, but not IFN-γ-deficient, NKT cells into CD1d(-/-) mice suppressed CD55 expression on neutrophils, but increased IL-10 and C5a levels. Taken together, IFN-γ-producing NKT cells enhance C5a generation via IL-10-mediated inhibition of CD55 expression on neutrophils, thereby exacerbating sepsis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates.

    Science.gov (United States)

    Kriegs, Jan Ole; Churakov, Gennady; Jurka, Jerzy; Brosius, Jürgen; Schmitz, Jürgen

    2007-04-01

    The evolutionary relationships of 7SL RNA-derived SINEs such as the primate Alu or the rodent B1 elements have hitherto been obscure. We established an unambiguous phylogenetic tree for Supraprimates, and derived intraordinal relationships of the 7SL RNA-derived SINEs. As well as new elements in Tupaia and primates, we also found that the purported ancestral fossil Alu monomer was restricted to Primates, and provide here the first description of a potential chimeric promoter box region in SINEs.

  20. Metabolism, Seizures, and Blood Flow in Brain Following Organophosphate Exposure: Mechanisms of Action and Possible Therapeutic Agents

    Science.gov (United States)

    1991-01-31

    and energy metabolism changes in acute ammonia Intoxication in the lower primate Tupaia glus. J. Lab. Clin. Med. 106: 183-186. 63. G~foe, D. D. (1982...Relaxation to transmural nerve stimulation and exogenously added norepinephrine in porcine cerebral vessels. A study utilizing cerebro - vascular intrinsic... primates against soman poisoning by pretreatment with pyridostigmine. J. Pharm. Pharmacol. 31:295-299. 174. Harris, L. W., Heyl, W. C., Stitcher, D. L., and

  1. Cutting edge: Rapid recovery of NKT cells upon institution of highly active antiretroviral therapy for HIV-1 infection

    NARCIS (Netherlands)

    van der Vliet, Hans J. J.; van Vonderen, Marit G. A.; Molling, Johan W.; Bontkes, Hetty J.; Reijm, Martine; Reiss, Peter; van Agtmael, Michiel A.; Danner, Sven A.; van den Eertwegh, Alfons J. M.; von Blomberg, B. Mary E.; Scheper, Rik J.

    2006-01-01

    CD1d-restricted NKT cells play important regulatory roles in various immune responses and are rapidly and selectively depleted upon infection with HIV-1. The cause of this selective depletion is incompletely understood, although it is in part due to the high susceptibility of CD4+ NKT cells to

  2. Raising the roof: the preferential pharmacological stimulation of Th1 and th2 responses mediated by NKT cells.

    Science.gov (United States)

    East, James E; Kennedy, Andrew J; Webb, Tonya J

    2014-01-01

    Natural killer T (NKT) cells serve as a bridge between the innate and adaptive immune systems, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease, and cancer. NKT cells are a subset of T cells that express cell-surface markers characteristic of both natural killer cells and T cells. These unique immunologic cells have been demonstrated to serve as a link between the innate and adaptive immune systems through their potent cytokine production following the recognition of a range of lipid antigens, mediated through presentation of the major histocompatibility complex (MHC) class I like CD1d molecule, in addition to the NKT cell's cytotoxic capabilities upon activation. Although a number of glycolipid antigens have been shown to complex with CD1d molecules, most notably the marine sponge derived glycolipid alpha-galactosylceramide (α-GalCer), there has been debate as to the identity of the endogenous activating lipid presented to the T-cell receptor (TCR) via the CD1d molecule on antigen-presenting cells (APCs). This review aims to survey the use of pharmacological agents and subsequent structure-activity relationships (SAR) that have given insight into the binding interaction of glycolipids with both the CD1d molecules as well as the TCR and the subsequent immunologic response of NKT cells. These studies not only elucidate basic binding interactions but also pave the way for future pharmacological modulation of NKT cell responses. © 2012 Wiley Periodicals, Inc.

  3. The Functions of Type I and Type II Natural Killer T (NKT) Cells in Inflammatory Bowel Diseases

    Science.gov (United States)

    Liao, Chia-Min; Zimmer, Michael I.; Wang, Chyung-Ru

    2013-01-01

    CD1d-restricted natural killer T (NKT) cells are a distinct subset of T cells that rapidly produce an array of cytokines upon activation and play a critical role in regulating various immune responses. NKT cells are classified into two groups based on differences in T cell receptor (TCR) usage. Type I NKT cells have an invariant TCRα-chain and are readily detectable by α-galactosylceramide (α-GalCer)-loaded CD1d tetramers. Type II NKT cells have a more diverse TCR repertoire and cannot be directly identified. Both types of NKT cells as well as multiple CD1d-expressing cell types are present in the intestine and their interactions are likely to be modulated by pathogenic and commensal microbes, which in turn contribute to the intestinal immune responses in health and disease. Indeed, in several animal models of inflammatory bowel disease (IBD), Type I NKT cells have been shown to make both protective and pathogenic contributions to disease. In contrast, in human patients suffering from ulcerative colitis (UC), and a mouse model in which both CD1d expression and the frequency of Type II NKT cells are increased, Type II NKT cells appear to promote intestinal inflammation. In this review, we summarize present knowledge on the antigen recognition, activation and function of NKT cells with a particular focus on their role in IBD, and discuss factors that may influence the functional outcome of NKT cell responses in intestinal inflammation. PMID:23518808

  4. Different subsets of natural killer T cells may vary in their roles in health and disease

    Science.gov (United States)

    Kumar, Vipin; Delovitch, Terry L

    2014-01-01

    Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid–CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes. PMID:24428389

  5. Selective decrease in circulating V alpha 24+V beta 11+ NKT cells during HIV type 1 infection

    NARCIS (Netherlands)

    van der Vliet, Hans J. J.; von Blomberg, B. Mary E.; Hazenberg, Mette D.; Nishi, Nobusuke; Otto, Sigrid A.; van Benthem, Birgit H.; Prins, Maria; Claessen, Frans A.; van den Eertwegh, Alfons J. M.; Giaccone, Giuseppe; Miedema, Frank; Scheper, Rik J.; Pinedo, Herbert M.

    2002-01-01

    CD1d-restricted NKT cells express an invariant TCR and have been demonstrated to play an important regulatory role in a variety of immune responses. Invariant NKT cells down-regulate autoimmune responses by production of type 2 cytokines and can initiate antitumor and antimicrobial immune responses

  6. NKT cells mediate the recruitment of neutrophils by stimulating epithelial chemokine secretion during colitis.

    Science.gov (United States)

    Huang, Enyu; Liu, Ronghua; Lu, Zhou; Liu, Jiajing; Liu, Xiaoming; Zhang, Dan; Chu, Yiwei

    2016-05-27

    Ulcerative colitis (UC) is a kind of inflammatory bowel diseases characterized by chronic inflammation and ulcer in colon, and UC patients have increased risk of getting colorectal cancer. NKT cells are cells that express both NK cell markers and semi-invariant CD1d-restricted TCRs, can regulate immune responses via secreting a variety of cytokines upon activation. In our research, we found that the NKT cell-deficient CD1d(-/-) mice had relieved colitis in the DSS-induced colitis model. Further investigations revealed that the colon of CD1d(-/-) mice expressed less neutrophil-attracting chemokine CXCL 1, 2 and 3, and had decreased neutrophil infiltration. Infiltrated neutrophils also produced less reactive oxygen species (ROS) and TNF-α, indicating they may cause less epithelial damage. In addition, colitis-associated colorectal cancer was also relieved in CD1d(-/-) mice. During colitis, NKT cells strongly expressed TNF-α, which could stimulate CXCL 1, 2, 3 expressions by the epithelium. In conclusion, NKT cells can regulate colitis via the NKT cell-epithelium-neutrophil axis. Targeting this mechanism may help to improve the therapy of UC and prevent colitis-associated colorectal cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Raising the Roof: The Preferential Pharmacological Stimulation of Th1 and Th2 Responses Mediated by NKT Cells

    Science.gov (United States)

    East, James E.; Kennedy, Andrew J.; Webb, Tonya J.

    2014-01-01

    Natural killer T (NKT) cells serve as a bridge between the innate and adaptive immune systems, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease, and cancer. NKT cells are a subset of T cells that express cell-surface markers characteristic of both natural killer cells and T cells. These unique immunologic cells have been demonstrated to serve as a link between the innate and adaptive immune systems through their potent cytokine production following the recognition of a range of lipid antigens, mediated through presentation of the major histocompatibility complex (MHC) class I like CD1d molecule, in addition to the NKT cell′s cytotoxic capabilities upon activation. Although a number of glycolipid antigens have been shown to complex with CD1d molecules, most notably the marine sponge derived glycolipid alpha-galactosylceramide (α-GalCer), there has been debate as to the identity of the endogenous activating lipid presented to the T-cell receptor (TCR) via the CD1d molecule on antigen-presenting cells (APCs). This review aims to survey the use of pharmacological agents and subsequent structure–activity relationships (SAR) that have given insight into the binding interaction of glycolipids with both the CD1d molecules as well as the TCR and the subsequent immunologic response of NKT cells. These studies not only elucidate basic binding interactions but also pave the way for future pharmacological modulation of NKT cell responses. PMID:23239102

  8. Maternal low protein diet leads to dysregulation of placental iNKT cells and M1/M2 macrophage ratio, body weight loss in male, neonate Sprague-Dawley rats and increased UCP-1 mediated thermogenesis

    Science.gov (United States)

    Placental immune cells provide cytokines and growth factors that are necessary for placenta development and function. Invariant natural killer T (iNKT) cells are innate cells specific for glycolipid antigens presented by the CD1d molecule and secrete Th1 cytokines in the placenta, suggesting an imm...

  9. NK cell-like behavior of Valpha14i NK T cells during MCMV infection.

    Directory of Open Access Journals (Sweden)

    Johnna D Wesley

    2008-07-01

    Full Text Available Immunity to the murine cytomegalovirus (MCMV is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/- mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/- mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.

  10. Immunologic glycosphingolipidomics and NKT cell development in mouse thymus

    DEFF Research Database (Denmark)

    Li, Yunsen; Thapa, Prakash; Hawke, David

    2009-01-01

    Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting...

  11. CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs.

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-09-15

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.

  12. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma.

    Science.gov (United States)

    McKnight, Christopher G; Morris, Suzanne C; Perkins, Charles; Zhu, Zhenqi; Hildeman, David A; Bendelac, Albert; Finkelman, Fred D

    2017-01-01

    CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD). Because we find 2-3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT) mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb) to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.

  13. NKT cells contribute to basal IL-4 production but are not required to induce experimental asthma.

    Directory of Open Access Journals (Sweden)

    Christopher G McKnight

    Full Text Available CD1d-deficiency results in a selective deletion of NKT cells in mice that is reported to prevent murine allergic airway disease (AAD. Because we find 2-3 fold lower basal IL-4 production in CD1d- mice than in wild-type (WT mice, we hypothesized that the contribution made by NKT cells to AAD would depend on the strength of the stimulus used to induce the disease. Consequently, we compared CD1d-deficient mice to WT mice in the development of AAD, using several models of disease induction that differed in the type and dose of allergen, the site of sensitization and the duration of immunization. Surprisingly we found equivalent allergic inflammation and airway disease in WT and CD1d- mice in all models investigated. Consistent with this, NKT cells constituted only ~2% of CD4+ T cells in the lungs of mice with AAD, and IL-4-transcribing NKT cells did not expand with disease induction. Concerned that the congenital absence of NKT cells might have caused a compensatory shift within the immune response, we administered an anti-CD1d monoclonal Ab (mAb to block NKT function before airway treatments, before or after systemic sensitization to antigen. Such Ab treatment did not affect disease severity. We suggest that the differences reported in the literature regarding the significance of NKT cells in the induction of allergic airway disease may have less to do with the methods used to study the disease and more to do with the animals themselves and/or the facilities used to house them.

  14. The combined action of mast cell chymase, tryptase and carboxypeptidase A3 protects against melanoma colonization of the lung

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Paivandy, Aida; Gustafson, Ann-Marie

    2017-01-01

    Mast cell secretory granules are densely packed with various bioactive mediators including proteases of chymase, tryptase and CPA3 type. Previous studies have indicated that mast cells can affect the outcome of melanoma but the contribution of the mast cell granule proteases to such effects has......, suggesting that multiple mast cell protease deficiency might affect T cell or NKT cell populations. In line with this, we found that the Mcpt4/Mcpt6/Cpa3-deficiency was associated with a reduction in cells expressing CD1d, a MHC class 1-like molecule that is crucial for presenting antigen to invariant NKT (i......NKT) cells. Together, these findings indicate a protective role of mast cell-specific proteases in melanoma dissemination, and suggest that this effect involves a CXCL16/CD1d/NKT cell axis....

  15. Critical role for thymic CD19+CD5+CD1dhiIL-10+ regulatory B cells in immune homeostasis.

    Science.gov (United States)

    Xing, Chen; Ma, Ning; Xiao, He; Wang, Xiaoqian; Zheng, Mingke; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Shen, Beifen; Li, Yan; Wang, Renxi

    2015-03-01

    This study tested the hypothesis that besides the spleen, LNs, peripheral blood, and thymus contain a regulatory IL-10-producing CD19(+)CD5(+)CD1d(high) B cell subset that may play a critical role in the maintenance of immune homeostasis. Indeed, this population was identified in the murine thymus, and furthermore, when cocultured with CD4(+) T cells, this population of B cells supported the maintenance of CD4(+)Foxp3(+) Tregs in vitro, in part, via the CD5-CD72 interaction. Mice homozygous for Cd19(Cre) (CD19(-/-)) express B cells with impaired signaling and humoral responses. Strikingly, CD19(-/-) mice produce fewer CD4(+)Foxp3(+) Tregs and a greater percentage of CD4(+)CD8(-) and CD4(-)CD8(+) T cells. Consistent with these results, transfer of thymic CD19(+)CD5(+)CD1d(hi) B cells into CD19(-/-) mice resulted in significantly up-regulated numbers of CD4(+)Foxp3(+) Tregs with a concomitant reduction in CD4(+)CD8(-) and CD4(-)CD8(+) T cell populations in the thymus, spleen, and LNs but not in the BM of recipient mice. In addition, thymic CD19(+)CD5(+)CD1d(hi) B cells significantly suppressed autoimmune responses in lupus-like mice via up-regulation of CD4(+)Foxp3(+) Tregs and IL-10-producing Bregs. This study suggests that thymic CD19(+)CD5(+)CD1d(hi)IL-10(+) Bregs play a critical role in the maintenance of immune homeostasis. © Society for Leukocyte Biology.

  16. CD8+NKT-like cells regulate the immune response by killing antigen-bearing DCs

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-01-01

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8+NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8+NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8+NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8+NKT-like cell development is normal in CD1d−/− mice, which suggests that CD8+NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8+NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8+NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8+NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens. PMID:26369936

  17. Natural killer T cells in lipoprotein metabolism and atherosclerosis

    OpenAIRE

    Getz, Godfrey S; VanderLaan, Paul A; Reardon, Catherine A

    2011-01-01

    Cells of both the innate and adaptive immune system participate in the development of atherosclerosis, a chronic inflammatory disorder of medium and large arteries. Natural killer T (NKT) cells express surface markers characteristic of natural killer cells and conventional T cells and bridge the innate and adaptive immune systems. The development and activation of NKT cells is dependent upon CD1d, a MHC-class I-type molecule that presents lipids, especially glycolipids to the TCR on NKT cells...

  18. Establishment of a vascular endothelial cell-reactive type II NKT cell clone from a rat model of autoimmune vasculitis.

    Science.gov (United States)

    Iinuma, Chihiro; Waki, Masashi; Kawakami, Ai; Yamaguchi, Madoka; Tomaru, Utano; Sasaki, Naomi; Masuda, Sakiko; Matsui, Yuki; Iwasaki, Sari; Baba, Tomohisa; Kasahara, Masanori; Yoshiki, Takashi; Paletta, Daniel; Herrmann, Thomas; Ishizu, Akihiro

    2015-02-01

    We previously generated a rat model that spontaneously developed small vessel vasculitis (SVV). In this study, a T cell clone reactive with rat vascular endothelial cells (REC) was established and named VASC-1. Intravenous injection of VASC-1 induced SVV in normal recipients. VASC-1 was a TCRαβ/CD3-positive CD4/CD8 double-negative T cell clone with expression of NKG2D. The cytokine mRNA profile under unstimulated condition was positive for IL-4 and IFN-γ but negative for IL-2 and IL-10. After interaction with REC, the mRNA expression of IL-2, IL-5 and IL-6 was induced in VASC-1, which was inhibited by blocking of CD1d on the REC surface. Although the protein levels of these cytokines seemed to be lower than the detection limit in the culture medium, IFN-γ was detectable. The production of IFN-γ from the VASC-1 stimulated with LPS-pre-treated REC was inhibited by the CD1d blockade on the REC. These findings indicated VASC-1 as an NKT cell clone. The NKT cell pool includes two major subsets, namely types I and II. Type I NKT cells are characterized by expression of semi-invariant TCRs and the potential to bind to marine sponge-derived α-galactosylceramide (α-GalCer) loaded on CD1d; whereas, type II NKT cells do not manifest these characteristics. VASC-1 exhibited a usage of TCR other than the type I invariant TCR α chain and did not bind to α-GalCer-loaded CD1d; therefore, it was determined as a type II NKT cell clone. The collective evidence suggested that REC-reactive type II NKT cells could be involved in the pathogenesis of SVV in rats. © The Japanese Society for Immunology. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Involvement of the iNKT Cell Pathway Is Associated With Early-Onset Eosinophilic Esophagitis and Response to Allergen Avoidance Therapy

    Science.gov (United States)

    Lexmond, Willem S.; Neves, Joana F.; Nurko, Samuel; Olszak, Torsten; Exley, Mark A.; Blumberg, Richard S.; Fiebiger, Edda

    2014-01-01

    OBJECTIVES Recent experimental evidence suggests that environmental microbial factors early in life determine susceptibility to allergic diseases through inappropriate chemotaxis and local activation of CD1d-restricted, invariant chain natural killer T (iNKT) cells. In this study, we analyzed the involvement of these pathways in pediatric patients with eosinophilic esophagitis (EoE) before and after dietary allergen elimination. METHODS mRNA expression levels of components of the C-X-C motif chemokine ligand 16 (CXCL16)–iNKT–CD1d axis were compared in esophageal biopsies from EoE patients vs. normal or inflammatory controls and before and after treatment. RESULTS CXCL16, iNKT cell–associated cell marker Vα24, and CD1d were significantly upregulated in esophageal biopsies from EoE patients and correlated with the expression of inflammatory mediators associated with allergy. Upregulation of each of these factors was significantly more pronounced in patients aged < 6 years at diagnosis, and this early-onset EoE subpopulation was characterized by a more prominent food allergic disease phenotype in a cohort-wide analysis. Successful, but not unsuccessful, treatment of early-onset EoE patients with dietary elimination of instigating allergens led to reduction in infiltrating iNKT cells and complete normalization of mRNA expression levels of CXCL16 and CD1d. CONCLUSIONS Our observations place iNKT cells at the center of allergic inflammation associated with EoE, which could have profound implications for our understanding, treatment and prevention of this and other human allergic diseases. PMID:24513807

  20. Leishmania infantum Exoproducts Inhibit Human Invariant NKT Cell Expansion and Activation

    Directory of Open Access Journals (Sweden)

    Renata Belo

    2017-06-01

    Full Text Available Leishmania infantum is one of the major parasite species associated with visceral leishmaniasis, a severe form of the disease that can become lethal if untreated. This obligate intracellular parasite has developed diverse strategies to escape the host immune response, such as exoproducts (Exo carrying a wide range of molecules, including parasite virulence factors, which are potentially implicated in early stages of infection. Herein, we report that L. infantum Exo and its two fractions composed of extracellular vesicles (EVs and vesicle-depleted-exoproducts (VDEs inhibit human peripheral blood invariant natural killer T (iNKT cell expansion in response to their specific ligand, the glycolipid α-GalactosylCeramide (α-GalCer, as well as their capacity to promptly produce IL-4 and IFNγ. Using plate-bound CD1d and α-GalCer, we found that Exo, EV, and VDE fractions reduced iNKT cell activation in a dose-dependent manner, suggesting that they prevented α-GalCer presentation by CD1d molecules. This direct effect on CD1d was confirmed by the observation that CD1d:α-GalCer complex formation was impaired in the presence of Exo, EV, and VDE fractions. Furthermore, lipid extracts from the three compounds mimicked the inhibition of iNKT cell activation. These lipid components of L. infantum exoproducts, including EV and VDE fractions, might compete for CD1-binding sites, thus blocking iNKT cell activation. Overall, our results provide evidence for a novel strategy through which L. infantum can evade immune responses of mammalian host cells by preventing iNKT lymphocytes from recognizing glycolipids in a TCR-dependent manner.

  1. Human Invariant Natural Killer T Cells Respond to Antigen-Presenting Cells Exposed to Lipids from Olea europaea Pollen.

    Science.gov (United States)

    Abos Gracia, Beatriz; López Relaño, Juan; Revilla, Ana; Castro, Lourdes; Villalba, Mayte; Martín Adrados, Beatriz; Regueiro, Jose Ramon; Fernández-Malavé, Edgar; Martínez Naves, Eduardo; Gómez Del Moral, Manuel

    2017-01-01

    Allergic sensitization might be influenced by the lipids present in allergens, which can be recognized by natural killer T (NKT) cells on antigen-presenting cells (APCs). The aim of this study was to analyze the effect of olive pollen lipids in human APCs, including monocytes as well as monocyte-derived macrophages (Mϕ) and dendritic cells (DCs). Lipids were extracted from olive (Olea europaea) pollen grains. Invariant (i)NKT cells, monocytes, Mϕ, and DCs were obtained from buffy coats of healthy blood donors, and their cell phenotype was determined by flow cytometry. iNKT cytotoxicity was measured using a lactate dehydrogenase assay. Gene expression of CD1A and CD1D was performed by RT-PCR, and the production of IL-6, IL-10, IL-12, and TNF-α cytokines by monocytes, Mϕ, and DCs was measured by ELISA. Our results showed that monocytes and monocyte-derived Mϕ treated with olive pollen lipids strongly activate iNKT cells. We observed several phenotypic modifications in the APCs upon exposure to pollen-derived lipids. Both Mϕ and monocytes treated with olive pollen lipids showed an increase in CD1D gene expression, whereas upregulation of cell surface CD1d protein occurred only in Mϕ. Furthermore, DCs differentiated in the presence of human serum enhance their surface CD1d expression when exposed to olive pollen lipids. Finally, olive pollen lipids were able to stimulate the production of IL-6 but downregulated the production of lipopolysaccharide- induced IL-10 by Mϕ. Olive pollen lipids alter the phenotype of monocytes, Mϕ, and DCs, resulting in the activation of NKT cells, which have the potential to influence allergic immune responses. © 2017 S. Karger AG, Basel.

  2. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo

    Science.gov (United States)

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M.; Brennan, Patrick J.; Banerjee, Pinaki P.; Wiener, Susan J.; Orange, Jordan S.; Brenner, Michael B.; Grupp, Stephan A.; Nichols, Kim E.

    2013-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we find that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially-induced by iNKT cell agonists of varying TCR affinities, such as OCH, α-galactosyl ceramide and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of T cell receptor (TCR) signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell-deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T-lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T-lymphoma. PMID:24563871

  3. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo .

    Science.gov (United States)

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M; Brennan, Patrick J; Banerjee, Pinaki P; Wiener, Susan J; Orange, Jordan S; Brenner, Michael B; Grupp, Stephan A; Nichols, Kim E

    2014-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we found that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially induced by iNKT cell agonists of varying T-cell receptor (TCR) affinities, such as OCH, α-galactosyl ceramide, and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of TCR signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell–deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T lymphoma. ©2013 AACR.

  4. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging

    International Nuclear Information System (INIS)

    Duman, M; Pfleger, M; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Ebner, A; Schuetz, G J; Hinterdorfer, P; Zhu, R; Mayer, B; Rankl, C; Moertelmaier, M; Kada, G; Kienberger, F; Salio, M; Shepherd, D; Polzella, P; Cerundolo, V; Dieudonne, M

    2010-01-01

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on α-galactosylceramide (αGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from ∼ 25 to ∼ 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  5. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding.

