WorldWideScience

Sample records for tunable photonic bloch

  1. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  2. Nonlinear Bloch waves in metallic photonic band-gap filaments

    International Nuclear Information System (INIS)

    Kaso, Artan; John, Sajeev

    2007-01-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10-50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell's equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament

  3. Nonlinear Bloch waves in metallic photonic band-gap filaments

    Science.gov (United States)

    Kaso, Artan; John, Sajeev

    2007-11-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.

  4. Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Irina V. Soboleva

    2018-01-01

    Full Text Available The review considers the influence of Bloch surface waves on the optical and magneto-optical effects observed in photonic crystals; for example, the Goos–Hänchen effect, the Faraday effect, optical trapping and so on. Prospects for using Bloch surface waves for spatial light modulation, for controlling the polarization of light, for optical trapping and control of micro-objects are discussed.

  5. Design of Slow and Fast Light Photonic Crystal Waveguides for Single-photon Emission Using a Bloch Mode Expansion Technique

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Rigal, B.; Kapon, E.

    We design slow and fast light photonic crystal waveguides for single-photon emission using a Bloch mode expansion and scattering matrix technique. We propose slow light designs that increase the group index-waveguide mode volume ratio for larger Purcell enhancement, and address efficient slow-to-...

  6. Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides

    NARCIS (Netherlands)

    Gersen, H.; Karle, T.J.; Engelen, R.J.P.; Engelen, R.J.P.; Bogaerts, W.; Korterik, Jeroen P.; van Hulst, N.F.; Krauss, T.F.; Kuipers, L.

    2005-01-01

    The eigenfield distribution and the band structure of a photonic crystal waveguide have been measured with a phase-sensitive near-field scanning optical microscope. Bloch modes, which consist of more than one spatial frequency, are visualized in the waveguide. In the band structure, multiple

  7. Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes

    International Nuclear Information System (INIS)

    Burr, G.W.; Harris, Todd L.; Babbitt, Wm. Randall; Jefferson, C. Michael

    2004-01-01

    We describe the incorporation of excitation-induced dephasing (EID) into the Maxwell-Bloch numerical simulation of photon echoes. At each time step of the usual numerical integration, stochastic frequency jumps of ions--caused by excitation of neighboring ions--is modeled by convolving each Bloch vector with the Bloch vectors of nearby frequency detunings. The width of this convolution kernel follows the instantaneous change in overall population, integrated over the simulated bandwidth. This approach is validated by extensive comparison against published and original experimental results. The enhanced numerical model is then used to investigate the accuracy of experiments designed to extrapolate to the intrinsic dephasing time T 2 from data taken in the presence of EID. Such a modeling capability offers improved understanding of experimental results, and should allow quantitative analysis of engineering tradeoffs in realistic optical coherent transient applications

  8. Self-consistent Maxwell-Bloch theory of quantum-dot-population switching in photonic crystals

    International Nuclear Information System (INIS)

    Takeda, Hiroyuki; John, Sajeev

    2011-01-01

    We theoretically demonstrate the population switching of quantum dots (QD's), modeled as two-level atoms in idealized one-dimensional (1D) and two-dimensional (2D) photonic crystals (PC's) by self-consistent solution of the Maxwell-Bloch equations. In our semiclassical theory, energy states of the electron are quantized, and electron dynamics is described by the atomic Bloch equation, while electromagnetic waves satisfy the classical Maxwell equations. Near a waveguide cutoff in a photonic band gap, the local electromagnetic density of states (LDOS) and spontaneous emission rates exhibit abrupt changes with frequency, enabling large QD population inversion driven by both continuous and pulsed optical fields. We recapture and generalize this ultrafast population switching using the Maxwell-Bloch equations. Radiative emission from the QD is obtained directly from the surrounding PC geometry using finite-difference time-domain simulation of the electromagnetic field. The atomic Bloch equations provide a source term for the electromagnetic field. The total electromagnetic field, consisting of the external input and radiated field, drives the polarization components of the atomic Bloch vector. We also include a microscopic model for phonon dephasing of the atomic polarization and nonradiative decay caused by damped phonons. Our self-consistent theory captures stimulated emission and coherent feedback effects of the atomic Mollow sidebands, neglected in earlier treatments. This leads to remarkable high-contrast QD-population switching with relatively modest (factor of 10) jump discontinuities in the electromagnetic LDOS. Switching is demonstrated in three separate models of QD's placed (i) in the vicinity of a band edge of a 1D PC, (ii) near a cutoff frequency in a bimodal waveguide channel of a 2D PC, and (iii) in the vicinity of a localized defect mode side coupled to a single-mode waveguide channel in a 2D PC.

  9. Photon energy tunability of advanced photon source undulators

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices

  10. Bloch Oscillations in the Chains of Artificial Atoms Dressed with Photons

    Directory of Open Access Journals (Sweden)

    Ilay Levie

    2018-06-01

    Full Text Available We present a model of one-dimensional chain of two-level artificial atoms driven with DC field and quantum light simultaneously in a strong coupling regime. The interaction of atoms with light leads to electron-photon entanglement (dressing of the atoms with light. The driving via dc field leads to the Bloch oscillations (BO in the chain of dressed atoms. We consider the mutual influence of dressing and BO and show that scenario of oscillations dramatically differs from predicted by the Jaynes-Cummings and Bloch-Zener models. We study the evolution of the population inversion, tunneling current, photon probability distribution, mean number of photons, and photon number variance, and show the influence of BO on the quantum-statistical characteristics of light. For example, the collapse-revivals picture and vacuum Rabi-oscillations are strongly modulated with Bloch frequency. As a result, quantum properties of light and degree of electron-photon entanglement become controllable via adiabatic dc field turning. On the other hand, the low-frequency tunneling current depends on the quantum light statistics (in particular, for coherent initial state it is modulated accordingly the collapse-revivals picture. The developed model is universal with respect to the physical origin of artificial atom and frequency range of atom-light interaction. The model is adapted to the 2D-heterostructures (THz frequencies, semiconductor quantum dots (optical range, and Josephson junctions (microwaves. The data for numerical simulations are taken from recently published experiments. The obtained results open a new way in quantum state engineering and nano-photonic spectroscopy.

  11. MEMS for Tunable Photonic Metamaterial Applications

    Science.gov (United States)

    Stark, Thomas

    Photonic metamaterials are materials whose optical properties are derived from artificially-structured sub-wavelength unit cells, rather than from the bulk properties of the constituent materials. Examples of metamaterials include plasmonic materials, negative index materials, and electromagnetic cloaks. While advances in simulation tools and nanofabrication methods have allowed this field to grow over the past several decades, many challenges still exist. This thesis addresses two of these challenges: fabrication of photonic metamaterials with tunable responses and high-throughput nanofabrication methods for these materials. The design, fabrication, and optical characterization of a microelectromechanical systems (MEMS) tunable plasmonic spectrometer are presented. An array of holes in a gold film, with plasmon resonance in the mid-infrared, is suspended above a gold reflector, forming a Fabry-Perot interferometer of tunable length. The spectra exhibit the convolution of extraordinary optical transmission through the holes and Fabry-Perot resonances. Using MEMS, the interferometer length is modulated from 1.7 mum to 21.67 mum , thereby tuning the free spectral range from about 2900 wavenumbers to 230.7 wavenumbers and shifting the reflection minima and maxima across the infrared. Due to its broad spectral tunability in the fingerprint region of the mid-infrared, this device shows promise as a tunable biological sensing device. To address the issue of high-throughput, high-resolution fabrication of optical metamaterials, atomic calligraphy, a MEMS-based dynamic stencil lithography technique for resist-free fabrication of photonic metamaterials on unconventional substrates, has been developed. The MEMS consists of a moveable stencil, which can be actuated with nanometer precision using electrostatic comb drive actuators. A fabrication method and flip chip method have been developed, enabling evaporation of metals through the device handle for fabrication on an

  12. Observation of Bloch oscillations in complex PT-symmetric photonic lattices

    Science.gov (United States)

    Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf

    2015-01-01

    Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941

  13. Bloch Modes and Evanescent Modes of Photonic Crystals: Weak Form Solutions Based on Accurate Interface Triangulation

    Directory of Open Access Journals (Sweden)

    Matthias Saba

    2015-01-01

    Full Text Available We propose a new approach to calculate the complex photonic band structure, both purely dispersive and evanescent Bloch modes of a finite range, of arbitrary three-dimensional photonic crystals. Our method, based on a well-established plane wave expansion and the weak form solution of Maxwell’s equations, computes the Fourier components of periodic structures composed of distinct homogeneous material domains from a triangulated mesh representation of the inter-material interfaces; this allows substantially more accurate representations of the geometry of complex photonic crystals than the conventional representation by a cubic voxel grid. Our method works for general two-phase composite materials, consisting of bi-anisotropic materials with tensor-valued dielectric and magnetic permittivities ε and μ and coupling matrices ς. We demonstrate for the Bragg mirror and a simple cubic crystal closely related to the Kelvin foam that relatively small numbers of Fourier components are sufficient to yield good convergence of the eigenvalues, making this method viable, despite its computational complexity. As an application, we use the single gyroid crystal to demonstrate that the consideration of both conventional and evanescent Bloch modes is necessary to predict the key features of the reflectance spectrum by analysis of the band structure, in particular for light incident along the cubic [111] direction.

  14. Identification of Bloch-modes in hollow-core Photonic Crystal Fiber cladding

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John

    2007-01-01

    We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short...... length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives...

  15. Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Volkov, V.S.; Søndergaard, Thomas

    2002-01-01

    We employ a collection scanning near-field optical microscope (SNOM) to image the propagation of light at telecommunication wavelengths along straight and bent regions of silicon-on-insulator photonic crystal waveguides (PCWs) formed by removing a single row of holes in the triangular 410-nm...... the interference between a quasihomogeneous background field and Bloch harmonics of the PCW mode, we account for spatial frequency spectra of the intensity variations and determine the propagation constant of the PCW mode at 1520 nm. The possibilities and limitations of SNOM imaging for the characterization...

  16. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    Science.gov (United States)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also

  17. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  18. Spontaneous emission control in a tunable hybrid photonic system

    NARCIS (Netherlands)

    Frimmer, M.; Koenderink, A.F.

    2013-01-01

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS).

  19. Silicon graphene waveguide tunable broadband microwave photonics phase shifter.

    Science.gov (United States)

    Capmany, José; Domenech, David; Muñoz, Pascual

    2014-04-07

    We propose the use of silicon graphene waveguides to implement a tunable broadband microwave photonics phase shifter based on integrated ring cavities. Numerical computation results show the feasibility for broadband operation over 40 GHz bandwidth and full 360° radiofrequency phase-shift with a modest voltage excursion of 0.12 volt.

  20. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical...

  1. Plasmonic Photonic-Crystal Slabs: Visualization of the Bloch Surface Wave Resonance for an Ultrasensitive, Robust and Reusable Optical Biosensor

    Directory of Open Access Journals (Sweden)

    Alexander V. Baryshev

    2014-12-01

    Full Text Available A one-dimensional photonic crystal (PhC with termination by a metal film—a plasmonic photonic-crystal slab—has been theoretically analyzed for its optical response at a variation of the dielectric permittivity of an analyte and at a condition simulating the molecular binding event. Visualization of the Bloch surface wave resonance (SWR was done with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a PhC. An SWR peak in spectra of such a plasmonic photonic crystal (PPhC slab comprising a noble or base metal layer was shown to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. As a consequence, the considered PPhC-based optical sensors exhibited an enhanced sensitivity and a good robustness in comparison with the conventional surface-plasmon and Bloch surface wave sensors. The PPhC biosensors can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration.

  2. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...... process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist....

  3. Tunable superconducting qudit mediated by microwave photons

    Directory of Open Access Journals (Sweden)

    Sung Un Cho

    2015-08-01

    Full Text Available We have investigated the time-domain characteristics of the Autler-Townes doublet in a superconducting circuit. The transition probabilities between the ground state and the Autler-Townes doublet states are shown to be controlled in a phase-coherent manner using a well-known microwave pulse pattern technique. The experimental results are well explained by a numerical simulation based on the Markovian master equation. Our result indicates that the Autler-Townes doublet states might be useful as a tunable qudit for implementation of quantum information processing, in particular as a multivalued quantum logic element.

  4. Flexible and tunable silicon photonic circuits on plastic substrates

    Science.gov (United States)

    Chen, Yu; Li, Huan; Li, Mo

    2012-09-01

    Flexible microelectronics has shown tremendous promise in a broad spectrum of applications, especially those that cannot be addressed by conventional microelectronics in rigid materials and constructions. These unconventional yet important applications range from flexible consumer electronics to conformal sensor arrays and biomedical devices. A recent paradigm shift in implementing flexible electronics is to physically transfer highly integrated devices made in high-quality, crystalline semiconductors on to plastic substrates. Here we demonstrate a flexible form of silicon photonics using the transfer-and-bond fabrication method. Photonic circuits including interferometers and resonators have been transferred onto flexible plastic substrates with preserved functionalities and performance. By mechanically deforming, the optical characteristics of the devices can be tuned reversibly over a remarkably large range. The demonstration of the new flexible photonic systems based on the silicon-on-plastic (SOP) platform could open the door to many future applications, including tunable photonics, optomechanical sensors and biomechanical and bio-photonic probes.

  5. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    Energy Technology Data Exchange (ETDEWEB)

    Fountaine, Katherine T., E-mail: kfountai@caltech.edu [Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Whitney, William S. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Physics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Atwater, Harry A. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Applied Physics and Materials Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States)

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  6. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...

  7. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  8. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    DEFF Research Database (Denmark)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-01-01

    -level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within......-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder...

  9. Colloidal Photonic Crystals Containing Silver Nanoparticles with Tunable Structural Colors

    Directory of Open Access Journals (Sweden)

    Chun-Feng Lai

    2016-05-01

    Full Text Available Polystyrene (PS colloidal photonic crystals (CPhCs containing silver nanoparticles (AgNPs present tunable structural colors. PS CPhC color films containing a high concentration of AgNPs were prepared using self-assembly process through gravitational sedimentation method. High-concentration AgNPs were deposited on the bottom of the substrate and acted as black materials to absorb background and scattering light. Brilliant structural colors were enhanced because of the absorption of incoherent scattering light, and color saturation was increased by the distribution AgNPs on the PS CPhC surfaces. The vivid iridescent structural colors of AgNPs/PS hybrid CPhC films were based on Bragg diffraction and backward scattering absorption using AgNPs. The photonic stop band of PS CPhCs and AgNPs/PS hybrid CPhCs were measured by UV–visible reflection spectrometry and calculated based on the Bragg–Snell law. In addition, the tunable structural colors of AgNPs/PS hybrid CPhC films were evaluated using color measurements according to the Commission International d’Eclairage standard colorimetric system. This paper presents a simple and inexpensive method to produce tunable structural colors for numerous applications, such as textile fabrics, bionic colors, catalysis, and paints.

  10. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-02-18

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering. This dissertation discusses the implementation of multiple topological phases in specific designed photonic and phononic crystals. First, it reports a tunable quantum Hall phase in acoustic ring-waveguide system. A new three-band model focused on the topological transitions at the Γ point is studied, which gives the functionality that nontrivial topology can be tuned by changing the strengths of the couplings and/or the broken time-reversal symmetry. The resulted tunable topological edge states are also numerically verified. Second, based on our previous studied acoustic ring-waveguide system, we introduce anisotropy by tuning the couplings along different directions. We find that the bandgap topology is related to the frequency and directions. We report our proposal on a frequency filter designed from such an anisotropic topological phononic crystal. Third, motivated by the recent progress on quantum spin Hall phases, we propose a design of time-reversal symmetry broken quantum spin Hall insulators in photonics, in which a new quantum anomalous Hall phase emerges. It supports a chiral edge state with certain spin orientations, which is robust against the magnetic impurities. We also report the realization of the quantum anomalous Hall phase in phononics.

  11. A theory of generalized Bloch oscillations

    International Nuclear Information System (INIS)

    Duggen, Lars; Lassen, Benny; Lew Yan Voon, L C; Willatzen, Morten

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics. (paper)

  12. Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    2007-01-01

    We suggest and demonstrate a novel platform for the study of tunable nonlinear light propagation in two-dimensional discrete systems, based on photonic crystal fibers filled with high index nonlinear liquids. Using the infiltrated cladding region of a photonic crystal fiber as a nonlinear waveguide...... array, we experimentally demonstrate highly tunable beam diffraction and thermal self-defocusing, and realize a compact all-optical power limiter based on a tunable nonlinear response....

  13. Multichannel tunable omnidirectional photonic band gaps of 1D ternary photonic crystal containing magnetized cold plasma

    Science.gov (United States)

    Awasthi, Suneet Kumar; Panda, Ranjita; Chauhan, Prashant Kumar; Shiveshwari, Laxmi

    2018-05-01

    By using the transfer matrix method, theoretical investigations have been carried out in the microwave region to study the reflection properties of multichannel tunable omnidirectional photonic bandgaps (OPBGs) based on the magneto-optic Faraday effect. The proposed one dimensional ternary plasma photonic crystal consists of alternate layers of quartz, magnetized cold plasma (MCP), and air. In the absence of an external magnetic field, the proposed structure possesses two OPBGs induced by Bragg scattering and is strongly dependent on the incident angle, the polarization of the incident light, and the lattice constant unlike to the single-negative gap and zero- n ¯ gap. Next, the reflection properties of OPBGs have been made tunable by the application of external magnetic field under right hand and left hand polarization configurations. The results of this manuscript may be utilized for the development of a new kind of tunable omnidirectional band stop filter with ability to completely stop single to multiple bands (called channels) of microwave frequencies in the presence of external static magnetic field under left-hand polarization and right-hand polarization configurations, respectively. Moreover, outcomes of this study open a promising way to design tunable magneto-optical devices, omnidirectional total reflectors, and planar waveguides of high Q microcavities as a result of evanescent fields in the MCP layer to allow propagation of light.

  14. Photonic-Enabled RF Canceller with Tunable Time-Delay Taps

    Science.gov (United States)

    2016-12-05

    Photonic -Enabled RF Canceller with Tunable Time-Delay Taps Kenneth E. Kolodziej, Sivasubramaniam Yegnanarayanan, Bradley T. Perry MIT Lincoln...canceller design that uses photonics and a vector modulator architecture to provide a high number of canceller taps with tunable time-delays, which allow...microwave photonics , RF cancellation. I. INTRODUCTION In-Band Full-Duplex (IBFD) technologies are being consid- ered for 5th generation (5G) wireless

  15. A Bloch modal approach for engineering waveguide and cavity modes in two-dimensional photonic crystals

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2014-01-01

    uses no external excitation and determines the quasi-normal modes as unity eigenvalues of the cavity roundtrip matrix. We demonstrate the method and the quasi-normal modes for two types of two-dimensional photonic crystal structures, and discuss the quasi-normal mode eld distributions and Q-factors...

  16. Discontinuous Galerkin Approximations for Computing Electromagnetic Bloch Modes in Photonic Crystals

    NARCIS (Netherlands)

    Lu, Zhongjie; Cesmelioglu, A.; van der Vegt, Jacobus J.W.; Xu, Yan

    We analyze discontinuous Galerkin finite element discretizations of the Maxwell equations with periodic coefficients. These equations are used to model the behavior of light in photonic crystals, which are materials containing a spatially periodic variation of the refractive index commensurate with

  17. Optimal cloning of arbitrary mirror-symmetric distributions on the Bloch sphere: a proposal for practical photonic realization

    International Nuclear Information System (INIS)

    Bartkiewicz, Karol; Miranowicz, Adam

    2012-01-01

    We study state-dependent quantum cloning that can outperform universal cloning (UC). This is possible by using some a priori information on a given quantum state to be cloned. Specifically, we propose a generalization and optical implementation of quantum optimal mirror phase-covariant cloning, which refers to optimal cloning of sets of qubits of known modulus of the expectation value of Pauli's Z operator. Our results can be applied to cloning of an arbitrary mirror-symmetric distribution of qubits on the Bloch sphere including in special cases UC and phase-covariant cloning. We show that the cloning is optimal by adapting our former optimality proof for axisymmetric cloning (Bartkiewicz and Miranowicz 2010 Phys. Rev. A 82 042330). Moreover, we propose an optical realization of the optimal mirror phase-covariant 1→2 cloning of a qubit, for which the mean probability of successful cloning varies from 1/6 to 1/3 depending on prior information on the set of qubits to be cloned. The qubits are represented by polarization states of photons generated by the type-I spontaneous parametric down-conversion. The scheme is based on the interference of two photons on an unbalanced polarization-dependent beam splitter with different splitting ratios for vertical and horizontal polarization components and the additional application of feedforward by means of Pockels cells. The experimental feasibility of the proposed setup is carefully studied including various kinds of imperfections and losses. Moreover, we briefly describe two possible cryptographic applications of the optimal mirror phase-covariant cloning corresponding to state discrimination (or estimation) and secure quantum teleportation.

  18. Electrically tunable photonic true-time-delay line.

    Science.gov (United States)

    Barmenkov, Yuri O; Cruz, José Luis; Díez, Antonio; Andrés, Miguel V

    2010-08-16

    We present a new application of the acousto-optic superlattice modulation of a fiber Bragg grating based on the dynamic phase and group delay properties of this fiber-optic component. We demonstrate a tunable photonic true-time-delay line based on the group delay change of the light reflected from the grating sidebands. The delay is electrically tuned by adjusting the voltage applied to a piezoelectric transducer that generates the acoustic wave propagating along the grating. In our experiments, a true-time delay of 400 ps is continuously adjusted (300 ps within the 3 dB amplitude range of the first sideband), using a 12 cm long uniform grating.

  19. Dynamically tunable interface states in 1D graphene-embedded photonic crystal heterostructure

    Science.gov (United States)

    Huang, Zhao; Li, Shuaifeng; Liu, Xin; Zhao, Degang; Ye, Lei; Zhu, Xuefeng; Zang, Jianfeng

    2018-03-01

    Optical interface states exhibit promising applications in nonlinear photonics, low-threshold lasing, and surface-wave assisted sensing. However, the further application of interface states in configurable optics is hindered by their limited tunability. Here, we demonstrate a new approach to generate dynamically tunable and angle-resolved interface states using graphene-embedded photonic crystal (GPC) heterostructure device. By combining the GPC structure design with in situ electric doping of graphene, a continuously tunable interface state can be obtained and its tuning range is as wide as the full bandgap. Moreover, the exhibited tunable interface states offer a possibility to study the correspondence between space and time characteristics of light, which is beyond normal incident conditions. Our strategy provides a new way to design configurable devices with tunable optical states for various advanced optical applications such as beam splitter and dynamically tunable laser.

  20. Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid*

    International Nuclear Information System (INIS)

    Zhang Lan-Lan; Liu Wei; Li Ping; Yang Xi; Cao Xu

    2017-01-01

    With the method of replacing the surface layer of photonic crystal with tubes, a novel photonic crystal composite structure used as a tunable surface mode waveguide is designed. The tubes support tunable surface states. The tunable propagation capabilities of the structure are investigated by using the finite-difference time-domain. Simulation results show that the beam transmission distributions of the composite structure are sensitive to the frequency range of incident light and the surface morphology which can be modified by filling the tubes with different organic liquids. By adjusting the filler in tubes, the T-shaped, Y-shaped, and L-shaped propagations can be realized. The property can be applied to the tunable surface mode waveguide. Compared with a traditional single function photonic crystal waveguide, our designed structure not only has a small size, but also is a tunable device. (paper)

  1. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    OpenAIRE

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders Overgaard

    2009-01-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability ...

  2. Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre

    DEFF Research Database (Denmark)

    Scolari, Lara; Olausson, Christina Bjarnal Thulin; Weirich, Johannes

    2008-01-01

    A tunable and polarisation-maintaining all-in-fibre filter based on a liquid crystal photonic bandgap fibre is demonstrated. Its polarisation extinction ratio reaches 14 dB at 1550 nm wavelength. Its spectral tunability range spans over 250 nm in the temperature range 30–70°C. The measured...

  3. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  4. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  5. Tunable photonic multilayer sensors from photo-crosslinkable polymers

    Science.gov (United States)

    Chiappelli, Maria; Hayward, Ryan

    2014-03-01

    The fabrication of tunable photonic multilayer sensors from stimuli-responsive, photo-crosslinkable polymers will be described. Benzophenone is covalently incorporated as a pendent photo-crosslinker, allowing for facile preparation of multilayer films by sequential spin-coating and crosslinking processes. Copolymer chemistries and layer thicknesses are selected to provide robust multilayer sensors which can show color changes across nearly the full visible spectrum due to the specific stimulus-responsive nature of the hydrated film stack. We will describe how this approach is extended to alternative sensor designs by tailoring the thickness and chemistry of each layer independently, allowing for the preparation of sensors which depend not only on the shift in wavelength of a reflectance peak, but also on the transition between Bragg mirrors and filters. Device design is optimized by photo-patterning sensor arrays on a single substrate, providing more efficient fabrication time as well as multi-functional sensors. Finally, radiation-sensitive multilayers, designed by choosing polymers which will preferentially degrade or crosslink under ionizing radiation, will also be described.

  6. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....

  7. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  8. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Liu Zheng; Gong Qihuang

    2008-01-01

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed

  9. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: xiaoyonghu@pku.edu.cn; Liu Zheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2008-01-14

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed.

  10. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    International Nuclear Information System (INIS)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. (topical review)

  11. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Fudouzi

    2011-01-01

    Full Text Available In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  12. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Science.gov (United States)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. PMID:27877454

  13. Self-assembled tunable photonic hyper-crystals.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  14. Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm

    Directory of Open Access Journals (Sweden)

    Guanquan Liang

    2011-12-01

    Full Text Available A prototype of planar silicon photonic structure is designed and simulated to provide narrow resonant line-width (∼2 nm in a wide photonic band gap (∼210 nm with broad tunable resonant wavelength range (∼100 nm around the optical communication wavelength 1550 nm. This prototype is based on the combination of two modified basic photonic structures, i.e. a split tapered photonic crystal micro-cavity embedded in a photonic wire waveguide, and a slot waveguide with narrowed slabs. This prototype is then further integrated with a MEMS (microelectromechanical systems based electrostatic comb actuator to achieve “coarse tune” and “fine tune” at the same time for wide range and narrow-band filtering and modulating. It also provides a wide range tunability to achieve the designed resonance even fabrication imperfection occurs.

  15. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.

    Science.gov (United States)

    Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton

    2011-11-07

    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

  16. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  17. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  18. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    Science.gov (United States)

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  19. Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Alkeskjold, Thomas Tanggaard

    2009-01-01

    We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used to demons......We demonstrate the photonic bandgap effect and the thermal tunability of bandgaps in microstructured polymer optical fibers infiltrated with liquid crystal. Two liquid crystals with opposite sign of the temperature gradient of the ordinary refractive index (E7 and MDA-00- 1444) are used...... to demonstrate that both signs of the thermal tunability of the bandgaps are possible. The useful bandgaps are ultimately bounded to the visible range by the transparency window of the polymer....

  20. Widely tunable microwave photonic notch filter based on slow and fast light effects

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    A continuously tunable microwave photonic notch filter at around 30 GHz is experimentally demonstrated and 100% fractional tuning over 360 range is achieved without changing the shape of the spectral response. The tuning mechanism is based on the use of slow and fast light effects in semiconducto...

  1. Tunable, Room Temperature THZ Emitters Based on Nonlinear Photonics

    Science.gov (United States)

    Sinha, Raju

    The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability. We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1x105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and

  2. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten

    2005-01-01

    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid......, for example a liquid crystal that changes optical properties when subjected to, for example, an optical or an electrical field. The utilization of these two basic properties allows design of tunable optical devices for optical networks. In this work, we focus on applications of such devices and discuss recent...... crystals, have proven to be a candidate for such a platform. Microstructured optical fibers offer unique wave-guiding properties that are strongly related to the design of the air holes in the cladding of the fiber. These wave-guiding properties may be altered by filling the air holes with a material...

  3. A Tunable Eight-Wavelength Terahertz Modulator Based on Photonic Crystals

    Science.gov (United States)

    Ji, K.; Chen, H.; Zhou, W.; Zhuang, Y.; Wang, J.

    2017-11-01

    We propose a tunable eight-wavelength terahertz modulator based on a structure of triple triangular lattice photonic crystals by using photonic crystals in the terahertz regime. The triple triangular lattice was formed by nesting circular, square, and triangular dielectric cylinders. Three square point defects were introduced into the perfect photonic crystal to produce eight defect modes. GaAs was used as the point defects to realize tunability. We used a structure with a reflecting barrier to achieve modulation at high transmission rate. The insertion loss and extinction ratio were 0.122 and 38.54 dB, respectively. The modulation rate was 0.788 dB. The performance of the eightwavelength terahertz modulator showed great potential for use in future terahertz communication systems.

  4. Tunable optical coherence tomography in the infrared range using visible photons

    Science.gov (United States)

    Paterova, Anna V.; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.

    2018-04-01

    Optical coherence tomography (OCT) is an appealing technique for bio-imaging, medicine, and material analysis. For many applications, OCT in mid- and far-infrared (IR) leads to significantly more accurate results. Reported mid-IR OCT systems require light sources and photodetectors which operate in mid-IR range. These devices are expensive and need cryogenic cooling. Here, we report a proof-of-concept demonstration of a wavelength tunable IR OCT technique with detection of only visible range photons. Our method is based on the nonlinear interference of frequency correlated photon pairs. The nonlinear crystal, introduced in the Michelson-type interferometer, generates photon pairs with one photon in the visible and another in the IR range. The intensity of detected visible photons depends on the phase and loss of IR photons, which interact with the sample under study. This enables us to characterize sample properties and perform imaging in the IR range by detecting visible photons. The technique possesses broad wavelength tunability and yields a fair axial and lateral resolution, which can be tailored to the specific application. The work contributes to the development of versatile 3D imaging and material characterization systems working in a broad range of IR wavelengths, which do not require the use of IR-range light sources and photodetectors.

  5. Tunable topological phases in photonic and phononic crystals

    KAUST Repository

    Chen, Zeguo

    2018-01-01

    Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering

  6. Bandwidth tunable microwave photonic filter based on digital and analog modulation

    Science.gov (United States)

    Zhang, Qi; Zhang, Jie; Li, Qiang; Wang, Yubing; Sun, Xian; Dong, Wei; Zhang, Xindong

    2018-05-01

    A bandwidth tunable microwave photonic filter based on digital and analog modulation is proposed and experimentally demonstrated. The digital modulation is used to broaden the effective gain spectrum and the analog modulation is to get optical lines. By changing the symbol rate of data pattern, the bandwidth is tunable from 50 MHz to 700 MHz. The interval of optical lines is set according to the bandwidth of gain spectrum which is related to the symbol rate. Several times of bandwidth increase are achieved compared to a single analog modulation and the selectivity of the response is increased by 3.7 dB compared to a single digital modulation.

  7. Noise filtering in a multi-channel system using a tunable liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal; Scolari, Lara; Tokle, Torger

    2008-01-01

    This paper reports on the first application of a liquid crystal infiltrated photonic bandgap fiber used as a tunable filter in an optical transmission system. The device allows low-cost amplified spontaneous emission (ASE) noise filtering and gain equalization with low insertion loss and broad...... tunability. System experiments show that the use of this filter increases for times the distance over which the optical signal-to-noise ratio (OSNR) is sufficient for error-free transmission with respect to the case in which no filtering is used....

  8. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    Science.gov (United States)

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  9. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    Science.gov (United States)

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  10. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.

    Science.gov (United States)

    Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L

    2012-10-23

    One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.

  11. Tunable photonic cavities for in-situ spectroscopic trace gas detection

    Science.gov (United States)

    Bond, Tiziana; Cole, Garrett; Goddard, Lynford

    2012-11-13

    Compact tunable optical cavities are provided for in-situ NIR spectroscopy. MEMS-tunable VCSEL platforms represents a solid foundation for a new class of compact, sensitive and fiber compatible sensors for fieldable, real-time, multiplexed gas detection systems. Detection limits for gases with NIR cross-sections such as O.sub.2, CH.sub.4, CO.sub.x and NO.sub.x have been predicted to approximately span from 10.sup.ths to 10s of parts per million. Exemplary oxygen detection design and a process for 760 nm continuously tunable VCSELS is provided. This technology enables in-situ self-calibrating platforms with adaptive monitoring by exploiting Photonic FPGAs.

  12. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-oninsulator microring resonator

    DEFF Research Database (Denmark)

    Lloret, Juan; Sancho, Juan; Pu, Minhao

    2011-01-01

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploit...

  13. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  14. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-29

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  15. Two dimensional tunable photonic crystals and n doped semiconductor materials

    International Nuclear Information System (INIS)

    Elsayed, Hussein A.; El-Naggar, Sahar A.; Aly, Arafa H.

