WorldWideScience

Sample records for tunable dye lasers

  1. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  2. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...... are operated by filling the DFB laser resonator with a dye solution by capillary action and optical pumping with a frequency doubled Nd: YAG laser. The low reflection order of the DFB laser resonator yields low out-of-plane scattering losses as well as a large free spectral range (FSR), and low threshold...... fluences down to similar to 7 mu J/mm2 are observed. The large FSR facilitates wavelength tuning over the full gain spectrum of the chosen laser dye and we demonstrate 45 nm tunability using a single laser dye by changing the grating period and dye solution refractive index. The lasers are straight...

  3. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  4. Tunable dye laser research at U. N. E

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S C

    1976-10-01

    Attempts to extend present tunable radiation sources into the wavelength region from 140 to 330 nm are presented in the following areas: frequency doubling and parametric upconversion methods, frequency mixing techniques in metal vapors, the pulsed N/sub 2/ laser, tunable dye lasers for the near uv to ir spectral range, heat pipe ovens, and preliminary experiments. (MHR)

  5. Development of tunable flashlamp excited dye laser system

    International Nuclear Information System (INIS)

    Bhanthumnavin, V.; Apikitmata, S.; Kochareon, P.

    1991-01-01

    A tunable flashlamp excited dye laser (FEDL) was successfully developed for the first time in Thailand by Thai scientists at KMIT Thonburi (Bangmod). The Rhodamine 6G dissolved in ethyl alcohol was utilized as a laser medium and circulated by a pump through a laser head. The dye cuvette had an inner diameter of 4.0 mm and was 90 mm long. The cavity mirrors M 1 , and M 2 were concave mirrors with reflectivities of 100% and 73% respectively. A power supply of 0-20 kV and current of 0-50 mA charged a capacitor of 0.3 μ f at 10-15 kV which was then discharged via a spark gap through the flashlamp. The output laser wavelengths was tunable from λ = 550-640 nm. It is the first FEDL system, locally developed, which has a tunable wavelength for the laser output. The laser pulse width is about 1.0 μs with energy of 20 mJ and peak power pf 20 KW. The repetition rate of the laser is 1/15 Hz. (author). 14 refs, 7 figs

  6. Novel Tunable Dye Laser for Lidar Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  7. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  8. Development of frequency tunable Ti:sapphire laser and dye laser pumped by a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Horn, Roland; Wendt, K.

    2001-01-01

    We investigated lasing characteristics of two kinds of tunable laser, liquid dye laser and solid Ti:sapphire crystal laser, pumped by high pulse repetition rate Nd:YAG laser. Dye laser showed drastically reduced pulsewidth compared with that of pump laser and it also contained large amount of amplified spontaneous emission. Ti:sapphire laser showed also reduced pulsewidth. But, the laser conversion pump laser and Ti:sapphire laser pulse, we used a Brewster-cut Pockel's cell for Q-switching. The laser was frequency doubled by a type I BBO crystal outside of the cavity.

  9. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  10. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  11. Independent tunability of the double-mode-locked cw dye laser.

    LENUS (Irish Health Repository)

    Bourkoff, E

    1979-06-01

    We report a new configuration that enables the double-mode-locked cw dye laser to be independently tunable. In addition, the output coupling at each of the two wavelengths can be independently specified. A series of oscillographs shows some interesting features unique to double mode locking and also shows the effects of varying the two cavity lengths with respect to each other.

  12. Studies on widely tunable ultra-short laser pulses using energy transfer distributed feedback dye laser

    International Nuclear Information System (INIS)

    Ahamed, M.B.; Ramalingam, A.; Palanisamy, P.K.

    2003-01-01

    This paper presents both theoretical and experimental study of the characteristics of Nd: YAG laser pumped energy transfer distributed feedback dye laser (ETDFDL). Using theoretical model proposed, the behavior of ETDFDL such as the characteristics of donor DFDL, the acceptor DFDL, the dependence of their pulse width and output power on donor-acceptor concentrations and pump power are studied for dye mixture Rhodamine 6G and Cresyl Violet in detail. Experimentally using prism-dye cell configuration, the ETDFDL output is obtained and the output energy of DFDL is measured at the emission peaks of donor and acceptor dyes for different pump powers and donor-acceptor concentrations. In addition, the DFDL linewidth measurement has been carried out at the lasing wavelengths of the donor and acceptor dyes using Fabry-Perot etalon and the tunability of DFDL is measured to be in the wavelength range of 545-680 nm

  13. Coumarin-BODIPY hybrids by heteroatom linkage: versatile, tunable and photostable dye lasers for UV irradiation.

    Science.gov (United States)

    Esnal, I; Duran-Sampedro, G; Agarrabeitia, A R; Bañuelos, J; García-Moreno, I; Macías, M A; Peña-Cabrera, E; López-Arbeloa, I; de la Moya, S; Ortiz, M J

    2015-03-28

    Linking amino and hydroxycoumarins to BODIPYs through the amino or hydroxyl group lets the easy construction of unprecedented photostable coumarin-BODIPY hybrids with broadened and enhanced absorption in the UV spectral region, and outstanding wavelength-tunable laser action within the green-to-red spectral region (∼520-680 nm). These laser dyes allow the generation of a valuable tunable UV (∼260-350 nm) laser source by frequency doubling, which is essential to study accurately the photochemistry of biological molecules under solar irradiation. The tunability is achieved by selecting the substitution pattern of the hybrid. Key factors are the linking heteroatom (nitrogen vs. oxygen), the number of coumarin units joined to the BODIPY framework and the involved linking positions.

  14. Excimer Pumped Pulsed Tunable Dye Laser

    Science.gov (United States)

    Littman, Michael G.

    1988-06-01

    It has been recently shown and reported for the first time at this meeting, that Excimer pumping of a single-mode, short-cavity, grazing-incidence, longitudinally-pumped pulsed dye laser is feasible. In this paper the key concepts upon which this latest development is based are presented and are in a somewhat unusual form. This manuscript describes five specific dye laser examples. The five examples represent a progression from the simplest type of dye laser to the single-mode version mentioned above. The examples thus serve as a tutorial introduction to potential users of dye lasers. The article is organized into five sections or STEPS, each of which describes a different pulsed dye laser. Since the subtle points about dye lasers are best appreciated only after one actually attempts to build a working model, a PROCEDURES category is included in which details about the construction of the particular form of laser are given. As one reads through this category, think of it as looking over the shoulder of the laser builder. The NOTES category which follows is a brief but essential discussion explaining why various components and procedures are used, as well as how laser performance specifications are obtained. This subsection can he viewed as a discussion with the laser builder concerning the reasons for specific actions and choices made in the assembly of the example laser. The last category contains COMMENTS which provide additional related information pertaining to the example laser that goes beyond the earlier annotated discussion. If you like, these are the narrator's comments. At the end of the article, after the five sequential forms of the laser have been presented, there is a brief summation.

  15. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  16. Tunable organic distributed feedback dye laser device excited through Förster mechanism

    Science.gov (United States)

    Tsutsumi, Naoto; Hinode, Taiki

    2017-03-01

    Tunable organic distributed feedback (DFB) dye laser performances are re-investigated and characterized. The slab-type waveguide DFB device consists of air/active layer/glass substrate. Active layer consisted of tris(8-quinolinolato)aluminum (Alq3), 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye, and polystyrene (PS) matrix. Effective energy transfer from Alq3 to DCM through Förster mechanism enhances the laser emission. Slope efficiency in the range of 4.9 and 10% is observed at pump energy region higher than 0.10-0.15 mJ cm-2 (lower threshold), which is due to the amplified spontaneous emission (ASE) and lasing. Typical slope efficiency for lasing in the range of 2.0 and 3.0% is observed at pump energy region higher than 0.25-0.30 mJ cm-2 (higher threshold). The tuning wavelength for the laser emission is ranged from 620 to 645 nm depending on the ASE region.

  17. Thermally and optically tunable lasing properties from dye-doped holographic polymer dispersed liquid crystal in capillaries

    Science.gov (United States)

    Chen, Maozhou; Dai, Haitao; Wang, Dongshuo; Yang, Yue; Luo, Dan; Zhang, Xiaodong; Liu, Changlong

    2018-03-01

    In this paper, we investigated tunable lasing properties from the dye-doped holographic polymer dispersed liquid crystal (HPDLC) gratings in capillaries with thermal and optical manners. The thermally tunable range of the lasing from the dye-doped HPDLC reached 8.60 nm with the temperature ranging from 23 °C to 50 °C. The optically tunable laser emission was achieved by doping azo-dye in HPDLC. The transition of azo-dye from trans- to cis-state could induce the reorientation of LC molecules after UV light irradiation, which resulted in the variation of refractive index contrast of LC-rich/polymer-rich layer in HPDLC. Experimentally, the emission wavelength of lasing showed a blueshift (about 2 nm) coupled with decreasing output intensities. The tunable laser based on HPDLC may enable more applications in laser displays, optical communication, biosensors, etc.

  18. Design and construction of liquid lasers using organic dyes

    International Nuclear Information System (INIS)

    Hariri, Akbar.

    1984-01-01

    Organic dye solution show great promise of obtaining tunable coherent light over the uv, visible and near infrared portion of spectrum. In this paper we describe various pumping schemes of dye molecules. Design, construction and performance of a pulsed dye laser, transversely pumped by a nitrogen laser and wall-ablation flash lamp-pumped dye lasers are the particular examples which are presented in detail

  19. Tunable lasers for waste management photochemistry applications

    International Nuclear Information System (INIS)

    Finch, F.T.

    1978-09-01

    A review of lasers with potential photochemical applications in waste management indicates that dye lasers, as a class, can provide tunable laser output through the visible and near-uv regions of the spectrum of most interest to photochemistry. Many variables can affect the performance of a specific dye laser, and the interactions of these variables, at the current state of the art, are complex. The recent literature on dye-laser characteristics has been reviewed and summarized, with emphasis on those parameters that most likely will affect the scaling of dye lasers in photochemical applications. Current costs are reviewed and correlated with output power. A new class of efficient uv lasers that appear to be scalable in both energy output and pulse rate, based on rare-gas halide excimers and similar molecules, is certain to find major applications in photochemistry. Because the most important developments are too recent to be adequately described in the literature or are the likely outcome of current experiments, the basic physics underlying the class of excimer lasers is described. Specific cost data are unavailable, but these new gas lasers should reflect costs similar to those of existing gas lasers, in particular, the pulsed CO 2 lasers. To complete the survey of tunable-laser characteristics, the technical characteristics of the various classes of lasers in the ir are summarized. Important developments in ir laser technology are being accelerated by isotope-separation research, but, initially at least, this portion of the spectrum is least likely to receive emphasis in waste-management-oriented photochemistry

  20. Broad band exciplex dye lasers

    International Nuclear Information System (INIS)

    Dienes, A.; Shank, C.V.; Trozzolo, A.M.

    1975-01-01

    The disclosure is concerned with exciplex dye lasers, i.e., lasers in which the emitting species is a complex formed only from a constituent in an electronically excited state. Noting that an exciplex laser, favorable from the standpoint of broad tunability, results from a broad shift in the peak emission wavelength for the exciplex relative to the unreacted species, a desirable class resulting in such broad shift is described. Preferred classes of laser media utilizing specified resonant molecules are set forth. (auth)

  1. Resonance ionization mass spectrometry using tunable diode lasers

    International Nuclear Information System (INIS)

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1990-01-01

    Tunable semiconductor diode lasers will find many important applications in atomic spectroscopy. They exhibit the desirable attributes of lasers: narrow bandwidth, tunability, and spatial coherence. At the same time, they possess few of the disadvantages of other tunable lasers. They require no alignment, are simple to operate, and are inexpensive. Practical laser spectroscopic instruments can be envisioned. The authors have applied diode lasers to resonance ionization mass spectrometry (RIMS) of some of the lanthanide elements. Sub-Doppler resolution spectra have been recorded and have been used for atomic hyperfine structure analysis. Isotopically-selective ionization has been accomplished, even in cases where photons from a broadband dye laser are part of the overall ionization process and where the isotopic spectral shift is very small. A convenient RIMS instrument for isotope ratio measurements that employs only diode lasers, along with electric field ionization, should be possible

  2. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  3. Diffusion driven optofluidic dye lasers encapsulated into polymer chips

    DEFF Research Database (Denmark)

    Wienhold, Tobias; Breithaupt, Felix; Vannahme, Christoph

    2012-01-01

    Lab-on-a-chip systems made of polymers are promising for the integration of active optical elements, enabling e.g. on-chip excitation of fluorescent markers or spectroscopy. In this work we present diffusion operation of tunable optofluidic dye lasers in a polymer foil. We demonstrate that these ......Lab-on-a-chip systems made of polymers are promising for the integration of active optical elements, enabling e.g. on-chip excitation of fluorescent markers or spectroscopy. In this work we present diffusion operation of tunable optofluidic dye lasers in a polymer foil. We demonstrate...... that these first order distributed feedback lasers can be operated for more than 90 min at a pulse repetition rate of 2 Hz without fluidic pumping. Ultra-high output pulse energies of more than 10 μJ and laser thresholds of 2 μJ are achieved for resonator lengths of 3 mm. By introducing comparatively large on......-chip dye solution reservoirs, the required exchange of dye molecules is accomplished solely by diffusion. Polymer chips the size of a microscope cover slip (18 × 18 mm2) were fabricated in batches on a wafer using a commercially available polymer (TOPAS® Cyclic Olefin Copolymer). Thermal imprinting...

  4. The copper-pumped dye laser system at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Hackel, R.P.; Warner, B.E.

    1993-01-01

    The Lawrence Livermore National Laboratory's (LLNL) Atomic Vapor Laser Isotope Separation (AVLIS) Program has developed a high-average-power, pulsed, tunable, visible laser system. Testing of this hardware is in progress at industrial scale. The LLNL copper-dye laser system is prototypical of a basic module of a uranium-AVLIS plant. The laser demonstration facility (LDF) system consists of copper vapor lasers arranged in oscillator-amplifier chains providing optical pump power to dye-laser master-oscillator-power-amplifier chains. This system is capable of thousands of watts (average) tunable between 550 and 650 mm. The copper laser system at LLNL consists of 12 chains operating continuously. The copper lasers operate at nominally 4.4 kHz, with 50 ns pulse widths and produce 20 W at near the diffraction limit from oscillators and >250 W from each amplifier. Chains consist of an oscillator and three amplifiers and produce >750 W average, with availabilities >95% (i.e., >8,300 h/y). The total copper laser system power averages ∼9,000 W and has operated at over 10,000 W for extended intervals. The 12 copper laser beams are multiplexed and delivered to the dye laser system where they pump multiple dye laser chains. Each dye chain consists of a master oscillator and three or four power amplifiers. The master oscillator operates at nominally 100 mW with a 50 MHz single mode bandwidth. Amplifiers are designed to efficiently amplify the dye beam with low ASE content and high optical quality. Sustained dye chain powers are up to 1,400 W with dye conversion efficiency >50%, ASE content <5%, and wavefront quality correctable to <λ/10 RMS, using deformable mirrors. Since the timing of the copper laser chains can be offset, the dye laser system is capable of repetition rates which are multiples of 4.4 kHz, up to 26 kHz, limited by the dye pumping system. Development of plant-scale copper and dye laser hardware is progressing in off-line facilities

  5. Optofluidic third order distributed feedback dye laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2006-01-01

    which has a refractive index lower than that of the polymer. In combination with a third order DFB grating, formed by the array of nanofluidic channels, this yields a low threshold for lasing. The laser is straightforward to integrate on lab-on-a-chip microsystems where coherent, tunable light......This letter describes the design and operation of a polymer-based third order distributed feedback (DFB) microfluidic dye laser. The device relies on light confinement in a nanostructured polymer film where an array of nanofluidic channels is filled by capillary action with a liquid dye solution...

  6. Tunable lasers in isotope separation, a colorful view of a dye chemist

    International Nuclear Information System (INIS)

    Hammond, P.R.

    1976-01-01

    Some of the problems to be encountered in the large-scale use of dye lasers in an isotope separation plant are discussed. Why should dye lasers be employed. How can dye conversion efficiency be optimized. How can dye photochemical decomposition and hence running costs be minimized and how serious is this effect anyway. What are toxicity problems with the dye. These and similar issues are examined

  7. Broad band tunable dye laser development

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Jung Bog; Kim, Sung Ho; Go, Do Kyung; Lim, Chang Hwan; Rho, Si Pyo; Song, Kyu Seok; Lee, Byung Cheol; Rhi, Jong Hoon; Han, Jae Min; Cha, Hyung Ki; Cha, Byung Hun; Jeong, Do Yung; Han, Jae Min; Jung, Yeu Chang; Im, Ho; Yoo, Choon Sun; Jung, Byung Ik; Seok, Gum Sook

    1992-12-01

    The technical goal and objectives are the development of a tunable laser which can be tuned from UV to near IR and commercialization for uses in various fields. Two kinds of resonators are developed. User can select one resonator and change into the other without changing other parts. GIM type has a linewidth of 5GHz which is able to be used usually, and SLM type is very narrow linewidth of less than 1GHz. Each system can have one or two amplifiers depending on output power or cost. High stability and safety, cost-down, and modules into about 30 components have been tried. We hope that this laser can help developments in researches of university, industry, and institute. (Author)

  8. Tunable ultraviolet solid-state dye laser based on MPMMA doped with pyrromethene 597

    International Nuclear Information System (INIS)

    Jiang, Y G; Fan, R W; Xia, Y Q; Chen, D Y

    2011-01-01

    Solid-state dye sample based on modified polymethyl methacrylate (MPMMA) co-doped with pyrromethene 597 (PM597), and coumarin 460 (C460) were prepared. A frequency-doubled pulsed Nd:YAG laser is used to pump solid-state dye sample, and the narrow linewidth dye laser of 94.4 mJ was obtained at 582 nm in an oscillator-amplifier configuration. Using a beta-BaB 2 O 4 (BBO) crystal to frequency double the dye laser into ultraviolet (UV), a tuning range from 279 to 305 nm was demonstrated from a single doped PM597 dye. To the best of our knowledge, the UV tuning range is the best under the same condition so far. The conversion slope efficiency from solid dye laser to UV laser was 8.9% and the highest UV laser output energy reached 6.94 mJ at 291 nm

  9. OH spectroscopy with frequency-doubled dye laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    ter Meulen, J J

    1979-01-01

    Discusses the excitation of the OH radical by UV radiation for the determination of the hyperfine structure of the excited states. The 307 nm UV light is obtained by doubling the frequency (in double-refraction crystals) of a tunable dye laser. Details of the laser set-up are given. The method is suitable for application to other high-resolution molecular spectroscopy experiments in the area between 200 and 400 nm. Further extensions can be expected with ring compound dyes and external doubling of the frequency.

  10. An application of the theory of laser to nitrogen laser pumped dye laser

    International Nuclear Information System (INIS)

    Osman, Fatima Ahmed

    1998-03-01

    In this thesis we gave a general discussion on lasers, reviewing some of their properties, types and application. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw.It was noticed that the produced radiation possesses characteristics different from those of other types of laser. This characteristics determine the tunability i.e the possibility of choosing the appropriately required wave-length of radiation for various applications.(Author)

  11. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  12. Tunable lasers in isotope separation: a colorful view of a dye chemist

    International Nuclear Information System (INIS)

    Hammond, P.R.

    1977-01-01

    Some of the problems to be encountered in the possible large scale use of dye lasers in an isotope separation plant are discussed.The effect of laser dye deterioration on performance is examined algebraically in terms of disappearance of dye molecules and the appearance of a new, single chemical product having absorption in the fluorescence band for a single pass through a transversely pumped amplifier. Loss of output, defined as ''quantum yield of laser deterioration'', Q/sub L/, is related to the true quantum yield of molecular destruction of the dye Q/sub M/, and other known parameters. 6-Diethylamino 3-keto fluoran, an example of an oxygen tricyclic merocyanine, is described. It was first reported in the pre-1900 German literature under the name of Chromogen Red B and it is an ineffective lasing dye on account of low fluorescence quantum yield. The techniques for measurement and the excited state absorption cross-sections are reported for the dyes rhodamine 6G fluoroborate in alcohol, rhodamine B basic solution in trifluoroethanol and kiton red S in trifluoroethanol

  13. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  14. ULTRAVIOLET TRANSITIONS IN EUROPIUM STUDIED WITH A FREQUENCY-DOUBLED CW RING DYE-LASER

    NARCIS (Netherlands)

    Eliel, E.R.; Hogervorst, W.; van Leeuwen, K.A.H.; Post, B.H.

    1981-01-01

    High resolution laser spectroscopy has been applied to the study of three ultraviolet transitions in Europium at λ = 294.8, 295.1 and 295.8 nm. The tunable narrowband UV has been generated by intracavity frequency doubling in a cw ring dye laser using a temperate tuned, Brewster angled ADA crystal.

  15. Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Directory of Open Access Journals (Sweden)

    T. Siegle

    2017-09-01

    Full Text Available Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers.

  16. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6Gand rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  17. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Yi, Jong Hoon; Lee, Kang Soo; Kim, Sung Ho; Lim, Gwon

    2000-01-01

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  18. Picosecond transient backward stimulated Raman scattering and pumping of femtosecond dye lasers

    Science.gov (United States)

    Arrivo, Steven M.; Spears, Kenneth G.; Sipior, Jeffrey

    1995-02-01

    We report studies of transient, backward stimulated, Raman scattering (TBSRS) in solvents with a 10 Hz, 27 ps, 532 nm pump laser. The TBSRS effect was used to create pulses at 545 nm and 630 nm with durations of 2-3 ps and 5-10 μJ of energy. The duration, energy and fluctuations of the Raman pulse were studied as a function of pump energy and focal parameters. A 5 μJ Raman pulse was amplified in either a Raman amplifier or two stage dye amplifier to 1 mJ levels. A 545 nm pulse of 3 ps duration was generated in CCl 4 and was then used to pump a short cavity dye laser (SCDL). The SCDL oscillator and a 5 stage dye amplifier provided a pulse of 700 fs and 400 μJ that was tunable near 590 nm.

  19. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    Design and technology demonstration of compact, narrow bandwidth, high repetition rate, tunable SLM dye lasers in two different configurations, namely Littrow and grazing incidence grating (GIG), were carried out in our lab at BARC, India. The single longitudinal mode (SLM) dye laser generates single-mode laser beams ...

  20. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    Science.gov (United States)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  1. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  2. Tunable eye-safe Er:YAG laser

    International Nuclear Information System (INIS)

    Němec, M; Šulc, J; Indra, L; Fibrich, M; Jelínková, H

    2015-01-01

    Er:YAG crystal was investigated as the gain medium in a diode (1452 nm) pumped tunable laser. The tunability was reached in an eye-safe region by an intracavity birefringent filter. The four tuning bands were obtained peaking at wavelengths 1616, 1632, 1645, and 1656 nm. The broadest continuous tunability was 6 nm wide peaking at 1616 nm. The laser was operating in a pulsed regime (10 ms pulse length, 10 Hz repetition rate). The maximum mean output power was 26.5 mW at 1645 nm. The constructed system demonstrated the tunability of a resonantly diode-pumped Er:YAG laser which could be useful in the development of compact diode-pumped lasers for spectroscopic applications. (paper)

  3. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  4. Development of AVLIS dye laser system

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Nakayama, Tsuyoshi; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    CVL pumped single mode dye laser was performed. It was found that pressure tuning has some excellent feature in comparison to mechanical tuning in dye laser frequency control. For evaluation of dye laser amplifier, two-dimensional rate equation was proposed. Calculated data by this equation agreed with experimental data in large diameter input dye laser beam condition. (author)

  5. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  6. Development of a Laser Induced Fluorescence (LIF) System with a Tunable Diode Laser

    International Nuclear Information System (INIS)

    Woo, Hyun Jong; Do, Jeong Jun; You, Hyun Jong; Choi, Geun Sik; Lee, Myoung Jae; Chung, Kyu Sun

    2005-01-01

    The Laser Induced Fluorescence (LIF) is known as one of the most powerful techniques for measurements of ion velocity distribution function (IVDF) and ion temperature by means of Doppler broadening and Doppler shift. The dye lasers are generally used for LIF system with 611.66 nm (in vac.) for Ar ion, the low power diode laser was also proposed by Severn et al with the wavelength of 664.55 nm and 668.61 nm (in vac.) for Ar ion. Although the diode laser has the disadvantages of low power and small tuning range, it can be used for LIF system at the low temperature plasmas. A tunable diode laser with 668.614 nm of center wavelength and 10 GHz mode hop free tuning region has been used for our LIF system and it can be measured the ion temperature is up to 1 eV. The ion temperature and velocity distribution function have been measured with LaB6 plasma source, which is about 0.23 eV with Ar gas and 2.2 mTorr working pressure

  7. A study of the lasing of dyes under the influence of emission from a copper vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Danilova, V I; Kopylova, T N; Maier, G V; Masarnovskii, L V; Soldatov, A N; Sukhanov, V B

    1980-01-01

    Intense pulsed sources of coherent emission with a continuously tunable wavelength and a high pulse repetition frequency are necessary for atmospheric optics. The use of rhodamine lasing during pumping by a copper dye laser is the most promising. The goals of this work include using the opportunities for improving the lasing properties of dyes pumped by a copper dye laser, choosing dye mixtures that are optimum with respect to their lasing relation, and studying the influence of the dye on their lasing characteristics in order to obtain the optimum energy parameters in the device that is built using a copper vapor laser and an optical attachment. On the basis of an analysis of the equations that describe multiatomic molecular lasing, it is possible to come to a conclusion on the intermolecular processes that determine the lasing effectiveness: singlet-singlet and triplettriplet overabsorption of lasing emission, intercombination (S-T) and internal conversion, and photoconversion in excited electron states. A large probability of emission from the lower singlet state (a large value of the constant of the velocity of radiative decay) is also necessary.

  8. Radiative characteristics of CVL pumped dye laser

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Uichi; Ishiguro, Takahide

    1987-09-01

    This paper describes the radiative characteristics of CVL pumped dye laser. It is compared YAG-SH (530 nm) with CVL (511, 578 nm) and CVL (511 nm) for pumping source. Influence of solvent in dye laser power was examined. The present experimental results show that efficiency of CVL (511 nm) pumped dye laser was most high. When the dye solution is at a standstill, the efficiency of dye laser with water and Sodium Lauryl Sulfate (S.L.S., 2 %wt.) was most high among the four kinds of solvent. In the condition of dye solution flow, the water and S.L.S. or ethylene glycol was useful solvent for dye laser.

  9. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  10. Radiative characteristics of CVL pumped dye laser

    International Nuclear Information System (INIS)

    Kubo, Uichi; Ishiguro, Takahide.

    1987-01-01

    This paper describes the radiative characteristics of CVL pumped dye laser. It is compared YAG-SH (530 nm) with CVL (511, 578 nm) and CVL (511 nm) for pumping source. Influence of solvent in dye laser power was examined. The present experimental results show that efficiency of CVL (511 nm) pumped dye laser was most high. When the dye solution is at a standstill, the efficiency of dye laser with water and Sodium Lauryl Sulfate (S.L.S., 2 %wt.) was most high among the four kinds of solvent. In the condition of dye solution flow, the water and S.L.S. or Ethylene Glycol was useful solvent for dye laser. (author)

  11. A dye center laser pumped by emission from copper vapor and dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Loktyushin, A A; Chernyshev, A I; Soldatov, A N; Sukhanov, V B; Troitskiy, V O

    1983-01-01

    LiF:F2+ lasing is reported for the case of pumping by total emission with frequencies of 570.6 and 578.2 nanometers or by a single yellow copper vapor laser line and emission from an oxazene-17 dye laser excited by emission from a Cu laser. Lasing with a mean power level of 23 milliwatts with a maximum at 911 nanometers is obtained. The maximum efficiency was 3.4 percent with pumping of the dye centers by emission from the yellow Cu laser line. The lasing characteristics of the laser for all the types of pumping used are given.

  12. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  13. Distributed feedback dye laser pumped with copper-vapor laser emission

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    The power-spectrum characteristics of the emission of a distributed feedback dye laser pumped with a copper vapor laser have been studied. Laser action has been observed in five dyes over a tuning range of 530-723 nm with an efficiency of 12.4%. The specfic features of the distributed feedback dye laser operating at pulse repetition rates of 4 kHz are discussed.

  14. Diffusion dynamics in micro-fluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  15. Feasibility of solar-pumped dye lasers

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  16. Narrowband tunable laser for uranium-233 cleanup process

    International Nuclear Information System (INIS)

    Singh, Sunita; Sridhar, G.; Rawat, V.S.; Kawde, Nitin; Sinha, A.K.; Bhatt, S.; Gantayet, L.M.

    2009-01-01

    Design, development and technology demonstration of proto type Single Longitudinal Mode pulsed tunable laser is reported in this work. The tunable laser has a narrow bandwidth less than 400 MHz required for isotopic clean up of 233 U. (author)

  17. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  18. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  19. Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy

    International Nuclear Information System (INIS)

    Yaney, Perry P.; Kliner, Dahv A. V.; Schrader, Paul E.; Farrow, Roger L.

    2000-01-01

    We describe the design and operation of a tunable, picosecond laser system for use in time-resolved spectroscopic measurements in the visible and ultraviolet (UV) spectral region. The laser is designed for fine tuning and high wavelength stability. A Nd:YAG-pumped distributed-feedback dye laser (DFDL) generates pulses that are ∼100 ps in duration with a nearly transform-limited linewidth (∼5 GHz) at a 20 Hz repetition rate. The DFDL pulses are amplified in two bow-tie amplifiers, providing pulse energies of up to 3.0 mJ; the amplified pulses may be frequency doubled to the UV spectral region, providing up to 1.0 mJ. The DFDL wavelength is computer stabilized to within ±0.8 pm (±0.7 GHz, two standard deviations), allowing the wavelength to be stationed on a narrow atomic or molecular transition or permitting nearly continuous spectral scans. Application of the laser system to studies of OH energy transfer has been demonstrated; both laser-induced-fluorescence and degenerate-four-wave-mixing spectra have been recorded. (c) 2000 American Institute of Physics

  20. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  1. SO2 Spectroscopy with A Tunable UV Laser

    Science.gov (United States)

    Morey, W. W.; Penney, C. M.; Lapp, M.

    1973-01-01

    A portion of the fluorescence spectrum of SO2 has been studied using a narrow wavelength doubled dye laser as the exciting source. One purpose of this study is to evaluate the use of SO2 resonance re-emission as a probe of SO2 in the atmosphere. When the SO2 is excited by light at 300.2 nm, for example, a strong reemission peak is observed which is Stokes-shifted from the incident light wavelength by the usual Raman shift (the VI symmetric vibration frequency 1150.5/cm ). The intensity of this peak is sensitive to small changes (.01 nm) in the incident wavelength. Measurements of the N2 quenching and self quenching of this re-emission have been obtained. Preliminary analysis of this data indicates that the quenching is weak but not negligible. The dye laser in our system is pumped by a pulsed N2 laser. Tuning 'and spectral narrowing are accomplished using a telescope-echelle grating combination. In a high power configuration the resulting pulses have a spectral width of about 5 x 10(exp -3) nm and a time duration of about 6 nsec. The echelle grating is rotated by a digital stepping motor, such that each step shifts the wavelength by 6 x 10(exp -4) nm. In addition to the tunable, narrow wavelength uv source and spectral analysis of the consequent re-emission, the system also provides time resolution of the re-emitted light to 6 nsec resolution. This capability is being used to study the lifetime of low pressure S02 fluorescence at different wavelengths and pressures.

  2. Computer Processing Of Tunable-Diode-Laser Spectra

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  3. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...

  4. Low-threshold conical microcavity dye lasers

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Schleede, Simone; Hauser, Mario

    2010-01-01

    element simulations confirm that lasing occurs in whispering gallery modes which corresponds well to the measured multimode laser-emission. The effect of dye concentration on lasing threshold and lasing wavelength is investigated and can be explained using a standard dye laser model....

  5. Bleaching and diffusion dynamics in optofluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Asger

    2007-01-01

    The authors have investigated the bleaching dynamics that occur in optofluidic dye lasers where the liquid laser dye in a microfluidic channel is locally bleached due to optical pumping. They find that for microfluidic devices, the dye bleaching may be compensated through diffusion of dye molecules...

  6. Simulations of longitudinally pumped dye laser amplifier

    International Nuclear Information System (INIS)

    Takehisa, Kiwamu; Takemori, Satoshi

    1995-01-01

    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)

  7. Discretely tunable micromachined injection-locked lasers

    International Nuclear Information System (INIS)

    Cai, H; Yu, M B; Lo, G Q; Kwong, D L; Zhang, X M; Liu, A Q; Liu, B

    2010-01-01

    This paper reports a micromachined injection-locked laser (ILL) to provide tunable discrete wavelengths. It utilizes a non-continuously tunable laser as the master to lock a Fabry–Pérot semiconductor laser chip. Both lasers are integrated into a deep-etched silicon chip with dimensions of 3 mm × 3 mm × 0.8 mm. Based on the experimental results, significant improvements in the optical power and spectral purity have been achieved in the fully locked state, and optical hysteresis and bistability have also been observed in response to the changes of the output wavelength and optical power of the master laser. As a whole system, the micromachined ILL is able to provide single mode, discrete wavelength tuning, high power and direct modulation with small size and single-chip solution, making it promising for advanced optical communications such as wavelength division multiplexing optical access networks.

  8. Tunable high-power narrow-linewidth green external-cavity GaN diode laser

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system.......A tunable high-power green external-cavity diode laser is demonstrated. Up to 290 mW output power and a 9.2 nm tuning is achieve. This constitutes the highest output power from a tunable green diode laser system....

  9. Green high-power tunable external-cavity GaN diode laser at 515 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2016-01-01

    A 480 mW green tunable diode laser system is demonstrated for the first time to our knowledge. The laser system is based on a GaN broad-area diode laser and Littrow external-cavity feedback. The green laser system is operated in two modes by switching the polarization direction of the laser beam...... incident on the grating. When the laser beam is p-polarized, an output power of 50 mW with a tunable range of 9.2 nm is achieved. When the laser beam is s-polarized, an output power of 480 mW with a tunable range of 2.1 nm is obtained. This constitutes the highest output power from a tunable green diode...... laser system....

  10. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    Science.gov (United States)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  11. Absolute Distance Measurements with Tunable Semiconductor Laser

    Czech Academy of Sciences Publication Activity Database

    Mikel, Břetislav; Číp, Ondřej; Lazar, Josef

    T118, - (2005), s. 41-44 ISSN 0031-8949 R&D Projects: GA AV ČR(CZ) IAB2065001 Keywords : tunable laser * absolute interferometer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.661, year: 2004

  12. Recent advancements in spectroscopy using tunable diode lasers

    International Nuclear Information System (INIS)

    Nasim, Hira; Jamil, Yasir

    2013-01-01

    Spectroscopy using tunable diode lasers is an area of research that has gone through a dramatic evolution over the last few years, principally because of new exciting approaches in the field of atomic and molecular spectroscopy. This article attempts to review major recent advancements in the field of diode laser based spectroscopy. The discussion covers the developments made so far in the field of diode lasers and illustrates comprehensively the properties of free-running diode lasers. Since the commercially available free-running diode lasers are not suitable for high-precision spectroscopic studies, various techniques developed so far for converting these free-running diode lasers into true narrow linewidth tunable laser sources are discussed comprehensively herein. The potential uses of diode lasers in different spectroscopic fields and their extensive list of applications have also been included, which may be interesting for the novice and the advanced user as well. (topical review)

  13. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...

  14. Widely tunable quantum cascade laser-based terahertz source.

    Science.gov (United States)

    Danylov, Andriy A; Light, Alexander R; Waldman, Jerry; Erickson, Neal; Qian, Xifeng

    2014-07-10

    A compact, tunable, ultranarrowband terahertz source, Δν∼1  MHz, is demonstrated by upconversion of a 2.324 THz, free-running quantum cascade laser with a THz Schottky-diode-balanced mixer using a swept, synthesized microwave source to drive the nonlinearity. Continuously tunable radiation of 1 μW power is demonstrated in two frequency regions: ν(Laser) ± 0 to 50 GHz and ν(Laser) ± 70 to 115 GHz. The sideband spectra were characterized with a Fourier-transform spectrometer, and the radiation was tuned through CO, HDO, and D2O rotational transitions.

  15. Efficiencies of laser dyes for atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Oki, Yuji; Uchiumi, Michihiro; Takao, Takayuki; Igarashi, Kaoru; Shimamoto, Kojiro.

    1995-01-01

    Efficiencies of 30 laser dyes for the atomic vapor laser isotope separation (AVLIS) are experimentally evaluated with a dye laser pumped by a frequency-doubled Nd:YAG laser. On the other hand, a simulation code is developed to describe the laser action of Rhodamine 6G, and the dependence of the laser efficiency on the pump wavelength is calculated. Following conclusions are obtained by these considerations:space: 1) Pyrromethene 567 showed 16% higher laser efficiency than Rhodamine 6G by 532 nm pumping, and Pyrromethene 556 has an ability to provide better efficiency by green light pumping with a Cu vapor laser; 2) Kiton red 620 and Rhodamine 640, whose efficiencies were almost the same as Rhodamine 6G by 532 nm pumping, will show better efficiencies by two-wavelength pumping with a Cu vapor laser. (author)

  16. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  17. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng; Cole, Jacqueline M.

    2015-05-01

    The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlating with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findings in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering.

  18. Dye laser with distributed feedback and with pumping by copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    An experimental study was made for determining the characteristics of dye lasers with distributed feedback, not requiring intricate resonator structures, and the feasibility of their pumping with radiation from a metal-vapor laser. The experiments were performed with five different dyes lasing in the yellow-red (510.6 - 578.2 nm) range of the spectrum: rhodamine 110, 6G, S and ocazine 17,1 in ethyl alcohol solution. The optical equipment included a copper-vapor pumping laser with the gas-discharge tube inside a telescopic resonator of the unstable type. Pumping pulses of 20 ns duration were generated at 510.6 and 578.2 nm wavelengths and a 4 kHz repetition rate. The pumping power was varied by means of an interference filter smoothly adjustable through rotation. The pumping laser beam was focused by a cylindrical lens on the dye cell. At optimum dye concentrations, corresponding to a maximum attainable emission power, dye concentrate was added into the circulation system for determining the dependence of the pumping threshold power on the dye concentration. Also measured were the dependence of the emission efficiency on the pumping power and the tuning range of each dye laser. The efficiency was found to remain constant over the pumping power range from threshold level to eight times higher level. The results reveal different angles of laser beam divergence in the vertical plane and in the horizontal plane, the divergence angle being four times larger in the vertical plane. The conversion efficiency increased, without significant changes in spectral characteristics, with a single annular reflector instead of two reflectors. 9 references, 4 figures, 1 table.

  19. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  20. Introduction of Red-Green-Blue Fluorescent Dyes into a Metal-Organic Framework for Tunable White Light Emission.

    Science.gov (United States)

    Wen, Yuehong; Sheng, Tianlu; Zhu, Xiaoquan; Zhuo, Chao; Su, Shaodong; Li, Haoran; Hu, Shengmin; Zhu, Qi-Long; Wu, Xintao

    2017-10-01

    The unique features of the metal-organic frameworks (MOFs), including ultrahigh porosities and surface areas, tunable pores, endow the MOFs with special utilizations as host matrices. In this work, various neutral and ionic guest dye molecules, such as fluorescent brighteners, coumarin derivatives, 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), and 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM), are encapsulated in a neutral MOF, yielding novel blue-, green-, and red-phosphors, respectively. Furthermore, this study introduces the red-, green-, and blue-emitting dyes into a MOF together for the first time, producing white-light materials with nearly ideal Commission International ed'Eclairage (CIE) coordinates, high color-rendering index values (up to 92%) and quantum yields (up to 26%), and moderate correlated color temperature values. The white light is tunable by changing the content or type of the three dye guests, or the excitation wavelength. Significantly, the introduction of blue-emitting guests in the methodology makes the available MOF host more extensive, and the final white-light output more tunable and high-quality. Such strategy can be widely adopted to design and prepare white-light-emitting materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Real-time tunability of chip-based light source enabled by microfluidic mixing

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Rasmussen, Torben; Balslev, Søren

    2006-01-01

    We demonstrate real-time tunability of a chip-based liquid light source enabled by microfluidic mixing. The mixer and light source are fabricated in SU-8 which is suitable for integration in SU-8-based laboratory-on-a-chip microsystems. The tunability of the light source is achieved by changing...... the concentration of rhodamine 6G dye inside two integrated vertical resonators, since both the refractive index and the gain profile are influenced by the dye concentration. The effect on the refractive index and the gain profile of rhodamine 6G in ethanol is investigated and the continuous tuning of the laser...

  2. Optimum design of a multi-stage dye-laser amplifier pumped with Cu-vapor lasers

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Uchiumi, Michihiro

    1990-01-01

    A numerical simulation code, based on the one-dimensional photon transport equation, was developed and analyzed to evaluate the performances of Rhodamine 6G dye laser amplifiers pumped with Cu-vapor lasers. The upper singlet-state absorption played an important role to determine the efficiency. The simulation code was applied to optimize a multi-stage amplifier system with a pulsed or a CW dye-laser oscillator. The analytical results gave a useful guideline to design a high-power pulsed dye-laser system for atomic uranium enrichment. (author)

  3. Active-passively mode-locked dye laser for diagnosis of laser-produced plasmas

    International Nuclear Information System (INIS)

    Teng, Y.L.; Fedosejevs, R.; Sigel, R.

    1981-03-01

    In this report an active-passively mode-locked, flashlamp-pumped dye laser for diagnosis of laser-produced plasmas is described. This dye laser system used as a pulsed light source for high-speed photography of laser-target experiments was synchronized to the ASTERIX III iodine laser pulse with better than 100 ps accuracy. The single pulse energy was 10 μJ, pulse duration less than 10 ps. In 111 shots clear shadowgrams were obtained during a total of 151 target shots, i.e. the system worked well in 74% of the shots. (orig.)

  4. [Gas pipeline leak detection based on tunable diode laser absorption spectroscopy].