    Directory of Open Access Journals (Sweden)

    Brittany V Martin-Murphy

    Full Text Available Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD. Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens. There is general consensus that NKT cells are pivotal regulators of inflammation; however, disagreement exists as to whether NKT cells exert pathogenic or suppressive functions in obesity. Here we demonstrate that CD1d(-/- mice, which lack NKT cells, were more susceptible to weight gain and fatty liver following high fat diet (HFD feeding. Compared with their WT counterparts, CD1d(-/- mice displayed increased adiposity and greater induction of inflammatory genes in the liver suggestive of the precursors of NAFLD. Calorimetry studies revealed a significant increase in food intake and trends toward decreased metabolic rate and activity in CD1d(-/- mice compared with WT mice. Based on these findings, our results suggest that NKT cells play a regulatory role that helps to prevent diet-induced obesity and metabolic dysfunction and may play an important role in mechanisms governing cross-talk between metabolism and the immune system to regulate energy balance and liver health.

  6. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer.

    Science.gov (United States)

    Marrero, Idania; Ware, Randle; Kumar, Vipin

    2015-01-01

    Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer.

  7. NKT Cell Subsets Can Exert Opposing Effects in Autoimmunity, Tumor Surveillance and Inflammation

    Science.gov (United States)

    Viale, Rachael; Ware, Randle; Maricic, Igor; Chaturvedi, Varun; Kumar, Vipin

    2014-01-01

    The innate-like natural killer T (NKT) cells are essential regulators of immunity. These cells comprise at least two distinct subsets and recognize different lipid antigens presented by the MHC class I like molecules CD1d. The CD1d-dependent recognition pathway of NKT cells is highly conserved from mouse to humans. While most type I NKT cells can recognize αGalCer and express a semi-invariant T cell receptor (TCR), a major population of type II NKT cells reactive to sulfatide utilizes an oligoclonal TCR. Furthermore TCR recognition features of NKT subsets are also distinctive with almost parallel as opposed to perpendicular footprints on the CD1d molecules for the type I and type II NKT cells respectively. Here we present a view based upon the recent studies in different clinical and experimental settings that while type I NKT cells are more often pathogenic, they may also be regulatory. On the other hand, sulfatide-reactive type II NKT cells mostly play an inhibitory role in the control of autoimmune and inflammatory diseases. Since the activity and cytokine secretion profiles of NKT cell subsets can be modulated differently by lipid ligands or their analogs, novel immunotherapeutic strategies are being developed for their differential activation for potential intervention in inflammatory diseases. PMID:25288922

  8. NKT cells in cardiovascular diseases.

    Science.gov (United States)

    van Puijvelde, Gijs H M; Kuiper, Johan

    2017-12-05

    Despite life-style advice and the prescription of cholesterol-lowering and anti-thrombotic drugs, cardiovascular diseases are still the leading cause of death worldwide. Therefore, there is an urgent need for new therapeutic strategies focussing on atherosclerosis, the major underlying pathology of cardiovascular diseases characterized by an accumulation of lipids in an inflamed arterial/vessel wall. CD1d-restricted lipid-sensing natural killer T (NKT) cells, bridging the innate and adaptive immunity, and CD1d-expressing antigen-presenting cells are detected in atherosclerotic lesions of mice and humans. In this review we will summarize studies that point to a critical role for NKT cells in the pathogenesis of atherosclerosis and other cardiovascular diseases by the secretion of pro-atherogenic cytokines and cytotoxins. These pro-atherogenic NKT cells are potential targets for new therapeutic strategies in the prevention and treatment of cardiovascular diseases. Additionally, proteins transferring lipids during atherosclerosis, which are also important in the loading of lipids onto CD1d and possible endogenous ligands responsible for the activation of NKT cells during atherosclerosis will be discussed. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria.

    Directory of Open Access Journals (Sweden)

    Isabel Sada-Ovalle

    2008-12-01

    Full Text Available Cellular immunity to Mycobacterium tuberculosis (Mtb requires a coordinated response between the innate and adaptive arms of the immune system, resulting in a type 1 cytokine response, which is associated with control of infection. The contribution of innate lymphocytes to immunity against Mtb remains controversial. We established an in vitro system to study this question. Interferon-gamma is produced when splenocytes from uninfected mice are cultured with Mtb-infected macrophages, and, under these conditions, bacterial replication is suppressed. This innate control of bacterial replication is dependent on CD1d-restricted invariant NKT (iNKT cells, and their activation requires CD1d expression by infected macrophages as well as IL-12 and IL-18. We show that iNKT cells, even in limiting quantities, are sufficient to restrict Mtb replication. To determine whether iNKT cells contribute to host defense against tuberculosis in vivo, we adoptively transferred iNKT cells into mice. Primary splenic iNKT cells obtained from uninfected mice significantly reduce the bacterial burden in the lungs of mice infected with virulent Mtb by the aerosol route. Thus, iNKT cells have a direct bactericidal effect, even in the absence of synthetic ligands such as alpha-galactosylceramide. Our finding that iNKT cells protect mice against aerosol Mtb infection is the first evidence that CD1d-restricted NKT cells mediate protection against Mtb in vivo.

  10. Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces.

    Science.gov (United States)

    Zeissig, Sebastian; Blumberg, Richard S

    2013-12-01

    Natural Killer T (NKT) cells are a phenotypically and functionally diverse subset of T cells, which recognizes self- and microbial lipids in the context of the atypical MHC class I molecule CD1d. NKT cells exhibit potent effector functions and play critical roles in antimicrobial defense, cancer immunosurveillance and the modulation of immune-mediated disorders. Recent evidence has revealed extensive cross-regulation between the mucosal microbiota and CD1d as well as NKT cells. Microbial exposure at mucosal surfaces, particularly during early postnatal development, regulates NKT cell trafficking and function in the intestine and the lung and determines the susceptibility to NKT cell-mediated inflammatory disorders. Conversely, CD1d controls the composition of the intestinal microbiota; perhaps through the regulation of Paneth cell function. Here, we provide an overview of recent findings on the crosstalk between the microbiota and NKT cells and discuss the implication for mucosal homeostasis and its dysregulation in inflammatory disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Recognition of lyso-phospholipids by human natural killer T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Lisa M Fox

    2009-10-01

    Full Text Available Natural killer T (NKT cells are a subset of T lymphocytes with potent immunoregulatory properties. Recognition of self-antigens presented by CD1d molecules is an important route of NKT cell activation; however, the molecular identity of specific autoantigens that stimulate human NKT cells remains unclear. Here, we have analyzed human NKT cell recognition of CD1d cellular ligands. The most clearly antigenic species was lyso-phosphatidylcholine (LPC. Diacylated phosphatidylcholine and lyso-phosphoglycerols differing in the chemistry of the head group stimulated only weak responses from human NKT cells. However, lyso-sphingomyelin, which shares the phosphocholine head group of LPC, also activated NKT cells. Antigen-presenting cells pulsed with LPC were capable of stimulating increased cytokine responses by NKT cell clones and by freshly isolated peripheral blood lymphocytes. These results demonstrate that human NKT cells recognize cholinated lyso-phospholipids as antigens presented by CD1d. Since these lyso-phospholipids serve as lipid messengers in normal physiological processes and are present at elevated levels during inflammatory responses, these findings point to a novel link between NKT cells and cellular signaling pathways that are associated with human disease pathophysiology.

  12. CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes.

    Science.gov (United States)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank; Briet, Claire; Löfbom, Linda; Yagita, Hideo; Lehuen, Agnes; Boitard, Christian; Holmberg, Dan; Sorokin, Lydia; Cardell, Susanna L

    2012-04-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.

  13. The Adaptor Protein SAP Regulates Type II NKT Cell Development, Cytokine Production and Cytotoxicity Against Lymphoma1

    Science.gov (United States)

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L.; Stein, Paul L.; Wang, Chyung-Ru

    2014-01-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule-associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT cell TCR transgenic mouse model (24αβTg), we demonstrated that CD1d-expressing hematopoietic cells but not thymic epithelial cells meditate efficient selection of type II NKT cells. Further, we showed that SAP regulates type II NKT cell development by controlling Egr2 and PLZF expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IRF4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. PMID:25236978

  14. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Duman, M; Pfleger, M; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Ebner, A; Schuetz, G J; Hinterdorfer, P [Institute for Biophysics, University of Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Zhu, R; Mayer, B [Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Rankl, C; Moertelmaier, M; Kada, G; Kienberger, F [Agilent Technologies Austria GmbH, Aubrunnerweg 11, A-4040 Linz (Austria); Salio, M; Shepherd, D; Polzella, P; Cerundolo, V [Cancer Research UK Tumor Immunology Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS (United Kingdom); Dieudonne, M, E-mail: ferry_kienberger@agilent.com [Agilent Technologies Belgium, Wingepark 51, Rotselaar, AN B-3110 (Belgium)

    2010-03-19

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on {alpha}-galactosylceramide ({alpha}GalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from {approx} 25 to {approx} 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  15. Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response

    Science.gov (United States)

    Zhao, Jie; Weng, Xiufang; Bagchi, Sreya; Wang, Chyung-Ru

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells are innate-like T cells with potent immunomodulatory function via rapid production of both Th1 and Th2 cytokines. NKT cells comprise well-characterized type I NKT cells, which can be detected by α-galactosylceramide-loaded CD1d tetramers, and less-studied type II NKT cells, which do not recognize α-galactosylceramide. Here we characterized type II NKT cells on a polyclonal level by using a Jα18-deficient IL-4 reporter mouse model. This model allows us to track type II NTK cells by the GFP+TCRβ+ phenotype in the thymus and liver. We found type II NKT cells, like type I NKT cells, exhibit an activated phenotype and are dependent on the transcriptional regulator promyelocytic leukemia zinc finger (PLZF) and the adaptor molecule signaling lymphocyte activation molecule-associated protein (SAP) for their development. Type II NKT cells are potently activated by β-D-glucopyranosylceramide (β-GlcCer) but not sulfatide or phospholipids in a CD1d-dependent manner, with the stimulatory capacity of β-GlcCer influenced by acyl chain length. Compared with type I NKT cells, type II NKT cells produce lower levels of IFN-γ but comparable amounts of IL-13 in response to polyclonal T-cell receptor stimulation, suggesting they may play different roles in regulating immune responses. Furthermore, type II NKT cells can be activated by CpG oligodeoxynucletides to produce IFN-γ, but not IL-4 or IL-13. Importantly, CpG-activated type II NKT cells contribute to the antitumor effect of CpG in the B16 melanoma model. Taken together, our data reveal the characteristics of polyclonal type II NKT cells and their potential role in antitumor immunotherapy. PMID:24550295

  16. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Science.gov (United States)

    Venkataswamy, Manjunatha M; Ng, Tony W; Kharkwal, Shalu S; Carreño, Leandro J; Johnson, Alison J; Kunnath-Velayudhan, Shajo; Liu, Zheng; Bittman, Robert; Jervis, Peter J; Cox, Liam R; Besra, Gurdyal S; Wen, Xiangshu; Yuan, Weiming; Tsuji, Moriya; Li, Xiangming; Ho, David D; Chan, John; Lee, Sunhee; Frothingham, Richard; Haynes, Barton F; Panas, Michael W; Gillard, Geoffrey O; Sixsmith, Jaimie D; Korioth-Schmitz, Birgit; Schmitz, Joern E; Larsen, Michelle H; Jacobs, William R; Porcelli, Steven A

    2014-01-01

    Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  17. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells.

    Directory of Open Access Journals (Sweden)

    Manjunatha M Venkataswamy

    Full Text Available Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag. We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.

  18. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    Science.gov (United States)

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The molecular bases of δ/αβ T cell-mediated antigen recognition.

    Science.gov (United States)

    Pellicci, Daniel G; Uldrich, Adam P; Le Nours, Jérôme; Ross, Fiona; Chabrol, Eric; Eckle, Sidonia B G; de Boer, Renate; Lim, Ricky T; McPherson, Kirsty; Besra, Gurdyal; Howell, Amy R; Moretta, Lorenzo; McCluskey, James; Heemskerk, Mirjam H M; Gras, Stephanie; Rossjohn, Jamie; Godfrey, Dale I

    2014-12-15

    αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1(+) human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity. © 2014 Pellicci et al.

  20. The molecular bases of δ/αβ T cell–mediated antigen recognition

    Science.gov (United States)

    Pellicci, Daniel G.; Uldrich, Adam P.; Le Nours, Jérôme; Ross, Fiona; Chabrol, Eric; Eckle, Sidonia B.G.; de Boer, Renate; Lim, Ricky T.; McPherson, Kirsty; Besra, Gurdyal; Howell, Amy R.; Moretta, Lorenzo; McCluskey, James; Heemskerk, Mirjam H.M.; Gras, Stephanie

    2014-01-01

    αβ and γδ T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the αβ and γδ T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term δ/αβ T cells, expressing TCRs comprised of a TCR-δ variable gene (Vδ1) fused to joining α and constant α domains, paired with an array of TCR-β chains. We demonstrate that these cells, which represent ∼50% of all Vδ1+ human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively. Similar to type I natural killer T (NKT) cells, CD1d-lipid Ag-reactive δ/αβ T cells recognized α-galactosylceramide (α-GalCer); however, their fine specificity for other lipid Ags presented by CD1d, such as α-glucosylceramide, was distinct from type I NKT cells. Thus, δ/αβTCRs contribute new patterns of Ag specificity to the human immune system. Furthermore, we provide the molecular bases of how δ/αβTCRs bind to their targets, with the Vδ1-encoded region providing a major contribution to δ/αβTCR binding. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer Ag specificity, thus expanding our understanding of T cell biology and TCR diversity. PMID:25452463

  1. Innate immunity drives the initiation of a murine model of primary biliary cirrhosis.

    Directory of Open Access Journals (Sweden)

    Chao-Hsuan Chang

    Full Text Available Invariant natural killer T (iNKT cells play complex roles in bridging innate and adaptive immunity by engaging with glycolipid antigens presented by CD1d. Our earlier work suggested that iNKT cells were involved in the initiation of the original loss of tolerance in primary biliary cirrhosis (PBC. To address this issue in more detail and, in particular, to focus on whether iNKT cells activated by a Th2-biasing agonist (2s,3s,4r-1-O-(α-D-galactopyranosyl-N-tetracosanoyl-2-amino-1,3,4-nonanetriol (OCH, can influence the development of PBC in a xenobiotic-induced PBC murine model. Groups of mice were treated with either OCH or, as a control, α-galactosylceramide (α-GalCer and thence serially followed for cytokine production, markers of T cell activation, liver histopathology and anti-mitochondrial antibody responses. Further, additional groups of CD1d deleted mice were similarly studied. Our data indicate that administration of OCH has a dramatic influence with exacerbation of portal inflammation and hepatic fibrosis similar to mice treated with α-GalCer. Further, iNKT cell deficient CD1d knockout mice have decreased inflammatory portal cell infiltrates and reduced anti-mitochondrial antibody responses. We submit that activation of iNKT cells can occur via overlapping and/or promiscuous pathways and highlight the critical role of innate immunity in the natural history of autoimmune cholangitis. These data have implications for humans with PBC and emphasize that therapeutic strategies must focus not only on suppressing adaptive responses, but also innate immunity.

  2. Natural Killer T Cells in Cancer Immunotherapy

    Science.gov (United States)

    Nair, Shiny; Dhodapkar, Madhav V.

    2017-01-01

    Natural killer T (NKT) cells are specialized CD1d-restricted T cells that recognize lipid antigens. Following stimulation, NKT cells lead to downstream activation of both innate and adaptive immune cells in the tumor microenvironment. This has impelled the development of NKT cell-targeted immunotherapies for treating cancer. In this review, we provide a brief overview of the stimulatory and regulatory functions of NKT cells in tumor immunity as well as highlight preclinical and clinical studies based on NKT cells. Finally, we discuss future perspectives to better harness the potential of NKT cells for cancer therapy. PMID:29018445

  3. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases

    Science.gov (United States)

    Terabe, Masaki; Berzofsky, Jay A.

    2014-01-01

    NKT cells are CD1d-restricted T cells that recognize lipid antigens. They also have been shown to play critical roles in the regulation of immune responses. In the immune responses against tumors, two subsets of NKT cells, type I and type II, play opposing roles and cross-regulate each other. As members of both the innate and adaptive immune systems, which form a network of multiple components, they also interact with other immune components. Here we discuss the function of NKT cells in tumor immunity and their interaction with other regulatory cells, especially CD4+CD25+Foxp3+ regulatory T cells. PMID:24384834

  4. NKT cells can help mediate the protective effects of 1,25-dihydroxyvitamin D3 in experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Waddell, Amanda; Zhao, Jun; Cantorna, Margherita T

    2015-05-01

    Active vitamin D [1,25-dihydroxyvitamin D3 (1,25D3)] blocks the development of experimental autoimmune diseases. However, the molecular and immunobiological mechanisms underlying 1,25D3's anti-inflammatory properties are not fully understood. We employed a murine model of experimental autoimmune encephalomyelitis (EAE) in order to determine the role of NKT cells in 1,25D3-mediated protection from EAE. Wild-type (WT) mice or mice lacking all NKT cells (CD1d(-/-)) or invariant NKT cells (Jα18(-/-)) were fed control or 1,25D3-supplemented diets. All mice fed with the control diet developed severe EAE. 1,25D3 treatment of WT mice protected them from developing EAE. CD1d(-/-) and Jα18(-/-) mice treated with 1,25D3 were not protected to the same extent as WT mice. Myelin oligodendrocyte glycoprotein-specific IL-17 and IFN-γ production was significantly reduced in 1,25D3 WT mice compared with WT but was not decreased in 1,25D3 CD1d(-/-) mice compared with CD1d(-/-) mice. IL-4(-/-) mice were utilized to determine how IL-4 deficiency affects susceptibility to EAE. IL-4(-/-) mice were not protected from developing EAE by α-galactosylceramide (α-GalCer) or 1,25D3 treatment. Furthermore, 1,25D3 treatment of splenocytes in vitro decreased α-GalCer-induced IL-17 and increased IL-4, IL-5 and IL-10 production. 1,25D3 alters the cytokine profile of invariant NKT cells in vitro. These studies demonstrate that NKT cells are important mediators of 1,25D3-induced protection from EAE in mice and NKT cell-derived IL-4 may be an important factor in providing this protection. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. NKAP regulates iNKT cell proliferation and differentiation into ROR-��t expressing NKT17 cells

    OpenAIRE

    Thapa, Puspa; Chen, Meibo W.; McWilliams, Douglas C.; Belmonte, Paul; Constans, Megan; Sant���Angelo, Derek B.; Shapiro, Virginia Smith

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a unique lineage with characteristics of both adaptive and innate lymphocytes, and recognize glycolipid presented by an MHC Class I-like CD1d molecule. During thymic development, iNKT cells also differentiate into NKT1, NKT2 and NKT17 functional subsets that preferentially produce cytokines IFN-��, IL-4 and IL-17, respectively, upon activation. Newly selected iNKT cells undergo a burst of proliferation, which is defective in mice with a specific del...

  6. Papel de las células nkt invariantes en la respuesta inmune anti-viral

    OpenAIRE

    Román, Alejandro; Rugeles, María Teresa; Montoya, Carlos Julio

    2006-01-01

    Las células T asesinas naturales con receptor de células T invariante y restringidas por la molécula CD1d (iNKT) son un subgrupo de linfocitos con potente actividad inmunorreguladora; su respuesta casi inmediata y la capacidad de producir citoquinas tanto Th1 como Th2 son factores determinantes en el desarrollo de la respuesta inmune innata y adaptativa. El papel fisiológico de las células iNKT se ha documentado ampliamente en la respuesta anti-tumoral, el desarrollo de la tolerancia en los ó...

  7. Activation mechanisms of invariant natural killer T cells (iNKTs)

    OpenAIRE

    Baena García, Andrés; Gómez Giraldo, Lina; Carreño, Leandro J.

    2016-01-01

    Aunque se ha logrado un conocimiento amplio acerca de las células T asesinas naturales (iNKT), aún no existe consenso sobre sus mecanismos de activación. Dichas células reconocen diferentes antígenos glicolipídicos presentados por medio de la molécula CD1d, los cuales pueden ser endógenos, exógenos derivados de organismos como bacterias y sintéticos desarrollados para aplicaciones clínicas. Existe mucho interés en entender cómo estas distintas variantes glicolipídicas inducen diferentes tipos...

  8. Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Benjamin S Mantell

    Full Text Available The contribution of natural killer T (NKT cells to the pathogenesis of metabolic abnormalities of obesity is controversial. While the combined genetic deletion of NKT and CD8(+ T-cells improves glucose tolerance and reduces inflammation, interpretation of these data have been complicated by the recent observation that the deletion of CD8(+ T-cells alone reduces obesity-induced inflammation and metabolic dysregulation, leaving the issue of the metabolic effects of NKT cell depletion unresolved. To address this question, CD1d null mice (CD1d(-/-, which lack NKT cells but have a full complement of CD8(+ T-cells, and littermate wild type controls (WT on a pure C57BL/6J background were exposed to a high fat diet, and glucose intolerance, insulin resistance, dyslipidemia, inflammation, and obesity were assessed. Food intake (15.5±4.3 vs 15.3±1.8 kcal/mouse/day, weight gain (21.8±1.8 vs 22.8±1.4 g and fat mass (18.6±1.9 vs 19.5±2.1 g were similar in CD1d(-/- and WT, respectively. As would be expected from these data, metabolic rate (3.0±0.1 vs 2.9±0.2 ml O(2/g/h and activity (21.6±4.3 vs 18.5±2.6 beam breaks/min were unchanged by NKT cell depletion. Furthermore, the degree of insulin resistance, glucose intolerance, liver steatosis, and adipose and liver inflammatory marker expression (TNFα, IL-6, IL-10, IFN-γ, MCP-1, MIP1α induced by high fat feeding in CD1d(-/- were not different from WT. We conclude that deletion of NKT cells, in the absence of alterations in the CD8(+ T-cell population, is insufficient to protect against the development of the metabolic abnormalities of diet-induced obesity.

  9. Resetting the T Cell Repertoire in Prostate Cancer Bearing Host

    Science.gov (United States)

    2009-03-01

    Science 264:703-707. 32. Staveley-O’Carroll K, et al. (2003) In vivo ligation of CD40 enhances priming against the endogenous tumor antigen and promotes...bearing the invariant Va14 rearrangement [32,33]. Although the identity of the endogenous antigen presented by CD1d is still unclear, a synthetic...with a BrdU Flow Kit, as described by manufacturer (BD PharMingen). Induction of ConA induced hepatitis Con A (Sigma, C0412) was dissolved in pyrogen

  10. Moussa virus: a new member of the Rhabdoviridae family isolated from Culex decens mosquitoes in Côte d'Ivoire.

    Science.gov (United States)

    Quan, Phenix-Lan; Junglen, Sandra; Tashmukhamedova, Alla; Conlan, Sean; Hutchison, Stephen K; Kurth, Andreas; Ellerbrok, Heinz; Egholm, Michael; Briese, Thomas; Leendertz, Fabian H; Lipkin, W Ian

    2010-01-01

    Characterization of arboviruses at the interface of pristine habitats and anthropogenic landscapes is crucial to comprehensive emergent disease surveillance and forecasting efforts. In context of a surveillance campaign in and around a West African rainforest, particles morphologically consistent with rhabdoviruses were identified in cell cultures infected with homogenates of trapped mosquitoes. RNA recovered from these cultures was used to derive the first complete genome sequence of a rhabdovirus isolated from Culex decens mosquitoes in Côte d'Ivoire, tentatively named Moussa virus (MOUV). MOUV shows the classical genome organization of rhabdoviruses, with five open reading frames (ORF) in a linear order. However, sequences show only limited conservation (12-33% identity at amino acid level), and ORF2 and ORF3 have no significant similarity to sequences deposited in GenBank. Phylogenetic analysis indicates a potential new species with distant relationship to Tupaia and Tibrogargan virus.