    2015-01-01

    In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications

  16. Ferroelectric inverse opals with electrically tunable photonic band gap

    International Nuclear Information System (INIS)

    Li Bo; Zhou Ji; Li Longtu; Wang Xingjun; Liu Xiaohan; Zi Jian

    2003-01-01

    We present a scheme for tuning the photonic band gap (PBG) by an external electric field in a ferroelectric inverse opal structure. The inverse opals, consisting of ferroelectric (Pb,La)(Zr,Ti)O 3 (PLZT) ceramics, were synthesized by a sol-gel process. Optical reflection spectra show that the PBG of the PLZT inverse opals shifts continuously with the change in the applied electric field. As the photonic crystals (PCs) consist of the high-refractive-index constituent and possess an 'all-solid' structure, it should supply a more reliable mode to tune the PBG by the electric field for the superprism effect in PCs. It should be of high interest in device applications

  17. Electro-optic tunable multi-channel filter in two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Fu, Yulan; Zhang, Jiaxiang; Hu, Xiaoyong; Gong, Qihuang

    2010-01-01

    An electro-optic tunable multi-channel filter is presented, which is based on a two-dimensional ferroelectric photonic crystal made of barium titanate. The filtering properties of the photonic crystal filter can be tuned by an applied voltage or by adjusting the structural parameters. The channel shifts about 30 nm under excitation of an applied voltage of 54.8 V. The influences of the structural disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  18. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Science.gov (United States)

    Wang, Hui; Zhang, Ke-Qin

    2013-01-01

    Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

  19. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Directory of Open Access Journals (Sweden)

    Ke-Qin Zhang

    2013-03-01

    Full Text Available Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  20. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)

    2014-10-13

    We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.

  1. pH Memory Effects of Tunable Block Copolymer Photonic Gels and Their Applications

    Science.gov (United States)

    Kang, Youngjong; Thomas, Edwin L.

    2007-03-01

    Materials with hysteresis, showing a bistable state to the external stimuli, have been widely investigated due to their potential applications. For example, they could be used as memory devices or optical switches when they have magnetic or optical hysteresis response to the external stimuli. Here we report pH tunable photonic gels which are spontaneously assembled from block copolymers. The general idea of this research is based on the selective swelling of block copolymer lamellar mesogels, where the solubility of one block is responsive to the change of pH. In this system, the domain spacing of the lamellar is varied with the extent of swelling. As a model system, we used protonated polystyrene-b-poly(2-vinly pyridine) (PS-b-P2VP) block copolymers forming lamellar structures. The photonic gel films prepared from protonated PS-b-P2VP show a strong reflectance in aqueous solution and the band position was varied with pH. Interestingly, a very strong optical hysteresis was observed while the reflection band of photonic gels was tuned by changing pH. We anticipate that pH tunable photonic gels with hysteresis can be applicable to novel applications such as a component of memory devices, photonic switches or drug delivery vehicles.

  2. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    Science.gov (United States)

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  3. Fabrication of Refractive Index Tunable Polydimethylsiloxane Photonic Crystal for Biosensor Application

    Science.gov (United States)

    Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.

    Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.

  4. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  5. Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers

    Science.gov (United States)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan

    2018-04-01

    Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.

  6. Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity

    Science.gov (United States)

    Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.

    2018-05-01

    Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.

  7. Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection.

    Science.gov (United States)

    Meng, Xin; Pan, Hui; Lu, Tao; Chen, Zhixin; Chen, Yanru; Zhang, Di; Zhu, Shenmin

    2018-05-14

    Fibers with self-assembled photonic structures are of special interest for their unique photonic properties and potential applications in smart textile industry. Inspired by nature, photonic-structured fibers were fabricated through the self-assembly of chiral nematic cellulose nanocrystals (CNC) and the fibers show tunable brilliant and selectively reflected colors under crossed-polarization. A simple wet-spinning method was applied to prepare composite fibers of mixed CNC matrix and polyvinyl alcohol (PVA) additions. During the processing, cholesteric CNC phase formed photonic fibers through a self-assembly process. The selective reflection color of the composite fibers in polarized condition shows a typical red-shift tendency with the increase of the PVA content, which is attributed to the increased helical pitch of the CNC. Furthermore, polarized angle can also alter the reflected colors. Owing to the excellent selective reflection properties under polarized condition, CNC-based photonic fibers are promising as the next-generation smart fibers, applied in the fields of specific display and sensing. © 2018 IOP Publishing Ltd.

  8. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator.

    Science.gov (United States)

    Lloret, Juan; Sancho, Juan; Pu, Minhao; Gasulla, Ivana; Yvind, Kresten; Sales, Salvador; Capmany, José

    2011-06-20

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.

  9. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers.

    Science.gov (United States)

    Sancho, J; Primerov, N; Chin, S; Antman, Y; Zadok, A; Sales, S; Thévenaz, L

    2012-03-12

    We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations comprising a microwave photonic filter implementation: a simple notch-type Mach-Zehnder approach with a single movable dynamic grating, a multi-tap performance based on multiple dynamic gratings and finally a stationary grating configuration based on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS).

  10. Tunable all-optical photonic crystal channel drop filter for DWDM systems

    Science.gov (United States)

    Habibiyan, H.; Ghafoori-Fard, H.; Rostami, A.

    2009-06-01

    In this paper we propose a tunable channel drop filter in a two-dimensional photonic crystal, based on coupled-cavity waveguides with alternating small and large defects and an electromagnetically induced transparency phenomenon. By utilizing this phenomenon a narrower linewidth is obtained and also the frequency of the dropped signal becomes tunable. Simulation results show that the proposed filter is suitable for dense wavelength-division multiplexing (DWDM) systems with 0.8 nm channel spacing. Using this novel component, two ultrasmall eight-channel double-sided and single-sided demultiplexers are introduced. The properties of these devices are investigated using the finite-difference time-domain method. For the single-sided device, transmission loss is 1.5 ± 0.5 dB, the cross-talk level between adjacent channels is better than -18 dB and the average 3 dB optical passband is 0.36 nm. Using planar silicon-on-insulator technology, the physical area for the single-sided component is 700 µm2 and for the double-sided component is 575 µm2. To the best of our knowledge, these are the smallest all-optical demultiplexers with this spectral resolution reported to date. Malfunction of the proposed device due to fabrication errors is modeled and its tunable characteristic is demonstrated.

  11. Tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal structure

    International Nuclear Information System (INIS)

    Huang, Wenbin; Pu, Donglin; Qiao, Wen; Wan, Wenqiang; Liu, Yanhua; Ye, Yan; Wu, Shaolong; Chen, Linsen

    2016-01-01

    A continuously tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal cavity is demonstrated. The triangular-lattice resonator was initially fabricated through multiple interference exposure and was then replicated into a low refractive index polymer via UV-nanoimprinting. The blend of a blue-emitting conjugated polymer and a red-emitting one was used as the gain medium. Three periods in the scalene triangular-lattice structure yield stable tri-wavelength laser emission (625.5 nm, 617.4 nm and 614.3 nm) in six different directions. A uniformly aligned liquid crystal (LC) layer was incorporated into the cavity as the top cladding layer. Upon heating, the orientation of LC molecules and thus the effective refractive index of the lasing mode changes which continuously shifts the lasing wavelength. A maximum tuning range of 12.2 nm was observed for the lasing mode at 625.5 nm. This tunable tri-wavelength polymer laser is simple constructed and cost-effective. It may find application in the fields of biosensors and photonic integrated circuits. (paper)

  12. Invited Article: Electrically tunable silicon-based on-chip microdisk resonator for integrated microwave photonic applications

    Directory of Open Access Journals (Sweden)

    Weifeng Zhang

    2016-11-01

    Full Text Available Silicon photonics with advantages of small footprint, compatibility with the mature CMOS fabrication technology, and its potential for seamless integration with electronics is making a significant difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits. Thanks to the large index contrast, a silicon-based MDR with an ultra-compact footprint has a great potential for large-scale and high-density integrations. However, the existence of multiple whispering gallery modes (WGMs and resonance splitting in an MDR imposes inherent limitations on its widespread applications. In addition, the waveguide structure of an MDR is incompatible with that of a lateral PN junction, which leads to the deprivation of its electrical tunability. To circumvent these limitations, in this paper we propose a novel design of a silicon-based MDR by introducing a specifically designed slab waveguide to surround the disk and the lateral sides of the bus waveguide to suppress higher-order WGMs and to support the incorporation of a lateral PN junction for electrical tunability. An MDR based on the proposed design is fabricated and its optical performance is evaluated. The fabricated MDR exhibits single-mode operation with a free spectral range of 28.85 nm. Its electrical tunability is also demonstrated and an electro-optic frequency response with a 3-dB modulation bandwidth of ∼30.5 GHz is measured. The use of the fabricated MDR for the implementation of an electrically tunable optical delay-line and a tunable fractional-order temporal photonic differentiator is demonstrated.

  13. Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter.

    Science.gov (United States)

    Hameed, Mohamed Farhat O; Heikal, A M; Younis, B M; Abdelrazzak, Maher; Obayya, S S A

    2015-03-23

    A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

  14. Tunable omnidirectional absorber and mode splitter based on semiconductor photonic crystal

    International Nuclear Information System (INIS)

    Ding, Guo-Wen; Liu, Shao-Bin; Zhang, Hai-Feng; Kong, Xiang-Kun; Li, Hai-Ming

    2015-01-01

    In this paper, the properties of one-dimensional (1D) photonic crystals (PCs) composed of the semiconductor (GaAs) and dielectric layers are theoretically investigated by the transfer matrix method (TMM). The absorption of semiconductor layers is investigated theoretically. Due to the magneto-optical Voigt effect, the dielectric constant of the semiconductor is modified differently in different modes and frequency ranges. If the frequency range of the incident wave is larger than the plasma frequency, TE and TM modes of the incident wave will be absorbed in a wide incident angle. TM wave will be absorbed but TE wave will be reflected while the frequency range is less than the plasma frequency. The absorption of semiconductor can also be tuned by varying the external magnetic field. The proposed PCs have a reconfigurable application to design a tunable omnidirectional absorber and mode splitter at same time

  15. Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

    International Nuclear Information System (INIS)

    Wang Tao; Sang Xin-Zhu; Yan Bin-Bin; Li Yan; Song Fei-Jun; Zhang Xia; Wang Kui-Ru; Yuan Jin-Hui; Yu Chong-Xiu; Ai Qi; Chen Xiao; Zhang Ying; Chen Gen-Xiang; Xiao Feng; Kamal Alameh

    2014-01-01

    Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature

  16. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    International Nuclear Information System (INIS)

    Zhang, Weigang; Zhang, Gangsheng

    2015-01-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures

  17. A humidity sensitive two-dimensional tunable amorphous photonic structure in the outer layer of bivalve ligament from Sunset Siliqua

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weigang, E-mail: abczwg15@163.com [College of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000 (China); Zhang, Gangsheng [College of Material Science and Technology, Guangxi University, Nanning 530004 (China)

    2015-07-01

    A humidity sensitive two-dimensional tunable amorphous photonic structure (2D TAPS) in the outer layer of bivalve ligament from Sunset Siliqua (OLLS) was reported in this paper. The structural color and microstructure of OLLS were investigated by reflection spectra and scanning electron microscopy, respectively. The results indicate that the reflection peak wavelength of the wet OLLS blue-shifts from 454 nm to 392 nm with the increasing of air drying time from 0 to 40 min, while the reflectivity decreases gradually and vanishes at last, relevant color changes from blue to black background color. The structural color in the OLLS is produced by a two-dimensional amorphous photonic structure consisting of aligned protein fibers, in which the diameter of protein fiber and the inter-fiber spacing are 101 ± 12 nm. Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure, and the regulation achieved through dynamically tuning the interaction between inter-fiber spacing and average refractive index. - Highlights: • A humidity sensitive two-dimensional tunable amorphous photonic structure • Water can reversibly tune the reflection peak wavelength and reflectivity of this photonic structure. • This photonic structure may yield very useful template for artificial structures.

  18. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

    Science.gov (United States)

    Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

    2012-05-07

    A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2π phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained.

  19. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    Science.gov (United States)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  20. Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Photonic crystals (PCs have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze the Q -factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.

  1. Tunable photonic crystal for THz radiation in layered superconductors: Strong magnetic-field dependence of the transmission coefficient

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Rakhmanov, A.L.; Nori, Franco

    2006-01-01

    Josephson plasma waves are scattered by the Josephson vortex lattice. This scattering results in a strong dependence, on the in-plane magnetic-field H ab , of the reflection and transmission of THz radiation propagating in layered superconductors. In particular, a tunable band-gap structure (THz photonic crystal) occurs in such a medium. These effects can be used, by varying H ab , for the selective frequency-filtering of THz radiation

  2. Stability enhancement of an electrically tunable colloidal photonic crystal using modified electrodes with a large electrochemical potential window

    Energy Technology Data Exchange (ETDEWEB)

    Shim, HongShik [Samsung Advanced Institute of Technology, Yongin-Si, Gyeonggi-do (Korea, Republic of); Department of Chemistry, Seoul National University, Seoul (Korea, Republic of); Gyun Shin, Chang; Heo, Chul-Joon; Jeon, Seog-Jin; Jin, Haishun; Woo Kim, Jung; Jin, YongWan; Lee, SangYoon; Gyu Han, Moon, E-mail: moongyu.han@samsung.com, E-mail: jinklee@snu.ac.kr [Samsung Advanced Institute of Technology, Yongin-Si, Gyeonggi-do (Korea, Republic of); Lim, Joohyun; Lee, Jin-Kyu, E-mail: moongyu.han@samsung.com, E-mail: jinklee@snu.ac.kr [Department of Chemistry, Seoul National University, Seoul (Korea, Republic of)

    2014-02-03

    The color tuning behavior and switching stability of an electrically tunable colloidal photonic crystal system were studied with particular focus on the electrochemical aspects. Photonic color tuning of the colloidal arrays composed of monodisperse particles dispersed in water was achieved using external electric field through lattice constant manipulation. However, the number of effective color tuning cycle was limited due to generation of unwanted ions by electrolysis of the water medium during electrical switching. By introducing larger electrochemical potential window electrodes, such as conductive diamond-like carbon or boron-doped diamond, the switching stability was appreciably enhanced through reducing the number of ions generated.

  3. Compact Design of an Electrically Tunable and Rotatable Polarizer Based on a Liquid Crystal Photonic Bandgap Fiber

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    In this letter, a compact electrically controlled broadband liquid crystal (LC) photonic bandgap fiber polarizer is designed and fabricated. A good fiber coupling quality between two single-mode fibers and one 10-mm-long LC-filled photonic crystal fiber is obtained and protected by using SU-8 fiber...... fixing structures during the device assembly. The total insertion loss of this all-in-fiber device is 2.7 dB. An electrically tunable polarization extinction ratio of 21.3 dB is achieved with 45$^{circ}$ rotatable transmission axis as well as switched on and off in the wavelength range of 1300–1600 nm....

  4. Creation of tunable absolute bandgaps in a two-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal

    International Nuclear Information System (INIS)

    Liu Chenyang

    2008-01-01

    Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the tunable absolute bandgap in a two-dimensional anisotropic photonic crystal structures modulated by a nematic liquid crystal. The PC structure composed of an anisotropic-dielectric cylinder in the liquid crystal medium is studied by solving Maxwell's equations using the plane wave expansion method. The photonic band structures are found to exhibit absolute bandgaps for the square and triangular lattices. Numerical simulations show that the absolute bandgaps can be continuously tuned in the square and triangular lattices consisting of anisotropic-dielectric cylinders by infiltrating nematic liquid crystals. Such a mechanism of bandgap adjustment should open up a new application for designing components in photonic integrated circuits

  5. Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED

    Directory of Open Access Journals (Sweden)

    Varun D. Vaidya

    2018-01-01

    Full Text Available Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.

  6. All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Chai, Zhen; Hu, Xiaoyong; Gong, Qihuang

    2013-01-01

    A low-power all-optical switching is presented based on the all-optical tunable Fano-like resonance in a two-dimensional nonlinear ferroelectric photonic crystal made of polycrystalline lithium niobate. An asymmetric Fano-like line shape is achieved in the transmission spectrum by using two cascaded and uncoupled photonic crystal microcavities. The physical mechanism underlying the all-optical switching is attributed to the dynamic shift of the Fano-like resonance peak caused by variations in the dispersion relations of the photonic crystal structure induced by pump light. A large switching efficiency of 61% is reached under excitation of a weak pump light with an intensity as low as 1 MW cm −2 . (paper)

  7. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials.

    Science.gov (United States)

    Schäfer, Christian G; Lederle, Christina; Zentel, Kristina; Stühn, Bernd; Gallei, Markus

    2014-11-01

    In this work, the preparation of highly thermoresponsive and fully reversible stretch-tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate-co-ethyl acrylate) (PDEGMEMA-co-PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt-shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano- and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV-induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross-linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA-containing colloidal architectures, application of the melt-shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli-responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    Science.gov (United States)

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. From Bloch to random lasing in ZnO self-assembled nanostructures

    DEFF Research Database (Denmark)

    Garcia-Fernandez, Pedro David; Cefe, López

    2013-01-01

    In this paper, we present measurements on UV lasing in ZnO ordered and disordered nanostructures. Bloch lasing is achieved in the ordered structures by exploiting very low group-velocity Bloch modes in ZnO photonic crystals. In the second case, random lasing is observed in ZnO photonic glasses. We...... study the lasing threshold in both cases and its dependence on the structural parameters. Finally, we present the transition from Bloch to random lasing by deliberately doping a ZnO inverse photonic crystal with a controlled amount of lattice vacancies effectively converting it into a translationally...

  10. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    Science.gov (United States)

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  11. Study on the properties of tunable prohibited band gaps for one-dimensional ternary magnetized plasma photonic crystals

    International Nuclear Information System (INIS)

    Zhang Haifeng; Zheng Jianping; Zhu Rongjun

    2012-01-01

    The transfer matrix method was applied to study on the properties of tunable prohibited band gaps for one-dimensional ternary magnetized plasma photonic crystals with TE wave arbitrary incident under ideal conditions. TE wave would be divided into left-handed circularly polarized wave and right-handed circularly polarized wave after propagation through one-dimensional ternary magnetized plasma photonic crystals. The calculated transmission coefficients were used to analyze the effects of parameter of plasma, plasma filling factor, incident angle and relative dielectric constant for dielectric layer on the properties of tunable prohibited band gap. The results illustrate that the width of band gaps can not be broadened by increasing plasma collision frequency, the numbers and width of band gaps can be tuned by changing plasma frequency, plasma filling factor and relative dielectric constant for dielectric layer. The band gaps for right-handed circularly polarized wave can be tuned by the plasma gyro frequency, but band gaps for the left-handed circularly polarized wave can't influenced. Low-frequency region of band gaps will be broadened, while high-frequency region of band gaps will be firstly narrow and then broaden with increasing incident angle. (authors)

  12. Tunable two-photon correlation in a double-cavity optomechanical system

    Directory of Open Access Journals (Sweden)

    Zhi-Bo Feng

    2015-12-01

    Full Text Available Correlated photons are essential sources for quantum information processing. We propose a practical scheme to generate pairs of correlated photons in a controllable fashion from a double-cavity optomechanical system, where the variable optomechanical coupling strength makes it possible to tune the photon correlation at our will. The key operation is based on the repulsive or attractive interaction between the two photons intermediated by the mechanical resonator. The present protocol could provide a potential approach to coherent control of the photon correlation using the optomechanical cavity.

  13. Tunable and rotatable birefringence controller based on electrical control of liquid crystal filled photonic bandgap fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    We demonstrate the first compact electrically tunable and rotatable birefringence controller based on LCPBG fibers. The birefringence can be tuned electrically to work as a quarter-wave or a half-wave plate in the wavelength range 1520nm-1600nm.......We demonstrate the first compact electrically tunable and rotatable birefringence controller based on LCPBG fibers. The birefringence can be tuned electrically to work as a quarter-wave or a half-wave plate in the wavelength range 1520nm-1600nm....

  14. Tunable all-optical devices based on liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.

    of discrete and nonlinear light propagation in extended two-dimensional periodic systems. We experimentally demonstrate strongly tunable beam diffraction in a triangular waveguide array created by infiltration of a high index liquid into the cladding holes of a standard PCF, and employ the thermal...... high-precision fabrication procedures, and provides high tunability and nonlinearity at moderate laser powers while taking advantage of a compact experimental setup. The increasingly broad range of PCF structures available could stimulate further efforts in applying them in discrete nonlinear optics...

  15. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  16. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.

    2011-01-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  17. Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2015-02-15

    In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs.

  18. Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure

    International Nuclear Information System (INIS)

    Zhang, Hai-Feng; Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin

    2015-01-01

    In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs

  19. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect.

    Science.gov (United States)

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-10-03

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

  20. The study of thermal tunable coupling between a Superconducting photonic crystal waveguide and semi-circular photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Oskooi, Somayeh; Barvestani, Jamal, E-mail: barvestani@tabrizu.ac.ir

    2016-08-15

    Highlights: • The light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal has been studied. • We utilized the finite difference time domain and plane wave expansion methods in the calculations. • The effect of the size of the nearest neighbor rods of waveguide on the coupling efficiency has been investigated. • The coupling efficiencies are reported versus the temperature of the superconducting waveguide. - Abstract: Through the present study, we investigated the light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal. By using the finite difference time domain method, we evaluated the coupling efficiency between the mentioned structures at the various temperatures for different waveguide sizes. Calculation demonstrated that the coupling efficiency strongly depended on the temperature of the superconductor. The peak value of the coupling efficiency was influenced by the size of the nearest neighbor rods of waveguide. The results have shown that it is possible to obtain high efficiency at the desired temperature with proper selection of physical parameters in far-infrared frequency region. This structure has great potential in the optical integration and other areas.

  1. Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers

    DEFF Research Database (Denmark)

    Markos, Christos

    2016-01-01

    the air-capillaries of the fiber based on a solution-processed glass approach. The deposited high-index layers revealed antiresonant transmission windows from similar to 500 nm up to similar to 1300 nm. We experimentally demonstrate for the first time the possibility to thermally-tune the revealed....../degrees C at 1300 nm. The proposed fiber device could potentially constitute an efficient route towards realization of monolithic tunable fiber filters or sensing elements....

  2. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices

    International Nuclear Information System (INIS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2014-01-01

    In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor

  3. Photon-induced tunability of the thermospin current in a Rashba ring

    Science.gov (United States)

    Abdullah, Nzar Rauf; Arnold, Thorsten; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2018-04-01

    The goal of this work is to show how the thermospin polarization current in a quantum ring changes in the presence of Rashba spin-orbit coupling and a quantized single photon mode of a cavity the ring is placed in. Employing the reduced density operator and a general master equation formalism, we find that both the Rashba interaction and the photon field can significantly modulate the spin polarization and the thermospin polarization current. Tuning the Rashba coupling constant, degenerate energy levels are formed corresponding to the Aharonov-Casher destructive phase interference in the quantum ring system. Our analysis indicates that the maximum spin polarization can be observed at the points of degenerate energy levels due to spin accumulation in the system without the photon field. The thermospin current is thus suppressed. In the presence of the cavity, the photon field leads to an additional kinetic momentum of the electron. As a result the spin polarization can be enhanced by the photon field.

  4. Analysis of photonic band gap in dispersive properties of tunable three-dimensional photonic crystals doped by magnetized plasma

    International Nuclear Information System (INIS)

    Zhang HaiFeng; Liu Shaobin; Yang Huan; Kong Xiangkun

    2013-01-01

    In this paper, the magnetooptical effects in dispersive properties for two types of three-dimensional magnetized plasma photonic crystals (MPPCs) containing homogeneous dielectric and magnetized plasma with diamond lattices are theoretically investigated for electromagnetic (EM) wave based on plane wave expansion (PWE) method, as incidence EM wave vector is parallel to the external magnetic field. The equations for two types of MPPCs with diamond lattices (dielectric spheres immersed in magnetized plasma background or vice versa) are theoretically deduced. The influences of dielectric constant, plasma collision frequency, filling factor, the external magnetic field, and plasma frequency on the dispersive properties for both types of structures are studied in detail, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that the photonic band gaps (PBGs) for both types of MPPCs can be manipulated by plasma frequency, filling factor, the external magnetic field, and the relative dielectric constant of dielectric, respectively. Especially, the external magnetic field can enlarge the PBG for type-2 structure (plasma spheres immersed in dielectric background). However, the plasma collision frequency has no effect on the dispersive properties of two types of three-dimensional MPPCs. The locations of flatbands regions for both types of structures cannot be tuned by any parameters except for plasma frequency and the external magnetic field. The analytical results may be informative and of technical use to design the MPPCs devices.

  5. Electrically tunable robust edge states in graphene-based topological photonic crystal slabs

    Science.gov (United States)

    Song, Zidong; Liu, HongJun; Huang, Nan; Wang, ZhaoLu

    2018-03-01

    Topological photonic crystals are optical structures supporting topologically protected unidirectional edge states that exhibit robustness against defects. Here, we propose a graphene-based all-dielectric photonic crystal slab structure that supports two-dimensionally confined topological edge states. These topological edge states can be confined in the out-of-plane direction by two parallel graphene sheets. In the structure, the excitation frequency range of topological edge states can be dynamically and continuously tuned by varying bias voltage across the two parallel graphene sheets. Utilizing this kind of architecture, we construct Z-shaped channels to realize topological edge transmission with diffrerent frequencies. The proposal provides a new degree of freedom to dynamically control topological edge states and potential applications for robust integrated photonic devices and optical communication systems.

  6. Deeply-etched DBR mirrors for photonic integrated circuits and tunable lasers

    NARCIS (Netherlands)

    Docter, B.

    2009-01-01

    Deeply-etched Distributed Bragg Reflector (DBR) mirrors are a new versatile building block for Photonic Integrated Circuits that allows us to create more complex circuits for optical telecommunication applications. The DBR mirrors increase the device design flexibility because the mirrors can be

  7. Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics.

    Science.gov (United States)

    Gutruf, Philipp; Zeller, Eike; Walia, Sumeet; Nili, Hussein; Sriram, Sharath; Bhaskaran, Madhu

    2015-09-16

    The concept of realizing electronic applications on elastically stretchable "skins" that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen-deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Self-Assembly of Colloidal Photonic Crystals of PS@PNIPAM Nanoparticles and Temperature-Responsive Tunable Fluorescence.

    Science.gov (United States)

    Yuan, Shuai; Ge, Fengyan; Yang, Xue; Guang, Shanyi

    2016-11-01

    A strategy for significantly enhancing fluorescence is developed based on the coupling of optical properties of colloidal photonic crystals (CPCs) with responsive microgel. In this paper, thermoresponsive microgel PNIPAM was employed for the fabrication of core-shell structure. The core-shell PS@PNIPAM nanoparticles (NPs) are then assembled to CPCs by a vertical deposition method. Subsequently, the novel functional material (RhB/CPCs) can be prepared by depositing fluorescent dye molecules (RhB) on the top of PS@PNIPAM CPCs. We obtained an increase in the fluorescent intensity up to 15-fold and 22-fold compared with RhB on the glass slid and the uneven film. Due to the unique responsive shrinking properties of PNIPAM shell, the amplifying fluorescence behavior of CPCs can be well tuned by varying the temperature. In contrast to RhB on the glass slid, a 15-fold and 12-fold fluorescence enhancement can be observed when the temperature of RhB/CPCs was 20 °C and 50 °C, respectively. The mechanism on enhancement fluorescence of tunable CPCs can be achieved by measurements of thermoresponsive properties. The results indicate that the responsive fluorescence-amplifying method based on CPCs made with responsive core-shell NPs has a potential application for the development of efficient fluorescence sensors.

  9. Tunable Temperature Response of a Thermochromic Photonic Gel Sensor Containing N-Isopropylacrylamide and 4-Acryloyilmorpholine

    Directory of Open Access Journals (Sweden)

    Hwanam Kye

    2017-06-01

    Full Text Available In this study, thermochromic photonic gels were fabricated using 2-hydroxyethyl methacrylate (HEMA as a hydrogel building block, and 4-Acryloyl morpholine (ACMO and N-isopropylacrylamide (NIPAAM as thermoresponsive monomers with different critical solution temperature behaviors. Rapid photopolymerization of opal-templated monomer mixtures of varying ACMO contents formed five individual thermochromic inverse opal photonic gels integrated on a single substrate. With temperature variation from 10 °C to 80 °C, the changes in reflective colors and reflectance spectra of the respective thermochromic gels were noted, and λpeak changes were plotted. Because NIPAAM exhibits a lower critical solution temperature (LCST at 33 °C, the NIPAAM-only gel showed a steep slope for dλpeak/dT below 40 °C, whereas the slope became flatter at high temperatures. As the ACMO content increased in the thermochromic gel, the curve of dλpeak/dT turned out to be gradual within the investigated temperature range, exhibiting the entire visible range of colors. The incorporation of ACMO in NIPAAM-based thermochromic gels therefore enabled a better control of color changes at a relatively high-temperature regime compared to a NIPAAM-only gel. In addition, ACMO-containing thermochromic gels exhibited a smaller hysteresis of λpeak for the heating and cooling cycle.

  10. Tunable dual-channel filter based on the photonic crystal with air defects.

    Science.gov (United States)

    Zhao, Xiaodan; Yang, Yibiao; Wen, Jianhua; Chen, Zhihui; Zhang, Mingda; Fei, Hongming; Hao, Yuying

    2017-07-01

    We propose a tuning filter containing two channels by inserting a defect layer (Air/Si/Air/Si/Air) into a one-dimensional photonic crystal of Si/SiO 2 , which is on the symmetry of the defect. Two transmission peaks (1528.98 and 1564.74 nm) appear in the optical communication S-band and C-band, and the transmittance of these two channels is up to 100%. In addition, this design realizes multi-channel filtering to process large dynamic range or multiple independent signals in the near-infrared band by changing the structure. The tuning range will be enlarged, and the channels can be moved in this range through the easy control of air thickness and incident angle.

  11. Felix Bloch (1905–1983)

    Indian Academy of Sciences (India)

    IAS Admin

    1905, to Jewish parents, Gustav and Agnes Bloch. The year he ... Both the student and the supervisor were in their 20's, separated by 5– ... up on the West Coast, in the University of Stanford, where he stayed for the rest of his academic life.

  12. Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach-Zenhder configuration.

    Science.gov (United States)

    Mora, José; Ortigosa-Blanch, Arturo; Pastor, Daniel; Capmany, José

    2006-08-21

    We present a full theoretical and experimental analysis of a novel all-optical microwave photonic filter combining a mode-locked fiber laser and a Mach-Zenhder structure in cascade to a 2x1 electro-optic modulator. The filter is free from the carrier suppression effect and thus it does not require single sideband modulation. Positive and negative coefficients are obtained inherently in the system and the tunability is achieved by controlling the optical path difference of the Mach-Zenhder structure.

  13. An organic dye with very large Stokes-shift and broad tunability of fluorescence: Potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Wang, Yue; Zhao, Xin; Sun, Handong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg [Division of Physics and Applied Physics, and Centre for Disruptive Photonic Technologies (CDPT), School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Gao, Yang; Grimsdale, Andrew C. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-01-04

    Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokes shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.

  14. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.

    Science.gov (United States)

    Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng

    2011-06-20

    A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

  15. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    International Nuclear Information System (INIS)

    Yuan, J H; Sang, X Z; Wu, Q; Yu, C X; Shen, X W; Wang, K R; Yan, B B; Teng, Y L; Farrell, G; Zhou, G Y; Xia, C M; Han, Y; Li, S G; Hou, L T

    2013-01-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1–3, the conversion efficiency η uv−v of 11% and bandwidth B uv−v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV–visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV–visible resonant Raman scattering. (letter)

  16. Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator.

    Science.gov (United States)

    Shahoei, Hiva; Dumais, Patrick; Yao, Jianping

    2014-05-01

    We propose and experimentally demonstrate a continuously tunable fractional Hilbert transformer (FHT) based on a high-contrast germanium-doped silica-on-silicon (SOS) microring resonator (MRR). The propagation loss of a high-contrast germanium-doped SOS waveguide can be very small (0.02 dB/cm) while the lossless bend radius can be less than 1 mm. These characteristics lead to the fabrication of an MRR with a high Q-factor and a large free-spectral range (FSR), which is needed to implement a Hilbert transformer (HT). The SOS MRR is strongly polarization dependent. By changing the polarization direction of the input signal, the phase shift introduced at the center of the resonance spectrum is changed. The tunable phase shift at the resonance wavelength can be used to implement a tunable FHT. A germanium-doped SOS MRR with a high-index contrast of 3.8% is fabricated. The use of the fabricated MRR for the implementation of a tunable FHT with tunable orders at 1, 0.85, 0.95, 1.05, and 1.13 for a Gaussian pulse with the temporal full width at half-maximum of 80 ps is experimentally demonstrated.

  17. Electric dipoles on the Bloch sphere

    OpenAIRE

    Vutha, Amar C.

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  18. Electric dipoles on the Bloch sphere

    International Nuclear Information System (INIS)

    Vutha, Amar C

    2015-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics. (paper)

  19. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    Science.gov (United States)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  20. Parametric source of two-photon states with a tunable degree of entanglement and mixing: Experimental preparation of Werner states and maximally entangled mixed states

    International Nuclear Information System (INIS)

    Cinelli, C.; Di Nepi, G.; De Martini, F.; Barbieri, M.; Mataloni, P.