    Science.gov (United States)

    Zhang, Qi-Xing; Wang, Jin-Jun; Liu, Bing-Hai; Cai, Ting-Li; Qiao, Li-Feng; Zhang, Yong-Ming

    2009-08-01

    The principle of tunable diode laser absorption spectroscopy and harmonic detection technique was introduced. An experimental device was developed by point sampling through small multi-reflection gas cell. A specific line near 1 653. 7 nm was targeted for methane measurement using a distributed feedback diode laser as tunable light source. The linearity between the intensity of second harmonic signal and the concentration of methane was determined. The background content of methane in air was measured. The results show that gas sensors using tunable diode lasers provide a high sensitivity and high selectivity method for city gas pipeline leak detection.

  5. Nanoimprinted polymer photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas

    2010-01-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped...

  6. A new method to induce transitions in muonic atoms using a high-power tunable dye laser coupled to a stopping muon beam

    CERN Document Server

    Bertin, A; Duclos, J; Gastaldi, Ugo; Gorini, G; Neri, G; Picard, J; Pitzurra, O; Placci, A; Polacco, E; Stefanini, G; Torelli, G; Vitale, A; Zavattini, E

    1974-01-01

    An apparatus is described in which a ruby-pumped dye laser is used to induce transitions from the 2S to the 2P levels of the muonic ion ( mu He)/sup +/. The dye laser supplies infra-red radiation pulses in the wavelengths (8040-8180) AA, at typical repetition rates of 1 pulse every 4 s, with an energy release per pulse of 300 mJ for 1.2 J pumping energy. A special synchronization procedure is followed to trigger the laser in close coupling with the incoming muon beam which is stopped in a helium target at pressures between 40 and 50 atm. The other performances of the device are fully discussed with reference both to the laser facility and to the special high-pressure helium target. (23 refs).

  7. The role of FRET in solar concentrator efficiency and color tunability

    Energy Technology Data Exchange (ETDEWEB)

    Balaban, Benjamin, E-mail: bbalaban@ucsc.edu; Doshay, Sage; Osborn, Melissa; Rodriguez, Yvonne; Carter, Sue A., E-mail: sacarter@ucsc.edu

    2014-02-15

    We demonstrate concentration-dependent Förster-type energy transfer in a luminescent solar concentrator (LSC) material containing two high quantum yield laser dyes in a PMMA matrix. FRET heterotransfer is shown to be approximately 50% efficient in the regime of 2×10{sup −3}molal acceptor dye by weight in the host polymer. The two dyes used have been well studied for solar concentrator applications: BASF's Lumogen Red 305, and Exciton Chemical Company's DCM both demonstrate desirable stability, quantum yield, and complementary absorption spectra. We demonstrate how multiple-dye LSC devices employing FRET increase the absorption of air mass 1.5 solar irradiance without affecting the self-absorption properties of the film. Color tunability may be achieved through the addition of additional absorbers while minimizing the impact on waveguide efficiency. -- Highlights: • Förster Resonance Energy Transfer is demonstrated in a two-dye luminescent solar concentrator. • Donor-acceptor pair distance is related to the dye concentration in PMMA. • FRET's benefit to waveguide transport losses and color tunability is discussed.

  8. Continuous-wave diode-pumped Yb 3+:LYSO tunable laser

    Science.gov (United States)

    Du, Juan; Liang, Xiaoyan; Xu, Yi; Li, Ruxin; Yan, Chengfeng; Zhao, Guangjun; Su, Liangbi; Xu, Jun; Xu, Zhizhan

    2007-01-01

    A new alloyed crystal, Yb:LYSO, has been grown by the Czochralski method in our institute for the first time, and its effective diode-pumped cw tunable laser action was demonstrated. The alloyed crystal retains excellent laser properties of LSO with reduced growth cost, as well as the favorable growth properties of YSO. With a 5-at.% Yb:LYSO sample, we achieved 2.84 W output power at 1085 nm and a slope efficiency of 63.5%. And its laser wavelength could be tuned over a range broader than 80nm, from 1030nm to 1111 nm. This is the broadest tunable range achieved for Yb:LYSO laser, as far as we know.

  9. Photophysical properties, photodegradation characteristics, and lasing action for coumarin dye C540A in polymeric media

    Science.gov (United States)

    Jones, Guilford, II; Huang, Zhennian; Pacheco, Dennis P., Jr.; Russell, Jeffrey A.

    2004-07-01

    Tunable solid-state dye lasers operating in the blue-green spectral region are attractive for a variety of applications. An important consideration in assessing the viability of this technology is the service life of the gain medium, which is presently limited by dye photodegradation. In this study, solid polymeric samples consisting of the coumarin dye C540A in modified PMMA were subjected to controlled photodegradation tests. The excitation laser was a flashlamp-pumped dye laser operating at 440 nm with a pulse duration of 1 μs. A complementary set of data was obtained for dye in solution phase for comparison purposes. Photophysical properties of C540A in water solution of polymethacrylic acid (PMAA) have been investigated with a view to assess the suitability of the sequestering polymer (PMAA) as an effective additive to facilitate use of a water medium for highly efficient blue-green dye lasers. Lasing action of C540A in aqueous PMAA has been realized using flashlamp-pumped laser system, yielding excellent laser efficiencies superior to that achieved in ethanolic solutions with the same dye. Laser characterization of dye in media included measurement of laser threshold, slope efficiency, pulse duration and output wavelength.

  10. Superthin resonator dye laser with THz intermode frequency separation

    International Nuclear Information System (INIS)

    Rudych, P D; Surovtsev, N V

    2014-01-01

    Two-color laser irradiation is considered an effective way to pump THz excitations for numerous scientific and applied goals. We present a design for convenient laser source with THz intermode frequency separation. The setup is based on dye laser with superthin resonator pumped by a subnanosecond pulse laser. It was proven that the superthin resonator dye laser is useful, possesses high stability and high energy conversion, and generates narrow laser modes. The ability of this laser to pump CARS processes for THz vibrations is demonstrated. (letter)

  11. Threshold pump power of a solar-pumped dye laser

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1988-01-01

    Threshold solar power for dye laser pumping has been determined by measuring the gain of a rhodamine 6G dye laser amplifier at various solar-simulated irradiances on an amplifier cell. The measured threshold was 20,000 solar constants (2.7 kW/sq cm) for the dye volume of 2 x 5 x 40 cu mm and the optimum dye concentration of 0.001 M. The threshold is about one-third of that achievable with a high-intensity solar concentrator.

  12. Investigation of dye laser excitation of atomic systems

    International Nuclear Information System (INIS)

    Abate, J.A.

    1977-01-01

    A stabilized cw dye laser system and an optical pumping scheme for a sodium atomic beam were developed, and the improvements over previously existing systems are discussed. A method to stabilize both the output intensity and the frequency of the cw dye laser for periods of several hours is described. The fluctuation properties of this laser are investigated by photon counting and two-time correlation measurements. The results show significant departures from the usual single-mode laser theory in the region of threshold and below. The implications of the deviation from accepted theory are discussed. The atomic beam system that was constructed and tested is described. A method of preparing atomic sodium so that it behaves as a simple two-level atom is outlined, and the results of some experiments to study the resonant interaction between the atoms and the dye laser beam are presented

  13. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  14. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  15. Comparison of pulsed dye laser versus combined pulsed dye laser and Nd:YAG laser in the treatment of inflammatory acne vulgaris.

    Science.gov (United States)

    Salah El Din, Manal Mohamed; Samy, Nevien Ahmed; Salem, Amira Eid

    2017-06-01

    Both pulsed dye laser and combined 585/1064-nm (sequential dual-wavelength PDL and Nd:YAG) laser improves inflammatory skin disorders including acne vulgaris. To compare the efficacy of 585-nm pulsed dye laser versus sequential dual-wavelength PDL and Nd:YAG in treatment of acne vulgaris. Thirty patients with acne vulgaris were treated by PDL alone on half of the face while contra lateral half was treated by combined 585/1064 nm laser. The study showed that inflammatory acne lesions count was significantly reduced by 82.5% (p 0.0001) on PDL sides and by 83.5% (p 0.00001) on combined 585/1064-nm side after 8 weeks, while reduction of non-inflammatory acne lesions was observed at 8 weeks by 58.4% and 71.5% respectively. However, difference between the two modalities was not statistically significant. PDL and combined PDL/Nd:YAG laser treatment were found to be an effective, safe and well-tolerated treatment option for inflammatory and non-inflammatory acne vulgaris.

  16. CW-laser induced microchannels in dye-polymethacrylic acid films

    OpenAIRE

    M.A. Camacho-López

    2007-01-01

    In this work we report on the formation of microchannels on dye-polymethacrylic acid films using a cw-laser. A focalized beam of a He-Ne laser (632.8 nm emission line) was used to form microchannels on the films. It was found that there exists a laser power density threshold for a pit formation that depends on the dye concentration. The dimensions of the laser-induced channels are dependent on the laser power density. Microchannel formation in the transparent polymethacrylic acid films was no...

  17. The theoretical and numerical models of the novel and fast tunable semiconductor ring laser

    Science.gov (United States)

    Zhu, Jiangbo; Zhang, Junwen; Chi, Nan; Yu, Siyuan

    2011-01-01

    Fast wavelength-tunable semiconductor lasers will be the key components in future optical packet switching networks. Especially, they are of great importance in the optical network nodes: transmitters, optical wavelength-routers, etc. In this paper, a new scheme of a next-generation fast tunable ring laser was given. Tunable lasers in this design have better wavelength tunability compared with others, for they are switched faster in wavelength and simpler to control with the injecting light from an external distributed Bragg-reflector(DBR). Then some discussion of the waveguide material system and coupler design of the ring laser were given. And we also derived the multimode rate equations corresponding to this scheme by analyzing some characteristics of the semiconductor ring cavity, directionality, nonlinear mode competition, optical injection locking, etc. We did MatLab simulation based on the new rate equations to research the process of mode competition and wavelength switching in the laser, and achieved the basic functions of a tunable laser. Finally some discussion of the impact of several key parameters was given.

  18. Molecular dynamics stimulations to study laser dye aggregation in water (comparison with experiments)

    International Nuclear Information System (INIS)

    Dare-Doyen, St.; Doizi, D.

    2000-01-01

    A laser facility consists of dye laser chains where the active medium is composed of fluorescent dyes dissolved in ethanol. The use of water as a solvent would offer two major advantages: greater safety of the laser facility by drastically reducing fire risks, easier design of the laser beam correcting devices required at the end of the dye laser chains, thanks to the properties of water. Unfortunately, laser dyes exhibit poor optical properties in water, due to the formation of dye aggregates. Molecular dynamics simulations were used to study and develop means to prevent this behavior between two charged species. The results were compared with NMR (Nuclear Magnetic Resonance) experiments

  19. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  20. Free space broad-bandwidth tunable laser diode based on Littman configuration for 3D profile measurement

    Science.gov (United States)

    Shirazi, Muhammad Faizan; Kim, Pilun; Jeon, Mansik; Kim, Chang-Seok; Kim, Jeehyun

    2018-05-01

    We developed a tunable laser diode for an optical coherence tomography system that can perform three-dimensional profile measurement using an area scanning technique. The tunable laser diode is designed using an Eagleyard tunable laser diode with a galvano filter. The Littman free space configuration is used to demonstrate laser operation. The line- and bandwidths of this source are 0.27 nm (∼110 GHz) and 43 nm, respectively, at the center wavelength of 860 nm. The output power is 20 mW at an operating current of 150 mA. A step height target is imaged using a wide-area scanning system to show the measurement accuracy of the proposed tunable laser diode. A TEM grid is also imaged to measure the topography and thickness of the sample by proposed tunable laser diode.

  1. Development of high-power dye laser chain

    Science.gov (United States)

    Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo

    2000-01-01

    Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.

  2. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    International Nuclear Information System (INIS)

    Peng, Liu; Feng-Ping, Yan; Jian, Li; Lin, Wang; Ti-Gang, Ning; Tao-Rong, Gong; Shui-Sheng, Jian

    2008-01-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate

  3. Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kragh, Søren; Kjeldsen, B.G.

    2003-01-01

    We investigate a micro-fluidic dye laser, which can be integrated with polymer-based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the lasing threshold. The laser device is characterised using the laser dye Rhodamine 6G dissolved...... in ethanol, and the influence of dye concentration on the lasing wavelength and threshold is investigated. The experiments confirm the predictions of the rate-equation model, that lasing can be achieved in the 10 mum long laser cavity with moderate concentrations of Rhodamine 6G in ethanol, starting from 5 x...

  4. Investigation of the lasing of dyes under copper vapor laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Danilova, V I; Kopylova, T N; Maier, G V; Masarnovskii, L V; Soldatov, A N; Sukhanov, V B

    1980-10-01

    The lasing characteristics of dyes pumped by copper vapor laser radiation are investigated in order to determine the optimal energetic parameters of the dye-laser system. Expressions are derived for the yields of stimulated emission from dye molecules, and it is shown that the most effective means of improving the lasing characteristics of rhodamine dye solutions is by the modification of intermolecular interactions, in part by the use of multicomponent solutions. Results are then presented of experimental measurements of the emission intensities of combinations of rhodamine dyes irradiated by the 5106-A line of a copper vapor laser. An increase in the lasing efficiency of the acceptor molecule is found for all the dye pairs investigated, with even greater emission intensities observed for multicomponent dye mixtures when the mixtures were pumped transversely. Under longitudinal pumping, improvements in lasing efficiency were obtained only for mixtures of rhodamine 6 Zh with cresil violet.

  5. Photophysical and laser characteristics of pyrromethene 567 dye ...

    Indian Academy of Sciences (India)

    Narrow-band laser performance of alcohol solutions of pyrromethene 567 ... curves of each dye solution were obtained by scanning the wavelength of the dye ... solutions, using ethanol and methanol solvents, are summarized in table 1.

  6. Enhancement of polymer dye lasers by multifunctional photonic crystal lattice

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Xiao, Sanshui; Mortensen, Asger

    2009-01-01

    The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser.......The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser....

  7. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    CERN Document Server

    Yi, J H; Moon, H J; Rho, S P; Han, J M; Rhee, Y J; Lee, J M

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drast...

  8. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Kim, Jin Tae; Moon, Hee Jong; Rho, Si Pyo; Han, Jae Min; Rhee, Yong Joo; Lee, Jong Min

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drastically reduced pulse width

  9. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  10. Dye-enhanced laser welding for skin closure.

    Science.gov (United States)

    DeCoste, S D; Farinelli, W; Flotte, T; Anderson, R R

    1992-01-01

    The use of a laser to weld tissue in combination with a topical photosensitizing dye permits selective delivery of energy to the target tissue. A combination of indocyanine green (IG), absorption peak 780 nm, and the near-infrared (IR) alexandrite laser was studied with albino guinea pig skin. IG was shown to bind to the outer 25 microns of guinea pig dermis and appeared to be bound to collagen. The optical transmittance of full-thickness guinea pig skin in the near IR was 40% indicating that the alexandrite laser should provide adequate tissue penetration. Laser "welding" of skin in vivo was achieved at various concentrations of IG from 0.03 to 3 mg/cc using the alexandrite at 780 nm, 250-microseconds pulse duration, 8 Hz, and a 4-mm spot size. A spectrum of welds was obtained from 1- to 20-W/cm2 average irradiance. Weak welds occurred with no thermal damage obtained at lower irradiances: stronger welds with thermal damage confined to the weld site occurred at higher irradiances. At still higher irradiances, local vaporization occurred with failure to "weld." Thus, there was an optimal range of irradiances for "welding," which varied inversely with dye concentration. Histology confirmed the thermal damage results that were evident clinically. IG dye-enhanced laser welding is possible in skin and with further optimization may have practical application.

  11. Widely-duration-tunable nanosecond pulse Nd:YVO4 laser based on double Pockels cells

    Science.gov (United States)

    He, Li-Jiao; Liu, Ke; Bo, Yong; Wang, Xiao-Jun; Yang, Jing; Liu, Zhao; Zong, Qing-Shuang; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2018-05-01

    The development of duration-tunable pulse lasers with constant output power is important for scientific research and materials processing. We present a widely-duration-tunable nanosecond (ns) pulse Nd:YVO4 laser based on double Pockels cells (PCs), i.e. inserting an extra PC into a conventional electro-optic Q-switched cavity dumped laser resonator. Under the absorbed pump power of 24.9 W, the pulse duration is adjustable from 31.9 ns to 5.9 ns by changing the amplitude of the high voltage on the inserted PC from 1100 V to 4400 V at the pulse repetition rate of 10 kHz. The corresponding average output power is almost entirely maintained in the range of 3.5–4.1 W. This represents more than three times increase in pulse duration tunable regime and average power compared to previously reported results for duration-tunable ns lasers. The laser beam quality factor was measured to be M 2  <  1.18.

  12. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    Science.gov (United States)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  13. Wavelength-tunable laser based on nonlinear dispersive-wave generation in a tapered optical waveguide

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method and a wavelength tunable laser comprising a first laser source configured to emit a first optical pulse having a pump wavelength, the first optical pulse being emitted in a first longitudinal direction. Furthermore, the wavelength tunable laser comprises...... a waveguide extending in the first longitudinal direction, the waveguide having longitudinally varying phase matching conditions, the waveguide being configured to generate a second optical pulse with a centre wavelength upon receiving the first optical pulse, wherein the wavelength tunable laser...... is configured to tune the centre wavelength of the second optical pulse by varying at least one pulse property of the first optical pulse....

  14. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  15. ''Stenungsund-77'': smoke plume measurements with a pulsed dye laser

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, G; Hartmann, B; Spangstedt, G; Steinvall, O

    1977-12-01

    This report describes some of the results obtained in a field experiment at Stenungsund in May 1977, under the support and coordination of the Swedish Space Corporation. We made lidar measurements with a pulsed tunable dye laser working at wavelengths in the uv and visible part of the spectrum. The study concerned SO/sub 2/-absorption, NO/sub 2/-absorption, and particle scattering in the smoke plume of an oil fuel electric power plant. The SO/sub 2/-burden in the plume, near the smoke stack exit, as estimated from our lidar measurements, is compatible with in situ measurements and calculated values. The NO/sub 2/-concentration proved to be lower than the sensitivity limit of our lidar system. The particle scattering experiments led to qualitative results, and only permitted order of magnitude estimates of particle concentrations. They show, however, that a low power, eye safe uv lidar was capable of tracking plumes undiscernible to the eye, out to a distance of 2 to 3 km.

  16. Holograms made with a pulsed dye laser

    International Nuclear Information System (INIS)

    Fernandez-Guasti, M.; Iturbe-Castillo, D.; Silva-Perez, A.; Gil-Villegas, A.; Gonzalez-Torres, H.; Lopez-Guerrero, R.

    1989-01-01

    We report the obtention of holograms with a nitrogen pumped dye laser, whose source is inherently pulsed. We review the advantages and posibilities of holograms of moving objects which are impossible to make with CW lasers. The lasers used in these experiments were designed and built in the quantum optics laboratory at the Universidad Autonoma Metropolitana-Iztapalapa. (Author)

  17. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  18. Frequency doubled dye laser with a servo-tuned crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, J; Spitschan, H

    1975-01-01

    Spectral tuning of the uv output of a frequency doubled dye laser was successfully controlled by a servo motor system which tilts the nonlinear crystal appropriate for phase-matched second harmonic generation while the dye laser emission wavelength is tuned. The spatial direction of the generated uv beam was used as the regulating signal. The feasibility of this technique for spectroscopic applications was successfully tested.

  19. Excimer laser applications

    International Nuclear Information System (INIS)

    Fantoni, R.

    1988-01-01

    This lecture deals with laser induced material photoprocessing, especially concerning those processes which are initiated by u.v. lasers (mostly excimer laser). Advantages of using the u.v. radiation emitted by excimer lasers, both in photophysical and photochemical processes of different materials, are discussed in detail. Applications concerning microelectronics are stressed with respect to other applications in different fields (organic chemistry, medicine). As further applications of excimer lasers, main spectroscopic techniques for ''on line'' diagnostics which employ excimer pumped dye lasers, emitting tunable radiation in the visible and near u.v. are reviewed

  20. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes

    OpenAIRE

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C. T. Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-01-01

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively....

  1. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    Science.gov (United States)

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  2. PicoGreen dye as an active medium for plastic lasers

    Science.gov (United States)

    Pradeep, C.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-08-01

    Deoxyribonucleic acid lipid complex thin films are used as a host material for laser dyes. We tested PicoGreen dye, which is commonly used for the quantification of single and double stranded DNA, for its applicability as lasing medium. PicoGreen dye exhibits enhanced fluorescence on intercalation with DNA. This enormous fluorescence emission is amplified in a planar microcavity to achieve yellow lasing. Here the role of DNA is not only a host medium, but also as a fluorescence dequencher. With the obtained results we have ample reasons to propose PicoGreen dye as a lasing medium, which can lead to the development of DNA based bio-lasers.

  3. Research on a high-precision calibration method for tunable lasers

    Science.gov (United States)

    Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai

    2018-03-01

    Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.

  4. Investigation of rf plasma light sources for dye laser excitation

    International Nuclear Information System (INIS)

    Kendall, J.S.; Jaminet, J.F.

    1975-06-01

    Analytical and experimental studies were performed to assess the applicability of radio frequency (rf) induction heated plasma light sources for potential excitation of continuous dye lasers. Experimental efforts were directed toward development of a continuous light source having spectral flux and emission characteristics approaching that required for pumping organic dye lasers. Analytical studies were performed to investigate (1) methods of pulsing the light source to obtain higher radiant intensity and (2) methods of integrating the source with a reflective cavity for pumping a dye cell. (TFD)

  5. Tunable blue–violet Cr3+:LiCAF + BiBO compact laser

    International Nuclear Information System (INIS)

    Maestre, H; Torregrosa, A J; Capmany, J

    2015-01-01

    We present a compact continuous wave (CW) external-cavity tunable Cr 3+ :LiCaAlF 6 (Cr:LiCAF) laser which is intracavity frequency doubled using a BiB 3 O 6 (BiBO) nonlinear crystal to obtain tunable blue–violet radiation. The generated second harmonic (SH) can be tuned by means of either angular or temperature variation of the nonlinear crystal. We have obtained SH radiation between 390–415 nm and a maximum output power of 34 mW at 400 nm. Future improvements on the SH tuning range and output power are addressed in the text. Our results may be applied in the design of compact tunable composite external-cavity solid-state lasers. (paper)

  6. Lasers '90: Proceedings of the 13th International Conference on Lasers and Applications, San Diego, CA, Dec. 10-14, 1990

    International Nuclear Information System (INIS)

    Harris, D.G.; Herbelin, J.

    1991-01-01

    The general topics considered are: x-ray lasers; FELs; solid state lasers; techniques and phenomena of ultrafast lasers; optical filters and free space laser communications; discharge lasers; tunable lasers; applications of lasers in medicine and surgery; lasers in materials processing; high power lasers; dynamics gratings, wave mixing, and holography; up-conversion lasers; lidar and laser radar; laser resonators; excimer lasers; laser propagation; nonlinear and quantum optics; blue-green technology; imaging; laser spectroscopy; chemical lasers; dye lasers; and lasers in chemistry

  7. Development laser light facility for uranium isotope separation

    International Nuclear Information System (INIS)

    Dickinson, G.J.

    1992-01-01

    A laser light facility has been built and successfully commissioned as part of a programme to explore the economic potential of Laser Isotope Separation of Uranium. The laser systems are comprised of tunable dye lasers pumped by copper vapour lasers. The requirements for optical beam stability, alignment of lasers in chains, and protection of optical coatings have made challenging demands on the engineering design and operation of the facility. (Author)

  8. A cladding-pumped, tunable holmium doped fiber laser.

    Science.gov (United States)

    Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John; Carter, Adrian

    2013-11-18

    We present a tunable, high power cladding-pumped holmium doped fiber laser. The laser generated >15 W CW average power across a wavelength range of 2.043 - 2.171 μm, with a maximum output power of 29.7 W at 2.120 μm. The laser also produced 18.2 W when operating at 2.171 µm. To the best of our knowledge this is the highest power operation of a holmium doped laser at a wavelength >2.15 µm. We discuss the significance of background losses and fiber design for achieving efficient operation in holmium doped fibers.

  9. Laser-excited atomic-fluorescence spectrometry with electrothermal tube atomization.

    Science.gov (United States)

    Vera, J A; Leong, M B; Stevenson, C L; Petrucci, G; Winefordner, J D

    1989-12-01

    The performance of graphite-tube electrothermal atomizers is evaluated for laser-excited atomic-fluorescence spectrometry for several elements. Three pulsed laser systems are used to pump tunable dye lasers which subsequently are used to excite Pb, Ga, In, Fe, Ir, and Tl atoms in the hot graphite tube. The dye laser systems used are pumped by nitrogen, copper vapour and Nd:YAG lasers. Detection limits in the femtogram and subfemtogram range are typically obtained for all elements. A commercial graphite-tube furnace is important for the successful utilization of the laser-based method when the determination of trace elements is intended, especially when complicated matrices may be present.

  10. Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications

    Science.gov (United States)

    Henderson, Sammy W.; Hale, Charley P.

    2017-08-01

    We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.

  11. Broadband tunability of gain-flattened quantum-well semiconductor lasers with an external grating

    International Nuclear Information System (INIS)

    Mittelstein, M.; Mehuys, D.; Yariv, A.; Sarfaty, R.; Ungar, J.E.

    1989-01-01

    Semiconductor injection lasers are known to be tunable over a range of order kΒ · T. Quantum-well lasers, in particular, are shown to exhibit flattened, broadband gain spectra at a particular pumping condition. The gain requirement for a grating-tuned external cavity configuration is examined and is applied to a semiconductor quantum-well laser with an optimized length of gain region. The coupled-cavity formalism is employed to examine the conditions for continuous tuning. The possible tuning range of double-heterostructure lasers is compared to that of quantum-well lasers. The predicted broadband tunability of quantum-well lasers is confirmed experimentally by grating-tuning of uncoated lasers exceeding 120 nm, with single, longitudinal mode output power exceeding 300 mW

  12. Single longitudinal mode operation of a solid-state dye laser oscillator

    CERN Document Server

    Lim, G; Kim, H S; Cha, B H; Lee, J M

    2000-01-01

    We have operated a single longitudinal mode of a solid-state dye laser oscillator in a Littman configuration. The host material of the solid-state gain medium was rhodamine dye-doped poly (methyl methacrylate). The pumping source was the second harmonic of a Nd:YAG laser with a repetition rate of 10 Hz. The measured linewidth of the laser output was about 1.5 GHz.

  13. A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser

    Science.gov (United States)

    Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.

    2018-05-01

    A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.

  14. Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode

    DEFF Research Database (Denmark)

    Klinkhammer, Sönke; Liu, Xin; Huska, Klaus

    2012-01-01

    The fabrication and characterization of continuously tunable, solution-processed distributed feedback (DFB) lasers in the visible regime is reported. Continuous thin film thickness gradients were achieved by means of horizontal dipping of several conjugated polymer and blended small molecule solu...

  15. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    International Nuclear Information System (INIS)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-01-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  16. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    Science.gov (United States)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  17. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    Science.gov (United States)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  18. Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass

    Energy Technology Data Exchange (ETDEWEB)

    Foucher, C.; Guilhabert, B.; Laurand, N.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, Glasgow (United Kingdom)

    2014-04-07

    A mechanically flexible and wavelength-tunable laser with an ultra-thin glass membrane as substrate is demonstrated. The optically pumped hybrid device has a distributed feedback cavity that combines a colloidal quantum dot gain film with a grating-patterned polymeric underlayer, all on a 30-μm thick glass sheet. The total thickness of the structure is only 75 μm. The hybrid laser has an average threshold fluence of 450 ± 80 μJ/cm{sup 2} (for 5-ns excitation pulses) at an emitting wavelength of 607 nm. Mechanically bending the thin-glass substrate enables continuous tuning of the laser emission wavelength over an 18-nm range, from 600 nm to 618 nm. The correlation between the wavelength tunability and the mechanical properties of the thin laser structure is verified theoretically and experimentally.

  19. Bibliographic study of photophysical and photochemical properties of laser dyes

    International Nuclear Information System (INIS)

    Doizi, D.

    1986-06-01

    Laser isotope separation of uranium requires high power and precise wave length. This report is a bibliographic and experimental study of the photophysical and photochemical properties of seven commercial laser dyes which have an emission wavelength in the range 5500-6500 A: Rhodamine 110 or 560, rhodamine 6G or 590, rhodamine B or 610, rhodamine 101 or 640, sulforhodamine B or kiton red 620, sulforhodamine 101 or 640 and DCM or LC 6500. Absorption and emission cross section values, fluorescence lifetimes and quantum yields in various solvents are indicated. For each dye, a non exhaustive list of laboratory experiments made with two types of pump sources: Nd YAG (532) and copper vapor laser is given. When it is known, the toxicity of the dyes is mentioned [fr

  20. Wavelength Tunable Flip-Flop Operation of a Modulated Grating Y-branch Laser

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Peucheret, Christophe

    2012-01-01

    Wavelength tunable flip-flop operation is experimentally demonstrated in a single modulated grating Y-branch laser for the first time. The control pulses have energies of 0.16-0.34 pJ and the switching time is about 200 ps.......Wavelength tunable flip-flop operation is experimentally demonstrated in a single modulated grating Y-branch laser for the first time. The control pulses have energies of 0.16-0.34 pJ and the switching time is about 200 ps....

  1. Dye-enhanced diode laser photocoagulation of choroidal neovascularizations

    Science.gov (United States)

    Klingbeil, Ulrich; Puliafito, Carmen A.; McCarthy, Dan; Reichel, Elias; Olk, Joseph; Lesiecki, Michael L.

    1994-06-01

    Dye-enhanced diode laser photocoagulation, using the dye indocyanine green (ICG), has shown some potential in the treatment of choroidal neovascularizations (CNV). A diode laser system was developed and optimized to emit at the absorption maximum of ICG. In a clinical study at two retinal centers, more than 70 patients, the majority of which had age-related macular degeneration, were treated. Eighteen cases with ill-defined subfoveal CNV were followed an average of 11 months after laser treatment. The results show success in resolving the CNV with an average long-term preservation of visual function equal to or superior to data provided by the Macular Photocoagulation Study for confluent burns of low intensity applied to the CNV. Details of the technique and discussion of the controversies inherent in such a treatment strategy will be presented.

  2. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala (India); Illyaskutty, Navas [Institute for Sensorics and Information Systems (ISIS), Karlsruhe University of Applied Sciences, Moltkestr. 30, D-76133 Karlsruhe (Germany); Sreedhanya, S. [School of Chemical Sciences, M. G. University, Kottayam, Kerala 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Bangalore 560080 (India)

    2016-05-21

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  3. Ultraviolet-pumped liquid-crystal dye-laser

    International Nuclear Information System (INIS)

    Bertolotti, M.; Sbrolli, L.; Scudieri, F.; Papa, T.

    1981-01-01

    The possibility offered by the orientation properties of liquid crystals as a matrix for dye lasers is shown. In particular, the linear polarization of emitted light can be changed by acting with an external magnetic field on the molecular nematic director. (author)

  4. Some characteristics of isotopic separation laser systems

    International Nuclear Information System (INIS)

    Pochon, E.

    1988-01-01

    The principle of Laser Isotope Separation (LIS) is simple and based on either selective electronic photoexcitation and photoionization of atomic vapor, or selective vibrational photoexcitation and photodissociation of molecules in the gas phase. These processes, respectively called SILVA (AVLIS) and SILMO (MLIS) in France, both use specific laser systems with wavelengths spanning from infrared to ultraviolet. This article describes briefly some of the characteristics of a SILVA laser system. Following a three-step process, a SILVA laser system is based on dye copper vapor lasers. The pulse dye lasers provide the tunable laser light and are optically pumped by copper vapor laser operating at high repetition rates. In order to meet plant laser system requirements, the main improvements under way relate to copper vapor laser devices the power capability, efficiency, reliability and lifetime of which have to be increased. 1 fig

  5. Tilt-tuned etalon locking for tunable laser stabilization.

    Science.gov (United States)

    Gibson, Bradley M; McCall, Benjamin J

    2015-06-15

    Locking to a fringe of a tilt-tuned etalon provides a simple, inexpensive method for stabilizing tunable lasers. Here, we describe the use of such a system to stabilize an external-cavity quantum cascade laser; the locked laser has an Allan deviation of approximately 1 MHz over a one-second integration period, and has a single-scan tuning range of approximately 0.4  cm(-1). The system is robust, with minimal alignment requirements and automated lock acquisition, and can be easily adapted to different wavelength regions or more stringent stability requirements with minor alterations.

  6. In liquid laser treated graphene oxide for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paola, E-mail: rsspla1@gmail.com [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy); Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., West Waterloo, Ontario N2L 3G1 (Canada); D’Urso, Luisa [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy); Hu, Anming [Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 57996-2210 (United States); Zhou, Norman [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave., West Waterloo, Ontario N2L 3G1 (Canada); Compagnini, Giuseppe [Dipartimento di Scienze Chimiche, Universita’ degli Studi di Catania, Viale Andrea Doria 6, Catania 95125 (Italy)

    2015-09-01

    Highlights: • Graphene oxide and reduced graphene oxide were tested as adsorbents for dye removal from water. • Reduced graphene oxide was obtained after laser irradiation of a colloidal suspension of graphene oxide. • Methylene blue was chosen as the dye to test graphene oxide and reduced graphene oxide. - Abstract: The presence of dyes, pharmaceuticals and many other pollutants in wastewaters is critical due to severe effects on the human beings and on the environment. Here, solutions of graphene oxide (GO) and reduced graphene oxide (rGO) were tested as adsorbents for the removal of methylene blue (MB), a cationic dye, from aqueous media. The reduced forms of graphene oxide were obtained after laser irradiation of colloidal suspensions of graphene oxide, obtained by the Hummers and Offeman's method. We observed that both graphene oxide and its reduced forms are excellent adsorbents towards methylene blue. In particular, rGO showed a higher adsorption capacity than GO, suggesting that a strict control of laser irradiation time permits to obtain rGO with different degrees of reduction and therefore the residual oxygenated functional groups may influence the adsorption behaviour more or less. Characterization of the samples by atomic force microscopy (AFM) showed that produced rGO sheets via laser irradiation exhibited a discontinuous surface where some holes could be detected contributing to an enhancement of the rGO surface area that is a higher adsorption capacity.

  7. Spectral dependence of some UV-B and UV-C responses of Tetrahymena pyriformis irradiated with dye laser generated UV

    International Nuclear Information System (INIS)

    Calkins, John; Colley, Ed; Wheeler, John; Kentucky Univ., Lexington

    1987-01-01

    We have generated UV-B and UV-C radiations using a flashlamp driven tunable dye laser combined with frequency doubling crystals. Using this novel UV source, we have investigated lethality and its modification by growth phase, photoreactivation and caffeine in Tetrahymena pyriformis at 254 nm and from 260-315 nm in 5 nm steps. From the observed responses we have constructed action spectra for lethality, with or without caffeine (a repair inhibitor) and under conditions of photoreactivation. We have also estimated quantum efficiencies for these responses. Our observations suggest that complex changes in response occur at several wavelengths over the UV-C and UV-B regions. (author)

  8. A low-cost, tunable laser lock without laser frequency modulation

    Science.gov (United States)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.

    2015-05-01

    Many experiments in optical physics require laser frequency stabilization. This can be achieved by locking to an atomic reference using saturated absorption spectroscopy. Often, the laser frequency is modulated and phase sensitive detection used. This method, while well-proven and robust, relies on expensive components, can introduce an undesirable frequency modulation into the laser, and is not easily frequency tuned. Here, we report a simple locking scheme similar to those implemented previously. We modulate the atomic resonances in a saturated absorption setup with an AC magnetic field created by a single solenoid. The same coil applies a DC field that allows tuning of the lock point. We use an auto-balanced detector to make our scheme more robust against laser power fluctuations and stray magnetic fields. The coil, its driver, and the detector are home-built with simple, cheap components. Our technique is low-cost, simple to setup, tunable, introduces no laser frequency modulation, and only requires one laser. We gratefully acknowledge the financial support of the NSF through Grant # PHY-1206040.

  9. Real time algorithm temperature compensation in tunable laser / VCSEL based WDM-PON system

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Rodes Lopez, Roberto; Pham, Tien Thang

    2012-01-01

    We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C.......We report on a real time experimental validation of a centralized algorithm for temperature compensation of tunable laser/VCSEL at ONU and OLT, respectively. Locking to a chosen WDM channel is shown for temperature changes over 40°C....

  10. 2.5-Gb/s hybridly-integrated tunable external cavity laser using a superluminescent diode and a polymer Bragg reflector.

    Science.gov (United States)

    Yoon, Ki-Hong; Oh, Su Hwan; Kim, Ki Soo; Kwon, O-Kyun; Oh, Dae Kon; Noh, Young-Ouk; Lee, Hyung-Jong

    2010-03-15

    We presented a hybridly-integrated tunable external cavity laser with 0.8 nm mode spacing 16 channels operating in the direct modulation of 2.5-Gbps for a low-cost source of a WDM-PON system. The tunable laser was fabricated by using a superluminescent diode (SLD) and a polymer Bragg reflector. The maximum output power and the power slope efficiency of the tunable laser were 10.3 mW and 0.132 mW/mA, respectively, at the SLD current of 100 mA and the temperature of 25 degrees C. The directly-modulated tunable laser successfully provided 2.5-Gbps transmissions through 20-km standard single mode fiber. The power penalty of the tunable laser was less than 0.8 dB for 16 channels after a 20-km transmission. The power penalty variation was less than 1.4 dB during the blue-shifted wavelength tuning.

  11. Solvent effects on lasing characteristics for Rh B laser dye

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaison.peter@gmail.com [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India); Kumar, Mahesh [Department of Applied Chemistry, Cochin University of Science and Technology, Cochin 682022 (India); Ananad, V.R.; Saleem, Rasool; Sebastian, Ananthu; Radhakrishnan, P.; Nampoori, V.P.N.; Vallabhan, C.P.G. [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India); Prabhu, Radhakrishna [School of Engineering, Robert Gordon University, Aberdeen AB10 1FR, Scotland (United Kingdom); Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India)

    2016-01-15

    We demonstrate pulsed, photopumped multimode laser emission in the visible spectral range from rhodamine B dye dissolved in various solvents. The laser emission is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapsed into several dominant laser modes with reduced mode spacing and spectral width. The modes were found to originate from the subcavities formed by the plane-parallel walls of the cuvette containing the gain medium. The cavity lasing spectral structure and the numbers of longitudinal modes were easily controlled by changing the solvents. A shift in the emission spectra has been also observed by changing the solvents will allow a limited range of tuning of laser emission wavelength. We also determined the gain coefficient and stimulated emission cross-section for the Rh B dye dissolved liquid laser system. A detailed discussion of the solvent effect in the lasing characteristics of Rh B in different solution is explained along with the computational data. - Highlights: • Report multimode laser emission from rhodamine B dye dissolved in various solvents. • Modes are originated from the plane-parallel walls of the cuvette. • Spectral range and the number of modes can be controlled by changing the solvents. • Changing solvents also allows a limited range of tuning of laser emission.

  12. Multimode laser emission from dye-doped hollow polymer optical fibre

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Fibre lasers; optical microcavities; whispering gallery modes. ... A blueshift in the mode structure was observed with decrease in fibre diameter leading to wide range tunability of the laser emission. ... International School of Photonics, Cochin University of Science & Technology, Cochin 682 022, India ...

  13. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  14. Tunable Single Frequency 1.55 Micron Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  15. Analysis of photoisomerizable dyes using laser absorption and fluorescence techniques

    International Nuclear Information System (INIS)

    Duchowicz, R.; Di Paolo, R.E.; Scaffardi, L.; Tocho, J.O.

    1992-01-01

    The attention of the present report has been directed mainly to the description of laser-based techniques developed in order to obtain kinetic and spectroscopic properties of polymethine cyanine dyes in solution. Special attention was dedicated to photoisomerizable molecules where the absorption spectra of both isomers are strongly overlapped. As an example, measurements of two different dyes of laser technological interest, DTCI and DODCI were performed. The developed methods provide a complete quantitative description of photophysical processes. (author). 14 refs, 6 figs

  16. Wavelength tunable CW red laser generated based on an intracavity-SFG composite cavity

    Science.gov (United States)

    Zhang, Z. N.; Bai, Y.; Lei, G. Z.; Bai, B.; Sun, Y. X.; Hu, M. X.; Wang, C.; Bai, J. T.

    2016-12-01

    We report a wavelength-tunable watt-level continuous wave (CW) red laser that uses a composite cavity based on an intracavity sum-frequency generation (SFG). The composite cavity is composed of a LD side-pumped Nd: GdVO4 p-polarized 1062.9 nm resonant cavity and a resonant optical parametric oscillator (SRO) of s-polarized signal light using a periodically poled crystal MgO: PPLN. Based on the temperature tuning from 30 °C to 200 °C, the CW red laser beams are obtained in a tunable waveband from 634.4 nm to 649.1 nm, corresponding to a tunable output waveband from 3278.0 nm to 2940.2 nm of the mid-infrared idler lights. The maximum CW output power of the red laser at 634.4 nm and the idler light at 3278.0 nm reach 3.03 W and 4.13 W under 30 °C, respectively.

  17. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    Science.gov (United States)

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  18. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  19. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.

    2010-01-01

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...

  20. Lasing of Some Red Laser Dyes in Annealed Silica Xerogel

    Science.gov (United States)

    Bezkrovnaya, O. N.; Maslov, V. V.; Pritula, I. M.; Yurkevich, A. G.

    2018-01-01

    The spectral and energy characteristics of generation in the red spectral region 650-720 nm were measured and analyzed for three laser dyes in preliminarily annealed SiO2 xerogel matrices under laser excitation λp = 588 nm in a nonselective cavity. The specific laser-energy output for two of them (LK678 and Ox170) in the matrices was 10-13% higher than in MeOH. NBA dye in the matrix generated two laser radiation bands in the 700-720 nm region with pumping E p ≥ 80 mJ whereas its generation threshold in MeOH exceeded the maximum pumping energy of 140 mJ so that NBA generation was not observed. Laser emission spectra of the studied matrices in a nonselective cavity were red-shifted by 1000 cm-1 from the fluorescence maximum. Such a shift could improve the characteristics of biosensors based on these matrices.

