WorldWideScience

Sample records for tumor-derived growth factors

  1. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  2. Serum platelet-derived growth factor and fibroblast growth factor in patients with benign and malignant ovarian tumors

    DEFF Research Database (Denmark)

    Madsen, Christine Vestergaard; Steffensen, Karina Dahl; Olsen, Dorte Aalund

    2012-01-01

    New biological markers with predictive or prognostic value are highly warranted in the treatment of ovarian cancer. The platelet-derived growth factor (PDGF) system and fibroblast growth factor (FGF) system are important components in tumor growth and angiogenesis....

  3. Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected].

    Directory of Open Access Journals (Sweden)

    Han-En Tsai

    Full Text Available Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200 showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16-F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.

  4. Safety of recombinant human platelet-derived growth factor-BB in Augment® Bone Graft

    Directory of Open Access Journals (Sweden)

    Luis A Solchaga

    2012-12-01

    Full Text Available This article discusses nonclinical and clinical data regarding the safety of recombinant human platelet-derived growth factor-BB as a component of the Augment® Bone Graft (Augment. Augment is a bone graft substitute intended to be used as an alternative to autologous bone graft in the fusion of hindfoot and ankle joints. Nonclinical studies included assessment of the pharmacokinetic profile of intravenously administered recombinant human platelet-derived growth factor-BB in rat and dog, effects of intravenous administration of recombinant human platelet-derived growth factor-BB in a reproductive and development toxicity study in rats, and chronic toxicity and carcinogenicity of Augment in a 12-month implantation model. These studies showed that systemic exposure was brief and clearance was rapid. No signs of toxicity, carcinogenicity, or tumor promotion were observed even with doses far exceeding the maximum clinical dose. Results of clinical trials (605 participants and commercial use of recombinant human platelet-derived growth factor-BB containing products indicate that these products are not associated with increased incidence of adverse events or cancer. The safety data presented provide evidence that recombinant human platelet-derived growth factor-BB is a safe therapeutic when used in combination products as a single administration during surgical procedures for bone repair and fusion. There is no evidence associating use of recombinant human platelet-derived growth factor-BB in Augment with chronic toxicity, carcinogenicity, or tumor promotion.

  5. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis

    OpenAIRE

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-hara, Tomoko; Fujita, Naoya

    2014-01-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the pro...

  6. Gene expression of fibroblast growth factors in human gliomas and meningiomas: Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues

    International Nuclear Information System (INIS)

    Takahashi, J.A.; Mori, Hirotaka; Fukumoto, Manabu; Oda, Yoshifumi; Kikuchi, Haruhiko; Hatanaka, Masakazu; Igarashi, Koichi; Jaye, M.

    1990-01-01

    The growth autonomy of human tumor cells is considered due to the endogenous production of growth factors. Transcriptional expression of candidates for autocrine stimulatory factors such as basic fibroblast growth factor (FGF), acidic FGF, and transforming growth factor type β were determined in human brain tumors. Basic FGF was expressed abundantly in 17 of 18 gliomas, 20 of 22 meningiomas, and 0 of 5 metastatic brain tumors. The level of mRNA expression of acidic FGF in gliomas was significant. In contrast, transforming growth factor type β1 was expressed in all the samples investigated. The mRNA for basic FGF and its peptide were localized in tumor cells in vivo by in situ hybridization and immunohistochemistry, showing that basic FGF is actually produced in tumor cells. The results suggest that tumor-derived basic FGF is involved in the progression of gliomas and meningiomas in vivo, whereas acidic FGF is expressed in a tumor origin-specific manner, suggesting that acidic FGF works in tandem with basic FGF in glioma tumorigenesis

  7. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  8. Essential contribution of tumor-derived perlecan to epidermal tumor growth and angiogenesis

    DEFF Research Database (Denmark)

    Jiang, Xinnong; Multhaupt, Hinke; Chan, En

    2004-01-01

    As a major heparan sulfate proteoglycan (PG) in basement membranes, perlecan has been linked to tumor invasion, metastasis, and angiogenesis. Here we produced epidermal tumors in immunocompromised rats by injection of mouse RT101 tumor cells. Tumor sections stained with species-specific perlecan...... factor. In vivo, antisense perlecan-transfected cells generated no tumors, whereas untransfected and vector-transfected cells formed tumors with obvious neovascularization, suggesting that tumor perlecan rather than host perlecan controls tumor growth and angiogenesis....

  9. Mammary tumors that become independent of the type I insulin-like growth factor receptor express elevated levels of platelet-derived growth factor receptors

    Directory of Open Access Journals (Sweden)

    Campbell Craig I

    2011-11-01

    Full Text Available Abstract Background Targeted therapies are becoming an essential part of breast cancer treatment and agents targeting the type I insulin-like growth factor receptor (IGF-IR are currently being investigated in clinical trials. One of the limitations of targeted therapies is the development of resistant variants and these variants typically present with unique gene expression patterns and characteristics compared to the original tumor. Results MTB-IGFIR transgenic mice, with inducible overexpression of the IGF-IR were used to model mammary tumors that develop resistance to IGF-IR targeting agents. IGF-IR independent mammary tumors, previously shown to possess characteristics associated with EMT, were found to express elevated levels of PDGFRα and PDGFRβ. Furthermore, these receptors were shown to be inversely expressed with the IGF-IR in this model. Using cell lines derived from IGF-IR-independent mammary tumors (from MTB-IGFIR mice, it was demonstrated that PDGFRα and to a lesser extent PDGFRβ was important for cell migration and invasion as RNAi knockdown of PDGFRα alone or PDGFRα and PDGFRβ in combination, significantly decreased tumor cell migration in Boyden chamber assays and suppressed cell migration in scratch wound assays. Somewhat surprisingly, concomitant knockdown of PDGFRα and PDGFRβ resulted in a modest increase in cell proliferation and a decrease in apoptosis. Conclusion During IGF-IR independence, PDGFRs are upregulated and function to enhance tumor cell motility. These results demonstrate a novel interaction between the IGF-IR and PDGFRs and highlight an important, therapeutically relevant pathway, for tumor cell migration and invasion.

  10. Growth Factors and Breast Tumors, Comparison of Selected Growth Factors with Traditional Tumor Markers

    Czech Academy of Sciences Publication Activity Database

    Kučera, R.; Černá, M.; Ňaršanská, A.; Svobodová, Š.; Straková, M.; Vrzalová, J.; Fuchsová, R.; Třešková, I.; Kydlíček, T.; Třeška, V.; Pecen, Ladislav; Topolčan, O.; Padziora, P.

    2011-01-01

    Roč. 31, č. 12 (2011), s. 4653-4656 ISSN 0250-7005 Grant - others:GA MZd(CZ) NS9727; GA MZd(CZ) NS10238; GA MZd(CZ) NS10253 Institutional research plan: CEZ:AV0Z10300504 Keywords : growth factor * breast cancer * tumor markers * CA 15-3 * CEA * IGF1 * EGF * HGF Subject RIV: FD - Oncology ; Hematology Impact factor: 1.725, year: 2011

  11. Proliferative and antiproliferative effects of interferon-gamma and tumor necrosis factor-alpha on cell lines derived from cervical and ovarian malignancies

    International Nuclear Information System (INIS)

    Mutch, D.G.; Massad, L.S.; Kao, M.S.; Collins, J.L.

    1990-01-01

    Four human cell lines derived from cervical carcinomas (ME-180, SiHa, HT-3, and MS751) and three human cell lines derived from ovarian carcinomas (SK-OV-3, Caov-3, and NIH:OVCAR-3) were analyzed in vitro to determine the effect of recombinant interferon-gamma and recombinant human tumor necrosis factor-alpha on cell growth and survival. The effects of interferon-gamma, tumor necrosis factor-alpha, and both interferon-gamma and tumor necrosis factor-alpha on cell growth were measured after 24 and 72 hours of incubation by the incorporation of chromium 51. The results of this analysis showed that all seven cell lines were resistant to the antiproliferative action of tumor necrosis factor-alpha, that the growth of most cell lines was inhibited by interferon-gamma by 72 hours of incubation, and that after 72 hours of incubation all cell lines demonstrated a synergistic antiproliferative response to the combination of interferon-gamma and tumor necrosis factor-alpha. However, the effects of these cytokines on cell growth were found to differ among cell lines and varied with the concentration and the duration of incubation. The growth of one cell line (Caov-3) was stimulated by both tumor necrosis factor-alpha and interferon-gamma. These results suggest that the clinical effects of these cytokines on the growth of gynecologic cancers may be more complex than previously supposed

  12. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion.

    Science.gov (United States)

    Edwards, Lincoln A; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T; Zhang, Wei; Fine, Howard A

    2011-08-03

    Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Highly infiltrative patient-derived glioma tumor-initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1-TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF(200 ng/mL): 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF(200 ng/mL) + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most infiltrative glioma cells in situ

  13. Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    2016-01-01

    Full Text Available Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.

  14. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis.