    2004-01-01

    A parametric source of polarization-entangled photon pairs with striking spatial characteristics is reported. The distribution of the output electromagnetic k modes excited by spontaneous parametric down-conversion and coupled to the output detectors can be very broad. Using these states realized over a full entanglement ring output distribution, the nonlocal properties of the generated entanglement have been tested by standard Bell measurements and by Ou-Mandel interferometry. A 'mode-patchwork' technique based on the quantum superposition principle is adopted to synthesize in a straightforward and reliable way any kind of mixed state, of large conceptual and technological interest in modern quantum information. Tunable Werner states and maximally entangled mixed states have indeed been created by this technique and investigated by quantum tomography. A study of the entropic and nonlocal properties of these states has been undertaken experimentally and theoretically, by a unifying variational approach

  1. Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers

    International Nuclear Information System (INIS)

    Liu, X M; Lin, A; Zhao, W; Lu, K Q; Wang, Y S; Zhang, T Y; Chung, Y

    2008-01-01

    We have proposed a novel multi-wavelength erbium-doped fiber laser by using two polarization controllers and a sampled chirped fiber Bragg grating(SC-FBG). On the assistance of SC-FBG, the proposed fiber lasers with excellent stability and uniformity are tunable and switchable by adjusting the polarization controllers. Our laser can stably lase two waves and up to eight waves simultaneously at room temperature

  2. Quasiperiodicity in time evolution of the Bloch vector under the thermal Jaynes-Cummings model

    Science.gov (United States)

    Azuma, Hiroo; Ban, Masashi

    2014-07-01

    We study a quasiperiodic structure in the time evolution of the Bloch vector, whose dynamics is governed by the thermal Jaynes-Cummings model (JCM). Putting the two-level atom into a certain pure state and the cavity field into a mixed state in thermal equilibrium at initial time, we let the whole system evolve according to the JCM Hamiltonian. During this time evolution, motion of the Bloch vector seems to be in disorder. Because of the thermal photon distribution, both a norm and a direction of the Bloch vector change hard at random. In this paper, taking a different viewpoint compared with ones that we have been used to, we investigate quasiperiodicity of the Bloch vector’s trajectories. Introducing the concept of the quasiperiodic motion, we can explain the confused behaviour of the system as an intermediate state between periodic and chaotic motions. More specifically, we discuss the following two facts: (1) If we adjust the time interval Δt properly, figures consisting of plotted dots at the constant time interval acquire scale invariance under replacement of Δt by sΔt, where s(>1) is an arbitrary real but not transcendental number. (2) We can compute values of the time variable t, which let |Sz(t)| (the absolute value of the z-component of the Bloch vector) be very small, with the Diophantine approximation (a rational approximation of an irrational number).

  3. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  4. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  5. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  6. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  7. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    International Nuclear Information System (INIS)

    Wahle, Markus; Kitzerow, Heinz-Siegfried

    2015-01-01

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage

  8. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  9. Bloch walls in a nickel single crystal

    International Nuclear Information System (INIS)

    Peters, J.; Treimer, W.

    2001-01-01

    We present a consistent theory for the dependence of the magnetic structure in bulk samples on external static magnetic fields and corresponding experimental results. We applied the theory of micromagnetism to this crystal and calculated the Bloch wall thickness as a function of external magnetic fields. The theoretical results agree well with the experimental data, so that the Bloch wall thickness of a 71 deg. nickel single crystal was definitely determined with some hundred of nanometer

  10. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Riishede, Jesper

    2005-01-01

    We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this ...... in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle....

  11. Tunable radiation emitting semiconductor device

    NARCIS (Netherlands)

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  12. Color Tunable and Upconversion Luminescence in Yb-Tm Co-Doped Yttrium Phosphate Inverse Opal Photonic Crystals.

    Science.gov (United States)

    Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen

    2016-04-01

    For this paper, YPO4: Tm, Yb inverse opals with the photonic band gaps at 475 nm and 655 nm were prepared by polystyrene colloidal crystal templates. We investigated the influence of photonic band gaps on the Tm-Yb upconversion emission which was in the YPO4: Tm Yb inverse opal photonic crystals. Comparing with the reference sample, significant suppression of both the blue and red upconversion luminescence of Tm3+ ions were observed in the inverse opals. The color purity of the blue emission was improved in the inverse opal by the suppression of red upconversion emission. Additionally, mechanism of upconversion emission in the inverse opal was discussed. We believe that the present work will be valuable for not only the foundational study of upconversion emission modification but also the development of new optical devices in upconversion lighting and display.

  13. Electric-field-tunable defect mode in one-dimensional photonic crystal operating in the terahertz range

    Czech Academy of Sciences Publication Activity Database

    Skoromets, Volodymyr; Němec, Hynek; Kadlec, Christelle; Fattakhova-Rohlfing, D.; Kužel, Petr

    2013-01-01

    Roč. 102, č. 24 (2013), "241106-1"-"241106-5" ISSN 0003-6951 R&D Projects: GA ČR GA13-12386S Grant - others:AVČR(CZ) M100101218 Institutional support: RVO:68378271 Keywords : terahertz spectroscopy * strontium titanate * dielectric properties * photonic crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.515, year: 2013

  14. Computational Modeling of Bloch Surface Waves in One-Dimensional Periodic and Aperiodic Multilayer Structures

    Science.gov (United States)

    Koju, Vijay

    Photonic crystals and their use in exciting Bloch surface waves have received immense attention over the past few decades. This interest is mainly due to their applications in bio-sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman spectroscopy. Improvement in numerical modeling techniques, state of the art computing resources, and advances in fabrication techniques have also assisted in growing interest in this field. The ability to model photonic crystals computationally has benefited both the theoretical as well as experimental communities. It helps the theoretical physicists in solving complex problems which cannot be solved analytically and helps to acquire useful insights that cannot be obtained otherwise. Experimentalists, on the other hand, can test different variants of their devices by changing device parameters to optimize performance before fabrication. In this dissertation, we develop two commonly used numerical techniques, namely transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and use two additional software packages, one open-source and another commercial, to model one-dimensional photonic crystals. Different variants of one-dimensional multilayered structures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are modeled, along with one-dimensional photonic crystals with gratings on the top layer. Applications of Bloch surface waves, along with new and novel aperiodic dielectric multilayer structures that support Bloch surface waves are explored in this dissertation. We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual techniques for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4K. Using a semi

  15. MEMS Tunable nanostructured photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee

    This thesis was prepared at the department of Photonics Engineering, the Technical University of Denmark in fulfilment of the requirements for acquiring a Philosophiae doctor (Ph.D.) in Photonics Engineering. The thesis deals with the design and fabrication of tunable resonant-cavity-enhanced pho......) structure. Results from the fabricated devices are reported along with an investigation of the design parameters which influence the performance deviation from the design....

  16. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  17. Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays

    Science.gov (United States)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-01

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  18. Photonic Crystals: Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide (Small 25/2016).

    Science.gov (United States)

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    The production of structural colors based on graphene oxide (GO) pseudo-one-dimensional photonic crystals (p1D-PhCs) in the visible spectrum is reported on page 3433 by W. Qi and co-workers. The structural colors could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion. Moreover, GO p1D-PhCs exhibit visible and rapid responsiveness to humidity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tunable optical nonreciprocity and a phonon-photon router in an optomechanical system with coupled mechanical and optical modes

    Science.gov (United States)

    Li, Guolong; Xiao, Xiao; Li, Yong; Wang, Xiaoguang

    2018-02-01

    We propose a multimode optomechanical system to realize tunable optical nonreciprocity that has the prospect of making an optical diode for information technology. The proposed model consists of two subsystems, each of which contains two optical cavities, injected with a classical field and a quantum signal via a 50:50 beam splitter, and a mechanical oscillator, coupled to both cavities via optomechanical coupling. Meanwhile two cavities and an oscillator in a subsystem are respectively coupled to their corresponding cavities and an oscillator in the other subsystem. Our scheme yields nonreciprocal effects at different frequencies with opposite directions, but each effective linear optomechanical coupling can be controlled by an independent classical one-frequency pump. With this setup one is able to apply quantum states with large fluctuations, which extends the scope of applicable quantum states, and exploit the independence of paths. Moreover, the optimal frequencies for nonreciprocal effects can be controlled by adjusting the relevant parameters. We also exhibit the path switching of two directions, from a mechanical input to two optical output channels, via tuning the signal frequency. In experiment, the considered scheme can be tuned to reach small damping rates of the oscillators relative to those of the cavities, which is more practical and requires less power than in previous schemes.

  20. The basic properties of Bloch functions

    Directory of Open Access Journals (Sweden)

    Joseph A. Cima

    1979-01-01

    Full Text Available A Bloch function f(z is an analytic function on the unit disc whose derivative grows no faster than a constant times the reciprocal of the distance from z to ∂. We reprove here the basic analytic facts concerning Bloch functions. We establish the Banach space structure and collect facts concerning the geometry of the space. We indicate duality relationships, and known isomorphic correspondences are given. We give a rather complete list of references for further study in the case of several variables.

  1. On history and salvation in Emmanuel Levinas and Ernst Bloch

    African Journals Online (AJOL)

    p1243322

    “Chronos” who devours his own children.13 In addition to this, one would invert ... death” against Bloch, one could argue that Bloch, in effect, is glorifying death .... fantasy or wishful thinking) to Bloch's belief that in a humanised world the.

  2. High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy

    Science.gov (United States)

    Kiessling, J.; Breunig, I.; Schunemann, P. G.; Buse, K.; Vodopyanov, K. L.

    2013-10-01

    We report a diffraction-limited photonic terahertz (THz) source with linewidth OP) gallium arsenide (GaAs) via intracavity frequency mixing between the two closely spaced resonating signal and idler waves of an optical parametric oscillator (OPO) operating near λ = 2 μm. The doubly resonant type II OPO is based on a periodically poled lithium niobate (PPLN) pumped by a single-frequency Yb:YAG disc laser at 1030 nm. We take advantage of the enhancement of both optical fields inside a high-finesse OPO cavity: with 10 W of 1030 nm pump, 100 W of intracavity power near 2 μm was attained with GaAs inside cavity. This allows dramatic improvement in terms of generated THz power, as compared to the state-of-the art CW methods. We achieved >25 μW of single-frequency tunable CW THz output power scalable to >1 mW with proper choice of pump laser wavelength.

  3. Simultaneous generation of tunable giant dispersive waves in the visible and mid-infrared regions based on photonic crystal fibers

    International Nuclear Information System (INIS)

    Zhang, Lei; Yang, Si-Gang; Chen, Hong-Wei; Chen, Ming-Hua; Xie, Shi-Zhong; Han, Ying

    2013-01-01

    Cherenkov radiation (CR) in both the visible and mid-infrared regions is simultaneously generated experimentally based on a photonic crystal fiber with two zero-dispersion wavelengths. The generation of CR in the visible region originates from solitons located in the anomalous group velocity dispersion (GVD) regime which are perturbed by positive third order dispersion. Conversely, the generation of CR in the mid-infrared region requires that the solitons in the anomalous GVD regime are perturbed by negative third order dispersion. The peak wavelength of the CR in the visible region can be tuned from 498 to 425 nm by increasing the average input pump power from 70 to 400 mW, while the peak wavelength of the CR in the mid-infrared region can be tuned from 1986 to 2279 nm by increasing the average input pump power from 70 to 320 mW. (paper)

  4. Chaos synchronization of nonlinear Bloch equations

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    In this paper, the problem of chaos synchronization of Bloch equations is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived

  5. Reve et action: Bloch, Heidegger et Levinas

    Czech Academy of Sciences Publication Activity Database

    Bierhanzl, Jan

    2016-01-01

    Roč. 12, č. 3 (2016), s. 1-6 ISSN 1336-6556 R&D Projects: GA ČR(CZ) GA16-23046S Institutional support: RVO:67985955 Keywords : possibility * wishing * decision * action * dream * utopia Subject RIV: AA - Philosophy ; Religion http://www.ostium.sk/sk/r%C8%87ve-er-action-bloch-heidegger-et-levinas/

  6. Squeezing corrections to the Bloch equations

    International Nuclear Information System (INIS)

    Abundo, M.; Accardi, L.

    1991-01-01

    The general analysis of quantum noise shows that a squeezing noise can produce quadratic nonlinearities in the Langevin equations leading to the Bloch equations. These quadratic nonlinearities are governed by the imaginary part of the off-diagonal terms of the covariance of the noise (the squeezing terms) and imply a correction to the usual form of the Bloch equations. Here the case of spin-one nuclei subjected to squeezing noises of particular type is studied numerically. It is shown that the corrections to the Bloch equations, suggested by the theory, to the behaviour of the macroscopic nuclear polarization in a scale of times of the order of the relaxation time can be quite substantial. In the equilibrium regime, even if the qualitative behaviour of the system is the same (exponential decay), the numerical equilibrium values predicted by the theory are consistently different from those predicted by the usual Bloch equation. It is suggested that this difference might be used to test experimentally the observable effects of squeezing noises

  7. The Bloch Approximation in Periodically Perforated Media

    International Nuclear Information System (INIS)

    Conca, C.; Gomez, D.; Lobo, M.; Perez, E.

    2005-01-01

    We consider a periodically heterogeneous and perforated medium filling an open domain Ω of R N . Assuming that the size of the periodicity of the structure and of the holes is O(ε),we study the asymptotic behavior, as ε → 0, of the solution of an elliptic boundary value problem with strongly oscillating coefficients posed in Ω ε (Ω ε being Ω minus the holes) with a Neumann condition on the boundary of the holes. We use Bloch wave decomposition to introduce an approximation of the solution in the energy norm which can be computed from the homogenized solution and the first Bloch eigenfunction. We first consider the case where Ωis R N and then localize the problem for abounded domain Ω, considering a homogeneous Dirichlet condition on the boundary of Ω

  8. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  9. Taking a peek at Bloch oscillations

    Science.gov (United States)

    Morsch, Oliver

    2016-11-01

    Bloch oscillations arise when matter waves inside a periodic potential, such as a crystal lattice, are accelerated by a constant force. Keßler et al (2016 New J. Phys. 18 102001) have now experimentally tested a method that allows one to observe those oscillations continuously, without a destructive measurement on the matter wave. Their approach could help to make cold atom-based accelerometers and gravimeters more precise.

  10. Modeling Bloch oscillations in nanoscale Josephson junctions

    Science.gov (United States)

    Vora, Heli; Kautz, R. L.; Nam, S. W.; Aumentado, J.

    2018-01-01

    Bloch oscillations in nanoscale Josephson junctions with a Coulomb charging energy comparable to the Josephson coupling energy are explored within the context of a model previously considered by Geigenmüller and Schön that includes Zener tunneling and treats quasiparticle tunneling as an explicit shot-noise process. The dynamics of the junction quasicharge are investigated numerically using both Monte Carlo and ensemble approaches to calculate voltage-current characteristics in the presence of microwaves. We examine in detail the origin of harmonic and subharmonic Bloch steps at dc biases I = (n/m)2ef induced by microwaves of frequency f and consider the optimum parameters for the observation of harmonic (m = 1) steps. We also demonstrate that the GS model allows a detailed semiquantitative fit to experimental voltage-current characteristics previously obtained at the Chalmers University of Technology, confirming and strengthening the interpretation of the observed microwave-induced steps in terms of Bloch oscillations. PMID:29577106

  11. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity

    Science.gov (United States)

    Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro

    2018-06-01

    A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.

  12. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  13. Chaotic dynamics in the Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Holm, D.D.; Kovacic, G.

    1992-01-01

    In the slowly varying envelope approximation and the rotating wave approximation for the Maxwell-Bloch equations, we describe how the presence of a small-amplitude probe laser in an excited, two-level, resonant medium leads to homoclinic chaos in the laser-matter dynamics. We also describe a derivation of the Maxwell-Bloch equations from an action principle

  14. Composition operators between Bloch type spaces and Zygmund ...

    Indian Academy of Sciences (India)

    MS received 1 September 2009; revised 31 March 2011. Abstract. The boundedness and compactness of composition operators between. Bloch type spaces and Zygmund spaces of holomorphic functions in the unit ball are characterized in the paper. Keywords. Composition operator; Bloch type space; Zygmund space. 1.

  15. Bloch-mode analysis for retrieving effective parameters of metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, Sangwoo; Sukhorukov, Andrey A.

    2012-01-01

    by our method with a high accuracy. We employ both surface and volume averaging of the electromagnetic fields of the dominating (fundamental) Bloch modes to determine the Bloch and wave impedances, respectively. We discuss how this method works for several characteristic examples, and demonstrate...

  16. Manipulation of Bloch surface waves: from subwavelength focusing to nondiffracting beam

    Science.gov (United States)

    Kim, Myun-Sik; Herzig, Hans Peter

    2018-01-01

    We present a different type of electromagnetic surface wave than a surface plasmon polariton (SPP), called Bloch surface wave (BSW). BSWs are sustained by dielectric multilayers, and therefore they do not suffer from dissipation. Their propagation length is unbeatably long, e.g., over several millimeters. Thanks to this feature, larger integrations of 2D photonic chips are realizable. To do this, 2D optical components and corresponding techniques are necessary to manipulate in-plane propagation of surface waves. We overview recent progresses of the BSW research on manipulation techniques and developed components. Our study will provide a good guideline of the BSW components for users.

  17. Optical Bloch equations with multiply connected states

    International Nuclear Information System (INIS)

    Stacey, D N; Lucas, D M; Allcock, D T C; Szwer, D J; Webster, S C

    2008-01-01

    The optical Bloch equations, which give the time evolution of the elements of the density matrix of an atomic system subject to radiation, are generalized so that they can be applied when transitions between pairs of states can proceed by more than one stimulated route. The case considered is that for which the time scale of interest in the problem is long compared with that set by the differences in detuning of the radiation fields stimulating via the different routes. It is shown that the Bloch equations then reduce to the standard form of linear differential equations with constant coefficients. The theory is applied to a two-state system driven by two lasers with different intensities and frequencies and to a three-state Λ-system with one laser driving one transition and two driving the second. It is also shown that the theory reproduces well the observed response of a cold 40 Ca + ion when subject to a single laser frequency driving the 4S 1/2 -4P 1/2 transition and a laser with two strong sidebands driving 3D 3/2 -4P 1/2

  18. Tight control of light trapping in surface addressable photonic crystal membranes: application to spectrally and spatially selective optical devices (Conference Presentation)

    Science.gov (United States)

    Letartre, Xavier; Blanchard, Cédric; Grillet, Christian; Jamois, Cécile; Leclercq, Jean-Louis; Viktorovitch, Pierre

    2016-04-01

    Surface addressable Photonic Crystal Membranes (PCM) are 1D or 2D photonic crystals formed in a slab waveguides where Bloch modes located above the light line are exploited. These modes are responsible for resonances in the reflection spectrum whose bandwidth can be adjusted at will. These resonances result from the coupling between a guided mode of the membrane and a free-space mode through the pattern of the photonic crystal. If broadband, these structures represent an ideal mirror to form compact vertical microcavity with 3D confinement of photons and polarization selectivity. Among numerous devices, low threshold VCSELs with remarkable and tunable modal properties have been demonstrated. Narrow band PCMs (or high Q resonators) have also been extensively used for surface addressable optoelectronic devices where an active material is embedded into the membrane, leading to the demonstration of low threshold surface emitting lasers, nonlinear bistables, optical traps... In this presentation, we will describe the main physical rules which govern the lifetime of photons in these resonant modes. More specifically, it will be emphasized that the Q factor of the PCM is determined, to the first order, by the integral overlap between the electromagnetic field distributions of the guided and free space modes and of the dielectric periodic perturbation which is applied to the homogeneous membrane to get the photonic crystal. It turns out that the symmetries of these distributions are of prime importance for the strength of the resonance. It will be shown that, by molding in-plane or vertical symmetries of Bloch modes, spectrally and spatially selective light absorbers or emitters can be designed. First proof of concept devices will be also presented.

  19. Novel THz-Frequency Spectrometers by Integrating Widely-Tunable Monochromatic THz Sources and Detectors, or Arrays of Emitters and Detectors, with Photonic Bandgap Crystals

    National Research Council Canada - National Science Library

    Zotova, Yuliya

    2004-01-01

    .... Third, we have used our tunable THz source to take a THz picture of an object (proof of principle). Fourth, we have observed up-conversion process, which can be used as a new detection scheme for THz waves at room temperature...

  20. Spin wave vortex from the scattering on Bloch point solitons

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elías, R.G., E-mail: gabriel.elias@usach.cl [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, A.S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile)

    2015-12-15

    The interaction of a spin wave with a stationary Bloch point is studied. The topological non-trivial structure of the Bloch point manifests in the propagation of spin waves endowing them with a gauge potential that resembles the one associated with the interaction of a magnetic monopole and an electron. By pursuing this analogy, we are led to the conclusion that the scattering of spin waves and Bloch points is accompanied by the creation of a magnon vortex. Interference between such a vortex and a plane wave leads to dislocations in the interference pattern that can be measurable by means of magnon holography.

  1. Skyrmion clusters from Bloch lines in ferromagnetic films

    KAUST Repository

    Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2017-01-01

    anisotropy, and dipole-dipole interaction. Evolution of labyrinth domains into compact topological structures on application of the magnetic field is found to be governed by the configuration of Bloch lines inside domain walls. Depending on the combination

  2. Quantum anomalous Bloch-Siegert shift in Weyl semimetal

    Science.gov (United States)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-05-01

    A periodic exchange of energy between the light field and two level system is known as Rabi oscillations. The Bloch-Siegert shift (BSS) is a shift in Rabi oscillation resonance condition, when the driving field is sufficiently strong. There are new type of oscillations exhibit in Weyl semimetal at far from resonance, known as anomalous Rabi oscillation. In this work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal at far from resonance called anomalous Bloch-Siegert shift (ABSS) by purely quantum mechanical treatment and describe it's anisotropic nature. A fully numerical solution of the Floquet-Bloch equations unequivocally establishes the presence of not only anomalous Rabi oscillations in these systems but also their massless character.

  3. Bloch spaces of holomorphic functions in the polydisk

    Directory of Open Access Journals (Sweden)

    Anahit Harutyunyan

    2007-01-01

    Full Text Available This work is an introduction to anisotropic spaces of holomorphic functions, which have ω-weight and are generalizations of Bloch spaces to a polydisc. We prove that these classes form an algebra and are invariant with respect to monomial multiplication. Some theorems on projection and diagonal mapping are proved. We establish a description of (Ap(ω* (or (Hp(ω* via the Bloch classes for all 0

  4. Bloch oscillations of ultracold atoms and measurement of the fine structure constant; Oscillations de Bloch d'atomes ultrafroids et mesure de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P

    2005-10-15

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  5. Tunable Photonic Band Gap of PS-b-P2VP Lamellar Film Using Metal Ions and pH Gradation.

    Science.gov (United States)

    Baek, Young-Bin; Choi, Soo-Hyung; Shin, Dong-Myung

    2015-02-01

    Optical properties of photonic crystal film were investigated by tuning photonic band gap (PBG). The lamellar-forming photonic films were prepared by nearly symmetric poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) block copolymers. Molecular weight of PS block and P2VP block is 52 kg/mol, and 57 kg/mol, respectively. When submerged in water, the lamellar films were swollen and show Bragg reflection in visible light region. We observed that the reflection color can be tuned by ion concentration (e.g., hydrogen or metal ion) in water. The higher concentration of hydrogen ion in solution, the longer reflectance wavelength shifted (from 537 nm to 743 nm). In addition, max-reflectance wavelength is dependent on both metal ion and the concentration. The max-reflectance wavelength is shifted from 653 nm (i.e., in water without ion) to 430 nm, 465 nm, and 505 nm for 120 mM of Ca2+, Fe2+, and Cu2+, respectively. Therefore, we can control the photonic band gap of photonic devices by changing the condition of swelling solution.

  6. Undulator tunability and synchrotron ring-energy

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Sheony, G.K.

    1992-01-01

    An undulator has two properties which make it an extremely attractive source of electromagnetic radiation. The first is that the radiation is concentrated in a number of narrow energy bands known as harmonics of the device. The second characteristic is that under favorable operating conditions, the energy of these harmonics can be shifted or open-quote tunedclose quotes over an energy interval which can be as large as two or three times the value of the lowest energy harmonic. Both the photon energy of an undulator as well as its tunability are determined by the period, λ, of the device, the magnetic gap, G (which is larger than the minimum aperture required for injection and operation of the storage ring) and the storage ring energy E R . Given the photon energy, E p , the above parameters ultimately define the limits of operation or tunability of the undulator. In general, the larger the tunability range, the more useful the device. Therefore, for a given required maximum photon energy, it is desirable to find the operating conditions and device parameters which result in the largest tunability interval possible. With this in mind, we have investigated the question of undulator tunability with emphasis on the role of the ring energy in order to find the smallest E R consistent with the desired tunability interval and photon energy. As a guideline, we have included a preliminary criteria, concerning the tunability requirements for the Advanced Photon Source (APS) to be built at Argonne. The analysis is aimed at X-ray undulator sources on the APS but is applicable to any storage ring

  7. Tunable Photonic RF Generator for Dynamic Allocation and Multicast of 1.25 Gbps Channels in the 60 GHz Unlicensed Band

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Pang, Xiaodan; Vegas Olmos, Juan José

    2013-01-01

    ) or in the central office (CO). At the RN, we perform the replication of the original channel suitable for closely spaced multicast applications such as high definition (HD) video delivery where RN serves as a photonic radio frequency (RF) generator for both channel allocation and multicast. Experimental...

  8. Wireless Data Transmission at Terahertz Carrier Waves Generated from a Hybrid InP-Polymer Dual Tunable DBR Laser Photonic Integrated Circuit.

    Science.gov (United States)

    Carpintero, Guillermo; Hisatake, Shintaro; de Felipe, David; Guzman, Robinson; Nagatsuma, Tadao; Keil, Norbert

    2018-02-14

    We report for the first time the successful wavelength stabilization of two hybrid integrated InP/Polymer DBR lasers through optical injection. The two InP/Polymer DBR lasers are integrated into a photonic integrated circuit, providing an ideal source for millimeter and Terahertz wave generation by optical heterodyne technique. These lasers offer the widest tuning range of the carrier wave demonstrated to date up into the Terahertz range, about 20 nm (2.5 THz) on a single photonic integrated circuit. We demonstrate the application of this source to generate a carrier wave at 330 GHz to establish a wireless data transmission link at a data rate up to 18 Gbit/s. Using a coherent detection scheme we increase the sensitivity by more than 10 dB over direct detection.

  9. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    Science.gov (United States)

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field.

  10. Comment on "Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide" and Thin-Film Interference from Dried Graphene Oxide Film.

    Science.gov (United States)

    Hong, Seung-Ho; Song, Jang-Kun

    2017-04-01

    The mechanism of the iridescent color reflection from dried thin graphene oxide (GO) film on Si wafer is clarified. Dissimilarly to the photonic crystalline reflection in aqueous GO dispersion, the color reflection in dried GO film originates from the thin film interference. The peak reflection can reach 23% by optimizing the GO thickness and the substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Modeling Bloch oscillations in ultra-small Josephson junctions

    Science.gov (United States)

    Vora, Heli; Kautz, Richard; Nam, Sae Woo; Aumentado, Jose

    In a seminal paper, Likharev et al. developed a theory for ultra-small Josephson junctions with Josephson coupling energy (Ej) less than the charging energy (Ec) and showed that such junctions demonstrate Bloch oscillations which could be used to make a fundamental current standard that is a dual of the Josephson volt standard. Here, based on the model of Geigenmüller and Schön, we numerically calculate the current-voltage relationship of such an ultra-small junction which includes various error processes present in a nanoscale Josephson junction such as random quasiparticle tunneling events and Zener tunneling between bands. This model allows us to explore the parameter space to see the effect of each process on the width and height of the Bloch step and serves as a guide to determine whether it is possible to build a quantum current standard of a metrological precision using Bloch oscillations.

  12. Weighted Composition Operators from Hardy Spaces into Logarithmic Bloch Spaces

    Directory of Open Access Journals (Sweden)

    Flavia Colonna

    2012-01-01

    Full Text Available The logarithmic Bloch space Blog⁡ is the Banach space of analytic functions on the open unit disk 𝔻 whose elements f satisfy the condition ∥f∥=sup⁡z∈𝔻(1-|z|2log⁡  (2/(1-|z|2|f'(z|<∞. In this work we characterize the bounded and the compact weighted composition operators from the Hardy space Hp (with 1≤p≤∞ into the logarithmic Bloch space. We also provide boundedness and compactness criteria for the weighted composition operator mapping Hp into the little logarithmic Bloch space defined as the subspace of Blog⁡ consisting of the functions f such that lim⁡|z|→1(1-|z|2log⁡  (2/(1-|z|2|f'(z|=0.

  13. Skyrmion clusters from Bloch lines in ferromagnetic films

    KAUST Repository

    Garanin, Dmitry A.

    2017-12-29

    Conditions under which various skyrmion objects emerge in experiments on thin magnetic films remain largely unexplained. We investigate numerically centrosymmetric spin lattices in films of finite thickness with ferromagnetic exchange, magnetic anisotropy, and dipole-dipole interaction. Evolution of labyrinth domains into compact topological structures on application of the magnetic field is found to be governed by the configuration of Bloch lines inside domain walls. Depending on the combination of Bloch lines, the magnetic domains evolve into individual skyrmions, biskyrmions, or more complex topological objects. While the geometry of such objects is sensitive to the parameters, their topological charge is uniquely determined by the topological charge of Bloch lines inside the magnetic domain from which the object emerges.

  14. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei

    2015-01-01

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric...

  15. TM-TE hybridization and tunable refraction in magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Khanikaev, A.B. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1, Hibari-Ga-Oka, Toyohashi 441-8580 (Japan)]. E-mail: khanikaev@maglab.eee.tut.ac.jp; Inoue, M. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1, Hibari-Ga-Oka, Toyohashi 441-8580 (Japan); Granovsky, A.B. [Faculty of Physics, Lomonosov Moscow State University, Leninski Gory, Moscow 119992 (Russian Federation)

    2006-05-15

    In the present work we study the photonic band structure (PBS) and the polarization state of the Bloch eigenmodes of a two-dimensional magnetophotonic crystal (MPC) with square lattice formed from magneto-optically (MO) active cylinders. The refraction of light at the boundary of the MPC is analyzed. We found that both-the PBS and eigenmodes of the MPC-are most significantly altered by the MO activity in the vicinity of the degeneracies. For this case we demonstrated the possibility of an abrupt change in the propagation direction of light by the application of a magnetic field. For the Bloch wave vectors and frequencies corresponding to non-degenerate branches, the alteration of the PBS is shown to be negligible and eigenmodes almost completely coincide with linearly TE- and/or TM-polarized eigenmodes of the non-magnetic photonic crystal.

  16. TM-TE hybridization and tunable refraction in magnetophotonic crystals

    International Nuclear Information System (INIS)

    Khanikaev, A.B.; Inoue, M.; Granovsky, A.B.

    2006-01-01

    In the present work we study the photonic band structure (PBS) and the polarization state of the Bloch eigenmodes of a two-dimensional magnetophotonic crystal (MPC) with square lattice formed from magneto-optically (MO) active cylinders. The refraction of light at the boundary of the MPC is analyzed. We found that both-the PBS and eigenmodes of the MPC-are most significantly altered by the MO activity in the vicinity of the degeneracies. For this case we demonstrated the possibility of an abrupt change in the propagation direction of light by the application of a magnetic field. For the Bloch wave vectors and frequencies corresponding to non-degenerate branches, the alteration of the PBS is shown to be negligible and eigenmodes almost completely coincide with linearly TE- and/or TM-polarized eigenmodes of the non-magnetic photonic crystal

  17. Bloch oscillations of ultracold atoms and measurement of the fine structure constant

    International Nuclear Information System (INIS)

    Clade, P.

    2005-10-01

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10 -9 , in conjunction with a careful study of systematic effects (5 10 -9 ), has led us to a determination of alpha with an uncertainty of 6.7 10 -9 : α -1 (Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  18. Bloch surface wave structures for high sensitivity detection and compact waveguiding

    Science.gov (United States)

    Khan, Muhammad Umar; Corbett, Brian

    2016-01-01

    Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.

  19. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    International Nuclear Information System (INIS)

    Jiang, Chang; Lu, Jing; Zhou, Lan

    2012-01-01

    We consider the propagation of quantized polarized light in a magneto-optically-manipulated atomic ensemble with a tripod configuration. A polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically-induced transparency. The dark-state polariton with multiple components is achieved. We analyze the quantum dynamics of the dark-state polariton using experimental data from the rubidium D1-line. It is found that one component propagates freely, however the wave packet trajectory of the other component performs Bloch oscillations. -- Highlights: ► We study the wave–particle dualism of quasiparticles in a magneto-optical medium. ► We generate a “spin”-component dark-state polariton. ► Magnetic fields lead to oscillation and free propagation of a dark-state polariton. ► Our approach shows the role of entanglement of degrees of freedom of photons.

  20. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chang [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); Lu, Jing, E-mail: lujing@hunnu.edu.cn [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China); Zhou, Lan [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China)

    2012-10-01

    We consider the propagation of quantized polarized light in a magneto-optically-manipulated atomic ensemble with a tripod configuration. A polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically-induced transparency. The dark-state polariton with multiple components is achieved. We analyze the quantum dynamics of the dark-state polariton using experimental data from the rubidium D1-line. It is found that one component propagates freely, however the wave packet trajectory of the other component performs Bloch oscillations. -- Highlights: ► We study the wave–particle dualism of quasiparticles in a magneto-optical medium. ► We generate a “spin”-component dark-state polariton. ► Magnetic fields lead to oscillation and free propagation of a dark-state polariton. ► Our approach shows the role of entanglement of degrees of freedom of photons.

  1. Violation of Bloch's Law That Specifies Reciprocity of Intensity and Duration with Brief Light Flashes

    Directory of Open Access Journals (Sweden)

    Ernest Greene

    2013-12-01

    Full Text Available For more than a century researchers have been reporting that the visual impact of a very brief flash is determined by the quantity of photons that the flash delivers. This has been variously described as the Bunsen-Roscoe Law or Bloch's Law, often specified as reciprocity of intensity × duration. Prior research found no evidence for such reciprocity when microsecond-duration flashes from a light-emitting diode array were used to display the major contours of nameable shapes. The present work tested with flash durations ranging up to 100 ms and also found no reciprocity. This departure from classic principles might be due to the specific range of wavelengths of the light-emitting diodes and to a mesopic level of ambient light, which together would preclude activation of rods. The reciprocity of intensity and duration may only be valid with full dark adaptation and very dim flashes that activate rods.