  11. Moussa virus: a new member of the Rhabdoviridae family isolated from Culex decens mosquitoes in Côte d’Ivoire

    Science.gov (United States)

    Quan, Phenix-Lan; Junglen, Sandra; Tashmukhamedova, Alla; Conlan, Sean; Hutchison, Stephen K.; Kurth, Andreas; Ellerbrok, Heinz; Egholm, Michael; Briese, Thomas; Leendertz, Fabian H.; Ian Lipkin, W

    2009-01-01

    Characterization of arboviruses at the interface of pristine habitats and anthropogenic landscapes is crucial to comprehensive emergent disease surveillance and forecasting efforts. In context of surveillance campaign in and around a West African rainforest, particles morphologically consistent with rhabdoviruses were identified in cell cultures infected with homogenates of trapped mosquitoes. RNA recovered from these cultures was used to derive the first complete genome sequence of a rhabdovirus isolated from Culex decens mosquitoes in Côte d’Ivoire, tentatively named Moussa virus (MOUV). MOUV shows the classical genome organization of rhabdoviruses, with five open reading frames (ORF) in a linear order. However, sequences show only limited conservation (12–33% identity at amino acid level), and ORF2 and ORF3 have no significant similarity to sequences deposited in GenBank. Phylogenetic analysis indicates a potential new species with distant relationship to Tupaia and Tibrogargan virus. PMID:19804801

  12. Immunotherapeutic strategies targeting Natural killer T cell responses in cancer

    Science.gov (United States)

    Shissler, Susannah C.; Bollino, Dominique R.; Tiper, Irina V.; Bates, Joshua; Derakhshandeh, Roshanak; Webb, Tonya J.

    2017-01-01

    Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T-cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where Type II cells generally suppress tumor immunity while Type I NKT cells can enhance antitumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell targeted therapies for the treatment of cancer. PMID:27393665

  13. Type II Natural Killer T (NKT) Cells And Their Emerging Role In Health And Disease

    Science.gov (United States)

    Dhodapkar, Madhav V.; Kumar, Vipin

    2016-01-01

    Natural killer T (NKT) cells recognize lipid antigens presented by a class I MHC-like molecule CD1d, a member of the CD1 family. While most of the initial studies on NKT cells focused on a subset with semi-invariant T cell receptor (TCR) termed iNKT cells, majority of CD1d-restricted lipid-reactive human T cells express diverse TCRs and are termed as type II NKT cells. These cells constitute a distinct population of circulating and tissue-resident effector T cells with immune-regulatory properties. They react to a growing list of self- as well as non-self lipid ligands, and share some properties with both iNKT as well as conventional T cells. Emerging body of evidence points to their role in the regulation of immunity to pathogens/tumors and in autoimmune/metabolic disorders. Improved understanding of the biology of these cells and the ability to manipulate their function may be of therapeutic benefit in diverse disease conditions. PMID:28115591

  14. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    Directory of Open Access Journals (Sweden)

    Cátia S. Pereira

    2017-02-01

    Full Text Available Lysosomal storage diseases (LSDs are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed.

  15. Type II NKT Cells and Their Emerging Role in Health and Disease.

    Science.gov (United States)

    Dhodapkar, Madhav V; Kumar, Vipin

    2017-02-01

    NKT cells recognize lipid Ags presented by a class I MHC-like molecule CD1d, a member of the CD1 family. Although most initial studies on NKT cells focused on a subset with semi-invariant TCR termed invariant NKT cells, the majority of CD1d-restricted lipid-reactive human T cells express diverse TCRs and are termed type II NKT cells. These cells constitute a distinct population of circulating and tissue-resident effector T cells with immune-regulatory properties. They react to a growing list of self- as well as non-self-lipid ligands, and share some properties with both invariant NKT and conventional T cells. An emerging body of evidence points to their role in the regulation of immunity to pathogens/tumors and in autoimmune/metabolic disorders. An improved understanding of the biology of these cells and the ability to manipulate their function may be of therapeutic benefit in diverse disease conditions. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. NKT-cell glycolipid agonist as adjuvant in synthetic vaccine.

    Science.gov (United States)

    Liu, Zheng; Guo, Jun

    2017-11-27

    NKT cells are CD1d-restricted, glycolipid antigen-reactive, immunoregulatory T lymphocytes that can serve as a bridge between the innate and adaptive immunities. NKT cells have a wide range of therapeutic application in autoimmunity, transplant biology, infectious disease, cancer, and vaccinology. Rather than triggering "danger signal" and eliciting an innate immune response, αGalCer-based NKT-cell agonist act via a unique mechanism, recruiting NKT cells which play a T helper-like role even without peptide as Th epitope. Importantly, the non-polymorphism of CD1d render glycolipid a universal helper epitope, offering the potential to simplify the vaccine construct capable of eliciting consistent immune response in different individuals. This review details recent advances in the design of synthetic vaccines using NKT-cell agonist as adjuvant, highlighting the role of organic synthesis and conjugation technique to enhance the immunological actives and to simplify the vaccine constructs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fine tuning a well-oiled machine: Influence of NK1.1 and NKG2D on NKT cell development and function.

    Science.gov (United States)

    Joshi, Sunil K; Lang, Mark L

    2013-10-01

    Natural killer T cells (NKT) represent a group of CD1d-restricted T-lineage cells that provide a functional interface between innate and adaptive immune responses in infectious disease, cancer, allergy and autoimmunity. There have been remarkable advances in understanding the molecular events that underpin NKT development in the thymus and in the complex array of functions in the periphery. Most functional studies have focused on activation of T cell antigen receptors expressed by NKT cells and their responses to CD1d presentation of glycolipid and related antigens. Receiving less attention has been several molecules that are hallmarks of Natural Killer (NK) cells, but nonetheless expressed by NKT cells. These include several activating and inhibitory receptors that may fine-tune NKT development and survival, as well as activation via antigen receptors. Herein, we review the possible roles of the NK1.1 and NKG2D receptors in regulating development and function of NKT cells in health and disease. We suggest that pharmacological alteration of NKT activity should consider the potential complexities commensurate with NK1.1 and NKG2D expression. Published by Elsevier B.V.

  18. New ways to turn on NKT cells.

    Science.gov (United States)

    Godfrey, Dale Ian; Rossjohn, Jamie

    2011-06-06

    Natural killer T (NKT) cells are CD1d-restricted, lipid antigen-reactive T cells with powerful immunoregulatory potential. The prototypic antigen for NKT cells is a marine sponge-derived glycolipid, α-galactosylceramide (α-GalCer), but this is not normally encountered in the mammalian environment. Thus, there is great interest in the identification of more physiological stimuli for NKT cells, and numerous studies have shown that NKT cells are capable of responding to a range of microbial lipid-based antigens. Two new studies expand our understanding of environmental NKT cell stimuli, with one showing that CD1d-restricted NKT cell antigens are present within common house dust extract (HDE), whereas the other shows that NKT cells can respond to innate stimuli irrespective of the presence of foreign microbial antigens. Collectively, these two investigations indicate that NKT cells are far more likely to encounter foreign antigens, or innate activating signals, than previously recognized, suggesting a more central role for these cells in the immune system.

  19. Circulating regulatory B cell subsets in patients with neuromyelitis optica spectrum disorders.

    Science.gov (United States)

    Han, Jinming; Sun, Li; Wang, Zhongkun; Fan, Xueli; Wang, Lifang; Song, Yang-Yang; Zhu, Jie; Jin, Tao

    2017-07-01

    This study analyzed the populations of three different subsets of regulatory B cells (Bregs) in the peripheral blood mononuclear cells (PBMCs) of patients with neuromyelitis optica spectrum disorders (NMOSDs) and explored the relationship between the changes in these subsets of Bregs and the severity of NMOSD. A total of 22 patients with relapsed NMOSDs before treatment were recruited in our study, along with 20 age and gender-matched healthy controls, from May 2015 to March 2016. The percentages and numbers for three different subsets of Bregs including the CD19 + CD24 hi CD38 hi , CD19 + CD24 hi CD27 + , and CD19 + CD5 + CD1d hi populations were evaluated in parallel by flow cytometry. Afterwards, correlations between the change of three different subsets of Bregs and disease severity were analyzed. We found significantly lower percentages of CD19 + CD24 hi CD38 hi and CD19 + CD5 + CD1d hi Bregs in NMOSDs patients than in healthy individuals. In contrast, the CD19 + CD24 hi CD27 + Bregs population was significantly higher in NMOSDs patients than in healthy individuals. However, the three different Bregs subsets showed no significant correlation with expanded disability status scale (EDSS) or annualized relapse rate (ARR). Our findings suggest that the subsets of Bregs may play complex roles in the pathogenesis of NMOSDs and are not correlated with clinical disease severity. Further insights into the potential role of subsets of Bregs could increase our basic knowledge of NMOSDs pathogenesis.

  20. iNKT Cell Emigration out of the Lung Vasculature Requires Neutrophils and Monocyte-Derived Dendritic Cells in Inflammation

    Directory of Open Access Journals (Sweden)

    Ajitha Thanabalasuriar

    2016-09-01

    Full Text Available iNKT cells are a subset of innate T cells that recognize glycolipids presented on CD1d molecules and protect against bacterial infections, including S. pneumoniae. Using lung intravital imaging, we examined the behavior and mechanism of pulmonary iNKT cell activation in response to the specific iNKT cell ligand α-galactosylceramide or S. pneumoniae infection. In untreated mice, the major fraction of iNKT cells resided in the vasculature, but a small critical population resided in the extravascular space in proximity to monocyte-derived DCs. Administration of either α-GalCer or S. pneumoniae induced CD1d-dependent rapid recruitment of neutrophils out of the vasculature. The neutrophils guided iNKT cells from the lung vasculature via CCL17. Depletion of monocyte-derived DCs abrogated both the neutrophil and subsequent iNKT cell extravasation. Moreover, impairing iNKT cell recruitment by blocking CCL17 increased susceptibility to S. pneumoniae infection, suggesting a critical role for the influx of iNKT cells in host defense.

  1. Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.

    Science.gov (United States)

    Cortesi, Filippo; Delfanti, Gloria; Grilli, Andrea; Calcinotto, Arianna; Gorini, Francesca; Pucci, Ferdinando; Lucianò, Roberta; Grioni, Matteo; Recchia, Alessandra; Benigni, Fabio; Briganti, Alberto; Salonia, Andrea; De Palma, Michele; Bicciato, Silvio; Doglioni, Claudio; Bellone, Matteo; Casorati, Giulia; Dellabona, Paolo

    2018-03-13

    Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2 + , M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Functional Invariant NKT Cells in Pig Lungs Regulate the Airway Hyperreactivity: A Potential Animal Model

    Science.gov (United States)

    Manickam, Cordelia; Khatri, Mahesh; Rauf, Abdul; Li, Xiangming; Tsuji, Moriya; Rajashekara, Gireesh; Dwivedi, Varun

    2015-01-01

    Important roles played by invariant natural killer T (iNKT) cells in asthma pathogenesis have been demonstrated. We identified functional iNKT cells and CD1d molecules in pig lungs. Pig iNKT cells cultured in the presence of α-GalCer proliferated and secreted Th1 and Th2 cytokines. Like in other animal models, direct activation of pig lung iNKT cells using α-GalCer resulted in acute airway hyperreactivity (AHR). Clinically, acute AHR-induced pigs had increased respiratory rate, enhanced mucus secretion in the airways, fever, etc. In addition, we observed petechial hemorrhages, infiltration of CD4+ cells, and increased Th2 cytokines in AHR-induced pig lungs. Ex vivo proliferated iNKT cells of asthma induced pigs in the presence of C-glycoside analogs of α-GalCer had predominant Th2 phenotype and secreted more of Th2 cytokine, IL-4. Thus, baby pigs may serve as a useful animal model to study iNKT cell-mediated AHR caused by various environmental and microbial CD1d-specific glycolipid antigens. PMID:21042929

  3. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    Science.gov (United States)

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  4. Recognition of microbial glycolipids by Natural Killer T cells

    Directory of Open Access Journals (Sweden)

    Dirk Michael Zajonc

    2015-08-01

    Full Text Available T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the Major Histocompatibility (MHC family (MHC I and II, lipids, glycolipids and lipopeptides can be presented by the non-classical MHC member CD1. The best studied subset of lipid-reactive T cells are Type I Natural killer T (iNKT cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi the causative agents of Lyme disease and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR, leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18 and TCR stimulation. Many microbes carry TLR antigens and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here we will review the molecular basis of iNKT cell

  5. Harnessing Invariant NKT Cells to Improve Influenza Vaccines: A Pig Perspective

    Directory of Open Access Journals (Sweden)

    Guan Yang

    2017-12-01

    Full Text Available Invariant natural killer T (iNKT cells are an “innate-like” T cell lineage that recognize glycolipid rather than peptide antigens by their semi-invariant T cell receptors. Because iNKT cells can stimulate an extensive array of immune responses, there is considerable interest in targeting these cells to enhance human vaccines against a wide range of microbial pathogens. However, long overlooked is the potential to harness iNKT cell antigens as vaccine adjuvants for domestic animal species that express the iNKT cell–CD1d system. In this review, we discuss the prospect of targeting porcine iNKT cells as a strategy to enhance the efficiency of swine influenza vaccines. In addition, we compare the phenotype and tissue distribution of porcine iNKT cells. Finally, we discuss the challenges that must be overcome before iNKT cell agonists can be contemplated for veterinary use in livestock.

  6. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective

    Science.gov (United States)

    Kumar, Amrendra; Suryadevara, Naveenchandra; Hill, Timothy M.; Bezbradica, Jelena S.; Van Kaer, Luc; Joyce, Sebastian

    2017-01-01

    Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective. PMID:29312339

  7. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity

    Directory of Open Access Journals (Sweden)

    Luc Van Kaer

    2018-03-01

    Full Text Available Tolerance against self-antigens is regulated by a variety of cell types with immunoregulatory properties, such as CD1d-restricted invariant natural killer T (iNKT cells. In many experimental models of autoimmunity, iNKT cells promote self-tolerance and protect against autoimmunity. These findings are supported by studies with patients suffering from autoimmune diseases. Based on these studies, the therapeutic potential of iNKT cells in autoimmunity has been explored. Many of these studies have been performed with the potent iNKT cell agonist KRN7000 or its structural variants. These findings have generated promising results in several autoimmune diseases, although mechanisms by which iNKT cells modulate autoimmunity remain incompletely understood. Here, we will review these preclinical studies and discuss the prospects for translating their findings to patients suffering from autoimmune diseases.

  8. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective.

    Science.gov (United States)

    Kumar, Amrendra; Suryadevara, Naveenchandra; Hill, Timothy M; Bezbradica, Jelena S; Van Kaer, Luc; Joyce, Sebastian

    2017-01-01

    Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective.

  9. B cells exposed to enterobacterial components suppress development of experimental colitis

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Larsen, Hjalte List; Kristensen, Nanna Ny

    2012-01-01

    ). RESULTS: We demonstrate that splenic B cells exposed to ebx produce large amounts of IL-10 in vitro and express CD1d and CD5 previously known to be associated with regulatory B cells. In SCID mice transplanted with colitogenic CD4(+) CD25(-) T cells, co-transfer of ebx-B cells significantly suppressed...... development of colitis. Suppression was dependent on B cell-derived IL-10, as co-transfer of IL-10 knockout ebx-B cells failed to suppress colitis. Ebx-B cell-mediated suppression of colitis was associated with a decrease in interferon gamma (IFN-¿)-producing T(H) 1 cells and increased frequencies of Foxp3......-expressing T cells. CONCLUSIONS: These data demonstrate that splenic B cells exposed to enterobacterial components acquire immunosuppressive functions by which they can suppress development of experimental T cell-mediated colitis in an IL-10-dependent way. (Inflamm Bowel Dis 2011;)....

  10. Cellular endocytic compartment localization of expressed canine CD1 molecules

    DEFF Research Database (Denmark)

    Schjærff, Mette; Keller, Stefan M.; Affolter, Verena K.

    2016-01-01

    CD1 molecules are glycoproteins present primarily on dendritic cells (DCs), which recognize and presenta variety of foreign- and self-lipid antigens to T-cells. Humans have five different CD1 isoforms that sur-vey distinct cellular compartments allowing for recognition of a large repertoire...... onlya diminished GFP expression. In conclusion, canine CD1 transfectants show distinct localization patternsthat are similar to human CD1 proteins with the exception of the canine CD1d isoform, which most likelyis non-functional. These findings imply that canine CD1 localization overall resembles human...... CD1 traf-ficking patterns. This knowledge is important for the understanding of lipid antigen-receptor immunityin the dog....

  11. Multiple differences in gene expression in regulatory Vα24JαQ T cells from identical twins discordant for type I diabetes

    Science.gov (United States)

    Wilson, S. Brian; Kent, Sally C.; Horton, Heidi F.; Hill, Andrew A.; Bollyky, Paul L.; Hafler, David A.; Strominger, Jack L.; Byrne, Michael C.

    2000-01-01

    Quantitative and qualitative defects in CD1d-restricted T cells have been demonstrated in human and murine autoimmune diseases. To investigate the transcriptional consequences of T cell receptor activation in human Vα24JαQ T cell clones, DNA microarrays were used to quantitate changes in mRNA levels after anti-CD3 stimulation of clones derived from identical twins discordant for type 1 diabetes and IL-4 secretion. Activation resulted in significant modulation of 226 transcripts in the IL-4 secreting clone and 86 in the IL-4-null clone. Only 28 of these genes were in common. The differences observed suggest both ineffective differentiation of diabetic Vα24JαQ T cells and a role for invariant T cells in the recruitment and activation of cells from the myeloid lineage. PMID:10840051

  12. Innate-like behavior of human invariant natural killer T cells during herpes simplex virus infection.

    Science.gov (United States)

    Novakova, Lucie; Nevoralova, Zuzana; Novak, Jan

    2012-01-01

    Invariant natural killer T (iNKT) cells, CD1d restricted T cells, are involved in the immune responses against various infection agents. Here we describe their behavior during reactivation of human herpes simplex virus (HSV). iNKT cells exhibit only discrete changes, which however, reached statistically significant level due to the relatively large patient group. Higher percentage of iNKT cells express NKG2D. iNKT cells down-regulate NKG2A in a subset of patients. Finally, iNKT cells enhance their capacity to produce TNF-α. Our data suggests that iNKT cells are involved in the immune response against HSV and contribute mainly to its early, innate phase. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective

    Directory of Open Access Journals (Sweden)

    Amrendra Kumar

    2017-12-01

    Full Text Available Type I natural killer T (NKT cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo perspective.

  14. Production of α-galactosylceramide by a prominent member of the human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Laura C Wieland Brown

    2013-07-01

    Full Text Available While the human gut microbiota are suspected to produce diffusible small molecules that modulate host signaling pathways, few of these molecules have been identified. Species of Bacteroides and their relatives, which often comprise >50% of the gut community, are unusual among bacteria in that their membrane is rich in sphingolipids, a class of signaling molecules that play a key role in inducing apoptosis and modulating the host immune response. Although known for more than three decades, the full repertoire of Bacteroides sphingolipids has not been defined. Here, we use a combination of genetics and chemistry to identify the sphingolipids produced by Bacteroides fragilis NCTC 9343. We constructed a deletion mutant of BF2461, a putative serine palmitoyltransferase whose yeast homolog catalyzes the committed step in sphingolipid biosynthesis. We show that the Δ2461 mutant is sphingolipid deficient, enabling us to purify and solve the structures of three alkaline-stable lipids present in the wild-type strain but absent from the mutant. The first compound was the known sphingolipid ceramide phosphorylethanolamine, and the second was its corresponding dihydroceramide base. Unexpectedly, the third compound was the glycosphingolipid α-galactosylceramide (α-GalCer(Bf, which is structurally related to a sponge-derived sphingolipid (α-GalCer, KRN7000 that is the prototypical agonist of CD1d-restricted natural killer T (iNKT cells. We demonstrate that α-GalCer(Bf has similar immunological properties to KRN7000: it binds to CD1d and activates both mouse and human iNKT cells both in vitro and in vivo. Thus, our study reveals BF2461 as the first known member of the Bacteroides sphingolipid pathway, and it indicates that the committed steps of the Bacteroides and eukaryotic sphingolipid pathways are identical. Moreover, our data suggest that some Bacteroides sphingolipids might influence host immune homeostasis.

  15. Inhibition of type I NKT cells by retinoids or following sulfatide-mediated activation of type II NKT cells attenuates alcoholic liver disease

    Science.gov (United States)

    Maricic, Igor; Sheng, Huiming; Marrero, Idania; Seki, Ehikiro; Kisseleva, Tatiana; Chaturvedi, Som; Molle, Natasha; Mathews, K. Stephanie; Gao, Bin; Kumar, Vipin

    2015-01-01

    Innate immune mechanisms leading to liver injury following chronic alcohol ingestion are poorly understood. Natural killer T (NKT) cells, enriched in the liver and comprised of at least two distinct subsets, type I and type II, recognize different lipid antigens presented by CD1d molecules. We have investigated whether differential activation of NKT cell subsets orchestrates inflammatory events leading to alcoholic liver disease (ALD). We found that following chronic plus binge feeding of Lieber-DeCarli liquid diet in male C57BL/6 mice, type I but not type II NKT cells are activated leading to recruitment of inflammatory Gr-1highCD11b+ cells into liver. A central finding is that liver injury following alcohol feeding is dependent upon type I NKT cells. Thus liver injury is significantly inhibited in Jα18−/− mice deficient in type I NKT cells as well as following their inactivation by sulfatide-mediated activation of type II NKT cells. Furthermore we have identified a novel pathway involving all-trans retinoic acid (ATRA) and its receptor RARγ signaling that inhibits type I NKT cells and consequently ALD. A semi-quantitative PCR analysis of hepatic gene expression of some of the key proinflammatory molecules shared in human disease indicated that their upregulation in ALD is dependent upon type I NKT cells. Conclusion Type I but not type II NKT cells become activated following alcohol feeding. Type I NKT cells-induced inflammation and neutrophil recruitment results in liver tissue damage while type II NKT cells protect from injury in ALD. Inhibition of type I NKT cells by retinoids or by sulfatide prevents ALD. Since the CD1d pathway is highly conserved between mice and humans, NKT cell subsets might be targeted for potential therapeutic intervention in ALD. PMID:25477000

  16. Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation.

    Science.gov (United States)

    Nair, Shiny; Boddupalli, Chandra Sekhar; Verma, Rakesh; Liu, Jun; Yang, Ruhua; Pastores, Gregory M; Mistry, Pramod K; Dhodapkar, Madhav V

    2015-02-19

    Chronic inflammation including B-cell activation is commonly observed in both inherited (Gaucher disease [GD]) and acquired disorders of lipid metabolism. However, the cellular mechanisms underlying B-cell activation in these settings remain to be elucidated. Here, we report that β-glucosylceramide 22:0 (βGL1-22) and glucosylsphingosine (LGL1), 2 major sphingolipids accumulated in GD, can be recognized by a distinct subset of CD1d-restricted human and murine type II natural killer T (NKT) cells. Human βGL1-22- and LGL1-reactive CD1d tetramer-positive T cells have a distinct T-cell receptor usage and genomic and cytokine profiles compared with the classical type I NKT cells. In contrast to type I NKT cells, βGL1-22- and LGL1-specific NKT cells constitutively express T-follicular helper (TFH) phenotype. Injection of these lipids leads to an increase in respective lipid-specific type II NKT cells in vivo and downstream induction of germinal center B cells, hypergammaglobulinemia, and production of antilipid antibodies. Human βGL1-22- and LGL1-specific NKT cells can provide efficient cognate help to B cells in vitro. Frequency of LGL1-specific T cells in GD mouse models and patients correlates with disease activity and therapeutic response. Our studies identify a novel type II NKT-mediated pathway for glucosphingolipid-mediated dysregulation of humoral immunity and increased risk of B-cell malignancy observed in metabolic lipid disorders. © 2015 by The American Society of Hematology.

  17. NKT cells act through third party bone marrow-derived cells to suppress NK cell activity in the liver and exacerbate hepatic melanoma metastases.