  1. Measurement of liquid sheet using laser tagging method by photochromic dye

    Science.gov (United States)

    Rosli, Nurrina Binti; Amagai, Kenji

    2014-12-01

    Liquid atomization system has been extensively applied as the most significant process in many industrial fields. In the internal combustion engine, the combustion phenomenon is strongly influenced by the spray characteristics of the fuel given by the atomization process. In order to completely understand the whole atomization process, a detail investigation of relations between the liquid jet characteristics and the breakup phenomenon is required. In this study, a non-intrusive method called as laser tagging method by photochromic dye has been developed with aim to study the breakup process of liquid sheet in detail, covering from the behavior in film until disintegrated into ligament and droplets. The laser tagging method by photochromic dye is based on a shift in the absorption spectrum of photochromic dye molecules tagged by ultraviolet laser. The shift results a color change at the tagged region of liquid containing the dye. In this study, the motions of the dye traces were analyzed as the liquid surface velocity. As a result, liquid sheet was found to keep its velocity constantly in film before suddenly increase around broken point. However, it then decreased after broken into droplets. By forming a set of four points of dye traces on the liquid sheet, the change of relative position of the set enabled the measurement of deformation and rotational motion of the liquid sheet. As a result, the normal strain of the liquid sheet parallel to the flow direction depended on the flow behavior of ligament formation.

  2. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    International Nuclear Information System (INIS)

    Rothe, Sebastian

    2012-01-01

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  3. An all-solid state laser system for the laser ion sources RILIS and in-source laser spectroscopy of astatine at ISOLDE/CERN

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, Sebastian

    2012-09-24

    This doctoral thesis describes the extension of the resonance ionization laser ion source RILIS at CERN/ISOLDE by the addition of an all-solid state tunable titanium:sapphire (Ti:Sa) laser system to complement the well-established system of dye lasers. Synchronous operation of the so called Dual RILIS system of Ti:Sa and dye lasers was investigated and the potential for increased ion beam intensity, reliability, and reduced setup time has been demonstrated. In-source resonance ionization spectroscopy was performed at ISOLDE/CERN and at ISAC/TRIUMF radioactive ion beam facilities to develop an efficient and selective three-colour ionization scheme for the purely radioactive element astatine. A LabVIEW based monitoring, control and measurement system was conceived which enabled, in conjunction with Dual RILIS operation, the spectroscopy of high lying Rydberg states, from which the ionization potential of the astatine atom was determined for the first time experimentally.

  4. Widely tunable Sampled Grating Distributed Bragg Reflector Quantum Cascade laser for gas spectroscopy applications

    Science.gov (United States)

    Diba, Abdou Salam

    Since the advent of semiconductor lasers, the development of tunable laser sources has been subject of many efforts in industry and academia arenas. This interest towards broadly tunable lasers is mainly due to the great promise they have in many applications ranging from telecommunication, to environmental science and homeland security, just to name a few. After the first demonstration of quantum cascade laser (QCL) in the early nineties, QCL has experienced a rapid development, so much so that QCLs are now the most reliable and efficient laser source in the Mid-IR range covering between 3 microm to 30 microm region of the electromagnetic spectrum. QCLs have almost all the desirable characteristics of a laser for spectroscopy applications such as narrow spectral linewidth ideal for high selectivity measurement, high power enabling high sensitivity sensing and more importantly they emit in the finger-print region of most of the trace gases and large molecules. The need for widely tunable QCLs is now more pressing than ever before. A single mode quantum cascade laser (QCL) such as a distributed feedback (DFB) QCL, is an ideal light source for gas sensing in the MIR wavelength range. Despite their performance and reliability, DFB QCLs are limited by their relatively narrow wavelength tuning range determined by the thermal rollover of the laser. An external cavity (EC) QCL, on the other hand, is a widely tunable laser source, and so far is the choice mid-infrared single frequency light sources for detecting multiple species/large molecules. However, EC QCLs can be complex, bulky and expensive. In the quest for finding alternative broadly wavelength tunable sources in the mid-infrared, many monolithic tunable QCLs are recently proposed and fabricated, including SG-DBR, DFB-Arrays, Slot-hole etc. and they are all of potentially of interest as a candidate for multi-gas sensing and monitoring applications, due to their large tuning range (>50 cm-1), and potentially low

  5. Color-Tunable and High-Efficiency Dye-Encapsulated Metal-Organic Framework Composites Used for Smart White-Light-Emitting Diodes.

    Science.gov (United States)

    Chen, Wenwei; Zhuang, Yixi; Wang, Le; Lv, Ying; Liu, Jianbin; Zhou, Tian-Liang; Xie, Rong-Jun

    2018-05-25

    Luminescent metal-organic frameworks (MOFs) (typically dye-encapsulated MOFs) are considered as one kind of interesting downconversion materials for white-light-emitting diodes (LEDs), but their quantum efficiency (QE) is not sufficient and thus needs to be significantly enhanced for practical applications. In this study, we successfully synthesized a series of Rh@bio-MOF-1 (Rh = rhodamine) with an internal QE as high as ∼79% via a solvothermal reaction followed by cation exchanges. The high efficiency of the Rh@bio-MOF-1 composites was attributable to the high intrinsic luminescent efficiency of the selected Rh dyes, the confinement effect in the bio-MOF-1 host, and the uniform particle morphology. The emission maximum could be continuously tuned from 550 to 610 nm by controlling the species and concentration of encapsulated dye molecules, showing great color tunability of the dye-encapsulated MOFs. The emission lifetime of ∼7 ns was 1 or 2 magnitude orders shorter than that of Ce 3+ - or Eu 2+ -doped inorganic phosphors, allowing for visible light communication (VLC). White LEDs, fabricated by using the synthesized Rh@bio-MOF-1 composite and inorganic phosphors of green (Ba,Sr) 2 SiO 4 :Eu 2+ and red CaAlSiN 3 :Eu 2+ , exhibited a high color rendering index of 80-94, a luminous efficacy of 94-156 lm/W, and an excellent stability in color point against drive current. The Rh@bio-MOF-1 composites with tunable colors, short emission lifetime, and high QE are expected to be used for smart white LEDs with multifunctions of both lighting and VLC.

  6. Polymer photonic crystal dye lasers as label free evanescent cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    . The lasers are fabricated by combined nanoimprint and photolithography (CNP) in Ormocore hybrid polymer doped with the laser dye Pyrromethene 597. The lasers emit in the chip plane at a wavelength around 595 nm when pumped with 5 ns pulses from a compact frequency doubled Nd:YAG laser. We investigate...

  7. Progress in solid state dye laser development

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, R.E.

    1990-01-01

    A triaxial flashlamp (15 cm) was used to optically pump laser rods prepared from an acrylate based copolymer (0.95 cm O.D. {times} 10.0 cm L.). The performance of 13 laser dyes incorporated into this polymeric solid host is reported. The best lasing performance was obtained with sulforhodamine-B, with a calculated slope efficiency of 0.52% and a maximum single pulse output energy of 580 mJ. A commercially available fluorescent polymeric material was also evaluated. 12 refs., 2 figs.

  8. Laser incising of wood: Impregnation of columns with water-soluble dye

    International Nuclear Information System (INIS)

    Hattori, N.; Ando, K.; Kitayama, S.; Nakamura, Y.

    1994-01-01

    To know whether or not laser incising is a useful pre-treatment technique in impregnating a chemical fluid into lumber, pin holes were made in columns of hinoki (Chamaecyparis obtusa Endl.), sugi (Cryptomeria japonica D. Don), karamatsu (Larix leptolepis Gordon) and douglas-fir (Pseudo-tsuga menziesii Franco) with 1.7 kW CO2 laser, and a water-soluble dye was impregnated into these columns with a local pressure impregnation device. Retentions, and lengths and widths of penetrations from each hole were measured quantitatively. Referring to the results of the preparatory experiment mentioned above, incising patterns for sugi and douglas-fir were designed, and the same water-soluble dye was impregnated into the laser-incised columns as well as into non-incised ones with the vacuum-pressure method to obtain penetrated layers with the target depths completely. As a result, a retention of 200 kg/m3 of dye could be achieved for a column of douglas-fir even if it is a species difficult to impregnate. The penetrated layer also could be formed completely at the depth of the laser incision. Therefore, it is concluded that laser incising can be used for the pre-treatment before impregnation of wood columns. (author)

  9. Single-mode solid-state polymer dye laser fabricated with standard I-line UV lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Mironov, Andrej; Nilsson, Daniel

    2005-01-01

    We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G.......We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G....

  10. Molecular reorientation of dye doped nematic liquid crystals in the laser illumination

    International Nuclear Information System (INIS)

    San, S. E.; Koeysal, O.; Ecevit, F. N.

    2002-01-01

    In this study it is investigated how dye doped nematic liquid crystals reorient under the illumination of laser beam whose wavelength is appropriate to absorbance characteristics of the doping dye. Nematic liquid crystal E7 is used with anthraquinone dye 1% wt/wt in the preparation of the sample and this material is filled in homegenously aligned measurement cell having 15 μm thickness. Mechanism of molecular reorientation includes the absorbance effects of the energy of laser by doping dye and this reorientation causes the refractive index of the material to be changed. There are potential application possibilities of such molecular reorientation based effects in nonlinear optics such as real time holography whose basis is grating diffraction that is observed and investigated in the frame of fundamentals of molecule light interaction mechanisms. Experimental analyses allowed finding characteristic values of diffraction signals depending on physical parameters of set up for a dye doped liquid crystal system and this system provided a 20 % diffraction efficiency under the optimum circumstances

  11. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  12. Design challenges of a tunable laser interrogator for geo-stationary communication satellites

    Science.gov (United States)

    Ibrahim, Selwan K.; Honniball, Arthur; McCue, Raymond; Todd, Michael; O'Dowd, John A.; Sheils, David; Voudouris, Liberis; Farnan, Martin; Hurni, Andreas; Putzer, Philipp; Lemke, Norbert; Roner, Markus

    2017-09-01

    Recently optical sensing solutions based on fiber Bragg grating (FBG) technology have been proposed for temperature monitoring in telecommunication satellite platforms with an operational life time beyond 15 years in geo-stationary orbit. Developing radiation hardened optical interrogators designed to be used with FBG sensors inscribed in radiation tolerant fibers offer the capabilities of multiplexing multiple sensors on the same fiber and reducing the overall weight by removing the copper wiring harnesses associated with electrical sensors. Here we propose the use of a tunable laser based optical interrogator that uses a semiconductor MG-Y type laser that has no moving parts and sweeps across the C-band wavelength range providing optical power to FBG sensors and optical wavelength references such as athermal Etalons and Gas Cells to guarantee stable operation of the interrogator over its targeted life time in radiation exposed environments. The MG-Y laser was calibrated so it remains in a stable operation mode which ensures that no mode hops occur due to aging of the laser, and/or thermal or radiation effects. The key optical components including tunable laser, references and FBGs were tested for radiation tolerances by emulating the conditions on a geo-stationary satellite including a Total Ionizing Dose (TID) radiation level of up to 100 krad for interrogator components and 25 Mrad for FBGs. Different tunable laser control, and signal processing algorithms have been designed and developed to fit within specific available radiation hardened FPGAs to guarantee operation of a single interrogator module providing at least 1 sample per second measurement capability across engineering model system developed in the frame of an ESA-ARTES program and is planned to be deployed as a flight demonstrator on-board the German Heinrich Hertz geo-stationary satellite.

  13. A dual-wavelength tunable laser with superimposed fiber Bragg gratings

    International Nuclear Information System (INIS)

    Álvarez-Tamayo, R I; Durán-Sánchez, M; Pottiez, O; Ibarra-Escamilla, B; Kuzin, E A; Cruz, J L; Andrés, M V

    2013-01-01

    We report a dual-wavelength tunable fiber laser. The cavity is formed by two superimposed fiber Bragg gratings (FBGs) and a temperature tunable high-birefringence fiber optical loop mirror (FOLM). FBGs with wavelengths of 1548.5 and 1538.5 nm were printed in the same section of a fiber using two different masks. The superimposed FBGs were placed on a mechanical mount that allows stretch or compression of the FBGs. As a result of the FBG strain both lines are shifted simultaneously. Dual-wavelength generation requires a fine adjustment of the cavity loss for both wavelengths. (paper)

  14. Dye laser light for high-resolution classical photography

    International Nuclear Information System (INIS)

    Geissler, K.K.

    1982-01-01

    The test run with the bubble chamber HOLEBC in October 1981 offered the opportunity of checking the usefulness of de-speckled dye laser light for illumination purposes in high-resolution classical dark field photography of small bubble chambers. (orig./HSI)

  15. Tunable Laser for High-Performance, Low-Cost Distributed Sensing Platform, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will establish technical feasibility of an approach to optimizing a low-cost, fast-sweeping tunable laser for distributed sensing. Multiple...

  16. 5.5nm wavelength-tunable high-power MOPA diode laser system at 971 nm

    Science.gov (United States)

    Tawfieq, Mahmoud; Müller, André; Fricke, Jörg; Della Casa, Pietro; Ressel, Peter; Ginolas, Arnim; Feise, David; Sumpf, Bernd; Tränkle, Günther

    2018-02-01

    In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm × 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M2 1/e2 = 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only +/- 0.16 % for the entire tuning range.

  17. Treatment of inflammatory facial acne vulgaris with combination 595-nm pulsed-dye laser with dynamic-cooling-device and 1,450-nm diode laser.

    Science.gov (United States)

    Glaich, Adrienne S; Friedman, Paul M; Jih, Ming H; Goldberg, Leonard H

    2006-03-01

    The 585-nm pulsed-dye laser and the 1,450-nm diode laser have been found effective for the treatment of mild-to-moderate inflammatory facial acne. This study was designed to evaluate the efficacy and safety of the combined treatment with the 595-nm pulsed-dye laser and the 1,450-nm diode laser for inflammatory facial acne. Fifteen patients with inflammatory facial acne were treated with a combination of the 595-nm pulsed-dye laser and the 1,450-nm diode laser. Patients' subjective response to treatment was evaluated regarding improvement in acne, acne scarring, oiliness, and redness of the skin. All patients had reductions in acne lesion counts. Mean lesion counts decreased 52% (P < 0.01), 63% (P < 0.01), and 84% (P < 0.01) after one, two, and three treatments, respectively. Patients described moderate-to-marked improvement in acne, acne scarring, and post-inflammatory erythema. Adverse effects were limited to mild, transient erythema. The combination of the 595-nm pulsed-dye laser and the 1,450-nm diode laser is safe and effective for the treatment of inflammatory facial acne, acne scarring, and post-inflammatory erythema. 2005 Wiley-Liss, Inc.

  18. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    International Nuclear Information System (INIS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-01-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a 0 ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10 −12 ) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements

  19. A Tunable Mid-Infrared Solid-State Laser with a Compact Thermal Control System

    Directory of Open Access Journals (Sweden)

    Deyang Yu

    2018-05-01

    Full Text Available Tunable mid-infrared lasers are widely used in laser spectroscopy, gas sensing and many other related areas. In order to solve heat dissipation problems and improve the environmental temperature adaptability of solid-state laser sources, a tunable all-fiber laser pumped optical parametric oscillator (OPO was established, and a compact thermal control system based on thermoelectric coolers, an automatic temperature control circuit, cooling fins, fans and heat pipes was integrated and designed for the laser. This system is compact, light and air-cooling which satisfies the demand for miniaturization of lasers. A mathematical model and method was established to estimate the cooling capacity of this thermal control system under different ambient environments. A finite-element model was built and simulated to analyze the thermal transfer process. Experiments in room and high temperature environments were carried out and showed that the substrate temperature of a pump module could be maintained at a stable value with controlled precision to 0.2 degrees, while the output power stability of the laser was within ±1%. The experimental results indicate that this compact air-cooling thermal control system could effectively solve the heat dissipation problem of mid-infrared solid-state lasers with a one hundred watts level pump module in room and high temperature environments.

  20. Stretchable Random Lasers with Tunable Coherent Loops.

    Science.gov (United States)

    Sun, Tzu-Min; Wang, Cih-Su; Liao, Chi-Shiun; Lin, Shih-Yao; Perumal, Packiyaraj; Chiang, Chia-Wei; Chen, Yang-Fang

    2015-12-22

    Stretchability represents a key feature for the emerging world of realistic applications in areas, including wearable gadgets, health monitors, and robotic skins. Many optical and electronic technologies that can respond to large strain deformations have been developed. Laser plays a very important role in our daily life since it was discovered, which is highly desirable for the development of stretchable devices. Herein, stretchable random lasers with tunable coherent loops are designed, fabricated, and demonstrated. To illustrate our working principle, the stretchable random laser is made possible by transferring unique ZnO nanobrushes on top of polydimethylsiloxane (PDMS) elastomer substrate. Apart from the traditional gain material of ZnO nanorods, ZnO nanobrushes were used as optical gain materials so they can serve as scattering centers and provide the Fabry-Perot cavity to enhance laser action. The stretchable PDMS substrate gives the degree of freedom to mechanically tune the coherent loops of the random laser action by changing the density of ZnO nanobrushes. It is found that the number of laser modes increases with increasing external strain applied on the PDMS substrate due to the enhanced possibility for the formation of coherent loops. The device can be stretched by up to 30% strain and subjected to more than 100 cycles without loss in laser action. The result shows a major advance for the further development of man-made smart stretchable devices.

  1. Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.; Mendoza, Albert

    2015-09-01

    We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.

  2. Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output

    International Nuclear Information System (INIS)

    Yeh, C H; Shih, F Y; Wang, C H; Chow, C W; Chi, S

    2008-01-01

    In this investigation, we propose and investigate a stable and tunable dual-wavelength erbium-doped fiber (EDF) ring laser with self-injected Fabry-Perot laser diode (FP-LD) scheme. By using an FP-LD incorporated with a tunable bandpass filter (TBF) within the gain cavity, the fiber laser can lase at two single-longitudinal-mode (SLM) wavelengths simultaneously due to the self-injected operation. The proposed dual-wavelength laser has a good performance of the output power and optical side-mode suppression ratio (SMSR). The laser also shows a wide tuning range from 1523.08 to 1562.26 nm. Besides, the output stabilities of the fiber laser are also discussed

  3. Wide range optofluidically tunable multimode interference fiber laser

    International Nuclear Information System (INIS)

    Antonio-Lopez, J E; LiKamWa, P; Sanchez-Mondragon, J J; May-Arrioja, D A

    2014-01-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range. (paper)

  4. Evidence for laser emission from the TICT exciplex of coumarin dyes

    International Nuclear Information System (INIS)

    Masilamani, V.

    1987-06-01

    This paper gives confirming evidence for the possibility of super radiant laser emission from the Twisted Internal Charge Transfer (TICT) conformation in exicted state complexation with the solvent, of coumarin family of laser dyes. (author). 6 refs, 1 fig., 2 tabs

  5. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  6. Single mode dye-doped polymer photonic crystal lasers

    International Nuclear Information System (INIS)

    Christiansen, Mads B; Buß, Thomas; Smith, Cameron L C; Petersen, Sidsel R; Jørgensen, Mette M; Kristensen, Anders

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e.g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be −0.045 or −0.066 nm K -1 , depending on the material

  7. Development of high-power laser technology. Fabrication of a dye cell of the high power dye laser and development of the measurement technology of the fluid velocities in a dye cell

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jae Heung; Chang, Soo; Lim, Kwon; Kim, Jee Teak; Choi, Wan Hae [Hannam University, Taejon (Korea, Republic of)

    1995-08-01

    The computer simulation code for the simulation of the steady-state flow in a dye cell is developed by using the finite element method. The situation of the fluid flow is measured by the diode laser LDV system and compared with results of the computer simulation. The small size Fiber-Optic LDV with a directional coupler is designed and fabricated for the real time measurement of fluid velocities in a dye cell. (author). 13 refs.

  8. CW organic dye laser

    International Nuclear Information System (INIS)

    Tuccio, S.A.; Peterson, O.G.

    1975-01-01

    A method and apparatus for producing continuous emission from a lasing medium comprising organic dye molecules in solution are described. Continuous emission is accomplished by flowing the medium through a focused optical cavity while simultaneously producing a population inversion in that portion of the medium flowing in close proximity to the focal point of the cavity. The population inversion is produced by pumping the medium longitudinally, along the optical axis of the cavity, preferably by the focused output of a continuous-wave argon laser. Sufficient thermal energy is continuously dissipated from the medium to maintain the optical homogeneity thereof at or above the quality required for continuous emission

  9. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    Science.gov (United States)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  10. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Directory of Open Access Journals (Sweden)

    Chih-Ping Yen

    2016-08-01

    Full Text Available The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP, and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE for application to dye-sensitized solar cell (DSSC is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  11. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Chih-Ping [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Yu, Pin-Feng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Wang, Jyhpyng [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Taoyuan 320, Taiwan (China); Lin, Jiunn-Yuan [Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Chen, Yen-Mu [SuperbIN Co., Ltd., Taipei 114, Taiwan (China); Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Taoyuan 320, Taiwan (China)

    2016-08-15

    The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP), and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE) for application to dye-sensitized solar cell (DSSC) is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  12. Conversion of the luminescence of laser dyes in opal matrices to stimulated emission

    International Nuclear Information System (INIS)

    Alimov, O K; Basiev, T T; Orlovskii, Yu V; Osiko, V V; Samoilovich, M I

    2008-01-01

    The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located within the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)

  13. A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.

    Science.gov (United States)

    Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai

    2016-11-18

    Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.

  14. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser

    Science.gov (United States)

    Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an

    2018-06-01

    In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.

  15. Tm:GGAG crystal for 2μm tunable diode-pumped laser

    Science.gov (United States)

    Šulc, Jan; Boháček, Pavel; Němec, Michal; Fibrich, Martin; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin

    2016-04-01

    The spectroscopy properties and wavelength tunability of diode pumped laser based on Tm-doped mixed gadolinium-gallium-aluminium garnet Gd3(GaxAl1-x)5O12 (Tm:GGAG) single crystal were investigated for the first time. The crystal was grown by Czochralski method in a slightly oxidative atmosphere using an iridium crucible. The tested Tm:GGAG sample was cut from the grown crystal boule perpendicularly to growth direction (c-axis). The composition of sample was determined using electron microprobe X-ray elemental analysis. For spectroscopy and laser experiments 3.5mm thick plane-parallel face-polished plate (without AR coatings) with composition Gd2.76Tm0.0736Ga2.67Al2.50O12 (2.67 at.% Tm/Gd) was used. A fiber (core diameter 400 μm, NA= 0.22) coupled laser diode (emission wavelength 786 nm) was used for longitudinal Tm:GGAG pumping. The laser diode was operating in the pulsed regime (10 ms pulse length, 10 Hz repetition rate, maximum power amplitude 18 W). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.8- 2.10 μm, HT @ 0.78 μm) and curved (r = 150mm) output coupler with a reflectivity of » 97% @ 1.8- 2.10 µm. The maximum laser output power amplitude 1.14W was obtained at wavelength 2003nm for absorbed pump power amplitude 4.12W. The laser slope efficiency was 37% in respect to absorbed pumping power. Wavelength tuning was accomplished by using 2mm thick MgF2 birefringent filter placed inside the laser resonator at the Brewster angle. The laser was continuously tunable over 180nm in a spectral region from 1856nm to 2036 nm.

  16. Frequency lock of a dye laser emission on iron atomic line top

    International Nuclear Information System (INIS)

    Durand, P.

    1995-03-01

    The aim of this thesis is to realize a frequency lock of a dye laser emission on iron atomic line top. To reach that goal, the author first presents the calculation of atomic vapour density by means of laser absorption ratio measure and studies the dye laser working. It is then necessary to find a device giving the required precision on the frequency of the absorption line choosen. It is obtained thanks to the atomic line reconstitution by optogalvanic effect which gives the reference. Besides, the author presents the necessity of a laser emission power regulation which is obtained thanks to a device including an acoustic and optic modulator. A reliable and accurate captor is choosen and adjusted testing various hollow cathode lamps. The method to obtain the frequency lock of laser emission on iron atomic line top is described. (TEC). 18 refs., 64 figs

  17. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    International Nuclear Information System (INIS)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-01-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice

  18. Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist

    DEFF Research Database (Denmark)

    Balslev, Søren; Rasmussen, Torben; Shi, Peixiong

    2005-01-01

    We demonstrate grey scale electron beam lithography on functionalized SU-8 resist for fabrication of single mode solid state dye laser devices. The resist is doped with Rhodamine 6G perchlorate and the lasers are based on a first order Bragg grating distributed feedback resonator. The lasers...

  19. How to prevent dimerization of laser dyes in water? Simulation and organic synthesis

    International Nuclear Information System (INIS)

    Dare-Doyen, S.

    2000-01-01

    Xanthenes are widely used as laser dyes in ethanol medium because their photophysical properties there are excellent. On the other hand, when they are dissolved in water, their fluorescence is almost zero on account of the dimerization phenomenon (aggregation of two molecules) which is specific in water although the interaction between the two molecules (these dyes are mainly cations) be repulsive. The first part of this work deals with the dimerization study of two dyes, the 6G rhodamine and the 6G pyronine. Molecular dynamics simulation results (AMBER software) have been compared with those of the NMR; thus it has been possible to describe the geometry of the 6G rhodamine dimer and to identify two structures present in equal quantities for the 6G pyronine dimer. It has been demonstrated that the role of water is essential in the aggregation mechanism; this role can be understood as resulting of the hydrophobic effect. The second part of this work concerns the synthesis of rhodamines which are soluble but not able to dimerize in water at the running concentrations of the laser dyes. At first, aminophenol precursors having hydrophilic ionic groups on modifiable sites have been synthesized without changing their photophysical properties. The synthesis sequence of the 3-(2-alkylamino-4-hydroxyphenyl)propionic acids has not given the waited products but N-(3'-hydroxyphenyl)amino-alkylsulfonic acids have been obtained. Their condensation with the phthalic anhydride has led to dyes of a charge -2 at a pH of 5 in water and which have photophysical properties similar to those of the rhodamine 575 in ethanol and laser emission properties in the emission spectral range of the rhodamine 6G in ethanol. This synthesis work has then led to the preparation of two laser dyes usable in water. (author) [fr

  20. Bio-effects of repetitively pulsed ultra-fast distributed feedback dye lasers

    International Nuclear Information System (INIS)

    Khan, N.; Ahmad, M.I.; Sheikh, A.

    1999-01-01

    Results of experimental study showing an unexpected rise in pulses of distributed feedback dye laser (DFDL) output due to temperature accumulation in dye cell during passively Q-Switched, a Mode-locked operation is reported. This unintended increase in number of pulse duration, per pulse energy may cause side-effects when used for selective photo thermolysis. To probe this phenomenon most commonly dye was excited with 10 to 20 pulses of second harmonic of a passively Q-Switched and Mode-locked Nd-YaG laser. The outputs of DFDL and Nd:YaG laser were recorded by Imacon 675-streak camera. The peak of DFDL output pulses was found delayed proportionally from the peak of the NYAG pulses by more than one inter-pulse period of excitation laser. A computer program was used to simulate the experimentally measured delay to estimate thermal decay constants and energy retained by the medium to determine the amount of incremental fluctuations in output. The delay between peaks of Nd:YAG (input) and DFDL(output) pulses was found to vary from 10 to 14 nanoseconds for various cavity lengths. It was found that for smaller inter-pulse periods the effect of gradual build-up satisfies the threshold conditions for some of the pulses that otherwise can not. This may lead to unintended increase in energy fluence causing overexposure-induced side-effects. (author)

  1. The Effect of Glare on Regan Contrast Letter Acuity Scores Using Dye-Based and Reflective Laser Eye Protection

    National Research Council Canada - National Science Library

    Ghani, Nadeem

    2001-01-01

    Current laser eye protection devices (LEPDs) are dye-based or reflective. While both technologies block the laser wavelengths, reflective LEPDs generally transmit more visible light than do dye-based LEPDs...

  2. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    Science.gov (United States)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  3. Dye laser spectrometer for the analysis of pulsed vacuum arcs

    International Nuclear Information System (INIS)

    Hargis, P.J. Jr.; Robertson, M.M.

    1975-01-01

    A pulsed dye laser spectrometer which is used to obtain detailed single shot spectroscopic measurements of the plasma in a pulsed vacuum arc was developed. The capabilities of this spectrometer are indicated by the detection of laser induced fluorescence signals from 10 6 neutral Ti atoms in the plasma of a pulsed vacuum arc with a Ti anode. (U.S.)

  4. Tunable, diode side-pumped Er:YAG laser

    Science.gov (United States)

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  5. Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer

    International Nuclear Information System (INIS)

    Yokoyama, Shiyoshi; Nakahama, Tatsuo; Mashiko, Shinro

    2005-01-01

    We measured the amplified spontaneous emission and laser emission from high-gain media of laser-dye encapsulated dendrimers. A highly branched poly(amidoamine) (PAMAM-OH) dendrimer formed a guest-host complex with a conventional laser-dye (DCM), resulting in a high optical-gain. Of particular note was the appearance of a laser threshold, above which a super-narrowed laser spectrum was observed, although laser feedback was caused without any mirror cavity devices. The optical feedback was attributed to spatial confinement of the light due to gain guiding under optical excitation. The laser spectrum clearly indicated a resonant laser-mode with a spectrum linewidth of less than 0.1 nm. This order of spectrum narrowing is comparable to that seen in the laser emission from ordinary laser devices

  6. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    Science.gov (United States)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  7. Multi-wavelength study of PPDs using an OPO tunable pulse laser microscope system

    International Nuclear Information System (INIS)

    Yoshimura, Koji; Nakamura, Isamu

    2012-01-01

    We have developed a new pulsed laser microscope system whose wavelength is continuously tunable from 410 nm to 2200 nm by using an optical parametric oscillator (OPO) laser system. The laser spot can be focused to ∼2μm diameter, small enough to measure pixel-by-pixel performance of PPDs (pixelated photon detectors). Using multi-wavelength laser light, we plan to probe PPDs at various depths, thanks to their different penetration lengths in the silicon layer. In this paper, details of the commissioning of the laser microscope system and pilot measurements on a PPD at several wavelengths will be presented.

  8. Multi-wavelength study of PPDs using an OPO tunable pulse laser microscope system

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Koji, E-mail: koji.yoshimura@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nakamura, Isamu [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2012-12-11

    We have developed a new pulsed laser microscope system whose wavelength is continuously tunable from 410 nm to 2200 nm by using an optical parametric oscillator (OPO) laser system. The laser spot can be focused to {approx}2{mu}m diameter, small enough to measure pixel-by-pixel performance of PPDs (pixelated photon detectors). Using multi-wavelength laser light, we plan to probe PPDs at various depths, thanks to their different penetration lengths in the silicon layer. In this paper, details of the commissioning of the laser microscope system and pilot measurements on a PPD at several wavelengths will be presented.

  9. Properties of transition metal-doped zinc chalcogenide crystals for tunable IR laser radiation

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1995-01-01

    The spectroscopic properties of Cr 2+ , Co 2+ , and Ni 2+ -doped single crystals of ZnS, ZnSe, and ZnTe have been investigated to understand their potential application as mid-IR tunable solid-state laser media. The spectroscopy indicated divalent Cr was the most favorable candidate for efficient room temperature lasing, and accordingly, a laser-pumped laser demonstration of Cr:ZnS and Cr:ZnSe has been performed. The lasers' output were peaked at ∼ 2.35 μm and the highest measured slope efficiencies were ∼ 20% in both cases

  10. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    Science.gov (United States)

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  11. Improving the Performance of Gold-Nanoparticle-Doped Solid-State Dye Laser Using Thermal Conversion Effect

    Science.gov (United States)

    An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Hoa, D. Q.

    2018-04-01

    Energy transfer between spherical gold nanoparticles with size of more than 15 nm and molecules of organic dye 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4 H-pyran (DCM) has been studied. Such radiative energy transfer led to high local temperature, giving rise to a bleaching effect that resulted in rapid degradation of the laser medium. Gold nanoparticles were dispersed at concentrations from 5 × 109 particles/mL to 5 × 1010 particles/mL in DCM polymethylmethacrylate polymer using a radical polymerization process with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. Using the fast thermoelectric cooling method, the laser medium stability was significantly improved. The output stability of a distributed feedback dye laser pumped by second-harmonic generation from a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was investigated. Moreover, bidirectional energy transfer between gold nanoparticles and dye molecules was observed.

  12. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile

    Science.gov (United States)

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.

    1992-07-01

    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  13. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    Dye doped hybrid polymer lasers are implemented as label free evanescent field biosensors for detection of cells. It is demonstrated that although the coverage is irregular and the cells extend over several lattice constants, the emission wavelength depends linearly on the fraction of the surface...

  14. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    Science.gov (United States)

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  15. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  16. High-resolution 3D laser imaging based on tunable fiber array link

    Science.gov (United States)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  17. Laser-induced removal of a dye C.I. Acid Red 87 using n-type WO{sub 3} semiconductor catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Hayat, K. [Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Laser Research Laboratory, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Hooshani, K. [Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, KFUPM Box 741, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-10-30

    Water contamination by organic substances such as dyes is of great concern worldwide due to their utilization in many industrial processes and environmental concerns. To cater the needs for waste water treatment polluted with organic dyes, laser-induced photocatalytic process was investigated for removal of a dye derivative namely Acid Red 87 using n-type WO{sub 3} semiconductor catalyst. The degradation was investigated in aqueous suspensions of tungsten oxide under different experimental conditions using laser instead of conventional UV lamp as an irradiation source. The degradation process was monitored by measuring the change in dye concentration as a function of laser irradiation time by employing UV spectroscopic analysis. The degradation of dye was studied by varying different parameters such as laser energy, reaction pH, substrate concentration, catalyst concentration, and in the presence of electron acceptors such as hydrogen peroxide (H{sub 2}O{sub 2}), and potassium bromate (KBrO{sub 3}). The degradation rates were found to be strongly dependent on all the above-mentioned parameters. Our experimental results revealed that the dye degradation process was very fast (within few minutes) under laser irradiation as compared to conventional setups using broad spectral lamps (hours or days) and this laser-induced photocatalytic degradation method could be an effective means to eliminate the pollutants present in liquid phase. The experience gained through this study could be beneficial for treatment of waste water contaminated with organic dyes and other organic pollutants.

  18. Pulsed dye laser treatment of rosacea using a novel 15 mm diameter treatment beam.

    Science.gov (United States)

    Bernstein, Eric F; Schomacker, Kevin; Paranjape, Amit; Jones, Christopher J

    2018-04-10

    The pulsed-dye laser has been used to treat facial redness and rosacea for decades. Recent advances in dye laser technology enable 50% higher output energies supporting 50% larger treatment areas, and beam-diameters up to 15 mm with clinically-relevant fluences. In this study, we investigate this novel pulsed-dye laser using a 15 mm diameter beam for treatment of rosacea. Twenty subjects with erythemato-telangiectatic rosacea were enrolled in the study. A total of 4 monthly treatments were administered, first treating linear vessels with a 3 × 10 mm elliptical beam, then diffuse redness with a 15-mm diameter circular beam. Blinded assessment of digital, cross-polarized photographs taken 2 months following the last treatment was performed using an 11-point clearance scale. Nineteen subjects completed the study. Blinded reviewers correctly identified baseline photos in 55 out of the total of 57 images (96.5%). The blinded reviewers scored 17 of the 19 subjects with an improvement greater than 40%, and 11 of the 19 subjects greater than 50%. The average improvement was 53.9%. Side effects were limited to mild edema, mild to moderate erythema, and mild to moderate bruising. This study demonstrates that a newly designed pulsed-dye laser having a novel 15-mm diameter treatment beam improves the appearance of rosacea with a favorable safety profile. Lasers Surg. Med. 9999:1-5, 2018. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.

  19. Experimental test of a four-level kinetic model for excited-state intramolecular proton transfer dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Costela, A; Munnoz, J M; Douhal, A; Figuera, J M; Acuna, A U [Inst. de Quimica Fisica ' ' Rocasolano' ' , C.S.I.C., Madrid (Spain)

    1989-11-01

    The nanosecond pulses of a dye laser oscillator based on the excited-state intramolecular proton-transfer reaction (IPT) of salicylamide and 2'-hydroxylphenyl benzimidazole dyes have been studied as a function of several experimental parameters. To explain the operation of this laser a numerical four-level kinetic model was developed until the lasing properties of these dyes, in the presence of a variable oxygen concentration and pumped with a double pulse technique, could be reproduced. This was possible only by assuming that the efficiency of the laser is controlled by the absorption cross-section of a transient state with a lifetime in the nanosecond-picosecond range, which was tentatively identified as a ground state tautomeric species. (orig.).

  20. A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure

    International Nuclear Information System (INIS)

    Feng, Ting; Yan, Fengping; Peng, Wanjing; Liu, Shuo; Tan, Siyu; Liang, Xiao; Wen, Xiaodong

    2014-01-01

    A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure is proposed and demonstrated experimentally. The compound-cavity is composed of a main-linear-cavity and a subring-cavity. Using a pump power of 150 mW, the optical signal to noise ratio of the laser output is as high as ∼67 dB; the wavelength and output power fluctuation are 0.7 pm and 0.07 dBm respectively in an experimental period of 1 h; the linewidth of the laser output is as narrow as 650 Hz; the degree of polarization of the laser output is stable at a value of 100.8% in 15 min and the polarization extinction ratio is as high as 30.57 dB; the wavelength-tunable range is as wide as ∼8.1 nm. The proposed fiber laser can be used in areas where high stability, narrow-linewidth, single-polarization and wide wavelength-tunable range are needed. (letter)

  1. Tunable femtosecond lasers with low pump thresholds

    Science.gov (United States)

    Oppo, Karen

    The work in this thesis is concerned with the development of tunable, femtosecond laser systems, exhibiting low pump threshold powers. The main motive for this work was the development of a low threshold, self-modelocked Ti:Al2O3 laser in order to replace the conventional large-frame argon-ion pump laser with a more compact and efficient all-solid-state alternative. Results are also presented for an all-solid-state, self-modelocked Cr:LiSAF laser, however most of this work is concerned with self-modelocked Ti:Al2O3 laser systems. In chapter 2, the operation of a regeneratively-initiated, and a hard-aperture self- modelocked Ti:Al2O3 laser, pumped by an argon-ion laser, is discussed. Continuous- wave oscillation thresholds as low as 160mW have been demonstrated, along with self-modelocked threshold powers as low as 500mW. The measurement and suppression of phase noise on modelocked lasers is discussed in chapter 3. This is followed by a comparison of the phase noise characteristics of the regeneratively-initiated, and hard-aperture self-modelocked Ti:Al2O3 lasers. The use of a synchronously-operating, high resolution electron-optical streak camera in the evaluation of timing jitter is also presented. In chapter 4, the construction and self-modelocked operation of an all-solid-state Ti:Al2O3 laser is described. The all-solid-state alternative to the conventional argon-ion pump laser was a continuous-wave, intracavity-frequency doubled, diode-laser pumped Nd:YLF ring laser. At a total diode-laser pump power of 10W, this minilaser was capable of producing a single frequency output of 1W, at 523.5nm in a TEM00 beam. The remainder of this thesis looks at the operation of a self-modelocked Ti:Al2O3 laser generating ultrashort pulses at wavelengths as long as 1053nm. The motive for this work was the development of an all-solid-state, self- modelocked Ti:Al2O3 laser operating at 1053nm, for use as a master oscillator in a Nd:glass power chain.

  2. A replacement solvent for dimethylsulfoxide /DMSO/ in CW dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Herbelin, J.M.; McKay, J.A.

    1981-01-01

    The use of propylene glycol carbonate as a replacement solvent for dimethyl sulfoxide in a Coherent model 599-21 CW dye laser has been investigated. Up to 40 milliwatts of single frequency output was achieved at 875 nm.

  3. Pulsed dye laser application in ablation of vascular ectasias of the larynx: a preliminary animal study

    Science.gov (United States)

    Woo, Peak; Wang, Zhi; Perrault, Donald F., Jr.; McMillan, Kathleen; Pankratov, Michail M.

    1995-05-01

    Vascular ectasias (dilatation) and vascular lesions of the larynx are difficult to treat with exciting modalities. Varix (enlarged vessel) of the vocal folds, vocal fold hemorrhage, vascular polyp, hemangioma, intubation or contact granuloma are common problems which disturb voice. Current applications of CO2 laser and cautery often damage the delicate vocal fold cover. The 585 nm dermatologic pulsed dye laser may be an ideal substitute. Two adult canines were examined under anesthesia via microlaryngoscopy technique. Pulsed dye laser (SPTL-1a, Candela Laser Corp., Wayland, MA) energy was delivered via the micromanipulator with the 3.1-mm spot size in single pulses of 6, 8, and 10 Joules/cm2 and applied to the vessels of the vocal folds, epiglottis, and arytenoid cartilage. Endoscopic examination was carried out immediately after the treatment and at 4 weeks postoperatively. The animals were sacrificed at 3 weeks, larynges excised, and whole organ laryngeal section were prepared for histology. Pulsed dye laser thrombosed vessels of the vocal fold using 6 or 8 Joules/cm2. Vascular break and leakage occurred at 10 Joules/cm2. Follow up examination showed excellent vessel obliteration or thrombosis without scarring or injury to the overlying tissues. Histologic examination shows vascular thrombosis without inflammation and fibrosis in the vocal fold cover. Pulsed dye laser may have promise in treatment of vascular lesions of the larynx and upper airway.

  4. Echo-enabled tunable terahertz radiation generation with a laser-modulated relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-09-01

    Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.