  2. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo; Wu, Ying

    2016-01-01

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  3. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Zeguo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  4. Variational principle for the Bloch unified reaction theory

    International Nuclear Information System (INIS)

    MacDonald, W.; Rapheal, R.

    1975-01-01

    The unified reaction theory formulated by Claude Bloch uses a boundary value operator to write the Schroedinger equation for a scattering state as an inhomogeneous equation over the interaction region. As suggested by Lane and Robson, this equation can be solved by using a matrix representation on any set which is complete over the interaction volume. Lane and Robson have proposed, however, that a variational form of the Bloch equation can be used to obtain a ''best'' value for the S-matrix when a finite subset of this basis is used. The variational principle suggested by Lane and Robson, which gives a many-channel S-matrix different from the matrix solution on a finite basis, is considered first, and it is shown that the difference results from the fact that their variational principle is not, in fact, equivalent to the Bloch equation. Then a variational principle is presented which is fully equivalent to the Bloch form of the Schroedinger equation, and it is shown that the resulting S-matrix is the same as that obtained from the matrix solution of this equation. (U.S.)

  5. Bloch-Siegert shift in Dirac-Weyl fermionic systems

    Science.gov (United States)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-04-01

    The Bloch-Siegert shift is a phenomenon in quantum optics, typically seen in two-level systems, when the driving field is sufficiently strong. The inclusion of frequency doubling effect (counter rotating term) in the conventional rotating wave approximation (RWA) changes the resonance condition thereby producing a rather small shift in the resonance condition, which is known as the Bloch-Siegert shift (BSS). Rabi oscillations in Dirac-Weyl fermionic systems exhibit anomalous behavior far from resonance, called anomalous Rabi oscillations. Therefore, in the present work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal and topological insulator (TI) far from resonance, called anomalous Bloch-Siegert shift (ABSS). It is seen that the change in the resonance condition of anomalous Rabi oscillations is drastic in Weyl semimetal and TI. The ABSS in Weyl semimetals is highly anisotropic, whereas it is isotropic in TI. In case of TI, it is the Chern number which plays a crucial role to produce substantial change in the ABSS.

  6. News Focus: NSF Director Erich Bloch Discusses Foundation's Problems, Outlook.

    Science.gov (United States)

    Chemical and Engineering News, 1987

    1987-01-01

    Relates the comments offered in an interview with Erich Bloch, the National Science Foundation (NSF) Director. Discusses issues related to NSF and its funding, engineering research centers, involvement with industry, concern for science education, computer centers, and its affiliation with the social sciences. (ML)

  7. Improved Reading Gate For Vertical-Bloch-Line Memory

    Science.gov (United States)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Improved design for reading gate of vertical-Bloch-line magnetic-bubble memory increases reliability of discrimination between binary ones and zeros. Magnetic bubbles that signify binary "1" and "0" produced by applying sufficiently large chopping currents to memory stripes. Bubbles then propagated differentially in bubble sorter. Method of discriminating between ones and zeros more reliable.

  8. Influence of relaxation times on the Bloch-Siegert shift

    International Nuclear Information System (INIS)

    Cao Long Van

    1981-01-01

    A new method for calculations of Bloch-Siegert shifts in resonances between excited states with the inclusion of relaxation times is given. It will be shown that in this case the definition of the resonance given by I. Bialynicka-Birula is in agreement with the criterion defining the resonance used by D.A. Andrews and G. Newton. (author)

  9. Tunable structures and modulators for THz light

    Czech Academy of Sciences Publication Activity Database

    Kužel, Petr; Kadlec, Filip

    2008-01-01

    Roč. 9, - (2008), 197-214 ISSN 1631-0705 R&D Projects: GA AV ČR KJB100100512; GA MŠk LC512 Institutional research plan: CEZ:AV0Z10100520 Keywords : terahertz radiation * tunable devices * photonic crystals * strontium titanate * gallium arsenide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.164, year: 2008

  10. Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum-iron-oxide LaFeO3 with tunable pore diameters: High porosity and photonic property

    International Nuclear Information System (INIS)

    Sadakane, Masahiro; Horiuchi, Toshitaka; Kato, Nobuyasu; Sasaki, Keisuke; Ueda, Wataru

    2010-01-01

    Three-dimensionally ordered macroporous (3DOM) lanthanum-iron-oxide (LaFeO 3 ) with different pore diameters was prepared using a colloidal crystal of polymer spheres with different diameters as templates. Ethylene glycol-methanol mixed solution of metal nitrates was infiltrated into the void of the colloidal crystal template of a monodispersed poly(methyl methacrylate) (PMMA) sphere. Heating of this PMMA-metal salt-ethylene glycol composite produced the desired well-ordered 3DOM LaFeO 3 with a high pore fraction, which was confirmed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), mercury (Hg) porosimetry, and ultraviolet-visible (UV-vis) diffuse reflectance spectra. 3DOM LaFeO 3 with pore diameters of 281 and 321 nm shows opalescent colors because of photonic stop band properties. Catalytic activity of the 3DOM LaFeO 3 for combustion of carbon particles was enhanced by a potassium cation, which was involved from K 2 S 2 O 8 used as a polymerization initiator. - Graphical abstract: Well-ordered three-dimensionally ordered macroporous LaFeO 3 materials with pore sizes ranging from 127 to 321 nm were obtained in a high pore fraction.

  11. Method to map individual electromagnetic field components inside a photonic crystal

    NARCIS (Netherlands)

    Denis, T.; Reijnders, B.; Lee, J.H.H.; van der Slot, Petrus J.M.; Vos, Willem L.; Boller, Klaus J.

    2012-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the dominant electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing

  12. Behaviour of neutrons passing through the Bloch wall

    International Nuclear Information System (INIS)

    Schaerpf, O.

    1976-01-01

    In part I of the present paper the pertinent knowledge about Bloch walls is presented and developed insofar as it appears necessary for the experiments with neutrons, that is to say the direction of magnetization within the domains, the calculation of the variation of magnetization in the wall, the wall thickness, and the zigzag structure of the Bloch wall. In part II it is first clarified why the Bloch wall can be treated as a continuum problem. It shows that this is possible far away from Laue reflexes. For angles far away from Laure-reflex angles the interaction of the periodic structure of the magnetization can be described with the aid of an averaged magnetic flux density. The consequence of it is the possibility of treating the problem by means of a Schroedinger equation with continous interaction. This leads to a law of refraction. The question of the possibilities for explaining the intensity behavior is treated in part III. This part, from different aspects, describes the fact, which already was pointed out in Schaerpf, O., Vehoff, H., Schwink, Ch. 1973, that the spin of the neutrons in passing through the wall is partly taken along by the magnetization gradually rotating in the wall. (orig./WBU) [de

  13. Orbital magnetism of Bloch electrons I. General formula

    International Nuclear Information System (INIS)

    Ogata, Masao; Fukuyama, Hidetoshi

    2015-01-01

    We derive an exact formula of orbital susceptibility expressed in terms of Bloch wave functions, starting from the exact one-line formula by Fukuyama in terms of Green's functions. The obtained formula contains four contributions: (1) Landau-Peierls susceptibility, (2) interband contribution, (3) Fermi surface contribution, and (4) contribution from occupied states. Except for the Landau-Peierls susceptibility, the other three contributions involve the crystal-momentum derivatives of Bloch wave functions. Physical meaning of each term is clarified. The present formula is simplified compared with those obtained previously by Hebborn et al. Based on the formula, it is seen first of all that diamagnetism from core electrons and Van Vleck susceptibility are the only contributions in the atomic limit. The band effects are then studied in terms of linear combination of atomic orbital treating overlap integrals between atomic orbitals as a perturbation and the itinerant feature of Bloch electrons in solids are clarified systematically for the first time. (author)

  14. Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking

    Energy Technology Data Exchange (ETDEWEB)

    Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)

    2016-04-18

    We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.

  15. Properties of Floquet-Bloch space harmonics in 1D periodic magneto-dielectric structures

    DEFF Research Database (Denmark)

    Breinbjerg, O.

    2012-01-01

    Recent years have witnessed a significant research interest in Floquet-Bloch analysis for determining the homogenized permittivity and permeability of metamaterials consisting of periodic structures. This work investigates fundamental properties of the Floquet-Bloch space harmonics in a 1......-dimensional magneto-dielectric lossless structure supporting a transverse-electric-magnetic Floquet-Bloch wave; in particular, the space harmonic permittivity and permeability, as well as the space harmonic Poynting vector....

  16. Theory of fluorescence in photonic crystals

    International Nuclear Information System (INIS)

    Vats, Nipun; John, Sajeev; Busch, Kurt

    2002-01-01

    We present a formalism for the description of fluorescence from optically active materials embedded in a photonic crystal structure possessing a photonic band gap or pseudogap. An electromagnetic field expansion in terms of Bloch modes of the crystal is used to develop the equations for fluorescence in terms of the local density of photon modes available to the emitting atoms in either the high or low dielectric regions of the crystal. We then obtain expressions for fluorescence spectra and emission dynamics for luminescent materials in photonic crystals. The validity of our formalism is demonstrated through the calculation of relevant quantities for model photon densities of states. The connection of our calculations to the description of realistic systems is discussed. We also describe the consequences of these analyses on the accurate description of the interaction between radiative systems and the electromagnetic reservoir within photonic crystals

  17. Engineering topological edge states in two dimensional magnetic photonic crystal

    Science.gov (United States)

    Yang, Bing; Wu, Tong; Zhang, Xiangdong

    2017-01-01

    Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."

  18. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels

    OpenAIRE

    Yue, Youfeng; Kurokawa, Takayuki; Haque, Md Anamul; Nakajima, Tasuku; Nonoyama, Takayuki; Li, Xufeng; Kajiwara, Itsuro; Gong, Jian Ping

    2014-01-01

    Photonic crystals with tunability in the visible region are of great interest for controlling light diffraction. Mechanochromic photonic materials are periodically structured soft materials designed with a photonic stop-band that can be tuned by mechanical forces to reflect specific colours. Soft photonic materials with broad colour tunability and fast colour switching are invaluable for application. Here we report a novel mechano-actuated, soft photonic hydrogel that has an ultrafast-respons...

  19. Photonics in wireless transceivers

    International Nuclear Information System (INIS)

    Bogani, A.; Ghelfi, P.

    2013-01-01

    During the last few years, the cross-fertilization between photonics and radio systems has been helping to overcome some major limitations of the classical radio technologies, setting new paradigms, and promising improved performance and new applications with strong benefits for public communications and safety. In particular, photonics-based wireless systems, albeit still at research level, are moving toward a new generation of multifunctional systems able to manage the wireless communication with several different frequencies and protocols, even simultaneously while also realizing surveillance operations. Photonics matches the new requirements of flexibility for software-defined architectures, thanks to its ultra-wide bandwidths and ease of tunability, and guarantees low footprint and weight, thanks to integrated photonic technologies. Moreover, photonics also allows increased resolution and sensitivity by means of the inherent low phase noise of lasers. (author)

  20. Traffic restrictions on Routes Bloch, Maxwell and Bohr

    CERN Multimedia

    IT Department

    2008-01-01

    Excavation and pipework is being carried out in the framework of the transfer of the waste water treatment plant for the effluents from the surface treatment workshops from Building 254 to Building 676, currently under construction. This work may encroach onto Routes Bloch, Maxwell and Bohr and disrupt the flow of traffic. Users are requested to comply with the road signs that will be erected. The work is expected to last until the beginning of December 2008. Thank you for your understanding. TS/CE and TS/FM Groups Tel.7 4188 or 16 4314

  1. Bipolaron assisted Bloch-like oscillations in organic lattices

    International Nuclear Information System (INIS)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo

    2017-01-01

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  2. Bipolaron assisted Bloch-like oscillations in organic lattices

    Science.gov (United States)

    Ribeiro, Luiz Antonio; Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo

    2017-06-01

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  3. Bipolaron assisted Bloch-like oscillations in organic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Luiz Antonio, E-mail: ribeirojr@unb.br [International Center for Condensed Matter Physics, University of Brasília, P.O. Box 04531, 70.919-970, Brasília, DF (Brazil); University of Brasília, UnB Faculty of Planaltina, 73.345-010, Planaltina, DF (Brazil); Ferreira da Cunha, Wiliam; Magela e Silva, Geraldo [Institute of Physics, University of Brasília, 70.919-970, Brasília (Brazil)

    2017-06-15

    The transport of a dissociated bipolaron in organic one-dimensional lattices is theoretically investigated in the scope of a tight-binding model that includes electron-lattice interactions and an external electric field. Remarkably, the results point to a physical picture in which the dissociated bipolaron propagates as a combined state of two free-like electrons that coherently perform spatial Bloch oscillations (BO) above a critical field strength. It was also obtained that the BO's trajectory presents a net forward motion in the direction of the applied electric field. The impact of dynamical disorder in the formation of electronic BOs is determined.

  4. A formula for the Bloch vector of some Lindblad quantum systems

    International Nuclear Information System (INIS)

    Salgado, D.; Sanchez-Gomez, J.L.

    2004-01-01

    Using the Bloch representation of an N-dimensional quantum system and immediate results from quantum stochastic calculus, we establish a closed formula for the Bloch vector, hence also for the density operator, of a quantum system following a Lindblad evolution with selfadjoint Lindblad operators

  5. Bloch electrons in 2D periodic electric and magnetic fields; Bloch-Elektronen in 2D periodischen elektrischen und magnetischen Feldern

    Energy Technology Data Exchange (ETDEWEB)

    Naundorf, B.

    2001-06-01

    The following topics were dealt with: electrons in periodic potentials, Bloch states, Landau states, wave packets, Harper equation, uncoupled Landau band states, matrix elements and matrix equations, periodic electric and magnetic fields (WL)

  6. Broadband slow light in one-dimensional logically combined photonic crystals.

    Science.gov (United States)

    Alagappan, G; Png, C E

    2015-01-28

    Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.

  7. Selection rule for Dirac-like points in two-dimensional dielectric photonic crystals

    KAUST Repository

    Li, Yan

    2013-01-01

    We developed a selection rule for Dirac-like points in two-dimensional dielectric photonic crystals. The rule is derived from a perturbation theory and states that a non-zero, mode-coupling integral between the degenerate Bloch states guarantees a Dirac-like point, regardless of the type of the degeneracy. In fact, the selection rule can also be determined from the symmetry of the Bloch states even without computing the integral. Thus, the existence of Dirac-like points can be quickly and conclusively predicted for various photonic crystals independent of wave polarization, lattice structure, and composition. © 2013 Optical Society of America.

  8. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  9. Tunable quantum interference in a 3D integrated circuit.

    Science.gov (United States)

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  10. Entanglement and the three-dimensionality of the Bloch ball

    Energy Technology Data Exchange (ETDEWEB)

    Masanes, Ll., E-mail: ll.masanes@gmail.com [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Müller, M. P. [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg (Germany); Pérez-García, D. [Departamento de Analisis Matematico and IMI, Universidad Complutense de Madrid, 28040 Madrid (Spain); Augusiak, R. [ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona (Spain)

    2014-12-15

    We consider a very natural generalization of quantum theory by letting the dimension of the Bloch ball be not necessarily three. We analyze bipartite state spaces where each of the components has a d-dimensional Euclidean ball as state space. In addition to this, we impose two very natural assumptions: the continuity and reversibility of dynamics and the possibility of characterizing bipartite states by local measurements. We classify all these bipartite state spaces and prove that, except for the quantum two-qubit state space, none of them contains entangled states. Equivalently, in any of these non-quantum theories, interacting dynamics is impossible. This result reveals that “existence of entanglement” is the requirement with minimal logical content which singles out quantum theory from our family of theories.

  11. Terahertz emission of Bloch oscillators excited by electromagnetic field in lateral semiconductor superlattices

    International Nuclear Information System (INIS)

    Dodin, E.P.; Zharov, A.A.

    2003-01-01

    The effect of the strong high-frequency electromagnetic field on the lateral semiconductor superlattice is considered on the basis of the quasi-classical theory on the electron transport in the self-consistent wave arrangement. It is theoretically identified, that the lateral superlattice in the strong feed-up wave field may emit the terahertz radiation wave trains, which are associated with the periodical excitation of the Bloch oscillations in the superlattice. The conditions, required for the Bloch oscillators radiation observation, are determined. The spectral composition of the radiation, passing through the superlattice, and energy efficiency of multiplying the frequency, related to the Bloch oscillator excitation, are calculated [ru

  12. Applications of Graphene to Photonics

    Science.gov (United States)

    2014-07-01

    Engineering 52 (2013). [32] W. S. Koh , C. H. Gan, W. K. Phua, Y. A. Akimov, and P. Bai, “The potential of graphene as an ITO replacement in organic solar...1996). [70] S. Kivist, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable raman soliton source using mode- locked tm-ho fiber laser,” IEEE Photonics

  13. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  14. Quantum Transport in Solids: Bloch Dynamics and Role of Oscillating Fields

    National Research Council Canada - National Science Library

    Kim, Ki

    1997-01-01

    .... The specific areas of research are those of Bloch electron dynamics, quantum transport in oscillating electric fields or in periodic potentials, and the capacitive nature of atomic size structures...

  15. Surface Acoustic Analog of Bloch Oscillations, Wannier-Stark Ladders and Landau-Zener Tunneling

    Science.gov (United States)

    de Lima, M. M.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2011-12-01

    In this contribution, we discuss the recent experimental demonstration of Wannier-Stark ladders, Bloch Oscillations and Landau Zener tunneling in a solid by means of surface acoustic waves propagating through perturbed grating structures.

  16. Non-Bloch decay of Rabi oscillations in liquid state NMR

    Science.gov (United States)

    Chakrabarti, Arnab; Bhattacharyya, Rangeet

    2018-03-01

    Rabi oscillations are known to exhibit non-Bloch behaviour in anisotropic media. In this letter, we report an experimental observation of non-Bloch decay of Rabi oscillations in isotropic liquid state NMR. To avoid the dephasing due to the radio-frequency inhomogeneities, we develop a modified version of the rotary echo protocol and use it to determine the decay rates of Rabi oscillations. We find that the measured decay rates are proportional to the square of the Rabi frequencies and the proportionality constant is of the order of tens of picoseconds. Further, we show that this non-Bloch nature of the decay rates becomes less prominent with increasing temperature. The implications of the presence of non-Bloch decay rates in liquid state NMR in the context of ensemble quantum computing are also discussed.

  17. Photon-photon interactions

    International Nuclear Information System (INIS)

    Gilman, F.J.

    1980-01-01

    A brief summary of the present status of photon-photon interactions is presented. Stress is placed on the use of two-photon collisions to test present ideas on the quark constituents of hadrons and on the theory of strong interactions

  18. Nonlinear photonic quasicrystals

    International Nuclear Information System (INIS)

    Freedman, B.; Bartal, G.; Segev, M.; Lifshitz, R.; Christodoulides, D.; Fleischer, J.

    2005-01-01

    Full Text:Quasicrystals are structures with long-range order and no periodicity, whose unique structural and physical properties have intrigued scientists ever since their discovery and initial theoretical analysis more than two decades ago. The lack of periodicity excludes the use of well-established theoretical and experimental tools for the analysis of quasicrystals, including such notions as the Brillouin zone and Bloch theorem. Instead, the quasiperiodic atomic arrangement gives rise to unique properties such as a hierarchy of effective Brillouin (or Jones) zones, yielding a fractal-like band structure, and the existence of unique phason degrees of freedom. Generally, in atomic quasicrystals it is very difficult to directly observe the evolution of electronic wave-packets propagating through the structure, or the dynamics of the structure itself. Photonic quasicrystals, on the other hand, are macroscopic objects and hence their internal wave dynamics can be locally excited and directly imaged. Here, we employ optical induction to create 2D photonic quasicrystals, and explore wave transport phenomena in quasicrystals in ways that were impossible until now. We demonstrate linear tunneling-transport of light initiated at different crystal sites, and observe the formation of lattice solitons when the light is made sufficiently intense. We experiment with dynamical photonic quasicrystals, in which crystal sites interact with one another, and directly observe dislocation dynamics: creation, healing, and local structural rearrangement due to phason flips. Our experiments show that photonic quasicrystals are an excellent model system through which one can study the universal features of wave dynamics in quasiperiodic structures, that should apply not only to photonics, but also to other systems such as matter waves in quasiperiodic traps, generic pattern-forming systems as in parametrically-excited surface waves, liquid quasicrystals, as well as the more familiar

  19. On the equilibrium configuration of the Kittel type domain structure with Bloch walls, l80deg

    International Nuclear Information System (INIS)

    Gavrila, H.

    1975-01-01

    Using a phenomenologic method for appreciating different components of the free energy, the equilibrium configuration of the Kittel-type domain structure with Bloch walls is obtained. By improving the known methods, more accurate magnetostatic energy calculations are reported. In order to determine the equilibrium structure, the total free energy is minimized with respect to two system parameters: the Bloch wall width and the structure half-period. (author)

  20. Gaussian Filtering with Tapered Oil-Filled Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Weirich, Johannes

    2008-01-01

    A tunable Gaussian filter based on a tapered oil-filled photonic crystal fiber is demonstrated. The filter is centered at X=1364nm with a bandwidth (FWHM) of 237nm. Tunability is achieved by changing the temperature of the filter. A shift of 210nm of the central wavelength has been observed...

  1. Manipulating Light and Matter with Photonic Structures: Numerical Investigations on Photonic Crystals and Optical Forces

    Science.gov (United States)

    Zhang, Peng

    The highly developed nano-fabrication techniques allow light to be modulated with photonic structures in a more intensive way. These photonic structures involve photonic crystals, metals supporting surface plasmon polaritons, metamaterials, etc. In this thesis work, three different ways for light manipulation are numerically investigated. First, the light propagation is modulated using a photonic crystal with Dirac cones. It is demonstrated that the zero-index behavior of this photonic crystal which happens for normal incident waves, is lost at oblique incidence. A new method combining complex-k band calculations and absorbing boundary conditions for Bloch modes is developed to analyze the Bloch mode interaction in details. Second, the mechanic states of graphene are modulated through the optical gradient force. This force is induced by the coupled surface plasmons on the double graphene sheets and is greatly enhanced in comparison to the regular waveguides. By applying different strengths of forces in accordance to the input power, the mechanic state transition is made possible, accompanied by an abrupt change in the transmission and reflection spectra. Third, the helicity/chirality of light is studied to modulate the lateral force on a small particle. A left-hand material slab which supports coherent TE ad TM plasmons simultaneously is introduced. By mixing the TE and TM surface plasmons with different relative phases, the lateral force on a chiral particle can be changed, which will be beneficial for chiral particle sorting.

  2. Bloch Surface Waves Biosensors for High Sensitivity Detection of Soluble ERBB2 in a Complex Biological Environment.

    Science.gov (United States)

    Sinibaldi, Alberto; Sampaoli, Camilla; Danz, Norbert; Munzert, Peter; Sonntag, Frank; Centola, Fabio; Occhicone, Agostino; Tremante, Elisa; Giacomini, Patrizio; Michelotti, Francesco

    2017-08-17

    We report on the use of one-dimensional photonic crystals to detect clinically relevant concentrations of the cancer biomarker ERBB2 in cell lysates. Overexpression of the ERBB2 protein is associated with aggressive breast cancer subtypes. To detect soluble ERBB2, we developed an optical set-up which operates in both label-free and fluorescence modes. The detection approach makes use of a sandwich assay, in which the one-dimensional photonic crystals sustaining Bloch surface waves are modified with monoclonal antibodies, in order to guarantee high specificity during the biological recognition. We present the results of exemplary protein G based label-free assays in complex biological matrices, reaching an estimated limit of detection of 0.5 ng/mL. On-chip and chip-to-chip variability of the results is addressed too, providing repeatability rates. Moreover, results on fluorescence operation demonstrate the capability to perform high sensitive cancer biomarker assays reaching a resolution of 0.6 ng/mL, without protein G assistance. The resolution obtained in both modes meets international guidelines and recommendations (15 ng/mL) for ERBB2 quantification assays, providing an alternative tool to phenotype and diagnose molecular cancer subtypes.

  3. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Science.gov (United States)

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  4. Philippe Bloch: Reducing distance between experiments and CERN

    CERN Multimedia

    2009-01-01

    With its unique combination of several hundred staff members and thousands of users from around the world sharing offices and physics data and profiting from mutually beneficial exchanges of know-how and expertise, the PH Department is a good example of a successful worldwide collaboration, set up as it was to construct and run the Laboratory’s physics experiments. The PH Depart-ment has always played host to thousands of users that contribute to CERN experiments and work on them, and whose numbers are set to grow in the years to come. With his long-standing experience as a user and then as the head of the CERN group within the CMS collaboration, Philippe Bloch, the new PH Department Head, is in favour of closer links between the Department and the experiments. "I think that the PH management should have a direct link to the experiments, and to do so we are holding regular management team meetings comprising members of the Department’s management and the e...

  5. Bloch-Nordsieck estimates of high-temperature QED

    International Nuclear Information System (INIS)

    Fried, H. M.; Sheu, Y.-M.; Grandou, T.

    2008-01-01

    In anticipation of a subsequent application to QCD, we consider the case of QED at high temperature. We introduce a Fradkin representation into the exact, Schwingerian, functional expression of a fermion propagator, as well as a new and relevant version of the Bloch-Nordsieck model, which extracts the soft contributions of every perturbative graph, in contradistinction to the assumed separation of energy scales of previous semiperturbative treatments. Our results are applicable to the absorption of a fast particle which enters a heat bath, as well as to the propagation of a symmetric pulse within the thermal medium due to the appearance of an instantaneous, shockwave-like source acting in the medium. An exponentially decreasing time dependence of the incident particle's initial momentum combines with a stronger decrease in the particle's energy, estimated by a sum over all Matsubara frequencies, to model an initial 'fireball', which subsequently decays in a Gaussian fashion. When extended to QCD, qualitative applications could be made to RHIC scattering, in which a fireball appears, expands, and is damped away

  6. Photon-photon collisions

    International Nuclear Information System (INIS)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e#betta# scattering. Considerable work has now been accumulated on resonance production by #betta##betta# collisions. Preliminary high statistics studies of the photon structure function F 2 /sup #betta#/(x,Q 2 ) are given and comments are made on the problems that remain to be solved

  7. Photon-photon collisions

    International Nuclear Information System (INIS)

    Haissinski, J.

    1986-06-01

    The discussions presented in this paper deal with the following points: distinctive features of gamma-gamma collisions; related processes; photon-photon elastic scattering in the continuum and γγ →gg; total cross section; γγ → V 1 V 2 (V=vector meson); radiative width measurements and light meson spectroscopy; exclusive channels at large /t/; jets and inclusive particle distribution in γγ collisions; and, the photon structure function F γ 2

  8. Photon-photon colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  9. Production of narrowband tunable extreme-ultraviolet radiation by noncollinear resonance-enhanced four-wave mixing

    NARCIS (Netherlands)

    Hannemann, S.; Hollenstein, U.; van Duijn, E.J.; Ubachs, W.M.G.

    2005-01-01

    Fourier-transform-limited extreme-ultraviolet (XUV) radiation (bandwidth ≲300 MHz) tunable around 91 nm is produced by use of two-photon resonance-enhanced four-wave mixing on the Kr resonance at 94 093 cm

  10. Bloch-Surface-Polariton-Based Hybrid Nanowire Structure for Subwavelength, Low-Loss Waveguiding

    Directory of Open Access Journals (Sweden)

    Weijing Kong

    2018-03-01

    Full Text Available Surface plasmon polaritons (SPPs have been thoroughly studied in the past decades for not only sensing but also waveguiding applications. Various plasmonic device structures have been explored due to their ability to confine their optical mode to the subwavelength level. However, with the existence of metal, the large ohmic loss limits the propagation distance of the SPP and thus the scalability of such devices. Therefore, different hybrid waveguides have been proposed to overcome this shortcoming. Through fine tuning of the coupling between the SPP and a conventional waveguide mode, a hybrid mode could be excited with decent mode confinement and extended propagation distance. As an effective alternative of SPP, Bloch surface waves have been re-investigated more recently for their unique advantages. As is supported in all-dielectric structures, the optical loss for the Bloch surface wave is much lower, which stands for a much longer propagating distance. Yet, the confinement of the Bloch surface wave due to the reflections and refractions in the multilayer structure is not as tight as that of the SPP. In this work, by integrating a periodic multilayer structure that supports the Bloch surface wave with a metallic nanowire structure, a hybrid Bloch surface wave polariton could be excited. With the proposed hybrid nanowire structure, a hybrid mode is demonstrated with the deep subwavelength mode confinement and a propagation distance of tens of microns.

  11. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  12. Photon correlation in single-photon frequency upconversion.

    Science.gov (United States)

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  13. Photon Propagation through Linearly Active Dimers

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2017-06-01

    Full Text Available We provide an analytic propagator for non-Hermitian dimers showing linear gain or losses in the quantum regime. In particular, we focus on experimentally feasible realizations of the PT -symmetric dimer and provide their mean photon number and second order two-point correlation. We study the propagation of vacuum, single photon spatially-separable, and two-photon spatially-entangled states. We show that each configuration produces a particular signature that might signal their possible uses as photon switches, semi-classical intensity-tunable sources, or spatially entangled sources to mention a few possible applications.

  14. EDITORIAL: Photonic terahertz technology

    Science.gov (United States)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.

    2005-07-01

    of the technology itself, and second, on specific applications considered capable of fostering the transmutation of THz technology as a whole into a market technology. We decided for reasons of conciseness to leave out technologies which require more than table-top equipment (free-electron lasers, THz sources based on electrons accelerated to relativistic speed, etc) as well as fairly mature techniques (such as backward-wave oscillators which, although they are not strictly lasers, also exhibit gain). More difficult was the decision not to consider fascinating ideas for novel sources and detectors which until now have existed only on paper or have just entered the process of fundamental investigation. As we ourselves are working on such a concept (the Bloch-gain laser), we are fully aware of the fact that some of these ideas may have a strong impact on the field of THz photonics in the near future. After selection of the topics we wanted to cover, we contacted colleagues who are prominent in their respective fields of research and are grateful that most of them responded positively, expressing their willingness to share their knowledge with the readers of this journal. They took care not only to describe their own work but to give ample reference to the status of their respective specialized field of work. Before summarizing the contributions, we want to address all colleagues in the field who feel that they should have been asked to contribute but were not. To you we want to apologize. We can only hope for your understanding of the constraints of this endeavour. The collection of invited contributions is grouped into five topics. The first is entitled 'Pulsed THz Systems' and contains four papers dealing with the state of the art in source and detector development of measurement systems employing femtosecond Ti:sapphire lasers. The first paper, by Planken et al, describes the state of the art of the most common types of optoelectronic THz systems, namely those with

  15. Integral type operators from normal weighted Bloch spaces to QT,S spaces

    Directory of Open Access Journals (Sweden)

    Yongyi GU

    2016-08-01

    Full Text Available Operator theory is an important research content of the analytic function space theory. The discussion of simultaneous operator and function space is an effective way to study operator and function space. Assuming that  is an analytic self map on the unit disk Δ, and the normal weighted bloch space μ-B is a Banach space on the unit disk Δ, defining a composition operator C∶C(f=f on μ-B for all f∈μ-B, integral type operator JhC and CJh are generalized by integral operator and composition operator. The boundeness and compactness of the integral type operator JhC acting from normal weighted Bloch spaces to QT,S spaces are discussed, as well as the boundeness of the integral type operators CJh acting from normal weighted Bloch spaces to QT,S spaces. The related sufficient and necessary conditions are given.

  16. Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations

    DEFF Research Database (Denmark)

    Liang, Z.; Willatzen, Morten; Christensen, Johan

    2015-01-01

    for designing Bloch oscillations in classical plate structures and show how mechanical Bloch oscillations can be generated in arrays of solid plates when the modal wavelength is gradually reduced. The design recipe describes how Bloch oscillations in classical structures of arbitrary dimensions can be generated......We propose hitherto unexplored and fully analytical insights into laminate elastic materials in a true condensed-matter-physics spirit. Pure mechanical surface waves that decay as evanescent waves from the interface are discussed, and we demonstrate how these designer Scholte waves are controlled......, and we demonstrate this numerically for structures with millimeter and centimeter dimensions in the kilohertz to megahertz range. Analytical predictions agree entirely with full wave simulations showing how elastodynamics can mimic quantum-mechanical condensed-matter phenomena....

  17. Bloch wave deafness and modal conversion at a phononic crystal boundary

    Directory of Open Access Journals (Sweden)

    Vincent Laude

    2011-12-01

    Full Text Available We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.

  18. On averaging the Kubo-Hall conductivity of magnetic Bloch bands leading to Chern numbers

    International Nuclear Information System (INIS)

    Riess, J.