    Science.gov (United States)

    Sadegh, Leila; Chen, Peter W; Brown, Joseph R; Han, Zhiqiang; Niederkorn, Jerry Y

    2015-09-01

    Uveal melanoma (UM) is the most common intraocular tumor in adults and liver metastasis is the leading cause of death in UM patients. We have previously shown that NKT cell-deficient mice develop significantly fewer liver metastases from intraocular melanomas than do wild-type (WT) mice. Here, we examine the interplay between liver NKT cells and NK cells in resistance to liver metastases from intraocular melanomas. NKT cell-deficient CD1d(-/-) mice and WT C57BL/6 mice treated with anti-CD1d antibody developed significantly fewer liver metastases than WT mice following either intraocular or intrasplenic injection of B16LS9 melanoma cells. The increased number of metastases in WT mice was associated with reduced liver NK cytotoxicity and decreased production of IFN-γ. However, liver NK cell-mediated cytotoxic activity was identical in non-tumor bearing NKT cell-deficient mice and WT mice, indicating that liver metastases were crucial for the suppression of liver NK cells. Depressed liver NK cytotoxicity in WT mice was associated with production of IL-10 by bone marrow-derived liver cells that were neither Kupffer cells nor myeloid-derived suppressor cells and by increased IL-10 receptor expression on liver NK cells. IL-10(-/-) mice had significantly fewer liver metastases than WT mice, but were not significantly different from NKT cell-deficient mice. Thus, development of melanoma liver metastases is associated with upregulation of IL-10 in the liver and an elevated expression of IL-10 receptor on liver NK cells. This impairment of liver NK activity is NKT cell-dependent and only occurs in hosts with melanoma liver metastases. © 2015 UICC.

  18. Natural killer T (NKT cells accelerate Shiga toxin type 2 (Stx2 pathology in mice

    Directory of Open Access Journals (Sweden)

    Fumiko eObata

    2015-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC is a leading cause of childhood renal disease He-molytic Uremic Syndrome (HUS. The involvement of renal cytokines and chemokines is sus-pected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO mice. In CD1KO mice, which lack nat-ural killer T (NKT cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.

  19. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    Science.gov (United States)

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  20. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy.

    Science.gov (United States)

    Heczey, Andras; Liu, Daofeng; Tian, Gengwen; Courtney, Amy N; Wei, Jie; Marinova, Ekaterina; Gao, Xiuhua; Guo, Linjie; Yvon, Eric; Hicks, John; Liu, Hao; Dotti, Gianpietro; Metelitsa, Leonid S

    2014-10-30

    Advances in the design of chimeric antigen receptors (CARs) have improved the antitumor efficacy of redirected T cells. However, functional heterogeneity of CAR T cells limits their therapeutic potential and is associated with toxicity. We proposed that CAR expression in Vα24-invariant natural killer T (NKT) cells can build on the natural antitumor properties of these cells while their restriction by monomorphic CD1d limits toxicity. Primary human NKT cells were engineered to express a CAR against the GD2 ganglioside (CAR.GD2), which is highly expressed by neuroblastoma (NB). We compared CAR.GD2 constructs that encoded the CD3ζ chain alone, with CD28, 4-1BB, or CD28 and 4-1BB costimulatory endodomains. CAR.GD2 expression rendered NKT cells highly cytotoxic against NB cells without affecting their CD1d-dependent reactivity. We observed a striking T helper 1-like polarization of NKT cells by 4-1BB-containing CARs. Importantly, expression of both CD28 and 4-1BB endodomains in the CAR.GD2 enhanced in vivo persistence of NKT cells. These CAR.GD2 NKT cells effectively localized to the tumor site had potent antitumor activity, and repeat injections significantly improved the long-term survival of mice with metastatic NB. Unlike T cells, CAR.GD2 NKT cells did not induce graft-versus-host disease. These results establish the potential of NKT cells to serve as a safe and effective platform for CAR-directed cancer immunotherapy. © 2014 by The American Society of Hematology.

  1. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice.

    Science.gov (United States)

    Obata, Fumiko; Subrahmanyam, Priyanka B; Vozenilek, Aimee E; Hippler, Lauren M; Jeffers, Tynae; Tongsuk, Methinee; Tiper, Irina; Saha, Progyaparamita; Jandhyala, Dakshina M; Kolling, Glynis L; Latinovic, Olga; Webb, Tonya J

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.

  2. NKT Cell Responses to B Cell Lymphoma.

    Science.gov (United States)

    Li, Junxin; Sun, Wenji; Subrahmanyam, Priyanka B; Page, Carly; Younger, Kenisha M; Tiper, Irina V; Frieman, Matthew; Kimball, Amy S; Webb, Tonya J

    2014-06-01

    Natural killer T (NKT) cells are a unique subset of CD1d-restricted T lymphocytes that express characteristics of both T cells and natural killer cells. NKT cells mediate tumor immune-surveillance; however, NKT cells are numerically reduced and functionally impaired in lymphoma patients. Many hematologic malignancies express CD1d molecules and co-stimulatory proteins needed to induce anti-tumor immunity by NKT cells, yet most tumors are poorly immunogenic. In this study, we sought to investigate NKT cell responses to B cell lymphoma. In the presence of exogenous antigen, both mouse and human NKT cell lines produce cytokines following stimulation by B cell lymphoma lines. NKT cell populations were examined ex vivo in mouse models of spontaneous B cell lymphoma, and it was found that during early stages, NKT cell responses were enhanced in lymphoma-bearing animals compared to disease-free animals. In contrast, in lymphoma-bearing animals with splenomegaly and lymphadenopathy, NKT cells were functionally impaired. In a mouse model of blastoid variant mantle cell lymphoma, treatment of tumor-bearing mice with a potent NKT cell agonist, α-galactosylceramide (α-GalCer), resulted in a significant decrease in disease pathology. Ex vivo studies demonstrated that NKT cells from α-GalCer treated mice produced IFN-γ following α-GalCer restimulation, unlike NKT cells from vehicle-control treated mice. These data demonstrate an important role for NKT cells in the immune response to an aggressive hematologic malignancy like mantle cell lymphoma.

  3. Invariant NKT cells regulate experimental autoimmune uveitis through inhibition of Th17 differentiation.

    Science.gov (United States)

    Oh, Keunhee; Byoun, Ok-Jin; Ham, Don-Il; Kim, Yon Su; Lee, Dong-Sup

    2011-02-01

    Although NKT cells have been implicated in diverse immunomodulatory responses, the effector mechanisms underlying the NKT cell-mediated regulation of pathogenic T helper cells are not well understood. Here, we show that invariant NKT cells inhibited the differentiation of CD4(+) T cells into Th17 cells both in vitro and in vivo. The number of IL-17-producing CD4(+) T cells was reduced following co-culture with purified NK1.1(+) TCR(+) cells from WT, but not from CD1d(-/-) or Jα18(-/-) , mice. Co-cultured NKT cells from either cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) or WT mice efficiently inhibited Th17 differentiation. The contact-dependent mechanisms of NKT cell-mediated regulation of Th17 differentiation were confirmed using transwell co-culture experiments. On the contrary, the suppression of Th1 differentiation was dependent on IL-4 derived from the NKT cells. The in vivo regulatory capacity of NKT cells on Th17 cells was confirmed using an experimental autoimmune uveitis model induced with human IRBP(1-20) (IRBP, interphotoreceptor retinoid-binding protein) peptide. NKT cell-deficient mice (CD1d(-/-) or Jα18(-/-) ) demonstrated an increased disease severity, which was reversed by the transfer of WT or cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) NKT cells. Our results indicate that invariant NKT cells inhibited autoimmune uveitis predominantly through the cytokine-independent inhibition of Th17 differentiation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. NK and NKT Cell Depletion Alters the Outcome of Experimental Pneumococcal Pneumonia: Relationship with Regulation of Interferon-γ Production

    Directory of Open Access Journals (Sweden)

    Eirini Christaki

    2015-01-01

    Full Text Available Background. Natural killer (NK and natural killer T (NKT cells contribute to the innate host defense but their role in bacterial sepsis remains controversial. Methods. C57BL/6 mice were infected intratracheally with 5 × 105 cfu of Streptococcus pneumoniae. Animals were divided into sham group (Sham; pretreated with isotype control antibody (CON group; pretreated with anti-asialo GM1 antibody (NKd group; and pretreated with anti-CD1d monoclonal antibody (NKTd group before bacterial challenge. Serum and tissue samples were analyzed for bacterial load, cytokine levels, splenocyte apoptosis rates, and cell characteristics by flow cytometry. Splenocyte miRNA expression was also analyzed and survival was assessed. Results. NK cell depletion prolonged survival. Upon inhibition of NKT cell activation, spleen NK (CD3−/NK1.1+ cells increased compared to all other groups. Inhibition of NKT cell activation led to higher bacterial loads and increased levels of serum and splenocyte IFN-γ. Splenocyte miRNA analysis showed that miR-200c and miR-29a were downregulated, while miR-125a-5p was upregulated, in anti-CD1d treated animals. These changes were moderate after NK cell depletion. Conclusions. NK cells appear to contribute to mortality in pneumococcal pneumonia. Inhibition of NKT cell activation resulted in an increase in spleen NK (CD3−/NK1.1+ cells and a higher IFN-γ production, while altering splenocyte miRNA expression.

  5. RAE-1 is expressed in the adult subventricular zone and controls cell proliferation of neurospheres.

    Science.gov (United States)

    Popa, Natalia; Cedile, Oriane; Pollet-Villard, Xavier; Bagnis, Claude; Durbec, Pascale; Boucraut, José

    2011-01-01

    Improving and controlling the capacity of endogenous or grafted adult neural stem cells to repair the nervous system relies on a better knowledge of interactions between immune cells and neural stem cells. Class I major histocompatibility complex (MHC) family members comprise numerous proteins playing either immune or nonimmune function. Among the latter, MHC functions in the central nervous system has started to receive recent interest. Here, our first goal was to investigate the potential relationship between MHC class I molecules and neurogenesis. For the first time, we report the expression of two MHC class I-related members by neural stem/progenitor cells: retinoic acid early induced transcript (RAE)-1 and CD1d. The expression of RAE-1 but not CD1d disappears when differentiation of neurosphere cells is induced. Interestingly, RAE-1 transcripts are expressed in the brain during development, and we demonstrate they persist in one of the main area of adult neurogenesis, the subventricular zone (SVZ). So far, RAE-1 is only known for its immune functions as a ligand of the activating receptor NKG2D expressed by natural killer (NK) cells, natural killer T, Tγδ, and some T CD8 lymphocytes. Here, we do not detect any NKG2D expression in the SVZ either in physiological or in pathological conditions. Interestingly, inhibition of RAE-1 expression in neurosphere cells reduces cell proliferation without alteration of cell viability, which argues for a nonimmune role for RAE-1. These results reveal an unexpected role of RAE-1 in regulating adult SVZ neurogenesis by supporting stem/progenitor cells proliferation. © 2010 Wiley-Liss, Inc.

  6. Exploiting the role of endogenous lymphoid-resident dendritic cells in the priming of NKT cells and CD8+ T cells to dendritic cell-based vaccines.

    Directory of Open Access Journals (Sweden)

    Troels R Petersen

    2011-03-01

    Full Text Available Transfer of antigen between antigen-presenting cells (APCs is potentially a physiologically relevant mechanism to spread antigen to cells with specialized stimulatory functions. Here we show that specific CD8+ T cell responses induced in response to intravenous administration of antigen-loaded bone marrow-derived dendritic cells (BM-DCs, were ablated in mice selectively depleted of endogenous lymphoid-resident langerin+ CD8α+ dendritic cells (DCs, suggesting that the antigen is transferred from the injected cells to resident APCs. In contrast, antigen-specific CD4+ T cells were primed predominantly by the injected BM-DCs, with only very weak contribution of resident APCs. Crucially, resident langerin+ CD8α+ DCs only contributed to the priming of CD8+ T cells in the presence of maturation stimuli such as intravenous injection of TLR ligands, or by loading the BM-DCs with the glycolipid α-galactosylceramide (α-GalCer to recruit the adjuvant activity of activated invariant natural killer-like T (iNKT cells. In fact, injection of α-GalCer-loaded CD1d-/- BM-DCs resulted in potent iNKT cell activation, suggesting that this glycolipid antigen can also be transferred to resident CD1d+ APCs. While iNKT cell activation per se was independent of langerin+ CD8α+ DCs, some iNKT cell-mediated activities were reduced, notably release of IL-12p70 and transactivation of NK cells. We conclude that both protein and glycolipid antigens can be exchanged between distinct DC species. These data suggest that the efficacy of DC-based vaccination strategies may be improved by the incorporation of a systemic maturation signal aimed to engage resident APCs in CD8+ T cell priming, and α-GalCer may be particularly well suited to this purpose.

  7. Neighborhood characteristics influence DNA methylation of genes involved in stress response and inflammation: The Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Smith, Jennifer A; Zhao, Wei; Wang, Xu; Ratliff, Scott M; Mukherjee, Bhramar; Kardia, Sharon L R; Liu, Yongmei; Roux, Ava V Diez; Needham, Belinda L

    2017-08-01

    Living in a disadvantaged neighborhood is associated with poor health outcomes even after accounting for individual-level socioeconomic factors. The chronic stress of unfavorable neighborhood conditions may lead to dysregulation of the stress reactivity and inflammatory pathways, potentially mediated through epigenetic mechanisms such as DNA methylation. We used multi-level models to examine the relationship between 2 neighborhood conditions and methylation levels of 18 genes related to stress reactivity and inflammation in purified monocytes from 1,226 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), a population-based sample of US adults. Neighborhood socioeconomic disadvantage, a summary of 16 census-based metrics, was associated with DNA methylation [False discovery rate (FDR) q-value ≤ 0.1] in 2 out of 7 stress-related genes evaluated (CRF, SLC6A4) and 2 out of 11 inflammation-related genes (F8, TLR1). Neighborhood social environment, a summary measure of aesthetic quality, safety, and social cohesion, was associated with methylation in 4 of the 7 stress-related genes (AVP, BDNF, FKBP5, SLC6A4) and 7 of the 11 inflammation-related genes (CCL1, CD1D, F8, KLRG1, NLRP12, SLAMF7, TLR1). High socioeconomic disadvantage and worse social environment were primarily associated with increased methylation. In 5 genes with significant associations between neighborhood and methylation (FKBP5, CD1D, F8, KLRG1, NLRP12), methylation was associated with gene expression of at least one transcript. These results demonstrate that multiple dimensions of neighborhood context may influence methylation levels and subsequent gene expression of stress- and inflammation-related genes, even after accounting for individual socioeconomic factors. Further elucidating the molecular mechanisms underlying these relationships will be important for understanding the etiology of health disparities.

  8. Natural IgM and TLR Agonists Switch Murine Splenic Pan-B to “Regulatory” Cells That Suppress Ischemia-Induced Innate Inflammation via Regulating NKT-1 Cells

    Directory of Open Access Journals (Sweden)

    Peter I. Lobo

    2017-08-01

    Full Text Available Natural IgM anti-leukocyte autoantibodies (IgM-ALAs inhibit inflammation by several mechanisms. Here, we show that pan-B cells and bone marrow-derived dendritic cells (BMDCs are switched to regulatory cells when pretreated ex vivo with IgM. B cells are also switched to regulatory cells when pretreated ex vivo with CpG but not with LPS. Pre-emptive infusion of such ex vivo induced regulatory cells protects C57BL/6 mice from ischemia-induced acute kidney injury (AKI via regulation of in vivo NKT-1 cells, which normally amplify the innate inflammatory response to DAMPS released after reperfusion of the ischemic kidney. Such ex vivo induced regulatory pan-B cells and BMDC express low CD1d and inhibit inflammation by regulating in vivo NKT-1 in the context of low-lipid antigen presentation and by a mechanism that requires costimulatory molecules, CD1d, PDL1/PD1, and IL10. Second, LPS and CpG have opposite effects on induction of regulatory activity in BMDC and B cells. LPS enhances regulatory activity of IgM-pretreated BMDC but negates the IgM-induced regulatory activity in B cells, while CpG, with or without IgM pretreatment, induces regulatory activity in B cells but not in BMDC. Differences in the response of pan-B and dendritic cells to LPS and CpG, especially in the presence of IgM-ALA, may have relevance during infections and inflammatory disorders where there is an increased IgM-ALA and release of TLRs 4 and 9 ligands. Ex vivo induced regulatory pan-B cells could have therapeutic relevance as these easily available cells can be pre-emptively infused to prevent AKI that can occur during open heart surgery or in transplant recipients receiving deceased donor organs.

  9. Invariant Natural Killer T Cells Ameliorate Monosodium Urate Crystal-Induced Gouty Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-12-01

    Full Text Available Gout is an inflammatory arthritis caused by deposition of intra-articular monosodium urate (MSU crystal. Previous studies have focused on resident macrophage, infiltrating monocyte, and neutrophil responses to MSU crystal; yet the mechanisms of cellular changes and the potential involvement of other regulatory immune cells remain largely unknown. Invariant natural killer T (iNKT cells, an innate type of T cell, are involved in the development of various inflammatory diseases. Here, we investigate the role of iNKT cells in MSU crystal-induced gouty inflammation. MSU crystal-induced inflammatory profiles in an air-pouch model were examined in iNKT-deficient CD1d knockout (KO and wild-type (WT control mice. To explore potential mechanisms of iNKT cell regulation of gouty inflammation, we cocultured CD4+ or CD4−iNKT cells with bone marrow-derived macrophages (BMDMs. We found that iNKT cells quickly migrated to the site of inflammation upon MSU crystal stimulation in WT mice. The total number of infiltrating cells in CD1d KO mice, especially neutrophils, was dramatically increased at 6 and 12 h (P < 0.01 post-MSU crystal challenge, compared with WT controls. BMDMs cocultured with CD4+iNKT cells produced less tumor necrosis factor-α and expressed higher levels of M2 macrophage markers, including Clec7a, Pdcd1Ig2, and interleukin-4 (P < 0.01, compared with BMDMs cocultured with CD4−iNKT cells or conventional CD4+ T cells. CD4+iNKT cells are one of the key regulators of MSU crystal-induced gouty inflammation through the control of macrophage polarization. iNKT cells may serve as a new therapeutic target for gout.

  10. Colonic inflammation in mice is improved by cigarette smoke through iNKT cells recruitment.

    Directory of Open Access Journals (Sweden)

    Muriel Montbarbon

    Full Text Available Cigarette smoke (CS protects against intestinal inflammation during ulcerative colitis. Immunoregulatory mechanisms sustaining this effect remain unknown. The aim of this study was to assess the effects of CS on experimental colitis and to characterize the intestinal inflammatory response at the cellular and molecular levels. Using the InExpose® System, a smoking device accurately reproducing human smoking habit, we pre-exposed C57BL/6 mice for 2 weeks to CS, and then we induced colitis by administration of dextran sodium sulfate (DSS. This system allowed us to demonstrate that CS exposure improved colonic inflammation (significant decrease in clinical score, body weight loss and weight/length colonic ratio. This improvement was associated with a significant decrease in colonic proinflammatory Th1/Th17 cytokine expression, as compared to unexposed mice (TNF (p=0.0169, IFNγ (p<0.0001, and IL-17 (p=0.0008. Smoke exposure also induced an increased expression of IL-10 mRNA (p=0.0035 and a marked recruitment of iNKT (invariant Natural Killer T; CD45+ TCRβ+ CD1d tetramer+ cells in the colon of DSS-untreated mice. Demonstration of the role of iNKT cells in CS-dependent colitis improvement was performed using two different strains of NKT cells deficient mice. Indeed, in Jα18KO and CD1dKO animals, CS exposure failed to induce significant regulation of DSS-induced colitis both at the clinical and molecular levels. Thus, our study demonstrates that iNKT cells are pivotal actors in the CS-dependent protection of the colon. These results highlight the role of intestinal iNKT lymphocytes and their responsiveness to environmental stimuli. Targeting iNKT cells would represent a new therapeutic way for inflammatory bowel diseases.

  11. Phylogenetic relationships of seven previously unclassified viruses within the family Rhabdoviridae using partial nucleoprotein gene sequences.

    Science.gov (United States)

    Kuzmin, I V; Hughes, G J; Rupprecht, C E

    2006-08-01

    Partial nucleoprotein (N) gene sequences of the rhabdoviruses Obodhiang (OBOV), Kotonkon (KOTV), Rochambeau (RBUV), Kern canyon (KCV), Mount Elgon bat (MEBV), Kolongo (KOLV) and Sandjimba (SJAV) were generated and their phylogenetic positions within the family Rhabdoviridae were determined. Both OBOV and KOTV were placed within the genus Ephemerovirus. RBUV was joined to the same cluster, but more distantly. MEBV and KCV were grouped into a monophyletic cluster (putative genus) with Oita virus (OITAV). These three viruses, originating from different regions of the world, were all isolated from insectivorous bats and may be specific for these mammals. African avian viruses KOLV and SJAV were joined to each other and formed another clade at the genus level. Further, they were grouped with the recently characterized rhabdovirus Tupaia virus (TRV). Although the genetic distance was great, the grouping was supported by consistent bootstrap values. This observation suggests that viruses of this group may be distributed widely in the Old World. Non-synonymous/synonymous substitution ratio estimations (dN/dS) using a partial N gene fragment (241 codons) for the three rhabdovirus genera revealed contrasting patterns of evolution, where dN/dS values follow the pattern Ephemerovirus > Vesiculovirus > Lyssavirus. The magnitude of this ratio corresponds well with the number of negatively selected codons. The accumulation of dS appears evenly distributed along the gene fragment for all three genera. These estimations demonstrated clearly that lyssaviruses are subjected to the strongest constraints against amino acid substitutions, probably related to their particular niche and unique pathobiology.

  12. Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein.

    Science.gov (United States)

    Allison, A B; Palacios, G; Travassos da Rosa, A; Popov, V L; Lu, L; Xiao, S Y; DeToy, K; Briese, T; Lipkin, W I; Keel, M K; Stallknecht, D E; Bishop, G R; Tesh, R B

    2011-01-01

    The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic (SH) protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase protein indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein

    Science.gov (United States)

    Allison, A. B.; Palacios, G.; Rosa, A. Travassos da; Popov, V. L.; Lu, L.; Xiao, S. Y.; DeToy, K.; Briese, T.; Lipkin, W. Ian; Keel, M. K.; Stallknecht, D. E.; Bishop, G. R.; Tesh, R. B.

    2010-01-01

    The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase proteins indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. PMID:20863863

  14. Advances in Animal Models of Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Zhang Hang

    2015-12-01

    Full Text Available Hepatitis B virus (HBV infection seriously affects human health. Stable and reliable animal models of HBV infection bear significance in studying pathogenesis of this health condition and development of intervention measures. HBV exhibits high specificity for hosts, and chimpanzee is long used as sole animal model of HBV infection. However, use of chimpanzees is strictly constrained because of ethical reasons. Many methods were used to establish small-animal models of HBV infection. Tupaia is the only nonprimate animal that can be infected by HBV. Use of HBV-related duck hepatitis virus and marmot hepatitis virus infection model contributed to evaluation of mechanism of HBV replication and HBV treatment methods. In recent years, development of human–mouse chimeric model provided possibility of using common experimental animals to carry out HBV research. These models feature their own advantages and disadvantages and can be complementary in some ways. This study provides an overview of current and commonly used animal models of HBV infection.

  15. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes

    Science.gov (United States)

    Mazzoleni, Sofia; Rovatsos, Michail; Schillaci, Odessa; Dumas, Francesca

    2018-01-01

    Abstract We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH) in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876) (Scandentia), in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. In some cases, closely related species show signals on homologous chromosomes, thus representing synapomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific patterns. These results led us to support the hypothesis that different mechanisms are responsible for the distribution of the ribosomal DNA cluster in Primates. PMID:29416829

  16. KEANEKARAGAMAN FAUNA PARASIT PADA MAMALIA KECIL DI KAWASAN TESSO-NILO, PROPINSI RIAU

    Directory of Open Access Journals (Sweden)

    Achmad Saim

    2012-11-01

    Full Text Available A total of 1712 specimens (17 species of parasites were found on 25 specimens (six species small mammals in Tesso-Nilo areas, Riau Province, i.e.: two Amblyomma testudinarium on Maxomys surifer, eight Dermacentor spp. on Maxomys surifer, Maxomys whiteheadi, Sundomys muelleri, three Haemaphysalis sp on Tupaia glis, two Ixodes sp on Maxomys surifer, 81 Demodex sp on Maxomys rajah, Maxomys surifer, Maxomys whiteheadi, 42 Echinolaelaps echidninus on Maxomys rajah, Maxomys surifer, Maxomys whiteheadi, 1.430 Laelaps spp (two species on Maxomys rajah, Maxomys surifer, Maxomys whiteheadi, S. muelleri, 131  specimens (two species trombiculids on Maxomys surifer, Maxomys whiteheadi, S. muelleri, T. glis, one louse of Polyplax sp. on Maxomys surifer, four fleas (two Ceratophyllus sp on T. glis and Xenopsylla cheopis on Maxomys whiteheadi; two batflies of Nycteribiidae on Balionycteris maculata, two Hydatigera taeniaeformis in Maxomys rajah, two Hymenolepis sp on S. muelleri, and two Moniliformis sp in Maxomys rajah. It was found that  25 hosts were infected out of 26 collected hosts (96.15%, the pattern of endo and ectoparasites were 1-5 species ectoparasites or 1-2 species endoparasites in each host, while Shannon Wiener Index was 1.92 for ectoparasites and 1.58 for endoparasites. Other hosts, distribution and  potency in ecosystem of each species were discussed.  Keywords: Acarina, Insecta, Helminthes, Rodentia, Scandentia, Chiroptera, Parasites.