    Science.gov (United States)

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-Hara, Tomoko; Fujita, Naoya

    2014-08-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  15. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    International Nuclear Information System (INIS)

    Hatano, Yu; Nakahama, Ken-ichi; Isobe, Mitsuaki; Morita, Ikuo

    2014-01-01

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  16. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    Science.gov (United States)

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  17. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism

    Science.gov (United States)

    Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy. PMID:22110722

  18. Bone Marrow Suppression by c-Kit Blockade Enhances Tumor Growth of Colorectal Metastases through the Action of Stromal Cell-Derived Factor-1

    Directory of Open Access Journals (Sweden)

    Kathrin Rupertus

    2012-01-01

    Full Text Available Background. Mobilization of c-Kit+ hematopoietic cells (HCs contributes to tumor vascularization. Whereas survival and proliferation of HCs are regulated by binding of the stem cell factor to its receptor c-Kit, migration of HCs is directed by stromal cell-derived factor (SDF-1. Therefore, targeting migration of HCs provides a promising new strategy of anti-tumor therapy. Methods. BALB/c mice (=16 were pretreated with an anti-c-Kit antibody followed by implantation of CT26.WT-GFP colorectal cancer cells into dorsal skinfold chambers. Animals (=8 additionally received a neutralizing anti-SDF-1 antibody. Animals (=8 treated with a control antibody served as controls. Investigations were performed using intravital fluorescence microscopy, immunohistochemistry, flow cytometry and western blot analysis. Results. Blockade of c-Kit significantly enhanced tumor cell engraftment compared to controls due to stimulation of tumor cell proliferation and invasion without markedly affecting tumor vascularization. C-Kit blockade significantly increased VEGF and CXCR4 expression within the growing tumors. Neutralization of SDF-1 completely antagonized this anti-c-Kit-associated tumor growth by suppression of tumor neovascularization, inhibition of tumor cell proliferation and reduction of muscular infiltration. Conclusion. Our study indicates that bone marrow suppression via anti-c-Kit pretreatment enhances tumor cell engraftment of colorectal metastases due to interaction with the SDF-1/CXCR4 pathway which is involved in HC-mediated tumor angiogenesis.

  19. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    Science.gov (United States)

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  20. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth Through Hedgehog Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2017-08-01

    Full Text Available Background/Aims: Mesenchymal stem/stromal cells (MSCs are known to home to sites of tumor microenvironments where they participate in the formation of the tumor microenvironment and to interplay with tumor cells. However, the potential functional effects of MSCs on tumor cell growth are controversial. Here, we, from the view of bone marrow MSC-derived exosomes, study the molecular mechanism of MSCs on the growth of human osteosarcoma and human gastric cancer cells. Methods: MSCs derived from human bone marrow (hBMSCs were isolated and cultured in complete DMEM/F12 supplemented with 10% exosome-depleted fetal bovine serum and 1% penicillin-streptomycin, cell culture supernatants containing exosomes were harvested and exosome purification was performed by ultracentrifugation. Osteosarcoma (MG63 and gastric cancer (SGC7901 cells, respectively, were treated with hBMSC-derived exosomes in the presence or absence of a small molecule inhibitor of Hedgehog pathway. Cell viability was measured by transwell invasion assay, scratch migration assay and CCK-8 test. The expression of the signaling molecules Smoothened, Patched-1, Gli1 and the ligand Shh were tested by western blot and RT-PCR. Results: In this study, we found that hBMSC-derived exosomes promoted MG63 and SGC7901 cell growth through the activation of Hedgehog signaling pathway. Inhibition of Hedgehog signaling pathway significantly suppressed the process of hBMSC-derived exosomes on tumor growth. Conclusion: Our findings demonstrated the new roles of hedgehog signaling pathway in the hBMSCs-derived exosomes induced tumor progression.

  1. Platelet-Derived Growth Factor (PDGF/PDGF Receptors (PDGFR Axis as Target for Antitumor and Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Anca Maria Cimpean

    2010-03-01

    Full Text Available Angiogenesis in normal and pathological conditions is a multi-step process governed by positive and negative endogenous regulators. Many growth factors are involved in different steps of angiogenesis, like vascular endothelial growth factors (VEGF, fibroblast growth factor (FGF-2 or platelet-derived growth factors (PDGF. From these, VEGF and FGF-2 were extensively investigated and it was shown that they significantly contribute to the induction and progression of angiogenesis. A lot of evidence has been accumulated in last 10 years that supports the contribution of PDGF/PDGFR axis in developing angiogenesis in both normal and tumoral conditions. The crucial role of PDGF-B and PDGFR-β in angiogenesis has been demonstrated by gene targeting experiments, and their expression correlates with increased vascularity and maturation of the vascular wall. PDGF and their receptors were identified in a large variety of human tumor cells. In experimental models it was shown that inhibition of PDGF reduces interstitial fluid pressure in tumors and enhances the effect of chemotherapy. PDGFR have been involved in the cardiovascular development and their loss leads to a disruption in yolk sac blood vessels development. PDGFRβ expression by pericytes is necessary for their recruitment and integration in the wall of tumor vessels. Endothelial cells of tumor-associated blood vessels can express PDGFR. Based on these data, it was suggested the potential benefit of targeting PDGFR in the treatment of solid tumors. The molecular mechanisms of PDGF/PDGFR-mediated angiogenesis are not fully understood, but it was shown that tyrosine kinase inhibitors reduce tumor growth and angiogenesis in experimental xenograft models, and recent data demonstrated their efficacy in chemoresistant tumors. The in vivo effects of PDGFR inhibitors are more complex, based on the cross-talk with other angiogenic factors. In this review, we summarize data regarding the mechanisms and

  2. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    Science.gov (United States)

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  3. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  4. A Tumor Suppressor Gene Product, Platelet-Derived Growth Factor Receptor-Like Protein Controls Chondrocyte Proliferation and Differentiation.

    Science.gov (United States)

    Kawata, Kazumi; Kubota, Satoshi; Eguchi, Takanori; Aoyama, Eriko; Moritani, Norifumi H; Oka, Morihiko; Kawaki, Harumi; Takigawa, Masaharu

    2017-11-01

    The platelet-derived growth factor receptor-like (PDGFRL) gene is regarded as a tumor suppressor gene. However, nothing is known about the molecular function of PDGFRL. In this study, we initially clarified its function in chondrocytes. Among all cell lines examined, the PDGFRL mRNA level was the highest in chondrocytic HCS-2/8 cells. Interestingly, the proliferation of chondrocytic HCS-2/8 cells was promoted by PDGFRL overexpression, whereas that of the breast cancer-derived MDA-MB-231 cells was inhibited. Of note, in PDGFRL-overexpressing HCS-2/8 cells, the expression of chondrocyte differentiation marker genes, SOX9, ACAN, COL2A1, COL10A1, and ALP, was decreased. Moreover, we confirmed the expression of PDGFRL mRNA in normal cartilage tissue and chondrocytes. Eventually, the expression of PDGFRL mRNA in condrocytes except in the case of hypertrophic chondrocytes was demonstrated in vivo and in vitro. These findings suggest that PDGFRL plays the different roles, depending upon cell types. Particularly, in chondrocytes, PDGFRL may play a new and important role which is distinct from the function previously reported. J. Cell. Biochem. 118: 4033-4044, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Inhibition of adenocarcinoma TA3 ascites tumor growth by rifamycin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, A M; Tenforde, T S; Calvin, M; Bissell, M J; Tischler, A N; Bennett, E L

    1978-01-01

    A growth inhibitory effect on adenocarcinoma TA3 ascites tumors in LAF/sub 1//J mice resulted from the repeated IP administration of subtoxic doses of 3 rifamycin derivatives: rifampicin (Rif)/sup 1/, dimethylbenzyldesmethylrifampicin (DMB), and rifazone-8/sub 2/ (R-8/sub 2/). A high-viscosity methylcellulose vehicle was found to be essential for obtaining a uniform drug suspension and a significant antitumor effect by the least water soluble derivatives, DMB and and R-8/sub 2/. The more hydrophilic derivative, Rif, was found to have a comparable growth inhibitory effect on TA3 cells when prepared in 0.9% NaCl solution with or without added methylcellulose. Oral or SC drug injections did not have an antitumor effect. The results of this study point to the importance of vehicle and route of administration in chemotherapy trials with these compounds.

  6. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    OpenAIRE

    Smits, A.; Funa, K.; Vassbotn, F. S.; Beausang-Linder, M.; af Ekenstam, F.; Heldin, C. H.; Westermark, B.; Nistér, M.

    1992-01-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protei...

  7. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation.

    Science.gov (United States)

    Sun, Peng; Xia, Shuli; Lal, Bachchu; Eberhart, Charles G; Quinones-Hinojosa, Alfredo; Maciaczyk, Jarek; Matsui, William; Dimeco, Francesco; Piccirillo, Sara M; Vescovi, Angelo L; Laterra, John

    2009-07-01

    Neurospheres derived from glioblastoma (GBM) and other solid malignancies contain neoplastic stem-like cells that efficiently propagate tumor growth and resist cytotoxic therapeutics. The primary objective of this study was to use histone-modifying agents to elucidate mechanisms by which the phenotype and tumor-promoting capacity of GBM-derived neoplastic stem-like cells are regulated. Using established GBM-derived neurosphere lines and low passage primary GBM-derived neurospheres, we show that histone deacetylase (HDAC) inhibitors inhibit growth, induce differentiation, and induce apoptosis of neoplastic neurosphere cells. A specific gene product induced by HDAC inhibition, Delta/Notch-like epidermal growth factor-related receptor (DNER), inhibited the growth of GBM-derived neurospheres, induced their differentiation in vivo and in vitro, and inhibited their engraftment and growth as tumor xenografts. The differentiating and tumor suppressive effects of DNER, a noncanonical Notch ligand, contrast with the previously established tumor-promoting effects of canonical Notch signaling in brain cancer stem-like cells. Our findings are the first to implicate noncanonical Notch signaling in the regulation of neoplastic stem-like cells and suggest novel neoplastic stem cell targeting treatment strategies for GBM and potentially other solid malignancies.