  5. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  6. Tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal structure

    International Nuclear Information System (INIS)

    Huang, Wenbin; Pu, Donglin; Qiao, Wen; Wan, Wenqiang; Liu, Yanhua; Ye, Yan; Wu, Shaolong; Chen, Linsen

    2016-01-01

    A continuously tunable multi-wavelength polymer laser based on a triangular-lattice photonic crystal cavity is demonstrated. The triangular-lattice resonator was initially fabricated through multiple interference exposure and was then replicated into a low refractive index polymer via UV-nanoimprinting. The blend of a blue-emitting conjugated polymer and a red-emitting one was used as the gain medium. Three periods in the scalene triangular-lattice structure yield stable tri-wavelength laser emission (625.5 nm, 617.4 nm and 614.3 nm) in six different directions. A uniformly aligned liquid crystal (LC) layer was incorporated into the cavity as the top cladding layer. Upon heating, the orientation of LC molecules and thus the effective refractive index of the lasing mode changes which continuously shifts the lasing wavelength. A maximum tuning range of 12.2 nm was observed for the lasing mode at 625.5 nm. This tunable tri-wavelength polymer laser is simple constructed and cost-effective. It may find application in the fields of biosensors and photonic integrated circuits. (paper)

  7. Efficient quasi-three-level Nd:YAG laser at 946 nm pumped by a tunable external cavity tapered diode laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter

    2010-01-01

    Using a tunable external cavity tapered diode laser (ECDL) pumped quasi-three-level Nd:YAG laser, a fivefold reduction in threshold and twofold increase in slope efficiency is demonstrated when compared to a traditional broad area diode laser pump source. A TEM00 power of 800 mW with 65% slope...... efficiency is obtained, the highest reported TEM00 power from any 946 nm Nd:YAG laser pumped by a single emitter diode laser pump source. A quantum efficiency of 0.85 has been estimated from experimental data using a simple quasi-three-level model. The reported value is in good agreement with published...

  8. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  9. Wavelength tunable ultrafast fiber laser via reflective mirror with taper structure.

    Science.gov (United States)

    Fang, Li; Huang, Chuyun; Liu, Ting; Gogneau, Noelle; Bourhis, Eric; Gierak, Jacques; Oudar, Jean-Louis

    2016-12-20

    Laser sources with a controllable flexible wavelength have found widespread applications in optical fiber communication, optical sensing, and microscopy. Here, we report a tunable mode-locked fiber laser using a graphene-based saturable absorber and a tapered mirror as an end mirror in the cavity. The phase layer in the mirror is precisely etched by focused ion beam (FIB) milling technology, and the resonant wavelength of the mirror shifts correspond to the different etch depths. By scanning the tapered mirror mechanically, the center wavelength of a mode-locked fiber laser can be continuously tuned from 1562 to 1532 nm, with a pulse width in the sub-ps level and repetition rate of 27 MHz.

  10. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser...

  11. Numerical investigation of vessel heating using a copper vapor laser and a pulsed dye laser in treating vascular skin lesions

    Science.gov (United States)

    Pushkareva, A. E.; Ponomarev, I. V.; Isaev, A. A.; Klyuchareva, S. V.

    2018-02-01

    A computer simulation technique was employed to study the selective heating of a tissue vessel using emission from a pulsed copper vapor laser and a pulsed dye laser. The depth and size of vessels that could be selectively and safely removed were determined for the lasers under examination.

  12. Second harmonic generation of frequency-locked pulsed dye laser for selective photoionization of T1-203 isotope

    International Nuclear Information System (INIS)

    Lim, Gwon; Jeong, Do Young; Ko, Kwang Hoon; Kim, Jae Woo; Kim, Taek Soo; Rho, Sipyo; Kim, Cheol Jung

    2003-01-01

    We have constructed the frequency-locked pulsed dye laser system. It is composed with a GIM-type oscillator and 3 stage longitudinally pumped amplifiers. The pump laser is the second harmonic of pulse Nd:YAG laser at the repetition rate of 6 kHz. Frequency-locking of dye laser oscillator is actively controlled by the feedback loop between a photoionization signal of T1-203 isotope and a wavelength tuning control. The tuning mirror rotates the order of micro degree per a step of step motor. Feedback system for frequency locking is operated with a PC-based control interface, including the data analysis of photoionization signals and the wavelength control using step pumping method for a medical application. Therefor, the dye laser has to be locked at 583.66 nm for SHG or BBO crystal. With the frequency-locking system, the photoionization experiment has been done for more than 10 hours.

  13. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    International Nuclear Information System (INIS)

    Biebersdorf, A; Lingk, C; De Giorgi, M; Feldmann, J; Sacher, J; Arzberger, M; Ulbrich, C; Boehm, G; Amann, M-C; Abstreiter, G

    2003-01-01

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments

  14. High sensitivity spectroscopy with tunable diode lasers - detection of O2 quadrupole transitions and 14C

    International Nuclear Information System (INIS)

    Reid, J.

    1981-01-01

    In recent years, tunable lead-salt diode lasers (TDLs) have found widespread application in all fields of infrared spectroscopy. However, most applications of TDLs utilise only the tunability and high resolution of these devices, and few experiments have employed the ability of the TDL to detect very small absorption coefficients. We have developed a laser absorption spectrometer (LAS) which can detect absorption coefficients as small as 10 -6 to 10 -7 m -1 , while retaining the full tunability and resolution of the TDL. This instrument has been used as a point monitoring system for many trace gases of atmospheric significance. In this paper, we describe two additional applications of the LAS: (I) the detection of very weak transitions such as quadrupole lines in oxygen, and (II) the detection of rare isotopes, with 14 C in CO 2 as an example. Details are given in the following sections. (orig.)

  15. Intensity and absorbed-power distribution in a cylindrical solar-pumped dye laser

    Science.gov (United States)

    Williams, M. D.

    1984-01-01

    The internal intensity and absorbed-power distribution of a simplified hypothetical dye laser of cylindrical geometry is calculated. Total absorbed power is also calculated and compared with laboratory measurements of lasing-threshold energy deposition in a dye cell to determine the suitability of solar radiation as a pump source or, alternatively, what modifications, if any, are necessary to the hypothetical system for solar pumping.

  16. Effect of the background radiation of a copper vapor laser with an unstable resonator on dye lasing

    Energy Technology Data Exchange (ETDEWEB)

    Elaev, V F; Mirza, S M; Sukhanov, V B; Troitskii, V O; Soldatov, A N

    1986-05-01

    Results of an experimental study of the emission divergence of a copper vapor laser with an unstable resonator are reported. It is shown that a copper vapor laser beam can be conveniently treated as a pair of components with a divergence higher or lower than a certain optimal value; the percent ratio of the components varies with the pulse repetition frequency. In the case where a copper vapor laser is used to pump a dye laser, the contribution of the component with the higher divergence to dye lasing does not exceed 1 percent. 7 references.

  17. Variations in thermo-optical properties of neutral red dye with laser ablated gold nanoparticles

    Science.gov (United States)

    Prakash, Anitha; Pathrose, Bini P.; Mathew, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2018-05-01

    We have investigated the thermal and optical properties of neutral red dye incorporated with different weight percentage of gold nanoparticles prepared by laser ablation method. Optical absorption studies confirmed the production of spherical nanoparticles and also the interactions of the dye molecules with gold nanoparticles. The quenching of fluorescence and the reduction in the lifetime of gold incorporated samples were observed and was due to the non-radiative energy transfer between the dye molecules and gold nanoparticles. Dual beam thermal lens technique has been employed to measure the heat diffusion in neutral red with various weight percentage of gold nano sol dispersed in ethanol. The significant outcome of the experiment is that, the overall heat diffusion is slower in the presence of gold nano sol compared to that of dye alone sample. Brownian motion is suggested to be the main mechanism of heat transfer under the present conditions. The thermal diffusivity variations of samples with respect to different excitation power of laser were also studied.

  18. High-sensitivity high-selectivity detection of CWAs and TICs using tunable laser photoacoustic spectroscopy

    Science.gov (United States)

    Pushkarsky, Michael; Webber, Michael; Patel, C. Kumar N.

    2005-03-01

    We provide a general technique for evaluating the performance of an optical sensor for the detection of chemical warfare agents (CWAs) in realistic environments and present data from a simulation model based on a field deployed discretely tunable 13CO2 laser photoacoustic spectrometer (L-PAS). Results of our calculations show the sensor performance in terms of usable sensor sensitivity as a function of probability of false positives (PFP). The false positives arise from the presence of many other gases in the ambient air that could be interferents. Using the L-PAS as it exists today, we can achieve a detection threshold of about 4 ppb for the CWAs while maintaining a PFP of less than 1:106. Our simulation permits us to vary a number of parameters in the model to provide guidance for performance improvement. We find that by using a larger density of laser lines (such as those obtained through the use of tunable semiconductor lasers), improving the detector noise and maintaining the accuracy of laser frequency determination, optical detection schemes can make possible CWA sensors having sub-ppb detection capability with TIC detection.

  19. Synthesis and characterisation of new laser dyes

    International Nuclear Information System (INIS)

    Scala-Valero, Claudine

    1997-01-01

    Rhodamines are very efficient laser dyes for the red part of the visible spectrum: their fluorescence quantum efficiencies are about hundred per cent. However, their conversion efficiencies in dye amplifier are about fifty per cent, due to the presence of S n electronic level which is responsible of the re-absorption of a part of photons. In this research thesis, the author aims at trying to move this S n level out of the stimulated emission bandwidth. Models have been developed to propose new structures derived from rhodamines and theoretically possessing the desired properties. The so-recommended molecules have then been synthesised and characterised in terms of absorption and fluorescence spectra, of quantum efficiency, and of fluorescence lifetime. Two modifications are proposed for the rhodamine 6G structure, either by grafting methyl substitutes, or by grafting variously substituted amines. The searched result is obtained with the second modification [fr

  20. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region

    NARCIS (Netherlands)

    Tilma, B.W.; Jiao, Y.; Kotani, J.; Smalbrugge, B.; Ambrosius, H.P.M.M.; Thijs, P.J.A.; Leijtens, X.J.M.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    In this paper we present the design and characterization of a monolithically integrated tunable laser for optical coherence tomography in medicine. This laser is the first monolithic photonic integrated circuit containing quantum-dot amplifiers, phase modulators and passive components. We

  1. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Kuritsyn, Yu.A.; Romanovskii, Yu.V.

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review. - Highlights: • Overview of modern TDL-based sensors for combustion • TDL systems, methods of absorption detection and algorithms of data processing • Prominent examples of TDLAS diagnostics of the combustion facilities • Extension of the TDLAS on the tomographic imaging of combustion processes

  2. Optical study of planar waveguides based on oxidized porous silicon impregnated with laser dyes

    Energy Technology Data Exchange (ETDEWEB)

    Chouket, A. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT-6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Elhouichet, H. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia)], E-mail: habib.elhouichet@fst.rnu.tn; Oueslati, M. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia)

    2009-05-15

    Oxidized porous silicon optical planar waveguides were elaborated and impregnated with rhodamine B and rhodamine 6G. The waveguiding, absorption, and photoluminescence properties of these impregnated waveguides were studied. Successful impregnation of the structure with laser dyes is shown from photoluminescence and reflectivity measurements. Furthermore, the reflectivity spectra prove the homogenous incorporation of both dye molecules inside the pores of the matrices. The refractive indices of waveguide layers were determined before and after dye impregnation to indicate the conservation of guiding conditions. The optical losses in the visible wavelengths are studied as a function of dye concentration. The dye absorption is the main reason for these losses.

  3. Tunable Single Frequency 2.054 Micron Fiber Laser Using New Ho-Doped Fiber, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a near 2 micron widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative...

  4. Anomalous dependence of the lasing parameters of dye solutions on the spectrum of microsecond pump laser pulses

    International Nuclear Information System (INIS)

    Tarkovsky, V V; Kurstak, V Yu; Anufrik, S S

    2003-01-01

    The anomalous dependence of the lasing parameters of ethanol solutions of coumarin, rhodamine, oxazine, and laser dyes of other classes on the spectrum of microsecond pump laser pulses is found. The dependence is determined by the shape of the induced singlet - singlet absorption spectra and absorption spectra of short-lived photoproducts. The elucidation of the influence of these factors makes it possible to choose optimal pump spectra and to enhance the efficiency and stability of microsecond dye lasers. (active media)

  5. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  6. Histopathology of the effects of tuneable dye laser on monkey retina

    Energy Technology Data Exchange (ETDEWEB)

    Smiddy, W.E.; Patz, A.; Quigley, H.A.; Dunkelberger, G.R.

    1988-07-01

    The tuneable dye laser was used to simulate treatment of choroidal neovascularization and panretinal photocoagulation (PRP) in monkey retina. The histopathologic effects of wavelengths from 560 to 630 nm in juxtafoveal, papillomacular bundle, and nonfoveal areas were investigated. An unexpected observation using high-intensity burns in juxtafoveal and, to a lesser extent, in papillomacular bundle areas was inner retinal damage with 600-nm light. At moderate energy levels, the effect of 600 nm were more comparable with those with other wavelengths and included much less damage to the inner retinal layers. At mild energy levels, the effects were comparable with other wavelengths. During and after the application of the burns, the energy levels and ophthalmoscopic appearances were comparable for each wavelength for the high-, moderate-, and mild-intensity burns. The histopathologic effects of 630-nm light (tuneable dye red) were comparable with those of the standard krypton red (647 nm) laser. Nonmacular and PRP effects were similar with all wavelengths. These results indicate that power levels may need to be reduced when placing 600-nm (orange) laser burns in the macula.

  7. Tracheal anastomosis using indocyanine green dye enhanced fibrinogen with a near-infrared diode laser

    Science.gov (United States)

    Auteri, Joseph S.; Jeevanandam, Valluvan; Oz, Mehmet C.; Libutti, Steven K.; Kirby, Thomas J.; Smith, Craig R.; Treat, Michael R.

    1990-06-01

    A major obstacle to lung transplantation and combined heart- lung transplantation is dehiscence of the tracheobronchial anastomosis. We explored the possibility of laser welded anastomoses in canine tracheas in vivo. Laser anastomoses were performed on three-quarter circumferential anterior tracheotomies. A continous wave diode laser (808 +1 nm) at a power density of 9.6 watts/cm was used. Human fibrinogen was mixed with indocyanine green dye (ICG, max absorbance 805 nm) and applied to the anastomosis site prior to laser exposure. Animals were sacrificed at 0, 21 and 28 days post-operatively. At sacrifice weld bursting pressures were measured by raising intratracheal pressure using forced ventilation via an endotracheal tube. Sutured and laser welded anastomoses had similar bursting pressures, and exhibited satisfactory histologic evidence of healing. However, compared to polypropylene sutured controls, the laser welded anastomoses exhibited less peritracheal inflammatory reaction and showed visibly smoother luminal surfaces at 21 and 28 days post- operatively. Tracheal anastomosis using ICG dye enhanced fibrinogen combined with the near-infrared diode laser is a promising extension of the technology of laser tissue fusion and deserves further study.

  8. Second-order interference of two independent and tunable single-mode continuous-wave lasers

    International Nuclear Information System (INIS)

    Liu Jianbin; Chen Hui; Zheng Huaibin; Xu Zhuo; Wei Dong; Zhou Yu; Gao Hong; Li Fu-Li

    2016-01-01

    The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by employing two-photon interference in Feynman’s path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra. (paper)

  9. Tunable Single Frequency 2.05 Micron Fiber Laser Using New Ho-Doped Fiber, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser near 2.05 micron by developing an innovative...

  10. Laser ablation/ionization studies in a glow discharge

    International Nuclear Information System (INIS)

    Hess, K.R.; Harrison, W.W.

    1985-01-01

    The pin cathode glow discharge is used in the laboratory as an atomization/ionization source for a variety of applications, including solids mass spectrometry. Coupled with a tunable dye laser, the glow discharge may also serve as an atom reservoir for resonance ionization mass spectrometry in which the laser ionizes the discharge sputtered atoms. By tightly focusing the laser onto solid samples, various ablation effects may also be investigated. The laser may be used to generate an ionized plasma which may be directly analyzed by mass spectrometry. Alternatively, the ablated neutral atoms may be used in post-ablation excitation/ionization processes, in this case the glow discharge. The results of these investigations are the basis of this paper

  11. Long-pulsed dye laser versus long-pulsed dye laser-assisted photodynamic therapy for acne vulgaris: A randomized controlled trial

    DEFF Research Database (Denmark)

    Haedersdal, M.; Togsverd, K.; Wiegell, S.R.

    2008-01-01

    Background: Long-pulsed dye laser (LPDL)-assisted photodynamic therapy has been suggested to be superior to laser alone for acne vulgaris but no evidence is available. Objective: To evaluate the efficacy and safety of LPDL alone versus LPDL in photodynamic therapy with methylaminolevulinic acid...... (MAL-LPDL) for acne vulgaris. Methods: Fifteen patients received a series of 3 full-face LPDL treatments and half-face prelaser MAL treatments; the latter being randomly assigned to the left or right side. Results: Inflammatory lesions were reduced more on MAL-LPDL-treated than on LPDL-treated sides...... to draw conclusions about the efficacy of the LPDL, only about the efficacy of MAL-LPDL compared with LPDL alone. Conclusions: MAL-LPDL is slightly superior to LPDL for the treatment of inflammatory acne Udgivelsesdato: 2008/3...

  12. 1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission.

    Science.gov (United States)

    Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin

    2017-12-10

    A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.

  13. Continuously tunable pulsed Ti:Sa laser self-seeded by an extended grating cavity

    CERN Document Server

    Li, Ruohong; Rothe, Sebastian; Teigelhöfer, Andrea; Mostamand, Maryam

    2016-01-01

    A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillators are created: a broadband power oscillator, and a narrowband oscillator with a prism beam expander and a diffraction grating in Littrow configuration. By coupling the grating cavity oscillation into the power oscillator, a power-enhanced narrow-linewidth laser oscillation is achieved. Compared to the classic grating laser, this simple modification significantly increases the laser output power without considerably broadening the linewidth. With most of the oscillating laser power confined inside the broadband power cavity and lower power incident onto the grating, the new configuration also allows higher pump power, which is typically limited by the thermal deformation of the grating coating at high oscillation power.

  14. Free-electron lasers in ultraviolet photobiology

    International Nuclear Information System (INIS)

    Coohill, T.P.; Sutherland, J.C.

    1989-01-01

    The potential uses for a free-electron laser (FEL), tunable in wavelength from 10 to 400 nm, for photobiological experiments is discussed. Inherent problems of cell and molecular absorption, especially in certain regions of the ultraviolet (UV), are addressed. Absorption values for living cells and viruses at selected wavelengths in the UV are tabulated, and a calculation of the flux needed to inactivate mammalian cells is included. A comparison is made of the UV output of a proposed rf-linac FEL with those of a monochromator, a tunable dye laser, and a synchrotron. The advantages of a UV FEL are apparent, especially in the wavelength regions where the cross section for absorption by biological molecules is low, i.e., 300 to 400 nm and 10 to 200 nm. It is apparent that a UV FEL would be an ideal source for a variety of biological studies that use both intact organisms and isolated cells and viruses

  15. Nd:YAG (2 omega) pumped dye laser using self-filtering unstable resonator

    CERN Document Server

    Rahimian, K; Hariri, H

    2002-01-01

    A self-filtering unstable resonator with a magnification of M=-3 in a Nd:YAG (2 omega) dye laser has been studied. The dye solution is Rhodamine 6 G in alcohol with the concentration of 5*10 sub - 3 Mol/lit. The spatial intensity distribution of the resonator has been compared has been compared with that of a plane-parallel resonator of equal length. The output energy in both configurations are comparable (20 mu J ,and 26 mu J ,respectively). A significant difference between these two resonators is the laser beam divergence, where beam divergences of 0.77 mrad for the self-filtering unstable resonator and 1.6 mrad for the plane-parallel resonator have been measured. The brightness corresponding to these two resonators are 1.5* 10 sub 1 1 and 2.2* 10 sub 1 0W.cm sub - 2.Sr sub - 1, and the pulse widths are 7 and 17 ns, respectively. These figures show clearly that laser resonator based on the self-filtering unstable resonator design an increase the laser brightness a factor of 10, with a beam divergence of a f...

  16. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    Science.gov (United States)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  17. Orthogonal linear polarization tunable-beat ring laser with a superluminescent diode

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y.; Yoshino, T. [Department of Electronic Engineering, Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376 (Japan)

    1997-09-01

    An orthogonal linear polarization operated ring laser with a superluminescent diode has been demonstrated to generate a tunable optical beat signal. The ring cavity contains a superluminescent diode as the optical gain medium, Faraday rotators, and a variable phase retarder (Babinet-Soleil compensator). By controlling the retarder, we changed the beat frequency in the range from a few tens of megahertz to 100 MHz. {copyright} 1997 Optical Society of America

  18. A comparative study of pulsed dye laser versus long pulsed Nd:YAG laser treatment in recalcitrant viral warts.

    Science.gov (United States)

    Shin, Yo Sup; Cho, Eun Byul; Park, Eun Joo; Kim, Kwang Ho; Kim, Kwang Joong

    2017-08-01

    Viral warts are common infectious skin disease induced by human papillomavirus (HPV). But the treatment of recalcitrant warts is still challenging. In this study, we compared the effectiveness of pulsed dye laser (PDL) and long pulsed Nd:YAG (LPNY) laser in the treatment of recalcitrant viral warts. We retrospectively analyzed the medical records of patients with recalcitrant warts treated with laser therapy between January 2013 and February 2016. Seventy-two patients with recalcitrant warts were evaluated. Thirty-nine patients were treated with pulsed dye laser and thirty-three patients were treated with LPNY laser. The following parameters were used: PDL (spot size, 7 mm; pulse duration, 1.5 ms; and fluence, 10-14 J/cm 2 ) and LPNY (spot size, 5 mm; pulse duration, 20 ms; and fluence, 240-300 J/cm 2 ). Complete clearance of two patients (5.1%) in PDL group, and three patients (9.1%) in LPNY group were observed without significant side effects. The patients who achieved at least 50% improvement from baseline were 20 (51.3%) in PDL and 22 (66.7%) in LPNY, respectively. This research is meaningful because we compared the effectiveness of the PDL and LPNY in the recalcitrant warts. Both PDL and LPNY laser could be used as a safe and alternative treatment for recalcitrant warts.

  19. Coherent tunable far infrared radiation

    Science.gov (United States)

    Jennings, D. A.

    1989-01-01

    Tunable, CW, FIR radiation has been generated by nonlinear mixing of radiation from two CO2 lasers in a metal-insulator-metal (MIM) diode. The FIR difference-frequency power was radiated from the MIM diode antenna to a calibrated InSb bolometer. FIR power of 200 nW was generated by 250 mW from each of the CO2 lasers. Using the combination of lines from a waveguide CO2 laser, with its larger tuning range, with lines from CO2, N2O, and CO2-isotope lasers promises complete coverage of the entire FIR band with stepwise-tunable CW radiation.

  20. Alignment control of columnar liquid crystals with wavelength tunable CO2 laser irradiation

    International Nuclear Information System (INIS)

    Monobe, Hirosato; Awazu, Kunio; Shimizu, Yo

    2008-01-01

    Infrared-induced alignment change with wavelength tunable CO 2 laser irradiation for columnar liquid crystal domains was investigated for a liquid crystalline triphenylene derivative. A uniformly aligned alignment change of domains was observed when a chopped linearly polarized infrared laser light corresponding to the wavelength of the aromatic C-O-C stretching vibration band (9.65 μm) was irradiated. The results strongly imply that the infrared irradiation is a possible technique for device fabrication by use of columnar mesophase as a liquid crystalline semiconductor

  1. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  2. Assessment of Hydrogen Sulfide Minimum Detection Limits of an Open Path Tunable Diode Laser

    Science.gov (United States)

    During June 2007, U.S. EPA conducted a feasibility study to determine whether the EPA OTM 10 measurement approach, also known as radial plume mapping (RPM), was feasible. A Boreal open-path tunable diode laser (OP-TDL) to collect path-integrated hydrogen sulfide measurements alon...

  3. Random laser emission at dual wavelengths in a donor-acceptor dye mixture solution

    Directory of Open Access Journals (Sweden)

    Sunita Kedia

    Full Text Available The work was aimed to generate random laser emissions simultaneously at two wavelengths in a weakly scattering system containing mixture of binary dyes, rhodamine-B (Rh-B and oxazine-170 (O-170 dispersed with ZnO nano-particles serving as scattering centres. Random lasing performances for individual Rh-B dye were extensively studied for varying small signal gain/scatterer density and we found lasing threshold to significantly depend upon number density of dispersed nano-particles. In spite of inefficient pumping, we demonstrated possibility of random lasing in O-170 dye solution on account of resonance energy transfer from Rh-B dye which served as donor. At optimum concentrations of fluorophores and scatterer in dye mixture solution, incoherent random lasing was effectively attained simultaneously at two wavelengths centered 90 nm apart. Dual-emission intensities, lasing thresholds and rate of amplifications could be controlled and made equivalent for both donor and acceptor in dye mixture solution by appropriate choice of concentrations of dyes and scatterers. Keywords: Random lasing, Energy transfer, Rhodamine-B, Oxazine-170, Zinc oxide

  4. A picosecond widely tunable deep-ultraviolet laser for angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Zhang Feng-Feng; Yang Feng; Zhang Shen-Jin; Xu Zhi; Wang Zhi-Min; Xu Feng-Liang; Peng Qin-Jun; Zhang Jing-Yuan; Xu Zu-Yan; Wang Xiao-Yang; Chen Chuang-Tian

    2013-01-01

    We develop a picosecond widely tunable laser in a deep-ultraviolet region from 175 nm to 210 nm, generated by two stages of frequency doubling of a 80-MHz mode-locked picosecond Ti:sapphire laser. A β-BaB 2 O 4 walk-off compensation configuration and a KBe 2 BO 3 F 2 prism-coupled device are adopted for the generation of second harmonic and fourth harmonics, respectively. The highest power is 3.72 mW at 193 nm, and the fluctuation at 2.85 mW in 130 min is less than ±2%

  5. Picoseconds pulse generation and pulse width determination processes of a distributed feedback dye laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2004-08-01

    A mathematical model has been developed to describe the dynamic emission of Nd-glass, distributed feedback dye laser (DFDL), and periodical grating temperature. The suggested model allows the investigation of the time behavior of Nd-glass laser and DFDL pulsed. Moreover, it allows studying the effect of the laser input parameters of Nd-glass laser on the spectral characteristics of the output DFDL pulses such as pulse width, delay time, and time separation

  6. Fast tunable blazed MEMS grating for external cavity lasers

    Science.gov (United States)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  7. Mass Spectrometric Fingerprinting of Tank Waste Using Tunable, Ultrafast Infrared Lasers

    International Nuclear Information System (INIS)

    Richard Haglund Jr.

    2002-01-01

    The principal scientific thrust of this project was to demonstrate a novel method for precision matrix-assisted laser desorption-ionization (MALDI) mass spectrometry (MS) of model tank-waste materials using, using the sodium nitrate component of the tank waste both as the matrix and as an internal calibration standard. Conventional nanosecond and femtosecond single-frequency lasers and a tunable, mid-infrared free-electron laser were used in the development of the MS protocols and in measurements of the MALDI dynamics. In addition to developing a model of the processes which lead to efficient desorption and ionization of organic molecules (e.g., toluene, benzene, chelators, various organic acids, crown ethers) from sodium nitrate, we developed protocols for quantitative analysis based on the use of the sodium nitrate in tank waste as an internal standard. Comparisons of MALDI-MS using nanosecond and picosecond lasers, and of infrared and ultraviolet lasers, have been especially instructive, and demonstrate the superior potential of IR-MALDI for this purpose, as well as for a number of related analytical and thin-film applications

  8. Megawatt dye laser oscillator-amplifier system for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Drell, P; Chu, S

    1979-03-01

    Peak powers in excess of 4 MW in the visible and 1.3 MW in the uv with linewidths as narrow as 80 MHz are generated with three YAG pumped amplifier stages following a cw dye oscillator. The laser pulses are nearly Fourier transform limited in frequency space and diffraction limited in coordinate space.

  9. Novel O-band tunable fiber laser using an array waveguide grating

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Latif, A A; Harun, S W

    2010-01-01

    A novel tunable fibre laser (TFL) operating in the ordinary band (O-band) of 1310 nm is proposed and demonstrated. The proposed TFL is developed using a 1×16 arrayed waveguide grating (AWG) as a slicing mechanism for the broadband amplified spontaneous emission (ASE) source and an optical channel selector (OCS) to provide the tunability. A semiconductor optical amplifier (SOA) with a centre wavelength of 1310 nm serves as the compact gain medium for the TFL and also as a broadband ASE source. The TFL has a tuning range of 1301.26 nm to 1311.18 nm with 9.92 nm span and a channel spacing of 0.7 nm. The measured output power is about –4 and –8 dBm and with a side node suppression ratio (SMSR) of 29 to 33 dB

  10. Up to 30 mW of broadly tunable CW green-to-orange light, based on sum-frequency mixing of Cr4+:forsterite and Nd:YVO4 lasers

    DEFF Research Database (Denmark)

    Mortensen, Jesper Liltorp; McWilliam, Allan; G. Leburn, Christopher

    2006-01-01

    Efficient generation of continuous-wave (CW) tunable light in the yellow region is reported. The method is based on sum-frequency mixing of a tunable Cr4+:forsterite laser with a Nd:YVO4 laser. A periodically poled lithium niobate crystal was placed intra-cavity in a Nd:YVO4 laser, and the Cr4...

  11. Impurity studies in fusion devices using laser-fluorescence-spectroscopy

    International Nuclear Information System (INIS)

    Husinsky, W.R.

    1980-08-01

    Resonance fluorescence excitation of neutral atoms using tunable radiation from dye lasers offers a number of unique advantages for impurity studies in fusion devices. Using this technique, it is possible to perform local, time-resolved measurements of the densities and velocity distributions of metallic impurities in fusion devices without disturbing the plasma. Velocities are measured by monitoring the fluorescence intensity while tuning narrow bandwidth laser radiation through the Doppler - broadened absorbtion spectrum of the transition. The knowledge of the velocity distribution of neutral impurities is particularly useful for the determination of impurity introduction mechanisms. The laser fluorescence technique will be described in terms of its application to metallic impurities in fusion devices and related laboratory experiments. Particular attention will be given to recent results from the ISX-B tokamak using pulsed dye lasers where detection sensitivities for neutral Fe of 10 6 atoms/cm 3 with a velocity resolution of 600 m/sec (0.1 eV) have been achieved. Techniques for exciting plasma particles (H,D) will also be discussed

  12. Flame Characterization Using a Tunable Solid-State Laser with Direct UV Pumping

    Science.gov (United States)

    Kamal, Mohammed M.; Dubinskii, Mark A.; Misra, Prabhakar

    1996-01-01

    Tunable solid-state lasers with direct UV pumping, based on d-f transitions of rare earth ions incorporated in wide band-gap dielectric crystals, are reliable sources of laser radiation that are suitable for excitation of combustion-related free radicals. We have employed such a laser for analytical flame characterization utilizing Laser-Induced Fluorescence (LIF) techniques. LIF spectra of alkane-air flames (used for studying combustion processes under normal and microgravity conditions) excited in the region of the A-X (0,0) OH-absorption band have been recorded and found to be both temperature-sensitive and positionally-sensitive. In addition, also clearly noticeable was the sensitivity of the spectra to the specific wavelength used for data registration. The LiCAF:Ce laser shows good prospects for being able to cover the spectral region between 280 and 340 nm and therefore be used excitation of combustion-intermediates such as the hydroxyl OH, methoxy CH30 and methylthio CH3S radicals.

  13. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    International Nuclear Information System (INIS)

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A.; Vijayraghavan, Karun

    2015-01-01

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps

  14. A Search for Some Wide-Range Tunable Dye Laser Systems Working on the ’Exciplex’ Principle.

    Science.gov (United States)

    The ’ exciplex ’ mechanism of radiation emission from a dye affords one means of producing a broad fluorescent spectrum without adding to the...emissions from both the dye and the exciplex may appear, thereby permitting an even greater tuning range. Two mechanisms apply: the ’proton exciplex ...8217, which relates to changes in conventional acidity and basicity in the excited state; and the ’molecular exciplex ’, which relates to changes in

  15. High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2015-01-01

    imaging refractometry without moving parts is presented. DFB dye lasers are low-cost and highly sensitive refractive index sensors. The unique multi-wavelength DFB laser structure presented here comprises several areas with different grating periods. Imaging in two dimensions of space is enabled...... by analyzing laser light from all areas in parallel with an imaging spectrometer. With this multi-resonance imaging refractometry method, the spatial position in one direction is identified from the horizontal, i.e., spectral position of the multiple laser lines which is obtained from the spectrometer charged...

  16. The development of the intelligent diagnostic expert system for high power dye-laser MOPA system

    International Nuclear Information System (INIS)

    Liu Lianhua; Yang Wenxi; Zhang Xiaowei; Dan Yongjun

    2014-01-01

    A intelligent diagnostic expert system was required to simulate the expert thinking process of solving problem in experiment and to real-time judge the running state of the experiment system. The intelligent diagnostic expert system for dye-laser MOPA system was build with the modular design of separated knowledge base and inference engine, the RETE algorithm rules match, the asynchronous operation, and multithreading technology. The experiment result indicated that the system could real-time analysis and diagnose the running state of dye-laser MOPA system with advantages of high diagnosis efficiency, good instantaneity and strong expansibility. (authors)

  17. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  18. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  19. Photodegradation and polarization properties of vertical external surface-emitting organic laser

    International Nuclear Information System (INIS)

    Leang, Tatiana

    2014-01-01

    Although organic solid-state dye lasers can provide wavelength tunability in the whole visible spectrum and offers perspectives of low-cost compact lasers, they are still limited by several drawbacks, especially photodegradation. The geometry of a Vertical External Cavity Surface-emitting Organic Laser (VECSOL) enables organic lasers to reach high energies, excellent conversion efficiencies and good beam quality, it also enables an external control on many parameters, a feature that we have used here to study the photodegradation phenomenon as well as some polarization properties of organic solid-state lasers. In the first part of this thesis, we studied the lifetime of the laser upon varying several parameters (pump pulse-width, repetition rate, output coupling,...) and we found that the intracavity laser intensity, independently of the pump intensity, had a major on photodegradation rate. Moreover, we observed that the profile of the laser beam was also degrading with time: while it is Gaussian in the beginning it gradually shifts to an annular shape. In the second part, we investigated the polarization properties of VECSOLs, with a special emphasis on fluorescence properties of some typical dyes used in lasers. The crucial role played by resonant non-radiative energy transfers between dye molecules (HOMO-FRET) is evidenced and enables explaining the observed fluorescence depolarization, compared to the expected limiting fluorescence anisotropy. Energy transfers happen to play a negligible role above laser threshold, as the organic laser beam is shown to be linearly polarized in a wide range of experimental conditions when excitation occurs in the first singlet state. (author) [fr

  20. Ionization mechanism of cesium plasma produced by irradiation of dye laser

    International Nuclear Information System (INIS)

    Yamada, Jun; Shibata, Kohji; Uchida, Yoshiyuki; Hioki, Yoshiaki; Sahashi, Toshio.

    1992-01-01

    When a cesium vapor was irradiated by a dye laser which was tuned to the cesium atomic transition line, the number of charged particles produced by the laser radiation was observed. Several sharp peaks in the number of charged particles were observed, which corresponded to the atomic transition where the lower level was the 6P excited atom. The ionization mechanism of the laser-produced cesium plasma has been discussed. An initial electron is produced by laser absorptions of the cesium dimer. When the cesium density is high, many 6P excited atoms are excited by electron collisions. The 6P excited atom further absorbs the laser photon and is ionized through the higher-energy state. As the cesium vapor pressure increases, the resonance effect becomes observable. The 6P excited atom plays dominant role in the ionization mechanism of the laser-produced cesium plasma. (author)

  1. Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers

    International Nuclear Information System (INIS)

    Liu, X M; Lin, A; Zhao, W; Lu, K Q; Wang, Y S; Zhang, T Y; Chung, Y

    2008-01-01

    We have proposed a novel multi-wavelength erbium-doped fiber laser by using two polarization controllers and a sampled chirped fiber Bragg grating(SC-FBG). On the assistance of SC-FBG, the proposed fiber lasers with excellent stability and uniformity are tunable and switchable by adjusting the polarization controllers. Our laser can stably lase two waves and up to eight waves simultaneously at room temperature

  2. Selective laser photolysis of simple molecules

    International Nuclear Information System (INIS)

    Golnabi, Hossein.

    1984-01-01

    A two-photon technique is reported for the measurement of relative cross section for the photolysis of simple molecules into particular product channels. In this method two independently tunable dye lasers were used to sequentially dissociate molecules of Cs 2 and Cs-Kr for the wavelengths in the range 420 to 660 nm, and then to excite the resulting products to determine the relative cross sections for the photolysis of Cs 2 and Cs-kr into each of the lowest four of the energetically possible product states

  3. Development of laser application technologies for nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Rhee, Y.; Cha, B. H.

    2004-03-01

    The stable laser isotope facility will supply raw stable isotope material to produce radioisotope elements for medical and industrial applications. The medical stable isotope, Tl-203 was separated by the isotope selective optical pumping (ISOP) method native to the laboratory for quantum optics, KAERI. The extraction rate of 10 mg/hr was achieved from the separation chamber of 80cm x 80cm x 100cm dimension. The Yb-168 separation facility was improved in stability, durability, and efficiency. The old copper vapor pumping laser system was replaced with two 40W green DPSSL's. The tunable dye laser system was also improved in stability. The extraction rate was measured as 1.5 mg/hr in the improved system. The 200W infrared DPSSL system was also developed and used for photoionization of thallium isotopes. The adaptive optics and beam path control system was applied to the isotope separation facilities. Also the beam quality of the lasers was monitored and improved. To maintain constant isotope composition during reaction process, the wavelengths of tunable lasers are locked by being the mass composition information fed back into the oscillator control unit of the lasers. To optimize isotope separation process timely, the extractor surface is directly analyzed by laser irradiation and TOF mass spectrometer. And the final products in high purity is recovered in maximum by solution chemistry

  4. Laser inactivation of periodontal bacteria using photosensitizing dyes

    Science.gov (United States)

    Golding, Paul S.; Maddocks, L.; King, Terence A.; Drucker, D. B.

    1996-12-01

    We demonstrate the killing of the oral bacteria Prevotella nigrescens using a photosensitizer and light from a 10 Hz, frequency doubled, Q-switched Nd:YAG pumped dye laser, with modified oscillator to increase output power. This system produced light at wavelengths close to 620 nm, the absorption maximum of the photosensitizing agent, malachite green isothiocyanate, a wavelength that is not significantly absorbed by tissue. A bacterial reduction of 97.5 percent was achieved at an energy density of 0.67 J/cm2 and exposure times of 300 seconds.

  5. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser

    International Nuclear Information System (INIS)

    Wang, Q; Yu, Q X

    2009-01-01

    This paper presents an ultra wideband tunable silica-based erbium doped fiber ring laser (EDFRL) that can be continuously tuned in S and C+L bands from 1475 to 1619 nm. It is the first time that a fiber ring laser's tuning range reaches 144 nm using a standard silica-based C-band erbium-doped fiber as gain media. In the laser configuration two isolators are used in the fiber loop for suppressing the ASE in C-band and elevating the lasing gain in S-band. As a result the available lasing wavelength is extended toward the shorter wavelength of the gain bandwidth. The optimized erbium-doped fiber length, output coupling ratio and pumping laser power have been obtained through experimental study. This ring fiber laser has simple configuration, low threshold, flat laser spectral distribution and high signal-to-ASE-noise ratio. The laser will have many potential applications in fiber sensor wavelength interrogation, high-resolution spectroscopy and fiber optic communications

  6. UV laser interaction with a fluorescent dye solution studied using pulsed digital holography.

    Science.gov (United States)

    Amer, Eynas; Gren, Per; Sjödahl, Mikael

    2013-10-21

    A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. Simultaneously, a frequency doubled pulse (532 nm) from the same laser is used to probe the solvent perpendicularly resulting in a gain through stimulated laser induced fluorescence (LIF) emission. The resulting gain of the probe beam is recorded using digital holography by blending it with a reference beam on the detector. Two digital holograms without and with the pump beam were recorded. Intensity maps were calculated from the recorded digital holograms and used to calculate the gain of the probe beam due to the stimulated LIF. In addition numerical data of the local temperature rise was calculated from the corresponding phase maps using Radon inversion. It was concluded that about 15% of the pump beam energy is transferred to the dye solution as heat while the rest is consumed in the radiative process. The results show that pulsed digital holography is a promising technique for quantitative study of fluorescent species.

  7. Third-order nonlinear optical studies of anthraquinone dyes using a CW He–Ne laser

    International Nuclear Information System (INIS)

    Pramodini, S; Poornesh, P

    2014-01-01

    We present investigations on the third-order optical nonlinearity and optical power limiting of anthraquinone dyes. Z-scan measurements were performed using a continuous wave He–Ne laser at 633 nm wavelength as an excitation source. The nonlinear refraction studies exhibited self-defocusing behavior of the dyes. The nonlinear absorption in the dyes was dominated by a reverse saturable absorption process. Self-diffraction ring patterns were observed due to the change in refractive index and thermal lensing. Increase of the electron donating ability of the substituents resulted in enhanced values of the nonlinear optical parameters, establishing the structure–property relationship. The optical limiting study revealed that the dyes possess a lower limiting threshold and clamping level which is very important for eye and sensor protection. Hence, the dyes investigated here emerge as promising candidates for future opto-electronic and photonic device applications such as optical power limiters. (paper)

  8. Third-order nonlinear optical studies of anthraquinone dyes using a CW He-Ne laser

    Science.gov (United States)

    Pramodini, S.; Poornesh, P.

    2014-05-01

    We present investigations on the third-order optical nonlinearity and optical power limiting of anthraquinone dyes. Z-scan measurements were performed using a continuous wave He-Ne laser at 633 nm wavelength as an excitation source. The nonlinear refraction studies exhibited self-defocusing behavior of the dyes. The nonlinear absorption in the dyes was dominated by a reverse saturable absorption process. Self-diffraction ring patterns were observed due to the change in refractive index and thermal lensing. Increase of the electron donating ability of the substituents resulted in enhanced values of the nonlinear optical parameters, establishing the structure-property relationship. The optical limiting study revealed that the dyes possess a lower limiting threshold and clamping level which is very important for eye and sensor protection. Hence, the dyes investigated here emerge as promising candidates for future opto-electronic and photonic device applications such as optical power limiters.

  9. Single-mode very wide tunability in laterally coupled semiconductor lasers with electrically controlled reflectivities

    Science.gov (United States)

    Griffel, Giora; Chen, Howard Z.; Grave, Ilan; Yariv, Amnon

    1991-04-01

    The operation of a novel multisection structure comprised of laterally coupled gain-guided semiconductor lasers is demonstrated. It is shown that tunable single longitudinal mode operation can be achieved with a high degree of frequency selectivity. The device has a tuning range of 14.5 nm, the widest observed to date in a monolithic device.