  17. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes

    Directory of Open Access Journals (Sweden)

    Sofia Mazzoleni

    2018-01-01

    Full Text Available We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876 (Scandentia, in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. In some cases, closely related species show signals on homologous chromosomes, thus representing synapomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific patterns. These results led us to support the hypothesis that different mechanisms are responsible for the distribution of the ribosomal DNA cluster in Primates.

  18. Distinct and overlapping effector functions of expanded human CD4+, CD8α+ and CD4-CD8α- invariant natural killer T cells.

    Directory of Open Access Journals (Sweden)

    Vincent O'Reilly

    Full Text Available CD1d-restricted invariant natural killer T (iNKT cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4(+, CD8α(+ and CD4(-CD8α(- double-negative (DN subsets. CD4(+ iNKT cells expanded more readily than CD8α(+ and DN iNKT cells upon mitogen stimulation. CD8α(+ and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d(+ cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α and Th2 (IL-4, IL-5 and IL-13 cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4(+ and CD8α(+ fractions, respectively. Only CD4(+ iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α(+, DN or CD4(+ iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease.

  19. Interruption of CXCL13-CXCR5 axis increases upper genital tract pathology and activation of NKT cells following chlamydial genital infection.

    Directory of Open Access Journals (Sweden)

    Janina Jiang

    Full Text Available Regulation of immune responses is critical for controlling inflammation and disruption of this process can lead to tissue damage. We reported that CXCL13 was induced in fallopian tube tissue following C. trachomatis infection. Here, we examined the influence of the CXCL13-CXCR5 axis in chlamydial genital infection.Disruption of the CXCL13-CXCR5 axis by injecting anti-CXCL13 Ab to BALB/c mice or using Cxcr5-/- mice increased chronic inflammation in the upper genital tract (UGT; uterine horns and oviducts after Chlamydia muridarum genital infection (GT. Further studies in Cxcr5-/- mice showed an elevation in bacterial burden in the GT and increased numbers of neutrophils, activated DCs and activated NKT cells early after infection. After resolution, we noted increased fibrosis and the accumulation of a variety of T cells subsets (CD4-IFNγ, CD4-IL-17, CD4-IL-10 & CD8-TNFα in the oviducts. NKT cell depletion in vitro reduced IL-17α and various cytokines and chemokines, suggesting that activated NKT cells modulate neutrophils and DCs through cytokine/chemokine secretion. Further, chlamydial glycolipids directly activated two distinct types of NKT cell hybridomas in a cell-free CD1d presentation assay and genital infection of Cd1d-/- mice showed reduced oviduct inflammation compared to WT mice. CXCR5 involvement in pathology was also noted using single-nucleotide polymorphism analysis in C. trachomatis infected women attending a sub-fertility clinic. Women who developed tubal pathology after a C. trachomatis infection had a decrease in the frequency of CXCR5 SNP +10950 T>C (rs3922.These experiments indicate that disruption of the CXCL13-CXCR5 axis permits increased activation of NKT cells by type I and type II glycolipids of Chlamydia muridarum and results in UGT pathology potentially through increased numbers of neutrophils and T cell subsets associated with UGT pathology. In addition, CXCR5 appears to contribute to inter-individual differences in

  20. NKT cells as an ideal anti-tumor immunotherapeutic.

    Science.gov (United States)

    Fujii, Shin-Ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-12-02

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  1. Evolution and structural organization of the C proteins of paramyxovirinae.

    Directory of Open Access Journals (Sweden)

    Michael K Lo

    Full Text Available The phosphoprotein (P gene of most Paramyxovirinae encodes several proteins in overlapping frames: P and V, which share a common N-terminus (PNT, and C, which overlaps PNT. Overlapping genes are of particular interest because they encode proteins originated de novo, some of which have unknown structural folds, challenging the notion that nature utilizes only a limited, well-mapped area of fold space. The C proteins cluster in three groups, comprising measles, Nipah, and Sendai virus. We predicted that all C proteins have a similar organization: a variable, disordered N-terminus and a conserved, α-helical C-terminus. We confirmed this predicted organization by biophysically characterizing recombinant C proteins from Tupaia paramyxovirus (measles group and human parainfluenza virus 1 (Sendai group. We also found that the C of the measles and Nipah groups have statistically significant sequence similarity, indicating a common origin. Although the C of the Sendai group lack sequence similarity with them, we speculate that they also have a common origin, given their similar genomic location and structural organization. Since C is dispensable for viral replication, unlike PNT, we hypothesize that C may have originated de novo by overprinting PNT in the ancestor of Paramyxovirinae. Intriguingly, in measles virus and Nipah virus, PNT encodes STAT1-binding sites that overlap different regions of the C-terminus of C, indicating they have probably originated independently. This arrangement, in which the same genetic region encodes simultaneously a crucial functional motif (a STAT1-binding site and a highly constrained region (the C-terminus of C, seems paradoxical, since it should severely reduce the ability of the virus to adapt. The fact that it originated twice suggests that it must be balanced by an evolutionary advantage, perhaps from reducing the size of the genetic region vulnerable to mutations.

  2. Rule reversal: Ecogeographical patterns of body size variation in the common treeshrew (Mammalia, Scandentia)

    Science.gov (United States)

    Sargis, Eric J.; Millien, Virginie; Woodman, Neal; Olson, Link E.

    2018-01-01

    There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.

  3. Island history affects faunal composition: the treeshrews (Mammalia: Scandentia: Tupaiidae) from the Mentawai and Batu Islands, Indonesia

    Science.gov (United States)

    Sargis, Eric J.; Woodman, Neal; Morningstar, Natalie C.; Reese, Aspen T.; Olson, Link E.

    2014-01-01

    The Mentawai and Batu Island groups off the west coast of Sumatra have a complicated geological and biogeographical history. The Batu Islands have shared a connection with the Sumatran ‘mainland’ during periods of lowered sea level, whereas the Mentawai Islands, despite being a similar distance from Sumatra, have remained isolated from Sumatra, and probably from the Batu Islands as well. These contrasting historical relationships to Sumatra have influenced the compositions of the respective mammalian faunas of these island groups. Treeshrews (Scandentia, Tupaiidae) from these islands have, at various times in their history, been recognized as geographically circumscribed populations of a broadly distributed Tupaia glis, subspecies, or distinct species. We used multivariate analyses of measurements from the skull and hands to compare the island populations from Siberut (Mentawai Islands) and Tanahbala (Batu Islands) with the geographically adjacent species from the southern Mentawai Islands (T. chrysogaster) and Sumatra (T. ferruginea). Results from both the skull and manus of the Siberut population show that it is most similar to T. chrysogaster, whereas the Tanahbala population is more similar to T. ferruginea, confirming predictions based on island history. These results are further corroborated by mammae counts. Based on these lines of evidence, we include the Siberut population in T. chrysogaster and the Tanahbala population in T. ferruginea. Our conclusions expand the known distributions of both the Mentawai and Sumatran species. The larger geographical range of the endangered T. chrysogaster has conservation implications for this Mentawai endemic, so populations and habitat should be re-evaluated on each of the islands it inhabits. However, until such a re-evaluation is conducted, we recommend that the IUCN Red List status of this species be changed from ‘Endangered’ to ‘Data Deficient’.

  4. Isolation and characterization of a novel Rhabdovirus from a wild boar (Sus scrofa) in Japan.

    Science.gov (United States)

    Sakai, Kouji; Hagiwara, Katsuro; Omatsu, Tsutomu; Hamasaki, Chinami; Kuwata, Ryusei; Shimoda, Hiroshi; Suzuki, Kazuo; Endoh, Daiji; Nagata, Noriyo; Nagai, Makoto; Katayama, Yukie; Oba, Mami; Kurane, Ichiro; Saijo, Masayuki; Morikawa, Shigeru; Mizutani, Tetsuya; Maeda, Ken

    2015-09-30

    A novel rhabdovirus was isolated from the serum of a healthy Japanese wild boar (Sus scrofa leucomystax) and identified using the rapid determination system for viral nucleic acid sequences (RDV), next-generation sequencing, and electron microscopy. The virus was tentatively named wild boar rhabdovirus 1 (WBRV1). Phylogenetic analysis of the entire genome sequence indicated that WBRV1 is closely related to Tupaia rhabdovirus (TRV), which was isolated from cultured cells of hepatocellular carcinoma tissue of tree shrew. TRV has not been assigned to any genus of Rhabdoviridae till date. Analysis of the L gene indicated that WBRV1 belongs to the genus Vesiculovirus. These observations suggest that both TRV and WBRV1 belong to a new genus of Rhabdoviridae. Next-generation genome sequencing of WBRV1 revealed 5 open reading frames of 1329, 765, 627, 1629, and 6336 bases in length. The WBRV1 gene sequences are similar to those of other rhabdoviruses. Epizootiological analysis of a population of wild boars in Wakayama prefecture in Japan indicated that 6.5% were positive for the WBRV1 gene and 52% were positive for WBRV1-neutralizing antibodies. Furthermore, such viral neutralizing antibodies were found in domestic pigs in another prefecture. WBRV1 was inoculated intranasally and intraperitoneally into SCID and BALB/c mice and viral RNA was detected in SCID mice, suggesting that WBRV1 can replicate in immunocompromised mice. These results indicate this novel virus is endemic in wild animals and livestock in Japan. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Development of a PET Insert for simultaneously small animal PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yingjie; Zhang, Zhiming; Li, Daowu; Liu, Shuangquan; Wang, Peilin; Feng, Baotong; Chai, Pei; Wei, Long [Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 (China); Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049 (China)

    2015-05-18

    PET/MR is a new multi-modality imaging system which provide both structural and functional information with good soft tissue imaging ability and no ionizing radiation. In recent years, PET/MR is under major progress because of the development of silicon photomultipliers (SiPM). The goal of this study is to develop a MRI compatible PET insert based on SiPM and LYSO scintillator. The PET system was constituted by the detector ring, electronics and software. The detector ring consists of 16 detector module. The inner diameter of the ring was 151 mm, the external diameter was 216 mm, which was big enough for small animal research, e.g. rat, rabbit and tupaia. The sensor of each module was 2*2 SensL SPMArraySL, coupled with an array of 14 x 14 LYSO crystals, each crystal measuring 2 mm x 2 mm 10 mm. The detector was encapsulated in a copper box for light and magnetic shielding. Resister charge multiplexing circuit was used in the front end electronics. Each detector output 8X and 8Y position signals. One summed timing signal was extracted from the common cathode of all 64 channels. All these signals were transmitted to digital electronic board by a 3 m long coaxial cable from inside of the MR to the outside. Each digital electronic board handled 8 detector modules based on FPGA to obtain the timing, position and energy information of a single event. And then these single events were sent to the coincidence processing board to produce coincidence packets which are prepared for further processing. A 0.2mCi 68Ge line source was used to do the preliminary imaging test. The image was reconstructed by 3D-OSEM algorithm. The initial result proved the system to be feasible as a PET. FDG phantom imaging and simultaneous PET/MR imaging are in progress.

  6. A unique resource mutualism between the giant Bornean pitcher plant, Nepenthes rajah, and members of a small mammal community.

    Directory of Open Access Journals (Sweden)

    Melinda Greenwood

    Full Text Available The carnivorous pitcher plant genus Nepenthes grows in nutrient-deficient substrates and produce jug-shaped leaf organs (pitchers that trap arthropods as a source of N and P. A number of Bornean Nepenthes demonstrate novel nutrient acquisition strategies. Notably, three giant montane species are engaged in a mutualistic association with the mountain treeshrew, Tupaia montana, in which the treeshrew defecates into the pitchers while visiting them to feed on nectar secretions on the pitchers' lids.Although the basis of this resource mutualism has been elucidated, many aspects are yet to be investigated. We sought to provide insights into the value of the mutualism to each participant. During initial observations we discovered that the summit rat, R. baluensis, also feeds on sugary exudates of N. rajah pitchers and defecates into them, and that this behavior appears to be habitual. The scope of the study was therefore expanded to assess to what degree N. rajah interacts with the small mammal community.We found that both T. montana and R. baluensis are engaged in a mutualistic interaction with N. rajah. T .montana visit pitchers more frequently than R. baluensis, but daily scat deposition rates within pitchers do not differ, suggesting that the mutualistic relationships are of a similar strength. This study is the first to demonstrate that a mutualism exists between a carnivorous plant species and multiple members of a small mammal community. Further, the newly discovered mutualism between R. baluensis and N. rajah represents only the second ever example of a multidirectional resource-based mutualism between a mammal and a carnivorous plant.

  7. Impacts of forest farm practice on small to medium-sized mammals at Kemasul forest reserve, Pahang, Malaysia

    Science.gov (United States)

    Razali, Nor Bazilah; Abdul-Rahim, Ahmad Rizal; Md-Nor, Shukor; Mohd-Taib, Farah Shafawati

    2018-04-01

    Exploitation of forest for commercial agriculture has taken toll on wildlife species worldwide. A forest farm project with the aim of compensating the forest loss has been implemented in Kemasul Forest Reserve, of Pahang State, Malaysia through plantation of fast growing and adaptable plant species. The objective of this study is to determine the impact of this practice on diversity. The study was conducted in a long strip of forest fragment, where two study sites with different landscape matrix types were chosen; oil palm plantation (JR) and Acacia mangium plantations (CM). A total of 75 individuals from 13 species and six families were collected at both sites. The result shows forest with A. mangium plantations matrix types yield higher species diversity. There are 10 shared species that can be found at both study sites including Callosciurus notatus, Hystrix brachyura, Macaca nemestrina, and Tupaia glis. However, some species only existed at selected sites such as Leopoldamys sabanus which can only be found at JR. On the other hand, Callosciurus nigrovittatus, Viverra tangalunga and Paradoxurus hermaphroditus were only recorded at CM. Out of all individuals collected, four of them are protected species as reported by IUCN. Callosciurus nigrovittatus is listed as Near Threatened while the other three species (Maxomys rajah, Maxomys whiteheadi, and Macaca nemestrina) are Vulnerable. If conservation efforts in Kemasul Forest Reserved are neglected, these four species would be exposed to critical threats that might cause them facing extinction in the future. Mann Whitney U test shows no significant difference of distribution and species richness of small to medium-sized mammals in both study sites (U=51.5, p=0.59). This study therefore reveals that although the compensatory forest plantation initiatives yield positive effect on diversity of mammal's species, it does not necessarily provide ample food resources to the wildlife, instead it serves as important buffer

  8. Applications of human hepatitis B virus preS domain in bio- and nanotechnology.

    Science.gov (United States)

    Toita, Riki; Kawano, Takahito; Kang, Jeong-Hun; Murata, Masaharu

    2015-06-28

    Human hepatitis B virus (HBV) is a member of the family Hepadnaviridae, and causes acute and chronic infections of the liver. The hepatitis B surface antigen (HBsAg) contains the large (L), middle (M), and small (S) surface proteins. The L protein consists of the S protein, preS1, and preS2. In HBsAg, the preS domain (preS1 + preS2) plays a key role in the infection of hepatocytic cells by HBV and has several immunogenic epitopes. Based on these characteristics of preS, several preS-based diagnostic and therapeutic materials and systems have been developed. PreS1-specific monoclonal antibodies (e.g., MA18/7 and KR127) can be used to inhibit HBV infection. A myristoylated preS1 peptide (amino acids 2-48) also inhibits the attachment of HBV to HepaRG cells, primary human hepatocytes, and primary tupaia hepatocytes. Antibodies and antigens related to the components of HBsAg, preS (preS1 + preS2), or preS1 can be available as diagnostic markers of acute and chronic HBV infections. Hepatocyte-targeting delivery systems for therapeutic molecules (drugs, genes, or proteins) are very important for increasing the clinical efficacy of these molecules and in reducing their adverse effects on other organs. The selective delivery of diagnostic molecules to target hepatocytic cells can also improve the efficiency of diagnosis. In addition to the full-length HBV vector, preS (preS1 + preS2), preS1, and preS1-derived fragments can be useful in hepatocyte-specific targeting. In this review, we discuss the literature concerning the applications of the HBV preS domain in bio- and nanotechnology.

  9. Dental maturation, eruption, and gingival emergence in the upper jaw of newborn primates.

    Science.gov (United States)

    Smith, Timothy D; Muchlinski, Magdalena N; Jankord, Kathryn D; Progar, Abbigal J; Bonar, Christopher J; Evans, Sian; Williams, Lawrence; Vinyard, Christopher J; Deleon, Valerie B

    2015-12-01

    In this report we provide data on dental eruption and tooth germ maturation at birth in a large sample constituting the broadest array of non-human primates studied to date. Over 100 perinatal primates, obtained from natural captive deaths, were screened for characteristics indicating premature birth, and were subsequently studied using a combination of histology and micro-CT. Results reveal one probable unifying characteristic of living primates: relatively advanced maturation of deciduous teeth and M1 at birth. Beyond this, there is great diversity in the status of tooth eruption and maturation (dental stage) in the newborn primate. Contrasting strategies in producing a masticatory battery are already apparent at birth in strepsirrhines and anthropoids. Results show that dental maturation and eruption schedules are potentially independently co-opted as different strategies for attaining feeding independence. The most common strategy in strepsirrhines is accelerating eruption and the maturation of the permanent dentition, including replacement teeth. Anthropoids, with only few exceptions, accelerate mineralization of the deciduous teeth, while delaying development of all permanent teeth except M1. These results also show that no living primate resembles the altricial tree shrew (Tupaia) in dental development. Our preliminary observations suggest that ecological explanations, such as diet, provide an explanation for certain morphological variations at birth. These results confirm previous work on perinatal indriids indicating that these and other primates telegraph their feeding adaptations well before masticatory anatomy is functional. Quantitative analyses are required to decipher specific dietary and other influences on dental size and maturation in the newborn primate. © 2015 Wiley Periodicals, Inc.

  10. Sex differences in regulatory cells in experimental stroke.

    Science.gov (United States)

    Seifert, Hilary A; Benedek, Gil; Liang, Jian; Nguyen, Ha; Kent, Gail; Vandenbark, Arthur A; Saugstad, Julie A; Offner, Halina

    2017-08-01

    Stroke is the leading cause of disability in the United States. Sex differences, including smaller infarcts in females and greater involvement of immune-mediated inflammation in males may affect the efficacy of immune-modulating interventions. To address these differences, we sought to identify distinct stroke-modifying mechanisms in female vs. male mice. The current study demonstrated smaller infarcts and increased levels of regulatory CD19 + CD5 + CD1d hi B10 cells as well as anti-inflammatory CD11b + CD206 + microglia/macrophages in the ipsilateral vs. contralateral hemisphere of female but not male mice undergoing 60min middle cerebral artery occlusion followed by 96h of reperfusion. Moreover, female mice with MCAO had increased total spleen cell numbers but lower B10 levels in spleens. These results elucidate differing sex-dependent regulatory mechanisms that account for diminished stroke severity in females and underscore the need to test immune-modulating therapies for stroke in both males and females. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Analysis of the reptile CD1 genes: evolutionary implications.

    Science.gov (United States)

    Yang, Zhi; Wang, Chunyan; Wang, Tao; Bai, Jianhui; Zhao, Yu; Liu, Xuhan; Ma, Qingwei; Wu, Xiaobing; Guo, Ying; Zhao, Yaofeng; Ren, Liming

    2015-06-01

    CD1, as the third family of antigen-presenting molecules, is previously only found in mammals and chickens, which suggests that the chicken and mammalian CD1 shared a common ancestral gene emerging at least 310 million years ago. Here, we describe CD1 genes in the green anole lizard and Crocodylia, demonstrating that CD1 is ubiquitous in mammals, birds, and reptiles. Although the reptilian CD1 protein structures are predicted to be similar to human CD1d and chicken CD1.1, CD1 isotypes are not found to be orthologous between mammals, birds, and reptiles according to phylogenetic analyses, suggesting an independent diversification of CD1 isotypes during the speciation of mammals, birds, and reptiles. In the green anole lizard, although the single CD1 locus and MHC I gene are located on the same chromosome, there is an approximately 10-Mb-long sequence in between, and interestingly, several genes flanking the CD1 locus belong to the MHC paralogous region on human chromosome 19. The CD1 genes in Crocodylia are located in two loci, respectively linked to the MHC region and MHC paralogous region (corresponding to the MHC paralogous region on chromosome 19). These results provide new insights for studying the origin and evolution of CD1.

  12. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    Science.gov (United States)

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  13. NKT cell self-reactivity: evolutionary master key of immune homeostasis?

    Science.gov (United States)

    Issazadeh-Navikas, Shohreh

    2012-04-01

    Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens. This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue. Two arms of immunity, the innate and adaptive immune systems, have evolved for quick, non-specific immune responses to pathogens and more efficient, long-lasting ones upon specific recognition of recurrent pathogens. Specialized cells have arisen as the sentinels of these functions, including macrophages, natural killer (NK), and T and B-lymphocytes. Interestingly, a population of immune cells that can exert both of these complex functions, NKT cells, not only share common functions but also exhibit shared cell surface markers of cells of both arms of the immune system. These features, in combination with sophisticated maintenance of immune homeostasis, will be discussed. The recent finding of self-peptide reactivity of NKT cells in the context of CD1d, with capacity to regulate multiple autoimmune and inflammatory conditions, motivates the current proposal that self-reactive NKT cells might be the ancestral link between present NK and T cells. Their parallel selection through evolution by higher vertebrates could be related to their central function as master regulators of immune homeostasis that in part is shared with regulatory T cells. Hypothetical views on how self-reactive NKT cells secure such a central role will also be proposed.

  14. Stimulation of Natural Killer T Cells by Glycolipids

    Directory of Open Access Journals (Sweden)

    Brian L. Anderson

    2013-12-01

    Full Text Available Natural killer T (NKT cells are a subset of T cells that recognize glycolipid antigens presented by the CD1d protein. The initial discovery of immunostimulatory glycolipids from a marine sponge and the T cells that respond to the compounds has led to extensive research by chemists and immunologists to understand how glycolipids are recognized, possible responses by NKT cells, and the structural features of glycolipids necessary for stimulatory activity. The presence of this cell type in humans and most mammals suggests that it plays critical roles in antigen recognition and the interface between innate and adaptive immunity. Both endogenous and exogenous natural antigens for NKT cells have been identified, and it is likely that glycolipid antigens remain to be discovered. Multiple series of structurally varied glycolipids have been synthesized and tested for stimulatory activity. The structural features of glycolipids necessary for NKT cell stimulation are moderately well understood, and designed compounds have proven to be much more potent antigens than their natural counterparts. Nevertheless, control over NKT cell responses by designed glycolipids has not been optimized, and further research will be required to fully reveal the therapeutic potential of this cell type.