  8. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    Science.gov (United States)

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  9. A novel peptide derived from human apolipoprotein E is an inhibitor of tumor growth and ocular angiogenesis.

    Directory of Open Access Journals (Sweden)

    Partha S Bhattacharjee

    2011-01-01

    Full Text Available Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp derived from the receptor binding region of human apolipoprotein E (apoE inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.

  10. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  11. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  12. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qingwen [Shanghai Chest Hospital, Shanghai 200433 (China); State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Jiang, Songmin [State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Han, Baohui [Shanghai Chest Hospital, Shanghai 200433 (China); Sun, Tongwen [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China); Li, Zhengnan; Zhao, Lina; Gao, Qiang [College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Sun, Jialin, E-mail: jialin_sun@126.com [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  13. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF.

    Science.gov (United States)

    Chen, Yanke; Gou, Xingchun; Kong, Derek Kai; Wang, Xiaofei; Wang, Jianhui; Chen, Zeming; Huang, Chen; Zhou, Jiangbing

    2015-10-20

    EMMPRIN, a cell adhesion molecule highly expressed in a variety of tumors, is associated with poor prognosis in cancer patients. Mechanistically, EMMPRIN has been characterized to contribute to tumor development and progression by controlling the expression of MMPs and VEGF. In the present study, by using fluorescently labeled bone marrow-derived cells (BMDCs), we found that the down-regulation of EMMPRIN expression in cancer cells reduces tumor growth and metastasis, and is associated with the reduced recruitment of BMDCs. Further protein profiling studies suggest that EMMPRIN controls BMDC recruitment through regulating the secretion of soluble factors, notably, VEGF and SDF-1. We demonstrate that the expression and secretion of SDF-1 in tumor cells are regulated by EMMPRIN. This study reveals a novel mechanism by which EMMPRIN promotes tumor growth and metastasis by recruitment of BMDCs through controlling secretion and paracrine signaling of SDF-1 and VEGF.

  14. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia

    DEFF Research Database (Denmark)

    Imel, Erik A; Peacock, Munro; Pitukcheewanont, Pisit

    2006-01-01

    Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome of hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum 1,25-dihydryxyvitamin-D concentration, myopathy, and osteomalacia. Fibroblast growth factor 23 (FGF23) is a phosphaturic protein overexpressed in tumors t...

  15. Geometrical approach to tumor growth.

    Science.gov (United States)

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  16. Autocrine Effects of Tumor-Derived Complement

    Directory of Open Access Journals (Sweden)

    Min Soon Cho

    2014-03-01

    Full Text Available We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.

  17. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    Science.gov (United States)

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  18. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  19. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-01-01

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: ► Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. ► Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. ► These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. ► Anti-SEMA4D blocking antibody inhibits Plexin-B1 activation. ► SEMA4D is a valid anti-angiogenic target in the

  20. Involvement of growth factors and their receptors in radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Leung, F.C.; Dagle, G.E.; Cross, F.T.

    1992-01-01

    In this paper we examine the role of growth factors (GF) and their receptors (GFR) in radon-induced rat lung tumors. Inhalation exposure of radon and its daughters induced lung tumors in rats, but the molecule/cellular mechanisms are not known. Recent evidence suggests that GF/GFR play a critical role in the growth and development of lung cancer in humans and animals. We have developed immunocytochemical methods for identifying sites of production and action of GF/GFR at the cellular level; for example, the avidin-biotin horseradish peroxidase technique. In radon-induced rat epidermoid carcinomas, epidermal growth factor (EGF), EGF-receptors (EGF-R), transforming growth factor alpha (TGF-α), and bombesin were found to be abnormally expressed. These abnormal expressions, mainly associated with epidermoid carcinomas of the lung, were not found in any other lung tumor types. Our data suggest that EGF, EGF-R, TGF-α, and bombesin are involved in radon oncogenesis in rat lungs, especially in epidermoid carcinomas, possibly through the autocrine/paracrine pathway

  1. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b + Gr-1 + MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b + Gr-1 + MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  2. Tumor producing fibroblast growth factor 23 localized by two-staged venous sampling.

    NARCIS (Netherlands)

    Boekel, G.A.J van; Ruinemans-Koerts, J.; Joosten, F.; Dijkhuizen, P.; Sorge, A.A. van; Boer, H. de

    2008-01-01

    BACKGROUND: Tumor-induced osteomalacia is a rare paraneoplastic syndrome characterized by hypophosphatemia, renal phosphate wasting, suppressed 1,25-dihydroxyvitamin D production, and osteomalacia. It is caused by a usually benign mesenchymal tumor producing fibroblast growth factor 23 (FGF-23).

  3. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Debashis; Mukhopadhyay, Debabrata, E-mail: mukhopadhyay.debabrata@mayo.edu [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Guggenheim 1321C, Rochester, MN 55905 (United States)

    2011-02-24

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  4. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    International Nuclear Information System (INIS)

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed

  5. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  6. Interleukin-12 Inhibits Tumor Growth in a Novel Angiogenesis Canine Hemangiosarcoma Xenograft Model

    Directory of Open Access Journals (Sweden)

    Nasim Akhtar

    2004-03-01

    Full Text Available We established a canine hemangiosarcoma cell line derived from malignant endothelial cells comprising a spontaneous tumor in a dog to provide a renewable source of endothelial cells for studies of angiogenesis in malignancy. Pieces of the hemangiosarcoma biopsy were engrafted subcutaneously in a bg/nu/XID mouse allowing the tumor cells to expand in vivo. A cell line, SB-HSA, was derived from the xenograft. SB-HSA cells expressed vascular endothelial growth factor (VEGF receptors 1 and 2, CD31, CD146, and αvβ3 integrin, and produced several growth factors and cytokines, including VEGF, basic fibroblast growth factor, and interleukin (IL-8 that are stimulatory to endothelial cell growth. These results indicated that the cells recapitulated features of mitotically activated endothelia. In vivo, SB-HSA cells stimulated robust angiogenic responses in mice and formed tumor masses composed of aberrant vascular channels in immunocompromised mice providing novel opportunities for investigating the effectiveness of antiangiogenic agents. Using this model, we determined that IL-12, a cytokine with both immunostimulatory and antiangiogenic effects, suppressed angiogenesis induced by, and tumor growth of, SB-HSA cells. The endothelial cell model we have described offers unique opportunities to pursue further investigations with IL-12, as well as other antiangiogenic approaches in cancer therapy.

  7. Some growth factors in neoplastic tissues of brain tumors of different histological structure

    Directory of Open Access Journals (Sweden)

    O. I. Kit

    2016-01-01

    Full Text Available Introduction. Pathologic angiogenesis is typical for angiogenic diseases including tumor growth. Vascular endothelial growth factor (VEGF, fibroblast growth factor (FGF, transforming growth factor alpha and beta (which are also known as “triggers” of angiogenesis, and other factors (Gacche, Meshram, 2013; Nijaguna et al., 2015 play a special role in its development. Evaluation of the important mechanisms of angiogenesis in physiological and pathological conditions remains to be a subject of heightened interest for the past 30 years. It is known that VEGF A is the main trigger of growing blood vessels into the tumor tissue. This is specific mitogen signal for endothelial cells that triggers the mechanisms of cell division and migration. VEGF-induced tumor vasculature has a number of structural and functional features that provide growth and progression of tumors, including increased permeability of blood vessels and their chaotic arrangement.Objective: to study in comparative aspect the level of certain growth factors in the following tissues: glioblastomas, brain metastasis of the breast cancer, meningiomas as well as corresponding peritumoral areas.Materials and methods. Tissue samples were obtained from 56 patients admitted to the surgical treatment in Rostov Research Institute of Oncology: 24 patients had glioblastomas, 19 patients had brain metastasis of the breast cancer, 13 patients with meningiomas without peritumoral edema. Histological control was carried out in all cases. Age of patients ranged from 35 to 72 years. The level of growth factor was detected in the samples of tumor tissue and regions immediately adjacent to the tumor foci (peritumoral area by the method of immunoassay and using standard test systems. The following growth factor were detected: VEGF-A and its receptors VEGF-R1 (BenderMedSystem, Austria, VEGF-C and its receptor VEGF-R3 (BenderMedSystem, Austria, EGF (Biosource, USA, IFR-1 and IFR-2 (Mediagnost, USA, TGF

  8. Impact of adjuvant inhibition of vascular endothelial growth factor receptor tyrosine kinases on tumor growth delay and local tumor control after fractionated irradiation in human squamous cell carcinomas in nude mice