    1997-01-01

    The authors re-examine the topological approach to the integer quantum Hall effect in its original form where an average of the Kubo-Hall conductivity of a magnetic Bloch band has been considered. For the precise definition of this average it is crucial to make a sharp distinction between the discrete Bloch wave numbers k 1 , k 2 and the two continuous integration parameters α 1 , α 2 . The average over the parameter domain 0 ≤ α j 1 , k 2 . They show how this can be transformed into a single integral over the continuous magnetic Brillouin zone 0 ≤ α j j , j = 1, 2, n j = number of unit cells in j-direction, keeping k 1 , k 2 fixed. This average prescription for the Hall conductivity of a magnetic Bloch band is exactly the same as the one used for a many-body system in the presence of disorder

  19. Resonance ionization mass spectrometry using tunable diode lasers

    International Nuclear Information System (INIS)

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1990-01-01

    Tunable semiconductor diode lasers will find many important applications in atomic spectroscopy. They exhibit the desirable attributes of lasers: narrow bandwidth, tunability, and spatial coherence. At the same time, they possess few of the disadvantages of other tunable lasers. They require no alignment, are simple to operate, and are inexpensive. Practical laser spectroscopic instruments can be envisioned. The authors have applied diode lasers to resonance ionization mass spectrometry (RIMS) of some of the lanthanide elements. Sub-Doppler resolution spectra have been recorded and have been used for atomic hyperfine structure analysis. Isotopically-selective ionization has been accomplished, even in cases where photons from a broadband dye laser are part of the overall ionization process and where the isotopic spectral shift is very small. A convenient RIMS instrument for isotope ratio measurements that employs only diode lasers, along with electric field ionization, should be possible

  20. Bloch-wave engineered submicron-diameter quantum-dot micropillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Reitzenstein, Stephan

    2013-01-01

    The semiconductor micropillar is attractive for cavity QED experiments. For strong coupling, the figure of merit is proportional to Q/√V, and a design combining a high Q and a low mode volume V is thus desired. However, for the standard submicron diameter design, poor mode matching between the ca...... the cavity and the DBR Bloch mode limits the Q. We present a novel adiabatic design where Bloch-wave engineering is employed to improve the mode matching, allowing the demonstration of a record-high vacuum Rabi splitting of 85 μeV and a Q of 13600 for a 850 nm diameter micropillar....

  1. Simulation of NMR signals through the Bloch equations; Simulação de sinais de RMN através das equações de Bloch

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Tiago Bueno, E-mail: tiagobuemoraes@gmail.com [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Física; Colnago, Luiz Alberto, E-mail: tiagobuemoraes@gmail.com [Embrapa Instrumentação, São Carlos, SP (Brazil)

    2014-07-01

    The aim of this paper was to present a simple and fast way of simulating Nuclear Magnetic Resonance signals using the Bloch equations. These phenomenological equations describe the classical behavior of macroscopic magnetization and are easily simulated using rotation matrices. Many NMR pulse sequences can be simulated with this formalism, allowing a quantitative description of the influence of many experimental parameters. Finally, the paper presents simulations of conventional sequences such as Single Pulse, Inversion Recovery, Spin Echo and CPMG. (author)

  2. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  3. Photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of α/sub s/ and Λ/sup ms/ from the γ*γ → π 0 form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from γγ → H anti H, reconstruction of sigma/sub γγ/ from exclusive channels at low W/sub γγ/, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z 0 and W +- beams from e → eZ 0 and e → nu W will become important. 44 references

  4. Photon-photon collisions

    International Nuclear Information System (INIS)

    Field, J.H.

    1984-01-01

    The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e + e - storage rings. After a complete presentation of the helicity amplitude formalism for the general process e + e - → Xe + e - , various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range

  5. Spin-dependent and photon-assisted transmission enhancement and suppression in a magnetic-field tunable ZnSe/Zn{sub 1–x}Mn{sub x}Se heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Lei, E-mail: licl@cnu.edu.cn [Laboratory for Micro-sized Functional Materials, College of Elementary Education, Capital Normal University, Beijing 100048 (China); Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Yuan, Rui-Yang [Center for Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Guo, Yong, E-mail: guoy66@tsinghua.edu.cn [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2016-01-07

    Using the effective-mass approximation and Floquet theory, we theoretically investigate the terahertz photon-assisted transport through a ZnSe/Zn{sub 1−x}Mn{sub x}Se heterostructure under an external magnetic field, an electric field, and a spatially homogeneous oscillatory field. The results show that both amplitude and frequency of the oscillatory field can accurately manipulate the magnitude of the spin-dependent transmission probability and the positions of the Fano-type resonance due to photon absorption and emission processes. Transmission resonances can be enhanced to optimal resonances or drastically suppressed for spin-down electrons tunneling through the heterostructure and for spin-up ones tunneling through the same structure, resonances can also be enhanced or suppressed, but the intensity is less than the spin-down ones. Furthermore, it is important to note that transmission suppression can be clearly seen from both the spin-down component and the spin-up component of the current density at low magnetic field; at the larger magnetic field, however, the spin-down component is suppressed, and the spin-up component is enhanced. These interesting properties may provide an alternative method to develop multi-parameter modulation electron-polarized devices.

  6. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  7. Properties of solutions of Bloch-type equations for the paraelectric phase of KDP

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, M; Paszkiewicz, T [Wroclaw Univ. (Poland). Inst. Fyziki Teoretycznej

    1979-10-01

    Exact solutions for two sets of Bloch-like equations describing the paraelectric phase of the model of KDP were studied. The general properties of both solutions are the same. However, in numerical calculations they differ significantly. A modification of the decay law connected with the soft mode frequency fluctuations is considered.

  8. Integral-Type Operators from Bloch-Type Spaces to QK Spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2011-01-01

    Full Text Available The boundedness and compactness of the integral-type operator Iφ,g(nf(z=∫0zf(n(φ(ζg(ζdζ, where n∈N0, φ is a holomorphic self-map of the unit disk D, and g is a holomorphic function on D, from α-Bloch spaces to QK spaces are characterized.

  9. Bloch oscillations and accelerated Bose–Einstein condensates in an optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, Andrea, E-mail: andrea.sacchetti@unimore.it

    2017-01-30

    Highlights: • Discrete nonlinear Schrödinger model for accelerated BECs in optical lattices. • Numerical computation of wavefunction BECs dynamics. • Correlation between nonlinearity and the oscillating period of the BEC's center of mass. • Discussion of the validity of the Bloch Theorem for accelerated BECs in an optical lattice. - Abstract: We discuss the method for the measurement of the gravity acceleration g by means of Bloch oscillations of an accelerated BEC in an optical lattice. This method has a theoretical critical point due to the fact that the period of the Bloch oscillations depends, in principle, on the initial shape of the BEC wavepacket. Here, by making use of the nearest-neighbor model for the numerical analysis of the BEC wavefunction, we show that in real experiments the period of the Bloch oscillations does not really depend on the shape of the initial wavepacket and that the relative uncertainty, due to the fact that the initial shape of the wavepacket may be asymmetrical, is smaller than the one due to experimental errors. Furthermore, we also show that the relation between the oscillation period and the scattering length of the BEC's atoms is linear; this fact suggests us a new experimental procedure for the measurement of the scattering length of atoms.

  10. Diagrammatical display of the counter-example to non-Abelian Bloch-Nordsieck conjecture

    International Nuclear Information System (INIS)

    Yoshida, Nobuo

    1981-01-01

    The reason why the Bloch-Nordsieck theorem breaks down in the Drell-Yan process is shown through a simple diagrammatical calculation. The uncancelled contribution is from the retarded soft gluons, and the colour weight different for each ''double cut diagram'' interrupts the cancellation analogous to QED. (author)

  11. New algorithm for efficient Bloch-waves calculations of orientation-sensitive ELNES

    Czech Academy of Sciences Publication Activity Database

    Rusz, Ján; Muto, S.; Tatsumi, K.

    2013-01-01

    Roč. 125, Feb (2013), s. 81-88 ISSN 0304-3991 Institutional support: RVO:68378271 Keywords : transmission electron microscopy * density functional theory * dynamical diffraction theory * Bloch waves * electron magnetic circular dichroism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.745, year: 2013

  12. A new characterization of Bloch function in the unit ball of Cn

    International Nuclear Information System (INIS)

    Shi Jihuai.

    1989-07-01

    Bloch function in the unit disc v has many different but equivalent characterizations. Recently, a new characterization has been obtained by the study of Hankel operators. The purpose of this note is to generalize this characterization to the unit ball of C n . 7 refs

  13. Linear Gain and Gain Saturation in a Photonic Free-Electron Laser

    NARCIS (Netherlands)

    Denis, T.; Boller, Klaus J.; Lee, J.H.H.; van der Slot, P.J.M.; van Dijk, Marc

    2012-01-01

    Photonic crystals are used to manipulate the generation of light, for example, stimulated emission can be enhanced. A photonic free-electron laser (pFEL) applies this enhancement to generate widely tunable coherent Cerenkov radiation from low energy electrons (keV) streaming through the photonic

  14. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Ding, Yunhong; Frandsen, Lars Hagedorn

    2015-01-01

    An ultra-compact and broadband higher order-mode pass filter in a 1D photonic crystal silicon waveguide is proposed and experimentally demonstrated. The photonic crystal is designed for the lower order mode to work in the photonic band gap, while the higher order mode is located in the air band....... Consequently, light on the lower order mode is prohibited to pass through the filter, while light on a higher order mode can be converted to a Bloch mode in the photonic crystal and pass through the filter with low insertion loss. As an example, we fabricate a similar to 15-mu m-long first-order-mode pass...

  15. CONFERENCE: Photon-photon collisions

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Despite being difficult to observe, photon-photon collisions have opened up a range of physics difficult, or even impossible, to access by other methods. The progress which has been made in this field was evident at the fifth international workshop on photon-photon collisions, held in Aachen from 13-16 April and attended by some 120 physicists

  16. Second-order interference of two independent and tunable single-mode continuous-wave lasers

    International Nuclear Information System (INIS)

    Liu Jianbin; Chen Hui; Zheng Huaibin; Xu Zhuo; Wei Dong; Zhou Yu; Gao Hong; Li Fu-Li

    2016-01-01

    The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by employing two-photon interference in Feynman’s path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra. (paper)

  17. Tunable resistance coatings

    Science.gov (United States)

    Elam, Jeffrey W.; Mane, Anil U.

    2015-08-11

    A method and article of manufacture of intermixed tunable resistance composite materials containing at least one of W:Al.sub.2O.sub.3, Mo:Al.sub.2O.sub.3 or M:Al.sub.2O.sub.3 where M is a conducting compound containing either W or Mo. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.

  18. Tunable Nitride Josephson Junctions.

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lewis, Rupert M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfley, Steven L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolak, Matthaeus [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We have developed an ambient temperature, SiO2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the TaxN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlOx barriers for low - power, high - performance computing.

  19. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  20. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  1. Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Povinelli, Michelle L

    2013-09-09

    We demonstrate a system consisting of a two-dimensional photonic crystal slab and two polarizers which has a tunable transmission lineshape. The lineshape can be tuned from a symmetric Lorentzian to a highly asymmetric Fano lineshape by rotating the output polarizer. We use temporal coupled mode theory to explain the measurement results. The theory also predicts tunable phase shift and group delay.

  2. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  3. Comprehensive solutions to the Bloch equations and dynamical models for open two-level systems

    Science.gov (United States)

    Skinner, Thomas E.

    2018-01-01

    The Bloch equation and its variants constitute the fundamental dynamical model for arbitrary two-level systems. Many important processes, including those in more complicated systems, can be modeled and understood through the two-level approximation. It is therefore of widespread relevance, especially as it relates to understanding dissipative processes in current cutting-edge applications of quantum mechanics. Although the Bloch equation has been the subject of considerable analysis in the 70 years since its inception, there is still, perhaps surprisingly, significant work that can be done. This paper extends the scope of previous analyses. It provides a framework for more fully understanding the dynamics of dissipative two-level systems. A solution is derived that is compact, tractable, and completely general, in contrast to previous results. Any solution of the Bloch equation depends on three roots of a cubic polynomial that are crucial to the time dependence of the system. The roots are typically only sketched out qualitatively, with no indication of their dependence on the physical parameters of the problem. Degenerate roots, which modify the solutions, have been ignored altogether. Here the roots are obtained explicitly in terms of a single real-valued root that is expressed as a simple function of the system parameters. For the conventional Bloch equation, a simple graphical representation of this root is presented that makes evident the explicit time dependence of the system for each point in the parameter space. Several intuitive, visual models of system dynamics are developed. A Euclidean coordinate system is identified in which any generalized Bloch equation is separable, i.e., the sum of commuting rotation and relaxation operators. The time evolution in this frame is simply a rotation followed by relaxation at modified rates that play a role similar to the standard longitudinal and transverse rates. These rates are functions of the applied field, which

  4. Near infrared emission and multicolor tunability of enhanced upconversion emission from Er{sup 3+}–Yb{sup 3+} co-doped Nb{sub 2}O{sub 5} nanocrystals embedded in silica-based nanocomposite and planar waveguides for photonics

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Felipe Thomaz [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Ferrari, Jefferson Luis [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João Del Rei, MG (Brazil); Maia, Lauro June Queiroz [Grupo Física de Materiais, Instituto de Física, Universidade Federal de Goiás, Campus II, C.P. 131, CEP 74001-970, Goiânia, GO (Brazil); Ribeiro, Sidney José Lima [Institute of Chemistry- São Paulo State University- UNESP, Araraquara, SP 14800-900 (Brazil); Ferrier, Alban [PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris (France); and others

    2016-02-15

    This work reports on the Yb{sup 3+} ion addition effect on the near infrared emission and infrared-to-visible up conversion from planar waveguides based on Er{sup 3+}–Yb{sup 3+} co-doped Nb{sub 2}O{sub 5} nanocrystals embedded in SiO{sub 2}-based nanocomposite prepared by a sol–gel process with controlled crystallization in situ. Planar waveguides and xerogels containing Si/Nb molar ratio of 90:10 up to 50:50 were prepared. Spherical-like orthorhombic or monoclinic Nb{sub 2}O{sub 5} nanocrystals were grown in the amorphous SiO{sub 2}-based host depending on the niobium content and annealing temperature, resulting in transparent glass ceramics. Crystallization process was intensely affected by rare earth content increase. Enhancement and broadening of the NIR emission has been achieved depending on the rare earth content, niobium content and annealing temperature. Effective Yb{sup 3+}→Er{sup 3+} energy transfer and a high-intensity broad band emission in the near infrared region assigned to the Er{sup 3+} ions {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition, and longer {sup 4}I{sub 13/2} lifetimes were observed for samples containing orthorhombic Nb{sub 2}O{sub 5} nanocrystals. Intense green and red emissions were registered for all Er{sup 3+}–Yb{sup 3+} co-doped waveguides under 980 nm excitation, assigned to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} (525 nm),{sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} (545nm) and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} (670 nm) transitions, respectively. Different relative green and red intensities emissions were observed, depending upon niobium oxide content and the laser power. Upconversion dynamics were determined by the photons number, evidencing that ESA or ETU mechanisms are probably occurring. The 1931 CIE chromaticity diagrams indicated interesting color tunability based on the waveguides composition and pump power. The nanocomposite waveguides are promising materials for photonic applications as optical amplifiers and

  5. Ring energy selection and extra long straight sections for the Advanced Photon Source

    International Nuclear Information System (INIS)

    1987-04-01

    Recommended criteria are given for the performance of Advanced Photon Source (APS), taking into consideration undulator tunability criteria and their relationship to the storage ring energy and undulator gap, length of straight sections

  6. A new distributional record of alligator pipefish, Syngnathoides biaculeatus (Bloch, 1785) along Goa, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sanaye, S.V.; Rivonker, C.U.; Ansari, Z.A; Sreepada, R.A

    Present study is based on a single male specimen of alligator pipefish, Syngnathoides biaculeatus (Bloch, 1785) collected from the bay-estuarine system of, Goa (central west coast of India) which is the new distributional record for this species. A...

  7. Strain-tunable quantum dot devices

    International Nuclear Information System (INIS)

    Rastelli, A.; Trotta, R.; Zallo, E.; Atkinson, P.; Magerl, E.; Ding, F.; Plumhof, J.D.; Kumar, S.; Doerr, K.; Schmidt, O.G.

    2011-01-01

    We introduce a new class of quantum dot-based devices, in which the semiconductor structures are integrated on top of piezoelectric actuators. This combination allows on one hand to study in detail the effects produced by variable strains (up to about 0.2%) on the excitonic emission of single quantum dots and on the other to manipulate their electronic- and optical properties to achieve specific requirements. In fact, by combining strain with electric fields we are able to obtain (i) independent control of emission energy and charge-state of a QD, (II) wavelength-tunable single-QD light-emitting diodes and (III) frequency-stabilized sources of single photons at predefined wavelengths. Possible future extensions and applications of this technology will be discussed.

  8. Applications of Random Nonlinear Photonic Crystals Based on Strontium Tetraborate

    Directory of Open Access Journals (Sweden)

    Alexandre I. Zaitsev

    2012-10-01

    Full Text Available Properties of strontium tetraborate (SBO and features of as-grown anti-parallel domains are summarized. From the point of view of nonlinear optics, these domains form nonlinear photonic crystals (NPC. Applications of NPC to the deep ultraviolet generation and fs pulse diagnostics are described. NPC and SBO are prospective media for the creation of a widely tunable source of fs pulses in the vacuum ultraviolet and for autocorrelation diagnostics of broadly tunable sources.

  9. Impact of slow-light enhancement on optical propagation in active semiconductor photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2015-01-01

    We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission properties of active semiconductor photonic crystal waveguides. In such devices, slow-light propagation can be used to enhance the material gain per unit length, enabling, for example......, the realization of short optical amplifiers compatible with photonic integration. The coupled wave analysis is compared to numerical approaches based on the Fourier modal method and a frequency domain finite element technique. The presence of material gain leads to the build-up of a backscattered field, which...... is interpreted as distributed feedback effects or reflection at passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found....

  10. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  11. A Polarization Maintaining Filter based on a Liquid-Crystal-Photonic-Bandgap-Fiber

    DEFF Research Database (Denmark)

    Scolari, Lara; Olausson, Christina Bjarnal Thulin; Turchinovich, Dmitry

    2008-01-01

    A polarization maintaining filter based on a liquid-crystal-photonic-bandgap-fiber is demonstrated. Its polarization extinction ratio is 14 dB at 1550 nm. Its tunability is 150 nm.......A polarization maintaining filter based on a liquid-crystal-photonic-bandgap-fiber is demonstrated. Its polarization extinction ratio is 14 dB at 1550 nm. Its tunability is 150 nm....

  12. A Silicon-Chip Source of Bright Photon-Pair Comb

    Science.gov (United States)

    2012-10-16

    quantum light sources. Nature Photon. 1, 215 (2007). 14 Kwait, P. G., Mattle, K., Weinfurter, H., & Zeilinger , A. New High-Intensity Source of...Jennewein, T., & Zeilinger , A. A wavelength-tunable fiber-coupled 26 source of narrowband entangled photons. Opt. Express 15, 15377 (2007). 18 Chen...Lett. 101, 051108 (2012). 47 Ramelow, S., Ratschbacher, L., Fedrizzi, A., Langford, N. K., & Zeilinger , A. Discrete tunable color entanglement. Phys

  13. Quantum Theory of Conducting Matter Newtonian Equations of Motion for a Bloch Electron

    CERN Document Server

    Fujita, Shigeji

    2007-01-01

    Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference...

  14. On an Integral-Type Operator Acting between Bloch-Type Spaces on the Unit Ball

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2010-01-01

    Full Text Available Let 𝔹 denote the open unit ball of ℂn. For a holomorphic self-map φ of 𝔹 and a holomorphic function g in 𝔹 with g(0=0, we define the following integral-type operator: Iφgf(z=∫01ℜf(φ(tzg(tz(dt/t, z∈𝔹. Here ℜf denotes the radial derivative of a holomorphic function f in 𝔹. We study the boundedness and compactness of the operator between Bloch-type spaces ℬω and ℬμ, where ω is a normal weight function and μ is a weight function. Also we consider the operator between the little Bloch-type spaces ℬω,0 and ℬμ,0.

  15. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun; Belabbes, Abderrezak; Manchon, Aurelien

    2017-01-01

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  16. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun

    2017-10-29

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  17. Bloch Surface Waves Using Graphene Layers: An Approach toward In-Plane Photodetectors

    Directory of Open Access Journals (Sweden)

    Richa Dubey

    2018-03-01

    Full Text Available A dielectric multilayer platform was investigated as a foundation for two-dimensional optics. In this paper, we present, to the best of our knowledge, the first experimental demonstration of absorption of Bloch surface waves in the presence of graphene layers. Graphene is initially grown on a Cu foil via Chemical Vapor Deposition and transferred layer by layer by a wet-transfer method using poly(methyl methacrylate, (PMMA. We exploit total internal reflection configuration and multi-heterodyne scanning near-field optical microscopy as a far-field coupling method and near-field characterization tool, respectively. The absorption is quantified in terms of propagation lengths of Bloch surface waves. A significant drop in the propagation length of the BSWs is observed in the presence of graphene layers. The propagation length of BSWs in bare multilayer is reduced to 17 times shorter in presence of graphene monolayer, and 23 times shorter for graphene bilayer.

  18. General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

    Science.gov (United States)

    Lin, Guoxing

    2018-05-01

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

  19. Optimal cloning of qubits given by an arbitrary axisymmetric distribution on the Bloch sphere

    International Nuclear Information System (INIS)

    Bartkiewicz, Karol; Miranowicz, Adam

    2010-01-01

    We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by the von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.

  20. The Bloch wave operator: generalizations and applications: Part I. The time-independent case

    CERN Document Server

    Killingbeck, J P

    2003-01-01

    This is part 1 of a two-part review on wave operator theory and methods. The basic theory of the time-independent wave operator is presented in terms of partitioned matrix theory for the benefit of general readers, with a discussion of the links between the matrix and projection operator approaches. The matrix approach is shown to lead to simple derivations of the wave operators and effective Hamiltonians of Loewdin, Bloch, Des Cloizeaux and Kato as well as to some associated variational forms. The principal approach used throughout stresses the solution of the nonlinear equation for the reduced wave operator, leading to the construction of the effective Hamiltonians of Bloch and of Des Cloizeaux. Several mathematical techniques which are useful in implementing this approach are explained, some of them being relatively little known in the area of wave operator calculations. The theoretical discussion is accompanied by several specimen numerical calculations which apply the described techniques to a selection ...

  1. The Faraday effect in two-dimensional magneto-photonic crystals

    International Nuclear Information System (INIS)

    Merzlikin, A.M.; Vinogradov, A.P.; Inoue, M.; Khanikaev, A.B.; Granovsky, A.B.

    2006-01-01

    The necessary conditions for the observation of the Faraday effect in 2D magneto-photonic crystals are discussed. It is found. that the Faraday effect may be observed in the directions where any couple of the wave vectors of the harmonics consisting the Bloch waves of TE and TM solutions in zero magnetic field are identical. This direction corresponds neither to Faraday nor to Voigt geometry

  2. The Faraday effect in two-dimensional magneto-photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Merzlikin, A.M. [Institute for Theoretical and Applied Electromagnetism, OIVT, Russian Academy of Sciences, Izhorskay 13/19, Moscow 125412 (Russian Federation)]. E-mail: merzlikin_a@mail.ru; Vinogradov, A.P. [Institute for Theoretical and Applied Electromagnetism, OIVT, Russian Academy of Sciences, Izhorskay 13/19, Moscow 125412 (Russian Federation); Inoue, M. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1, Hibari-Ga-Oka, Tempaku, Toyohashi 441-8580 (Japan); Khanikaev, A.B. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1, Hibari-Ga-Oka, Tempaku, Toyohashi 441-8580 (Japan); Granovsky, A.B. [Faculty of Physics, Lomonosov Moscow State University, Leninski Gory, Moscow 119992 (Russian Federation)

    2006-05-15

    The necessary conditions for the observation of the Faraday effect in 2D magneto-photonic crystals are discussed. It is found. that the Faraday effect may be observed in the directions where any couple of the wave vectors of the harmonics consisting the Bloch waves of TE and TM solutions in zero magnetic field are identical. This direction corresponds neither to Faraday nor to Voigt geometry.

  3. Chaos synchronization in bi-axial magnets modeled by Bloch equation

    International Nuclear Information System (INIS)

    Moukam Kakmeni, F.M.; Nguenang, J.P.; Kofane, T.C.

    2005-10-01

    In this paper, we show that the bi-axial magnetic material modelled by Bloch equation admits chaotic solutions for a certain set of numerical values assigned to the system of parameters and initial conditions. Using the unidirectional linear and nonlinear feedback schemes, we demonstrate that two such systems can be synchronized together. The chaotic synchronization is discussed in the context of complete synchronization which means that the difference of the states of two relevant systems converge to zero. (author)

  4. Weighted Differentiation Composition Operator from Logarithmic Bloch Spaces to Zygmund-Type Spaces

    Directory of Open Access Journals (Sweden)

    Huiying Qu

    2014-01-01

    Full Text Available Let H( denote the space of all holomorphic functions on the unit disk of ℂ, u∈H( and let  n be a positive integer, φ a holomorphic self-map of , and μ a weight. In this paper, we investigate the boundedness and compactness of a weighted differentiation composition operator φ,unf(z=u(zf(n(φ(z,f∈H(, from the logarithmic Bloch spaces to the Zygmund-type spaces.

  5. Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Sczaniecki, L.

    1981-02-01

    A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)

  6. Bloch-Kohn and Wannier-Kohn functions in one dimension

    International Nuclear Information System (INIS)

    Bruno-Alfonso, Alexys; Guo-Qiang, Hai

    2003-01-01

    Bloch and Wannier functions of the Kohn type for a quite general one-dimensional Hamiltonian with inversion symmetry are studied. Important clarifications on null minigaps and the symmetry of those functions are given, with emphasis on the Kronig-Penney model. The lack of a general selection rule on the miniband index for optical transitions between edge states in semiconductor superlattices is discussed. A direct method for the calculation of Wannier-Kohn functions is presented

  7. Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere

    Science.gov (United States)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-03-01

    An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.

  8. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    train quantum electrodynamics. A brief description of particle (photon) position operators is given, and it is shown that photons usually are only algebraically confined in an emission process. Finally, it is demonstrated that the profile of the birth domain of a radio-frequency photon emitted...

  9. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    International Nuclear Information System (INIS)

    Giuliani, A.; Giorgetta, J.-L.; Ricaud, J.-P.; Jamme, F.; Rouam, V.; Wien, F.; Laprévote, O.; Réfrégiers, M.

    2012-01-01

    Highlights: ► Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. ► The set up allows photoionization up to 20 eV. ► Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. ► Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4–20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  10. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  11. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2016-01-01

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  12. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  13. Analysis of thin-film photonic crystal microstructures

    International Nuclear Information System (INIS)

    Pottage, John Mark

    2003-01-01

    Optical-scale microstructures containing thin-film photonic crystals (TFPCs) are modelled by transfer/scattering matrix methods, based on Fourier-series expansion of the optical Bloch eigenmodes. The majority of the TFPCs considered consist of 2D arrays of holes arranged in a triangular lattice, etched into high-index Al x Ga 1-x As and placed on a low-index oxidised substrate. These TFPCs can be easily fabricated by standard electron-beam lithography techniques. Unlike most photonic crystal devices that have been proposed, our 'intra-pass-band' TFPCs would work by exploiting the somewhat surprising properties of propagating optical Bloch waves rather than directly relying on photonic bandgaps. By numerical modelling, it is demonstrated that 2D-patterned TFPCs can support highly dispersive high-Q quasi-guided and truly-guided resonant modes, and the unusual properties of these modes are explained in terms of their Bloch-wave compositions. Modal dispersion diagrams of TFPCs, showing the loci of the resonant modes in in-plane wavevector space at fixed frequency, are calculated. These so-called 'resonance diagrams' and variants thereof, are shown to be a useful design tool for TFPC-based integrated optical components. It is suggested that TFPCs may be a viable alternative to distributed Bragg reflectors in semiconductor vertical cavity surface-emitting lasers, possessing potential advantages in terms of compactness and ease of fabrication. The high angular and spectral dispersion of the resonant modes implies that TFPCs could form the basis of a new family of compact devices for performing such functions as wavelength-division multiplexing/demultiplexing, beam-steering and frequency-selective filtering. Enhancement of nonlinear effects could also be achieved in TFPC resonators, because in them a high cavity Q-factor and a low in-plane group-velocity can be attained simultaneously. (author)

  14. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  15. Electrostatically Tunable Nanomechanical Shallow Arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-03

    We report an analytical and experimental study on the tunability of in-plane doubly-clamped nanomechanical arches under varied DC bias conditions at room temperature. For this purpose, silicon based shallow arches are fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a transduction gap of 1 μm between the beam and the driving/sensing electrodes. The high tunability of shallow arches paves the ways for highly tunable band pass filtering applications in high frequency range.

  16. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels.

    Science.gov (United States)

    Yue, Youfeng; Kurokawa, Takayuki; Haque, Md Anamul; Nakajima, Tasuku; Nonoyama, Takayuki; Li, Xufeng; Kajiwara, Itsuro; Gong, Jian Ping

    2014-08-18

    Photonic crystals with tunability in the visible region are of great interest for controlling light diffraction. Mechanochromic photonic materials are periodically structured soft materials designed with a photonic stop-band that can be tuned by mechanical forces to reflect specific colours. Soft photonic materials with broad colour tunability and fast colour switching are invaluable for application. Here we report a novel mechano-actuated, soft photonic hydrogel that has an ultrafast-response time, full-colour tunable range, high spatial resolution and can be actuated by a very small compressive stress. In addition, the material has excellent mechanical stability and the colour can be reversibly switched at high frequency more than 10,000 times without degradation. This material can be used in optical devices, such as full-colour display and sensors to visualize the time evolution of complicated stress/strain fields, for example, generated during the motion of biological cells.

  17. Photonic quantum simulator for unbiased phase covariant cloning

    Science.gov (United States)

    Knoll, Laura T.; López Grande, Ignacio H.; Larotonda, Miguel A.

    2018-01-01

    We present the results of a linear optics photonic implementation of a quantum circuit that simulates a phase covariant cloner, using two different degrees of freedom of a single photon. We experimentally simulate the action of two mirrored 1→ 2 cloners, each of them biasing the cloned states into opposite regions of the Bloch sphere. We show that by applying a random sequence of these two cloners, an eavesdropper can mitigate the amount of noise added to the original input state and therefore, prepare clones with no bias, but with the same individual fidelity, masking its presence in a quantum key distribution protocol. Input polarization qubit states are cloned into path qubit states of the same photon, which is identified as a potential eavesdropper in a quantum key distribution protocol. The device has the flexibility to produce mirrored versions that optimally clone states on either the northern or southern hemispheres of the Bloch sphere, as well as to simulate optimal and non-optimal cloning machines by tuning the asymmetry on each of the cloning machines.

  18. Observation of the geometric phase using photon echoes

    International Nuclear Information System (INIS)

    Tian, Mingzhen; Reibel, Randy R.; Barber, Zeb W.; Fischer, Joe A.; Babbitt, Wm. Randall

    2003-01-01

    The geometric phase of an atomic system has been observed in V-type three-level barium atoms using photon echoes. The geometric phase results from a cyclic evolution of a two-level subsystem driven by a laser pulse. The phase change is observed on the echo field produced on a different subsystem that is coupled via the ground state to the driven subsystem. The measured geometric phase was half of the solid angle subtended by the Bloch vector along the driven evolution circuit. This evolution has the potential to form universal operations of quantum bits

  19. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  20. Photonic Hypercrystals

    Directory of Open Access Journals (Sweden)

    Evgenii E. Narimanov

    2014-10-01

    Full Text Available We introduce a new “universality class” of artificial optical media—photonic hypercrystals. These hyperbolic metamaterials, with periodic spatial variation of dielectric permittivity on subwavelength scale, combine the features of optical metamaterials and photonic crystals. In particular, surface waves supported by a hypercrystal possess the properties of both the optical Tamm states in photonic crystals and surface-plasmon polaritons at the metal-dielectric interface.

  1. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  2. Magnetostatic wave tunable resonators

    Science.gov (United States)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  3. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-01-01

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  4. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field.

    Science.gov (United States)

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-06-19

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.

  5. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-01-01

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier–Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier–Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier–Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier–Zeeman states. (paper)

  6. Motives and algebraic cycles a celebration in honour of Spencer J. Bloch

    CERN Document Server

    Jeu, Rob de; Lewis, James D

    2009-01-01

    Spencer J. Bloch has, and continues to have, a profound influence on the subject of Algebraic K-Theory, Cycles and Motives. This book, which is comprised of a number of independent research articles written by leading experts in the field, is dedicated in his honour, and gives a snapshot of the current and evolving nature of the subject. Some of the articles are written in an expository style, providing a perspective on the current state of the subject to those wishing to learn more about it. Others are more technical, representing new developments and making them especially interesting to res

  7. Third harmonic generation by Bloch-oscillating electrons in a quasioptical array

    International Nuclear Information System (INIS)

    Ghosh, A.W.; Wanke, M.C.; Allen, S.J.; Wilkins, J.W.

    1999-01-01

    We compute the third harmonic field generated by Bloch-oscillating electrons in a quasioptical array of superlattices under THz irradiation. The third harmonic power transmitted oscillates with the internal electric field, with nodes associated with Bessel functions in eEd/ℎω. The nonlinear response of the array causes the output power to be a multivalued function of the incident laser power. The output can be optimized by adjusting the frequency of the incident pulse to match one of the Fabry-Pacute erot resonances in the substrate. Within the transmission-line model of the array, the maximum conversion efficiency is 0.1%. copyright 1999 American Institute of Physics

  8. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure. The prese......In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  9. Time gated fluorescence lifetime imaging and micro-volume spectroscopy using two-photon excitation

    NARCIS (Netherlands)

    Sytsma, J.; Vroom, J.M.; de Grauw, C.J.; Gerritsen, H.C.

    A scanning microscope utilizing two-photon excitation in combination with fluorescence lifetime contrast is presented. The microscope makes use of a tunable femtosecond titanium:sapphire laser enabling the two-photon excitation of a broad range of fluorescent molecules, including UV probes.

  10. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG.