  15. Does an NKT-cell-based immunotherapeutic approach have a future in multiple myeloma?

    Science.gov (United States)

    Favreau, Mérédis; Vanderkerken, Karin

    2016-01-01

    Natural killer T (NKT) cells constitute a unique subset of innate-like T lymphocytes which differ from conventional T cells by recognizing lipid antigens presented by the non-polymorphic major histocompatibility complex (MHC) I-like molecule CD1d. Despite being a relatively infrequent population of lymphocytes, NKT cells can respond rapidly upon activation with glycosphingolipids by production of cytokines which aim to polarize different axes of the immune system. Due to their dual effector capacities, NKT cells can play a vital role in cancer immunity, infection, inflammation and autoimmune diseases. It is believed that modulation of their activity towards immune activation can be a useful tool in anti-tumor immunotherapeutic strategies. Here we summarize the characteristics of NKT cells and discuss their involvement in immunosurveillance. Furthermore, an update is given about their role and the progress that has been made in the field of multiple myeloma (MM). Finally, some challenges are discussed that are currently hampering further progress. PMID:26895468

  16. The Yin and Yang of Invariant Natural Killer T Cells in Tumor Immunity—Suppression of Tumor Immunity in the Intestine

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available CD1d-restricted invariant natural killer T (iNKT cells are known as early responding, potent regulatory cells of immune responses. Besides their established role in the regulation of inflammation and autoimmune disease, numerous studies have shown that iNKT cells have important functions in tumor immunosurveillance and control of tumor metastasis. Tumor-infiltrating T helper 1 (TH1/cytotoxic T lymphocytes have been associated with a positive prognosis. However, inflammation has a dual role in cancer and chronic inflammation is believed to be a driving force in many cancers as exemplified in patients with inflammatory bowel disease that have an increased risk of colorectal cancer. Indeed, NKT cells promote intestinal inflammation in human ulcerative colitis, and the associated animal model, indicating that NKT cells may favor tumor development in intestinal tissue. In contrast to other cancers, recent data from animal models suggest that iNKT cells promote tumor formation in the intestine by supporting an immunoregulatory tumor microenvironment and suppressing TH1 antitumor immunity. Here, we review the role of iNKT cells in suppression of tumor immunity in light of iNKT-cell regulation of intestinal inflammation. We also discuss suppression of immunity in other situations as well as factors that may influence whether iNKT cells have a protective or an immunosuppressive and tumor-promoting role in tumor immunity.

  17. NKT cell subsets as key participants in liver physiology and pathology

    Science.gov (United States)

    Bandyopadhyay, Keya; Marrero, Idania; Kumar, Vipin

    2016-01-01

    Natural killer T (NKT) cells are innate-like lymphocytes that generally recognize lipid antigens and are enriched in microvascular compartments of the liver. NKT cells can be activated by self- or microbial-lipid antigens and by signaling through toll-like receptors. Following activation, NKT cells rapidly secrete pro-inflammatory or anti-inflammatory cytokines and chemokines, and thereby determine the milieu for subsequent immunity or tolerance. It is becoming clear that two different subsets of NKT cells—type I and type II—have different modes of antigen recognition and have opposing roles in inflammatory liver diseases. Here we focus mainly on the roles of both NKT cell subsets in the maintenance of immune tolerance and inflammatory diseases in liver. Furthermore, how the differential activation of type I and type II NKT cells influences other innate cells and adaptive immune cells to result in important consequences for tissue integrity is discussed. It is crucial that better reagents, including CD1d tetramers, be used in clinical studies to define the roles of NKT cells in liver diseases in patients. PMID:26972772

  18. Spontaneous focal activation of invariant natural killer T (iNKT cells in mouse liver and kidney

    Directory of Open Access Journals (Sweden)

    Zeng Jia

    2010-11-01

    Full Text Available Abstract Background Invariant natural killer T (iNKT cells differ from other T cells by their hyperactive effector T-cell status, in addition to the expression of NK lineage receptors and semi-invariant T-cell receptors. It is generally agreed that the immune phenotype of iNKT cells is maintained by repeated activation in peripheral tissues although no explicit evidence for such iNKT cell activity in vivo has so far been reported. Results We used an interferon (IFN-γ-inducible cytoplasmic protein, Irga6, as a histological marker for local IFN-γ production. Irga6 was intensely expressed in small foci of liver parenchymal cells and kidney tubular epithelium. Focal Irga6 expression was unaffected by germ-free status or loss of TLR signalling and was totally dependent on IFN-γ secreted by T cells in the centres of expression foci. These were shown to be iNKT cells by diagnostic T cell receptor usage and their activity was lost in both CD1 d and Jα-deficient mice. Conclusions This is the first report that supplies direct evidence for explicit activation events of NKT cells in vivo and raises issues about the triggering mechanism and consequences for immune functions in liver and kidney.

  19. TLR4 and NKT cell synergy in immunotherapy against visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Subir Karmakar

    Full Text Available NKT cells play an important role in autoimmune diseases, tumor surveillance, and infectious diseases, providing in most cases protection against infection. NKT cells are reactive to CD1d presented glycolipid antigens. They can modulate immune responses by promoting the secretion of type 1, type 2, or immune regulatory cytokines. Pathogen-derived signals to dendritic cells mediated via Toll like Receptors (TLR can be modulated by activated invariant Natural Killer T (iNKT cells. The terminal β-(1-4-galactose residues of glycans can modulate host responsiveness in a T helper type-1 direction via IFN-γ and TLRs. We have attempted to develop a defined immunotherapeutic, based on the cooperative action of a TLR ligand and iNKT cell using a mouse model of visceral leishmaniasis. We evaluated the anti-Leishmania immune responses and the protective efficacy of the β-(1-4-galactose terminal NKT cell ligand glycosphingophospholipid (GSPL antigen of L. donovani parasites. Our results suggest that TLR4 can function as an upstream sensor for GSPL and provoke intracellular inflammatory signaling necessary for parasite killing. Treatment with GSPL was able to induce a strong effective T cell response that contributed to effective control of acute parasite burden and led to undetectable parasite persistence in the infected animals. These studies for the first time demonstrate the interactions between a TLR ligand and iNKT cell activation in visceral leishmaniasis immunotherapeutic.

  20. Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Shuichi Kitayama

    2016-02-01

    Full Text Available Vα24 invariant natural killer T (iNKT cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer. Conversely, reduced iNKT cell numbers and function have been observed in many patients with cancer. To recover these numbers, we reprogrammed human iNKT cells to pluripotency and then re-differentiated them into regenerated iNKT cells in vitro through an IL-7/IL-15-based optimized cytokine combination. The re-differentiated iNKT cells showed proliferation and IFN-γ production in response to α-galactosylceramide, induced dendritic cell maturation and downstream activation of both cytotoxic T lymphocytes and NK cells, and exhibited NKG2D- and DNAM-1-mediated NK cell-like cytotoxicity against cancer cell lines. The immunological features of re-differentiated iNKT cells and their unlimited availability from induced pluripotent stem cells offer a potentially effective immunotherapy against cancer.

  1. NKT Cell Networks in the Regulation of Tumor Immunity

    Science.gov (United States)

    Robertson, Faith C.; Berzofsky, Jay A.; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting. PMID:25389427

  2. Antigen Specificity of Type I NKT Cells Is Governed by TCR β-Chain Diversity.

    Science.gov (United States)

    Cameron, Garth; Pellicci, Daniel G; Uldrich, Adam P; Besra, Gurdyal S; Illarionov, Petr; Williams, Spencer J; La Gruta, Nicole L; Rossjohn, Jamie; Godfrey, Dale I

    2015-11-15

    NKT cells recognize lipid-based Ags presented by CD1d. Type I NKT cells are often referred to as invariant owing to their mostly invariant TCR α-chain usage (Vα14-Jα18 in mice, Vα24-Jα18 in humans). However, these cells have diverse TCR β-chains, including Vβ8, Vβ7, and Vβ2 in mice and Vβ11 in humans, joined to a range of TCR Dβ and Jβ genes. In this study, we demonstrate that TCR β-chain composition can dramatically influence lipid Ag recognition in an Ag-dependent manner. Namely, the glycolipids α-glucosylceramide and isoglobotrihexosylceramide were preferentially recognized by Vβ7(+) NKT cells from mice, whereas the α-galactosylceramide analog OCH, with a truncated sphingosine chain, was preferentially recognized by Vβ8(+) NKT cells from mice. We show that the influence of the TCR β-chain is due to a combination of Vβ-, Jβ-, and CDR3β-encoded residues and that these TCRs can recapitulate the selective Ag reactivity in TCR-transduced cell lines. Similar observations were made with human NKT cells where different CDR3β-encoded residues determined Ag preference. These findings indicate that NKT TCR β-chain diversity results in differential and nonhierarchical Ag recognition by these cells, which implies that some Ags can preferentially activate type I NKT cell subsets. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. NKT cells in leishmaniasis.

    Science.gov (United States)

    Zamora-Chimal, Jaime; Hernández-Ruiz, Joselín; Becker, Ingeborg

    2017-04-01

    The role of NKT cells in the resistance or susceptibility towards Leishmania infections remains to be defined, since controversial data persist. The response of these cells seems to depend on many variables such as the infection site, the number of infecting parasites, the virulence of the strain and the Leishmania species. We here revise the activation pathways leading to NKT cell activation. NKT cells can be activated by the direct pathway, in which Leishmania glycolipids are presented by CD1d molecules on antigen presenting cells, such as dendritic cells (DC), leading to the secretion of diverse cytokines by NKT. NKT cells can also be activated by the indirect pathway, in which Leishmania glycolipids, such as LPG, stimulate TLR2 in DC, inducing their IL-12 production, which in turn activates NKT cells. The review further analyzes the role of NKT cells in disease development, both in humans as in mouse models. Finally we propose the activation of NKT cells for controlling Leishmania infections. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Adjuvant effects of therapeutic glycolipids administered to a cohort of NKT cell-diverse pigs.

    Science.gov (United States)

    Artiaga, Bianca L; Whitener, Robert L; Staples, Charles R; Driver, John P

    2014-11-15

    CD1d-restricted natural killer T (NKT) cells are a unique lymphocyte population that makes important contributions to host defense against numerous microbial pathogens. The powerful immunomodulatory effects of these cells can be exploited in mice by cognate antigens for multiple therapeutic purposes, including for protection from infectious diseases and as adjuvants to improve vaccines against microbial organisms. These applications have potential to treat and prevent infectious diseases in livestock species that express NKT cells, including pigs. In this study, immune tissues from commercial swine of mixed genetic background were compared for NKT cell frequency, cytokine secretion and subset ratios. Pigs were also injected with the model antigen hen-egg lysozyme (HEL) in conjunction with one of three glycosphingolipids, alpha-galactosylceramide (αGC), OCH and C-glycoside that selectively activate NKT cells, to assess the adjuvant potential of each. There was significant variation between individual pigs for all NKT cell parameters measured. The NKT cell agonists elicited HEL-specific immune responses of different quality, but only αGC increased the systemic concentration of NKT cells. Peripheral blood NKT cell frequency measured prior to treatment was a poor predictor of how individual animals responded to NKT cell therapy. However, our results show that although NKT cells vary considerably between pigs, there exists considerable potential to harness these cells to protect swine from infectious diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Regulation of NKT Cell Localization in Homeostasis and Infection

    Science.gov (United States)

    Slauenwhite, Drew; Johnston, Brent

    2015-01-01

    Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection. PMID:26074921

  6. Amelioration of NK cell function driven by Vα24+ invariant NKT cell activation in multiple myeloma.

    Science.gov (United States)

    Iyoda, Tomonori; Yamasaki, Satoru; Hidaka, Michihiro; Kawano, Fumio; Abe, Yu; Suzuki, Kenshi; Kadowaki, Norimitsu; Shimizu, Kanako; Fujii, Shin-Ichiro

    2018-02-01

    NK cells represent a first line of immune defense, but are progressively dysregulated in multiple myeloma (MM) patients. To restore and facilitate their antitumor effect, NK cells are required in sufficient quantities and must be stimulated. We initially assessed the proportions of NKT and NK cells in 34 MM patients. The frequencies of both in PBMC populations correlated with those in BMMNCs irrespective of low BMMNC numbers. We then assessed the adjunctive effect of stimulating NKT cells with CD1d and α-GalCer complexes on the NK cells. The expression of NKG2D on CD56 dim CD16 + NK cells and DNAM-1 on CD56 bright CD16 - NK cells increased after NKT cell activation. Apparently, NK cell-mediated anti-tumor effects were dependent on NKG2D and DNAM-1 ligands on myeloma cells. Thus, NK cell function in patients could be ameliorated, beyond the effect of immunosuppression, by NKT cell activation. This NKT-driven NK cell therapy could represent a potential new treatment modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Critical role of NKT cells in posttransplant alloantibody production.

    Science.gov (United States)

    Zimmerer, J M; Swamy, P; Sanghavi, P B; Wright, C L; Abdel-Rasoul, M; Elzein, S M; Brutkiewicz, R R; Bumgardner, G L

    2014-11-01

    We previously reported that posttransplant alloantibody production in CD8-deficient hosts is IL-4+ CD4+ T cell-dependent and IgG1 isotype-dominant. The current studies investigated the hypothesis that IL-4-producing natural killer T cells (NKT cells) contribute to maximal alloantibody production. To investigate this, alloantibody levels were examined in CD8-deficient WT, CD1d KO and Jα18 KO transplant recipients. We found that the magnitude of IgG1 alloantibody production was critically dependent on the presence of type I NKT cells, which are activated by day 1 posttransplant. Unexpectedly, type I NKT cell contribution to enhanced IgG1 alloantibody levels was interferon-γ-dependent and IL-4-independent. Cognate interactions between type I NKT and B cells alone do not stimulate alloantibody production. Instead, NKT cells appear to enhance maturation of IL-4+ CD4+ T cells. To our knowledge, this is the first report to substantiate a critical role for type I NKT cells in enhancing in vivo antibody production in response to endogenous antigenic stimuli. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  8. The Role of Natural Killer T Cells in Cancer—A Phenotypical and Functional Approach

    Science.gov (United States)

    Krijgsman, Daniëlle; Hokland, Marianne; Kuppen, Peter J. K.

    2018-01-01

    Natural killer T (NKT) cells are a subset of CD1d-restricted T cells at the interface between the innate and adaptive immune system. NKT cells can be subdivided into functional subsets that respond rapidly to a wide variety of glycolipids and stress-related proteins using T- or natural killer (NK) cell-like effector mechanisms. Because of their major modulating effects on immune responses via secretion of cytokines, NKT cells are also considered important players in tumor immunosurveillance. During early tumor development, T helper (TH)1-like NKT cell subsets have the potential to rapidly stimulate tumor-specific T cells and effector NK cells that can eliminate tumor cells. In case of tumor progression, NKT cells may become overstimulated and anergic leading to deletion of a part of the NKT cell population in patients via activation-induced cell death. In addition, the remaining NKT cells become hyporesponsive, or switch to immunosuppressive TH2-/T regulatory-like NKT cell subsets, thereby facilitating tumor progression and immune escape. In this review, we discuss this important role of NKT cells in tumor development and we conclude that there should be three important focuses of future research in cancer patients in relation with NKT cells: (1) expansion of the NKT cell population, (2) prevention and breaking of NKT cell anergy, and (3) skewing of NKT cells toward TH1-like subsets with antitumor activity. PMID:29535734

  9. The Janus Face of NKT Cell Function in Autoimmunity and Infectious Diseases.

    Science.gov (United States)

    Torina, Alessandra; Guggino, Giuliana; La Manna, Marco Pio; Sireci, Guido

    2018-02-01

    Natural killer T cells (NKT) are a subset of T lymphocytes bridging innate and adaptive immunity. These cells recognize self and microbial glycolipids bound to non-polymorphic and highly conserved CD1d molecules. Three NKT cell subsets, type I, II, and NKT-like expressing different antigen receptors (TCR) were described and TCR activation promotes intracellular events leading to specific functional activities. NKT can exhibit different functions depending on the secretion of soluble molecules and the interaction with other cell types. NKT cells act as regulatory cells in the defense against infections but, on the other hand, their effector functions can be involved in the pathogenesis of several inflammatory disorders due to their exposure to different microbial or self-antigens, respectively. A deep understanding of the biology and functions of type I, II, and NKT-like cells as well as their interplay with cell types acting in innate (neuthrophils, innate lymphoid cells, machrophages, and dendritic cells) and adaptive immunity (CD4⁺,CD8⁺, and double negative T cells) should be important to design potential immunotherapies for infectious and autoimmune diseases.

  10. Development of a qPCR method to rapidly assess the function of NKT cells.

    Science.gov (United States)

    Sohn, Silke; Tiper, Irina; Japp, Emily; Sun, Wenji; Tkaczuk, Katherine; Webb, Tonya J

    2014-05-01

    NKT cells comprise a rare, but important subset of T cells which account for ~0.2% of the total circulating T cell population. NKT cells are known to have anti-tumor functions and rapidly produce high levels of cytokines following activation. Several clinical trials have sought to exploit the effector functions of NKT cells. While some studies have shown promise, NKT cells are approximately 50% lower in cancer patients compared to healthy donors of the same age and gender, thus limiting their therapeutic efficacy. These studies indicate that baseline levels of activation should be assessed before initiating an NKT cell based immunotherapeutic strategy. The goal of this study was to develop a sensitive method to rapidly assess NKT cell function. We utilized artificial antigen presenting cells in combination with qPCR in order to determine NKT cell function in peripheral blood mononuclear cells from healthy donors and breast cancer patients. We found that NKT cell activation can be detected by qPCR, but not by ELISA, in healthy donors as well as in breast cancer patients following four hour stimulation. This method utilizing CD1d-expressing aAPCs will enhance our knowledge of NKT cell biology and could potentially be used as a novel tool in adoptive immunotherapeutic strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Regulation of NKT Cell Localization in Homeostasis and Infection.

    Science.gov (United States)

    Slauenwhite, Drew; Johnston, Brent

    2015-01-01

    Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.

  12. NKT-cell subsets: promoters and protectors in inflammatory liver disease.

    Science.gov (United States)

    Kumar, Vipin

    2013-09-01

    Natural killer T cells (NKT) are innate-like cells which are abundant in liver sinusoids and express the cell surface receptors of NK cells (e.g., NK1.1 (mouse) or CD161+/CD56+(human)) as well as an antigen receptor (TCR) characteristic of conventional T cells. NKT cells recognize lipid antigens in the context of CD1d, a non-polymorphic MHC class I-like molecule. Activation of NKT cells has a profound influence on the immune response against tumors and infectious organisms and in autoimmune diseases. NKT cells can be categorized into at least two distinct subsets: iNKT or type I use a semi-invariant TCR, whereas type II NKT TCRs are more diverse. Recent evidence suggests that NKT-cell subsets can play opposing roles early in non-microbial liver inflammation in that type I NKT are proinflammatory whereas type II NKT cells inhibit type I NKT-mediated liver injury. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. NKT cell networks in the regulation of tumor immunity.

    Science.gov (United States)

    Robertson, Faith C; Berzofsky, Jay A; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8(+) and CD4(+) T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host's ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  14. NKT cell subsets as key participants in liver physiology and pathology.

    Science.gov (United States)

    Bandyopadhyay, Keya; Marrero, Idania; Kumar, Vipin

    2016-05-01

    Natural killer T (NKT) cells are innate-like lymphocytes that generally recognize lipid antigens and are enriched in microvascular compartments of the liver. NKT cells can be activated by self- or microbial-lipid antigens and by signaling through toll-like receptors. Following activation, NKT cells rapidly secrete pro-inflammatory or anti-inflammatory cytokines and chemokines, and thereby determine the milieu for subsequent immunity or tolerance. It is becoming clear that two different subsets of NKT cells-type I and type II-have different modes of antigen recognition and have opposing roles in inflammatory liver diseases. Here we focus mainly on the roles of both NKT cell subsets in the maintenance of immune tolerance and inflammatory diseases in liver. Furthermore, how the differential activation of type I and type II NKT cells influences other innate cells and adaptive immune cells to result in important consequences for tissue integrity is discussed. It is crucial that better reagents, including CD1d tetramers, be used in clinical studies to define the roles of NKT cells in liver diseases in patients.

  15. Intravascular Immune Surveillance by CXCR6+ NKT Cells Patrolling Liver Sinusoids

    Directory of Open Access Journals (Sweden)

    Geissmann Frederic

    2005-01-01

    Full Text Available We examined the in vivo behavior of liver natural killer T cells (NKT cells by intravital fluorescence microscopic imaging of mice in which a green fluorescent protein cDNA was used to replace the gene encoding the chemokine receptor CXCR6. NKT cells, which account for most CXCR6+ cells in liver, were found to crawl within hepatic sinusoids at 10-20 µm/min and to stop upon T cell antigen receptor activation. CXCR6-deficient mice exhibited a selective and severe reduction of CD1d-reactive NKT cells in the liver and decreased susceptibility to T-cell-dependent hepatitis. CXCL16, the cell surface ligand for CXCR6, is expressed on sinusoidal endothelial cells, and CXCR6 deficiency resulted in reduced survival, but not in altered speed or pattern of patrolling of NKT cells. Thus, NKT cells patrol liver sinusoids to provide intravascular immune surveillance, and CXCR6 contributes to liver-based immune responses by regulating their abundance.

  16. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages

    Directory of Open Access Journals (Sweden)

    Jessica L. Miller

    2014-04-01

    Full Text Available Mosquito-transmitted malaria parasites infect hepatocytes and asymptomatically replicate as liver stages. Using RNA sequencing, we show that a rodent malaria liver-stage infection stimulates a robust innate immune response including type I interferon (IFN and IFNγ pathways. Liver-stage infection is suppressed by these infection-engendered innate responses. This suppression was abrogated in mice deficient in IFNγ, the type I IFN α/β receptor (IFNAR, and interferon regulatory factor 3. Natural killer and CD49b+CD3+ natural killer T (NKT cells increased in the liver after a primary infection, and CD1d-restricted NKT cells, which secrete IFNγ, were critical in reducing liver-stage burden of a secondary infection. Lack of IFNAR signaling abrogated the increase in NKT cell numbers in the liver, showing a link between type I IFN signaling, cell recruitment, and subsequent parasite elimination. Our findings demonstrate innate immune sensing of malaria parasite liver-stage infection and that the ensuing innate responses can eliminate the parasite.

  17. Co-receptor choice by V alpha14i NKT cells is driven by Th-POK expression rather than avoidance of CD8-mediated negative selection.

    Science.gov (United States)

    Engel, Isaac; Hammond, Kirsten; Sullivan, Barbara A; He, Xi; Taniuchi, Ichiro; Kappes, Dietmar; Kronenberg, Mitchell

    2010-05-10

    Mouse natural killer T (NKT) cells with an invariant V alpha14-J alpha18 rearrangement (V alpha14 invariant [V alpha14i] NKT cells) are either CD4(+)CD8(-) or CD4(-)CD8(-). Because transgenic mice with forced CD8 expression in all T cells exhibited a profound NKT cell deficit, the absence of CD8 has been attributed to negative selection. We now present evidence that CD8 does not serve as a coreceptor for CD1d recognition and that the defect in development in CD8 transgene homozygous mice is the result of a reduction in secondary T cell receptor alpha rearrangements. Thymocytes from mice hemizygous for the CD8 transgene have a less severe rearrangement defect and have functional CD8(+) V alpha14i NKT cells. Furthermore, we demonstrate that the transcription factor Th, Poxviruses and Zinc finger, and Krüppel family (Th-POK) is expressed by V alpha14i NKT cells throughout their differentiation and is necessary both to silence CD8 expression and for the functional maturity of V alpha14i NKT cells. We therefore suggest that Th-POK expression is required for the normal development of V alpha14i NKT cells and that the absence of CD8 expression by these cells is a by-product of such expression, as opposed to the result of negative selection of CD8-expressing V alpha14i NKT cells.

  18. NKT cell networks in the regulation of tumor immunity

    Directory of Open Access Journals (Sweden)

    Faith C Robertson

    2014-10-01

    Full Text Available CD1d-restricted natural killer T (NKT cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  19. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells.

    Science.gov (United States)

    Tsagaratou, Ageliki; González-Avalos, Edahí; Rautio, Sini; Scott-Browne, James P; Togher, Susan; Pastor, William A; Rothenberg, Ellen V; Chavez, Lukas; Lähdesmäki, Harri; Rao, Anjana

    2017-01-01

    TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4 + CD8 + double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR).