    International Nuclear Information System (INIS)

    Zips, Daniel; Hessel, Franziska; Krause, Mechthild; Schiefer, Yvonne; Hoinkis, Cordelia; Thames, Howard D.; Haberey, Martin; Baumann, Michael

    2005-01-01

    Purpose: Previous experiments have shown that adjuvant inhibition of the vascular endothelial growth factor receptor after fractionated irradiation prolonged tumor growth delay and may also improve local tumor control. To test the latter hypothesis, local tumor control experiments were performed. Methods and materials: Human FaDu and UT-SCC-14 squamous cell carcinomas were studied in nude mice. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 (50 mg/kg body weight b.i.d.) was administered for 75 days after irradiation with 30 fractions within 6 weeks. Tumor growth time and tumor control dose 50% (TCD 50 ) were determined and compared to controls (carrier without PTK787/ZK222584). Results: Adjuvant administration of PTK787/ZK222584 significantly prolonged tumor growth time to reach 5 times the volume at start of drug treatment by an average of 11 days (95% confidence interval 0.06;22) in FaDu tumors and 29 days (0.6;58) in UT-SCC-14 tumors. In both tumor models, TCD 50 values were not statistically significantly different between the groups treated with PTK787/ZK222584 compared to controls. Conclusions: Long-term inhibition of angiogenesis after radiotherapy significantly reduced the growth rate of local recurrences but did not improve local tumor control. This indicates that recurrences after irradiation depend on vascular endothelial growth factor-driven angiogenesis, but surviving tumor cells retain their clonogenic potential during adjuvant antiangiogenic treatment with PTK787/ZK222584

  9. Napsin A and Thyroid Transcription Factor-1-Positive Cerebellar Tumor with Epidermal Growth Factor Receptor Mutation

    Directory of Open Access Journals (Sweden)

    Taiji Kuwata

    2011-12-01

    Full Text Available We present a very rare case of cerebellar metastasis of unknown origin, in which a primary lung adenocarcinoma was diagnosed by pathological examination of a cerebellar metastatic tumor, using immunohistochemical markers and epidermal growth factor receptor (EGFR mutation of primary lung cancer. A 69-year-old woman was admitted to our hospital because of a hemorrhagic cerebellar tumor and multiple small brain tumors. She underwent cerebellar tumor resection. On pathological examination, the tumor was diagnosed as adenocarcinoma. However, the primary tumor site was unidentifiable even with several imaging inspections. On immunohistochemical analysis, the resected tumor was positive for napsin A and thyroid transcription factor-1. In addition, an EGFR mutation was detected in the tumor. Therefore, primary lung cancer was diagnosed and the patient was started on gefitinib (250 mg/day therapy.

  10. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.

    Science.gov (United States)

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2013-12-17

    Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.

  11. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    Science.gov (United States)

    Smits, A; Funa, K; Vassbotn, F S; Beausang-Linder, M; af Ekenstam, F; Heldin, C H; Westermark, B; Nistér, M

    1992-03-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions.

  12. Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation

    International Nuclear Information System (INIS)

    An Zhu; Shaeffer, James; Leslie, Susan; Kolm, Paul; El-Mahdi, Anas M.

    1996-01-01

    Purpose: To determine whether the expression of epidermal growth factor receptor (EGFR) protein was predictive of patient survival independently of other prognostic factors in astrocytic tumors. Methods and Materials: Epidermal growth factor receptor protein expression was investigated immunohistochemically in formalin-fixed, paraffin-embedded surgical specimens of 55 glioblastoma multiforme, 14 anaplastic astrocytoma, and 2 astrocytomas given definitive irradiation. We evaluated the relationship of EGFR protein expression and tumor grade, histologic features, age at diagnosis, sex, patient survival, and recurrence-free survival. Results: The percentage of tumor cells which were EGFR positive related to reduced survival by Cox regression analysis in both univariate (p = 0.0424) and multivariate analysis (p = 0.0016). Epidermal growth factor receptor positivity was the only 1 of 11 clinical and histological variables associated with decreased recurrence-free survival by either univariate (p = 0.0353) or multivariate (p = 0.0182) analysis. Epidermal growth factor receptor protein expression was not related to patient age, sex, or histologic features. Conclusion: Epidermal growth factor receptor positivity was a significant and independent prognostic indicator for overall survival and recurrence-free survival for irradiated patients with astrocytic gliomas

  13. Tissue Factor-Expressing Tumor-Derived Extracellular Vesicles Activate Quiescent Endothelial Cells via Protease-Activated Receptor-1

    Directory of Open Access Journals (Sweden)

    Sara P. Y. Che

    2017-11-01

    Full Text Available Tissue factor (TF-expressing tumor-derived extracellular vesicles (EVs can promote metastasis and pre-metastatic niche formation, but the mechanisms by which this occurs remain largely unknown. We hypothesized that generation of activated factor X (FXa by TF expressed on tumor-derived EV could activate protease-activated receptors (PARs on non-activated endothelial cells to induce a pro-adhesive and pro-inflammatory phenotype. We obtained EV from TF-expressing breast (MDA-MB-231 and pancreatic (BxPC3 and Capan-1 tumor cell lines. We measured expression of E-selectin and secretion of interleukin-8 (IL-8 in human umbilical vein endothelial cells after exposure to EV and various immunologic and chemical inhibitors of TF, FXa, PAR-1, and PAR-2. After 6 h of exposure to tumor-derived EV (pretreated with factor VIIa and FX in vitro, endothelial cells upregulated E-selectin expression and secreted IL-8. These changes were decreased with an anti-TF antibody, FXa inhibitors (FPRCK and EGRCK, and PAR-1 antagonist (E5555, demonstrating that FXa generated by TF-expressing tumor-derived EV was signaling through endothelial PAR-1. Due to weak constitutive PAR-2 expression, these endothelial responses were not induced by a PAR-2 agonist peptide (SLIGKV and were not inhibited by a PAR-2 antagonist (FSLLRY after exposure to tumor-derived EV. In conclusion, we found that TF-expressing cancer-derived EVs activate quiescent endothelial cells, upregulating E-selectin and inducing IL-8 secretion through generation of FXa and cleavage of PAR-1. Conversion of resting endothelial cells to an activated phenotype by TF-expressing cancer-derived EV could promote cancer metastases.

  14. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  15. Immunohistochemical detection of epidermal growth factor receptor in radiation-induced lung tumors in Beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, N A; Haley, P J; Hahn, F F

    1988-12-01

    Increased levels of epidermal growth factor receptor have been reported in a variety of tumors, including pulmonary squamous cell carcinomas in man. The purpose of this study was to determine if increased levels of epidermal growth factor (EGFR) were present in lung tumors from Beagle dogs that had been exposed to {sup 239}PuO{sub 2}- Using immunohistochemical techniques, sections from 17 lung tumors were examined for the presence of EGFR. Seven of the tumors were strongly positive for EGFR; the remainder of the tumors and the normal lung sections were negative. The positive immunostaining could not be correlated with the histologic phenotype of the tumors. Work is in progress to determine the level of EGFR in preneoplastic, proliferative epithelial foci in the Iung. (author)

  16. Modified model of VX2 tumor overexpressing vascular endothelial growth factor.

    Science.gov (United States)

    Pascale, Florentina; Ghegediban, Saida-Homayra; Bonneau, Michel; Bedouet, Laurent; Namur, Julien; Verret, Valentin; Schwartz-Cornil, Isabelle; Wassef, Michel; Laurent, Alexandre

    2012-06-01

    To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  17. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Nahyun Choi

    2018-02-01

    Full Text Available Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs. We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif ligand 1 (CXCL1, platelet-derived endothelial cell growth factor (PD-ECGF, and platelet-derived growth factor-C (PDGF-C. Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2 phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  18. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  19. Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation

    DEFF Research Database (Denmark)

    Sugiyama, Nami; Varjosalo, Markku; Meller, Pipsa

    2010-01-01

    /stroma border and tumor invasion front. The strongest overall coexpression was found in prostate carcinoma. Studies with cultured prostate carcinoma cell lines showed that the FGFR4-R388 variant, which has previously been associated with poor cancer prognosis, increased MT1-MMP-dependent collagen invasion......Aberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response...... to membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14) induction at the edge of tumors expressing the FGFR4-R388 risk variant. Both FGFR4 and MT1-MMP were upregulated in tissue biopsies from several human cancer types including breast adenocarcinomas, where they were partially coexpressed at the tumor...

  20. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia.

    NARCIS (Netherlands)

    Imel, E.A.; Peacock, M.; Pitukcheewanont, P.; Heller, H.J.; Ward, LM; Shulman, D.; Kassem, M.; Rackoff, P.; Zimering, M.; Dalkin, A.; Drobny, E.; Colussi, G.; Shaker, J.L.; Hoogendoorn, E.H.; Hui, S.L.; Econs, M.J.