    Science.gov (United States)

    Dolasinski, Brian; Powers, Peter E; Haus, Joseph W; Cooney, Adam

    2015-02-09

    We report a widely tunable narrowband terahertz (THz) source via difference frequency generation (DFG). A narrowband THz source uses the output of dual seeded periodically poled lithium niobate (PPLN) optical parametric generators (OPG) combined in the nonlinear crystal 4-dimthylamino-N-methyl-4-stilbazolium-tosylate (DAST). We demonstrate a seamlessly tunable THZ output that tunes from 1.5 THz to 27 THz with a minimum bandwidth of 3.1 GHz. The effects of dispersive phase matching, two-photon absorption, and polarization were examined and compared to a power emission model that consisted of the current accepted parameters of DAST.

  11. Surface Acoustic Bloch Oscillations, the Wannier-Stark Ladder, and Landau-Zener Tunneling in a Solid

    Science.gov (United States)

    de Lima, M. M., Jr.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2010-04-01

    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  12. Tunable features of magnetoelectric transformers.

    Science.gov (United States)

    Dong, Shuxiang; Zhai, Junyi; Priya, Shashank; Li, Jie-Fang; Viehland, Dwight

    2009-06-01

    We have found that magnetostrictive FeBSiC alloy ribbons laminated with piezoelectric Pb(Zr,Ti)O(3) fiber can act as a tunable transformer when driven under resonant conditions. These composites were also found to exhibit the strongest resonant magnetoelectric voltage coefficient of 750 V/cm-Oe. The tunable features were achieved by applying small dc magnetic biases of -5 transformer features can be attributed to large changes in the piezomagnetic coefficient and permeability of the magnetostrictive phase under H(dc).

  13. Coherent tunable far infrared radiation

    Science.gov (United States)

    Jennings, D. A.

    1989-01-01

    Tunable, CW, FIR radiation has been generated by nonlinear mixing of radiation from two CO2 lasers in a metal-insulator-metal (MIM) diode. The FIR difference-frequency power was radiated from the MIM diode antenna to a calibrated InSb bolometer. FIR power of 200 nW was generated by 250 mW from each of the CO2 lasers. Using the combination of lines from a waveguide CO2 laser, with its larger tuning range, with lines from CO2, N2O, and CO2-isotope lasers promises complete coverage of the entire FIR band with stepwise-tunable CW radiation.

  14. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  15. Inverse photon-photon processes

    International Nuclear Information System (INIS)

    Carimalo, C.; Crozon, M.; Kesler, P.; Parisi, J.

    1981-12-01

    We here consider inverse photon-photon processes, i.e. AB → γγX (where A, B are hadrons, in particular protons or antiprotons), at high energies. As regards the production of a γγ continuum, we show that, under specific conditions the study of such processes might provide some information on the subprocess gg γγ, involving a quark box. It is also suggested to use those processes in order to systematically look for heavy C = + structures (quarkonium states, gluonia, etc.) showing up in the γγ channel. Inverse photon-photon processes might thus become a new and fertile area of investigation in high-energy physics, provided the difficult problem of discriminating between direct photons and indirect ones can be handled in a satisfactory way

  16. Extraordinary Light-Trapping Enhancement in Silicon Solar Cell Patterned with Graded Photonic Super-Crystals

    Directory of Open Access Journals (Sweden)

    Safaa Hassan

    2017-12-01

    Full Text Available Light-trapping enhancement in newly discovered graded photonic super-crystals (GPSCs with dual periodicity and dual basis is herein explored for the first time. Broadband, wide-incident-angle, and polarization-independent light-trapping enhancement was achieved in silicon solar cells patterned with these GPSCs. These super-crystals were designed by multi-beam interference, rendering them flexible and efficient. The optical response of the patterned silicon solar cell retained Bloch-mode resonance; however, light absorption was greatly enhanced in broadband wavelengths due to the graded, complex unit super-cell nanostructures, leading to the overlap of Bloch-mode resonances. The broadband, wide-angle light coupling and trapping enhancement mechanism are understood to be due to the spatial variance of the index of refraction, and this spatial variance is due to the varying filling fraction, the dual basis, and the varying lattice constants in different directions.

  17. Capsize of polarization in dilute photonic crystals.

    Science.gov (United States)

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  18. Tunable electro-optic filter stack

    Science.gov (United States)

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  19. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...

  20. Electrostatically Tunable Nanomechanical Shallow Arches

    KAUST Repository

    Kazmi, Syed N. R.; Hajjaj, Amal Z.; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    -beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a

  1. Confinement of Bloch surface waves in a graphene-based one-dimensional photonic crystal and sensing applications

    Science.gov (United States)

    Zou, Xiu-Juan; Zheng, Gai-Ge; Chen, Yun-Yun

    2018-05-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61203211 and 41675154), the Six Major Talent Peak Expert of Jiangsu Province, China (Grant No. 2015-XXRJ-014), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20141483).

  2. Photon generator

    Science.gov (United States)

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  3. Resonance fluorescence spectrum in a two-band photonic bandgap crystal

    Science.gov (United States)

    Lee, Ray-Kuang; Lai, Yinchieh

    2003-05-01

    Steady state resonance fluorescence spectra from a two-level atom embedded in a photonic bandgap crystal and resonantly driven by a classical pump light are calculated. The photonic crystal is considered to be with a small bandgap which is in the order of magnitude of the Rabi frequency and is modeled by the anisotropic two-band dispersion relation. Non-Markovian noises caused by the non-uniform distribution of photon density states near the photonic bandgap are taken into account by a new approach which linearizes the optical Bloch equations by using the Liouville operator expansion. Fluorescence spectra that only exhibit sidebands of the Mollow triplet are found, indicating that there is no coherent Rayleigh scattering process.

  4. Photonic band structures solved by a plane-wave-based transfer-matrix method.

    Science.gov (United States)

    Li, Zhi-Yuan; Lin, Lan-Lan

    2003-04-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.

  5. Photonic band structures solved by a plane-wave-based transfer-matrix method

    International Nuclear Information System (INIS)

    Li Zhiyuan; Lin Lanlan

    2003-01-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method

  6. Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition.

    Science.gov (United States)

    Park, Jun-Bum; Lee, Il-Min; Lee, Seung-Yeol; Kim, Kyuho; Choi, Dawoon; Song, Eui Young; Lee, Byoungho

    2013-07-01

    We propose a novel approach to generate and tune a hot spot in a dipole nanostructure of vanadium dioxide (VO2) laid on a gold (Au) substrate. By inducing a phase transition of the VO2, the spatial and spectral distributions of the hot spot generated in the feed gap of the dipole can be tuned. Our numerical simulation based on a finite-element method shows a strong intensity enhancement difference and tunability near the wavelength of 678 nm, where the hot spot shows 172-fold intensity enhancement when VO2 is in the semiconductor phase. The physical mechanisms of forming the hot spots at the two-different phases are discussed. Based on our analysis, the effects of geometric parameters in our dipole structure are investigated with an aim of enhancing the intensity and the tunability. We hope that the proposed nanostructure opens up a practical approach for the tunable near-field nano-photonic devices.

  7. Notes on the genus Amphiprion Bloch & Schneider, 1801 (Teleostei: Pomacentridae) and its host sea anemones in the Seychelles

    NARCIS (Netherlands)

    Hartog, den J.C.

    1997-01-01

    The genus Amphiprion Bloch & Schneider, 1801, is represented in the Seychelles by two species, A. akallopisos Bleeker, 1853, and the endemic A. fuscocaudatus Allen, 1972. Throughout its distributional range Amphiprion akallopisos has exclusively been recorded to associate with the clownfish anemones

  8. A 2D multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements

    Science.gov (United States)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W.

    2018-03-01

    The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.

  9. Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2016-09-01

    Full Text Available Abstract We characterize the boundedness and compactness of a product-type operator, which, among others, includes all the products of the single composition, multiplication, and differentiation operators, from a general space to Bloch-type spaces. We also give some upper and lower bounds for the norm of the operator.

  10. Permittivity and Permeability for Floquet-Bloch Space Harmonics in Infinite 1D Magneto-Dielectric Periodic Structures

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Yaghjian, Arthur D.

    2014-01-01

    -Bloch space harmonics. We discuss how space harmonic permittivity and permeability can be expressed in seemingly different though equivalent forms, and we investigate these parameters of the zeroeth order space harmonic for a particular 1D periodic structure that is based on a previously reported 3D periodic...

  11. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region

    NARCIS (Netherlands)

    Tilma, B.W.; Jiao, Y.; Kotani, J.; Smalbrugge, B.; Ambrosius, H.P.M.M.; Thijs, P.J.A.; Leijtens, X.J.M.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    In this paper we present the design and characterization of a monolithically integrated tunable laser for optical coherence tomography in medicine. This laser is the first monolithic photonic integrated circuit containing quantum-dot amplifiers, phase modulators and passive components. We

  12. New dynamic silicon photonic components enabled by MEMS technology

    Science.gov (United States)

    Errando-Herranz, Carlos; Edinger, Pierre; Colangelo, Marco; Björk, Joel; Ahmed, Samy; Stemme, Göran; Niklaus, Frank; Gylfason, Kristinn B.

    2018-02-01

    Silicon photonics is the study and application of integrated optical systems which use silicon as an optical medium, usually by confining light in optical waveguides etched into the surface of silicon-on-insulator (SOI) wafers. The term microelectromechanical systems (MEMS) refers to the technology of mechanics on the microscale actuated by electrostatic actuators. Due to the low power requirements of electrostatic actuation, MEMS components are very power efficient, making them well suited for dense integration and mobile operation. MEMS components are conventionally also implemented in silicon, and MEMS sensors such as accelerometers, gyros, and microphones are now standard in every smartphone. By combining these two successful technologies, new active photonic components with extremely low power consumption can be made. We discuss our recent experimental work on tunable filters, tunable fiber-to-chip couplers, and dynamic waveguide dispersion tuning, enabled by the marriage of silicon MEMS and silicon photonics.

  13. Photonic polymer-blend structures and method for making

    Science.gov (United States)

    Barnes, Michael D.

    2004-06-29

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  14. A note on the Königs domain of compact composition operators on the Bloch space

    Directory of Open Access Journals (Sweden)

    Jones Matthew

    2011-01-01

    Full Text Available Abstract Let be the unit disk in the complex plane. We define to be the little Bloch space of functions f analytic in which satisfy lim|z|→1 (1 - |z|2|f'(z| = 0. If is analytic then the composition operator Cφ : f ↦ f ∘ φ is a continuous operator that maps into itself. In this paper, we show that the compactness of Cφ , as an operator on , can be modelled geometrically by its principal eigenfunction. In particular, under certain necessary conditions, we relate the compactness of Cφ to the geometry of , where σ satisfies Schöder's functional equation σ ∘ φ = φ'(0σ. 2000 Mathematics Subject Classification: Primary 30D05; 47B33 Secondary 30D45.

  15. Effects of gamma radiations on certain tissues of heteropneustes fossils bloch

    International Nuclear Information System (INIS)

    Purohit, R.K.; Rathore, N.; Ahluwalia, P.; Srivastava, M.; Gupta, M.L.

    1992-01-01

    In the present investigation effect of gamma radiation on certain tissues (kidney, stomach and gills) of Heteropneustes fossilis Bloch, an Indian Cat fish, were studied. The fish were irradiated with 10 Gy of gamma radiations at the dose rate of 1.60 Gy/minute from a 60 Co source. Five fish were autopsied at each post-irradiation time of 1,2,3,7,15 and 30 days. Radiation induced histopathology was observed in all the tissues studied. The radio lesions appeared on day-1 after exposure which became exaggerated on day-2 and 3. Signs of recovery were noticed on day-7 which progressed on day-15 and normal histology was observed on day-30. (author). 18 refs

  16. The Bergman spaces, the Bloch space and the pluriharmonic conjugates in the unit ball of Cn

    International Nuclear Information System (INIS)

    Shi Jihuai.

    1989-06-01

    It has been proved that if f is holomorphic in the unit ball B of C m , then f is an element of L p (B,dν) if all the functions (1 - |z| 2 ) m (D n f)(z) with |α| = m are in L p (B,dν). This method can only deal with the case of p ≥ 1. In this paper, we give a new approach to prove that the above result holds for all p is an element of (0, ∞). A simple proof about the characterization of the Bloch space will be given. As a by-product of our approach, we generalize a theorem to the unit ball of C m , and use this result to generalize some theorems about the pluriharmonic conjugates to the case 0 < p < 1. 9 refs

  17. Generalized Bloch Theorem for Complex Periodic Potentials - A Powerful Application to Quantum Transport Calculations

    International Nuclear Information System (INIS)

    Zhang, Xiaoguang; Varga, Kalman; Pantelides, Sokrates T

    2007-01-01

    Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations, but have not so far been adapted for quantum transport problems with open boundary conditions. Here we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method is demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data

  18. Illuminating "spin-polarized" Bloch wave-function projection from degenerate bands in decomposable centrosymmetric lattices

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-03-01

    The combination of space inversion and time-reversal symmetries results in doubly degenerate Bloch states with opposite spin. Many lattices with these symmetries can be constructed by combining a noncentrosymmetric potential (lacking this degeneracy) with its inverted copy. Using simple models, we unravel the evolution of local spin splitting during this process of inversion symmetry restoration, in the presence of spin-orbit interaction and sublattice coupling. Importantly, through an analysis of quantum mechanical commutativity, we examine the difficulty of identifying states that are simultaneously spatially segregated and spin polarized. We also explain how surface-sensitive experimental probes (such as angle-resolved photoemission spectroscopy, or ARPES) of "hidden spin polarization" in layered materials are susceptible to unrelated spin splitting intrinsically induced by broken inversion symmetry at the surface.

  19. Dynamics of Peregrine combs and Peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system

    Science.gov (United States)

    Wang, Lei; Wang, Zi-Qi; Sun, Wen-Rong; Shi, Yu-Ying; Li, Min; Xu, Min

    2017-06-01

    Under investigation in this paper is an inhomogeneous Hirota-Maxwell-Bloch (IHMB) system which can describe the propagation of optical solitons in an erbium-doped optical fiber. The breather multiple births (BMBs) are derived with periodically varying group velocity dispersion (GVD) coefficients. Under large periodic modulations in the GVD coefficient of IHMB system, the Peregrine comb (PC) solution is produced, which can be viewed as the limiting case of the BMBs. When the amplitude of the modulation satisfies a special condition, the Peregrine wall (PW) that can be regarded as an intermediate state between rogue wave and PC is obtained. The effects of the third-order dispersion on the spatiotemporal characteristics of PCs and PWs are studied. Our results may be useful for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in inhomogeneous erbium-doped optical fiber.

  20. Exact solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED

    International Nuclear Information System (INIS)

    Kernemann, A.; Stefanis, N.G.

    1989-01-01

    A set of new closed-form solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED is presented. A manifestly covariant phase-space path-integral method is applied for calculating the n-fermion Green's function in a classical external field. In the case of one and two fermions, explicit expressions for the full Green's functions are analytically obtained, with renormalization carried out in the modified minimal subtraction scheme. The renormalization constants and the corresponding anomalous dimensions are determined. The mass-shell behavior of the two-fermion Green's function is investigated in detail. No assumptions are made concerning the structure of asymptotic states and no IR cutoff is used in the calculations

  1. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    Science.gov (United States)

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-02-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.

  2. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    International Nuclear Information System (INIS)

    Rohmer, Damien; Gullberg, Grant T.

    2006-01-01

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore, informs on the structure of the biological tissue. This technique is applied with success to the static organs such as brain. However, the diffusion measurement on the dynamically deformable organs such as the in-vivo heart is a complex problem that has however a great potential in the measurement of cardiac health. In order to understand the behavior of the Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torrey equation that leads the MR behavior is expressed in general curvilinear coordinates. These coordinates enable to follow the heart geometry and deformations through time. The equation is finally discredited and presented in a numerical formulation using implicit methods, in order to get a stable scheme that can be applied to any smooth deformations. Diffusion process enables the link between the macroscopic behavior of molecules and the microscopic structure in which they evolve. The measurement of diffusion in biological tissues is therefore of major importance in understanding the complex underlying structure that cannot be studied directly. The Diffusion Tensor Magnetic Resonance Imaging(DTMRI) technique enables the measurement of diffusion parameters and therefore provides information on the structure of the biological tissue. This technique has been applied with success to static organs such as the brain. However, diffusion measurement of dynamically deformable organs such as the in-vivo heart remains a complex problem, which holds great potential in determining cardiac health. In order to understand the behavior of the magnetic resonance (MR) signal in a deforming media, the Bloch-Torrey equation that defines the MR behavior is expressed in general curvilinear coordinates. These coordinates enable us to follow the heart geometry and deformations through time. The equation is finally discredited and presented in a

  3. A Bloch-Torrey Equation for Diffusion in a Deforming Media

    Energy Technology Data Exchange (ETDEWEB)

    Rohmer, Damien; Gullberg, Grant T.

    2006-12-29

    Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore,informs on the structure of the biological tissue. This technique isapplied with success to the static organs such as brain. However, thediffusion measurement on the dynamically deformable organs such as thein-vivo heart is a complex problem that has however a great potential inthe measurement of cardiac health. In order to understand the behavior ofthe Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torreyequation that leads the MR behavior is expressed in general curvilinearcoordinates. These coordinates enable to follow the heart geometry anddeformations through time. The equation is finally discretized andpresented in a numerical formulation using implicit methods, in order toget a stable scheme that can be applied to any smooth deformations.Diffusion process enables the link between the macroscopic behavior ofmolecules and themicroscopic structure in which they evolve. Themeasurement of diffusion in biological tissues is therefore of majorimportance in understanding the complex underlying structure that cannotbe studied directly. The Diffusion Tensor Magnetic ResonanceImaging(DTMRI) technique enables the measurement of diffusion parametersand therefore provides information on the structure of the biologicaltissue. This technique has been applied with success to static organssuch as the brain. However, diffusion measurement of dynamicallydeformable organs such as the in-vivo heart remains a complex problem,which holds great potential in determining cardiac health. In order tounderstand the behavior of the magnetic resonance (MR) signal in adeforming media, the Bloch-Torrey equation that defines the MR behavioris expressed in general curvilinear coordinates. These coordinates enableus to follow the heart geometry and deformations through time. Theequation is finally discretized and presented in a numerical formulationusing

  4. THE ACTION OF CORAGEN INSECTICIDE ON CERTAIN PHYSIOLOGICAL BIOMARKERS ON CARASSIUS AURATUS GIBELIO BLOCH L. 1758

    Directory of Open Access Journals (Sweden)

    Claudiu Alexandru Baciu

    2015-12-01

    Full Text Available In our researches we have determined the variation of certain physiological indexes, such as the oxygen consume, the breathing rhythm, the glycaemia and the number of red blood cells under the action of Coragen insecticide on Carassius auratus gibelio Bloch. Under the action of Coragen, we have registered significant changes in the oxygen consume, the breathing rhythm, the number of red blood cells and glycemia at the Carassius auratus gibelio Bloch items, considered as answers to the stress provoked by emissions. The highest variations of the physiological indexes, from the perspective of the percentage, were noticed at the glycemia, which at the mark was 28 mg/dl, and in the treated sample, with 0.1 ml/l Coragen is 42 mg/dl, representing a 50% growth and at the breathing rhythm in 24 hours, where values significantly decreased with 41.18% at the concentration of 0.07 ml/l and with 39.33% at the concentrations of 0.05 and 0.1 ml/l Coragen. The slightest variations of the physiological indexes, from the perspective of percentage, were noticed at the oxygen consumption, which, at the mark is of 55.302 ml oxygen/kg/hour, and for the treated sample, with 0.1 ml/l Coragen is 34.81 ml oxygen/kg/hour, representing a decrease of 37.06% in 24 hours and the number of red blood cells, where the values have significantly decrease with 9.58%, 13.48%, respectively 18.44% for the concentrations of 0.05, 0.07 and 0.1 ml/l Coragen.

  5. Quantum photonics

    CERN Document Server

    Pearsall, Thomas P

    2017-01-01

    This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of non­locality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...

  6. Micromachined tunable metamaterials: a review

    International Nuclear Information System (INIS)

    Liu, A Q; Zhu, W M; Tsai, D P; Zheludev, N I

    2012-01-01

    This paper reviews micromachined tunable metamaterials, whereby the tuning capabilities are based on the mechanical reconfiguration of the lattice and/or the metamaterial element geometry. The primary focus of this review is the feasibility of the realization of micromachined tunable metamaterials via structure reconfiguration and the current state of the art in the fabrication technologies of structurally reconfigurable metamaterial elements. The micromachined reconfigurable microstructures not only offer a new tuning method for metamaterials without being limited by the nonlinearity of constituent materials, but also enable a new paradigm of reconfigurable metamaterial-based devices with mechanical actuations. With recent development in nanomachining technology, it is possible to develop structurally reconfigurable metamaterials with faster tuning speed, higher density of integration and more flexible choice of the working frequencies. (review article)

  7. Green photonics

    International Nuclear Information System (INIS)

    Quan, Frederic

    2012-01-01

    Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas. (review article)

  8. A stretch-tunable plasmonic structure with a polarization-dependent response

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xiao, Sanshui; Shi, Lei

    2012-01-01

    Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of this plasmonic structure can be reconfigured from hexagonal to monoclinic, leading to resonance frequency shifts from 200 THz to 191 THz......-dependent response at the standard telecommunication band, and such tunable plasmonic structure might be exploited in realizing photonic devices such as sensors, switches and filters....

  9. Low-loss tunable all-in-fiber filter for Raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Lund-Hansen, Toke

    2011-01-01

    We show a novel in-line Rayleigh-rejection filter for Raman spectroscopy, based on a solid-core Photonic Crystal Fiber (PCF) filled with a high-index material. The device is low-loss and thermally tunable, and allows for a strong attenuation of the Rayleigh line at 532nm and the transmission...... of the Raman lines in a broad wavenumber range....

  10. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

    OpenAIRE

    Lin, Yali; Yang, Yujie; Shan, Yuwei; Gong, Lingli; Chen, Jingzhi; Li, Sensen; Chen, Lujian

    2017-01-01

    Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidi...

  11. Full utilization of semi-Dirac cones in photonics

    Science.gov (United States)

    Yasa, Utku G.; Turduev, Mirbek; Giden, Ibrahim H.; Kurt, Hamza

    2018-05-01

    In this study, realization and applications of anisotropic zero-refractive-index materials are proposed by exposing the unit cells of photonic crystals that exhibit Dirac-like cone dispersion to rotational symmetry reduction. Accidental degeneracy of two Bloch modes in the Brillouin zone center of two-dimensional C2-symmetric photonic crystals gives rise to the semi-Dirac cone dispersion. The proposed C2-symmetric photonic crystals behave as epsilon-and-mu-near-zero materials (ɛeff≈ 0 , μeff≈ 0 ) along one propagation direction, but behave as epsilon-near-zero material (ɛeff≈ 0 , μeff≠ 0 ) for the perpendicular direction at semi-Dirac frequency. By extracting the effective medium parameters of the proposed C4- and C2-symmetric periodic media that exhibit Dirac-like and semi-Dirac cone dispersions, intrinsic differences between isotropic and anisotropic materials are investigated. Furthermore, advantages of utilizing semi-Dirac cone materials instead of Dirac-like cone materials in photonic applications are demonstrated in both frequency and time domains. By using anisotropic transmission behavior of the semi-Dirac materials, photonic application concepts such as beam deflectors, beam splitters, and light focusing are proposed. Furthermore, to the best of our knowledge, semi-Dirac cone dispersion is also experimentally demonstrated for the first time by including negative, zero, and positive refraction states of the given material.

  12. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  13. Patterned Colloidal Photonic Crystals.

    Science.gov (United States)

    Hou, Jue; Li, Mingzhu; Song, Yanlin

    2018-03-01

    Colloidal photonic crystals (PCs) have been well developed because they are easy to prepare, cost-effective, and versatile with regards to modification and functionalization. Patterned colloidal PCs contribute a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate-induced assembly, inkjet printing, and selective immobilization and modification, is presented. The advantages of patterned PC devices are also discussed in detail, for example, improved detection sensitivity and response speed of the sensors, control over the flow direction and wicking rate of microfluidic channels, recognition of cross-reactive molecules through an array-patterned microchip, fabrication of display devices with tunable patterns, well-arranged RGB units, and wide viewing-angles, and the ability to construct anti-counterfeiting devices with different security strategies. Finally, the perspective of future developments and challenges is presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Highly tunable NEMS shallow arches

    KAUST Repository

    Kazmi, Syed N. R.

    2017-11-30

    We report highly tunable nanoelectromechanical systems NEMS shallow arches under dc excitation voltages. Silicon based in-plane doubly clamped bridges, slightly curved as shallow arches, are fabricated using standard electron beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator wafer. By designing the structures to have gap to thickness ratio of more than four, the mid-plane stretching of the nano arches is maximized such that an increase in the dc bias voltage will result into continuous increase in the resonance frequency of the resonators to wide ranges. This is confirmed analytically based on a nonlinear beam model. The experimental results are found to be in good agreement with that of the results from developed analytical model. A maximum tunability of 108.14% for a 180 nm thick arch with an initially designed gap of 1 μm between the beam and the driving/sensing electrodes is achieved. Furthermore, a tunable narrow bandpass filter is demonstrated, which opens up opportunities for designing such structures as filtering elements in high frequency ranges.

  15. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  16. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz; Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  17. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  18. Monolithic photonic integration technology platform and devices at wavelengths beyond 2 μm for gas spectroscopy applications

    NARCIS (Netherlands)

    Latkowski, S.; van Veldhoven, P.J.; Hänsel, A.; D'Agostino, D.; Rabbani-Haghighi, H.; Docter, B.; Bhattacharya, N.; Thijs, P.J.A.; Ambrosius, H.P.M.M.; Smit, M.K.; Williams, K.A.; Bente, E.A.J.M.

    2017-01-01

    In this paper a generic monolithic photonic integration technology platform and tunable laser devices for gas sensing applications at 2 μm will be presented. The basic set of long wavelength optical functions which is fundamental for a generic photonic integration approach is realized using planar,

  19. Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Directory of Open Access Journals (Sweden)

    T. Siegle

    2017-09-01

    Full Text Available Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers.

  20. Photon Differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation...

  1. Photon Rao

    Indian Academy of Sciences (India)

    Volume 2 Issue 5 May 1997 pp 69-72 Feature Article. Molecule of the Month Molecular–Chameleon: Solvatochromism at its Iridescent Best! Photon Rao · More Details Fulltext PDF. Volume 16 Issue 12 December 2011 pp 1303-1306. Molecule of the Month - Molecular-Chameleon: Solvatochromism at its Iridescent Best!

  2. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    Science.gov (United States)

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  3. Antenna Miniaturization with MEMS Tunable Capacitors

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss and their characterist......In today’s mobile device market, there is a strong need for efficient antenna miniaturization. Tunable antennas are a very promising way to reduce antenna volume while enlarging its operating bandwidth. MEMS tunable capacitors are state-ofthe- art in terms of insertion loss...

  4. Controllable photon and phonon localization in optomechanical Lieb lattices.

    Science.gov (United States)

    Wan, Liang-Liang; Lü, Xin-You; Gao, Jin-Hua; Wu, Ying

    2017-07-24

    The Lieb lattice featuring flat band is not only important in strongly-correlated many-body physics, but also can be utilized to inspire new quantum devices. Here we propose an optomechanical Lieb lattice, where the flat-band physics of photon-phonon polaritons is demonstrated. The tunability of the band structure of the optomechanical arrays allows one to obtain an approximate photon or phonon flat band as well as the transition between them. This ultimately leads to the result that the controllable photon or phonon localization could be realized by the path interference effects. This study offers an alternative approach to explore the exotic photon and phonon many-body effects, which has potential applications in the future hybrid-photon-phonon quantum network and engineering new type solid-state quantum devices.

  5. Demultiplexing of photonic temporal modes by a linear system

    Science.gov (United States)

    Xu, Shuang; Shen, H. Z.; Yi, X. X.

    2018-03-01

    Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries, i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion. Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings. Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find potential applications in quantum information processing.

  6. Hybrid photonic-crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Travers, John C.; Abdolvand, Amir

    2017-01-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various...... is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated...... with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse...

  7. Photon Collider Physics with Real Photon Beams

    International Nuclear Information System (INIS)

    Gronberg, J; Asztalos, S

    2005-01-01

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e + e - collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two

  8. Photonic structures based on hybrid nanocomposites

    Science.gov (United States)

    Husaini, Saima

    exhibits a 200% enhancement of the reflection band which is attributed to the interplay between the plasmon resonance of the silver nanoparticles and the Bloch modes of the photonic crystal. Nonlinear optical studies on this one-dimensional silver-nanocomposite-dielectric structure using z-scan measurements are conducted. These measurements indicate a three-fold enhancement in the nonlinear absorption coefficient when compared to a single film of comparable metal composite thickness.

  9. An Optomechanical Elevator: Transport of a Bloch Oscillating Bose–Einstein Condensate up and down an Optical Lattice by Cavity Sideband Amplification and Cooling

    Directory of Open Access Journals (Sweden)

    B. Prasanna Venkatesh

    2015-12-01

    Full Text Available In this paper we give a new description, in terms of optomechanics, of previous work on the problem of an atomic Bose–Einstein condensate interacting with the optical lattice inside a laser-pumped optical cavity and subject to a bias force, such as gravity. An atomic wave packet in a tilted lattice undergoes Bloch oscillations; in a high-finesse optical cavity the backaction of the atoms on the light leads to a time-dependent modulation of the intracavity lattice depth at the Bloch frequency which can in turn transport the atoms up or down the lattice. In the optomechanical picture, the transport dynamics can be interpreted as a manifestation of dynamical backaction-induced sideband damping/amplification of the Bloch oscillator. Depending on the sign of the pump-cavity detuning, atoms are transported either with or against the bias force accompanied by an up- or down-conversion of the frequency of the pump laser light. We also evaluate the prospects for using the optomechanical Bloch oscillator to make continuous measurements of forces by reading out the Bloch frequency. In this context, we establish the significant result that the optical spring effect is absent and the Bloch frequency is not modified by the backaction.

  10. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    Science.gov (United States)

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-09-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  11. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    International Nuclear Information System (INIS)

    Zhang Jiefang; Meng Jianping; Wu Lei; Li Yishen; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  12. Crossed-coil detection of two-photon excited nuclear quadrupole resonance

    Science.gov (United States)

    Eles, Philip T.; Michal, Carl A.

    2005-08-01

    Applying a recently developed theoretical framework for determining two-photon excitation Hamiltonians using average Hamiltonian theory, we calculate the excitation produced by half-resonant irradiation of the pure quadrupole resonance of a spin-3/2 system. This formalism provides expressions for the single-quantum and double-quantum nutation frequencies as well as the Bloch-Siegert shift. The dependence of the excitation strength on RF field orientation and the appearance of the free-induction signal along an axis perpendicular to the excitation field provide an unmistakable signature of two-photon excitation. We demonstrate single- and double-quantum excitation in an axially symmetric system using 35Cl in a single crystal of potassium chlorate ( ωQ = 28 MHz) with crossed-coil detection. A rotation plot verifies the orientation dependence of the two-photon excitation, and double-quantum coherences are observed directly with the application of a static external magnetic field.

  13. Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    Science.gov (United States)

    Sinibaldi, Alberto; Danz, Norbert; Munzert, Peter; Michelotti, Francesco

    2018-06-01

    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.

  14. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with a spatially modulated nonlinearity

    OpenAIRE

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices. By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite number of exact soliton solutions in terms of the Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite bandgap of the optical-lattice-induced spectrum. Starting from the exact solutions, we employ the relaxation met...

  15. Nonlinear tunneling of bright and dark rogue waves in combined nonlinear Schrödinger and Maxwell-Bloch systems

    Science.gov (United States)

    Raju, Thokala Soloman; Pal, Ritu

    2018-05-01

    We derive the analytical rogue wave solutions for the generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch (GINLS-MB) equation describing the pulse propagation in erbium-doped fibre system. Then by suitably choosing the inhomogeneous parameters, we delineate the tunneling properties of rogue waves through dispersion and nonlinearity barriers or wells. Finally, we demonstrate the propagating characteristics of optical solitons by considering their tunneling through periodic barriers by the proper choice of external potential.

  16. Perturbation theory for the bloch electrons on strongly coupled chains in both uniform electric and magnetic fields

    International Nuclear Information System (INIS)

    Zhao, X.G.; Chen, S.G.

    1992-01-01

    In this paper, the energy spectrum and the wave functions for a tight-binding Bloch electron on coupled chains under the action of both uniform electric and magnetic fields are studied in detail. Exact results are obtained for the case when the coupling between chains is large by using the perturbation theory, from which it is found that the spectrum is that of two interspaced Stark ladders. The magnetic field dependence of the energy spectrum is also discussed

  17. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  18. Quasi-periodic Schroedinger operators in one dimension, absolutely continuous spectra, Bloch waves, and integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Chierchia, L.

    1986-01-01

    In the first chapter, the eigenvalue problem for a periodic Schroedinger operator, Lf = (-d 2 /dx 2 + v)f = Ef, is viewed as a two-dimensional Hamiltonian system which is integrable in the sense of Arnold and Liouville. With the aid of the Floquet-BLoch theory, it is shown that such a system is conjugate to two harmonic oscillators with frequencies α and omega, being the rotation number for L and 2π/omega the period of the potential v. This picture is generalized in the second chapter, to quasi periodic Schroedinger operators, L/sub epsilon/, with highly irrational frequencies (omega 1 , ..., omega/sub d/), which are a small perturbation of periodic operators. In the last chapter, the absolutely continuous spectrum σ/sub ac/ of a general quasi-periodic Schroedinger operators is considered. The Radon-Nikodym derivatives (with respect to Lebesgue measure) of the spectral measures are computed in terms of special independent eigensolutions existing for almost ever E in σ/sub ac/. Finally, it is shown that weak Bloch waves always exist for almost ever E in σ/sub ac/ and the question of the existence of genuine Bloch waves is turned into a regularity problem for a certain nonlinear partial differential equation on a d-dimensional torus

  19. Overview of the advanced photon source

    International Nuclear Information System (INIS)

    Moncton, D.E.; Crosbie, E.; Shenoy, G.K.