  20. Immunometabolic Activation of Invariant Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Francesca A. Ververs

    2018-05-01

    Full Text Available Invariant natural killer T (iNKT cells are lipid-reactive T cells with profound immunomodulatory potential. They are unique in their restriction to lipid antigens presented in CD1d molecules, which underlies their role in lipid-driven disorders such as obesity and atherosclerosis. In this review, we discuss the contribution of iNKT cell activation to immunometabolic disease, metabolic programming of lipid antigen presentation, and immunometabolic activation of iNKT cells. First, we outline the role of iNKT cells in immunometabolic disease. Second, we discuss the effects of cellular metabolism on lipid antigen processing and presentation to iNKT cells. The synthesis and processing of glycolipids and other potential endogenous lipid antigens depends on metabolic demand and may steer iNKT cells toward adopting a Th1 or Th2 signature. Third, external signals such as toll-like receptor ligands, adipokines, and cytokines modulate antigen presentation and subsequent iNKT cell responses. Finally, we will discuss the relevance of metabolic programming of iNKT cells in human disease, focusing on their role in disorders such as obesity and atherosclerosis. The critical response to metabolic changes places iNKT cells at the helm of immunometabolic disease.

  1. Context, cortex, and associations: a connectionist developmental approach to verbal analogies

    Science.gov (United States)

    Kollias, Pavlos; McClelland, James L.

    2013-01-01

    We present a PDP model of binary choice verbal analogy problems (A:B as C:[D1|D2], where D1 and D2 represent choice alternatives). We train a recurrent neural network in item-relation-item triples and use this network to test performance on analogy questions. Without training on analogy problems per se, the model explains the developmental shift from associative to relational responding as an emergent consequence of learning upon the environment's statistics. Such learning allows gradual, item-specific acquisition of relational knowledge to overcome the influence of unbalanced association frequency, accounting for association effects of analogical reasoning seen in cognitive development. The network also captures the overall degradation in performance after anterior temporal damage by deleting a fraction of learned connections, while capturing the return of associative dominance after frontal damage by treating frontal structures as necessary for maintaining activation of A and B while seeking a relation between C and D. While our theory is still far from being complete it provides a unified explanation of findings that need to be considered together in any integrated account of analogical reasoning. PMID:24312068

  2. Context, cortex, and associations: a connectionist developmental approach to verbal analogies

    Directory of Open Access Journals (Sweden)

    Pavlos eKollias

    2013-11-01

    Full Text Available We present a PDP model of binary choice verbal analogy problems (A:B as C:[D1|D2], where D1 and D2 represent choice alternatives. We train a recurrent neural network in item-relation- item triples and use this network to test performance on analogy questions. Without training on analogy problems per se, the model explains the developmental shift from associative to relational responding as an emergent consequence of learning upon the environment’s statistics. Such learning allows gradual, item-specific acquisition of relational knowledge to overcome the influence of unbalanced association frequency, accounting for association effects of analogical reasoning seen in cognitive development. The network also captures the overall degradation in performance after anterior temporal damage by deleting a fraction of learned connections, while capturing the return of associative dominance after frontal damage by treating frontal structures as necessary for maintaining activation of A and B while seeking a relation between C and D. While our theory is still far from being complete it provides a unified explanation of findings that need to be considered together in any integrated account of analogical reasoning.

  3. Context, cortex, and associations: a connectionist developmental approach to verbal analogies.

    Science.gov (United States)

    Kollias, Pavlos; McClelland, James L

    2013-01-01

    We present a PDP model of binary choice verbal analogy problems (A:B as C:[D1|D2], where D1 and D2 represent choice alternatives). We train a recurrent neural network in item-relation-item triples and use this network to test performance on analogy questions. Without training on analogy problems per se, the model explains the developmental shift from associative to relational responding as an emergent consequence of learning upon the environment's statistics. Such learning allows gradual, item-specific acquisition of relational knowledge to overcome the influence of unbalanced association frequency, accounting for association effects of analogical reasoning seen in cognitive development. The network also captures the overall degradation in performance after anterior temporal damage by deleting a fraction of learned connections, while capturing the return of associative dominance after frontal damage by treating frontal structures as necessary for maintaining activation of A and B while seeking a relation between C and D. While our theory is still far from being complete it provides a unified explanation of findings that need to be considered together in any integrated account of analogical reasoning.

  4. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge

    Directory of Open Access Journals (Sweden)

    T. Scott Devera

    2015-06-01

    Full Text Available Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI, and hepatic alanine aminotransferase (ALT, and aspartate aminotransferase (AST, it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.

  5. Cigarette smoke alters the invariant natural killer T cell function and may inhibit anti-tumor responses.

    LENUS (Irish Health Repository)

    Hogan, Andrew E

    2011-09-01

    Invariant natural killer T (iNKT) cells are a minor subset of human T cells which express the invariant T cell receptor Vα24 Jα18 and recognize glycolipids presented on CD1d. Invariant NKT cells are important immune regulators and can initiate anti-tumor responses through early potent cytokine production. Studies show that iNKT cells are defective in certain cancers. Cigarette smoke contains many carcinogens and is implicated directly and indirectly in many cancers. We investigated the effects of cigarette smoke on the circulating iNKT cell number and function. We found that the iNKT cell frequency is significantly reduced in cigarette smoking subjects. Invariant NKT cells exposed to cigarette smoke extract (CSE) showed significant defects in cytokine production and the ability to kill target cells. CSE inhibits the upregulation of CD107 but not CD69 or CD56 on iNKT cells. These findings suggest that CSE has a specific effect on iNKT cell anti-tumor responses, which may contribute to the role of smoking in the development of cancer.

  6. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Elena Ufimtseva

    2016-01-01

    Full Text Available The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells.

  7. Role of innate T cells in anti-bacterial immunity

    Directory of Open Access Journals (Sweden)

    Yifang eGao

    2015-06-01

    Full Text Available Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 hours upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely Invariant NKT cells (iNKT; Mucosal associated invariant T cells (MAIT and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1 and CD1a.They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review we focus on the functional properties of these 3 innate T cell populations and how they are purposed for antimicrobial defense. Furthermore we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly we speculate on future roles of these cell types in therapeutic settings such as vaccination.

  8. NKT cell self-reactivity: evolutionary master key of immune homeostasis?

    DEFF Research Database (Denmark)

    Navikas, Shohreh

    2011-01-01

    Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens. This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue. Two arms of immunity, the innate and adaptive immune system, have evolved...... through evolution by higher vertebrates could be related to their central function as master regulators of immune homeostasis that in part is shared with regulatory T cells. Hypothetical views on how self-reactive NKT cells secure such a central role will also be proposed.......Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens. This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue. Two arms of immunity, the innate and adaptive immune system, have evolved....... The recent finding of self-peptide reactivity of NKT cells in the context of CD1d, with capacity to regulate multiple autoimmune and inflammatory conditions, motivates the current proposal that self-reactive NKT cells might be the ancestral link between present NK and T cells. Their parallel selection...

  9. The Janus Face of NKT Cell Function in Autoimmunity and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    Alessandra Torina

    2018-02-01

    Full Text Available Natural killer T cells (NKT are a subset of T lymphocytes bridging innate and adaptive immunity. These cells recognize self and microbial glycolipids bound to non-polymorphic and highly conserved CD1d molecules. Three NKT cell subsets, type I, II, and NKT-like expressing different antigen receptors (TCR were described and TCR activation promotes intracellular events leading to specific functional activities. NKT can exhibit different functions depending on the secretion of soluble molecules and the interaction with other cell types. NKT cells act as regulatory cells in the defense against infections but, on the other hand, their effector functions can be involved in the pathogenesis of several inflammatory disorders due to their exposure to different microbial or self-antigens, respectively. A deep understanding of the biology and functions of type I, II, and NKT-like cells as well as their interplay with cell types acting in innate (neuthrophils, innate lymphoid cells, machrophages, and dendritic cells and adaptive immunity (CD4+,CD8+, and double negative T cells should be important to design potential immunotherapies for infectious and autoimmune diseases.

  10. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection

    Science.gov (United States)

    Kamaladasa, A.; Wickramasinghe, N.; Adikari, T. N.; Gomes, L.; Shyamali, N. L. A.; Salio, M.; Cerundolo, V.; Ogg, G. S.

    2016-01-01

    Summary Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)‐γ and interleukin (IL)−4 ex‐vivo enzyme‐linked immunospot (ELISPOT) assays following stimulation with alpha‐galactosyl‐ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4+ subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus‐specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl‐6 (P = 0·0003) and both Bcl‐6 and inducible T cell co‐stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4+ iNKT cells, with reduced expression of CD161 markers. PMID:26874822

  11. Mixed Signals: Co-Stimulation in Invariant Natural Killer T Cell-Mediated Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Susannah C. Shissler

    2017-11-01

    Full Text Available Invariant natural killer T (iNKT cells are an integral component of the immune system and play an important role in antitumor immunity. Upon activation, iNKT cells can directly kill malignant cells as well as rapidly produce cytokines that stimulate other immune cells, making them a front line defense against tumorigenesis. Unfortunately, iNKT cell number and activity are reduced in multiple cancer types. This anergy is often associated with upregulation of co-inhibitory markers such as programmed death-1. Similar to conventional T cells, iNKT cells are influenced by the conditions of their activation. Conventional T cells receive signals through the following three types of receptors: (1 T cell receptor (TCR, (2 co-stimulation molecules, and (3 cytokine receptors. Unlike conventional T cells, which recognize peptide antigen presented by MHC class I or II, the TCRs of iNKT cells recognize lipid antigen in the context of the antigen presentation molecule CD1d (Signal 1. Co-stimulatory molecules can positively and negatively influence iNKT cell activation and function and skew the immune response (Signal 2. This study will review the background of iNKT cells and their co-stimulatory requirements for general function and in antitumor immunity. We will explore the impact of monoclonal antibody administration for both blocking inhibitory pathways and engaging stimulatory pathways on iNKT cell-mediated antitumor immunity. This review will highlight the incorporation of co-stimulatory molecules in antitumor dendritic cell vaccine strategies. The use of co-stimulatory intracellular signaling domains in chimeric antigen receptor-iNKT therapy will be assessed. Finally, we will explore the influence of innate-like receptors and modification of immunosuppressive cytokines (Signal 3 on cancer immunotherapy.

  12. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  13. Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury.

    Science.gov (United States)

    Volarevic, Vladislav; Markovic, Bojana Simovic; Bojic, Sanja; Stojanovic, Maja; Nilsson, Ulf; Leffler, Hakon; Besra, Gurdyal S; Arsenijevic, Nebojsa; Paunovic, Verica; Trajkovic, Vladimir; Lukic, Miodrag L

    2015-02-01

    Galectin-3 (Gal-3), an endogenous lectin, exhibits pro- and anti-inflammatory effects in various disease conditions. In order to explore the role of Gal-3 in NKT-cell-dependent pathology, we induced hepatitis in C57BL/6 WT and Gal-3-deficient mice by using specific ligand for NKT cells: α-galactosylceramide, glycolipid Ag presented by CD1d. The injection of α-galactosylceramide significantly enhanced expression of Gal-3 in liver NKT and dendritic cells (DCs). Genetic deletion or selective inhibition of Gal-3 (induced by Gal-3-inhibitor TD139) abrogated the susceptibility to NKT-cell-dependent hepatitis. Blood levels of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-12) and their production by liver DCs and NKT cells were also downregulated. Genetic deletion or selective inhibition of Gal-3 alleviated influx of inflammatory CD11c(+) CD11b(+) DCs in the liver and favored tolerogenic phenotype and IL-10 production of liver NKT and DCs. Deletion of Gal-3 attenuated the capacity of DCs to support liver damage in the passive transfer experiments and to produce pro-inflammatory cytokines in vitro. Gal-3-deficient DCs failed to optimally stimulate production of pro-inflammatory cytokines in NKT cells, in vitro and in vivo. In conclusion, Gal-3 regulates the capacity of DCs to support NKT-cell-mediated liver injury, playing an important pro-inflammatory role in acute liver injury. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Maricic, Igor; Halder, Ramesh; Bischof, Felix; Kumar, Vipin

    2014-08-01

    CD1d-restricted NKT cells can be divided into two groups: type I NKT cells use a semi-invariant TCR, whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the CNS tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. In this article, we have addressed the mechanism of regulation, as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of myelin proteolipid proteins 139-151/I-A(s)-tetramer(+) cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells (DCs) in the periphery, as well as CNS-resident microglia, are inactivated after sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover, tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not α-galactosylceramide, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune-regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Because CD1 molecules are nonpolymorphic, the sulfatide-mediated immune-regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  15. Tim-3/galectin-9 regulate the homeostasis of hepatic NKT cells in a murine model of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Tang, Zhao-Hui; Liang, Shuwen; Potter, James; Jiang, Xuan; Mao, Hai-Quan; Li, Zhiping

    2013-02-15

    T cell Ig and mucin domain (Tim)-3 is well known to interact with its natural ligand, Galectin-9 (Gal-9), to regulate T cell function. However, little is known about the function of Tim-3/Gal-9 signaling in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) mediated by hepatic NKT cells that also express Tim-3. In the current study, we define the role and the mechanism of Tim-3/Gal-9 signaling in hepatic NKT cell regulation in a mouse model of diet-induced NAFLD. Adult male wild-type or CD1d knockout C57BL/6 mice were fed a high-fat diet to induce steatosis. Some of the mice also received one or a combination of Gal-9, anti-IL-15R/IL-15 mAb, rIL-15, α-galactosylceramide, and multilamellar liposomes containing Cl(2)MDP. The expression of Tim-3 and various markers reflecting cell proliferation, activation, cytokine production, and apoptosis was analyzed. Liver histology, steatosis grade, and hepatic triglyceride content were also evaluated. In the liver, Tim-3(+) NKT cells are in an activated state, and Gal-9 directly induces Tim-3(+) NKT cell apoptosis and contributes to the depletion of NKT cells in diet-induced steatosis. However, Gal-9 also interacts with Tim-3-expressing Kupffer cells to induce secretion of IL-15, thus promoting NKT cell proliferation. Exogenous administration of Gal-9 significantly ameliorates diet-induced steatosis by modulating hepatic NKT cell function. In summary, the Tim-3/Gal-9-signaling pathway plays a critical role in the homeostasis of hepatic NKT cells through activation-induced apoptosis and secondary proliferation and, thus, contributes to the pathogenesis of NAFLD.

  16. Invariant NKT cells: regulation and function during viral infection.

    Directory of Open Access Journals (Sweden)

    Jennifer A Juno

    Full Text Available Natural killer T cells (NKT cells represent a subset of T lymphocytes that express natural killer (NK cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT, express a highly restricted T cell receptor (TCR and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses.

  17. Differential surface phenotype and context-dependent reactivity of functionally diverse NKT cells.

    Science.gov (United States)

    Cameron, Garth; Godfrey, Dale I

    2018-03-05

    Natural Killer T (NKT) cells are a functionally diverse population that recognizes lipid-based antigens in association with the antigen-presenting molecule CD1d. Here, we define a technique to separate the functionally distinct thymic NKT1, NKT2 and NKT17 cell subsets by their surface expression of CD278 (ICOS) and the activation-associated glycoform of CD43, enabling the investigation of subset-specific effector-functions. We report that all three subsets express the transcription factor GATA-3 and the potential to produce IL-4 and IL-10 following activation. This questions the notion that NKT2 cells are the predominant source of IL-4 within the NKT cell pool, and suggests that IL-10-production may be more indicative of NKT cell plasticity than the existence of a distinct regulatory lineage or subset. We also show that many NKT17 cells are CD4 + and are biased toward Vβ8.3 TCR gene usage. Lastly, we demonstrate that the toll-like receptor (TLR) ligand lipopolysaccharide (LPS) can induce a NKT17 cell-biased response, even in the absence of exogenous antigen, and that combining LPS with α-GalCer resulted in enhanced IL-17A-production, and reduced levels of the immunosuppressive cytokine IL-10. This study provides a novel means to examine the context-dependent reactivity of the functionally heterogeneous NKT cell population and provides important new insight into the functional biology of these subsets. © 2018 Australasian Society for Immunology Inc.

  18. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  19. Interleukin-30 (IL27p28) alleviates experimental sepsis by modulating cytokine profile in NKT cells.

    Science.gov (United States)

    Yan, Jun; Mitra, Abhisek; Hu, Jiemiao; Cutrera, Jeffery J; Xia, Xueqing; Doetschman, Thomas; Gagea, Mihai; Mishra, Lopa; Li, Shulin

    2016-05-01

    Sepsis is an acute systemic inflammatory response to infection associated with high patient mortality (28-40%). We hypothesized that interleukin (IL)-30, a novel cytokine protecting mice against liver injury resulting from inflammation, would generate a protective effect against systemic inflammation and sepsis-induced death. Sepsis was induced by lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). The inhibitory effects of IL-30 on septic inflammation and associated therapeutic effects were determined in wild-type, IL30 (p28)(-/-), IL10(-/-), and CD1d(-/-) mice. Mice treated with pIL30 gene therapy or recombinant IL-30 protein (rIL30) were protected from LPS-induced septic shock or CLP-induced polymicrobial sepsis and showed markedly less liver damage and lymphocyte apoptosis than control septic mice. The resulting reduction in mortality was mediated through attenuation of the systemic pro-inflammatory response and augmentation of bacterial clearance. Mice lacking IL-30 were more sensitive to LPS-induced sepsis. Natural killer-like T cells (NKT) produced much higher levels of IL-10 and lower levels of interferon-gamma and tumor necrosis factor-alpha in IL-30-treated septic mice than in control septic mice. Likewise, deficiency in IL-10 or NKT cells abolished the protective role of IL-30 against sepsis. Furthermore, IL-30 induced IL-10 production in purified and LPS-stimulated NKT cells. Blocking IL-6R or gp130 inhibited IL-30 mediated IL-10 production. IL-30 is important in modulating production of NKT cytokines and subsequent NKT cell-mediated immune regulation of other cells. Therefore, IL-30 has a role in prevention and treatment of sepsis via modulation of cytokine production by NKT. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Tim-3/Galectin-9 Regulate the Homeostasis of Hepatic NKT Cells in a Murine Model of Nonalcoholic Fatty Liver Disease

    Science.gov (United States)

    Liang, Shuwen; Potter, James; Jiang, Xuan; Mao, Hai-Quan

    2013-01-01

    T cell Ig and mucin domain (Tim)-3 is well known to interact with its natural ligand, Galectin-9 (Gal-9), to regulate T cell function. However, little is known about the function of Tim-3/Gal-9 signaling in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) mediated by hepatic NKT cells that also express Tim-3. In the current study, we define the role and the mechanism of Tim-3/Gal-9 signaling in hepatic NKT cell regulation in a mouse model of diet-induced NAFLD. Adult male wild-type or CD1d knockout C57BL/6 mice were fed a high-fat diet to induce steatosis. Some of the mice also received one or a combination of Gal-9, anti–IL-15R/IL-15 mAb, rIL-15, α-galactosylceramide, and multilamellar liposomes containing Cl2MDP. The expression of Tim-3 and various markers reflecting cell proliferation, activation, cytokine production, and apoptosis was analyzed. Liver histology, steatosis grade, and hepatic triglyceride content were also evaluated. In the liver, Tim-3+ NKT cells are in an activated state, and Gal-9 directly induces Tim-3+ NKT cell apoptosis and contributes to the depletion of NKT cells in diet-induced steatosis. However, Gal-9 also interacts with Tim-3–expressing Kupffer cells to induce secretion of IL-15, thus promoting NKT cell proliferation. Exogenous administration of Gal-9 significantly ameliorates diet-induced steatosis by modulating hepatic NKT cell function. In summary, the Tim-3/Gal-9–signaling pathway plays a critical role in the homeostasis of hepatic NKT cells through activation-induced apoptosis and secondary proliferation and, thus, contributes to the pathogenesis of NAFLD. PMID:23296703

  1. iNKT cells suppress the CD8+ T cell response to a murine Burkitt's-like B cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Ryan L Bjordahl

    Full Text Available The T cell response to B cell lymphomas differs from the majority of solid tumors in that the malignant cells themselves are derived from B lymphocytes, key players in immune response. B cell lymphomas are therefore well situated to manipulate their surrounding microenvironment to enhance tumor growth and minimize anti-tumor T cell responses. We analyzed the effect of T cells on the growth of a transplantable B cell lymphoma and found that iNKT cells suppressed the anti-tumor CD8(+ T cell response. Lymphoma cells transplanted into syngeneic wild type (WT mice or Jalpha18(-/- mice that specifically lack iNKT cells grew initially at the same rate, but only the mice lacking iNKT cells were able to reject the lymphoma. This effect was due to the enhanced activity of tumor-specific CD8(+ T cells in the absence of iNKT cells, and could be partially reversed by reconstitution of iNKT cells in Jalpha 18(-/- mice. Treatment of tumor-bearing WT mice with alpha -galactosyl ceramide, an activating ligand for iNKT cells, reduced the number of tumor-specific CD8(+ T cells. In contrast, lymphoma growth in CD1d1(-/- mice that lack both iNKT and type II NKT cells was similar to that in WT mice, suggesting that type II NKT cells are required for full activation of the anti-tumor immune response. This study reveals a tumor-promoting role for iNKT cells and suggests their capacity to inhibit the CD8(+ T cell response to B cell lymphoma by opposing the effects of type II NKT cells.

  2. Ex-vivo α-galactosylceramide activation of NKT cells in humans and macaques.

    Science.gov (United States)

    Fernandez, Caroline S; Cameron, Garth; Godfrey, Dale I; Kent, Stephen J

    2012-08-31

    NKT cells are key mediators of antiviral and anticancer immunity. Experiments in mice have demonstrated that activation of NKT cells in vivo induces the expression of multiple effector molecules critical to successful immunity. Human clinical trials have shown similar responses, although in vivo activation of NKT cells in humans or primate models are far more limited in number and scope. Measuring ex vivo activation of NKT cells by the CD1d-restricted glycolipid ligand α-Galactosylceramide (α-GalCer) through cytokine expression profiles is a useful marker of NKT cell function, but for reasons that are unclear, this approach does not appear to work as well in humans and non-human primate macaque models in comparison to mice. We performed a series of experiments on human and macaque (Macaca nemestrina) fresh whole blood samples to define optimal conditions to detect NKT cell cytokine (TNF, IFNγ, IL-2) and degranulation marker (CD107a) expression by flow cytometry. We found that conditions previously described for mouse splenocyte NKT cell activation were suboptimal on human or macaque blood NKT cells. In contrast, a 6h incubation with brefeldin A added for the last 4h, in a 96-well plate based assay, and using an α-GalCer concentration of 1 μg/ml were optimal methods to stimulate NKT cells in fresh blood from both humans and macaques. Unexpectedly, we noted that blood NKT cells from macaques infected with SIV were more readily activated by α-GalCer than NKT cells from uninfected macaques, suggesting that SIV infection may have primed the NKT cells. In conclusion, we describe optimized methods for the ex vivo antigen-specific activation of human and macaque blood NKT cells. These assays should be useful in monitoring NKT cells in disease and in immunotherapy studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. T cell Ig domain and mucin domain 1 engagement on invariant NKT cells in the presence of TCR stimulation enhances IL-4 production but inhibits IFN-gamma production.

    Science.gov (United States)

    Kim, Hye Sung; Kim, Hyun Soo; Lee, Chang Woo; Chung, Doo Hyun

    2010-04-15

    The T cell Ig domain and mucin domain (TIM)1 protein expressed on the surface of Th2 cells regulates the immune response by modulating cytokine production. However, the functional roles of TIM1 have not been examined in NKT cells. Therefore, we investigated the immunologic effects of TIM1 on NKT cells. We found that mouse NK1.1(+)TCR-beta(+), alpha-galactosyl ceramide/CD1d dimer(+) NKT, and NKT hybridoma (DN32.D3) cells constitutively express TIM1 and TIM4 on their surface. Engagement of TIM1 on NKT cells by any of several anti-TIM1 mAbs suppressed the production of IFN-gamma in the presence of TCR stimulation in vitro and in vivo, whereas the effects of such engagement on Th2 cytokine production by the NKT cells varied with the particular anti-TIM1 Ab clone. Moreover, in DN32.D3 TIM4-knockdown NKT hybridoma cells, TIM1 engagement by rTIM1 or TIM4 enhanced IL-4 production while inhibiting IFN-gamma production in the presence of alpha-galactosyl ceramide stimulation. TIM1 engagement increased GATA-3 expression but reduced T-bet expression in NKT cells in the presence of TCR engagement. The adoptive transfer of NKT cells preincubated with anti-TIM1 mAbs into Jalpha18(-/-) mice aggravated bleomycin-induced pulmonary fibrosis by suppressing IFN-gamma production. Taken together, these results suggest that TIM1 costimulation on NKT cells enhances the cellular production of IL-4 while inhibiting the production of IFN-gamma. Thus, as a differential regulator of the immune response, TIM1 on NKT cells may be a useful therapeutic target for immune diseases.