    2006-01-01

    CONTEXT: Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome of hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum 1,25-dihydryxyvitamin-D concentration, myopathy, and osteomalacia. Fibroblast growth factor 23 (FGF23) is a phosphaturic protein overexpressed in

  1. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis

    International Nuclear Information System (INIS)

    McLaughlin, Patricia J; Zagon, Ian S; Park, Sunny S; Conway, Andrea; Donahue, Renee N; Goldenberg, David

    2009-01-01

    Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC) is considered more malignant than papillary thyroid carcinoma (PTC), and anaplastic thyroid cancer (ATC) is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met 5 ]-enkephalin) and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Utilizing human ATC (KAT-18), PTC (KTC-1), and FTC (WRO 82-1) cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX), and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC) and WRO 82-1 (FTC) tumor cells. OGF and OGFr were present in KAT-18 cells. Concentrations of 10 -6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival was not altered by OGF, but DNA synthesis

  2. Expression of the insulin-like growth factor (IGF) system and steroidgenic enzymes in canine testis tumors

    NARCIS (Netherlands)

    Peters, M.A.J.; Mol, J.A.; Wolferen, van M.E.; Oosterlaken-Dijksterhuis, M.A.; Teerds, K.J.; Sluijs, van F.J.

    2003-01-01

    Testis tumors occur frequently in dogs. The main types of tumors are Sertoli cell tumors, seminomas, and Leydig cell tumors. Mixed tumors and bilateral occurrence of tumors may be encountered frequently. To elucidate the possible relationship between the insulin-like growth factor (IGF) system and

  3. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  4. Observations on human smooth muscle cell cultures from hyperplastic lesions of prosthetic bypass grafts: Production of a platelet-derived growth factor-like mitogen and expression of a gene for a platelet-derived growth factor receptor--a preliminary study

    International Nuclear Information System (INIS)

    Birinyi, L.K.; Warner, S.J.; Salomon, R.N.; Callow, A.D.; Libby, P.

    1989-01-01

    Prosthetic bypass grafts placed to the distal lower extremity often fail because of an occlusive tissue response in the perianastomotic region. The origin of the cells that comprise this occlusive lesion and the causes of the cellular proliferation are not known. To increase our understanding of this process we cultured cells from hyperplastic lesions obtained from patients at the time of reexploration for lower extremity graft failure, and we studied their identity and growth factor production in tissue culture. These cultures contain cells that express muscle-specific actin isoforms, shown by immunohistochemical staining, consistent with vascular smooth muscle origin. These cultures also released material that stimulated smooth muscle cell growth. A portion of this activity was similar to platelet-derived growth factor, since preincubation with antibody-to-human platelet-derived growth factor partially blocked the mitogenic effect of medium conditioned by human anastomotic hyperplastic cells. These conditioned media also contained material that competed with platelet-derived growth factor for its receptor, as measured in a radioreceptor assay. Northern blot analysis showed that these cells contain messenger RNA that encodes the A chain but not the B chain of platelet-derived growth factor. In addition, these cells contain messenger RNA that encodes a platelet-derived growth factor receptor. We conclude that cultured smooth muscle cells from human anastomotic hyperplastic lesions express genes for platelet-derived growth factor A chain and a platelet-derived growth factor receptor and secrete biologically active molecules similar to platelet-derived growth factor

  5. Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia

    NARCIS (Netherlands)

    Andrae, Johanna; Afink, Gijs; Zhang, Xiao-Qun; Wurst, Wolfgang; Nistér, Monica

    2004-01-01

    The platelet-derived growth factor (PDGF) and receptors are expressed in the developing central nervous system and in brain tumors. To investigate the role of PDGF during normal cerebellar development, we created transgenic mice where PDGF-B was introduced into the endogenous Engrailed1 locus (En1).

  6. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Background: Coronary artery disease (CAD) is the most frequent cause of morbidity and mortality in the world and it is known as a multifactorial disorder which is influenced by both genetic and environmental factors. Based on different assays, the platelet derived growth factor B (PDGF-B) gene is shown to be amongst the ...

  7. Omega-3 Fatty Acids and a Novel Mammary Derived Growth Inhibitor Fatty Acid Binding Protein MRG in Suppression of Mammary Tumor

    National Research Council Canada - National Science Library

    Liu, Yiliang

    2001-01-01

    We have previously identified and characterized a novel tumor growth inhibitor and a fatty acid binding protein in human mammary gland and named it as Mammary derived growth inhibitor Related Gene MRG...

  8. Laser-induced thermotherapy (LITT) elevates mRNA expression of connective tissue growth factor (CTGF) associated with reduced tumor growth of liver metastases compared to hepatic resection.

    Science.gov (United States)

    Isbert, Christoph; Ritz, Jörg-Peter; Roggan, André; Schuppan, Detlef; Ajubi, Navid; Buhr, Heinz Johannes; Hohenberger, Werner; Germer, Christoph-Thomas

    2007-01-01

    Proliferation and synthesis of hepatocellular tissue after tissue damage are promoted by specific growth factors such as hepatic tissue growth factor (HGF) and connective growth factor (CTGF). Laser-induced thermotherapy (LITT) for the treatment of liver metastases is deemed to be a parenchyma-saving procedure compared to hepatic resection. The aim of this study was to compare the impact of LITT and hepatic resection on intrahepatic residual tumor tissue and expression levels of mRNA HGF/CTGF within liver and tumor tissue. Two independent adenocarcinomas (CC531) were implanted into 75 WAG rats, one in the right (untreated tumor) and one in the left liver lobe (treated tumor). The left lobe tumor was treated either by LITT or partial hepatectomy. The control tumor was submitted to in-situ hybridization of HGF and CTGF 24-96 hours and 14 days after intervention. Volumes of the untreated tumors prior to intervention were 38+/-8 mm(3) in group I (laser), 39 +/- 7 mm(3) in group II (resection), and 42 +/- 12 mm(3) in group III (control) and did not differ significantly (P > 0.05). Fourteen days after the intervention the mean tumor+/-SEM volume of untreated tumor in group I (laser) [223 +/- 36] was smaller than in group II (resection) [1233.28 +/- 181.52; P tumor growth in comparison to hepatic resection. Accelerated tumor growth after hepatic resection is associated with higher mRNA level of HGF and reduced tumor growth after LITT with higher mRNA level of CTGF. The increased CTGF-mediated regulation of ECM may cause reduced residual tumor growth after LITT. (c) 2006 Wiley-Liss, Inc.

  9. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  10. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    Science.gov (United States)

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation. © 2016 Elsevier Inc. All rights reserved.

  11. Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Lee

    Full Text Available Ionizing radiation induces modification of the tumor microenvironment such as tumor surrounding region, which is relevant to treatment outcome after radiotherapy. In this study, the effects of pre-irradiated tumor beds on the growth of subsequently implanted tumors were investigated as well as underlying mechanism. The experimental model was set up by irradiating the right thighs of C3H/HeN mice with 5 Gy, followed by the implantation of HCa-I and MIH-2. Both implanted tumors in the pre-irradiated bed showed accelerated-growth compared to the control. Tumor-infiltrated lymphocyte (TIL levels were increased, as well as pro-tumor factors such as IL-6 and transforming growth factor-beta1 (TGF-β1 in the pre-irradiated group. In particular, the role of pro-tumor cytokine interleukin-17A (IL-17A was investigated as a possible target mechanism because IL-6 and TGF-β are key factors in Th17 cells differentiation from naïve T cells. IL-17A expression was increased not only in tumors, but also in CD4+ T cells isolated from the tumor draining lymph nodes. The effect of IL-17A on tumor growth was confirmed by treating tumors with IL-17A antibody, which abolished the acceleration of tumor growth. These results indicate that the upregulation of IL-17A seems to be a key factor for enhancing tumor growth in pre-irradiated tumor beds.

  12. Purification of human platelet-derived growth factor

    International Nuclear Information System (INIS)

    Raines, E.W.; Ross, R.

    1985-01-01

    The paper describes a method for purification of human platelet-derived growth factor (PDGF) from outdated platelet-rich plasma (PRP) using commonly available laboratory reagents and yielding a mitogen purified 800,000-fold over the starting material. [ 3 H]thymidine incorporation into DNA of cultured cells responsive to PDGF represents the most readily available method to follow its purification and define the biological activity of a purified preparation. Other assays to quantitate PDGF include radioreceptor assay and radioimmunoassay

  13. Preoperative serum levels of epidermal growth factor receptor, HER2, and vascular endothelial growth factor in malignant and benign ovarian tumors

    DEFF Research Database (Denmark)

    Dahl Steffensen, Karina; Waldstrøm, Marianne; Jeppesen, Ulla

    2008-01-01

    , and malignant ovarian tumors. Patients and Methods: Serum from 233 patients (75 serous ovarian/tubal/peritoneal cancers, 24 borderline tumors, 110 benign ovarian tumors, and 24 with normal ovaries) were analyzed for EGFR, HER2, and VEGF using commercially available enzyme-linked immunosorbent assays (ELISA......). Results: The median EGFR serum level in patients with ovarian cancer was 51 ng/mL, and this was significantly lower than the median serum levels in borderline tumors (P =.0054) and benign ovarian tumors (P ovaries (P =.00028). The HER2 median serum level...... as in patients with normal ovaries (P =.00024). Conclusion: Significantly lower serum EGFR levels and higher VEGF levels were noted in patients with ovarian cancer compared with the levels in benign tumors and normal ovaries. Vascular endothelial growth factor and EGFR could have clinical importance as serum...