  10. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    Science.gov (United States)

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  11. Redarkening of port-wine stains 10 years after pulsed-dye-laser treatment

    NARCIS (Netherlands)

    Huikeshoven, Menno; Koster, Petra H. L.; de Borgie, Corianne A. J. M.; Beek, Johan F.; van Gemert, Martin J. C.; van der Horst, Chantal M. A. M.

    2007-01-01

    BACKGROUND: Although pulsed-dye-laser therapy is currently the gold standard for the treatment of port-wine stains, few objective data are available on its long-term efficacy. Using objective color measurements, we performed a 10-year follow-up of a previously conducted prospective clinical study of

  12. All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Klinkhammer, Sönke; Christiansen, Mads Brøkner

    2010-01-01

    Organic semiconductor lasers are of particular interest as tunable visible laser light sources. For bringing those to market encapsulation is needed to ensure practicable lifetimes. Additionally, fabrication technologies suitable for mass production must be used. We introduce all-polymer chips...... comprising encapsulated distributed feedback organic semiconductor lasers. Several chips are fabricated in parallel by thermal nanoimprint of the feedback grating on 4? wafer scale out of poly(methyl methacrylate) (PMMA) and cyclic olefin copolymer (COC). The lasers consisting of the organic semiconductor...... tris(8- hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2- methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM) are hermetically sealed by thermally bonding a polymer lid. The organic thin film is placed in a basin within the substrate and is not in direct contact to the lid...

  13. Temperature control and measurement with tunable femtosecond optical tweezers

    Science.gov (United States)

    Mondal, Dipankar; Goswami, Debabrata

    2016-09-01

    We present the effects of wavelength dependent temperature rise in a femtosecond optical tweezers. Our experiments involve the femtosecond trapping laser tunable from 740-820 nm at low power 25 mW to cause heating in the trapped volume within a homogeneous solution of sub micro-molar concentration of IR dye. The 780 nm high repetition rate laser acts as a resonant excitation source which helps to create the local heating effortlessly within the trapping volume. We have used both position autocorrelation and equipartion theorem to evaluate temperature at different wavelength having different absorption coefficient. Fixing the pulse width in the temporal domain gives constant bandwidth at spatial domain, which makes our system behave as a tunable temperature rise device with high precision. This observation leads us to calculate temperature as well as viscosity within the vicinity of the trapping zone. A mutual energy transfer occurs between the trapped bead and solvents that leads to transfer the thermal energy of solvents into the kinetic energy of the trap bead and vice-versa. Thus hot solvated molecules resulting from resonant and near resonant excitation of trapping wavelength can continuously dissipate heat to the trapped bead which will be reflected on frequency spectrum of Brownian noise exhibited by the bead. Temperature rise near the trapping zone can significantly change the viscosity of the medium. We observe temperature rise profile according to its Gaussian shaped absorption spectrum with different wavelength.

  14. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath

    Science.gov (United States)

    Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.

    2017-11-01

    A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability 1527-1564 nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.

  15. Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon-containing organic copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A.; Agua, D. del [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg (Germany); Penzkofer, A. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, 93053 Regensburg (Germany)], E-mail: alfons.penzkofer@physik.uni-regensburg.de; Garcia, O.; Sastre, R. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Costela, A.; Garcia-Moreno, I. [Instituto de Quimica Fisica ' Rocasolano' , CSIC, Serrano 119, 28006 Madrid (Spain)

    2007-12-06

    Samples of the dipyrromethene-BF{sub 2} dye PM597 incorporated in copolymers of 3-trimethoxysilylpropyl 2-methylprop-2-enoate (TMSPMA, number of polymerizable CC double bonds: {kappa} = 1) with 2-(2-methylprop-2-enoyloxy)ethyl 2-methylprop-2-enoate (EGDMA, {kappa} = 2), [2-(hydroxymethyl)-3-prop-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate (PETA, {kappa} = 3), and [3-prop-2-enoyloxy-2,2-bis(prop-2-2-enoyloxymethyl)propyl]prop-2-enoate (PETRA, {kappa} = 4) are characterized. The fluorescence quantum distributions, fluorescence quantum yields, degrees of fluorescence polarization, and fluorescence lifetimes are measured. The radiative lifetimes are calculated from fluorescence lifetime and quantum yield. Absorption coefficient spectra are determined from transmission measurements. Absolute absorption cross-section spectra and dye concentrations are obtained by calibration to the radiative lifetimes and to saturable absorptions. Excited-state absorption cross-sections at 527 nm are determined by saturable absorption measurements. The photo-degradation is studied under cw laser excitation conditions and quantum yields of photo-degradation are extracted. The excited-state absorption cross-sections were found to be rather small, and the photo-stability turned out to be high (up to 3 million excitation cycles before degradation) making this class of dipyrromethene dye-doped polymers attractive active laser media. Structural and thermo-mechanical properties of the materials have been determined by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry, densitometry, and refractometry. They improve with increasing inter-crossing (copolymerization of TMSPMA with PETA and PETRA). The laser properties of the PM597 doped copolymers were evaluated by transverse pumping with 6 ns laser pulses at 532 nm. The best laser materials resulted to be the 7:3 and 9:1 TMSPMA-monomer copolymers.

  16. Dye-enhanced protein solders and patches in laser-assisted tissue welding.

    Science.gov (United States)

    Small, W; Heredia, N J; Maitland, D J; Da Silva, L B; Matthews, D L

    1997-01-01

    This study examines the use of dye-enhanced protein bonding agents in 805 nm diode laser-assisted tissue welding. A comparison of an albumin liquid solder and collagen solid-matrix patches used to repair arteriotomies in an in vitro porcine model is presented. Extrinsic bonding media in the form of solders and patches have been used to enhance the practice of laser tissue welding. Preferential absorption of the laser wavelength has been achieved by the incorporation of chromophores. Both the solder and the patch included indocyanine green dye (ICG) to absorb the 805 nm continuous-wave diode laser light used to perform the welds. Solder-mediated welds were divided into two groups (high power/short exposure and low power/long exposure), and the patches were divided into three thickness groups ranging from 0.1 to 1.3 mm. The power used to activate the patches was constant, but the exposure time was increased with patch thickness. Burst pressure results indicated that solder-mediated and patched welds yielded similar average burst strengths in most cases, but the patches provided a higher success rate (i.e., more often exceeded 150 mmHg) and were more consistent (i.e., smaller standard deviation) than the solder. The strongest welds were obtained using 1.0-1.3 mm thick patches, while the high power/short exposure solder group was the weakest. Though the solder and patches yielded similar acute weld strengths, the solid-matrix patches facilitated the welding process and provided consistently strong welds. The material properties of the extrinsic agents influenced their performance.

  17. A tunable narrow-line-width multi-wavelength Er-doped fiber laser based on a high birefringence fiber ring mirror and an auto-tracking filter

    Science.gov (United States)

    Jia, Xiu-jie; Liu, Yan-ge; Si, Li-bin; Guo, Zhan-cheng; Fu, Sheng-gui; Kai, Gui-yun; Dong, Xiao-yi

    2008-01-01

    A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.

  18. A novel, simple and efficient dye laser with low amplified spontaneous emission background for analytical fluorescence and ionization spectroscopy

    International Nuclear Information System (INIS)

    Matveev, Oleg I.; Omenetto, Nicolo'

    1995-01-01

    A new, simple, compact and efficient, grazing- incidence type of dye laser is suggested which has a low level of Amplified Spontaneous Emission. By using a Coumarin dye (LD 5000) pumped with a 20 mJ XeCl excimer laser, and a diffraction grating with 3000 grooves/mm, an efficiency of 11%, a spectral bandwidth of 0.6 cm -1 and a tuning range from 458 to 517 nm have been obtained

  19. Studies of photoionization in liquids using a laser two-photon ionization conductivity technique

    International Nuclear Information System (INIS)

    Siomos, K.; Christophorou, L.G.

    1981-01-01

    One-photon ionization studies of solute molecules in a liquid medium are limited by the absorption of the host medium. A laser two-photon ionization (TPI) technique using a frequency tunable dye laser has been developed, whereby the photoionization threshold of a solute molecule was determined from the induced conductivity in the liquid medium under study due to electron-ion pair formation via two-photon ionization of the solute. The two-photon induced electron-ion current is measured as a function of the laser wavelength, lambda/sub laser/. In this paper, results are reported and discussed on the photoionization of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), pyrene and fluoranthene in liquid n-pentane

  20. Multi-wavelength copper vapour lasers for novel materials processing application

    International Nuclear Information System (INIS)

    Knowles, M.; Foster-Turner, R.; Kearsley, A.; Evans, J.

    1995-01-01

    The copper vapour laser (CVL) is a high average power, short pulse laser with a multi-kilohertz pulse repetition rate. The CVL laser lines (511 nm and 578 nm) combined with the good beam quality and high peak power available from these lasers allow it to operate in a unique parameter space. Consequently, it has demonstrated many unique and advantageous machining characteristics. We have also demonstrated efficient conversion of CVL radiation to other wavelengths using non-linear frequency conversion, dye lasers and Ti:AL 2 O 3 . Output powers of up to 4 W at 255 nm have been achieved by frequency doubling. The frequency doubled CVL is inherently narrow linewidth and frequency locked making it a suitable source for UV photolithography. Slope efficiencies in excess of 25 % have been achieved with CVL pumped Ti:Al 2 O 3 and dye lasers. These laser extend the wavelengths options into the red and infrared regions of the spectrum. The near diffraction limited beams from these tunable lasers can be efficiently frequency doubled into the blue and near UV. The wide range of wavelength options from the CVL enable a wide variety of materials processing and material interactions to be explored. A European consortium for Copper Laser Applications in Manufacture and Production (CLAMP) has been set up under the EUREKA scheme to coordinate the commercial and technical expertise currently available in Europe. (author)

  1. Tunable solid-state laser technology for applications to scientific and technological experiments from space

    Science.gov (United States)

    Allario, F.; Taylor, L. V.

    1986-01-01

    Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.

  2. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    Science.gov (United States)

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  3. Photophysical and photochemical study of styrene dyes related to their laser efficiency

    International Nuclear Information System (INIS)

    Meyer, Martine

    1989-01-01

    The photophysical and photochemical properties of two styrene dyes: 4-dicyanomethylene-2-methyl-6-p-dimethylamino-styryl-4H-pyran (DCM) and 7-dimethylamino-3-(-p-formyl-styryl)-1,4-benzoxazine-2-one (DFSBO) have been studied. These molecules have electron donor and electron acceptor groups which give to their fluorescent excited state a charge transfer state character. The red shifts of the absorption and fluorescence spectra in polar solvents and the large Stokes shift related to the increase of the dipole moment from the ground state to the singlet excited state have been fully characterised. The absorption spectra of the first excited singlet and triplet states and the quantum yields of the intersystem crossing to the triplet state have been determined. The existence of conformers of the two dyes has been evidenced. The synthesis of DCM leads to the trans isomer which, under light exposure undergoes photo-isomerization to the cis-compound. Their fluorescence lifetimes and the photo-isomerization efficiency are solvent dependent. The DFSBO emission spectra depend greatly on the excitation wavelength. This effect can be explained by the occurrence of two rotational conformers one being stabilised by an intramolecular hydrogen bond. The spectral properties of these two molecules enable us to explain why DCM is a very good laser dye whereas DFSBO has a poor laser efficiency. (author) [fr

  4. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    Science.gov (United States)

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  5. Quasi zero-background tunable diode laser absorption spectroscopy employing a balanced Michelson interferometer.

    Science.gov (United States)

    Guan, Zuguang; Lewander, Märta; Svanberg, Sune

    2008-12-22

    Tunable diode laser spectroscopy (TDLS) normally observes small fractional absorptive reductions in the light flux. We show, that instead a signal increase on a zero background can be obtained. A Michelson interferometer, which is initially balanced out in destructive interference, is perturbed by gas absorption in one of its arms. Both theoretical analysis and experimental demonstration show that the proposed zero-background TDLS can improve the achievable signal-to-noise ratio.

  6. Symmetry-protected zero-mode laser with a tunable spatial profile

    Science.gov (United States)

    Ge, Li

    Majorana zero modes in condense matter systems have attracted considerable interest in topological quantum computation. In contrast, while robust zero modes have been observed in various photonic lattices, it remains an open question whether they can be used for the same purpose. To advance significantly the state-of-the-art in zero-mode photonics, new inspirations are needed for a better design and control of photonic systems. Using the zero modes protected by non-Hermitian particle-hole symmetry in a photonic lattice and the spatial degrees of freedom they offer, we propose a single-mode, fixed-frequency, and spatially tunable zero-mode laser. The system does not need to have zero modes before a localized pump is applied; they are created by the spontaneous restoration of particle-hole symmetry. By modifying this process using different pump configurations, we present a versatile way to tune the spatial profile of our zero-mode laser, with its lasing frequency pinned at the zero energy. Such a zero-mode laser may find applications in telecommunication, where spatial encoding is held by some to be last frontier of signal processing. This project is supported by the NSF under Grant No. DMR-1506987.

  7. Ultraviolet SO lasers optically pumped by a tunable, line-narrowed KrF laser

    International Nuclear Information System (INIS)

    Stuart, B.C.D.

    1992-06-01

    The feasibility of an ultraviolet energy storage laser based on the long-lived sulfur monoxide A 3 π-χ 3 Σ - electronic transition was investigated, and an ultraviolet laser based on the short-lived SO(B 3 Σ - -χ 3 Σ - ) transition was demonstrated and modeled. Both were optically pumped by a continuously tunable, line-narrowed KrF laser developed for efficient rotationally resolved excitation of SO. SO was produced by both microwave discharge and excimer laser photolysis of the precursor molecules SO 2 and SOCl 2 , with a maximum SO concentration (10 16 cm -3 ) generated by ArF (193 nm) photodissociation of SO 2 . Laser induced fluorescence of SO was used to study the excitation spectroscopy, vibrational branching ratios, lifetimes and deactivation rates. The radiative lifetime of SO(A 3 π 2 ,v' = 5) was measured to be 6.9 μs and that of SO(B,v' = 1) to be 33 ns. Lifetimes in the highly perturbed SO(B,v' = 2) level ranged from 28--90 ns. Measurements and modeling of the excitation saturation fluence as a function of buffer gas pressure determined what fraction of the ground state SO(X) molecules could be excited to SO(A) or SO(B). No evidence of excited state absorption was seen. Lasing on six new ultraviolet SO(B-X) vibrational bands in the range 262--315 nm was demonstrated. SO(B-X) pulse energies of up to 11 μJ were obtained and the gain coefficient was estimated to be 0.1 cm -1 . A multi-level rate equation model of the SO(B-X) excitation and lasing transitions, including collisional rotational mixing, described the dynamics of the lasing and measured output very well. Modeling showed and experiments confirmed that the maximum possible SO laser gain simply corresponded to saturating the excitation of a single rotational level. Collisional coupling of the rotational levels increased the laser output energy

  8. Research on tunable multiwavelength fiber lasers with two-section birefringence fibers and a nonlinear optical loop

    Science.gov (United States)

    Chen, Jiao; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang; Pan, Honggang

    2018-05-01

    Two types of tunable multiwavelength fiber lasers based on two-section polarization maintaining fibers (PMFs) cascaded/in parallel and nonlinear optical loop are proposed and experimentally demonstrated. Two-section cascaded PMFs and two polarization controllers (PCs) form the two-stage Lyot filter, which can generate comb spectrum to achieve multiwavelength output. When two sections of PMFs are in parallel, PCs in two paths are adjusted to change the beam’s polarization to suppress the light of one branch, and then the light of the other branch passes through the cavity. Additionally, a nonlinear optical loop acts as an intensity-dependent component, which can suppress the mode competition to maintain a stable output of multiwavelength lasing. The nonlinear optical loop is made by a 3 dB coupler, a PC3, and a 200 m high nonlinear fiber. Two types of tunable multiwavelength fiber lasers can achieve tuning of the channel space and the number of lasing wavelengths by adjusting PC1 and PC2. The channel space of the multiwavelengh laser can be tuned at nearly 0.4, 0.68, and 0.92 nm. Meanwhile, the spectral range of multiwavelength lasing can be controlled by PC3 in the nonlinear optical loop, and the tuning range of two multiwavelength lasers is about 2.28 and 1.45 nm, respectively.

  9. Charge radii and moments of tin nuclei by laser spectroscopy

    International Nuclear Information System (INIS)

    Anselment, M.; Bekk, K.; Hanser, A.; Hoeffgen, H.; Meisel, G.; Goering, S.; Rebel, H.; Schatz, G.

    1986-04-01

    The isotope shift and hyperfine structure of the optical Sn I resonance transition 5p 2 3 P 0 ->5p6s 3 P 1 at lambda=286.3 nm have been studied for 18 Sn nuclei including 2 isomers. Laser induced resonance fluorescence from a collimated atomic beam of tin was observed using a tunable cw dye laser with frequency doubler. The electromagnetic nuclear moments and changes of the mean square charge radii of the nuclear charge distributions were determined. The results are discussed with respect to the information they provide on the nuclear structure of the nuclei investigated; they are compared with various theoretical models. (orig.) [de

  10. Fluorescence fluctuation of Rhodamine 6G dye for high repetition rate laser excitation

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Patel, Hemant K.; Dixit, S.K.; Vora, H.S.

    2013-01-01

    In this paper, fluorescence from Rhodamine 6G dye for stationary and flowing liquid medium, excited by copper vapor laser, operating at 6 kHz pulse repetition frequency, was investigated. Large fluctuations in spectral width (about 5 nm) and spectral intensity in the fluorescence from stationary dye solution were observed, while fluctuations in the spectral width diminish in a flowing dye medium. However, this increases spectral intensity and slightly red shifts the fluorescence peak emission wavelength. Theoretical analysis was carried out to explain the observed results by incorporating the temperature induced refractive index, beam deflection and spectral variation in stationary dye solution. Numerical analysis of thermal load and contour of temperature in the optical pumped region inside the dye cell in stationary, 0.2 and 1.5 m/s flow velocity was also investigated to support our analysis. - Highlights: ► High repetition rate excitation generates inhomogeneity in the gain medium. ► Fluorescence of Rhodamine 6G in stationary and flowing medium was carried out. ► Fluorescence fluctuations lessen in flowing medium in contrast to stationary medium. ► Our theoretical and numerical analysis enlightens the experimented outcome trend.

  11. Towards a continuous glucose monitoring system using tunable quantum cascade lasers

    Science.gov (United States)

    Haase, Katharina; Müller, Niklas; Petrich, Wolfgang

    2018-02-01

    We present a reagent-free approach for long-term continuous glucose monitoring (cgm) of liquid samples using midinfrared absorption spectroscopy. This method could constitute an alternative to enzymatic glucose sensors in order to manage the widespread disease of Diabetes. In order to acquire spectra of the liquid specimen, we use a spectrally tunable external-cavity (EC-) quantum cascade laser (QCL) as radiation source in combination with a fiber-based in vitro sensor setup. Hereby we achieve a glucose sensitivity in pure glucose solutions of 3 mg/dL (RMSEP). Furthermore, the spectral tunability of the EC-QCL enables us to discriminate glucose from other molecules. We exemplify this by detecting glucose among other saccharides with an accuracy of 8 mg/dL (within other monosaccharides, RMSEVC) and 14 mg/dL (within other mono- and disaccharides, RMSECV). Moreover, we demonstrate a characterization of the significance of each wavenumber for an accurate prediction of glucose among other saccharides using an evolutionary algorithm. We show, that by picking 10 distinct wavenumbers we can achieve comparable accuracies to the use of a complete spectrum.

  12. Application of laser resonance scattering to the study of high-temperature plasma-wall interaction

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Muraoka, Katsunori; Hamamoto, Makoto; Akazaki, Masanori; Miyazoe, Yasushi

    1981-01-01

    Studies on laser resonance scattering and its application to the study of high-temperature plasma-wall interaction are reviewed. The application of dye laser beam to resonant scattering method has been developed. This method is able to detect low density atoms. The fluorescent photon counts can be estimated for a two-level system and a three-level system. The S/N ratio, Which is in close connection with the detection limit, has been estimated. The doppler effect due to the thermal motion of atoms is taken into consideration. The calibration of the absolute number of atoms is necessary. Tunable coherent light is used as the light source for resonance scattering method. This is able to excite atoms strongly and to increase the detection efficiency. As dye lasers, a N 2 laser, a YAG laser, and a KrF excimer laser have been studied. In VUV region, rare gas or rare gas halide lasers can be used. The strong output power can be expected when the resonance lines of atoms meet the synchronizing region of the excimer laser. The resonance scattering method is applied to the detection of impurity metal atoms in plasma. The studies of laser systems for the detection of hydrogen atoms are also in progress. (Kato, T.)

  13. Utilizing Near-IR Tunable Laser Absorption Spectroscopy to Study Detonation and Combustion Systems

    Science.gov (United States)

    2014-03-27

    A Hencken burner, Rotating Detonation Engine ( RDE ), and a detonation tube were studied using a Time-Devision Multiplexed Tunable Diode Laser...for the three systems. Velocity was calculated for the RDE system using the Doppler shift of the spectral lines. To perform the calculations necessary...however, the CH4 flame did not match as well. The exhaust of the RDE was studied at various equivalence ratios using a hydrogen-air mixture (H2-air

  14. Continuously tunable monomode mid-infrared vertical external cavity surface emitting laser on Si

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Fill, M.; Felder, F.; Hobrecker, F.; Zogg, H.

    2010-10-01

    A tunable PbTe based mid-infrared vertical external cavity surface emitting laser is described. The active part is a ˜1 μm thick PbTe layer grown epitaxially on a Bragg mirror on the Si-substrate. The cavity is terminated with a curved Si/SiO Bragg top mirror and pumped optically with a 1.55 μm laser. Cavity length is <100 μm in order that only one longitudinal mode is supported. By changing the cavity length, up to 5% wavelength continuous and mode-hop free tuning is achieved at fixed temperature. The total tuning extends from 5.6 to 4.7 μm at 100-170 K operation temperature.

  15. Micro-fabricated solid state dye lasers based on a photo-definable polymer

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Balslev, Søren; Gregersen, Misha Marie

    2005-01-01

    the commercially available laser dye Rhodamine 6G, which is incorporated into the SU-8 polymer matrix. The single-mode slab waveguide is formed by three-step spin-coating deposition: a buffer layer of undoped SU-8, a core layer of SU-8 doped with Rhodamine, and a cladding layer of undoped SU-8. (c) 2005 Optical...

  16. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  17. Enhanced optical confinement of dye-doped dielectric nanoparticles using a picosecond-pulsed near-infrared laser

    International Nuclear Information System (INIS)

    Kittiravechote, A; Chiang, W-Y; Usman, A; Liau, I; Masuhara, H

    2014-01-01

    We demonstrate a novel strategy to increase the capability of confining numerous dye-doped polymeric nanobeads (diameter 100 nm) with laser trapping. Unlike most classical works of optical trapping that address mainly the stiffness of the optical trap, our work concerns an increase in the number of particles confined near the laser focus. We developed an imaging system of light scattering in which a condenser lamp was employed to illuminate the focal plane of the objective lens, and the scattering of the incoherent light was specifically measured to determine the number of confined nanobeads. In contrast to preceding work that used mainly continuous-wave or femtosecond-pulsed lasers, we employed a picosecond-pulsed laser with the half-wavelength of the laser particularly falling within the absorption band of the dopant. Our results show that the number of doped nanobeads held by the laser is significantly greater than that of the bare nanobeads of the same dimension. In striking contrast, the confinement of the nanobeads of the two types was comparable when a continuous-wave laser of the same wavelength and power was employed. The number of confined dye-doped nanobeads increased nonlinearly with the power of the pulsed laser; this dependence was fitted satisfactorily with a second-order polynomial. Supported by theoretical analysis, we attribute the enhanced confinement of doped nanobeads in part to an increased effective refractive index resulting from two-photon resonance between the optical field of the laser and the dopant of the nanobead. We envisage that our findings would evoke applications that benefit from controlled confinement or aggregation of nanomaterials with the employment of near-infrared pulsed lasers. (letter)

  18. Plasmonic angular tunability of gold nanoparticles generated by fs laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pace, M.L.; Guarnaccio, A.; Ranù, F. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Trucchi, D. [CNR, ISM UOS Montelibretti, Via Salaria km 29.300, Monterotondo Scalo, (RM) 00015 (Italy); Orlando, S., E-mail: stefano.orlando@ism.cnr.it [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Mollica, D.; Parisi, G.P. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy); Medici, L.; Lettino, A. [CNR, IMAA, Area della Ricerca di Potenza -Zona Industriale, Tito Scalo, (PZ) 85050 (Italy); De Bonis, A.; Teghil, R. [Dipart. di Scienze,Università della Basilicata, Viale dell’Ateneo Lucano 10, Potenza, 85100 (Italy); Santagata, A. [CNR, ISM UOS Tito Scalo, Zona Industriale, Tito Scalo (PZ) 85050 (Italy)

    2016-06-30

    Highlights: • fs pulsed laser ablation as a technique to produce nanoparticles. • Nanoparticle distribution as an evidence for plasmonic tunable resonances. • Correlation between angular distribution of deposited nanoparticles and specific plasmonic resonances. - Abstract: With the aim to study the influence of deposition parameters on the plasmonic properties of gold (Au) nanoparticles (NPs) deposited by ultra-short ablation, we have focused our attention in evaluating how their size distribution can be varied. In this work, the role played by the NPs’ angular distribution, agglomeration and growth is related to the resulting optical properties. UV–vis-NIR absorption spectra together with Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray microdiffraction observations are presented in order to show how the angular distribution of fs laser ablation and deposition of Au NPs provides different plasmonic properties which can be beneficial for several aims, from optoelectronic to biosensor applications.

  19. Using the ultra-long pulse width pulsed dye laser and elliptical spot to treat resistant nasal telangiectasia.

    Science.gov (United States)

    Madan, Vishal; Ferguson, Janice

    2010-01-01

    Thick linear telangiectasia on the ala nasi and nasolabial crease can be resistant to treatment with the potassium-titanyl-phosphate (KTP) laser and the traditional round spot on a pulsed dye laser (PDL). We evaluated the efficacy of a 3 mm x 10 mm elliptical spot using the ultra-long pulse width on a Candela Vbeam(R) PDL for treatment of PDL- and KTP laser-resistant nasal telangiectasia. Nasal telangiectasia resistant to PDL (12 patients) and KTP laser (12 patients) in 18 patients were treated with a 3 mm x 10 mm elliptical spot on the ultra-long pulse pulsed dye laser (ULPDL) utilising long pulse width [595 nm, 40 ms, double pulse, 30:20 dynamic cooling device (DCD)]. Six patients had previously received treatment with both PDL and KTP laser prior to ULPDL (40 treatments, range1-4, mean 2.2). Complete clearance was seen in ten patients, and eight patients displayed more than 80% improvement after ULPDL treatment. Self-limiting purpura occurred with round spot PDL and erythema with KTP laser and ULPDL. Subtle linear furrows along the treatment sites were seen in three patients treated with the KTP laser. ULPDL treatment delivered using a 3 mm x 10 mm elliptical spot was non-purpuric and highly effective in the treatment of nasal telangiectasia resistant to KTP laser and PDL.

  20. Voltage-controlled colour-tunable microcavity OLEDs with enhanced colour purity

    International Nuclear Information System (INIS)

    Choy, Wallace C H; Niu, J H; Li, W L; Chui, P C

    2008-01-01

    The emission spectrum of single-unit voltage-controlled colour-tunable organic light emitting devices (OLEDs) has been theoretically and experimentally studied. Our results show that by introducing the microcavity structure, the colour purity of not only the destination colour but also the colour-tunable route can be enhanced, while colour purity is still an issue in typical single-unit voltage-controlled colour-tunable OLEDs. With the consideration of the periodical cycling of resonant wavelength and absorption loss of the metal electrodes, the appropriate change in the thickness of the microcavity structure has been utilized to achieve voltage-controlled red-to-green and red-to-blue colour-tunable OLEDs without adding dyes or other organic materials to the OLEDs

  1. Performance appraisal studies of laser-enhanced ionization in flames - the determination of nickel in petroleum products

    International Nuclear Information System (INIS)

    Turk, G.C.; Harvilla, G.J.; Webb, J.D.; Forster, A.R.; Shell Development Co., Houston, TX; The Standard Oil Co., Cleveland, OH)

    1984-01-01

    Laser-enhanced ionization (LEI) in flames is an ultrasensitive atomic flame spectrometric technique based on the efficient thermal ionization of atomic species which have been selectively excited by tunable laser radiation. The performance of LEI for real sample analysis is presently being evaluated. A successful determination of trace Ni concentrations in heavy oil flash distillate and Standard Reference Material Fuel Oil has been performed. One gram samples were diluted into 100 to 700 mL volumes of a xylene/n-butanol solvent mixture and aspirated directly into an air-acetylene flame. Stepwise laser excitation of Ni was performed using a Nd:YAG pumped dual-dye laser system. Accurate and reproducible results were obtained. 17 refs., 1 fig., 1 tab

  2. Enhancing the Performance of Distributed Feedback Dye Lasers and Plasmonic V-grooves for Lab-on-a-chip Systems

    DEFF Research Database (Denmark)

    Smith, Cameron

    The ability to perform laboratory operations in compact systems is not only advantageous for the development of diagnostics tools and their production, but also provides unique opportunities to explore the natural world on the micro- and nanoscale. To this end, we focus on two optical schemes: 1...... to the advantages they bring to lab-on-a-chip systems.......) polymer-based distributed feedback (DFB) dye lasers, and 2) plasmonic V-grooves. Regarding the first, DFB dye lasers are well suited to serve as compact, minimal analyte volume and highly sensitive refractive index sensors, where changes occurring in an analyte result in readily measurable shifts...

  3. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Nava, Enzo; Stucchi, Emanuele; Trespidi, Franco; Mariottini, Cristina; Wazen, Paul; Falletto, Nicolas; Fruit, Michel

    2017-11-01

    This paper describes the laser transmitter assembly used in the ALADIN instrument currently in C/D development phase for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The Laser Transmitter Assembly (TXA), based on a diode pumped tripled Nd:YAG laser, is used to generate tunable laser pulses of 150 mJ at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz. The TXA is composed of the following units: a diodepumped CW Nd:YAG Laser named Reference Laser Head (RLH), used to inject a diode-pumped, Q-switched, amplified and frequency tripled Nd:YAG Laser working in the third harmonic referred as Power Laser Head (PLH) and a Transmitter Laser Electronics (TLE) containing all the control and power electronics needed for PLH and RLH operation. The TXA is made by an European consortium under the leadership of Galileo Avionica (It), and including CESI (It), Quantel (Fr), TESAT (Ge) and Thales (Fr).

  4. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... Page 1 ... Keywords. Dye lasers; single longitudinal mode; flow fluctuations. PACS Nos 42.55.Mv; 42.60.Mi; 42.60.By. 1. Introduction. Narrow-band dye lasers offer ... stabilized tunable laser source plays an important role for many applications as mentioned above [1]. For tight wavelength control, the ...

  5. Sampling system for pulsed signals. Study of the radioactive lifetimes of excited 32P1/2 and 32P3/2 states of Na, excited by a tunable dye laser

    International Nuclear Information System (INIS)

    Thomas, P.; Campos, J.

    1979-01-01

    A system for sampling and averaging repetitive signals in the order of nanoseconds is discussed. The system uses as storage memory a multichannel analyzer operating in multi scaling mode. This instrument is employed for the measurement of atomic level lifetimes using a dye laser to excite the atoms and is applied to the study of lifetimes of the 3 2 P1/2 and 3 2 P3/2 states of sodium. (Author) 32 refs

  6. Nanoimprinted distributed feedback dye laser sensor for real-time imaging of small molecule diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2014-01-01

    Label-free imaging is a promising tool for the study of biological processes such as cell adhesion and small molecule signaling processes. In order to image in two dimensions of space current solutions require motorized stages which results in low imaging frame rates. Here, a highly sensitive...... distributed feedback (DFB) dye laser sensor for real-time label-free imaging without any moving parts enabling a frame rate of 12 Hz is presented. The presence of molecules on the laser surface results in a wavelength shift which is used as sensor signal. The unique DFB laser structure comprises several areas...

  7. Peculiarities of the statistics of spectrally selected fluorescence radiation in laser-pumped dye-doped random media

    Science.gov (United States)

    Yuvchenko, S. A.; Ushakova, E. V.; Pavlova, M. V.; Alonova, M. V.; Zimnyakov, D. A.

    2018-04-01

    We consider the practical realization of a new optical probe method of the random media which is defined as the reference-free path length interferometry with the intensity moments analysis. A peculiarity in the statistics of the spectrally selected fluorescence radiation in laser-pumped dye-doped random medium is discussed. Previously established correlations between the second- and the third-order moments of the intensity fluctuations in the random interference patterns, the coherence function of the probe radiation, and the path difference probability density for the interfering partial waves in the medium are confirmed. The correlations were verified using the statistical analysis of the spectrally selected fluorescence radiation emitted by a laser-pumped dye-doped random medium. Water solution of Rhodamine 6G was applied as the doping fluorescent agent for the ensembles of the densely packed silica grains, which were pumped by the 532 nm radiation of a solid state laser. The spectrum of the mean path length for a random medium was reconstructed.

  8. Continuous wave and tunable laser operation of Yb3+ in disordered NaLa(MoO4)2

    Science.gov (United States)

    Rico, M.; Liu, J.; Cano-Torres, J. M.; García-Cortés, A.; Cascales, C.; Zaldo, C.; Griebner, U.; Petrov, V.

    2005-09-01

    Continuous-wave Yb3+ laser operation is studied in single crystals of disordered NaLa(MoO4)2 at room temperature. The sample used was grown by the Czochralski technique and incorporates an Yb ion density of 3.1×1020 cm-3. The effect of the Yb concentration on some of the crystal properties is described as well as the spectroscopic Yb3+ properties at 5 K. Maximum slope efficiencies of about 40% for π and 38% for σ polarization were obtained under Ti:sapphire laser pumping near 976 nm, respectively. The maximum output power for the π polarization was 400 mW at 1039.5 nm, the threshold in this case amounted to 240 mW (absorbed pump power). The laser emission was tunable between 1016 and 1064 nm with a Lyot filter. Lasing was also realized by pumping with a fiber-coupled diode laser module. Maximum output power of 900 mW at 1035 nm was achieved in this case for the π polarization and the threshold was 280 mW. The results, in terms of output power and tunability, are superior in comparison to all previous reports on Yb-doped disordered double tungstate or molybdate crystals and represent a significant improvement in comparison to earlier experiments with low-doped Yb:NaLa(MoO4)2.

  9. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  10. 1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect.

    Science.gov (United States)

    Wu, Jing; Ju, Youlun; Dai, Tongyu; Yao, Baoquan; Wang, Yuezhu

    2017-10-30

    We demonstrated an efficient and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect for application to measure atmospheric carbon dioxide (CO 2 ). Single-longitudinal-mode power at 2051.65 nm achieved 528 mW with the slope efficiency of 39.5% and the M 2 factor of 1.07, and the tunable range of about 178 GHz was obtained by inserting a Fabry-Perot (F-P) etalon with the thickness of 0.5 mm. In addition, the maximum single-longitudinal-mode power reached 1.5 W with the injected power of 528 mW at 2051.65 nm by master oscillator power amplifier (MOPA) technique. High efficiency and tunable single-longitudinal-mode based on Faraday effect around 2 μm has not been reported yet to the best of our knowledge.

  11. Intravenous injection of artificial red cells and subsequent dye laser irradiation causes deep vessel impairment in an animal model of port-wine stain.

    Science.gov (United States)

    Rikihisa, Naoaki; Tominaga, Mai; Watanabe, Shoji; Mitsukawa, Nobuyuki; Saito, Yoshiaki; Sakai, Hiromi

    2018-03-15

    Our previous study proposed using artificial blood cells (hemoglobin vesicles, Hb-Vs) as photosensitizers in dye laser treatment for port-wine stains (PWSs). Dye laser photons are absorbed by red blood cells (RBCs) and hemoglobin (Hb) mixture, which potentially produce more heat and photocoagulation and effectively destroy endothelial cells. Hb-Vs combination therapy will improve clinical outcomes of dye laser treatment for PWSs because very small vessels do not contain sufficient RBCs and they are poor absorbers/heaters of lasers. In the present study, we analyzed the relationship between vessel depth from the skin surface and vessel distraction through dye laser irradiation following intravenous Hb-Vs injection using a chicken wattle model. Hb-Vs were administered and chicken wattles underwent high-energy irradiation at energy higher than in the previous experiments. Hb-Vs location in the vessel lumen was identified to explain its photosensitizer effect using human Hb immunostaining of the irradiated wattles. Laser irradiation with Hb-Vs can effectively destroy deep vessels in animal models. Hb-Vs tend to flow in the marginal zone of both small and large vessels. Increasing laser power combined with Hb-Vs injection contributed for deep vessel impairment because of the synergetic effect of both methods. Newly added Hb tended to flow near the target endothelial cells of the laser treatment. In Hb-Vs and RBC mixture, heat transfer to endothelial cells from absorbers/heater may increase. Hb-Vs function as photosensitizers to destroy deep vessels within a restricted distance that the photon can reach.

  12. Laser-Induced Fluorescence diagnostic of barium ion plasmas in the Paul Trap Simulator Experiment

    International Nuclear Information System (INIS)

    Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. To investigate the ion plasma microstate in PTSX, including the ion density profile and the ion velocity distribution function, a laser-induced fluorescence diagnostic system is being developed as a nondestructive diagnostic. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. A feasibility study of the laser-induced fluorescence diagnostic using barium ions is presented with the characterization of a tunable dye laser. The installation of the barium ion source and the development of the laser-induced fluorescence diagnostic system are also discussed

  13. Fluorescence, Decay Time, and Structural Change of Laser Dye Cresyl Violet in Solution due to Microwave Irradiation at GSM 900/1800 Mobile Phone Frequencies

    Directory of Open Access Journals (Sweden)

    Fuat Bayrakceken

    2012-01-01

    Full Text Available Microwave irradiation at GSM 900/1800 MHz mobile phone frequencies affects the electronic structure of cresyl violet in solution. These changes are important because laser-dye cresyl violet strongly bonds to DNA- and RNA-rich cell compounds in nerve tissues. The irradiation effects on the electronic structure of cresyl violet and its fluorescence data were all obtained experimentally at room temperature. For most laser dyes, this is not a trivial task because laser dye molecules possess a relatively complex structure. They usually consist of an extended system of conjugated double or aromatic π-bonds with attached auxochromic (electron donating groups shifting the absorption band further towards longer wavelength. Because of the intrinsically high degree of conjugation, the vibrational modes of the molecular units couple strongly with each other. We found that the fluorescence quantum yield was increased from to due to intramolecular energy hopping of cresyl violet in solution which is exposed to microwave irradiation at mobile phone frequencies, and the photonic product cannot be used as a laser dye anymore.

  14. Study and realisation of a femtosecond dye laser operating at different wavelengths. Ultrashort pulses compression and amplification

    International Nuclear Information System (INIS)

    Georges, Patrick

    1989-01-01

    We present the study and the realization of a passively mode-locked dye laser producing pulses shorter than 100 femto-seconds (10 -13 s). In a ring cavity with an amplifier medium (Rhodamine 60) and a saturable absorber (DODCI), a sequence of four prisms controls the group velocity dispersion and allows the generation of very short pulses. Then we have studied the production of femtosecond pulses at other wavelengths directly from the femtosecond dye laser. For the first rime, 60 fs pulses at 685 nm and pulses shorter than 50 fs between 775 nm and 800 nm have been produced by passive mode locking. These near infrared pulses have been used to study the absorption saturation kinetics in semiconductors multiple quantum wells GaAs/GaAlAs. We have observed a singular behavior of the laser operating at 685 nm and analyzed the produced pulses in terms of optical solitons. To perform time resolved spectroscopy with shortest pulses, we have studied a pulse compressor and a multipass amplifier to increase the pulses energy. Pulses of 20 fs and 10 micro-joules (peak power: 0.5 GW) have been obtained at low repetition rate (10 Hz) and pulses of 16 fs and 0.6 micro-joules pulses have been generated at high repetition rate (11 kHz) using a copper vapor laser. These pulses have been used to study the absorption saturation kinetics of an organic dye (the Malachite Green). (author) [fr

  15. Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0 µm

    Science.gov (United States)

    Ahmad, H.; Samion, M. Z.; Sharbirin, A. S.; Norizan, S. F.; Aidit, S. N.; Ismail, M. F.

    2018-05-01

    Graphene, a 2D material, has been used for generation of pulse lasers due to the presence of its various fascinating optical properties compared to other materials. Hence in this paper, we report the first demonstration of a thulium doped fiber laser with a wavelength-tunable, passive Q-switched output using a graphene-polyvinyl-alcohol composite film for operation in the 2.0 µm region. The proposed laser has a wavelength-tunable output spanning from 1932.0 nm to 1946.0 nm, giving a total tuning range of 14.0 nm. The generated pulse has a maximum repetition rate and average output power of 36.29 kHz and 0.394 mW at the maximum pump power of 130.87 mW, as well as a pulse width of 6.8 µs at this pump power. The generated pulses have a stable output, having a signal-to-noise ratio of 31.75 dB, and the laser output is stable when tested over a period of 60 min. The proposed laser would have multiple applications for operation near the 2.0 micron region, especially for bio-medical applications and range-finding.

  16. Effect of conjugation length on nonlinear optical parameters of anthraquinone dyes investigated using He-Ne laser operating in CW mode

    Science.gov (United States)

    Pramodini, S.; Poornesh, P.

    2014-10-01

    We report the studies on third-order optical nonlinearity and optical limiting of anthraquinone dyes. Z-scan technique was employed to evaluate the nonlinear parameters such as nonlinear absorption coefficient βeff and nonlinear index of refraction n2. Continuous wave He-Ne laser was used as the source of excitation. The estimated values of βeff, n2 and χ(3) are of the order of 10-3 cm/W, 10-5 esu and 10-7 esu respectively. The presence of donor and acceptor groups in the structure results in increase in conjugation length. This resulted in the enhancement of nonlinear optical parameters values of the dye. Multiple diffraction rings were observed when the samples were exposed to laser beam due to thermal lensing. Dyes exhibited good optical limiting behavior under the experimental conditions. The results indicate that the dyes investigated here are materialise as candidates for photonics device applications such as optical power limiters.