  4. Changes of serum endocrine hormone levels in patients with cancerrelated fatigue and their correlation with anti-tumor immune response and tumor load

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2017-08-01

    Full Text Available Objective: To study the changes of serum endocrine hormone levels in patients with cancerrelated fatigue (CRF and their correlation with anti-tumor immune response and tumor load. Methods: A total of 137 patients who were diagnosed with primary lung cancer in West China Hospital, Sichuan University between June 2014 and November 2016 were selected and then divided into CRF group and control group according to their self-reported symptoms, serum was collected to determine the levels of endocrine hormones and tumor markers, and peripheral blood was collected to detect the levels of immune cells. Results: Serum ACTH and TSH levels of CRF group were significantly higher than those of control group while Cor, FT3 and FT4 levels were significantly lower than those of control group; peripheral blood CD11b+ CD15 - CD33+ CD14+ M-MDSC, CD11b+ CD15-CD33+ CD14- G-MDSC, CD4+ CD25+ CD127lowTreg and CD19+ CD5+ CD1d+ Breg levels as well as serum CEA, Cyfra21-1, SCC-Ag, HE4, GDF- 15 and PCNA levels of CRF group were significantly higher than those of control group, positively correlated with serum ACTH and TSH levels, and negatively correlated with Cor, FT3 and FT4 levels. Conclusion: The changes of thyroid hormone and adrenal cortical hormone levels in patients with cancer-related fatigue are closely related to the inhibited antitumor immune response and increased tumor load.

  5. Α-galactosylceramide analogs with weak agonist activity for human iNKT cells define new candidate anti-inflammatory agents.

    Directory of Open Access Journals (Sweden)

    Gabriel Bricard

    2010-12-01

    Full Text Available CD1d-restricted natural killer T cells with invariant T cell receptor α chains (iNKT cells are a unique lymphocyte subset that responds to recognition of specific lipid and glycolipid antigens. They are conserved between mice and humans and exert various immunoregulatory functions through their rapid secretion of a variety of cytokines and secondary activation of dendritic cells, B cells and NK cells. In the current study, we analyzed the range of functional activation states of human iNKT cells using a library of novel analogs of α-galactosylceramide (αGalCer, the prototypical iNKT cell antigen. Measurement of cytokines secreted by human iNKT cell clones over a wide range of glycolipid concentrations revealed that iNKT cell ligands could be classified into functional groups, correlating with weak versus strong agonistic activity. The findings established a hierarchy for induction of different cytokines, with thresholds for secretion being consistently lowest for IL-13, higher for interferon-γ (IFNγ, and even higher for IL-4. These findings suggested that human iNKT cells can be intrinsically polarized to selective production of IL-13 by maintaining a low level of activation using weak agonists, whereas selective polarization to IL-4 production cannot be achieved through modulating the strength of the activating ligand. In addition, using a newly designed in vitro system to assess the ability of human iNKT cells to transactivate NK cells, we found that robust secondary induction of interferon-γ secretion by NK cells was associated with strong but not weak agonist ligands of iNKT cells. These results indicate that polarization of human iNKT cell responses to Th2-like or anti-inflammatory effects may best be achieved through selective induction of IL-13 and suggest potential discrepancies with findings from mouse models that may be important in designing iNKT cell-based therapies in humans.

  6. Abnormalities in iNKT cells are associated with impaired ability of monocytes to produce IL-10 and suppress T-cell proliferation in sarcoidosis.

    Science.gov (United States)

    Crawshaw, Anjali; Kendrick, Yvonne R; McMichael, Andrew J; Ho, Ling-Pei

    2014-07-01

    Sarcoidosis is a multisystem granulomatous disorder characterized by marked T-cell expansion of T helper 1 (Th1) cells. The cause of T-cell overactivity is unknown. We hypothesized that interleukin-10 (IL-10) production by a yet undefined cell type might be defective, resulting in loss of regulation of T-cell activity. Focusing on IL-10-producing monocytes, we first showed that monocytes isolated from the peripheral blood of corticosteroid-naïve sarcoidosis patients (n = 51) produced less IL-10 compared to controls, and were less able to suppress T-cell proliferation. In addition, monocytic IL-10 production correlated negatively with disease activity score. As invariant natural killer T (iNKT) cells are known to both interact with monocytes and be reduced in sarcoidosis patients, we then asked whether iNKT-specific defects might be responsible for this reduced IL-10 production. We found that greater numbers of circulating iNKT cells was associated with higher IL-10 production. Moreover, iNKT cells enhanced monocytic IL-10 production in vitro. Defective IL-10 production and T-cell suppression by sarcoidosis monocytes could be restored following their coculture with iNKT cells, in a CD1d- and cell contact-dependent process. We suggest that reduced iNKT-cell numbers in sarcoidosis may lead to impaired monocytic IL-10 production and unchecked T-cell expansion in sarcoidosis. These findings provide fresh insight into the mechanism of sarcoidosis disease, and interaction between iNKT cells and monocytes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The excretory-secretory products of Echinococcus granulosus protoscoleces directly regulate the differentiation of B10, B17 and Th17 cells.

    Science.gov (United States)

    Pan, Wei; Hao, Wen-Ting; Shen, Yu-Juan; Li, Xiang-Yang; Wang, Yan-Juan; Sun, Fen-Fen; Yin, Jian-Hai; Zhang, Jing; Tang, Ren-Xian; Cao, Jian-Ping; Zheng, Kui-Yang

    2017-07-21

    Excretory-secretory products (ESPs) released by helminths are well-known to regulate T cell responses in the host. However, their direct influence in the differentiation of naïve T cells, and especially B cells, remains largely unknown. This study investigated the effects of Echinococcus granulosus protoscoleces ESPs (EgPSC-ESPs) on the differentiation of IL-10-producing B cells (B10), IL-17A-producing B cells (B17) and Th17 cells. BALB/c mice injected with EgPSC were used to evaluate the in vivo profiles of B10, B17 and Th17 cells. In vitro purified CD19 + B and naïve CD4 + T cells were cultured in the presence of native, heat-inactivated or periodate-treated EgPSC-ESPs, and the differentiation of these cell subsets were compared. In contrast to the control group, infected mice showed higher frequencies of B10, B17 and Th17 cells, and higher levels of IL-10 and IL-17A in the sera. Interestingly, B17 cells were first identified to express CD19 + CD1d high . In vitro, B cells cultured with native ESPs exhibited a higher percentage of B10 cells but lower percentage of B17 and Th17 cells compared to the PBS group. Moreover, the relative expression of IL-10 and IL-17A mRNA were consistent with the altered frequencies. However, ESPs subjected to heat-inactivation or periodate treatment exhibited an inverse effect on the induction of these cell subsets. Our findings indicate that ESPs released by EgPSC can directly regulate the differentiation of B10, B17 and Th17 cells, which appear to be heat-labile and carbohydrate-dependent.

  8. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system

    Directory of Open Access Journals (Sweden)

    Enrique Montalvillo

    2014-05-01

    Full Text Available The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity. Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  9. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    Science.gov (United States)

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  10. Argemone oil, an edible oil adulterant, induces systemic immunosuppression in Balb/c mice in an oral 28 days repeated dose toxicity study.

    Science.gov (United States)

    Mandal, Payal; Tewari, Prachi; Kumar, Sachin; Yadav, Sarika; Ayanur, Anjaneya; Chaturvedi, Rajnish K; Das, Mukul; Tripathi, Anurag

    2018-05-01

    Consumption of edible oils contaminated with Argemone oil (AO) leads to a clinical condition called "Epidemic dropsy". Earlier studies have reported that metabolism and oxidative stress primarily contributes to AO toxicity, however, the involvement of immune system has not been assessed so far. Therefore, the present study was undertaken to systematically assess the effect of AO exposure on the function of immune system in Balb/c mice. The repeated exposure of AO for 28 days caused prominent regression of spleen and thymus; severe inflammatory changes in spleen depicted by the loss of distinct follicles, increased megakaryocyte infiltration, and enhanced expression levels of inflammatory markers (iNOS & COX-2). At the functional level, AO exposure significantly abrogated the mixed lymphocyte reaction and mitogen-stimulated lymphoproliferative activity of T and B cells, which is reflective of profound lymphocyte dysfunction upon antigen exposure. In concordance with the loss in functional activity of lymphocytes in AO exposed animals, it was found the AO altered the relative percentage of CD3 + , CD4 + , and CD28  +  T cells. Further, there was a marked decrease in the relative distribution of cells with prominent MHC I and CD1d expression in AO exposed splenocytes. Moreover, reduced levels of immune stimulatory cytokines (TNF-α, IFN-γ, IL-2, IL-4, and IL-6), and increased levels of immunosuppressive cytokine IL-10 were detected in the serum of AO treated mice. Along with T and B cells, AO exposure also affected the phenotype and activation status of macrophages suggesting the inclination towards "alternative activation of macrophages". Altogether, these functional changes in the immune cells are contributing factors in AO induced immunosuppression. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Lysosomal Storage Disorders and Malignancy

    Directory of Open Access Journals (Sweden)

    Gregory M. Pastores

    2017-02-01

    Full Text Available Lysosomal storage disorders (LSDs are infrequent to rare conditions caused by mutations that lead to a disruption in the usual sequential degradation of macromolecules or their transit within the cell. Gaucher disease (GD, a lipidosis, is among the most common LSD, with an estimated incidence of 1 in 40,000 among the Caucasian, non-Jewish population. Studies have indicated an increased frequency of polyclonal and monoclonal gammopathy among patients with GD. It has been shown that two major sphingolipids that accumulate in GD, namely, β-glucosylceramide 22:0 (βGL1-22 and glucosylsphingosine (LGL1, can be recognized by a distinct subset of CD1d-restricted human and murine type II natural killer T (NKT cells. Investigations undertaken in an affected mouse model revealed βGL1-22- and LGL1-specific NKT cells were present and constitutively promoted the expression of a T-follicular helper (TFH phenotype; injection of these lipids led to downstream induction of germinal center B cells, hypergammaglobulinemia, and the production of antilipid antibodies. Subsequent studies have found clonal immunoglobulin in 33% of sporadic human monoclonal gammopathies is also specific for the lysolipids LGL1 and lysophosphatidylcholine (LPC. Furthermore, substrate reduction ameliorated GD-associated gammopathy in mice. It had been hypothesized that chronic antigenic stimulation by the abnormal lipid storage and associated immune dysregulation may be the underlying mechanism for the increased incidence of monoclonal and polyclonal gammopathies, as well as an increased incidence of multiple myeloma in patients with GD. Current observations support this proposition and illustrate the value of investigations into rare diseases, which as ‘experiments of nature’ may provide insights into conditions found in the general population that continue to remain incompletely understood.

  12. Uptake and intra-inclusion accumulation of exogenous immunoglobulin by Chlamydia-infected cells

    Directory of Open Access Journals (Sweden)

    Croteau Nancy L

    2008-12-01

    Full Text Available Abstract Background Obligate intracellular pathogens belonging to the Chlamydiaceae family possess a number of mechanisms by which to manipulate the host cell and surrounding environment. Such capabilities include the inhibition of apoptosis, down-regulation of major histocompatability complex (MHC and CD1/d gene expression, and the acquisition of host-synthesized nutrients. It is also documented that a limited number of host-derived macromolecules such as β-catenin and sphingomyelin accumulate within the inclusion. Results This report provides evidence that immunoglobulin, inherently present in the extracellular environment in vivo and in vitro, enters infected cells and accumulates within the chlamydial inclusion. Using epi-fluorescent and confocal microscopy, this selective uptake of Ig is shown to occur among human leukocytes in vivo as well as cells cultured in vitro. These findings were confirmed by detection of IgG in the lysate of infected cells by western blot hybridization. Sequestered antibodies appear to be present during the entire course of the chlamydial developmental cycle and are distributed throughout this compartment. IgG pre-labeled with fluorescein, when added to the supernatant of infected cell cultures, was also imported and readily visualized. Accumulation of these molecules within the inclusion and the failure of bovine serum albumin or F(ab'2 fragments to accumulate in a similar manner suggests the process of entry is specific for intact IgG molecules and not a result of pinocytosis, diffusion, or any other mass endocytic event. Conclusion Sequestration of a host cell-derived protein within the chlamydial inclusion, although unexpected, is not an unprecedented occurrence. However, selective accumulation of an exogenous host protein, such as extracellular IgG, has not been previously reported in connection with chlamydial infections. The selectivity of this process may indicate that this uptake plays an important role

  13. Pathogen-expanded CD11b+ invariant NKT cells feedback inhibit T cell proliferation via membrane-bound TGF-β1.

    Science.gov (United States)

    Han, Yanmei; Jiang, Zhengping; Chen, Zhubo; Gu, Yan; Liu, Yanfang; Zhang, Xiang; Cao, Xuetao

    2015-04-01

    Natural killer T cells (NKT cells) are effector cells, but also regulator of immune response, which either promote or suppress immune response through production of different cytokines. However, the subsets of NKT cells with definite phenotype and regulatory function need to be further identified. Furthermore, the mechanisms for NKT cells to regulate immune response remain to be fully elucidated. Here we identified CD11b(+) invariant NKT (CD11b(+) iNKT) cells as a new subset of regulatory NKT cells in mouse models with infection. αGalCer:CD1d complex(+)TCRβ(+)NK1.1(+) NKT cells could be categorized to CD11b(+) and CD11b(-) subsets. NKT cells are enriched in liver. During Listeria monocytogenes infection, hepatic CD11b(+) iNKT cells were significantly induced and expanded, with peak expansion on day 8. CD11b(+) iNKT cells were also expanded significantly in spleen and mesenteric lymph nodes. As compared to CD11b(-) iNKT cells, CD11b(+) iNKT cells expressed higher levels of CD27, FasL, B7H1, CD69, and particularly higher level of membrane-bound TGF-β1 (mTGF-β1), but produced less IFN-γ, IL-4, IL-10 and TGF-β1. Hepatic CD11b(+) iNKT cells suppressed antigen-nonspecific and OVA-specific CD4 and CD8 T cell proliferation through mTGF-β1 both in vitro and in vivo, meanwhile, they did not interfere with activation of CD4 T cells and cytotoxicity of the activated CD8 T cells. Thus, we have identified a new subset of pathogen-expanded CD11b(+) invariant NKT cells which can feedback inhibit T cell response through cell-to-cell contact via cell surface (membrane-bound) TGF-β1, especially at the late stage of immune response against infection. CD11b(+) regulatory iNKT cells may contribute to protect host from pathological injure by preventing immune overactivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Immuno-therapy with anti-CTLA4 antibodies in tolerized and non-tolerized mouse tumor models.

    Directory of Open Access Journals (Sweden)

    Jonas Persson

    Full Text Available Monoclonal antibodies specific for cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA4 are a novel form of cancer immunotherapy. While preclinical studies in mouse tumor models have shown anti-tumor efficacy of anti-CTLA4 injection or expression, anti-CTLA4 treatment in patients with advanced cancers had disappointing therapeutic benefit. These discrepancies have to be addressed in more adequate pre-clinical models. We employed two tumor models. The first model is based on C57Bl/6 mice and syngeneic TC-1 tumors expressing HPV16 E6/E7. In this model, the HPV antigens are neo-antigens, against which no central tolerance exists. The second model involves mice transgenic for the proto-oncogen neu and syngeneic mouse mammary carcinoma (MMC cells. In this model tolerance to Neu involves both central and peripheral mechanisms. Anti-CTLA4 delivery as a protein or expression from gene-modified tumor cells were therapeutically efficacious in the non-tolerized TC-1 tumor model, but had no effect in the MMC-model. We also used the two tumor models to test an immuno-gene therapy approach for anti-CTLA4. Recently, we used an approach based on hematopoietic stem cells (HSC to deliver the relaxin gene to tumors and showed that this approach facilitates pre-existing anti-tumor T-cells to control tumor growth in the MMC tumor model. However, unexpectedly, when used for anti-CTLA4 gene delivery in this study, the HSC-based approach was therapeutically detrimental in both the TC-1 and MMC models. Anti-CTLA4 expression in these models resulted in an increase in the number of intratumoral CD1d+ NKT cells and in the expression of TGF-β1. At the same time, levels of pro-inflammatory cytokines and chemokines, which potentially can support anti-tumor T-cell responses, were lower in tumors of mice that received anti-CTLA4-HSC therapy. The differences in outcomes between the tolerized and non-tolerized models also provide a potential explanation for the low efficacy

  15. Specific deletion of LDL receptor-related protein on macrophages has skewed in vivo effects on cytokine production by invariant natural killer T cells.

    Directory of Open Access Journals (Sweden)

    Roman Covarrubias

    Full Text Available Expression of molecules involved in lipid homeostasis such as the low density lipoprotein receptor (LDLr on antigen presenting cells (APCs has been shown to enhance invariant natural killer T (iNKT cell function. However, the contribution to iNKT cell activation by other lipoprotein receptors with shared structural and ligand binding properties to the LDLr has not been described. In this study, we investigated whether a structurally related receptor to the LDLr, known as LDL receptor-related protein (LRP, plays a role in iNKT cell activation. We found that, unlike the LDLr which is highly expressed on all immune cells, the LRP was preferentially expressed at high levels on F4/80+ macrophages (MΦ. We also show that CD169+ MΦs, known to present antigen to iNKT cells, exhibited increased expression of LRP compared to CD169- MΦs. To test the contribution of MΦ LRP to iNKT cell activation we used a mouse model of MΦ LRP conditional knockout (LRP-cKO. LRP-cKO MΦs pulsed with glycolipid alpha-galactosylceramide (αGC elicited normal IL-2 secretion by iNKT hybridoma and in vivo challenge of LRP-cKO mice led to normal IFN-γ, but blunted IL-4 response in both serum and intracellular expression by iNKT cells. Flow cytometric analyses show similar levels of MHC class-I like molecule CD1d on LRP-cKO MΦs and normal glycolipid uptake. Survey of the iNKT cell compartment in LRP-cKO mice revealed intact numbers and percentages and no homeostatic disruption as evidenced by the absence of programmed death-1 and Ly-49 surface receptors. Mixed bone marrow chimeras showed that the inability iNKT cells to make IL-4 is cell extrinsic and can be rescued in the presence of wild type APCs. Collectively, these data demonstrate that, although MΦ LRP may not be necessary for IFN-γ responses, it can contribute to iNKT cell activation by enhancing early IL-4 secretion.

  16. Genomic Anatomy of a Premier Major Histocompatibility Complex Paralogous Region on Chromosome 1q21–q22

    Science.gov (United States)

    Shiina, Takashi; Ando, Asako; Suto, Yumiko; Kasai, Fumio; Shigenari, Atsuko; Takishima, Nobusada; Kikkawa, Eri; Iwata, Kyoko; Kuwano, Yuko; Kitamura, Yuka; Matsuzawa, Yumiko; Sano, Kazumi; Nogami, Masahiro; Kawata, Hisako; Li, Suyun; Fukuzumi, Yasuhito; Yamazaki, Masaaki; Tashiro, Hiroyuki; Tamiya, Gen; Kohda, Atsushi; Okumura, Katsuzumi; Ikemura, Toshimichi; Soeda, Eiichi; Mizuki, Nobuhisa; Kimura, Minoru; Bahram, Seiamak; Inoko, Hidetoshi

    2001-01-01

    Human chromosomes 1q21–q25, 6p21.3–22.2, 9q33–q34, and 19p13.1–p13.4 carry clusters of paralogous loci, to date best defined by the flagship 6p MHC region. They have presumably been created by two rounds of large-scale genomic duplications around the time of vertebrate emergence. Phylogenetically, the 1q21–25 region seems most closely related to the 6p21.3 MHC region, as it is only the MHC paralogous region that includes bona fide MHC class I genes, the CD1 and MR1 loci. Here, to clarify the genomic structure of this model MHC paralogous region as well as to gain insight into the evolutionary dynamics of the entire quadriplication process, a detailed analysis of a critical 1.7 megabase (Mb) region was performed. To this end, a composite, deep, YAC, BAC, and PAC contig encompassing all five CD1 genes and linking the centromeric +P5 locus to the telomeric KRTC7 locus was constructed. Within this contig a 1.1-Mb BAC and PAC core segment joining CD1D to FCER1A was fully sequenced and thoroughly analyzed. This led to the mapping of a total of 41 genes (12 expressed genes, 12 possibly expressed genes, and 17 pseudogenes), among which 31 were novel. The latter include 20 olfactory receptor (OR) genes, 9 of which are potentially expressed. Importantly, CD1, SPTA1, OR, and FCERIA belong to multigene families, which have paralogues in the other three regions. Furthermore, it is noteworthy that 12 of the 13 expressed genes in the 1q21–q22 region around the CD1 loci are immunologically relevant. In addition to CD1A-E, these include SPTA1, MNDA, IFI-16, AIM2, BL1A, FY and FCERIA. This functional convergence of structurally unrelated genes is reminiscent of the 6p MHC region, and perhaps represents the emergence of yet another antigen presentation gene cluster, in this case dedicated to lipid/glycolipid antigens rather than antigen-derived peptides. [The nucleotide sequence data reported in this paper have been submitted to the DDBJ, EMBL, and GenBank databases under

  17. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yong, E-mail: yongzhao@uic.edu [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Guo, Chengshan; Hwang, David; Lin, Brian; Dingeldein, Michael; Mihailescu, Dan; Sam, Susan; Sidhwani, Seema [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Zhang, Yongkang [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Jain, Sumit [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Skidgel, Randal A. [Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Prabhakar, Bellur S. [Department of Immunology and Microbiology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Mazzone, Theodore [Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612 (United States); Holterman, Mark J. [Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.

  18. Anti-inflammatory activities of Ganoderma lucidum (Lingzhi) and San-Miao-San supplements in MRL/lpr mice for the treatment of systemic lupus erythematosus.

    Science.gov (United States)

    Cai, Zhe; Wong, Chun Kwok; Dong, Jie; Jiao, Delong; Chu, Man; Leung, Ping Chung; Lau, Clara Bik San; Lau, Ching Po; Tam, Lai Shan; Lam, Christopher Wai Kei

    2016-01-01

    Ganoderma lucidum (Lingzhi; LZ) and San-Miao-San (SMS) are Chinese medicines (CMs) used to treat inflammatory ailments and numbing syndrome/arthralgia syndrome (Bi Zheng), respectively. Given that the main symptoms of systemic lupus erythematosus (SLE) include inflammation of the joints, joint pain, edema and palpitations of the heart because of problems associated with Bi Zheng, it was envisaged that LZ and SMS could be used as potential treatments for this autoimmune disease. This study aims to investigate the anti-inflammatory activity of a combination formulation containing LZ and SMS (LZ-SMS) in SLE mice. Female adult Balb/c mice of 20-24 weeks of age were used as normal mice (n = 10), whereas female MRL/lpr mice of 12-24 weeks of age were divided into three groups (n = 10 in each group), including mild, moderate and severe SLE mice groups. The clinical characteristics of the SLE and Babl/c mice (i.e., body weight, joint thickness, lupus flare, proteinuria, leukocyturia and lymphadenopathy) were assessed. The plasma concentrations of anti-nuclear antibody (ANA) and anti-double stranded DNA antibody (anti-ds-DNA) were analyzed by an enzyme-linked immunosorbent assay, whereas the concentration of several key cytokines (IFN-γ, TNF-α, IL-6, IL-10, IL-2, IL-27, IL-12P70, IL-17A and IL-21) were analyzed by a Luminex multiplex assay. The gene expression profiles for differentiation of the T helper (Th) lymphocytes in splenic CD4(+) Th cells were assessed by RT-qPCR. Flow cytometry was used to measure the percentages of CD4(+)CD25(+)Foxp3(+) Treg cells and CD19(+)CD5(+)CD1d(+)IL-10(+) regulatory B (Breg) cells (IL-10(+) Bregs). Concentrations of anti-ds-DNA in the plasma samples collected from the LZ-SMS-treated (500 mg/kg/day oral administration for 7 days followed with 50 mg/kg/day intraperitoneal administration for 7 days), moderate and severe SLE mice decreased significantly compared with the PBS treated mice (P < 0.05). The gene expression levels