  14. The Effects of Imatinib Mesylate on Cellular Viability, Platelet Derived Growth Factor and Stem Cell Factor in Mouse Testicular Normal Leydig Cells.

    Science.gov (United States)

    Kheradmand, Fatemeh; Hashemnia, Seyyed Mohammad Reza; Valizadeh, Nasim; Roshan-Milani, Shiva

    2016-01-01

    Growth factors play an essential role in the development of tumor and normal cells like testicular leydig cells. Treatment of cancer with anti-cancer agents like imatinib mesylate may interfere with normal leydig cell activity, growth and fertility through failure in growth factors' production or their signaling pathways. The purpose of the study was to determine cellular viability and the levels of, platelet derived growth factor (PDGF) and stem cell factor (SCF) in normal mouse leydig cells exposed to imatinib, and addressing the effect of imatinib on fertility potential. The mouse TM3 leydig cells were treated with 0 (control), 2.5, 5, 10 and 20 μM imatinib for 2, 4 and 6 days. Each experiment was repeated three times (15 experiments in each day).The cellular viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, one-way ANOVA with Tukey's post hoc and Kruskal-Wallis test were performed. A p-value less than 0.05 was considered statistically significant. With increasing drug concentration, cellular viability decreased significantly (pcellular viability, PDGF and SCF levels. Imatinib may reduce fertility potential especially at higher concentrations in patients treated with this drug by decreasing cellular viability. The effect of imatinib on leydig cells is associated with PDGF stimulation. Of course future studies can be helpful in exploring the long term effects of this drug.

  15. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model.

    Science.gov (United States)

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-02-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.

  16. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model

    International Nuclear Information System (INIS)

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-01-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the α-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the α5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer

  17. Platelet-Derived Growth Factor-Receptor α Strongly Inhibits Melanoma Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Debora Faraone

    2009-08-01

    Full Text Available Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Rα may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Rα respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Rα. Proliferation was rescued by PDGF-Rα inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Rα mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Rα was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Rα show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Bα and a marked increase of p38γ, mitogen-activated protein kinase kinase 3, and signal regulatory protein α1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Rα reached a significant 70% inhibition of primary melanoma growth (P < .001 and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Rα strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.

  18. 99m Tc-anti-epidermal growth factor receptor nanobody for tumor imaging.

    Science.gov (United States)

    Piramoon, Majid; Hosseinimehr, Seyed Jalal; Omidfar, Kobra; Noaparast, Zohreh; Abedi, Seyed Mohammad

    2017-04-01

    Nanobodies are important biomolecules for tumor targeting. In this study, we synthesized and labeled anti-epidermal growth factor receptor (EGFR) nanobody OA-cb6 with 99m Tc(CO) 3 + and evaluated its characteristics for targeting the EGFR in the A431 human epidermal carcinoma cell line. Nanobody radiolabeling was achieved with high yield and radiochemical purity, and the radioconjugate was stable. Biodistribution results in nude mice exhibited a favorable tumor-to-muscle ratio at 4-hr postinjection, and tumor location was visualized at 4 hr after injection of radiolabeled nanobody. Our result showed that the OA-cb6- 99m Tc-tricarbonyl radiolabeled nanobody is a promising radiolabeled biomolecule for tumor imaging in cancers with high EGFR overexpression. © 2016 John Wiley & Sons A/S.

  19. Location of Primary Tumor and Benefit From Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies in Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer

    Science.gov (United States)

    Moretto, Roberto; Cremolini, Chiara; Rossini, Daniele; Pietrantonio, Filippo; Battaglin, Francesca; Mennitto, Alessia; Bergamo, Francesca; Loupakis, Fotios; Marmorino, Federica; Berenato, Rosa; Marsico, Valentina Angela; Caporale, Marta; Antoniotti, Carlotta; Masi, Gianluca; Salvatore, Lisa; Borelli, Beatrice; Fontanini, Gabriella; Lonardi, Sara; De Braud, Filippo

    2016-01-01

    Introduction. Right- and left-sided colorectal cancers (CRCs) differ in clinical and molecular characteristics. Some retrospective analyses suggested that patients with right-sided tumors derive less benefit from anti-epidermal growth factor receptor (EGFR) antibodies; however, molecular selection in those studies was not extensive. Patients and Methods. Patients with RAS and BRAF wild-type metastatic CRC (mCRC) who were treated with single-agent anti-EGFRs or with cetuximab-irinotecan (if refractory to previous irinotecan) were included in the study. Differences in outcome between patients with right- and left-sided tumors were investigated. Results. Of 75 patients, 14 and 61 had right- and left-sided tumors, respectively. None of the right-sided tumors responded according to RECIST, compared with 24 left-sided tumors (overall response rate: 0% vs. 41%; p = .0032), and only 2 patients with right-sided tumors (15%) versus 47 patients with left-sided tumors (80%) achieved disease control (p < .0001). The median duration of progression-free survival was 2.3 and 6.6 months in patients with right-sided and left-sided tumors, respectively (hazard ratio: 3.97; 95% confidence interval: 2.09–7.53; p < .0001). Conclusion. Patients with right-sided RAS and BRAF wild-type mCRC seemed to derive no benefit from single-agent anti-EGFRs. Implications for Practice: Right- and left-sided colorectal tumors have peculiar epidemiological and clinicopathological characteristics, distinct gene expression profiles and genetic alterations, and different prognoses. This study assessed the potential predictive impact of primary tumor site with regard to anti-epidermal growth factor receptor (EGFR) monoclonal antibody treatment in patients with RAS and BRAF wild-type metastatic colorectal cancer. The results demonstrated the lack of activity of anti-EGFRs in RAS and BRAF wild-type, right-sided tumors, thus suggesting a potential role for primary tumor location in driving treatment choices

  20. Promotion of seminomatous tumors by targeted overexpression of glial cell line-derived neurotrophic factor in mouse testis

    NARCIS (Netherlands)

    Meng, X.; de rooij, D. G.; Westerdahl, K.; Saarma, M.; Sariola, H.

    2001-01-01

    We show with transgenic mice that targeted overexpression of glial cell line-derived neurotrophic factor (GDNF) in undifferentiated spermatogonia promotes malignant testicular tumors, which express germ-cell markers. The tumors are invasive and contain aneuploid cells, but no distant metastases have

  1. Effect of H-2 complex on the growth of embryo-derived teratomas in mice

    International Nuclear Information System (INIS)

    Taya, C.; Moriwaki, K.

    1986-01-01

    Seven-day-old embryos of several H-2 congenic strains were transplanted under the kidney capsules of syngeneic adult recipients to determine the genetic factors(s) governing the in vivo growth of embryo-derived teratomas. A.TH(H-2t2) and A.TL(H-2t1) strains showed significantly greater tumor weights than A.BY(H-2b) and A.SW(H-2s) strains. The A(H-2a) strain was intermediate in tumor size. A comparison of the genic constitution of the H-2 complex in each congenic strain suggested that the H-2D locus and/or its distal regions affected the growth of embryo-derived teratomas. The teratoma induced in the B10.A(H-2a) strain was smaller than that in the A(H-2a) strain, indicating that the genetic background of the A strain is favorable for teratoma growth. Histological observations demonstrated that the existence of embryonal carcinoma cells was necessary for the growth of teratomas. A radiation-sensitive immunological factor in the recipient probably plays a role in stimulating teratoma growth

  2. A bioactive molecule in a complex wound healing process: platelet-derived growth factor.

    Science.gov (United States)

    Kaltalioglu, Kaan; Coskun-Cevher, Sule

    2015-08-01

    Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing. © 2014 The International Society of Dermatology.

  3. Investigation of Epidermal Growth Factor, Tumor Necrosis Factor-alpha and Thioredoxin System in Rats Exposed to Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Erol-Demirbilek Melike

    2016-09-01

    Full Text Available Background: Thioredoxin reductase (TrxR, epidermal growth factor (EGF and tumor necrosis factor-α (TNF-α have neuroprotective/neurotoxic effects in cerebral ischemia. We aimed to investigate the TrxR activity, EGF and TNF-α levels in cerebral ischemic, sham-operated and non-ischemic rat brains.

  4. Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist.

    Science.gov (United States)

    Giubellino, Alessio; Gao, Yang; Lee, Sunmin; Lee, Min-Jung; Vasselli, James R; Medepalli, Sampath; Trepel, Jane B; Burke, Terrence R; Bottaro, Donald P

    2007-07-01

    Metastasis, the primary cause of death in most forms of cancer, is a multistep process whereby cells from the primary tumor spread systemically and colonize distant new sites. Blocking critical steps in this process could potentially inhibit tumor metastasis and dramatically improve cancer survival rates; however, our understanding of metastasis at the molecular level is still rudimentary. Growth factor receptor binding protein 2 (Grb2) is a widely expressed adapter protein with roles in epithelial cell growth and morphogenesis, as well as angiogenesis, making it a logical target for anticancer drug development. We have previously shown that a potent antagonist of Grb2 Src homology-2 domain-binding, C90, blocks growth factor-driven cell motility in vitro and angiogenesis in vivo. We now report that C90 inhibits metastasis in vivo in two aggressive tumor models, without affecting primary tumor growth rate. These results support the potential efficacy of this compound in reducing the metastatic spread of primary solid tumors and establish a critical role for Grb2 Src homology-2 domain-mediated interactions in this process.