    1989-01-01

    The Advanced Photon Source planned for construction at Argonne National Laboratory is based on a low-emittance storage-ring operated at 7 GeV and capable of providing tunable undulator radiation from 4 to 40 keV (using the first and the third harmonics). A technical description of the accelerator facility and the storage ring is presented in this overview, along with a brief summary of the characteristics of radiation that will be available from the insertion devices. Various plans for user access to this national user facility are also given

  20. Thue-Morse nanostructures for tunable light extraction in the visible region

    Science.gov (United States)

    Rippa, M.; Castagna, R.; Marino, A.; Tkachenko, V.; Palermo, G.; Pane, A.; Umeton, C.; Tabiryan, N.; Petti, L.

    2018-05-01

    Controlling light propagation at the nanoscale is a fascinating opportunity offered by modern photonics, more than a challenge to face off. This study is aimed at investigating a particular kind of nanocomposite and reconfigurable optical metamaterials that can be exploited for the realization of a new class of switchable photonic devices, representing a breakthrough with respect to the state of the art. Existing photonic devices exhibit, in general, a drawback in the absence of tunability; this work aims to the design and characterization of metamaterials exploiting reconfigurable media, like LCs, which enable realization of a tunable, high quality, photonic quasi-crystal based switchable mode selector. It turned out that, starting from an unpolarized white light source, through a light extraction mechanism based on the diffraction of light, the high quality structure, combined with a uniformly aligned Photo-responsive Liquid Crystal (PLC), is able to give rise to an extremely narrow (FWHM ≈5 nm) and linearly polarized single mode peak of the extracted light intensity. Moreover, we have shown that the spectral properties (switching) of the samples can be finely controlled by using both an external applied voltage and a suitable pump light source with a maximum increase of 45% of the extracted light. Finally, both Scanning Electron Microscopy (SEM) and Far Field Diffraction (FFD) analysis have shown the high quality morphology of the realized structure.

  1. Differential geometric invariants for time-reversal symmetric Bloch-bundles: The “Real” case

    International Nuclear Information System (INIS)

    De Nittis, Giuseppe; Gomi, Kiyonori

    2016-01-01

    Topological quantum systems subjected to an even (resp. odd) time-reversal symmetry can be classified by looking at the related “Real” (resp. “Quaternionic”) Bloch-bundles. If from one side the topological classification of these time-reversal vector bundle theories has been completely described in De Nittis and Gomi [J. Geom. Phys. 86, 303–338 (2014)] for the “Real” case and in De Nittis and Gomi [Commun. Math. Phys. 339, 1–55 (2015)] for the “Quaternionic” case, from the other side it seems that a classification in terms of differential geometric invariants is still missing in the literature. With this article and its companion [G. De Nittis and K. Gomi (unpublished)] we want to cover this gap. More precisely, we extend in an equivariant way the theory of connections on principal bundles and vector bundles endowed with a time-reversal symmetry. In the “Real” case we generalize the Chern-Weil theory and we show that the assignment of a “Real” connection, along with the related differential Chern class and its holonomy, suffices for the classification of “Real” vector bundles in low dimensions.

  2. Corrections to Newton’s law of gravitation - application to hybrid Bloch brane

    Science.gov (United States)

    Almeida, C. A. S.; Veras, D. F. S.; Dantas, D. M.

    2018-02-01

    We present in this work, the calculations of corrections in the Newton’s law of gravitation due to Kaluza-Klein gravitons in five-dimensional warped thick braneworld scenarios. We consider here a recently proposed model, namely, the hybrid Bloch brane. This model couples two scalar fields to gravity and is engendered from a domain wall-like defect. Also, two other models the so-called asymmetric hybrid brane and compact brane are considered. Such models are deformations of the ϕ 4 and sine-Gordon topological defects, respectively. Therefore we consider the branes engendered by such defects and we also compute the corrections in their cases. In order to attain the mass spectrum and its corresponding eigenfunctions which are the essential quantities for computing the correction to the Newtonian potential, we develop a suitable numerical technique. The calculation of slight deviations in the gravitational potential may be used as a selection tool for braneworld scenarios matching with future experimental measurements in high energy collisions

  3. Cytotoxic and genotoxic affects of acid mine drainage on fish Channa punctata (Bloch).

    Science.gov (United States)

    Talukdar, B; Kalita, H K; Basumatary, S; Saikia, D J; Sarma, D

    2017-10-01

    The investigation deals with the effects of Acid Mine Drainage (AMD) of coal mine on fish Channa punctata (Bloch) by examining the incidence of haematological, morphological, histological changes and DNA fragmentation in tissues of C. punctata in laboratory condition. For this study fishes were exposed to 10% of AMD for a period of 30 days. The fusion of the primary and secondary gill lamellae, distortion, loss of alignment, deposition of worn out tissues and mucous on the surface of the lamella in the gills; degeneration of morphological architecture, loss of alignment of tubules, mucous deposition in the kidney; cellular damage, cellular necrosis, extraneous deposition on the surface, pore formation in the liver are some important changes detected by scanning electron microscopy. Fishes of AMD treated group showed gradual significant decrease in TEC, Hb and, increase in TLC and DLC as compared to that of the control. DNA fragmentation observed in kidney of fishes from treated group indicates an intricate pollutant present in the AMD. The high incidence of morphological and histological alterations, haematological changes along with DNA breakage in C. punctata is an evidence of the cytotoxic and genotoxic potential of AMD of coal mines. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Microbiological and biochemical changes in pearl spot (Etroplus suratensis Bloch) stored under modified atmospheres.

    Science.gov (United States)

    Lalitha, K V; Sonaji, E R; Manju, S; Jose, L; Gopal, T K S; Ravisankar, C N

    2005-01-01

    This study aimed to determine the effect of packaging [air, modified atmosphere (MA)] on microbial growth, sensory and chemical parameters and also on shelf life of fresh pearl spot (Etroplus suratensis Bloch) and on the selection of microbial association. Fresh pearl spot (whole, gutted) were packaged under both 100% air and MAs (40%CO(2)/60% O(2), 50%CO(2)/50%O(2), 60% CO(2)/40%O(2), 70% CO(2)/30% O(2) and 40% CO(2)/30% O(2)/30% N(2)) and stored at 0 degrees C. Microbial growth (counts of total aerobic bacteria, H(2)S-producing bacteria, Lactic acid bacteria, Brochothrix thermosphacta, yeast and mould), chemical spoilage indicators (pH, total volatile basic nitrogen) and sensory characteristics were monitored. Microbial changes in Pearl spot packed under 100% air and 40% CO(2)/30%O(2)/30% N(2) were similar. The total volatile basic nitrogen values increased, but the values never exceeded the acceptability limit of 25 mg 100 g(-1). MA 60% CO(2) : 40%O(2) was found to be better with a shelf life of 21 days whereas air stored samples had a shelf-life of 12-14 days only. Storage of pearl spot under MAs 60% CO(2) : 40%O(2) is a promising method to extend shelf-life. Longer shelf life expands the market potential of pearl spot and reduces waste during distribution and retail display.

  5. Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom

    Directory of Open Access Journals (Sweden)

    Jan Girovsky, Jose L. Lado, Floris E. Kalff, Eleonora Fahrenfort, Lucas J. J. M. Peters, Joaquín Fernández-Rossier, Alexander F. Otte

    2017-06-01

    Full Text Available The interaction of electrons with a periodic potential of atoms in crystalline solids gives rise to band structure. The band structure of existing materials can be measured by photoemission spectroscopy and accurately understood in terms of the tight-binding model, however not many experimental approaches exist that allow to tailor artificial crystal lattices using a bottom-up approach. The ability to engineer and study atomically crafted designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS helps to understand the emergence of material properties. Here, we use atom manipulation of individual vacancies in a chlorine monolayer on Cu(100 to construct one- and two-dimensional structures of various densities and sizes. Local STS measurements reveal the emergence of quasiparticle bands, evidenced by standing Bloch waves, with tuneable dispersion. The experimental data are understood in terms of a tight-binding model combined with an additional broadening term that allows an estimation of the coupling to the underlying substrate.

  6. Energies and bounds from perturbative approximations to the Bloch-Horowitz effective Hamiltonian

    International Nuclear Information System (INIS)

    Darema-Rogers, F.; Vincent, C.M.

    1978-01-01

    Bloch-Horowitz perturbation theory is applied to the calculation of approximate energies and model-space eigenvectors, for the solvable large-matrix Hamiltonian H used by Pittel, Vincent, and Vergados. Two types of upper and lower bounds to the energies are discussed: moment-theory bounds, obtained by applying moment theory to the terms of perturbation theory, and norm bounds, derived from the expectation E-bar and variance sigma 2 of H with respect to an eigenvector approximated by nth order perturbation theory (n < or = 6). It is shown that lower bounds cannot be constructed unless some fourth-order quantity is known. The upper bounds are generally stricter than the lower bounds. All of the bounds apply even when back-door intruder states cause perturbation theory to diverge; but they lose their rigor and become ''quasibounds'' when there are physical intruders. The moment-theory and norm lower quasibounds always require estimation of a parameter. For the solvable Hamiltonians, it is shown that this can be done quite reliably, and that the resulting quasibounds are tight enough to have some practical utility. The energy-independent effective interaction V is constructed and its errors are displayed and discussed. Finally, a certain [1/2] pseudo-Pade approximant is empirically shown to give energies with a mean absolute error of less than 0.3 MeV in all cases

  7. Establishment of a cell line from kidney of seabass, Lates calcarifer (Bloch

    Directory of Open Access Journals (Sweden)

    Phromkunthong, W.

    2003-01-01

    Full Text Available Primary cell culture from caudal fin and kidney of seabass (Lates calcarifer Bloch using tissue explant method were cultured in three different medias with various salt concentrations. Only seabass kidney (SK cells grew well in Leibovitze's-15 medium containing 8 g/l of NaCl supplemented with 10 % fetal bovine serum at an optimum temperature of 25 oC. Over a period of 24 months, SK cells were subcultured over than 75 passages and exhibited epithelial-like cells. The chromosome number of SK cells was 42. The cells were found to be free from bacterial, fungal and mycoplasma contamination. Seabass cells can be kept at -80 oC and/or in liquid nitrogen (-196 oC for at least 24 months with a survival rate of 83.20 and 74.50 %, respectively. Nine fish viruses were tested for their infectivity and this SK cells were susceptible to sand goby virus (SGV, chub reovirus (CRV, snake-head rhabdovirus (SHRV, red seabream iridovirus (RSIV, seabass iridovirus (SIV and grouper iridovirus-2 (GIV-2.

  8. Development of immune functionality in larval and juvenile crimson snapper Lutjanus erythropterus (Bloch 1790

    Directory of Open Access Journals (Sweden)

    Ke Cui

    2018-05-01

    Full Text Available Ontogenetic development of the immune system in crimson snapper (Lutjanus erythropterus Bloch 1790 larvae was histologically and enzymatically studied from hatch to 36 days post-hatch (DPH. Primitive hepatopancreas appeared on 2 DPH and renal tubules started hematopoiesis on 4 DPH. The spleen anlage appeared on 6 DPH and the thymus formed on 14 DPH. Total activities of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPX and sodium-potassium adenosine triphosphatase (Na+ K+-ATPase gradually increased after hatch, and showed a sharp increase after 29 DPH during the transitional feeding period from Artemia to inert feed. The specific activities of SOD, CAT, and GPX showed a trend of sharp increase and reached the maximum level on 4 DPH when exogenous feeding started, except for Na+ K+-ATPase where the peak occurred on10 DPH. The specific activities of these five enzymes reached the peak during the food transition from rotifers to Artemia, but the total activity of enzymes showed an increasing trend as fish grew. The present study provides new knowledge of the development of functional enzymes relevant to fish larvae immunity, sheds light on the understanding of the change of larval health, and improves hatchery management of crimson snapper. Keywords: Immune system, Enzyme activity, Ontogenetic development, Crimson snapper Lutjanus erythropterus

  9. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.

    Science.gov (United States)

    Rodriguez, Gilberto A; Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2014-03-15

    A porous silicon (PSi) grating-coupled Bloch surface and sub-surface wave (BSW/BSSW) biosensor is demonstrated to size selectively detect the presence of both large and small molecules. The BSW is used to sense large immobilized analytes at the surface of the structure while the BSSW that is confined inside but near the top of the structure is used to sensitively detect small molecules. Functionality of the BSW and BSSW modes is theoretically described by dispersion relations, field confinements, and simulated refractive index shifts within the structure. The theoretical results are experimentally verified by detecting two different small chemical molecules and one large 40 base DNA oligonucleotide. The PSi-BSW/BSSW structure is benchmarked against current porous silicon technology and is shown to have a 6-fold higher sensitivity in detecting large molecules and a 33% improvement in detecting small molecules. This is the first report of a grating-coupled BSW biosensor and the first report of a BSSW propagating mode. © 2013 Published by Elsevier B.V.

  10. The peripheral olfactory organ in the Greenland shark Somniosus microcephalus (Bloch and Schneider, 1801

    Directory of Open Access Journals (Sweden)

    Laura Ghigliotti

    2015-11-01

    Full Text Available The Greenland shark Somniosus microcephalus (Bloch and Schneider, 1801 is the largest predatory fish in Arctic waters. The socio-economic significance of Greenland shark is demonstrated by its impact on the fishing cultures in Greenland, Scandinavia and Iceland for centuries. The fundamental biology and ecological role of Greenland shark, on the other hand, is virtually unknown. Although knowledge of its life history is limited, increasing evidence indicates that the Greenland shark may undertake long-distance migrations and perform vertical movements from the surface to the deep sea. It is an omnivorous species feeding on carrion and a wide variety of pelagic and bottom-dwelling organisms ranging from invertebrates to mammals, and including active species such as fishes and seals. Accordingly, Greenland shark should be recognized as a top predator, with a strong potential to influence the trophic dynamics of the Arctic marine ecosystem. The sensory biology of Greenland shark is scarcely studied, and considering the importance of olfaction in chemoreception, feeding and other behavioral traits, we examined the architecture of the peripheral olfactory organ where olfactory cues are received from the environment – the olfactory rosette. The structural organization of the olfactory rosette, in terms of histological features of the sensory epithelium, number of primary lamellae and total sensory surface area, provides a first proxy of the olfactory capability of Greenland shark. Based on own results and published studies, the overall morphology of the olfactory rosette is viewed in context of the functional and trophic ecology among other elasmobranch species.

  11. Photon absorptiometry

    International Nuclear Information System (INIS)

    Valkema, R.; Blokland, J.A.K.; Papapoulos, S.E.; Bijvoet, O.L.M.; Pauwels, E.K.J.

    1989-01-01

    Osteoporosis is a significant health problem in the western world, with important medical, social and economical consequences. Prevention and treatment require reliable methods for in vivo monitoring of the bone mineral content (BMC) and its change in time. This paper presents an overview of currently used radiological methods, based on photon absorptiometry, and their clinical applications. With recent methods based on dual energy X-ray absorptiometry accurate and precise measurements of axial BMC can be obtained. Whether this improvements allows reliable detection of small changes in BMC remains to be investigated. (Author). 95 refs.; 1 tab

  12. Integrable microwave filter based on a photonic crystal delay line.

    Science.gov (United States)

    Sancho, Juan; Bourderionnet, Jerome; Lloret, Juan; Combrié, Sylvain; Gasulla, Ivana; Xavier, Stephane; Sales, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany, José; De Rossi, Alfredo

    2012-01-01

    The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0-50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions.

  13. Novel variational approach for analysis of photonic crystal slabs

    International Nuclear Information System (INIS)

    Aram, Mohammad Hasan; Khorasani, Sina

    2015-01-01

    We propose a new method, based on variational principle, for the analysis of photonic crystal (PC) slabs. Most of the methods used today treat PC slabs as three-dimensional (3D) crystal, and this makes these methods very time and/or memory consuming. In our proposed method, we use the Bloch theorem to expand the field on infinite plane waves, whose amplitudes depend on the component perpendicular to the slab surface. By approximating these amplitudes with appropriate functions, we can find modes of PC slabs almost as fast as we can find modes of two-dimensional crystals. In addition to this advantage, we can also calculate radiation modes with this method, which is not feasible with the 3D plane wave expansion method. (paper)

  14. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    Science.gov (United States)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  15. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    Science.gov (United States)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  16. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  17. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    the waveguiding mechanism of LC filled PCFs. The principle of tunable fibers based on LCs is thereafter discussed and an alignment and coating study of LC in capillaries is presented. Next, the Liquid Crystal Photonic BandGap (LCPBG) fiber is presented and the waveguiding mechanism is analyzed through plane...... hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...

  18. FEL based photon collider of TeV energy range

    International Nuclear Information System (INIS)

    Saldin, E.L.; Shnejdmiller, E.A.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    Physical principles of operation of high energy photon linear colliders (PLC) based on the Compton backscattering of laser photons on high energy electrons are discussed. The main emphasis is put on the analysis of a possibility to construct the PLC with the center of mass energy 0.5-2 TeV. Free electron laser (FEL) is considered as a source of primary photons. Proposed FEL system consists of a tunable FEL oscillator (output power ∼ 1 - 10 MW) with subsequent amplification of the master signal in a FEL amplifier up to the power ∼ 3 x 10 11 W. The FEL parameters are optimized, restrictions on the electron beam and FEL magnetic system parameters are formulated and problems of technical realization are discussed. It is shown that the FEL technique provides the most suitable way to construct photon linear collider on the base of future generation linear collider. 22 refs., 10 figs., 2 tabs

  19. Transient Plasma Photonic Crystals for High-Power Lasers.

    Science.gov (United States)

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  20. Fast Excitation and Photon Emission of a Single-Atom-Cavity System

    International Nuclear Information System (INIS)

    Bochmann, J.; Muecke, M.; Langfahl-Klabes, G.; Erbel, C.; Weber, B.; Specht, H. P.; Moehring, D. L.; Rempe, G.

    2008-01-01

    We report on the fast excitation of a single atom coupled to an optical cavity using laser pulses that are much shorter than all other relevant processes. The cavity frequency constitutes a control parameter that allows the creation of single photons in a superposition of two tunable frequencies. Each photon emitted from the cavity thus exhibits a pronounced amplitude modulation determined by the oscillatory energy exchange between the atom and the cavity. Our technique constitutes a versatile tool for future quantum networking experiments

  1. On-chip photonic memory elements employing phase-change materials.

    Science.gov (United States)

    Rios, Carlos; Hosseini, Peiman; Wright, C David; Bhaskaran, Harish; Pernice, Wolfram H P

    2014-03-05

    Phase-change materials integrated into nanophotonic circuits provide a flexible way to realize tunable optical components. Relying on the enormous refractive-index contrast between the amorphous and crystalline states, such materials are promising candidates for on-chip photonic memories. Nonvolatile memory operation employing arrays of microring resonators is demonstrated as a route toward all-photonic chipscale information processing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Block Copolymer Micelles for Photonic Fluids and Crystals.

    Science.gov (United States)

    Poutanen, Mikko; Guidetti, Giulia; Gröschel, Tina I; Borisov, Oleg V; Vignolini, Silvia; Ikkala, Olli; Gröschel, Andre H

    2018-03-15

    Block copolymer micelles (BCMs) are self-assembled nanoparticles in solution with a collapsed core and a brush-like stabilizing corona typically in the size range of tens of nanometers. Despite being widely studied in various fields of science and technology, their ability to form structural colors at visible wavelength has not received attention, mainly due to the stringent length requirements of photonic lattices. Here, we describe the precision assembly of BCMs with superstretched corona, yet with narrow size distribution to qualify as building blocks for tunable and reversible micellar photonic fluids (MPFs) and micellar photonic crystals (MPCs). The BCMs form free-flowing MPFs with an average interparticle distance of 150-300 nm as defined by electrosteric repulsion arising from the highly charged and stretched corona. Under quiescent conditions, millimeter-sized MPCs with classical FCC lattice grow within the photonic fluid-medium upon refinement of the positional order of the BCMs. We discuss the generic properties of MPCs with special emphasis on surprisingly narrow reflected wavelengths with full width at half-maximum (fwhm) as small as 1 nm. We expect this concept to open a generic and facile way for self-assembled tunable micellar photonic structures.

  3. Electronically tunable RC sinusoidal oscillators

    International Nuclear Information System (INIS)

    Florescu, Valeriu

    2008-01-01

    This paper presents two types of active configurations for realizing electronically tunable RC sinusoidal oscillators. The type-1 network employs two grounded scaled resistances KR 1 and KR 2 , where K is scaling factor. The frequency of oscillation W 0 is controlled conveniently by adjusting K, since W 0 appears in the form W 0 =1/K √ R 1 C 1 R 2 C 2 . For realizing the scaled resistances, an active configuration is proposed, which realizes KR 1 =R 1 /(1+f(V B )), where f(V B ) denotes a function of a controlling voltage V B . Thus the frequency tuning can be effected by controlling a voltage V B . The type-2 oscillator uses two periodically switched conductances. It is shown that the tuning of oscillation frequency can be done by varying the pulse width-to-period ratio (t/T) of the periodically switched conductances. (author)

  4. Tunable conductivity in mesoporous germanium

    Science.gov (United States)

    Beattie, Meghan N.; Bioud, Youcef A.; Hobson, David G.; Boucherif, Abderraouf; Valdivia, Christopher E.; Drouin, Dominique; Arès, Richard; Hinzer, Karin

    2018-05-01

    Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10‑3) Ω‑1 cm‑1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10‑3 Ω‑1 cm‑1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.

  5. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  6. Resonance formation in photon-photon collisions

    International Nuclear Information System (INIS)

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the γγ* production of spin-one resonances. 37 refs., 17 figs., 5 tabs

  7. Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, C. J., E-mail: c.j.lewins@bath.ac.uk; Le Boulbar, E. D.; Lis, S. M.; Shields, P. A.; Allsopp, D. W. E., E-mail: d.allsopp@bath.ac.uk [Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Edwards, P. R.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2014-07-28

    We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

  8. An Update on the Invasion of Weakfish Cynoscion regalis (Bloch & Schneider, 1801 (Actinopterygii: Sciaenidae into Europe

    Directory of Open Access Journals (Sweden)

    Pedro Morais

    2017-10-01

    Full Text Available New information on weakfish introduction vectors, its invasive status, distribution, and use as a fishing resource arose after the publication of “The transatlantic introduction of weakfish Cynoscion regalis (Bloch & Schneider, 1801 (Sciaenidae, Pisces into Europe” by Morais and Teodósio (2016. Currently, the first known report of weakfish in Europe dates back to September 2009, with a specimen captured in the Schelde estuary (Belgium/The Netherlands. This fact suggests that weakfish could have been introduced into Europe via multiple and independent ballast water introduction events, and not through a point-source introduction event with subsequent dispersion as previously hypothesized. It is also unlikely that Schelde weakfish migrated southwards to colonize Iberian aquatic ecosystems. Weakfish have established a population in the Gulf of Cádiz region and have already reached an invasive status in the Sado estuary (Portugal. Weakfish were also captured in several other locations along the Portuguese coast, including the Tagus and Mira estuaries at least since 2013 or 2014, and the Ria Formosa lagoon in 2017. Tagus anglers caught weakfish specimens of ~1 kg and ~40 cm in November 2016, which corresponds to fish of 3+ years of age in the native range. The presence of weakfish in the Tagus estuary is still fairly unknown to local anglers. Sado weakfish has already been sold in local fish markets in southern Portugal for 3 to 10 € kg−1. However, we consider that the weakfish sale price is underrated in comparison with other wild species (e.g., meagre, seabass, gilthead seabream. Increasing sale price will convince fishers to use weakfish as a new fishing resource; however, it is necessary to promote the species among consumers and evaluate consumers’ preference in respect to other species. A putative biological threat might turn into a new valuable fishing resource by implementing adequate management solutions.

  9. Several Growth Characteristics of an Invasive Cyprinid Fish (Carassius gibelio Bloch, 1782

    Directory of Open Access Journals (Sweden)

    Sait BULUT

    2013-05-01

    Full Text Available Age composition, length-weight relationships, growth, and condition factors of the gibel carp (Carassius gibelio Bloch, 1782 were determined using specimens collected from Seyitler Reservoir between July 2005 to June 2006. A total of 149 gibel carp were observed and examined. The age composition of the samples ranged between I and VII years of age. It has been determined than 82.55% of the obtained samples are comprised of females, 16.11% is comprised of males and 1.34% is comprised of immature. The population is dominated by females able to reproduce gynogenetically. The mean fork lengths and mean weights of the population were 14.8-32.5 cm and 43.1-807.3 g respectively. The length-weight relation were calculated as W = 0.0696 L2.132, r=0.838 for females, for males W = 0.2942 L2.6417 r=0.784 and W = 0.0274 L2.9382, r=0.813 for all samples. The mean Fulton Condition Factor was calculated as 2.342 for females, 2.064 for males and 2.276 for all samples. Age-length and age-weight relations were determined according to von Bertalanffy growth equation formula. Growth parameters of the population were Lt = 48.09 [1-e-0.093(t+0.29], and Wt=2323.62 [1-e-0.093(t+0.29]2.9382. The growth performance index value (Ø´ was computed as 5.37 for all specimens.

  10. Experimental demonstration of water based tunable metasurface

    DEFF Research Database (Denmark)

    Odit, Mikhail; Kapitanova, Polina; Andryieuski, Andrei

    2016-01-01

    A simple dynamically tunable metasurface (two-dimensional metamaterial) operating at microwave frequencies is developed and experimentally investigated. Conceptually, the simplicity of the approach is granted by reconfigurable properties of unit cells partially filled with distilled water...

  11. Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces

    Science.gov (United States)

    Niu, Yuying; Wang, Jicheng; Hu, Zhengda; Zhang, Feng

    2018-06-01

    The frequency tunable Plasmonic induced transparency (PIT) effect is researched with a periodically patterned T-shaped graphene array in mid-infrared region. We adjust the geometrical parameters to obtain the optimized combination for the realization of the PIT response and use the coupled Lorentz oscillator model to analysis the physical mechanism. Due to the properties of graphene, the PIT effect can be easily and markedly enhanced with the increase of chemical potential and carrier mobility. The frequency of PIT effect is also insensitive with the angle of incident light. In addition, we also propose the π shaped structure to realizing the double-peak PIT effect. The results offer a flexible approach for the development of tunable graphene-based photonic devices.

  12. Tunable multiple plasmon induced transparencies in parallel graphene sheets and its applications

    Science.gov (United States)

    khazaee, Sara; Granpayeh, Nosrat

    2018-01-01

    Tunable plasmon induced transparency is achieved by using only two parallel graphene sheets beyond silicon diffractive grating in mid-infrared region. Excitation of the guided-wave resonance (GWR) in this structure is illustrated on the normal incident transmission spectra and plays the bright resonance mode role. Weak hybridization between two bright modes, creates plasmon induced transparency (PIT) optical response. The resonance frequency of transparency window can be tuned by different geometrical parameters. Also, variation of graphene Fermi energy can be used to achieve tunability of the resonance frequency of transparency window without reconstruction and re-fabrication of the structure. We demonstrate the existence of multiple PIT spectral responses resulting from a series of self-assembled GWRs to be used as the wavelength demultiplexer. This study can be used for design of the optical ultra-compact devices and photonic integrated circuits.

  13. Tunable Fano resonator using multilayer graphene in the near-infrared region

    Science.gov (United States)

    Zhou, Chaobiao; Liu, Guoqin; Ban, Guoxun; Li, Shiyu; Huang, Qingzhong; Xia, Jinsong; Wang, Yi; Zhan, Mingsheng

    2018-03-01

    Fano resonance (FR) holds promising applications for high performance optoelectronic devices due to its strong enhancement of light-matter interactions. In this work, we experimentally demonstrate a tunable FR in a photonic crystal nanoresonator (PCR), including the effects of structural parameters and graphene nanosheets with different layer numbers. The results show that the intensity and position of Fano peaks can be tuned via altering the lattice constant and the hole radius of PCR due to the variation of the effective refractive index. More importantly, we experimentally study the interaction between sharp FR with multilayer graphene. The results indicate that the FR transmission spectrum can be efficiently adjusted with the layer number of graphene, and the largest change in transmission (˜44%) is achieved with three-layer graphene because of high conductivity. These consequences may lead to efficient and tunable electro-optical modulators, biosensors, and optical switches in the near-infrared region.

  14. Hadron production in photon-photon collisions

    International Nuclear Information System (INIS)

    Pandita, P.N.; Singh, Y.

    1976-01-01

    We analyze deep-inelastic photon-photon collisions via the two-photon mechanism in electron-positron (-electron) colliding beams in a form especially suitable for experimental analysis. It is shown that by a helicity analysis similar to that used in electroproduction experiments, we can separate five of the eight structure functions describing the process γ* + γ* → hadrons. The helicity cross sections for this process and for the process with one real photon (inelastic electron-photon scattering) are related to structure functions, and are evaluated using quark light-cone algebra. There are anomalous contributions to the structure functions for the inelastic electron-photon scattering which arise both in parton as well as generalized vector-meson-dominance models. This suggests a connection between these two types of models for photon-photon scattering. Further, we use vector-meson dominance to construct a sum rule for sigma/sub gamma//sub gamma/ /sub arrow-right/ from which it is estimated that roughly 20% of the cross section should be built up from higher-mass vector states. Using a spectral representation for the total transverse cross section, and the ''aligned-jet'' vector-dominance model we achieve a connection, via a ''correspondence principle,'' with the parton model for the hadron multiplicities in photon-photon collisions. We also comment on inclusive pion multiplicities and the approach to scaling for photon-photon processes in the light-cone algebra

  15. Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy

    DEFF Research Database (Denmark)

    Keiding, Søren Rud

    2006-01-01

    We generate tunable picosecond anti-Stokes pulses by four-wave mixing of two picosecond pump and Stokes pulse trains in a photonic-crystal fiber. The visible, spectrally narrow anti-Stokes pulses with shifts over 150 nm are generated without generating other spectral features. As a demonstration,...

  16. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  17. Optical pulse dynamics for quantum-dot logic operations in a photonic-crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xun; John, Sajeev [Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7 Canada (Canada)

    2011-11-15

    We numerically demonstrate all-optical logic operations with quantum dots (QDs) embedded in a bimodal photonic-crystal waveguide using Maxwell-Bloch equations in a slowly varying envelope approximation (SVEA). The two-level QD excitation level is controlled by one or more femtojoule optical driving pulses passing through the waveguide. Specific logic operations depend on the relative pulse strengths and their detunings from an inhomogeneouslly broadened (about 1% for QD transitions centered at 1.5 {mu}m) QD transition. This excitation controlled two-level medium then determines passage of subsequent probe optical pulses. Envelope equations for electromagnetic waves in the linear dispersion and cutoff waveguide modes are derived to simplify solution of the coupled Maxwell-Bloch equations in the waveguide. These determine the quantum mechanical evolution of the QD excitation and its polarization, driven by classical electromagnetic (EM) pulses near a sharp discontinuity in the EM density of states of the bimodal waveguide. Different configurations of the driving pulses lead to distinctive relations between driving pulse strength and probe pulse passage, representing all-optical logic and, or, and not operations. Simulation results demonstrate that such operations can be done on picosecond time scales and within a waveguide length of about 10 {mu}m in a photonic-band-gap (PBG) optical microchip.

  18. Current responsivity of semiconductor superlattice THz-photon detectors

    DEFF Research Database (Denmark)

    Ignatov, Anatoly A.; Jauho, Antti-Pekka

    1999-01-01

    The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed for curr......The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed...... for currently available superlattice diodes show that both the magnitudes and the roll-off frequencies of the responsivity are strongly influenced by an excitation of hybrid plasma-Bloch oscillations which are found to be eigenmodes of the system in the THz-frequency band. The expected room temperature values...... of the responsivity (2–3 A/W in the 1–3 THz-frequency band) range up to several percents of the quantum efficiency e/[h-bar] omega of an ideal superconductor tunnel junction detector. Properly designed semiconductor superlattice detectors may thus demonstrate better room temperature THz-photon responsivity than...

  19. Asymmetric rogue waves, breather-to-soliton conversion, and nonlinear wave interactions in the Hirota–Maxwell–Bloch system

    International Nuclear Information System (INIS)

    Wang Lei; Zhu Yujie; Wang Ziqi; Xu Tao; Qi Fenghua; Xue Yushan

    2016-01-01

    We study the nonlinear localized waves on constant backgrounds of the Hirota–Maxwell–Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons. (author)

  20. Asymmetric Rogue Waves, Breather-to-Soliton Conversion, and Nonlinear Wave Interactions in the Hirota-Maxwell-Bloch System

    Science.gov (United States)

    Wang, Lei; Zhu, Yu-Jie; Wang, Zi-Qi; Xu, Tao; Qi, Feng-Hua; Xue, Yu-Shan

    2016-02-01

    We study the nonlinear localized waves on constant backgrounds of the Hirota-Maxwell-Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons.