  17. Treatment of port-wine stains with flash lamp pumped pulsed dye laser on Indian skin: A six year study

    Directory of Open Access Journals (Sweden)

    Chandroth Ponnambath Thajudheen

    2014-01-01

    Full Text Available Context: Port-wine stain (PWS is one of the commonly encountered congenital cutaneous vascular lesions, with an equal sex distribution. Pulsed dye lasers (PDL have revolutionized the treatment of both congential and acquired cutaneous vascular lesions. The pulsed dye lasers owing to its superior efficacy and safety profile have become the gold standard for the management of port-wine stains. Aims: To evaluate the efficacy and side effects of pulsed dye laser for the management of Port-wine stain on Indian skin. Materials and Methods: Seventy five patients of Fitzpatrick skin types IV&V with PWS underwent multiple treatments with PDL (V beam-Candela over a period of six years at monthly intervals. Laser parameters were wavelength 595nm, spot sizes 7-10mm, fluence 6-12 j/cm2, pulse duration 0.45-10ms, along with cryogen cooling. Serial photographs were taken before and after every session. Clinical improvement scores of comparable photographs using a quartile grading (o=80% were judged independently by two dermatologists after the series of treatment. Minimum number of treatments was 6 and maximum 17.They were followed up at six monthly intervals to observe re darkening of PWS. Results: No patient showed total clearance.Grade3 improvement was observed in 70 % of children and 50% of adults after 8-10 sessions. Children showed better and faster response than adults. Thirty percent of patients developed post inflammatory hyper pigmentation which resolved over a period of six to eight weeks. Two patients had superficial scarring due to stacking of pulses. None of the patients showed re darkening of PWS till now. Conclusion: Pulsed dye laser is an effective and safe treatment for port-wine stain in Indian skin.

  18. Resonantly-enhanced, four-photon ionization of krypton at laser intensities exceeding 1013 W/cm2

    International Nuclear Information System (INIS)

    Perry, M.D.; Landen, O.L.; Campbell, E.M.

    1987-12-01

    The yield of singly- and multiply- charged ions of krypton and xenon is presented as a function of laser intensity and frequency. The measurements were performed using the second harmonic output of a well-characterized, tunable picosecond dye laser in the range 285 to 310 nm at laser intensities from 1 x 10 12 to 10 14 W/cm 2 . Enhancement of the Kr + yield by two orders of magnitude by three-photon resonant, four-photon ionization is observed in the vicinity of the 4d'[5/2] 3 and the 4d[3/2] 1 intermediate states. A model incorporating line shifts and widths scaling linearly with intensity is in good agreement with the experimental results

  19. In-source laser spectroscopy of polonium isotopes: From atomic physics to nuclear structure

    CERN Multimedia

    Rothe, S

    2014-01-01

    The Resonance Ionization Laser Ion Source RILIS [1] at the CERN-ISOLDE on-line radioactive ion beam facility is essential for ion beam production for the majority of experiments, but it is also powerful tool for laser spectroscopy of rare isotopes. A series of experiments on in-source laser spectroscopy of polonium isotopes [2, 3] revealed the nuclear ground state properties of 191;211;216;218Po. However, limitations caused by the isobaric background of surface-ionized francium isotopes hindered the study of several neutron rich polonium isotopes. The development of the Laser Ion Source and Trap (LIST) [4] and finally its integration at ISOLDE has led to a dramatic suppression of surface ions. Meanwhile, the RILIS laser spectroscopy capabilities have advanced tremendously. Widely tunable titanium:sapphire (Ti:Sa) lasers were installed to complement the established dye laser system. Along with a new data acquisition system [5], this more versatile laser setup enabled rst ever laser spectroscopy of the radioact...

  20. High resolution laser spectroscopy of the D lines of on-line produced 21Na, 22Na, 24Na, 25Na using a new high sensitivity method of detection of optical resonances

    International Nuclear Information System (INIS)

    Huber, G.; Thibault, G.; Klapisch, R.; Duong, H.T.; Vialle, J.L.; Pinard, I.; Juncar, P.; Jacquinot, P.

    1975-01-01

    A polyisotopic sodium beam of 21 - 25 Na, produced by spallation of Al, was illuminated by a tunable dye laser. The atomic beam, analyzed by a sixpole magnet is then ionized and detected after a mass spectrometer. The results are the isotope shifts, nuclear magnetic moment and quadrupole moment of 25 Na [fr

  1. Improvement of a triple-wavelength erbium-doped fiber laser using a Fabry–Perot laser diode

    International Nuclear Information System (INIS)

    Peng, P C; Hu, H L; Wang, J B

    2013-01-01

    This work demonstrates the feasibility of a simple construct of a tunable triple-wavelength fiber ring laser using a Fabry–Perot laser diode (FP-LD) and an optical tunable bandpass filter. An optical tunable bandpass filter is used within the cavity of an erbium-doped fiber laser to select the lasing wavelength. Because the Fabry–Perot laser diode is in combination with the tunable bandpass filter, the erbium-doped fiber laser can stably lase three wavelengths simultaneously. Moreover, this laser is easily tuned dynamically. This triple-wavelength output performs satisfactorily, with its optical side-mode-suppression-ratio (SMSR) exceeding 40 dB. Furthermore, the wavelength tuning range of this triple-wavelength erbium-doped fiber laser is greater than 27 nm. (paper)

  2. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  3. New-laser research and development

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Two new-laser research efforts were initiated during the reporting period; the chemically pumped iodine laser and HgXe exciplex excitation by electric discharge. The chemically pumped iodine laser was recently discovered by personnel at the Air Force Weapons Laboratory. The laser offers exciting possibilities as an ICF driver because it does not require a capital-intensive pulse power source to drive it, and up to 10% efficiency may be possible. Modeling studies of the laser are in progress and its potential as a high-average power laser seems to be very favorable at this time. The HgXe exciplex radiates in a band centered at 265 nm. This system is being studied because it could be used to pump an iodine laser. Its potential as a high-power laser candidate will be assessed. An advanced oscillator system based upon a microprocessor-controlled Nd:YAG-pumped pulsed dye laser is being developed so that it can be used as the front end of new laser-fusion lasers and utilized in testing and making germane laser amplifier measurements of candidate laser systems for the wavelength region of 4000 A to 8000 A and extended range with frequency doubling and mixing. The operating requirements of the oscillator system include long-term stability, high reliability, absolute wavelength calibration and control, tunability, hands-off operation, and variable pulse width generation in the nanosecond regime

  4. Laser induced fluorescence spectroscopy in atomic beams of radioactive nuclides

    International Nuclear Information System (INIS)

    Rebel, H.; Schatz, G.

    1982-01-01

    Measurements of the resonant scattering of light from CW tunable dye lasers, by a well collimated atomic beam, enable hyperfine splittings and optical isotope shifts to be determined with high precision and high sensitivity. Recent off-line atomic beam experiments with minute samples, comprising measurements with stable and unstable Ba, Ca and Pb isotopes are reviewed. The experimental methods and the analysis of the data are discussed. Information on the variation of the rms charge radii and on electromagnetic moments of nuclei in long isotopic chains is presented. (orig.) [de

  5. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber

    Science.gov (United States)

    Feng, Suchun; Lu, Shaohua; Peng, Wanjing; Li, Qi; Feng, Ting; Jian, Shuisheng

    2013-04-01

    A tunable single-polarization single-longitudinal-mode (SLM) erbium-doped fiber ring laser is proposed and demonstrated. For the first time as we know, a chirped moiré fiber Bragg grating (CMFBG) filter with ultra-narrow transmission band and a uniform fiber Bragg grating (UFBG) are used to select the laser longitudinal mode. The stable SLM operation of the fiber laser is guaranteed by the combination of the CMFBG filter and 3 m unpumped erbium-doped fiber acting as a saturable absorber. The single polarization operation of the fiber laser is obtained by using an inline broadband polarizer. A tuning range of about 0.7 nm with about 0.1 nm step is achieved by stretching the uniform FBG.

  6. Diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference

    Energy Technology Data Exchange (ETDEWEB)

    Ren Cheng; Zhang Shulian, E-mail: ren-c06@mails.tsinghua.edu.c [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2009-08-07

    The diode-pumped dual-frequency microchip Nd : YAG laser with tunable frequency difference is presented. The gain medium used is a microchip 2 mm in thickness for miniaturized and integrated design. Two quarter-wave plates are placed into the laser cavity and the intra-cavity birefringence produces two orthogonally linearly polarized modes. The rotation of one of the two quarter-wave plates introduces a controlled and variable cavity birefringence which causes a variable frequency difference between the two orthogonally polarized modes. The frequency difference can be tuned through the whole cavity free spectral range. The obtained frequency difference ranges from 14 MHz to 1.5 GHz. The variation of the beat frequency over a period of 10 min is less than 10 kHz. The lock-in between modes is not found. Experimental results are presented, which match well with the theoretical analysis based on Jones matrices.

  7. Development of Laser-Induced Fluorescence Diagnostic for the Paul Trap Simulator Experiment

    CERN Document Server

    Chung, Moses; Efthimion, Philip; Gilson, Erik P; Majeski, Richard; Startsev, Edward

    2005-01-01

    The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap whose purpose is to simulate the nonlinear dynamics of intense charged particle beam propagation in alternating-gradient magnetic transport systems. For the in-situ measurement of the transverse ion density profile in the PTSX device, which is essential for the study of beam mismatch and halo particle production, a laser-induced fluorescence diagnostic system is being developed. Instead of cesium, which has been used in the initial phase of the PTSX experiment, barium has been selected as the preferred ion for the laser-induced fluorescence diagnostic. The installation of the barium ion source and the characterization of the tunable dye laser system are discussed. The design of the collection optics with an intensified CCD camera system is also discussed. Finally, initial test results using the laser-induced fluorescence diagnostic will be presented.

  8. N-Aryl Arenedicarboximides as Tunable Panchromatic Dyes for Molecular Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhi Cao

    2010-01-01

    Full Text Available Three organic dyes designed as molecular dyads were prepared that feature a common naphthalimide acceptor and N-aryl donors. One of these incorporated an additional cyanoacrylic acid linker and conjugated thiophene bridge inserted between donor and acceptor groups. Electrochemical and photochemical characterizations have been carried out on nanocrystalline TiO2 dye-sensitized solar cells which were fabricated with these dyes as the sensitizing component. HOMO and LUMO energies were also calculated using TDDFT methods and validated by the cyclic voltammetry method. A key finding from this study indicates that computational methods can provide energy values in close agreement to experimental for the N-aryl-naphthalimide system. Relative to HOMO/LUMO energy levels of N719, the dyes based on naphthalimide chromophore are promising candidates for metal-free DSSCs.

  9. Real-time dynamic calibration of a tunable frequency laser source using a Fabry-Pérot interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, Gábor, E-mail: mandula.gabor@wigner.mta.hu; Kis, Zsolt; Lengyel, Krisztián [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest (Hungary)

    2015-12-15

    We report on a method for real-time dynamic calibration of a tunable external cavity diode laser by using a partially mode-matched plano-concave Fabry-Pérot interferometer in reflection geometry. Wide range laser frequency scanning is carried out by piezo-driven tilting of a diffractive grating playing the role of a frequency selective mirror in the laser cavity. The grating tilting system has a considerable mechanical inertness, so static laser frequency calibration leads to false results. The proposed real-time dynamic calibration based on the identification of primary- and Gouy-effect type secondary interference peaks with known frequency and temporal history can be used for a wide scanning range (from 0.2 GHz to more than 1 GHz). A concave spherical mirror with a radius of R = 100 cm and a plain 1% transmitting mirror was used as a Fabry-Pérot interferometer with various resonator lengths to investigate and demonstrate real-time calibration procedures for two kinds of laser frequency scanning functions.

  10. Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 microns

    Science.gov (United States)

    Mcguckin, B. T.; Menzies, Robert T.

    1992-01-01

    A conversion efficiency of 42 percent and slope efficiency of approximately 60 percent relative to absorbed pump power are reported from a continuous wave diode-pumped Tm, Ho:YLF laser at 2 microns with output power of 84 mW at sub-ambient temperatures. The emission spectrum is etalon tunable over a range of 16/cm centered on 2.067 microns, with fine tuning capability of the transition frequency with crystal temperature at a measured rate of about -0.03/cm-K. The effective emission cross section is measured to be 5 x 10 exp -21 sq cm. These and other aspects of the laser performance are discussed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications.

  11. 13CO2/12CO2 ratio analysis in exhaled air by lead-salt tunable diode lasers for noninvasive diagnostics in gastroenterology

    Science.gov (United States)

    Stepanov, Eugene V.; Zyrianov, Pavel V.; Miliaev, Valerii A.; Selivanov, Yurii G.; Chizhevskii, Eugene G.; Os'kina, Svetlana; Ivashkin, Vladimir T.; Nikitina, Elena I.

    1999-07-01

    An analyzer of 13CO2/12CO2 ratio in exhaled air based on lead-salt tunable diode lasers is presented. High accuracy of the carbon isotope ratio detection in exhaled carbon dioxide was achieved with help of very simple optical schematics. It was based on the use of MBE laser diodes operating in pulse mode and on recording the resonance CO2 absorption at 4.2 micrometers . Special fast acquisition electronics and software were applied for spectral data collection and processing. Developed laser system was tested in a clinical train aimed to assessment eradication efficiency in therapy of gastritis associated with Helicobacter pylori infection. Data on the 13C-urea breath test used for P.pylori detection and obtained with tunable diode lasers in the course of the trail was compared with the results of Mass-Spectroscopy analysis and histology observations. The analyzer can be used also for 13CO2/12CO2 ratio detection in exhalation to perform gastroenterology breath test based on using other compounds labeled with stable isotopes.

  12. THERAPY OF SKIN VASCULAR MALFORMATIONS USING COPPER VAPOR LASER AND PULSED DYE LASER

    Directory of Open Access Journals (Sweden)

    Svetlana V. Klyuchareva

    2018-01-01

    Full Text Available Aim. Comparison of effectiveness of the application of copper vapor laser (CVL and pulsed dye laser (PDL in clinical practice. Development of choice criteria of the more effective method of treatment.Materials and methods. The clinical data using CVL and PDL in the treatment of skin vascular malformations are presented. The treatment gave good results in removing of dysplastic skin vessels in 2 and 6 months. The treatment was not painful, and patients did not need general and local anesthesia. The results were presented concerning computer modeling of selective heating of vessels in tissue with CVL and PDL radiation. These results allowed to determine the depth of location and dimensions of vessels for selective and secure removing and the safe dosage ranges were found.Results. On the base of the calculated data, one could conclude that the mode of heating of dysplastic vessels with micropulse series of CVL is more safe and effective than the mode of powerful short pulses in the case of PDL.

  13. Histologic comparison of the pulsed dye laser and copper vapor laser effects on pig skin

    Energy Technology Data Exchange (ETDEWEB)

    Tan, O.T.; Stafford, T.J.; Murray, S.; Kurban, A.K. (Boston Univ. Medical Center, MA (USA))

    1990-01-01

    Albino pig skin was exposed to the copper vapor (CVL) and flash-lamp pulsed dye (PDL) lasers at 578 nm with a 3 mm diameter spotsize over a range of fluences until purpura and whitening were first established. The total irradiation time was the parameter that was varied in order for the CVL to reach the desired fluence. The lowest fluence producing each clinical endpoint was designated the threshold fluence: 34 J/cm{sup 2} was required to produce purpura using the CVL compared to 7.5 J/cm{sup 2} with the PDL laser. Histologically, skin exposed to purpura fluences from the CVL revealed the presence of constricted, disrupted papillary dermal blood vessels with trapped RBC's within them which were unlike those exposed to PDL where the irradiated vessels were dilated and packed with masses of intravascular agglutinated RBC's. The whitening threshold fluences for the CVL and PDL lasers were 67 J/cm{sup 2} and 29 J/cm{sup 2}, respectively. Streaming of epidermal cells and dermal collagen denaturation were observed in CVL irradiated skin, compared to occasional dyskeratotic epidermal cells and focal dermal collagen denaturation following PDL exposure. The mechanisms responsible for the clinical and histologic changes produced by the two laser systems are discussed.

  14. Biostimulative effects of Nd:YAG Q-switch dye on normal human fibroblast cultures: study of a new chemosensitizing agent for the Nd:YAG laser

    International Nuclear Information System (INIS)

    Castro, D.J.; Saxton, R.E.; Fetterman, H.R.; Castro, D.J.; Ward, P.H.

    1987-01-01

    Kodak Q-switch II is a new chemical with an absorption maxima at 1051 nm, designed to be used as an Nd:YAG dye laser. The potential for this dye as a new chemosensitizing agent in the treatment of connective tissue diseases and wound healing with low energy Nd:YAG laser was examined. Two normal fibroblast cell lines were tested for sensitivity to various levels of this dye in vitro. These cells were exposed to Q-switch II dye at concentrations of 0.01, 0.1, 1, 10, 50, and 100 micrograms/ml for 1 and 24 hours. Cell viability was assessed by the trypan blue exclusion test. Cell duplication and DNA synthesis were measured by the incorporation of [ 3 H]-thymidine at 6 and 24 hours postexposure to Q-switch II dye. At concentrations up to 10 micrograms/ml, both cell lines tested showed no changes in cell viability. However, at concentrations equal or higher than 50 micrograms/ml, more than 40% of the fibroblasts incorporated trypan blue after 24 hours of exposure to this dye, indicating significant cell destruction. The results indicate that Q-switch II dye is nontoxic to normal human fibroblast cultures and showed significant biostimulative effects on cell duplication at concentrations equal to or lower than 10 micrograms/ml. Further studies will be required to determine the usefulness of Q-switch II dye as a new photochemosensitizing agent for potential biostimulation of wound healing and/or treatment of connective tissue diseases with the Nd:YAG laser (near infrared, 1060 nm) at nonthermal levels of energies

  15. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    Science.gov (United States)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  16. Effects of diode laser welding with dye-enhanced glue on tensile strength of sutures commonly used in urology.

    Science.gov (United States)

    Kirsch, A J; Chang, D T; Kayton, M L; Libutti, S K; Connor, J P; Hensle, T W

    1996-01-01

    Tissue welding using laser-activated protein solders may soon become an alternative to sutured tissue approximation. In most cases, approximating sutures are used both to align tissue edges and provide added tensile strength. Collateral thermal injury, however, may cause disruption of tissue alignment and weaken the tensile strength of sutures. The objective of this study was to evaluate the effect of laser welding on the tensile strength of suture materials used in urologic surgery. Eleven types of sutures were exposed to diode laser energy (power density = 15.9 W/cm2) for 10, 30, and 60 seconds. Each suture was compared with and without the addition of dye-enhanced albumin-based solder. After exposure, each suture material was strained (2"/min) until ultimate breakage on a tensometer and compared to untreated sutures using ANOVA. The strength of undyed sutures were not significantly affected; however, violet and green-dyed sutures were in general weakened by laser exposure in the presence of dye-enhanced glue. Laser activation of the smallest caliber, dyed sutures (7-0) in the presence of glue caused the most significant loss of tensile strength of all sutures tested. These results indicate that the thermal effects of laser welding using our technique decrease the tensile strength of dyed sutures. A thermally resistant suture material (undyed or clear) may prevent disruption of wounds closed by laser welding techniques.

  17. Triphenylamine based benzimidazole and benzothiazole: Synthesis and applications in fluorescent chemosensors and laser dyes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Bin, E-mail: libinteacher@163.com [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Zhang, Liming; Guan, Yunlong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2014-01-15

    Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. The TPA-benzimidazole chemosensor was tested for a number of metal ions and found to exhibit binding affinity for Fe{sup 3+} and Hg{sup 2+} in acetonitrile, and the fluorescence quenching was achieved through a PET process. The appearance of an isosbestic point in absorption titrations and Job's plot analysis supported 1:1 stoichiometries for Fe{sup 3+} and Hg{sup 2+} ions. Laser experiments showed that under transversal pumping with a Q-switched Nd:YAG (355 nm) laser in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) at 436 nm. -- Highlights: • Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. • The TPA-benzimidazole exhibits binding affinity for Fe{sup 3+} and Hg{sup 2+} in acetonitrile and the fluorescence quenching was achieved through a PET process. • Under transversal pumping at 355 nm in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) in 436 nm.

  18. Triphenylamine based benzimidazole and benzothiazole: Synthesis and applications in fluorescent chemosensors and laser dyes

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Bin; Zhang, Liming; Guan, Yunlong

    2014-01-01

    Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. The TPA-benzimidazole chemosensor was tested for a number of metal ions and found to exhibit binding affinity for Fe 3+ and Hg 2+ in acetonitrile, and the fluorescence quenching was achieved through a PET process. The appearance of an isosbestic point in absorption titrations and Job's plot analysis supported 1:1 stoichiometries for Fe 3+ and Hg 2+ ions. Laser experiments showed that under transversal pumping with a Q-switched Nd:YAG (355 nm) laser in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) at 436 nm. -- Highlights: • Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. • The TPA-benzimidazole exhibits binding affinity for Fe 3+ and Hg 2+ in acetonitrile and the fluorescence quenching was achieved through a PET process. • Under transversal pumping at 355 nm in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) in 436 nm

  19. Complete electromagnetically induced transparency in sodium atoms excited by a multimode dye laser

    International Nuclear Information System (INIS)

    Alzetta, G.; Gozzini, S.; Lucchesini, A.; Cartaleva, S.; Karaulanov, T.; Marinelli, C.; Moi, L.

    2004-01-01

    Complete electromagnetically induced transparency (EIT) in sodium vapor is demonstrated experimentally by means of excitation with a broadband multimode dye laser tuned on the D 1 line. One hundred percent transparency is observed by excitation of the Na vapor with circularly polarized laser light. The linear polarization excitation produces, instead, complete destruction of the EIT resonance. For laser power density in the 0.1 to 1 W/cm 2 range, the linewidth of the EIT resonance remains in the interval of 90-400 kHz. This complete transparency of the medium in a narrow frequency interval is interesting for many applications where the enhancement of the refractive index is important and where the improvement of the signal-to-noise ratio of the dark resonances allows a more sensitive measurement of weak magnetic fields

  20. IV-VI mid-IR tunable lasers and detectors with external resonant cavities

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.

    2009-08-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  1. Near-infrared tunable laser diode spectroscopy: an easy way for gas sensing

    Science.gov (United States)

    Larive, Marc; Henriot, V.

    1997-05-01

    A gas sensor using optical spectrometry and dedicated to a specific gas is studied. It should be able to operate out of laboratories with a very long life and a low maintenance requirement. It is based on TLDS (tunable laser diode spectroscopy) and uses a standard Perot-Fabry laser diode already developed for telecommunications. The mode selection is realized by a passband filter and the wavelength tuning is performed via the diode temperature or its injection current. A PIN photodiode is used for detection, however a rough photoacoustic solution is intended for the future. Absorptions as low as 3.10-3 are detected with this rough system and a limit detection of 10-3 is available with a signal to noise ratio of unity. Experiments have shown that this system is strongly selective for the specified gas (currently the methane). A simulation has been performed which very well fits the experiment and allows us to extrapolate the performances of the system for other gases.

  2. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability

    Science.gov (United States)

    Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.

    2018-03-01

    We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.

  3. Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes

    Directory of Open Access Journals (Sweden)

    Joseba Zubia

    2011-07-01

    Full Text Available Polymer optical fibers (POFs doped with organic dyes can be used to make efficient lasers and amplifiers due to the high gains achievable in short distances. This paper analyzes the peculiarities of light amplification in POFs through some experimental data and a computational model capable of carrying out both power and spectral analyses. We investigate the emission spectral shifts and widths and on the optimum signal wavelength and pump power as functions of the fiber length, the fiber numerical aperture and the radial distribution of the dopant. Analyses for both step-index and graded-index POFs have been done.

  4. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, J.P. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  5. Highly Selective Volatile Organic Compounds Breath Analysis Using a Broadly-Tunable Vertical-External-Cavity Surface-Emitting Laser.

    Science.gov (United States)

    Tuzson, Béla; Jágerská, Jana; Looser, Herbert; Graf, Manuel; Felder, Ferdinand; Fill, Matthias; Tappy, Luc; Emmenegger, Lukas

    2017-06-20

    A broadly tunable mid-infrared vertical-external-cavity surface-emitting laser (VECSEL) is employed in a direct absorption laser spectroscopic setup to measure breath acetone. The large wavelength coverage of more than 30 cm -1 at 3.38 μm allows, in addition to acetone, the simultaneous measurement of isoprene, ethanol, methanol, methane, and water. Despite the severe spectral interferences from water and alcohols, an unambiguous determination of acetone is demonstrated with a precision of 13 ppbv that is achieved after 5 min averaging at typical breath mean acetone levels in synthetic gas samples mimicking human breath.

  6. A Tunable CW Orange Laser Based on a Cascaded MgO:PPLN Single-Pass Sum-Frequency Generation Module

    OpenAIRE

    Dismas K. Choge; Huai-Xi Chen; Bao-Lu Tian; Yi-Bin Xu; Guang-Wei Li; Wan-Guo Liang

    2018-01-01

    We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a 10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate of ~0.05 nm/°C, and the beam quality (M2) ...

  7. First quantitative measurements by IR spectroscopy of dioxins and furans by means of broadly tunable quantum cascade lasers

    International Nuclear Information System (INIS)

    Siciliani de Cumis, M; D’Amato, F; Viciani, S; Patrizi, B; Foggi, P; Galea, C L

    2013-01-01

    We demonstrate the possibility of a quantitative analysis of the concentration of several dioxins and furans, among the most toxic ones, by only using infrared absorption laser spectroscopy. Two broadly tunable quantum cascade lasers, emitting in the mid-infrared, have been used to measure the absorption spectra of dioxins and furans, dissolved in CCl 4 , in direct absorption mode. The minimum detectable concentrations are inferred by analyzing diluted samples. A comparison between this technique and standard Fourier transform spectroscopy has been carried out and an analysis of future perspectives is reported. (paper)

  8. Use of reflectance spectrophotometry to predict the response of port wine stains to pulsed dye laser.

    Science.gov (United States)

    Halachmi, Shlomit; Azaria, Ron; Inbar, Roy; Ad-El, Dean; Lapidoth, Moshe

    2014-01-01

    Reflectance spectroscopy can be used to quantitate subtle differences in color. We applied a portable reflectance spectrometer to determine its utility in the evaluation of pulsed dye laser treatment of port wine stains (PWS) and in prediction of clinical outcome, in a prospective study. Forty-eight patients with PWS underwent one to nine pulsed dye laser treatments. Patient age and skin color as well as PWS surface area, anatomic location, and color were recorded. Pretreatment spectrophotometric measurements were performed. The subjective clinical results of treatment and the quantitative spectrophotometry results were evaluated by two independent teams, and the findings were correlated. The impact of the clinical characteristics on the response to treatment was assessed as well. Patients with excellent to good clinical results of laser treatments had pretreatment spectrophotometric measurements which differed by more than 10%, whereas patients with fair to poor results had spectrophotometric measurements with a difference of of less than 10%. The correlation between the spectrophotometric results and the clinical outcome was 73% (p Spectrophotometry has a higher correlation with clinical outcome and a better predictive value than other nonmeasurable, nonquantitative, dependent variables.

  9. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    Science.gov (United States)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  10. Thermal Dynamics of Xanthene Dye in Polymer Matrix Excited by Double Pulse Laser Radiation

    Science.gov (United States)

    Samusev, Ilia; Borkunov, Rodion; Tsarkov, Maksim; Konstantinova, Elizaveta; Antipov, Yury; Demin, Maksim; Bryukhanov, Valery

    2018-01-01

    Double-pulse laser excitation of the eosin and silver nanoparticles embedded into polymer media is known to be a method of electronic-vibrational energy deactivation kinetic process information obtaining and polymer thermal dynamics investigation. We have studied the vibrational relaxation processes in dye molecules (eosin) and nanoparticles in polyvinyl alcohol after two time-shifted laser pulses with fast and delayed fluorescence kinetics study. In order to simulate thermal and photophysical processes caused by double photon excitation, we solved heat transfer and energy deactivation differential equations numerically. The simulation allowed us to obtain the value of heat conductivity coefficient of polymer matrix.

  11. Polarized spectral properties of Yb3+ : Li2Gd4(MoO4)7 crystal: a candidate for tunable and ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Zhu Haomiao; Chen Yujin; Lin Yanfu; Gong Xinghong; Liao Jinsheng; Chen Xueyuan; Luo Zundu; Huang Yidong

    2007-01-01

    Detailed polarized spectral properties of a 3.2 at.% Yb 3+ : Li 2 Gd 4 (MoO 4 ) 7 crystal, including absorption cross-section, emission cross-section, up-conversion spectrum and intrinsic fluorescence lifetime, were investigated. The laser potentiality was also evaluated and the results show that this crystal is a good candidate for tunable and ultrashort pulse lasers

  12. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Parker, Ron; Carr, Zak; MacLean, Mathew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  13. Combined pulsed dye laser and fiberoptic Nd-YAG laser for the treatment of hypertrophic port wine stain.

    Science.gov (United States)

    Radmanesh, Mohammed; Radmanesh, Ramin

    2017-10-01

    The hypertrophic Port Wine Stain (PWS) is only partially and superficially treated with the Pulsed dye laser (PDL) because of its limited depth of penetration. We used combined PDL and fiberoptic 1444-nm Nd-YAG laser to treat a case with hypertrophic PWS. After tumescent anesthesia, few holes were made by a 16-gauge needle on different sides of the lesion. The fiberoptic tip of 1444-nm Nd-YAG laser was inserted within the holes and was pushed forward while triggering. In a fan pattern and by a back and forth movement, the subcutaneous and deep dermal areas were coagulated. The skin and outer mucosal surfaces were then treated by PDL. The fiberoptic system used was Accusculpt 1444-nm Nd-YAG laser (Lutronic lasers, South Korea), and the PDL used was 585 nm Nlite system (Chromogenex UK). The parameters used for PDL were fluence = 9 Joules/cm 2 and the spot size was 5 mm. The parameters used for fiberoptic 1444-nm Nd-YAG laser were: Pulse rate = 30 Hz, pulse energy = 300 mJ, power = 6 W, and the total energy = 4000 J for the whole face and mucosa. Little sign of regression and moderate purpura were detected immediately after combined fiberoptic Nd-YAG and PDL therapy. The lesion gradually regressed within 4 months with satisfactory color and volume change. Combined fiberoptic Nd-YAG laser and PDL can be used for the treatment of deeper and superficial layers of hypertrophic PWS.

  14. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen; Palmeri, Patrick; Quinet, Pascal; Biemont, Emile

    2010-01-01

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm -1 have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable 3 P 1, 2 and 1 D 2 levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  15. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    Science.gov (United States)

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  16. Tunable excimer lasers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1990-01-01

    The wide bandwidth nature of the rare-gas halide excimer transitions allow reasonable tuning of the laser oscillation wavelength that makes it useful for a number of applications. At the same time this wide bandwidth makes narrow band operation difficult and special techniques are needed to insure narrow frequency lasing as well as absolute frequency resettability. The author discusses briefly some of the classical frequency narrowing techniques and then goes on to some recent work that require lasers of special frequency characteristics for special applications including KrF laser fusion

  17. Reflectors and tuning elements for widely-tunable GaAs-based sampled grating DBR lasers

    Science.gov (United States)

    Brox, O.; Wenzel, H.; Della Case, P.; Tawfieq, M.; Sumpf, B.; Weyers, M.; Knigge, A.

    2018-02-01

    Widely-tunable lasers without moving parts are attractive light sources for sensors in industry and biomedicine. In contrast to InP based sampled grating (SG) distributed Bragg reflector (DBR) diode lasers which are commercially available, shorter wavelength GaAs SG-DBR lasers are still under development. One reason is the difficulty to integrate gratings with coupling coefficients that are high enough for functional grating bursts with lengths below 10 μm. Recently we have demonstrated > 20 nm wide quasi-continuous tuning with a GaAs based SG-DBR laser emitting around 975 nm. Wavelength selective reflectors are realized with SGs having different burst periods for the front and back mirrors. Thermal tuning elements (resistors) which are placed on top of the SG allow the control of the spectral positions of the SG reflector combs and hence to adjust the Vernier mode. In this work we characterize subsections of the developed SG-DBR laser to further improve its performance. We study the impact of two different vertical structures (with vertical far field FWHMs of 41° and 24°) and two grating orders on the coupling coefficient. Gratings with coupling coefficients above 350 cm-1 have been integrated into SG-DBR lasers. We also examine electronic tuning elements (a technique which is typically applied in InP based SG-DBR lasers and allows tuning within nanoseconds) and discuss the limitations in the GaAs material system

  18. Flexible dye-sensitized solar cell fabricated on plastic substrate by laser-detachment and press method

    International Nuclear Information System (INIS)

    Kim, Choonghoe; Kim, Seongsu; Lee, Myeongkyu

    2013-01-01

    This report shows that flexible dye-sensitized solar cell can be fabricated by a laser-detachment and press method where the TiO 2 electrode typically sintered on glass source substrate is detached by a laser pulse and then is firmly adhered to the conductive plastic substrate by applying a high pressure. The cells fabricated by this process exhibited 36–43% smaller photocurrent and efficiency than the conventional glass cells with directly coated TiO 2 electrodes. It was attributed to the lowered dye coverage and electron diffusion length, both of which originate from the press-induced reduction of TiO 2 porosity. A maximum efficiency of 5.68% was obtained for the plastic cell. Bending of the electrode led to 20% loss of the current density and efficiency. However, no further performance degradation was observed even when the bending cycle was increased to 100, 300, and 500 times. This indicates that the bending-induced degradation of TiO 2 electrode on the plastic substrate takes place at the first bending.

  19. Ferroelectric BiFeO3as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions

    KAUST Repository

    Wang, Lingfei

    2016-10-12

    As potential photovoltaic materials, transition-metal oxides such as BiFeO3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm−2) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides.

  20. Femtosecond study of laser dyes soluble in water: coumarins

    International Nuclear Information System (INIS)

    Cassara, Laurence

    1996-01-01

    Coumarins build up one of the great families of laser dyes, and this research thesis addresses the study of four water-soluble coumarins (ATC, DMATC, DATC, and CHOS) which are analogue to conventional coumarins (C120, C311, C1, and C102). These molecules are made water-soluble by substitution of the methyl group in position 4 by a polyether group. Mechanisms of deactivation are studied by means of time-resolved fluorescence and transient adsorption methods which allow the reaction dynamics of coumarins after light excitation to be studied. Several time scales, from femto- to nano-second, have been reached and allowed various processes to be studied: relaxation, solvation dynamics, solute orientation diffusion, process of deactivation of radiative and non-radiative relaxation in various solvents [fr

  1. Wavelength-tunable prism-coupled external cavity passively mode-locked quantum-dot laser

    International Nuclear Information System (INIS)

    Wu Yan-Hua; Jian Wu; Jin Peng; Wang Fei-Fei; Hu Fa-Jie; Wei Heng; Wang Zhan-Guo

    2015-01-01

    A wavelength-tunable mode-locked quantum dot laser using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. A dispersion prism, which has lower optical loss and less spectral narrowing than a blazed grating, is used for wavelength selection and tuning. A wavelength tuning range of 45.5 nm (from 1137.3 nm to 1182.8 nm) under 140-mA injection current in the passive mode-locked regime is achieved. The maximum average power of 19 mW is obtained at the 1170.3-nm wavelength, corresponding to the single pulse energy of 36.5 pJ. (paper)

  2. Superradiant properties of 4,4'-bis(1¤H¤-phenanthro[9,10-¤d¤]imidazol-2-yl)biphenyl and how a laser dye with exceptional stability can be obtained in only one synthetic step

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Lindvold, Lars René; Jørgensen, M.

    2001-01-01

    The extremely facile synthesis of a very stable laser dye with superradiant properties is reported. The laser action of the dye is demonstrated through a transverse pumping scheme with the advantage that no elaborate laser resonator is required due to the very high gain of the laser medium...

  3. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  4. Fluorescence line-narrowing studies of Nd:glass laser materials

    International Nuclear Information System (INIS)

    Riseberg, L.A.; Brecher, C.

    The increasing importance of Nd glass lasers in laser fusion technology has emphasized the inadequacy in the understanding of the optical properties of rare earth ions in glasses. Indeed, it has been difficult to generate models for the performance of these devices, and the selection of host glasses could be done by little more than a trial-and-error approach. The technique of laser-induced fluorescence line-narrowing developed within the last few years provides a new and powerful tool for the study of these systems. In this technique, a laser excites within the inhomogeneously broadened absorption bands a selected subgroup of the ions in the system, namely those whose absorption energy is resonant with the laser. If the excitation does not migrate among the entire collection of ions prior to fluorescence, the fluorescence that is observed is only from the group that was excited and is narrowed. This permits the selective study of classes of ion sites within the ensemble. The concept is indicated schematically. By the use of a tunable laser, such as a dye laser, it is possible to vary the class of sites, defined by energy, that is excited and thereby study the important spectroscopic properties and their variations, unclouded by the averaging that occurs under excitation of the entire system. Furthermore, it is then possible to use the spectroscopic information to infer a description of the variation of the microscopic environment, and a rationalization of the effects of compositional changes. Use of a pulsed dye laser and time-resolved detection permits the study of the dynamics, including, for example, the energy transfer among ions of different energies within the inhomogeneously-broadened spectrum. The goal of this project has been to apply such studies to glasses of interest to glass laser technology, providing information for device modeling, and establishing design criteria for glass selection

  5. Low-cost automated system for phase-shifting and phase retrieval based on the tunability of a laser diode

    Science.gov (United States)

    Rivera-Ortega, Uriel; Dirckx, Joris

    2016-09-01

    A low-cost and fully automated process for phase-shifting interferometry by continuously changing and turning on-off the input voltage of a laser diode under the scheme of an unbalanced Twyman-Green interferometer setup is presented. The input signal of a laser diode is controlled by a Data Acquisition (NI-DAQ) device which permits to change its wavelength according to its tunability features. The automation and data analysis will be done using LabVIEW in combination with MATLAB. By using Carré algorithm the phase map is obtained. Measurements of visibility and phase-shift to verify the PSI requirements are also shown.

  6. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  7. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  8. Progress in Cherenkov femtosecond fiber lasers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2016-01-01

    systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond......We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser...... Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuumbased...

  9. Stable, tunable, quasimonoenergetic electron beams produced in a laser wakefield near the threshold for self-injection

    Directory of Open Access Journals (Sweden)

    S. Banerjee

    2013-03-01

    Full Text Available Stable operation of a laser-plasma accelerator near the threshold for electron self-injection in the blowout regime has been demonstrated with 25–60 TW, 30 fs laser pulses focused into a 3–4 millimeter length gas jet. Nearly Gaussian shape and high nanosecond contrast of the focused pulse appear to be critically important for controllable, tunable generation of 250–430 MeV electron bunches with a low-energy spread, ∼10  pC charge, a few-mrad divergence and pointing stability, and a vanishingly small low-energy background. The physical nature of the near-threshold behavior is examined using three-dimensional particle-in-cell simulations. Simulations indicate that properly locating the nonlinear focus of the laser pulse within the plasma suppresses continuous injection, thus reducing the low-energy tail of the electron beam.

  10. Tunable KTA Stokes laser based on stimulated polariton scattering and its intracavity frequency doubling.

    Science.gov (United States)

    Zang, Jie; Cong, Zhenhua; Chen, Xiaohan; Zhang, Xingyu; Qin, Zengguang; Liu, Zhaojun; Lu, Jianren; Wu, Dong; Fu, Qiang; Jiang, Shiqi; Zhang, Shaojun

    2016-04-04

    This paper presents the tunable Stokes laser characteristics of KTiOAsO4 (KTA) crystal based on stimulated polariton scattering (SPS). When the pumping laser wavelength is 1064.2 nm, the KTA Stokes wave can be discontinuously tuned from 1077.9 to 1088.4 nm with four gaps from 1079.0 to 1080.1 nm, from 1080.8 to 1082.8 nm, from 1083.6 to 1085.5 nm, and from 1085.8 to 1086.8 nm. When a frequency doubling crystal LiB3O5 (LBO) is inserted into the Stokes laser cavity, the frequency-doubled wave can be discontinuously tuned from 539.0 to 539.5 nm, from 540.1 to 540.4 nm, from 541.3 to 541.8 nm, from 542.7 to 542.9 nm and from 543.4 to 544.2 nm. With a pumping pulse energy of 130.0 mJ and an output coupler reflectivity of about 30%, the obtained maximum Stokes laser pulse energy at 1078.6 nm is 33.9 mJ and the obtained maximum frequency-doubled laser pulse energy at 543.8 nm is 15.7 mJ. By using the most probably coupled transverse optical modes obtained from the literature, the polariton refractive indexes, and the simplified polariton Sellmeier equations, the polariton dispersion curve is obtained. The formation of the Stokes frequency gaps is explained.

  11. Preliminary results with sutured colonic anastomoses reinforced with dye-enhanced fibrinogen and a diode laser

    Science.gov (United States)

    Libutti, Steven K.; Williams, Matthew R.; Oz, Mehmet C.; Forde, Kenneth A.; Bass, Lawrence S.; Weinstein, Samuel; Auteri, Joseph S.; Treat, Michael R.; Nowygrod, Roman

    1991-07-01

    A common cause of morbidity in patients recovering from bowel surgery is leakage from colonic anastomoses. A technique utilizing a laser activated protein solder to strengthen colonic anastomoses in a canine model was evaluated. Following creation of six single-layer interrupted suture anastomoses in four dogs, a protein solder consisting of indocyanine green dye and fibrinogen was topically appied to the serosal surface and exposed to 808 nm continuous wave diode laser energy. Immediately following anastomosis, the mean leakage pressure of sutures alone was 129 +/- 14 mm hg (n equals 6), while the mean leakage pressure of sutures reinforced with the laser welded solder was 312 +/- 32 mm hg (n equals 6) (p anastomoses without causing appreciable thermal injury to surrounding tissues.