  5. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Bronzert, D.A.; Pantazis, P.; Antoniades, H.N.; Kasid, A.; Davidson, N.; Dickson, R.B.; Lippman, M.E.

    1987-01-01

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of [ 3 H] thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95 0 C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of ≅30 kDa on NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO 4 /polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth

  6. Platelet-derived growth factor receptor-β, carrying the activating mutation D849N, accelerates the establishment of B16 melanoma

    International Nuclear Information System (INIS)

    Suzuki, Shioto; Heldin, Carl-Henrik; Heuchel, Rainer Lothar

    2007-01-01

    Platelet-derived growth factor (PDGF)-BB and PDGF receptor (PDGFR)-β are mainly expressed in the developing vasculature, where PDGF-BB is produced by endothelial cells and PDGFR-β is expressed by mural cells, including pericytes. PDGF-BB is produced by most types of solid tumors, and PDGF receptor signaling participates in various processes, including autocrine stimulation of tumor cell growth, recruitment of tumor stroma fibroblasts, and stimulation of tumor angiogenesis. Furthermore, PDGF-BB-producing tumors are characterized by increased pericyte abundance and accelerated tumor growth. Thus, there is a growing interest in the development of tumor treatment strategies by blocking PDGF/PDGFR function. We have recently generated a mouse model carrying an activated PDGFR-β by replacing the highly conserved aspartic acid residue (D) 849 in the activating loop with asparagine (N). This allowed us to investigate, in an orthotopic tumor model, the role of increased stromal PDGFR-β signaling in tumor-stroma interactions. B16 melanoma cells lacking PDGFR-β expression and either mock-transfected or engineered to express PDGF-BB, were injected alone or in combination with matrigel into mice carrying the activated PDGFR-β (D849N) and into wild type mice. The tumor growth rate was followed and the vessel status of tumors, i.e. total vessel area/tumor, average vessel surface and pericyte density of vessels, was analyzed after resection. Tumors grown in mice carrying an activated PDGFR-β were established earlier than those in wild-type mice. In this early phase, the total vessel area and the average vessel surface were higher in tumors grown in mice carrying the activated PDGFR-β (D849N) compared to wild-type mice, whereas we did not find a significant difference in the number of tumor vessels and the pericyte abundance around tumor vessels between wild type and mutant mice. At later phases of tumor progression, no significant difference in tumor growth rate was

  7. Basic fibroblast growth factor in an animal model of spontaneous mammary tumor progression.

    Science.gov (United States)

    Kao, Steven; Mo, Jeffrey; Baird, Andrew; Eliceiri, Brian P

    2012-06-01

    Although basic fibroblast growth factor (FGF2) was the first pro-angiogenic molecule discovered, it has numerous activities on the growth and differentiation of non-vascular cell types. FGF2 is both stimulatory and inhibitory, depending on the cell type evaluated, the experimental design used and the context in which it is tested. Here, we investigated the effects of manipulating endogenous FGF2 on the development of mammary cancer to determine whether its endogenous contribution in vivo is pro- or anti-tumorigenic. Specifically, we examined the effects of FGF2 gene dosing in a cross between a spontaneous breast tumor model (PyVT+ mice) and FGF2-/- (FGF KO) mice. Using these mice, the onset and progression of mammary tumors was determined. As predicted, female FGF2 WT mice developed mammary tumors starting around 60 days after birth and by 80 days, 100% of FGF2 WT female mice had mammary tumors. In contrast, 80% of FGF2 KO female mice had no palpable tumors until nearly three weeks later (85 days) at times when 100% of the WT cohort was tumor positive. All FGF KO mice were tumor-bearing by 115 days. When we compared the onset of mammary tumor development and the tumor progression curves between FGF het and FGF KO mice, we observed a difference, which suggested a gene dosing effect. Analysis of the tumors demonstrated that there were significant differences in tumor size depending on FGF2 status. The delay in tumor onset supports a functional role for FGF2 in mammary tumor progression, but argues against an essential role for FGF2 in overall mammary tumor progression.

  8. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization

    International Nuclear Information System (INIS)

    Jang, Ji-Young; Lee, Jong-Kuen; Jeon, Yoon-Kyung; Kim, Chul-Woo

    2013-01-01

    Tumor-associated macrophages (TAM) play an important role in tumor microenvironment. Particularly, M2 macrophages contribute to tumor progression, depending on the expression of NF-κB. Tumor-derived exosomes can modulate tumor microenvironment by transferring miRNAs to immune cells. Epigallocatechin gallate (EGCG) has well known anti-tumor effects; however, no data are available on the influence of EGCG on communication with cancer cells and TAM. Murine breast cancer cell lines, 4T1, was used for in vivo and ex vivo studies. Exosome was extracted from EGCG-treated 4T1 cells, and the change of miRNAs was screened using microarray. Tumor cells or TAM isolated from murine tumor graft were incubated with exosomes derived from EGCG-treated and/or miR-16 inhibitor-transfected 4T1 cells. Chemokines for monocytes (CSF-1 and CCL-2), cytokines both with high (IL-6 and TGF-β) and low (TNF-α) expression in M2 macrophages, and molecules in NF-κB pathway (IKKα and Iκ-B) were evaluated by RT-qPCR or western blot. EGCG suppressed tumor growth in murine breast cancer model, which was associated with decreased TAM and M2 macrophage infiltration. Expression of chemokine for monocytes (CSF-1 and CCL-2) were low in tumor cells from EGCG-treated mice, and cytokines of TAM was skewed from M2- into M1-like phenotype by EGCG as evidenced by decreased IL-6 and TGF-β and increased TNF-α. Ex vivo incubation of isolated tumor cells with EGCG inhibited the CSF-1 and CCL-2 expression. Ex vivo incubation of TAM with exosomes from EGCG-treated 4T1 cells led to IKKα suppression and concomitant I-κB accumulation; increase of IL-6 and TGF-β; and, decrease of TNF-α. EGCG up-regulated miR-16 in 4T1 cells and in the exosomes. Treatment of tumor cells or TAM with exosomes derived from EGCG-treated and miR-16-knock-downed 4T1 cells restored the above effects on chemokines, cytokines, and NF-κB pathway elicited by EGCG-treated exosomes. Our data demonstrate that EGCG up-regulates miR-16 in

  9. Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2.

    Directory of Open Access Journals (Sweden)

    Satoshi Takagi

    Full Text Available The platelet aggregation-inducing factor Aggrus, also known as podoplanin, is frequently upregulated in several types of tumors and enhances hematogenous metastasis by interacting with and activating the platelet receptor CLEC-2. Thus, Aggrus-CLEC-2 binding could be a therapeutic molecular mechanism for cancer therapy. We generated a new anti-human Aggrus monoclonal antibody, MS-1, that suppressed Aggrus-CLEC-2 binding, Aggrus-induced platelet aggregation, and Aggrus-mediated tumor metastasis. Interestingly, the MS-1 monoclonal antibody attenuated the growth of Aggrus-positive tumors in vivo. Moreover, the humanized chimeric MS-1 antibody, ChMS-1, also exhibited strong antitumor activity against Aggrus-positive lung squamous cell carcinoma xenografted into NOD-SCID mice compromising antibody-dependent cellular cytotoxic and complement-dependent cytotoxic activities. Because Aggrus knockdown suppressed platelet-induced proliferation in vitro and tumor growth of the lung squamous cell carcinoma in vivo, Aggrus may be involved in not only tumor metastasis but also tumor growth by promoting platelet-tumor interaction, platelet activation, and secretion of platelet-derived factors in vivo. Our results indicate that molecular target drugs inhibiting specific platelet-tumor interactions can be developed as antitumor drugs that suppress both metastasis and proliferation of tumors such as lung squamous cell carcinoma.

  10. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Transcription factor Runx2 knockdown regulates colon cancer transplantation tumor growth in vitro: an experimental study

    Directory of Open Access Journals (Sweden)

    Bin Xu1

    2017-05-01

    Full Text Available Objective: To study the effect of transcription factor Runx2 knockdown on colon cancer transplantation tumor growth in vitro. Methods: Colon cancer cell lines HT29 were cultured and transfected with negative control (NC - shRNA plasmids and Runx2-shRNA plasmids respectively, the colon cancer cells transfected with shRNA were subcutaneously injected into C57 nude mice, and they were included in NC group and Runx2 knockdown group respectively. 1 week, 2 weeks and 3 weeks after model establishment, serum was collected to determine the contents of tumor markers, and tumor lesions were collected to determine proliferation and apoptosis gene expression. Results: CCSA-2, CEA and CA19-9 levels in serum as well as Rac1, Wnt3a, PLD2 and FAM96B protein expression in transplantation tumor lesions of Runx2 knockdown group were significantly lower than those of NC group while MS4A12, ASPP2 and Fas protein expression in transplantation tumor lesions of Runx2 knockdown group were significantly higher than those of NC group. Conclusion: Transcription factor Runx2 knockdown could inhibit the colon cancer transplantation tumor growth in vitro.