  1. Fast-forward scaling theory for phase imprinting on a BEC: creation of a wave packet with uniform momentum density and loading to Bloch states without disturbance

    Science.gov (United States)

    Masuda, Shumpei; Nakamura, Katsuhiro; Nakahara, Mikio

    2018-02-01

    We study phase imprinting on Bose-Einstein condensates (BECs) with the fast-forward scaling theory revealing a nontrivial scaling property in quantum dynamics. We introduce a wave packet with uniform momentum density (WPUM) which has peculiar properties but is short-lived. The fast-forward scaling theory is applied to derive the driving potential for creation of the WPUMs in a predetermined time. Fast manipulation is essential for the creation of WPUMs because of the instability of the state. We also study loading of a BEC into a predetermined Bloch state in the lowest band from the ground state of a periodic potential. Controlled linear potential is not sufficient for creation of the Bloch state with large wavenumber because the change in the amplitude of the order parameter is not negligible. We derive the exact driving potential for creation of predetermined Bloch states using the obtained theory.

  2. Far-Field Focus and Dispersionless Anticrossing Bands in Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Chen

    2007-01-01

    Full Text Available We review the simulation work for the far-field focus and dispersionless anticrossing bands in two-dimensional (2D photonic crystals. In a two-dimensional photonic-crystal-based concave lens, the far-field focus of a plane wave is given by the distance between the focusing point and the lens. Strong and good-quality far-field focusing of a transmitted wave, explicitly following the well-known wave-beam negative refraction law, can be achieved. The spatial frequency information of the Bloch mode in multiple Brillouin zones (BZs is investigated in order to indicate the wave propagation in two different regions. When considering the photonic transmission in a 2D photonic crystal composed of a negative phase-velocity medium (NPVM, it is shown that the dispersionless anticrossing bands are generated by the couplings among the localized surface polaritons of the NPVM rods. The photonic band structures of the NPVM photonic crystals are characterized by a topographical continuous dispersion relationship accompanied by many anticrossing bands.

  3. Reflectivity of 1D photonic crystals: A comparison of computational schemes with experimental results

    Science.gov (United States)

    Pérez-Huerta, J. S.; Ariza-Flores, D.; Castro-García, R.; Mochán, W. L.; Ortiz, G. P.; Agarwal, V.

    2018-04-01

    We report the reflectivity of one-dimensional finite and semi-infinite photonic crystals, computed through the coupling to Bloch modes (BM) and through a transfer matrix method (TMM), and their comparison to the experimental spectral line shapes of porous silicon (PS) multilayer structures. Both methods reproduce a forbidden photonic bandgap (PBG), but slowly-converging oscillations are observed in the TMM as the number of layers increases to infinity, while a smooth converged behavior is presented with BM. The experimental reflectivity spectra is in good agreement with the TMM results for multilayer structures with a small number of periods. However, for structures with large amount of periods, the measured spectral line shapes exhibit better agreement with the smooth behavior predicted by BM.

  4. Infrared photonic bandgap materials and structures

    Science.gov (United States)

    Sundaram, S. K.; Keller, P. E.; Riley, B. J.; Martinez, J. E.; Johnson, B. R.; Allen, P. J.; Saraf, L. V.; Anheier, N. C., Jr.; Liau, F.

    2006-02-01

    Three-dimensional periodic dielectric structure can be described by band theory, analogous to electron waves in a crystal. Photonic band gap (PBG) structures were introduced in 1987. The PBG is an energy band in which optical modes, spontaneous emission, and zero-point fluctuations are all absent. It was first theoretically predicted that a three-dimensional photonic crystal could have a complete band gap. E. Yablonovitch built the first three-dimensional photonic crystal (Yablonovite) on microwave length scale, with a complete PBG. In nature, photonic crystals occur as semiprecious opal and the microscopic structures on the wings of some tropical butterflies, which are repeating structures (PBG structure/materials) that inhibit the propagation of some frequencies of light. Pacific Northwest National Laboratory (PNNL) has been developing tunable (between 3.5 and 16 μm) quantum cascade lasers (QCL), chalcogenides, and all other components for an integrated approach to chemical sensing. We have made significant progress in modeling and fabrication of infrared photonic band gap (PBG) materials and structures. We modeled several 2-D designs and defect configurations. Transmission spectra were computed by the Finite Difference Time Domain Method (with FullWAVE TM). The band gaps were computed by the Plane Wave Expansion Method (with BandSOLVE TM). The modeled designs and defects were compared and the best design was identified. On the experimental front, chalcogenide glasses were used as the starting materials. As IIS 3, a common chalcogenide, is an important infrared (IR) transparent material with a variety of potential applications such as IR sensors, waveguides, and photonic crystals. Wet-chemical lithography has been extended to PBG fabrication and challenges identified. An overview of results and challenges will be presented.

  5. Organic printed photonics: From microring lasers to integrated circuits.

    Science.gov (United States)

    Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng

    2015-09-01

    A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

  6. Spin-dependent heat and thermoelectric currents in a Rashba ring coupled to a photon cavity

    Science.gov (United States)

    Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2018-01-01

    Spin-dependent heat and thermoelectric currents in a quantum ring with Rashba spin-orbit interaction placed in a photon cavity are theoretically calculated. The quantum ring is coupled to two external leads with different temperatures. In a resonant regime, with the ring structure in resonance with the photon field, the heat and the thermoelectric currents can be controlled by the Rashba spin-orbit interaction. The heat current is suppressed in the presence of the photon field due to contribution of the two-electron and photon replica states to the transport while the thermoelectric current is not sensitive to changes in parameters of the photon field. Our study opens a possibility to use the proposed interferometric device as a tunable heat current generator in the cavity photon field.

  7. Cavity-photon-switched coherent transient transport in a double quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-12-21

    We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.

  8. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  9. Tunable plasmonic toroidal terahertz metamodulator

    Science.gov (United States)

    Gerislioglu, Burak; Ahmadivand, Arash; Pala, Nezih

    2018-04-01

    Optical modulators are essential and strategic parts of micro- and nanophotonic circuits to encode electro-optical signals in the optical domain. Here, by using arrays of multipixel toroidal plasmonic terahertz (THz) metamolecules, we developed a functional plasmonic metamodulator with high efficiency and tunability. Technically, the dynamic toroidal dipole induces nonradiating charge-current arrangements leading to have an exquisite role in defining the inherent spectral features of various materials. By categorizing in a different family of multipoles far from the traditional electromagnetic multipoles, the toroidal dipole corresponds to poloidal currents flowing on the surface of a closed-loop torus. Utilizing the sensitivity of the optically driven toroidal momentum to the incident THz beam power and by employing both numerical tools and experimental analysis, we systematically studied the spectral response of the proposed THz plasmonic metadevice. In this Rapid Communication, we uncover a correlation between the existence and the excitation of the toroidal response and the incident beam power. This mechanism is employed to develop THz toroidal metamodulators with a strong potential to be employed for practical advanced and next-generation communication, filtering, and routing applications.

  10. KONSERVASI GENETIK IKAN BETOK (Anabas testudineus Bloch 1792 DI PERAIRAN RAWA, KALIMANTAN SELATAN

    Directory of Open Access Journals (Sweden)

    Slamat Slamat

    2016-05-01

    Full Text Available Penelitian ini dilakukan dengan menggunakan sample ikan betok (Anabas testudineus Bloch 1972 yang berasal dari perairan rawa Kalimantan Selatan, dengan tujuan untuk mendeskripsikan keragaman  genetik dan aspek konservasinya dengan metode amplifikasi mtDNA. Proses amplifikasi mtDNA ikan betok terjadi di daerah D Loop.  Hasil analisis mt-DNA D Loop ikan betok menunjukkan bahwa, analisis keseimbangan populasi Hardy-Weinberg  berkisar antara 0,02 - 0,09, sedangkan haplotipe tertinggi terdapat pada rawa monoton (0,9384, kemudian tadah hujan (0,7111 dan pasang surut (0,6.  Heterozigositas ditemukan unik pada populasi rawa monoton (BAAAA dan rawa pasang surut (BAACA dan umum di temukan di ketiga ekosistem rawa (AAABA.  Ikan betok di bagi menjadi dua stok populasi yaitu populasi rawa monoton dan pasang surut serta stok tadah hujan.  Konsep utama dalam konservasi genetik adalah fitness population dimana populasi dipertahankan minimal 500 ekor/kawasan. Untuk meningkatkan keragaman genetik ikan betok, dilakukan dengan cara introduksi individu-individu baru yang memiliki keragaman genetik yang lebih tinggi kedalam populasi lokal, restocking dan membuat kawasan suaka yang dilindungi oleh Dinas Perikanan setempat bersama-sama dengan masyarakat di sekitar perairan rawa tersebut.   The research was conducted using climbing perch samples originated from the swampy waters of the southern Borneo, and the objektive of this study to investigate the genetic diversity and the conservation aspect using mtDNA amplification method.  mtDNA amplification process occurs in the D Loop region.  The results of the analysis of D-Loop mtDNA of climbing perch showed that, the analysis of Hardy-Weinberg equilibrium population ranged from 0.02 to 0.09, while the highest haplotypes found in swamp bogs (monotonic (0.9384 then rainfed (0.7111 and tides (0.6. Heterozygosity was found uniquely in the swamp monotonic population (BAAAA and marsh tides (BAACA and common in all

  11. Web-based description of the space radiation environment using the Bethe-Bloch model

    Science.gov (United States)

    Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important

  12. ESTIMASI KELIMPAHAN IKAN GABUS (Channa striata Bloch, 1793 DENGAN METODE HIDROAKUSTIK DI SUNGAI LEMPUING, SUMATERA SELATAN

    Directory of Open Access Journals (Sweden)

    Zulkarnaen Fahmi

    2016-03-01

    Full Text Available Kegiatan pengkajian stok sumberdaya ikan yang dilakukan secara berkala bertujuan untuk optimasi pemanfaatan sumberdaya perikanan bagi kegiatan perikanan tangkap. Kegiatan pengkajian stok ikandengan survey akustik di perairan Lubuk Lampam telah dilakukan pada tahun 2011 sebanyak 2 (dua kali dengan interval waktu 3 (tiga bulan untuk melihat perubahan kelimpahan ikan gabus (Channa striatadi perairan tersebut. Ekstraksi data akustik meliputi data sebaran kelimpahan dan distribusi ukuran ikan dilakukan untuk melihat keragaman (variance nilai yang diperoleh. Hasil penelitian menunjukkan bahwa estimasi rata-rata kelimpahan ikan pada bulan Maret sebesar 7.53 ± 1.33 ekor/m2  lebih rendah dibandingkan pada bulan Mei sebesar 53.11 ± 9.43  ekor/m2  . Biomass ikan pada bulan Maret sebesar 75.59 ± 30.22 kg/ha lebih rendah dibandingkan pada bulan Mei sebesar 521 ± 65.01 kg/ha. Nilai rataan target strength ikan tunggal yang terdeteksi pada bulan Maret sebesar -54.81 ± 0.9 dB lebih rendah dibandingkan pada bulan Mei sebesar -50.03 ± 0.35 dB. Estimasi kelimpahan dan distribusi ikan di sungai Lempuing menunjukkan nilai keragaman (variance yang lebih rendah pada bulan Maret dibandingkan dengan bulan Mei 2011 untuk parameter kelimpahan dan biomass ikan, sedangkan untuk nilai rataan target strength ikan menunjukkan sebaliknya. Fish assessment using hydroacoustic in inland water was conducted to optimize fish exploitation activity. Successive hydroacoustic survey was conducted twice with interval three months in 2011 to estimated distribution fish abundance and size distribution of snakehead fish (Channa striata Bloch, 1793 in Lempuing River, South Sumatera. Reability test was conducted on hydroacoustic data including data distribution and abundance of fish size distribution to obtain edvariance value. The results showed that the average estimate abundance of fish on March about 7.53 ± 1.33 fish/m2 lower than in the month of May at 53.11 ± 9.43 fish/m2

  13. Web-based description of the space radiation environment using the Bethe–Bloch model

    International Nuclear Information System (INIS)

    Cazzola, Emanuele; Lapenta, Giovanni; Calders, Stijn

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe–Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most

  14. Full-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification

    KAUST Repository

    Liu, Bingyi

    2017-07-01

    Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell\\'s law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for full-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the full-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates. The coiling-up space structures are utilized to build desired acoustic gradient metasurface and the full-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface and enables a new degree of the acoustic wave manipulating.

  15. Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains

    International Nuclear Information System (INIS)

    Sun, H.Y.; Hu, H.N.; Sun, Y.P.; Nie, X.F.

    2004-01-01

    Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains (IIDs) was investigated, and a critical in-plane field range [H ip 1 ,H ip 2 ] of which vertical-Bloch lines (VBLs) annihilated in IIDs is found under rotating in-plane field (H ip 1 is the maximal critical in-plane-field of which hard domains remain stable, H ip 2 is the minimal critical in-plane-field of which all of the hard domains convert to soft bubbles (SBs, without VBLs)). It shows that the in-plane field range [H ip 1 , H ip 2 ] changes with the change of the rotating angle Δφ H ip 1 maintains stable, while H ip 2 decreases with the decreasing of rotating angle Δφ. Comparing it with the spontaneous shrinking experiment of IIDs under both bias field and in-plane field, we presume that under the application of in-plane field there exists a direction along which the VBLs in the domain walls annihilate most easily, and it is in the direction that domain walls are perpendicular to the in-plane field

  16. Photon-Photon Collisions -- Past and Future

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    I give a brief review of the history of photon-photon physics and a survey of its potential at future electron-positron colliders. Exclusive hadron production processes in photon-photon and electron-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes. There are also important high energy γγ and eγ tests of quantum chromodynamics, including the production of jets in photon-photon collisions, deeply virtual Compton scattering on a photon target, and leading-twist single-spin asymmetries for a photon polarized normal to a production plane. Since photons couple directly to all fundamental fields carrying the electromagnetic current including leptons, quarks, W's and supersymmetric particles, high energy γγ collisions will provide a comprehensive laboratory for Higgs production and exploring virtually every aspect of the Standard Model and its extensions. High energy back-scattered laser beams will thus greatly extend the range of physics of the International Linear Collider

  17. Molecular mechanism of reflectin's tunable biophotonic control: Opportunities and limitations for new optoelectronics

    Science.gov (United States)

    Levenson, Robert; DeMartini, Daniel G.; Morse, Daniel E.

    2017-10-01

    Discovery that reflectin proteins fill the dynamically tunable Bragg lamellae in the reflective skin cells of certain squids has prompted efforts to design new reflectin-inspired systems for dynamic photonics. But new insights into the actual role and mechanism of action of the reflectins constrain and better define the opportunities and limitations for rationally designing optical systems with reflectin-based components. We and our colleagues have discovered that the reflectins function as a signal-controlled molecular machine, regulating an osmotic motor that tunes the thickness, spacing, and refractive index of the tunable, membrane-bound Bragg lamellae in the iridocytes of the loliginid squids. The tunable reflectin proteins, characterized by a variable number of highly conserved peptide domains interspersed with positively charged linker segments, are restricted in intra- and inter-chain contacts by Coulombic repulsion. Physiologically, this inhibition is progressively overcome by charge-neutralization resulting from acetylcholine (neurotransmitter)-induced, site-specific phosphorylation, triggering the simultaneous activation and progressive tuning of reflectance from red to blue. Details of this process have been resolved through in vitro analyses of purified recombinant reflectins, controlling charge-neutralization by pH-titration or mutation as surrogates for the in vivo phosphorylation. Results of these analyses have shown that neutralization overcoming the Coulombic inhibition reversibly and cyclably triggers condensation and secondary folding of the reflectins, with the emergence of previously cryptic, phase-segregated hydrophobic domains enabling hierarchical assembly. This tunable, reversible, and cyclable assembly regulates the Gibbs-Donnan mediated osmotic shrinking or swelling of the Bragg lamellae that tunes the brightness and color of reflected light. Our most recent studies have revealed a direct relationship between the extent of charge

  18. Multi-wavelength study of PPDs using an OPO tunable pulse laser microscope system

    International Nuclear Information System (INIS)

    Yoshimura, Koji; Nakamura, Isamu

    2012-01-01

    We have developed a new pulsed laser microscope system whose wavelength is continuously tunable from 410 nm to 2200 nm by using an optical parametric oscillator (OPO) laser system. The laser spot can be focused to ∼2μm diameter, small enough to measure pixel-by-pixel performance of PPDs (pixelated photon detectors). Using multi-wavelength laser light, we plan to probe PPDs at various depths, thanks to their different penetration lengths in the silicon layer. In this paper, details of the commissioning of the laser microscope system and pilot measurements on a PPD at several wavelengths will be presented.

  19. Multi-wavelength study of PPDs using an OPO tunable pulse laser microscope system

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Koji, E-mail: koji.yoshimura@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nakamura, Isamu [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2012-12-11

    We have developed a new pulsed laser microscope system whose wavelength is continuously tunable from 410 nm to 2200 nm by using an optical parametric oscillator (OPO) laser system. The laser spot can be focused to {approx}2{mu}m diameter, small enough to measure pixel-by-pixel performance of PPDs (pixelated photon detectors). Using multi-wavelength laser light, we plan to probe PPDs at various depths, thanks to their different penetration lengths in the silicon layer. In this paper, details of the commissioning of the laser microscope system and pilot measurements on a PPD at several wavelengths will be presented.

  20. Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM

    DEFF Research Database (Denmark)

    Kwok, C.H.; Lee, S.H.; Chow, K.K.

    2005-01-01

    A widely tunable wavelength conversion scheme has been demonstrated using a 64-m-long dispersion-flattened high-nonlinearity photonic crystal fiber in a nonlinear optical loop mirror. Wavelength conversion range of over 60 nm with a 10-Gb/s return-to-zero signal was obtained with the output...... extinction ratio (ER) maintained above 13 dB. The proposed scheme can also improve the output ER and remove the bit-error-rate floor if a degraded signal is used....

  1. Linear and circular polarized tunable slow light in Bragg-spaced graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiang-Tao, E-mail: jtliu@semi.ac.cn [Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031 (China); Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Nian-Hua [Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031 (China); Department of Physics, Nanchang University, Nanchang 330031 (China); Wang, Hai [Department of Physics, Capital Normal University, Beijing 100037 (China); Wang, Tong-Biao [Department of Physics, Nanchang University, Nanchang 330031 (China); Li, Xiao-Jing [College of Physics and Energy, Fujian Normal University, Fuzhou 350007 (China)

    2014-11-01

    The light pulse delay in Bragg-spaced graphene layers (BSGs) combined with a magnetic field is investigated theoretically. BSGs can slow down the group velocity of light more effectively than traditional Bragg-spaced quantum wells due to the large binding energy and strong dipole oscillator strength of the magnetic-exciton of graphene. The group velocity can be tuned by varying the pulse frequency, the Bragg frequency, and the magnetic field. Especially, by tuning the occupation number of the Landau level the group velocity in BSGs shows strong tunable circular dichroism. Our findings could have applications in photonic integrated circuits and quantum computation.

  2. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    Science.gov (United States)

    Yang, Xiaoyu; Yang, Jinghuan; Hu, Xiaoyong; Zhu, Yu; Yang, Hong; Gong, Qihuang

    2015-08-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials.

  3. Multilayer-WS2:ferroelectric composite for ultrafast tunable metamaterial-induced transparency applications

    International Nuclear Information System (INIS)

    Yang, Xiaoyu; Yang, Jinghuan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2015-01-01

    An ultrafast and low-power all-optical tunable metamaterial-induced transparency is realized, using polycrystalline barium titanate doped gold nanoparticles and multilayer tungsten disulfide microsheets as nonlinear optical materials. Large nonlinearity enhancement is obtained associated with quantum confinement effect, local-field effect, and reinforced interaction between light and multilayer tungsten disulfide. Low threshold pump intensity of 20 MW/cm 2 is achieved. An ultrafast response time of 85 ps is maintained because of fast carrier relaxation dynamics in nanoscale crystal grains of polycrystalline barium titanate. This may be useful for the study of integrated photonic devices based on two-dimensional materials

  4. Photon-photon collisions and photon structure functions at LEP

    CERN Document Server

    Patt, J

    2000-01-01

    The present knowledge of the structure of the photon based on measurements of photon structure functions is discussed. This review covers recent results on QED structure functions and on the hadronic structure function F/sub 2//sup gamma /. (13 refs).

  5. Infrared frequency-tunable coherent thermal sources

    International Nuclear Information System (INIS)

    Wang, Hao; Yang, Yue; Wang, Liping

    2015-01-01

    In this work, we numerically demonstrate an infrared (IR) frequency-tunable selective thermal emitter made of graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-coherent emission peaks associated with magnetic polariton (MP), whose resonance frequency can be dynamically tuned within the phonon absorption band of SiC by varying graphene chemical potential. An analytical inductor–capacitor circuit model is introduced to quantitatively predict the resonance frequency and further elucidate the mechanism for the tunable emission peak. The effects of grating geometric parameters, such as grating height, groove width and grating period, on the selective emission peak are explored. The direction-independent behavior of MP and associated coherent emission are also demonstrated. Moreover, by depositing four layers of graphene sheets onto the SiC gratings, a large tunability of 8.5% in peak frequency can be obtained to yield the coherent emission covering a broad frequency range from 820 to 890 cm −1 . The novel tunable metamaterial could pave the way to a new class of tunable thermal sources in the IR region. (paper)

  6. Precision linac and laser technologies for nuclear photonics gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

    2012-05-15

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

  7. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  8. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  9. Narrowband tunable laser for uranium-233 cleanup process

    International Nuclear Information System (INIS)

    Singh, Sunita; Sridhar, G.; Rawat, V.S.; Kawde, Nitin; Sinha, A.K.; Bhatt, S.; Gantayet, L.M.

    2009-01-01

    Design, development and technology demonstration of proto type Single Longitudinal Mode pulsed tunable laser is reported in this work. The tunable laser has a narrow bandwidth less than 400 MHz required for isotopic clean up of 233 U. (author)

  10. Photon and photon reactions: elementary theoretical introduction

    International Nuclear Information System (INIS)

    Diu, B.

    The electromagnetic field and associated quanta, the photons, are simply and briefly studied. The conventional electromagnetism laws are recalled. Fundamental concepts such as gauge invariance, the electromagnetic current conservation, and photon behavior against the internal symmetries of strong interactions are simply introduced. Results and notations are applied to analysis of reactions where photons intervene in initial or final states (photoproduction) within the limits of amplitude properties in the conventional space-time. The helicity and invariant amplitude formalisms are compared [fr

  11. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  12. Bandwidth tunable amplifier for recording biopotential signals.

    Science.gov (United States)

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  13. Highly Tunable Narrow Bandpass MEMS Filter

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-07-07

    We demonstrate a proof-of-concept highly tunable narrow bandpass filter based on electrothermally and electrostatically actuated microelectromechanical-system (MEMS) resonators. The device consists of two mechanically uncoupled clamped-clamped arch resonators, designed such that their resonance frequencies are independently tuned to obtain the desired narrow passband. Through the electrothermal and electrostatic actuation, the stiffness of the structures is highly tunable. We experimentally demonstrate significant percentage tuning (~125%) of the filter center frequency by varying the applied electrothermal voltages to the resonating structures, while maintaining a narrow passband of 550 ± 50 Hz, a stopband rejection of >17 dB, and a passband ripple ≤ 2.5 dB. An analytical model based on the Euler-Bernoulli beam theory is used to confirm the behavior of the filter, and the origin of the high tunability using electrothermal actuation is discussed.

  14. Perovskite Superlattices as Tunable Microwave Devices

    Science.gov (United States)

    Christen, H. M.; Harshavardhan, K. S.

    2003-01-01

    Experiments have shown that superlattices that comprise alternating epitaxial layers of dissimilar paraelectric perovskites can exhibit large changes in permittivity with the application of electric fields. The superlattices are potentially useful as electrically tunable dielectric components of such microwave devices as filters and phase shifters. The present superlattice approach differs fundamentally from the prior use of homogeneous, isotropic mixtures of base materials and dopants. A superlattice can comprise layers of two or more perovskites in any suitable sequence (e.g., ABAB..., ABCDABCD..., ABACABACA...). Even though a single layer of one of the perovskites by itself is not tunable, the compositions and sequence of the layers can be chosen so that (1) the superlattice exhibits low microwave loss and (2) the interfacial interaction between at least two of the perovskites in the superlattice renders either the entire superlattice or else at least one of the perovskites tunable.

  15. Coherent-feedback-induced controllable optical bistability and photon blockade

    International Nuclear Information System (INIS)

    Liu, Yu-Long; Liu, Zhong-Peng; Zhang, Jing

    2015-01-01

    It is well known that some nonlinear phenomena such as strong photon blockade are difficult to observe in optomechanical systems with current experimental technology. Here we present a coherent feedback control strategy in which a linear cavity is coherently controlled by an optomechanical controller in a feedback manner. The coherent feedback loop transfers quantum nonlinearity from the controller to the controlled cavity causing destructive quantum interference to occur, and making it possible to observe strong nonlinear effects. With the help of the coherent feedback loop, large and tunable bistability and strong photon blockade of the cavity modes can be achieved even in the optomechanical weak coupling regime. Additionally, the coherent feedback loop leads to two-photon and multiphoton tunnelings for the controlled linear cavity, which are also typical quantum nonlinear phenomena. We hope that our work can give new perspectives on engineering nonlinear interactions in quantum systems. (paper)

  16. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  17. The annihilation of vertical-Bloch lines in the walls of hard domains to which bias fields and in-plane fields are alternately applied

    International Nuclear Information System (INIS)

    Sun, H.Y.; Hu, H.N.; Nie, X.F.

    2001-01-01

    The annihilation of vertical-Bloch lines in magnetic domain walls of the ordinary hard bubbles, to which both bias fields and in-plane fields are alternately applied, is investigated experimentally. The influence of an in-plane magnetic field on ordinary hard bubbles (OHB), dumbbell domains of the first kind (ID), and dumbbell domains of the second kind (IID) was analyzed, and a critical in-plane field range [H ip 0 ,H ip 2 ] for vertical Bloch line (VBL) annihilation was found. For the three types of hard domains (H ip 0 is the minimum critical in-plane field of VBLs which begin to be unstable, H ip 2 is the minimum critical in-plane field which only needs to be applied one time for collapse of all OHBs), the critical field range is the same with H ip 0 ≅8πM s . We hypothesize that there exists a direction along which the vertical-Bloch lines in the domain walls are annihilated most easily. It is also observed that the stability of vertical-Bloch lines in the domain walls does not depend on the initial state. This provides a more detailed description of the minimum critical in-plane field than previously known

  18. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  19. Thermally tunable magnetic metamaterials at THz frequencies

    International Nuclear Information System (INIS)

    Bui, Son Tung; Nguyen, Van Dung; Bui, Xuan Khuyen; Vu, Dinh Lam; Nguyen, Thanh Tung; Lievens, Peter; Lee, YoungPak

    2013-01-01

    We investigate theoretically and numerically the tunability of the magnetic property of metamaterial in the THz region via thermal control. One component of the meta-atom is InSb, playing an important role as an alterable metal. When the temperature of the InSb stack increases from 300 to 350 K, the resonance peak of the transmission spectra shows a shift from 0.6 to 0.85 THz accompanied by a stronger magnetic behavior. The S-parameter retrieval method realizes the tunability of the negative permeability achieved in the above heating range. (paper)

  20. Enhanced Performance & Functionality of Tunable Delay Lines

    Science.gov (United States)

    2012-08-01

    Based Tunable Optical Delays”, Optics Letters, Vol. 33, Issue 13, pp. 1518-1520 (2008). 2. Louis Christen, Irfan Fazal , Omer F. Yilmaz, Xiaoxia Wu...2008. 3. Omer F. Yilmaz, Louis Christen, Xiaoxia Wu, Scott R. Nuccio, Irfan Fazal , and Alan E. Willner, “Time-Slot-Interchange of 40 Gb/s Variable...F. Yilmaz, S. Khaleghi, L. Christen, I. Fazal , and A. E. Willner, “503 ns, Tunable Optical Delay of 40 Gb/s RZ-OOK using Additional λ-Conversion

  1. Hybrid photonic-crystal fiber

    Science.gov (United States)

    Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole

    2017-10-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.

  2. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires

    Science.gov (United States)

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-01

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

  3. Electrically tunable single-dot nanocavities in the weak and strong coupling regimes

    DEFF Research Database (Denmark)

    Laucht, Arne; Hofbauer, Felix; Angele, Jacob

    2008-01-01

    We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning...... of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. Vacuum Rabi splittings up to 2g...... electrical readout of the strongly coupled dot-cavity system using photocurrent methods will be discussed. This work is financially supported by the DFG via SFB 631 and by the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)”....

  4. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    Science.gov (United States)

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it

  5. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    International Nuclear Information System (INIS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-01-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a 0 ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10 −12 ) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements

  6. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.

    Science.gov (United States)

    Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D

    2017-08-30

    Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.

  7. Photonic crystals: towards nanoscale photonic devices

    National Research Council Canada - National Science Library

    Lourtioz, J.-M

    2005-01-01

    .... From this point of view, the emergence of photonic bandgap materials and photonic crystals at the end of the 1980s can be seen as a revenge to the benefit this time of optics and electromagnetism. In the same way as the periodicity of solid state crystals determines the energy bands and the conduction properties of electrons, the periodical structur...

  8. Additional compound semiconductor nanowires for photonics

    Science.gov (United States)

    Ishikawa, F.

    2016-02-01

    GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.

  9. Jet and hadron production in photon-photon collisions

    OpenAIRE

    Soldner-Rembold, Stefan

    1999-01-01

    Di-jet and inclusive charged hadron production cross-sections measured in photon-photon collisions by OPAL are compared to NLO pQCD calculations. Jet shapes measured in photon-photon scattering by OPAL, in deep-inelastic ep scattering by H1 and in photon-proton scattering by ZEUS are shown to be consistent in similar kinematic ranges. New results from TOPAZ on prompt photon production in photon-photon interactions are presented.

  10. Photonic crystal pioneer

    Science.gov (United States)

    Anscombe, Nadya

    2011-08-01

    Over the past ten years, Crystal Fiber, now part of NKT Photonics, has been busy commercializing photonic crystal fibre. Nadya Anscombe finds out about the evolution of the technology and its applications.

  11. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  12. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  13. Photon structure function - theory

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1984-12-01

    The theoretical status of the photon structure function is reviewed. Particular attention is paid to the hadronic mixing problem and the ability of perturbative QCD to make definitive predictions for the photon structure function. 11 references

  14. Photon wave function

    OpenAIRE

    Bialynicki-Birula, Iwo

    2005-01-01

    Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, t...

  15. Self-collimation in photonic crystals. Applications and opportunities

    International Nuclear Information System (INIS)

    Noori, Mina; Soroosh, Mohammad; Baghban, Hamed

    2018-01-01

    A comprehensive review considering recent advances in self-collimation and its applications in optical integration is covered in the current article. Self-collimation is compared to the conventional technique of photonic bandgap engineering to control the light propagation in photonic crystal-based structures. It is fully discussed how the self-collimation phenomenon can be tailored to be independent of the incident angle and polarization. This adds substantial flexibility to the structure to overcome light coupling challenges and simultaneously aids in the omission of bulk and challenging elements, including polarizers and lenses from optical integrated circuits. Additionally, designed structures have the potential to be rescaled to operate in any desired frequency range thanks to the scalability rule in the field of electromagnetics. Moreover, it is shown that one can boost the coupling efficiency by applying an anti-reflection property to the structure, which provides not only efficient index matching but also the matching between external waves with uniform amplitude and Bloch waves with periodic amplitude. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Gold Nanoparticles in Photonic Crystals Applications: A Review.

    Science.gov (United States)

    Venditti, Iole

    2017-01-24

    This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  17. Gold Nanoparticles in Photonic Crystals Applications: A Review

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-01-01

    Full Text Available This review concerns the recently emerged class of composite colloidal photonic crystals (PCs, in which gold nanoparticles (AuNPs are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  18. Narrow Bloch walls and intrinsic characteristics of the pseudoternary Nd14Fe78-xMnxC8 systems

    International Nuclear Information System (INIS)

    Xing, F.; Ho, W.W.

    1990-01-01

    The lattice constants of Nd 14 Fe 78-x Mn x C 8 compounds decrease with the increase of Mn context x and have a minimum at about x=14. The Curie temperature T c decreases linearly and falls off below room temperature beyond x=14. The strong reduction of the saturation magnetization and T c are attributed to the antiparallel alignment of the Mn and Fe atoms moments. The behavior of magnetization and magnetization reversal in the high-Mn-containing samples at low temperature can be interpreted by the narrow domain wall effect. The relationship of the intrinsic coercive force i H c on temperature agrees well with the exponential formula of the narrow Bloch wall

  19. High-Q contacted ring microcavities with scatterer-avoiding “wiggler” Bloch wave supermode fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang, E-mail: yangyang.liu@colorado.edu; Popović, Miloš A., E-mail: milos.popovic@colorado.edu [Nanophotonic Systems Laboratory, Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2014-05-19

    High-Q ring resonators with contacts to the waveguide core provide a versatile platform for various applications in chip-scale optomechanics, thermo-, and electro-optics. We propose and demonstrate azimuthally periodic contacted ring resonators based on multi-mode Bloch matching that support contacts on both the inner and outer radius edges with small degradation to the optical quality factor (Q). Radiative coupling between degenerate modes of adjacent radial spatial order leads to imaginary frequency (Q) splitting and a scatterer avoiding high-Q “wiggler” supermode field. We experimentally measure Qs up to 258 000 in devices fabricated in a silicon device layer on buried oxide undercladding and up to 139 000 in devices fully suspended in air using an undercut step. Wiggler supermodes are true modes of the microphotonic system that offer additional degrees of freedom in electrical, thermal, and mechanical design.

  20. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....