  12. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    Science.gov (United States)

    Wysocki, Gerard (Inventor); Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  13. Continuous-wave generation and tunability of eye-safe resonantly diode-pumped Er:YAG laser

    Science.gov (United States)

    Němec, Michal; Indra, Lukás.; Šulc, Jan; Jelínková, Helena

    2016-03-01

    Laser sources generating radiation in the spectral range from 1.5 to 1.7 μm are very attractive for many applications such as satellite communication, range finding, spectroscopy, and atmospheric sensing. The goal of our research was an investigation of continuous-wave generation and wavelength tuning possibility of diode pumped eye-safe Er:YAG laser emitting radiation around 1645 nm. We used two 0.5 at. % doped Er:YAG active media with lengths of 10 mm and 25 mm (diameter 5 mm). As a pumping source, a fibre-coupled 1452 nm laser-diode was utilized, which giving possibility of the in-band pumping with a small quantum defect and low thermal stress of the active bulk laser material. The 150 mm long resonator was formed by a pump mirror (HT @ 1450 nm, HR @ 1610 - 1660 nm) and output coupler with 96 % reflectivity at 1610 - 1660 nm. For continuous-wave generation, the maximal output powers were 0.7 W and 1 W for 10 mm and 25 mm long laser crystals, respectively. The corresponding slope efficiencies with respect to absorbed pump power for these Er:YAG lasers were 26.5 % and 37.8 %, respectively. The beam spatial structure was close to the fundamental Gaussian mode. A wavelength tunability was realized by a birefringent plate and four local spectral maxima at 1616, 1633, 1645, and 1657 nm were reached. The output characteristics of the designed and realized resonantly diode-pumped eye-safe Er:YAG laser show that this compact system has a potential for usage mainly in spectroscopic fields.

  14. The ISOLDE RILIS pump laser upgrade and the LARIS Laboratory

    International Nuclear Information System (INIS)

    Marsh, B. A.; Berg, L.-E.; Fedorov, D. V.; Fedosseev, V. N.; Launila, O. J.; Lindroos, M.; Losito, R.; Osterdahl, F. K.; Pauchard, T.; Pohjalainen, I. T.; Sassenberg, U.; Seliverstov, M. D.; Sjoedin, A. M.; Transtroemer, G.

    2010-01-01

    On account of its high efficiency, speed and unmatched selectivity, the Resonance Ionization Laser Ion Source (RILIS) is the preferred method for ionizing the nuclear reaction products at the ISOLDE on-line isotope separator facility. By exploiting the unique electronic energy level 'fingerprint' of a chosen element, the RILIS process of laser step-wise resonance ionization enables an ion beam of high chemical purity to be sent through the mass selective separator magnet. The isobaric purity of a beam of a chosen isotope is therefore greatly increased. The RILIS, comprising of up to three frequency tunable pulsed dye lasers has been upgraded with the installation of a Nd:YAG pump laser as a replacement for the old Copper Vapor Laser (CVL) system. A summary of the current Nd:YAG pumped RILIS performance is given. To accompany the RILIS pump laser upgrade, a new ionization scheme for manganese has been developed at the newly constructed LAser Resonance Ionization Spectroscopy (LARIS) laboratory and successfully applied for on-line RILIS operation. An overview of the LARIS facility is given along with details of the ionization scheme development work for manganese.

  15. A dye laser with a partial-selective resonator

    Energy Technology Data Exchange (ETDEWEB)

    Makogon, M M; Sukhanov, V B

    1977-04-01

    The possibility of controlling the width and spectral position of the generation line of an organic dye laser (Rhodamine 6Zh) whose resonator represents a combination of selective and non-selective channels is demonstrated. The selective channel entails an unsymmetrically mounted prism with whose angular displacement the spectral width can be changed within broad ranges; the non-selective channel maintains the resonator's quality at a sufficiently high level. An expression is given which makes it possible to determine the generation's spectral width when fixing the prism's angular position. The change in the rearrangement band was studied in relation to the qualities of the selective and non-selective channels as determined by the form of the active medium's amplification contour (a narrowing of the spectrum from 0.15 to 0.0019 nm led to a reduction of the rearrangement area from 38.4 to 28.3 nm).

  16. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenbo [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada); Department of Biomedical Engineering, University of British Columbia, KAIS 5500, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4 (Canada); Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada)

    2016-06-15

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  17. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2016-01-01

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  18. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen [College of Physics, Jilin University and Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Ministry of Education, Changchun 130021 (China); Palmeri, Patrick; Quinet, Pascal; Biemont, Emile, E-mail: dai@jlu.edu.c [Astrophysique et Spectroscopie, Universite de Mons-UMONS, B-7000 Mons (Belgium)

    2010-10-28

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm{sup -1} have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable {sup 3}P{sub 1,} {sub 2} and {sup 1}D{sub 2} levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  19. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  20. A stable wavelength-tunable single frequency and single polarization linear cavity erbium-doped fiber laser

    International Nuclear Information System (INIS)

    Feng, T; Yan, F P; Li, Q; Peng, W J; Tan, S Y; Feng, S C; Wen, X D; Liu, P

    2013-01-01

    We report the configuration and operation of a wavelength-tunable single frequency and single polarization erbium-doped fiber laser (EDFL) with a stable and high optical signal to noise ratio (OSNR) laser output. A narrow-band fiber Bragg grating (NBFBG), a FBG-based Fabry–Perot (FP) filter, a polarization controller (PC) and an unpumped erbium-doped fiber (EDF) as a saturable absorber (SA) are employed to realize stable single frequency lasing operation. An all-fiber polarizer (AFP) is introduced to suppress mode hopping and ensure the single polarization mode operation. By adjusting the length of the NBFBG using a stress adjustment module (SAM), four stable single frequency and single polarization laser outputs at wavelengths of 1544.946, 1545.038, 1545.118 and 1545.182 nm are obtained. At room temperature, performance with an OSNR of larger than 60 dB, power fluctuation of less than 0.04 dB, wavelength variation of less than 0.01 nm for about 5 h measurement, and degree of polarization (DOP) of close to 100% has been experimentally demonstrated for the fiber laser operating at these four wavelengths. (paper)

  1. Infantile hemangioma: pulsed dye laser versus surgical therapy

    Science.gov (United States)

    Remlova, E.; Dostalova, T.; Michalusova, I.; Vranova, J.; Jelinkova, H.; Hubacek, M.

    2014-05-01

    Hemangioma is a mesenchymal benign tumor formed by blood vessels. Anomalies affect up to 10% of children and they are more common in females than in males. The aim of our study was to compare the treatment efficacy, namely the curative effect and adverse events, such as loss of pigment and appearance of scarring, between classical surgery techniques and laser techniques. For that reason a group of 223 patients with hemangioma was retrospectively reviewed. For treatment, a pulsed dye laser (PDL) (Rhodamine G, wavelength 595 nm, pulsewidth between 0.45 and 40 ms, spot diameter 7 mm, energy density 9-11 J cm-2) was used and the results were compared with a control group treated with classical surgical therapy under general anesthesia. The curative effects, mainly number of sessions, appearance of scars, loss of pigment, and relapses were evaluated as a marker of successful treatment. From the results it was evident that the therapeutic effects of both systems are similar. The PDL was successful in all cases. The surgery patients had four relapses. Classical surgery is directly connected with the presence of scars, but the system is safe for larger hemangiomas. It was confirmed that the PDL had the optimal curative effect without scars for small lesions (approximately 10 mm). Surgical treatment under general anesthesia is better for large hemangiomas; the disadvantage is the presence of scars.

  2. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.

    Science.gov (United States)

    Kumar, Pankaj; Kumar, Jitendra; Prakash, Om; Saini, Vinod K; Dixit, Sudhir K; Nakhe, Shankar V

    2013-09-01

    This paper presents studies on the pulsed optogalvanic effect and isotope-selective excitation of Yb 555.648 nm (0 cm(-1) → 17 992.007 cm(-1)) and 581.067 nm (17 992.007 cm(-1) → 35 196.98 cm(-1)) transitions, in a Yb/Ne hollow cathode lamp. The Yb atoms were excited by narrow linewidth (500-1000 MHz) Rh110 and Rh6G dye based pulsed lasers. Optogalvanic signal inversion for ground state transition at 555.648 nm was observed beyond a hollow cathode discharge current of 8.5 mA, in contrast to normal optogalvanic signal at 581.067 nm up to maximum current of 14 mA. The isotope-selective excitation studies of Yb were carried out by recording Doppler limited optogalvanic signals as a function of dye laser wavelength. For the 581.067 nm transition, three even isotopes, (172)Yb, (174)Yb, and (176)Yb, and one odd isotope, (171)Yb, were clearly resolved. These data were compared with selective isotope excitation by 10 MHz linewidth continuous-wave dye laser. For 555.648 nm transition, isotopes were not clearly resolved, although isotope peaks of low modulation were observed.

  3. Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding.

    Science.gov (United States)

    Chen, Nan-Kuang; Hsu, Der-Yi; Chi, Sien

    2007-08-01

    We demonstrate high-efficiency, wideband-tunable, laser-ablated long-period fiber gratings that use an optical polymer overlay. Portions of the fiber cladding are periodically removed by CO(2) laser pulses to induce periodic index changes for coupling the core mode into cladding modes. An optical polymer with a high thermo-optic coefficient with a dispersion distinct from that of silica is used on a deep-ablated cladding structure so that the effective indices of cladding modes become dispersive and the resonant wavelengths can be efficiently tuned. The tuning efficiency can be as high as 15.8 nm/ degrees C, and the tuning range can be wider than 105 nm (1545-1650 nm).

  4. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    International Nuclear Information System (INIS)

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-01-01

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  5. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...... process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist....

  6. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.

    Science.gov (United States)

    Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng

    2011-06-20

    A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

  7. A Compact Tunable Diode Laser Absorption Spectrometer to Monitor CO2 at 2.7 µm Wavelength in Hypersonic Flows

    Directory of Open Access Journals (Sweden)

    Raphäel Vallon

    2010-06-01

    Full Text Available Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.

  8. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Gerald L; Takahashi, Lynelle K; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  9. A wavelength-tunable fiber laser using a novel filter based on a compound interference effect

    Science.gov (United States)

    Zou, Hui; Lou, Shuqin; Su, Wei; Han, Bolin; Shen, Xiao

    2015-01-01

    A wavelength-tunable erbium-doped fiber laser is proposed and experimentally demonstrated by using a novel filter which is formed from a 2  ×  2 3 dB multimode coupler incorporating a segment of polarization maintaining fiber (PMF). By using the filter with 2.1 m lengths of PMF in a ring fiber laser, a stable single wavelength lasing is obtained experimentally. Its 3 dB bandwidth is less than 0.0147 nm and the side mode suppression ratio (SMSR) is higher than 58.91 dB. Experimental results demonstrate that mode competition can be effectively suppressed and the SMSR can be improved due to the compound interference effect aroused by the novel filter. Meanwhile the stability of the output lasing can be enhanced. By appropriately adjusting the polarization controllers (PCs), the output lasing wavelength can be tuned from 1563.51 to 1568.21 nm. This fiber laser has the advantage of a simple structure and stable operation at room temperature.

  10. Theoretical studies of solar-pumped lasers

    Science.gov (United States)

    Harries, W. L.

    1983-01-01

    Possible types of lasers were surveyed for solar power conversion. The types considered were (1) liquid dye lasers, (2) vapor dye lasers, and (3) nondissociative molecular lasers. These are discussed.

  11. Ferroelectric BiFeO3 as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions.

    Science.gov (United States)

    Wang, Lingfei; Ma, He; Chang, Lei; Ma, Chun; Yuan, Guoliang; Wang, Junling; Wu, Tom

    2017-01-01

    As potential photovoltaic materials, transition-metal oxides such as BiFeO 3 (BFO) are capable of absorbing a substantial portion of solar light and incorporating ferroic orders into solar cells with enhanced performance. But the photovoltaic application of BFO has been hindered by low energy-conversion efficiency due to poor carrier transport and collection. In this work, a new approach of utilizing BFO as a light-absorbing sensitizer is developed to interface with charge-transporting TiO 2 nanoparticles. This mesoporous all-oxide architecture, similar to that of dye-sensitized solar cells, can effectively facilitate the extraction of photocarriers. Under the standard AM1.5 (100 mW cm -2 ) irradiation, the optimized cell shows an open-circuit voltage of 0.67 V, which can be enhanced to 1.0 V by tailoring the bias history. A fill factor of 55% is achieved, which is much higher than those in previous reports on BFO-based photovoltaic devices. The results provide here a new viable approach toward developing highly tunable and stable photovoltaic devices based on ferroelectric transition-metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Time-resolved laser-excited Shpol'skii spectrometry with a fiber-optic probe and ICCD camera

    International Nuclear Information System (INIS)

    Bystol, Adam J.; Campiglia, Andres D.; Gillispie, Gregory D.

    2000-01-01

    Improved methodology for chemical analysis via laser-excited Shpol'skii spectrometry is reported. The complications of traditional methodology for measurements at liquid nitrogen temperature are avoided by freezing the distal end of a bifurcated fiber-optic probe directly into the sample matrix. Emission wavelength-time matrices were rapidly collected by automatically incrementing the gate delay of an intensified charge-coupled device (ICCD) camera relative to the laser excitation pulse. The excitation source is a compact frequency-doubled tunable dye laser whose bandwidth (<0.03 nm) is well matched for Shpol'skii spectroscopy. Data reproducibility for quantitative analysis purposes and analytical figures of merit are demonstrated for several polycyclic aromatic hydrocarbons at 77 K. Although not attempted in this study, time-resolved excitation-emission matrices could easily be collected with this instrumental system. (c) 2000 Society for Applied Spectroscopy

  13. Spectroscopic properties of a novel near-infrared tunable laser material Ni:MgGa2O4

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Senthil Murugan, Ganapathy; Ohishi, Yasutake

    2005-01-01

    An intense emission band from Ni 2+ in MgGa 2 O 4 spinel in the range of 1.1-1.6μm was observed at room temperature. The emission band could be assigned to the downward d-d transition of T2g3->A2g3 of Ni 2+ ions in octahedral sites. The lifetime of the emission was more than 1.6ms from 5 to 300K. This material has potential as a near-infrared tunable-laser host

  14. Laser synthesized super-hydrophobic conducting carbon with broccoli-type morphology as a counter-electrode for dye sensitized solar cells

    Science.gov (United States)

    Gokhale, Rohan; Agarkar, Shruti; Debgupta, Joyashish; Shinde, Deodatta; Lefez, Benoit; Banerjee, Abhik; Jog, Jyoti; More, Mahendra; Hannoyer, Beatrice; Ogale, Satishchandra

    2012-10-01

    A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode. Electronic supplementary information (ESI) available: Materials and equipment details, solar cell fabrication protocol, electrolyte spreading time measurement details, XPS spectra, electronic study, film adhesion test detailed analysis and field emission results. See DOI: 10.1039/c2nr32082g

  15. Compact green-diode-based lasers for biophotonic bioimaging

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Petersen, Paul Michael

    2014-01-01

    Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers.......Diode lasers simultaneously offer tunability, high-power emission, and compact size at fairly low cost and are increasingly preferred for pumping titanium:sapphire lasers....

  16. Excimer Laser Curing Of Polymer Coatings

    Science.gov (United States)

    Klick, David; Akerman, M. Alfred; Paul, George L.; Supurovic, Darko; Tsuda, Haruki

    1988-12-01

    The use of the excimer laser as a source of energy for photo-assisted curing of industrial polymeric coatings was investigated. Presently, UV lamps are sometimes used to excite a photoinitiating molecule mixed with the starting monomers and oligomers of a coating. The resulting polymeric chain reaction multiplies the effect of the initial photons, making economical use of the light source. The high cost of laser photons may thus be justifiable if lasers provide advantages over lamps. A series of visibly transparent 7 μm coatings (a typical thickness for 'slick' magazine coatings) with various photoinitiators, monomers, and oligomers was illuminated with excimer laser light of various wavelengths, fluences, and pulse repetition rates. For the optimum parameters, it was found that the laser had large advantages in curing speed over existing UV lamp processes, due to its monochromaticity. Pigmented coatings (20 μm TiO2 mixtures typical of appliance or automotive finishes) are not easily cured with UV lamps due to the inability of light to penetrate the absorbing and scattering pigmented layer. However, economically-viable cure rates were achieved with certain photoinitiators using a tunable excimer-pumped dye laser. A prototype of such a laser suitable for factory use was built and used to cure these coatings. Results are scaled to a factory situation, and costs are calculated to show the advantages of the laser method over currently used processes.

  17. Single frequency Nd:YLF and Nd:YVO4 laser in the red emission

    International Nuclear Information System (INIS)

    Camargo, Fabiola de Almeida

    2010-01-01

    All solid-state continuous-wave (cw) narrow emission linewidth and tunable red lasers are convenient alternative sources to bulky and expensive dye-lasers for high precision laser spectroscopy. Single-frequency operation of diode-pumped Nd:YLiF 4 and Nd:YVO 4 cw ring lasers were investigated in the 1.32 - 1.34μm range, together with their intracavity second-harmonic generation (SHG) to the red spectral range (0.65 - 0.67μm) using either BiB 3 O 6 (BiBO) or periodically-poled KTiOPO 4 (ppKTP) crystals. We report on such a single-end diode-pumped Nd:YVO 4 unidirectional red ring laser containing a type-I cut BiBO nonlinear crystal, yielding a record of 680 mW of single-longitudinal mode (SLM) red output power at 671.1nm without any intra-cavity etalon. For smooth SLM wavelength tuning over the full gain bandwidth (∼4 nm), a partially-coated (R = 40%) 100μm-thin etalon was found necessary, reducing the maximum SLM power (at 671.15 nm) to 380 mW. At 1342.5nm and with a T = 2% transmission output coupler, the laser provided an optimal 1.5W of single-frequency power. We demonstrate also optimal intracavity SHG of a Nd:YLF ring laser in the π- polarization (λ = 1321.5nm) using a ppKTP. The laser yielded 1.4 W of single frequency red power at 660.5 nm, as much as the maximum fundamental power that can be extracted from the resonator using an optimal output coupler. With a partially coated (R = 25%) thin etalon, the laser was tunable over Δλ∼ 1.6nm. (author)

  18. Photochemistry of triarylmethane dyes bound to proteins

    Science.gov (United States)

    Indig, Guilherme L.

    1996-04-01

    Triarylmethanes represent a class of cationic dyes whose potential as photosensitizers for use in photodynamic therapy of neoplastic diseases has never been comprehensively evaluated. Here, the laser-induced photodecomposition of three triarylmethane dyes, crystal violet, ethyl violet, and malachite green, non-covalently bound to bovine serum albumin (a model biological target) was investigated. Upon laser excitation at 532 nm, the bleaching of the corresponding dye-protein molecular complexes follows spectroscopic patterns that suggest the formation of reduced forms of the dyes as major reaction photoproducts. That implies that an electron or hydrogen atom transfer from the protein to the dye's moiety within the guest-host complex is the first step of the photobleaching process. Since the availability of dissolved molecular oxygen was not identified as a limiting factor for the phototransformations to occur, these dyes can be seen as potential phototherapeutic agents for use in hypoxic areas of tumors. These triarylmethane dyes strongly absorb at relatively long wavelengths (absorption maximum around 600 nm; (epsilon) max approximately equals 105 M-1 cm-1), and only minor changes in their absorption characteristics are observed upon binding to the protein. However the binding event leads to a remarkable increase in their fluorescence quantum yield and photoreactivity.

  19. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  20. Absolute transition probabilities in the NeI 3p-3s fine structure by beam-gas-dye laser spectroscopy

    International Nuclear Information System (INIS)

    Hartmetz, P.; Schmoranzer, H.

    1983-01-01

    The beam-gas-dye laser two-step excitation technique is further developed and applied to the direct measurement of absolute atomic transition probabilities in the NeI 3p-3s fine-structure transition array with a maximum experimental error of 5%. (orig.)

  1. Effect of the timing of treatment of port-wine stains with the flash-lamp-pumped pulsed-dye laser

    NARCIS (Netherlands)

    van der Horst, C. M.; Koster, P. H.; de Borgie, C. A.; Bossuyt, P. M.; van Gemert, M. J.

    1998-01-01

    BACKGROUND: Port-wine stains can be treated with a flash-lamp-pumped pulsed-dye laser, but it is uncertain whether this treatment is more effective if administered early in life, when the skin is thinner and the lesion is smaller. METHODS: We prospectively studied 100 patients with a previously

  2. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency doubled dye laser

    International Nuclear Information System (INIS)

    Becker, Th.; Germann, Th.; Thoumany, P.; Stania, G.; Urbonas, L.; Haensch, T.

    2008-01-01

    Full text: Rydberg atoms have played an important role in atomic physics and optical spectroscopy since many years. Due to their long lifetime and the big dipole matrix element between neighbouring Rydberg levels they are an essential tool in microwave cavity-qed experiments. Ultracold Rydberg gases are a promising candidate for realizing controlled quantum gates in atomic ensembles. In most experiments Rydberg atoms are detected destructively, where the optically excited atoms are first ionized followed by an electronic detection of the ionization products. A Doppler-free purely optical detection was reported in a room temperature cell and in an atomic beam apparatus using the technique of electromagnetically induced transparency. In all these experiments the Rydberg atoms are excited with two lasers in a two-step ladder configuration. Here we show that Doppler-free purely optical spectroscopy is also possible with a one step excitation scheme involving a UV laser at 297 nm. We excite the 85 Rb isotope from the 5S 1/2 ground state to the 63P 3/2 state with a frequency doubled dye laser in a room temperature gas cell without buffer gas. Rydberg transitions are detected by monitoring the absorption of 780 nm laser light which is superimposed on the UV light and resonant with one hyperfine component of the Rubidium D2 line. With these two lasers we realize a V-scheme and utilize the quantum amplification effect due to the different natural lifetimes of the upper levels of the two transitions: an excitation into the 63P level hinders many absorption-emission cycles of the D2 transition and leads to a reduced absorption on that line. We discuss the shape of the observed spectra in the context of electron shelving and EIT experiments. By applying a frequency modulation to the UV laser, we can obtain dispersive signals which can be used to stabilize the laser to a specific Rydberg transition. By shifting the frequency of the 780 nm laser to crossover resonances in the

  3. Dynamic Rabi sidebands in laser-generated microplasmas: Tunability and control

    International Nuclear Information System (INIS)

    Compton, R.; Filin, A.; Levis, R. J.; Romanov, D. A.

    2011-01-01

    Broadband, coherent radiation in the optical-frequency range is generated using microplasma channels in atmospheric gases in a pump-probe experiment. A microplasma medium is created in a gas by a focused intense femtosecond pump pulse. A picosecond probe pulse then interacts with this microplasma channel, producing broad, coherent sidebands that are associated with luminescence lines and are redshifted and blueshifted with respect to the laser carrier frequency. These sidebands originate from the induced Rabi oscillations between pairs of excited states that are coupled by the probe pulse. Thus the sideband radiation intensity tracks the microplasma evolution. The sidebands arise from broad and tunable Rabi shifts corresponding to varying values of the electric-field magnitude in the probe pulse. The ∼10 10 W cm -2 probe beam creates a maximum sideband shift of >90 meV from the carrier frequency, resulting in an effective bandwidth of 200 meV. The sidebands can be tuned and controlled by the intensity and temporal profile of the probe pulse. The fact that the coherence is observed in a microplasma demonstrates that Rabi cycling is possible at high temperature with moderately high laser intensities as long as transitions close to the driving frequency (Δ∼2%ω c ) are available. Plasma excitation combined with Rabi-shifting measurements also serves as a means to simultaneously extract quantitative ratios for the transition-dipole moments between multiple sets of highly excited states with transitions in the optical regime.

  4. Plasma diagnosis by dye laser intracavity absorption: Final report for period January 1, 1982-May 31, 1986

    International Nuclear Information System (INIS)

    Brink, G.O.

    1986-05-01

    Dye laser intracavity absorption (ICA) has been studied as a potential diagnostic for plasma or neutral beam systems. For magnetic field measurements it is necessary to make Zeeman effect measurements on the resonance transition of atomic lithium on a millisecond time scale, or to make motional Stark Effect measurements on an injected fast atomic beam of hydrogen. To do this it may be necessary to sweep the dye laser in wavelength at a rapid rate so that the absorber can be sampled many times during the measurement. We have examined both of these possibilities during this contract. A rather detailed absorption spectrum of molecular hydrogen and deuterium arising in the 2c 3 Piu and other electronic states has been obtained and analyzed. This has provided new information on the types of molecular species that may be detected in a plasma by ICA, and may provide a basis for the application of ICA for the diagnosis of the edge plasma in a tokamak or in the end regions of a mirror machine

  5. Synthesis and characterization of gold graphene composite with dyes as model substrates for decolorization: A surfactant free laser ablation approach

    Science.gov (United States)

    Sai Siddhardha, R. S.; Lakshman Kumar, V.; Kaniyoor, Adarsh; Sai Muthukumar, V.; Ramaprabhu, S.; Podila, Ramakrishna; Rao, A. M.; Ramamurthy, Sai Sathish

    2014-12-01

    A facile surfactant free laser ablation mediated synthesis (LAMS) of gold-graphene composite is reported here. The material was characterized using transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powdered X-ray diffraction, Raman spectroscopy, Zeta potential measurements and UV-Visible spectroscopic techniques. The as-synthesized gold-graphene composite was effectively utilized as catalyst for decolorization of 4 important textile and laser dyes. The integration of gold nanoparticles (AuNPs) with high surface area graphene has enhanced the catalytic activity of AuNPs. This enhanced activity is attributed to the synergistic interplay of pristine gold's electronic relay and π-π stacking of graphene with the dyes. This is evident when the Rhodamine B (RB) reduction rate of the composite is nearly twice faster than that of commercial citrate capped AuNPs of similar size. In case of Methylene blue (MB) the rate of reduction is 17,000 times faster than uncatalyzed reaction. This synthetic method opens door to laser ablation based fabrication of metal catalysts on graphene for improved performance without the aid of linkers and surfactants.

  6. [The reconstruction of two-dimensional distributions of gas concentration in the flat flame based on tunable laser absorption spectroscopy].

    Science.gov (United States)

    Jiang, Zhi-Shen; Wang, Fei; Xing, Da-Wei; Xu, Ting; Yan, Jian-Hua; Cen, Ke-Fa

    2012-11-01

    The experimental method by using the tunable diode laser absorption spectroscopy combined with the model and algo- rithm was studied to reconstruct the two-dimensional distribution of gas concentration The feasibility of the reconstruction program was verified by numerical simulation A diagnostic system consisting of 24 lasers was built for the measurement of H2O in the methane/air premixed flame. The two-dimensional distribution of H2O concentration in the flame was reconstructed, showing that the reconstruction results reflect the real two-dimensional distribution of H2O concentration in the flame. This diagnostic scheme provides a promising solution for combustion control.

  7. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

    KAUST Repository

    Xie, Fang; Pang, Jing S.; Centeno, Anthony; Ryan, Mary P.; Riley, D. Jason; Alford, Neil M.

    2013-01-01

    of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2

  8. TiO{sub 2} nanocrystals synthesized by laser pyrolysis for the up-scaling of efficient solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Melhem, Hussein; Boucharef, Mourad; Di Bin, Catherine; Ratier, Bernard; Boucle, Johann [XLIM UMR 6172 Universite de Limoges/CNRS, Limoges Cedex (France); Simon, Pardis; Leconte, Yann; Herlin-Boime, Nathalie [IRAMIS/SPAM/LFP, CEA-CNRS URA 2453, CEA Saclay, Gif sur Yvette (France); Beouch, Layla; Goubard, Fabrice [Laboratoire de Physico-Chimie des Polymeres et des Interfaces (LPPI), Federation Institut des Materiaux (FD 4122), Universite de Cergy-Pontoise (France)

    2011-10-15

    A crucial issue regarding emerging nanotechnologies remains the up-scaling of new functional nanostructured materials towards their implementation in high performance applications on a large scale. In this context, we demonstrate high efficiency solid-state dye-sensitized solar cells prepared from new porous TiO{sub 2} photoanodes based on laser pyrolysis nanocrystals. This strategy exploits a reduced number of processing steps as well as non-toxic chemical compounds to demonstrate highly porous TiO{sub 2} films. The possibility to easily tune the TiO{sub 2} nanocrystal physical properties allows us to demonstrate all solid-state dye-sensitized devices based on a commercial benchmark materials (organic indoline dye and molecular hole transporter) presenting state-of-the-art performance comparable with reference devices based on a commercial TiO{sub 2} paste. In particular, a drastic improvement in pore infiltration, which is found to balance a relatively lower surface area compared to the reference electrode, is evidenced using laser-synthesized nanocrystals resulting in an improved short-circuit current density under full sunlight. Transient photovoltage decay measurements suggest that charge recombination kinetics still limit device performance. However, the proposed strategy emphasizes the potentialities of the laser pyrolysis technique for up-scaling nanoporous TiO{sub 2} electrodes for various applications, especially for solar energy conversion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A compact tunable diode laser absorption spectrometer to monitor CO2 at 2.7 μm wavelength in hypersonic flows.

    Science.gov (United States)

    Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal

    2010-01-01

    Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.

  10. 3-4.5 μm continuously tunable single mode VECSEL

    Science.gov (United States)

    Fill, M.; Felder, F.; Rahim, M.; Khiar, A.; Zogg, H.

    2012-11-01

    We present continuously tunable Vertical External Cavity Surface Emitting Lasers (VECSEL) in the mid-infrared. The structure based on IV-VI semiconductors is epitaxially grown on a Si-substrates. The VECSEL emit one single mode, which is mode hop-free tunable over 50-100 nm around the center wavelength. In this work, two different devices are presented, emitting at 3.4 μm and 3.9 μm, respectively. The lasers operate near room temperature with thermoelectric stabilization. They are optically pumped, yielding an output power >10 mWp. The axial symmetric emission beam has a half divergence angle of <3.3∘.

  11. Characterisation of the light pulses of a cavity dumped dye laser pumped by a cw mode-locked and q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Geist, P.; Heisel, F.; Martz, A.; Miehe, J.A.; Miller, R.J.D.

    1984-01-01

    The frequency doubled pulses (of 532 nm) obtained, with the help of a KTP crystal, from those delivered by either a continuous wave mode-locked (100 MHz) or mode-locked Q-switched (0-1 KHz) Nd: YAG laser, are analyzed by means of a streak camera, operating in synchroscan or triggered mode. In the step-by-step measurements the pulse stability, concerning form and amplitude, is shown. In addition, measurements effectuated with synchronously pumped and cavity dumped dye laser (Rhodamine 6G), controlled by a Pockels cell, allows the obtention of stable and reproducible single pulses of 30 ps duration, 10 μJ energy and 500Hz frequency [fr

  12. Systematic characterization of a 1550 nm microelectromechanical (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) with 7.92 THz tuning range for terahertz photomixing systems

    Science.gov (United States)

    Haidar, M. T.; Preu, S.; Cesar, J.; Paul, S.; Hajo, A. S.; Neumeyr, C.; Maune, H.; Küppers, F.

    2018-01-01

    Continuous-wave (CW) terahertz (THz) photomixing requires compact, widely tunable, mode-hop-free driving lasers. We present a single-mode microelectromechanical system (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) featuring an electrothermal tuning range of 64 nm (7.92 THz) that exceeds the tuning range of commercially available distributed-feedback laser (DFB) diodes (˜4.8 nm) by a factor of about 13. We first review the underlying theory and perform a systematic characterization of the MEMS-VCSEL, with particular focus on the parameters relevant for THz photomixing. These parameters include mode-hop-free CW tuning with a side-mode-suppression-ratio >50 dB, a linewidth as narrow as 46.1 MHz, and wavelength and polarization stability. We conclude with a demonstration of a CW THz photomixing setup by subjecting the MEMS-VCSEL to optical beating with a DFB diode driving commercial photomixers. The achievable THz bandwidth is limited only by the employed photomixers. Once improved photomixers become available, electrothermally actuated MEMS-VCSELs should allow for a tuning range covering almost the whole THz domain with a single system.

  13. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens

    OpenAIRE

    Smith, TK; Choi, B; Ramirez-San-Juan, JC; Nelson, JS; Osann, K; Kelly, KM

    2006-01-01

    Background and Objectives: Previous in vitro studies demonstrated the potential utility of benzoporphyrin derivative monoacid ring A (BPD) photodynamic therapy (PDT) for vascular destruction. Moreover, the effects of PDT were enhanced when this intervention was followed immediately by pulsed dye laser (PDL) irradiation (PDT/ PDL). We further evaluate vascular effects of PDT alone, PDL alone and PDT/PDL in an in vivo rodent dorsal skinfold model. Study Design/Materials and Methods: A dorsal sk...

  14. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Erbert, Gotz

    2011-01-01

    High-power narrow-spectrum diode laser systems based on tapered gain media in external cavity are demonstrated at 675 nm. Two 2-mm-long amplifiers are used, one with a 500-µm-long ridge-waveguide section (device A), the other with a 750-µm-long ridge-waveguide section (device B). The laser system...... of 1.0 W. The laser system B based on device B is tunable from 666 to 685 nm. As high as 1.05 W output power is obtained around 675.67 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M2 is 1.13 at an output power of 0.93 W. The laser...... system B is used as a pump source for the generation of 337.6 nm UV light by single-pass frequency doubling in a BIBO crystal. An output power of 109 µW UV light, corresponding to a conversion efficiency of 0.026%W-1 is attained....

  15. Resonance ionization spectroscopy using ultraviolet laser

    CERN Document Server

    Han, J M; Ko, D K; Park, H M; Rhee, Y J

    2002-01-01

    In this study, Ti:sapphire laser which is pumped by the enhanced Nd:YAG laser using laser diode, was designed and manufactured. The AO Q-switched CW Nd:YAG laser was converted into a high repetition plus-type laser using the AO Q-switch, and two heads were installed inside the cavity in order to improve the laser beam quality. The Nd:YAG laser enhancement was completed by optimization using a simulation for the cavity length, structure and thermal lens effect that greatly effected the laser beam output and quality. As the result of the enhancement, a 30W laser at 532nm and at 5k-Hz was successfully made. Also, the Ti:sapphire laser that will be used for atomic spectroscopy which is pumped by the Nd:YAG laser, was completely designed. As a basic experiment for laser oscillation. We measured the tunability of the laser, and it turned out that the wave tunability range was 730 850 nm. A self-seeding type tunable laser using grating for narrow line width, is planned to be designed due to the fact that the Ti:sapp...

  16. Clean Photothermal Heating and Controlled Release From Near Infrared Dye Doped Nanoparticles Without Oxygen Photosensitization

    Science.gov (United States)

    Guha, Samit; Shaw, Scott K.; Spence, Graeme T.; Roland, Felicia M.; Smith, Bradley D.

    2015-01-01

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer-hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of 1O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive 1O2 leading to bleaching of the dye and also decomposition of co-encapsulated payload such as the drug Doxorubicin. Croc dye was especially useful as a photothermal agent for laser controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326

  17. LASERS, ACTIVE MEDIA: The aqueous-polyelectrolyte dye solution as an active laser medium

    Science.gov (United States)

    Akimov, A. I.; Saletskii, A. M.

    2000-11-01

    The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes — polyacrylic and polymethacrylic acids — are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions.

  18. Poly(BODIPY)s : A New Class of Tunable Polymeric Dyes

    NARCIS (Netherlands)

    Alemdaroglu, Fikri E.; Alexander, Seth C.; Ji, Dongmei; Prusty, Deepak K.; Boersch, Michael; Herrmann, Andreas

    2009-01-01

    We present a new class of polymeric dyes bearing the difluoroboraindacene (BODIPY) chromophore within the main chain. Starting from a diiodinated BODIPY monomer, homo- and copolymers with a fully conjugated backbone were efliciently synthesized by transition-metal-catalyzed polycondensation

  19. Performances of new reconstruction algorithms for CT-TDLAS (computer tomography-tunable diode laser absorption spectroscopy)

    International Nuclear Information System (INIS)

    Jeon, Min-Gyu; Deguchi, Yoshihiro; Kamimoto, Takahiro; Doh, Deog-Hee; Cho, Gyeong-Rae

    2017-01-01

    Highlights: • The measured data were successfully used for generating absorption spectra. • Four different reconstruction algorithms, ART, MART, SART and SMART were evaluated. • The calculation speed of convergence by the SMART algorithm was the fastest. • SMART was the most reliable algorithm for reconstructing the multiple signals. - Abstract: Recent advent of the tunable lasers made to measure simultaneous temperature and concentration fields of the gases. CT-TDLAS (computed tomography-tunable diode laser absorption spectroscopy) is one the leading techniques for the measurements of temperature and concentration fields of the gases. In CT-TDLAS, the accuracies of the measurement results are strongly dependent upon the reconstruction algorithms. In this study, four different reconstruction algorithms have been tested numerically using experimental data sets measured by thermocouples for combustion fields. Three reconstruction algorithms, MART (multiplicative algebraic reconstruction technique) algorithm, SART (simultaneous algebraic reconstruction technique) algorithm and SMART (simultaneous multiplicative algebraic reconstruction technique) algorithm, are newly proposed for CT-TDLAS in this study. The calculation results obtained by the three algorithms have been compared with previous algorithm, ART (algebraic reconstruction technique) algorithm. Phantom data sets have been generated by the use of thermocouples data obtained in an actual experiment. The data of the Harvard HITRAN table in which the thermo-dynamical properties and the light spectrum of the H_2O are listed were used for the numerical test. The reconstructed temperature and concentration fields were compared with the original HITRAN data, through which the constructed methods are validated. The performances of the four reconstruction algorithms were demonstrated. This method is expected to enhance the practicality of CT-TDLAS.

  20. Tunable far infrared laser spectroscopy of Van der Waals molecules in a planar supersonic jet expansion

    International Nuclear Information System (INIS)

    Busarow, K.L.

    1990-12-01

    The gas phase high resolution spectroscopic study of weakly bound clusters can provide the information necessary to develop an intermolecular potential energy surface. This surface can then be used to better understand condensed phases. In this work, a tunable far infrared laser spectrometer is used to study weakly bound dimers produced in the newly developed continuous planar supersonic jet expansion apparatus. The water dimer is an extensively studied hydrogen bonded dimer. It undergoes several tunneling motions which result in splittings and perturbations of the rovibrational energy levels. A review is presented of much of the experimental and theoretical work done on water dimer, including a description of the combined fit of all the high resolution spectroscopic results by Coudert and Hougen. Also included is a discussion of the measurement of the K = 1 lower → K = 2 lower band performed using the tunable far infrared laser/planar jet apparatus. The preliminary results from the study of CH 4 ·H 2 O will also be presented. CH 4 ·H 2 O is unique in that unlike a strongly anisotropic complex, such as the water dimer, the monomer subunits are nearly free internal rotors. Seven bands are observed which have very similar band origins and rotational constants. Two energy level diagrams are proposed which are strongly influenced by earlier ArH 2 O studies. A brief qualitative discussion of the CH 4 ·H 2 O binding energy compared to that of ArH 2 O is also included. 152 refs., 54 figs., 20 tabs

  1. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  2. Fiber Bragg grating interrogation using wavelength modulated tunable distributed feedback lasers and a fiber-optic Mach-Zehnder interferometer.

    Science.gov (United States)

    Roy, Anirban; Chakraborty, Arup Lal; Jha, Chandan Kumar

    2017-04-20

    This paper demonstrates a technique of high-resolution interrogation of two fiber Bragg gratings (FBGs) with flat-topped reflection spectra centered on 1649.55 nm and 1530.182 nm with narrow line width tunable semiconductor lasers emitting at 1651.93 nm and 1531.52 nm, respectively. The spectral shift of the reflection spectrum in response to temperature and strain is accurately measured with a fiber-optic Mach-Zehnder interferometer that has a free spectral range of 0.0523 GHz and a broadband photodetector. Laser wavelength modulation and harmonic detection techniques are used to transform the gentle edges of the flat-topped FBG into prominent leading and trailing peaks that are up to five times narrower than the FBG spectrum. Either of these peaks can be used to accurately measure spectral shifts of the FBG reflection spectrum with a resolution down to a value of 0.47 pm. A digital signal processing board is used to measure the temperature-induced spectral shifts over the range of 30°C-80°C and strain-induced spectral shifts from 0  μϵ to 12,000  μϵ. The shift is linear in both cases with a temperature sensitivity of 12.8 pm/°C and strain sensitivity of 0.12  pm/μϵ. The distinctive feature of this technique is that it does not use an optical spectrum analyzer at any stage of its design or operation. It can be readily extended to all types of tunable diode lasers and is ideally suited for compact field instruments and for biomedical applications in stroke rehabilitation monitoring.

  3. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser.

    Science.gov (United States)

    Rao, Gottipaty N; Karpf, Andreas

    2010-09-10

    A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO(2), we report a sensitivity of 1.2 ppb for the detection of NO(2) in Zero Air.

  4. Tunable continuous wave and passively Q-switched Nd:LuLiF4 laser with monolayer graphene as saturable absorber

    International Nuclear Information System (INIS)

    Wang, Feng; Luo, Jianjun; Li, Shixia; Li, Tao; Li, Ming

    2015-01-01

    Tunable continuous wave and passively Q-switched Nd:LuLiF 4 laser performances were demonstrated. Employing a 2 mm thick quartz plate as the birefringence filter, three continuous tuning ranges from 1045.2 to 1049.9 nm, 1051 to 1055.1 nm and 1072.1 to 1074.3 nm could be obtained. Q-switched laser operation was realized by using a monolayer graphene as a saturable absorber. At an incident pump power of 5.94 W, the maximum average output power was 669 mW with the pulse duration of 210 ns and the pulse repetition rate of 145 kHz at T = 10%. (paper)

  5. Selective treatment of carious dentin using a mid-infrared tunable pulsed laser at 6 μm wavelength range

    Science.gov (United States)

    Saiki, Masayuki; Ishii, Katsunori; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2011-03-01

    Optical technologies have good potential for caries detection, prevention, excavation, and the realization of minimal intervention dentistry. This study aimed to develop a selective excavation technique of carious tissue using the specific absorption in 6 μm wavelength range. Bovine dentin demineralized with lactic acid solution was used as a carious dentin model. A mid-infrared tunable pulsed laser was obtained by difference-frequency generation technique. The wavelength was tuned to 6.02 and 6.42 μm which correspond to absorption bands called amide I and amide II, respectively. The laser delivers 5 ns pulse width at a repetition rate of 10 Hz. The morphological change after irradiation was observed with a scanning electron microscope, and the measurement of ablation depth was performed with a confocal laser microscope. At λ = 6.02 μm and the average power density of 15 W/cm2, demineralized dentin was removed selectively with less-invasive effect on sound dentin. The wavelength of 6.42 μm also showed the possibility of selective removal. High ablation efficiency and low thermal side effect were observed using the nanosecond pulsed laser with λ = 6.02 μm. In the near future, development of compact laser device will open the minimal invasive laser treatment to the dental clinic.

  6. Tunable CW diode-pumped Tm,Ho:YLiF4 laser operating at or near room temperature

    Science.gov (United States)

    Mcguckin, Brendan T. (Inventor); Menzies, Robert T. (Inventor)

    1995-01-01

    A conversion efficiency of 42% and slope efficiency of 60% relative to absorbed pump power are obtained from a continuous wave diode-pumped Tm,Ho:YLiF4 laser at 2 microns with output power of 84 mW at a crystal temperature of 275 K. The emission spectrum is etalon tunable over a range of7 nm (16.3/cm) centered on 2.067 microns with fine tuning capability of the transition frequency with crystal temperature at a measured rate of -0.03/(cm)K. The effective emission cross-section is measured to be 5 x 10(exp -21) cm squared. These and other aspects of the laser performance are disclosed in the context of calculated atmospheric absorption characteristics in this spectral region and potential use in remote sensing applications. Single frequency output and frequency stabilization are achieved using an intracavity etalon in conjunction with an external reference etalon.

  7. Argon laser phototherapy of human malignancies using rhodamine-123 as a new laser dye: The intracellular role of oxygen

    International Nuclear Information System (INIS)

    Castro, D.J.; Saxton, R.E.; Markley, J.; Foote, C.S.; Fetterman, H.R.; Castro, D.J.; Ward, P.H.

    1990-01-01

    Recent studies demonstrated that the cationic, mitochondrial-specific dye Rhodamine-123 (Rh-123), is an efficient tumor photosensitizer for Argon laser treatment of human cancer cells both in vitro and in tumors grown as xenografts in athymic mice. To demonstrate the photodynamic mechanism of action of this reaction, the intracellular role of oxygen and temperature changes in treated cells have to be defined. In the current study, a large panel of human tumor cell lines of diverse histologic origin were tested for in vitro sensitivity to Rh-123 and the Argon laser (514.5 nm) in oxygen, deuterium oxide (D2O), and nitrogen (N2) environment. Tumor cells in suspension were first sensitized to Rh-123 (1 or 20 micrograms/ml for 1 hour), cooled on ice to 4 degrees C, and then exposed to the Argon laser (delta T = 14 +/- 1 degree C). Cell proliferation measured by [3H]-thymidine uptake 24 hours after sensitization with Rh-123 and laser treatment was significantly decreased in tumor cells kept in oxygen and D2O atmospheres. No decrease in DNA synthesis was seen in Rh-123 and laser treated cells kept in an N2 environment. Control tumor cells treated with Rh-123 or the Argon laser separately did not show any decreased [3H]-thymidine uptake in oxygen, D2O or N2 environment. These results provide evidence of a photodynamic process since Rh-123 sensitization and Argon laser activation occur at nonthermal levels of energy and are oxygen dependent. The high effectiveness of this technique of photodynamic therapy with the Argon laser, and low toxicity of Rh-123 could make its clinical use very attractive for the treatment of superficial malignancies

  8. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  9. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  10. Isotope separation by laser deflection of an atomic beam

    International Nuclear Information System (INIS)

    Bernhardt, A.F.

    1975-02-01

    Separation of isotopes of barium was accomplished by laser deflection of a single isotopic component of an atomic beam. With a tunable narrow linewidth dye laser, small differences in absorption frequency of different barium isotopes on the 6s 2 1 S 0 --6s6p 1 P 1 5536A resonance were exploited to deflect atoms of a single isotopic component of an atomic beam through an angle large enough to physically separate them from the atomic beam. It is shown that the principal limitation on separation efficiency, the fraction of the desired isotopic component which can be separated, is determined by the branching ratio from the excited state into metastable states. The isotopic purity of the separated atoms was measured to be in excess of 0.9, limited only by instrumental uncertainty. To improve the efficiency of separation, a second dye laser was employed to excite atoms which had decayed to the 6s5d metastable state into the 6p5d 1 P 1 state from which they could decay to the ground state and continue to be deflected on the 5535A transition. With the addition of the second laser, separation efficiency of greater than 83 percent was achieved, limited by metastable state accumulation in the 5d 2 1 D 2 state which is accessible from the 6p5d 1 P 1 level. It was found that the decay rate from the 6p5d state into the 5d 2 metastable state was fully 2/3 the decay rate to the ground state, corresponding to an oscillator strength of 0.58. (U.S.)

  11. Estimation of ground and excited state dipole moment of laser dyes C504T and C521T using solvatochromic shifts of absorption and fluorescence spectra.

    Science.gov (United States)

    Basavaraja, Jana; Suresh Kumar, H M; Inamdar, S R; Wari, M N

    2016-02-05

    The absorption and fluorescence spectra of laser dyes: coumarin 504T (C504T) and coumarin 521T (C521T) have been recorded at room temperature in a series of non-polar and polar solvents. The spectra of these dyes showed bathochromic shift with increasing in solvent polarity indicating the involvement of π→π⁎ transition. Kamlet-Taft and Catalan solvent parameters were used to analyze the effect of solvents on C504T and C521T molecules. The study reveals that both general solute-solvent interactions and specific interactions are operative in these two systems. The ground state dipole moment was estimated using Guggenheim's method and also by quantum mechanical calculations. The solvatochromic data were used to determine the excited state dipole moment (μ(e)). It is observed that dipole moment value of excited state (μ(e)) is higher than that of the ground state in both the laser dyes indicating that these dyes are more polar in nature in the excited state than in the ground state. Copyright © 2015. Published by Elsevier B.V.

  12. Dye gain gold NW array of surface plasmon polariton waveguide

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available Plasmon lasers can support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. At present in the single visible light frequency, the optical gain method of constraint SPP on metal nanowires structure reported less. We design the gold nanowire array structure, consisting of PMMA and R6G dye molecules as gain, by 488 nm pump in the middle of the nanowires position for wide range of light, use symmetry broken overcome that momentum does not match the photonic and SPP energy conversion. Theoretical analysis shows that dyes provide coherent optical feedback, resulting in nanowires face will observe laser properties of surface plasmons. Feature analysis: the incident light and pump joint strength is greater than the sum of strength which is the incident light, pump respectively. Under the effect of dye molecules gain effective, length of SPP transmission can increase 1 µm. The results achieved in a single optical frequency of stimulated radiation, application of dye optical gain can achieve continuous gain effect. This is for the future development of plasma amplifier and the wavelength laser. Keywords: SPP, Stimulated radiation, Gold nanowires array, Dye molecules

  13. [Study on remote sensing of methane leakage using a tunable diode laser].

    Science.gov (United States)

    Fan, Hong; Gao, Xiao-Ming; Bao, Jian; Wang, Xia; Huang, Teng; Huang, Wei; Cao, Zhen-Song; Zhang, Wei-Jun

    2006-08-01

    The leak of natural gas is not only an economic loss, but also the fountain of danger. Conventional detection techniques of natural gas pipe leak have low efficiency and slow respond time, therefore, it is difficult for them to suit practice application. Optical sensors based on NIR tunable diode laser absorption spectroscopy were widely used because of high sensitivity, small volume and less maintenance. In the present paper, a portable remote sensor of natural gas pipeline leak was reported. The sensor used a ratio of second to first harmonic signals as calibration method, and the results show a good consistency between the concentrations and the ratios of second to first harmonic signals. The effect of different topographic scattering targets on the ratio detection was measured and analyzed. The results show that the ratio of second to first harmonic signals can be used in practical application.

  14. UV-tunable laser induced phototransformations of matrix isolated anethole.

    Science.gov (United States)

    Krupa, Justyna; Wierzejewska, Maria; Nunes, Cláudio M; Fausto, Rui

    2014-03-14

    A matrix isolation study of the infrared spectra and structure of anethole (1-methoxy-4-(1-propenyl)benzene) has been carried out, showing the presence of two E conformers (AE1, AE2) of the molecule in the as-deposited matrices. Irradiation using ultraviolet-tunable laser light at 308-307 nm induced conformationally selective phototransformations of these forms into two less stable Z conformers (AZ1, AZ2). The back reactions were also detected upon irradiation at 301 nm. On the whole, the obtained results allow for full assignment of the infrared spectra of all the four experimentally observed anethole isomers and showed that the narrowband UV-induced E-Z photoisomerization is an efficient and selective way to interconvert the two isomers of anethole into each other, with conformational discrimination. Photolysis of anethole was observed as well, with initial methoxyl O-C bond cleavage and formation of CH3 and p-propenylphenoxy (AR) radicals, followed by radical recombination to form 2-methyl-4-propenyl-2,4-cyclohexadienone, which subsequently undergoes ring-opening generating several conformers of long-chain conjugated ketenes. Interpretation of the experimental observations was supported by density functional theory (B3LYP and B2PLYD) calculations.

  15. External-cavity high-power dual-wavelength tapered amplifier with tunable THz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W is achie......A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W...... is achieved with a frequency difference of 0.86 THz, the output power is higher than 1.3 W in the 5.0 THz range of frequency difference, and the amplified spontaneous emission intensity is more than 20 dB suppressed in the range of frequency difference. The beam quality factor M2 is 1.22±0.15 at an output...

  16. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser.

    Science.gov (United States)

    Bathe-Peters, M; Annibale, P; Lohse, M J

    2018-02-05

    Microscopic imaging at high spatial-temporal resolution over long time scales (minutes to hours) requires rapid and precise stabilization of the microscope focus. Conventional and commercial autofocus systems are largely based on piezoelectric stages or mechanical objective actuators. Objective to sample distance is either measured by image analysis approaches or by hardware modules measuring the intensity of reflected infrared light. We propose here a truly all-optical microscope autofocus taking advantage of an electrically tunable lens and a totally internally reflected infrared probe beam. We implement a feedback-loop based on the lateral position of a totally internally reflected infrared laser on a quadrant photodetector, as an indicator of the relative defocus. We show here how to treat the combined contributions due to mechanical defocus and deformation of the tunable lens. As a result, the sample can be kept in focus without any mechanical movement, at rates up to hundreds of Hertz. The device requires only reflective optics and can be implemented at a fraction of the cost required for a comparable piezo-based actuator.

  17. Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3

    Science.gov (United States)

    Wada, Yoshio; Satoh, Takumi; Higashi, Yasuhiro; Urata, Yoshiharu

    2017-12-01

    We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.

  18. Tunable Direct Writing of FBGs into a Non-Photosensitive Tm-Doped Fiber Core with an fs Laser and Phase Mask

    International Nuclear Information System (INIS)

    Cheng-Wei, Song; Yang, Wang; Yun-Jun, Zhang; You-Lun, Ju

    2009-01-01

    Fiber Bragg gratings (FBGs) are successfully written in a non-photosensitive Tm-doped single-mode fiber by a 800 nm fs laser and a 2.7 μm period phase mask. The intra-core FBGs are written using the phase mask ±1 order interference, and have a period of 1.35 μm, which responds to the second-order reflective central wavelength at 1946.4 nm. Based on the magnification tuning writing technology, the tunable writing technology is also experimentally investigated. The distance between the phase mask and the fiber, between the phase mask and the tuning lens, and the focal length of the tuning lens all have an influence on the tunable characteristics. Four different FBGs tuning refiective central wavelengths located at 1958.7 nm, 1970.8 nm, 1882.5 nm and 1899.7 nm are obtained

  19. Laser interrogation of latent vehicle registration number

    Energy Technology Data Exchange (ETDEWEB)

    Russo, R.E. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.]|[Lawrence Livermore National Lab., CA (United States). Forensic Science Center; Pelkey, G.E. [City of Livermore Police Dept., CA (United States); Grant, P.; Whipple, R.E.; Andresen, B.D. [Lawrence Livermore National Lab., CA (United States). Forensic Science Center

    1994-09-01

    A recent investigation involved automobile registration numbers as important evidentiary specimens. In California, as in most states, small, thin metallic decals are issued to owners of vehicles each year as the registration is renewed. The decals are applied directly to the license plate of the vehicle and typically on top of the previous year`s expired decal. To afford some degree of security, the individual registration decals have been designed to tear easily; they cannot be separated from each other, but can be carefully removed intact from the metal license plate by using a razor blade. In September 1993, the City of Livermore Police Department obtained a blue 1993 California decal that had been placed over an orange 1992 decal. The two decals were being investigated as possible evidence in a case involving vehicle registration fraud. To confirm the suspicion and implicate a suspect, the department needed to known the registration number on the bottom (completely covered) 1992 decal. The authors attempted to use intense and directed light to interrogate the colored stickers. Optical illumination using a filtered white-light source partially identified the latent number. However, the most successful technique used a tunable dye laser pumped by a pulsed Nd:YAG laser. By selectively tuning the wavelength and intensity of the dye laser, backlit illumination of the decals permitted visualization of the underlying registration number through the surface of the top sticker. With optimally-tuned wavelength and intensity, 100% accuracy was obtained in identifying the sequence of latent characters. The advantage of optical techniques is their completely nondestructive nature, thus preserving the evidence for further interrogation or courtroom presentation.

  20. Photoacoustic microbeam-oscillator with tunable resonance direction and amplitude

    Science.gov (United States)

    Wu, Qingjun; Li, Fanghao; Wang, Bo; Yi, Futing; Jiang, J. Z.; Zhang, Dongxian

    2018-01-01

    We successfully design one photoacoustic microbeam-oscillator actuated by nanosecond laser, which exhibits tunable resonance direction and amplitude. The mechanism of laser induced oscillation is systematically analyzed. Both simulation and experimental results reveal that the laser induced acoustic wave propagates in a multi-reflected mode, resulting in resonance in the oscillator. This newly-fabricated micrometer-sized beam-oscillator has an excellent actuation function, i.e., by tuning the laser frequency, the direction and amplitude of actuation can be efficiently altered, which will have potential industrial applications.

  1. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    International Nuclear Information System (INIS)

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-01-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs

  2. Gas monitoring in human sinuses using tunable diode laser spectroscopy.

    Science.gov (United States)

    Persson, Linda; Andersson, Mats; Cassel-Engquist, Märta; Svanberg, Katarina; Svanberg, Sune

    2007-01-01

    We demonstrate a novel nonintrusive technique based on tunable diode laser absorption spectroscopy to investigate human sinuses in vivo. The technique relies on the fact that free gases have spectral imprints that are about 10.000 times sharper than spectral structures of the surrounding tissue. Two gases are detected; molecular oxygen at 760 nm and water vapor at 935 nm. Light is launched fiber optically into the tissue in close proximity to the particular maxillary sinus under study. When investigating the frontal sinuses, the fiber is positioned onto the caudal part of the frontal bone. Multiply scattered light in both cases is detected externally by a handheld probe. Molecular oxygen is detected in the maxillary sinuses on 11 volunteers, of which one had constantly recurring sinus problems. Significant oxygen absorption imprint differences can be observed between different volunteers and also left-right asymmetries. Water vapor can also be detected, and by normalizing the oxygen signal on the water vapor signal, the sinus oxygen concentration can be assessed. Gas exchange between the sinuses and the nasal cavity is also successfully demonstrated by flushing nitrogen through the nostril. Advantages over current ventilation assessment methods using ionizing radiation are pointed out.

  3. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  4. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  5. Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating

    Directory of Open Access Journals (Sweden)

    Yanlei Hu

    2014-12-01

    Full Text Available Femtosecond laser processing is emerged as a promising tool to functionalize surfaces of various materials, including metals, semiconductors, and polymers. However, the productivity of this technique is limited by the low efficiency of laser raster scanning. Here we report a facile approach for efficiently producing large-area functional polymer surfaces, by which metal is firstly textured by a femtosecond laser, and the as-prepared hierarchical structures are subsequently transferred onto polydimethylsiloxane (PDMS surfaces. Aluminum pieces covered by laser induced micro/nano-structures act as template masters and their performance of displaying diverse colors are investigated. Polymer replicas are endowed with tunable wetting properties, which are mainly attributed to the multi-scale surface structures. Furthermore, the surfaces are found to have extremely high adhesive force for water drops because of the high water penetration depth and the resultant high contact angle hysteresis. This characteristic facilitates many potential applications like loss-free tiny water droplets transportation. The reusability of metal master and easiness of soft lithography make it to be a very simple, fast and cost-efficient way for mass production of functional polymeric surfaces.

  6. Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.

    Science.gov (United States)

    Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji

    2012-02-13

    A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.

  7. Production of spectrally reconstructed uv-radiation by means of a nonlinear conversion of the generation frequency of a dye laser with lamp pumping

    Energy Technology Data Exchange (ETDEWEB)

    Anufrik, S S; Mostovnikov, V A; Rubinov, A N

    1976-03-01

    By doubling the generation frequency of an organic dye laser with lamp pumping, radiation is obtained in the spectral region of 285 to 305 nm. Depending on the mode of operation of a given laser the spectral width of the uv-radiation was 0.5 or approximately 0.003 nm. The maximum energy of second harmonic pulses was equal to approximately 0.01 J. (SJR)

  8. Physical and chemical investigations on natural dyes

    Science.gov (United States)

    Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.

    2010-09-01

    Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.

  9. Dynamically tunable interface states in 1D graphene-embedded photonic crystal heterostructure

    Science.gov (United States)

    Huang, Zhao; Li, Shuaifeng; Liu, Xin; Zhao, Degang; Ye, Lei; Zhu, Xuefeng; Zang, Jianfeng

    2018-03-01

    Optical interface states exhibit promising applications in nonlinear photonics, low-threshold lasing, and surface-wave assisted sensing. However, the further application of interface states in configurable optics is hindered by their limited tunability. Here, we demonstrate a new approach to generate dynamically tunable and angle-resolved interface states using graphene-embedded photonic crystal (GPC) heterostructure device. By combining the GPC structure design with in situ electric doping of graphene, a continuously tunable interface state can be obtained and its tuning range is as wide as the full bandgap. Moreover, the exhibited tunable interface states offer a possibility to study the correspondence between space and time characteristics of light, which is beyond normal incident conditions. Our strategy provides a new way to design configurable devices with tunable optical states for various advanced optical applications such as beam splitter and dynamically tunable laser.

  10. Fluorescence from gaseous UF/sub 6/ excited by a near-UV dye laser. [Decay time,quenching rate,room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, P [Pavia Univ. (Italy); Cubeddu, R; Sacchi, C A; Svelto, O; Zaraga, F [Politecnico di Milano (Italy)

    1976-06-01

    Preliminary data are reported on the visible fluorescence of gaseous UF/sub 6/ excited by a dye laser at 374 nm. A decay time of 500 ns at p = 0 and a quenching rate of 5.7 x 10/sup -12/cm/sup 3/molec/sup -1/s/sup -1/ have been measured at room temperature.

  11. Ultraviolet laser ablation of fluorine-doped tin oxide thin films for dye-sensitized back-contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Fu, Dongchuan [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia); Jiang, Ming [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Duan, Jun, E-mail: duans@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Zhang, Fei; Zeng, Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China); Bach, Udo [ARC Centre of Excellence for Electromaterials Science, Department of Materials Engineering and School of Chemistry, Monash University, Clayton Victoria, 3800 (Australia)

    2013-03-01

    In this study, laser ablation of a fluorine-doped tin oxide (FTO) thin film on a glass substrate was conducted using a 355 nm Nd:YVO{sub 4} ultraviolet (UV) laser to obtain a 4 × 4 mm microstructure. The microstructure contains a symmetric set of interdigitated FTO finger electrodes of a monolithic back-contact dye-sensitized solar cell (BC-DSC) on a common substrate. The effects of UV laser ablation parameters (such as laser fluence, repetition frequency, and scanning speed) on the size precision and quality of the microstructure were investigated using a 4 × 4 orthogonal design and an assistant experimental design. The incident photon-to-electron conversion efficiency and the current–voltage characteristics of the BC-DSC base of the interdigitated FTO finger electrodes were also determined. The experimental results show that an FTO film microstructure with high precision and good quality can be produced on a glass substrate via laser ablation with high scanning speed, high repetition frequency, and appropriate laser fluence. - Highlights: ► The ablation width and depth generally depend on the laser fluence. ► The scanning speed and the repetition frequency must match each other. ► Slight ablation of the glass substrate can completely remove F-doped tin oxide.

  12. Detection of gain enhancement in laser-induced fluorescence of rhodamine B lasing dye by silicon dioxide nanostructures-coated cavity

    Science.gov (United States)

    Al-Tameemi, Mohammed N. A.

    2018-03-01

    In this work, nanostructured silicon dioxide films are deposited by closed-field unbalanced direct-current (DC) reactive magnetron sputtering technique on two sides of quartz cells containing rhodamine B dye dissolved in ethanol with 10‒5 M concentration as a random gain medium. The preparation conditions are optimized to prepare highly pure SiO2 nanostructures with a minimum particle size of about 20 nm. The effect of SiO2 films as external cavity for the random gain medium is determined by the laser-induced fluorescence of this medium, and an increase of about 200% in intensity is observed after the deposition of nanostructured SiO2 thin films on two sides of the dye cell.

  13. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    Energy Technology Data Exchange (ETDEWEB)

    VonDrasek, William; Melsio-Pubill, Anna

    2006-05-30

    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance

  14. Tunable and white light emitting AlPO4 mesoporous glass by design of inorganic/organic luminescent species

    Directory of Open Access Journals (Sweden)

    Jin He

    2015-04-01

    Full Text Available The realization of tunable and white light emitting sources employed by UV-LED with single-host phosphors has been an exciting development in the search for high luminous efficiency and excellent color rendering index white-light source. A tunable and white light emitting mesoporous glass was prepared by utilizing both inorganic/organic (Europium/coumarin luminescent species in the meso-structure. The tunable and white light emission was deliberately designed by CIE calculation based on the individual emission spectra, which was realized by tailoring the emission of Eu2+/Eu3+ ions and coumarin 535 in sol-gel AlPO4 mesoporous glass. This simple and versatile procedure is not limited in the combination of rare earth and organic dye and is therefore extendable to other luminescent species in meso-structure for color-tunable efficient solid-state lighting sources.

  15. Effects of early combinatorial treatment of autologous split-thickness skin grafts in red duroc pig model using pulsed dye laser and fractional CO2 laser.

    Science.gov (United States)

    Bailey, J Kevin; Blackstone, Britani N; DeBruler, Danielle M; Kim, Jayne Y; Baumann, Molly E; McFarland, Kevin L; Imeokparia, Folasade O; Supp, Dorothy M; Powell, Heather M

    2018-01-01

    The use of pulsed dye laser (PDL) and fractional CO 2 (FX CO 2 ) laser therapy to treat and/or prevent scarring following burn injury is becoming more widespread with a number of studies reporting reduction in scar erythema and pruritus following treatment with lasers. While the majority of studies report positive outcomes following PDL or FX CO 2 therapy, a number of studies have reported no benefit or worsening of the scar following treatment. The objective of this study was to directly compare the efficacy of PDL, FX CO 2 , and PDL + FX CO 2 laser therapy in reducing scarring post burn injury and autografting in a standardized animal model. Eight female red Duroc pigs (FRDP) received 4 standardized, 1 in. x 1 in. third degree burns that were excised and autografted. Wound sites were treated with PDL, FX CO 2 , or both at 4, 8, and 12 weeks post grafting. Grafts receiving no laser therapy served as controls. Scar appearance, morphology, size, and erythema were assessed and punch biopsies collected at weeks 4, 8, 12, and 16. At week 16, additional tissue was collected for biomechanical analyses and markers for inflammatory cytokines, extracellular matrix (ECM) proteins, re-epithelialization, pigmentation, and angiogenesis were quantified at all time points using qRT-PCR. Treatment with PDL, FX CO 2 , or PDL + FX CO 2 resulted in significantly less contraction versus skin graft only controls with no statistically significant difference among laser therapy groups. Scars treated with both PDL and FX CO 2 were visually more erythematous than other groups with a significant increase in redness between two and three standard deviations above normal skin redness. Scars treated with FX CO 2 were visually smoother and contained significantly fewer wrinkles. In addition, hyperpigmentation was significantly reduced in scars treated with FX CO 2 . The use of fractional carbon dioxide or pulsed dye laser therapy within 1 month of autografting significantly reduced scar

  16. Use of synchrotron and laser radiations for present and future photoionization studies in excited atoms and ions

    International Nuclear Information System (INIS)

    Wuilleumier, F.J.

    1984-01-01

    The status of experiments in photoionization of atoms in excited states is reviewed, with emphasis given to synchrotron and laser photon sources. A technique for exciting the photoionization spectrum of Na atoms using the flux emitted from the bending magnetic of a storage ring is discussed in detail. Some problems in interpreting photoionization spectrum of Ba in the excited state, due to the presence of higher orders are considered. A design approach for a positron storage ring to produce coherent radiation in the VUV is described. It is shown that combined use of a CW dye laser and the positron storage ring will allow new progress to be made in photoionization studies of excited atoms. Some of the experiments to be carried out using the positron storage ring include: measurements of collisional ionization in rare earth metal atoms of low atomic density; photoionization measurements at lower laser powers, leading to an extension of the CW tunability range; and photoionization studies of multiply charged positive ions. 21 references

  17. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  18. Recent advance to 3 × 10(-5) rad near diffraction-limited beam divergence of dye laser with transverse-discharge flash-lamp pumping.

    Science.gov (United States)

    Trusov, K K

    1994-02-20

    A new experimental setup of a Rhodamine 6G dye laser with a transverse-discharge flash-lamp-pumping system is presented. It differs from a previous setup [Sov. J. Quantum Electron. 16, 468-471 (1989)] in that it has a larger laser beam aperture (32 mm) and higher pumping energy (1 kJ), which made it possible to test the scalability and reach near diffraction-limited laser beam divergence of 3 × 10(-5) rad FWHM at beam energy 1.4 J. The effect of spectral dispersion in the active medium and of other optical elements on the beam divergence is also discussed.

  19. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    Science.gov (United States)

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  20. Enhancement of fluorescence, photo-physical parameters and laser performance of pyrromethene (PM597) laser dye by Ag nanoparticles in different media

    Energy Technology Data Exchange (ETDEWEB)

    Alhijry, Ibraheem A. [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt); Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Faculty of Education, Department of Physics, Hajjah University, Hajjah (Yemen); Gadallah, A.-S. [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt); Abdelkader, H.I. [Physics Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Abou Kana, Maram T.H., E-mail: mabou202@niles.edu.eg [National Institute of Laser Enhanced Sciences, Cairo University, 12613 Giza (Egypt)

    2016-03-15

    The effect of surface plasmon resonance (SPR) of silver nanoparticles (Ag NPs), exposure to radiation, on the optical and photo-physical properties of pyrromethene (PM597) laser dye in liquid and solid media was assessed. 2-hydroxyethyl methacrylate was used as homo-monomer and homo-polymer, while 2-hydroxyethyl methacrylate / methyl methacrylate were used as co-monomer and co-polymer hosts. Ag NPs was prepared and confirmed its size by high resolution transmission electron microscope (HRTEM), UV/vis absorption spectroscopy and also, theoretically by using Mie theory. The molar concentration of prepared NPs was C=3.39×10{sup −9} mol/L. 40% C (1.356×10{sup −9} mol/L) Ag NPs was found to have the optimum distance with (1×10{sup −4} mol/L PM597 in liquid medium and 1×10{sup −3} mol/L PM597 in solid medium) dye molecules according to Metal Enhancement Fluorescence (MEF) model. [40% C Ag NPs: 1×10{sup −3} mol/L PM597] complex samples had 3.12 cm{sup −1} and 3.89 cm{sup −1} gain values in homo-and co-polymer media, while parent PM597 dye had 2.5 cm{sup −1} and 3.45 cm{sup −1} gain values. Also, amplified spontaneous emission (ASE) value of complex samples was 0.455% and 0.538% in case of homo- and co-polymer respectively. While it was 0.4% and 0.457% in case of parent PM597 dye in the same sequent media. Finally, photo-stabilities of complex samples had higher values in co-monomer and co-polymer hosts compared with respect to their stabilities in homo-monomer and homo-polymer hosts.

  1. Enhancement of fluorescence, photo-physical parameters and laser performance of pyrromethene (PM597) laser dye by Ag nanoparticles in different media

    International Nuclear Information System (INIS)

    Alhijry, Ibraheem A.; Gadallah, A.-S.; Abdelkader, H.I.; Abou Kana, Maram T.H.

    2016-01-01

    The effect of surface plasmon resonance (SPR) of silver nanoparticles (Ag NPs), exposure to radiation, on the optical and photo-physical properties of pyrromethene (PM597) laser dye in liquid and solid media was assessed. 2-hydroxyethyl methacrylate was used as homo-monomer and homo-polymer, while 2-hydroxyethyl methacrylate / methyl methacrylate were used as co-monomer and co-polymer hosts. Ag NPs was prepared and confirmed its size by high resolution transmission electron microscope (HRTEM), UV/vis absorption spectroscopy and also, theoretically by using Mie theory. The molar concentration of prepared NPs was C=3.39×10 −9 mol/L. 40% C (1.356×10 −9 mol/L) Ag NPs was found to have the optimum distance with (1×10 −4 mol/L PM597 in liquid medium and 1×10 −3 mol/L PM597 in solid medium) dye molecules according to Metal Enhancement Fluorescence (MEF) model. [40% C Ag NPs: 1×10 −3 mol/L PM597] complex samples had 3.12 cm −1 and 3.89 cm −1 gain values in homo-and co-polymer media, while parent PM597 dye had 2.5 cm −1 and 3.45 cm −1 gain values. Also, amplified spontaneous emission (ASE) value of complex samples was 0.455% and 0.538% in case of homo- and co-polymer respectively. While it was 0.4% and 0.457% in case of parent PM597 dye in the same sequent media. Finally, photo-stabilities of complex samples had higher values in co-monomer and co-polymer hosts compared with respect to their stabilities in homo-monomer and homo-polymer hosts.

  2. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers

    Science.gov (United States)

    Sun, K.; Chao, X.; Sur, R.; Goldenstein, C. S.; Jeffries, J. B.; Hanson, R. K.

    2013-12-01

    A novel strategy has been developed for analysis of wavelength-scanned, wavelength modulation spectroscopy (WMS) with tunable diode lasers (TDLs). The method simulates WMS signals to compare with measurements to determine gas properties (e.g., temperature, pressure and concentration of the absorbing species). Injection-current-tuned TDLs have simultaneous wavelength and intensity variation, which severely complicates the Fourier expansion of the simulated WMS signal into harmonics of the modulation frequency (fm). The new method differs from previous WMS analysis strategies in two significant ways: (1) the measured laser intensity is used to simulate the transmitted laser intensity and (2) digital lock-in and low-pass filter software is used to expand both simulated and measured transmitted laser intensities into harmonics of the modulation frequency, WMS-nfm (n = 1, 2, 3,…), avoiding the need for an analytic model of intensity modulation or Fourier expansion of the simulated WMS harmonics. This analysis scheme is valid at any optical depth, modulation index, and at all values of scanned-laser wavelength. The method is demonstrated and validated with WMS of H2O dilute in air (1 atm, 296 K, near 1392 nm). WMS-nfm harmonics for n = 1 to 6 are extracted and the simulation and measurements are found in good agreement for the entire WMS lineshape. The use of 1f-normalization strategies to realize calibration-free wavelength-scanned WMS is also discussed.

  3. Investigating the Implementation of ZnO Nanoparticles as a Tunable UV Detector for Different Skin Types

    Science.gov (United States)

    Mosayebi, Pegah; Dorranian, Davoud; Behzad, Kasra

    A facile chemical reduction method was used to synthesize ZnO nanoparticles (NPs) in ethylene glycol solvent at two different calcination temperatures. As a result of variation in the calcination temperature, ZnO NPs with two different sizes were achieved. The NPs were investigated for their structural and optical characteristics using X-ray diffraction and ultraviolet (UV)-Vis spectroscopy. The synthesized ZnO NPs exhibited a hexagonal structure with sizes of 46 and 65nm. The synthesized NPs were then used to investigate dye photocatalytic behavior of products as a tunable UV detector for different skin types. The dye degradation and decolorization of methylene blue in the presence of ZnO NP, following UV radiation as a function of time, were studied at different pH levels. The optical absorption spectra were then taken every 15min for all samples. The UV-Vis spectroscopy spectra revealed that optical absorption of solution was decreased upon UV exposure as a function of time. Photocatalytic reaction indicated that the dye degradation and decolorization rate were accelerated with the increase of pH level. Therefore, a tunable UV detector for different skin types could be engineered by varying the pH level of solution to avoid human skin burning.

  4. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  5. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers; Etat de l`art des lasers a fibre, etude d`un laser a fibre dopee ytterbium et spectroscopie laser de fibres dopees

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs.

  6. Analysis of in vivo penetration of textile dyes causing allergic reactions

    International Nuclear Information System (INIS)

    Lademann, J; Patzelt, A; Worm, M; Richter, H; Sterry, W; Meinke, M

    2009-01-01

    Contact allergies to textile dyes are common and can cause severe eczema. In the present study, we investigated the penetration of a fluorescent textile dye, dissolved from a black pullover, into the skin of one volunteer during perspiration and nonperspiration. Previously, wearing this pullover had induced a severe contact dermatitis in an 82-year old woman, who was not aware of her sensitization to textile dyes. The investigations were carried out by in vivo laser scanning microscopy. It could be demonstrated that the dye was eluted from the textile material by sweat. Afterwards, the dye penetrated into the stratum corneum and into the hair follicles. Inside the hair follicles, the fluorescent signal was still detectable after 24 h, whereas it was not verifiable anymore in the stratum corneum, Laser scanning microscopy represents an efficient tool for in vivo investigation of the penetration and storage of topically applied substances and allergens into the human skin and reveals useful hints for the development and optimization of protection strategies

  7. Construction and characterization of a hollow cathode tube for high sensibility laser spectroscopy

    International Nuclear Information System (INIS)

    Morage, A.; Motta, C.C.

    1998-01-01

    A new hollow cathode tube argon-iron design was developed to be used in laser atomic spectroscopy experiments, were high sensibility is required. This tube was employed in order to allow laser absorption and optogalvanic signal measurements. The tube also included fused-quartz Brewster angle windows aligned with the optical axis in each ending of the tube. Therefore, in this configuration a minimum laser intensity losses through the windows can be attained for the appropriate light polarization. The optogalvanic signal detection was accomplished using a tunable dye laser resonant with the Ar, 3p 5 4p ( 3 S 1 )--> 3p 5 4d ( 3 D 1 0 ) transition, that corresponds to 591.2 nm in air. It was also possible to determine the gas temperature by measuring the Doppler line broadening and the results were compared to those obtained from a theoretical model for gas heat conduction. To measure the temperature of the cathode external surface a thermocouple was used inside the tube. The analysis of results showed that a high signal to noise ratio can be obtained with this tube configuration, that permits experimental investigation of electronic transitions presenting low light absorption cross sections. (author)

  8. Fluorescence study of some xanthine dyes under stepped laser excitation

    International Nuclear Information System (INIS)

    Chirkova, L.V.; Ketsle, G.A.; Ermagambetov, K.T.

    1996-01-01

    Paper is devoted to definition of triplet state in molecules of xanthine dyes and study of intramolecular energy circulation. Stepped two-quanta excitation of dyes has been carried out with help of experimental unit. Intensive luminescence activated by excitation of triplet molecules of dyes within triplet-triplet band with wave length of 1060 nm was registered for eosin. Given luminescence spectrally coincides with fast fluorescence. 5 refs., 6 figs

  9. Combined tunable diode laser absorption spectroscopy and monochromatic radiation thermometry in ammonium dinitramide-based thruster

    Science.gov (United States)

    Zeng, Hui; Ou, Dongbin; Chen, Lianzhong; Li, Fei; Yu, Xilong

    2018-02-01

    Nonintrusive temperature measurements for a real ammonium dinitramide (ADN)-based thruster by using tunable diode laser absorption spectroscopy and monochromatic radiation thermometry are proposed. The ADN-based thruster represents a promising future space propulsion employing green, nontoxic propellant. Temperature measurements in the chamber enable quantitative thermal analysis for the thruster, providing access to evaluate thermal properties of the thruster and optimize thruster design. A laser-based sensor measures temperature of combustion gas in the chamber, while a monochromatic thermometry system based on thermal radiation is utilized to monitor inner wall temperature in the chamber. Additional temperature measurements of the outer wall temperature are conducted on the injector, catalyst bed, and combustion chamber of the thruster by using thermocouple, respectively. An experimental ADN thruster is redesigned with optimizing catalyst bed length of 14 mm and steady-state firing tests are conducted under various feed pressures over the range from 5 to 12 bar at a typical ignition temperature of 200°C. A threshold of feed pressure higher than 8 bar is required for the thruster's normal operation and upstream movement of the heat release zone is revealed in the combustion chamber out of temperature evolution in the chamber.

  10. Lasers for the SILVA laser isotope separation process

    International Nuclear Information System (INIS)

    Lapierre, Y.

    1997-01-01

    The main principles of the laser isotope separation process for the production of enriched uranium at lower cost, are reviewed and the corresponding optimal laser characteristics are described. The development of the SILVA laser isotope separation process involved researches in the various domains of pump lasers, dye lasers, laser and optics systems and two test facilities for the feasibility studies which are expected for 1997

  11. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  12. Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers.

    Science.gov (United States)

    Siegle, Tobias; Kellerer, Jonas; Bonenberger, Marielle; Krämmer, Sarah; Klusmann, Carolin; Müller, Marius; Kalt, Heinz

    2018-02-05

    We compare different excitation and collection configurations based on free-space optics and evanescently coupled tapered fibers for both lasing and fluorescence emission from dye-doped doped polymeric whispering gallery mode (WGM) micro-disk lasers. The focus of the comparison is on the lasing threshold and efficiency of light collection. With the aid of optical fibers, we localize the pump energy to the cavity-mode volume and reduce the necessary pump energy to achieve lasing by two orders of magnitude. When using fibers for detection, the collection efficiency is enhanced by four orders of magnitude compared to a free-space read-out perpendicular to the resonator plane. By enhancing the collection efficiency we are able to record a pronounced modulation of the dye fluorescence under continuous wave (cw) pumping conditions evoked by coupling to the WGMs. Alternatively to fibers as a collection tool, we present a read-out technique based on the detection of in-plane radiated light. We show that this method is especially beneficial in an aqueous environment as well as for size-reduced micro-lasers where radiation is strongly pronounced. Furthermore, we show that this technique allows for the assignment of transverse electric (TE) and transverse magnetic (TM) polarization to the observed fundamental modes in a water environment by performing polarization-dependent photoluminescence (PL) spectroscopy. We emphasize the importance of the polarization determination for sensing applications and verify expected differences in the bulk refractive index sensitivity for TE and TM WGMs experimentally.

  13. Tunable Q-switched erbium doped fiber laser based on metal transition oxide saturable absorber and refractive index characteristic of multimode interference effects

    Science.gov (United States)

    Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.

    2017-12-01

    Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.

  14. Near infrared spectral imaging of explosives using a tunable laser source

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G L; Margalith, E; Nguyen, L K

    2010-03-26

    Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

  15. Highly Sensitive Tunable Diode Laser Spectrometers for In Situ Planetary Exploration

    Science.gov (United States)

    Vasudev, Ram; Mansour, Kamjou; Webster, Christopher R.

    2013-01-01

    This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.

  16. Fast Resonance Raman Spectroscopy of a Free Radical

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Pagsberg, Palle Bjørn; Hansen, K. B.

    1975-01-01

    The resonance Raman spectrum of a 10−3 molar solution of the stable diphenyl-pikryl-hydrazyl radical in benzene was obtained using a single laser pulse of 10 mJ energy and 600 ns duration from a flashlamp pumped tunable dye laser. Spectra were recorded using an image intensifier coupled to a TV...

  17. Investigation on the Tunable-Length Zinc Oxide Nanowire Arrays for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Shou-Yi Kuo

    2014-01-01

    Full Text Available We had successfully fabricated ZnO-based nanowires by vapor transport method in the furnace tube. ZnO nanowire arrays grown in 600°C for 30 minutes, 60 minutes, 90 minutes, and 120 minutes had applied to the dye-sensitized solar cells. The dye loading is proportional to the total equivalent surface area of ZnO nanowire arrays in the cells and plays an important role in improving power conversion efficiency. The highest efficiency was observed in DSSC sample with ZnO nanowires grown for 90 minutes, which had the largest equivalent surface area and also the highest dye loading. According to our experimental results, the enhancement in power conversion efficiency is attributed to the higher light harvesting and reduction of carrier recombination. In addition, ZnO nanowires also contribute to the photocurrent in the UV region.

  18. Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi

    2017-03-01

    We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.

  19. Dimerization of Organic Dyes on Luminescent Gold Nanoparticles for Ratiometric pH Sensing.

    Science.gov (United States)

    Sun, Shasha; Ning, Xuhui; Zhang, Greg; Wang, Yen-Chung; Peng, Chuanqi; Zheng, Jie

    2016-02-12

    Synergistic effects arising from the conjugation of organic dyes onto non-luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well-known pH-insensitive dye, tetramethyl-rhodamine (TAMRA), to pH-insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH-insensitive dyes, this pH-dependent dimerization can also enhance the pH sensitivity of fluorescein, a well-known pH-sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Power Play, Laser Style

    Science.gov (United States)

    1998-01-01

    Under a NASA SBIR (Small Business Innovation Research) SDL, Inc., has developed the TC40 Single-Frequency Continuously Tunable 500 mw Laser Diode System. This is the first commercially available single frequency diode laser system that offers the broad tunability and the high powers needed for atomic cooling and trapping as well as a variety of atomic spectroscopy techniques. By greatly decreasing both the equipment and the costs of entry, the TC40 enables researchers to pursue some of the most interesting areas of physical chemistry, biochemistry, and atomic physics.