  12. Intravital imaging of plasticity during tumor growth and metastasis

    NARCIS (Netherlands)

    Zomer, Anoek

    2015-01-01

    Most tumors consist of a heterogeneous mixture of genetically and epigenetically distinct tumor cells. In addition, tumors display regional differences in the tumor microenvironment comprising non-transformed cell types such as immune cells and non-cellular factors including growth factors and the

  13. Mathematical models of tumor growth: translating absorbed dose to tumor control probability

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The dose-rate in internal emitter therapy is low and time-dependent as compared to external beam radiotherapy. Once the total absorbed dose delivered to a target tissue is calculated, however, most dosimetric analyses of radiopharmaceuticals are considered complete. To translate absorbed dose estimates obtained for internal emitter therapy to biologic effect, the growth characteristics, repair capacity, and radiosensitivity of the tumor must be considered. Tumor growth may be represented by the Gompertz equation in which tumor cells increase at an exponential growth rate that is itself decreasing at an exponential rate; as the tumor increases in size, the growth rate diminishes. The empirical Gompertz expression for tumor growth may be derived from a mechanistic model in which growth is represented by a balance between tumor-cell birth and loss. The birth rate is assumed to be fixed, while the cell loss rate is time-dependent and increases with tumor size. The birth rate of the tumors may be related to their potential doubling time. Multiple biopsies of individual tumors have demonstrated a heterogeneity in the potential doubling time of tumors. By extending the mechanistic model described above to allow for sub-populations of tumor cells with different birth rates, the effect of kinetic heterogeneity within a tumor may be examined. Model simulations demonstrate that the cell kinetic parameters of a tumor are predicted to change over time and measurements obtained using a biopsy are unlikely to reflect the kinetics of the tumor throughout its growth history. A decrease in overall tumor mass, in which each sub-population is reduced in proportion to its cell number, i.e., the log-kill assumption, leads to re-growth of a tumor that has a greater proliferation rate. Therapy that is linked to the potential doubling time or to the effective proliferation rate of the tumor may lead to re-growth of a tumor that is kinetically unchanged. The simplest model of

  14. Human tumor cells induce angiogenesis through positive feedback between CD147 and insulin-like growth factor-I.

    Directory of Open Access Journals (Sweden)

    Yanke Chen

    Full Text Available Tumor angiogenesis is a complex process based upon a sequence of interactions between tumor cells and endothelial cells. Previous studies have shown that CD147 was correlated with tumor angiogenesis through increasing tumor cell secretion of vascular endothelial growth factor (VEGF and matrix metalloproteinases (MMPs. In this study, we made a three-dimensional (3D tumor angiogenesis model using a co-culture system of human hepatocellular carcinoma cells SMMC-7721 and humanumbilical vein endothelial cells (HUVECs in vitro. We found that CD147-expressing cancer cells could promote HUVECs to form net-like structures resembling the neo-vasculature, whereas the ability of proliferation, migration and tube formation of HUVECs was significantly decreased in tumor conditioned medium (TCM of SMMC-7721 cells transfected with specific CD147-siRNA. Furthermore, by assaying the change of pro-angiogenic factors in TCM, we found that the inhibition of CD147 expression led to significant decrease of VEGF and insulin-like growth factor-I (IGF-I secretion. Interestingly, we also found that IGF-I up-regulated the expression of CD147 in both tumor cells and HUVECs. These findings suggest that there is a positive feedback between CD147 and IGF-I at the tumor-endothelial interface and CD147 initiates the formation of an angiogenesis niche.

  15. Cycloamylose-nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment.

    Science.gov (United States)

    Fujii, Hidetaka; Shin-Ya, Masaharu; Takeda, Shigeo; Hashimoto, Yoshihide; Mukai, Sada-atsu; Sawada, Shin-ichi; Adachi, Tetsuya; Akiyoshi, Kazunari; Miki, Tsuneharu; Mazda, Osam

    2014-12-01

    RNAi enables potent and specific gene silencing, potentially offering useful means for treatment of cancers. However, safe and efficient drug delivery systems (DDS) that are appropriate for intra-tumor delivery of siRNA or shRNA have rarely been established, hindering clinical application of RNAi technology to cancer therapy. We have devised hydrogel polymer nanoparticles, or nanogel, and shown its validity as a novel DDS for various molecules. Here we examined the potential of self-assembled nanogel of cholesterol-bearing cycloamylose with spermine group (CH-CA-Spe) to deliver vascular endothelial growth factor (VEGF)-specific short interfering RNA (siVEGF) into tumor cells. The siVEGF/nanogel complex was engulfed by renal cell carcinoma (RCC) cells through the endocytotic pathway, resulting in efficient knockdown of VEGF. Intra-tumor injections of the complex significantly suppressed neovascularization and growth of RCC in mice. The treatment also inhibited induction of myeloid-derived suppressor cells, while it decreased interleukin-17A production. Therefore, the CH-CA-Spe nanogel may be a feasible DDS for intra-tumor delivery of therapeutic siRNA. The results also suggest that local suppression of VEGF may have a positive impact on systemic immune responses against malignancies. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  16. Cyclophosphamide Enhances Human Tumor Growth in Nude Rat Xenografted Tumor Models

    Directory of Open Access Journals (Sweden)

    Yingjen Jeffrey Wu

    2009-02-01

    Full Text Available The effect of the immunomodulatory chemotherapeutic agent cyclophosphamide (CTX on tumor growth was investigated in primary and metastatic intracerebral and subcutaneous rat xenograft models. Nude rats were treated with CTX (100 mg/kg, intraperitoneally 24 hours before human ovarian carcinoma (SKOV3, small cell lung carcinoma (LX-1 SCLC, and glioma (UW28, U87MG, and U251 tumor cells were inoculated subcutaneously, intraperitoneally, or in the right cerebral hemisphere or were infused into the right internal carotid artery. Tumor development was monitored and recorded. Potential mechanisms were further investigated. Only animals that received both CTX and Matrigel showed consistent growth of subcutaneous tumors. Cyclophosphamide pretreatment increased the percentage (83.3% vs 0% of animals showing intraperitoneal tumors. In intracerebral implantation tumor models, CTX pretreatment increased the tumor volume and the percentage of animals showing tumors. Cyclophosphamide increased lung carcinoma bone and facial metastases after intra-arterial injection, and 20% of animals showed brain metastases. Cyclophosphamide transiently decreased nude rat white blood cell counts and glutathione concentration, whereas serum vascular endothelial growth factor was significantly elevated. Cyclophosphamide also increased CD31 reactivity, a marker of vascular endothelium, and macrophage (CD68-positive infiltration into glioma cell-inoculated rat brains. Cyclophosphamide may enhance primary and metastatic tumor growth through multiple mechanisms, including immune modulation, decreased response to oxidative stress, increased tumor vascularization, and increased macrophage infiltration. These findings may be clinically relevant because chemotherapy may predispose human cancer subjects to tumor growth in the brain or other tissues.

  17. Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue.

    Science.gov (United States)

    Rohrs, Jennifer A; Sulistio, Christopher D; Finley, Stacey D

    2016-01-01

    Angiogenesis, the formation of new blood capillaries from pre-existing vessels, is a hallmark of cancer. Thus far, strategies for reducing tumor angiogenesis have focused on inhibiting pro-angiogenic factors, while less is known about the therapeutic effects of mimicking the actions of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important endogenous inhibitor of angiogenesis that has been investigated as an anti-angiogenic agent. TSP1 impedes the growth of new blood vessels in many ways, including crosstalk with pro-angiogenic factors. Due to the complexity of TSP1 signaling, a predictive systems biology model would provide quantitative understanding of the angiogenic balance in tumor tissue. Therefore, we have developed a molecular-detailed, mechanistic model of TSP1 and vascular endothelial growth factor (VEGF), a promoter of angiogenesis, in breast tumor tissue. The model predicts the distribution of the angiogenic factors in tumor tissue, revealing that TSP1 is primarily in an inactive, cleaved form due to the action of proteases, rather than bound to its cellular receptors or to VEGF. The model also predicts the effects of enhancing TSP1's interactions with its receptors and with VEGF. To provide additional predictions that can guide the development of new anti-angiogenic drugs, we simulate administration of exogenous TSP1 mimetics that bind specific targets. The model predicts that the CD47-binding TSP1 mimetic dramatically decreases the ratio of receptor-bound VEGF to receptor-bound TSP1, in favor of anti-angiogenesis. Thus, we have established a model that provides a quantitative framework to study the response to TSP1 mimetics.

  18. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and anti-tumor responses after local immunotherapy

    Directory of Open Access Journals (Sweden)

    Sabine eKuhn

    2015-11-01

    Full Text Available Tumors harbor several populations of dendritic cells with the ability to prime tumor-specific T cells. However, these T cells mostly fail to differentiate into armed effectors and are unable to control tumor growth. We have previously shown that treatment with immunostimulatory agents at the tumor site can activate anti-tumor immune responses, and is associated with the appearance of a population of monocyte-derived dendritic cells in the tumor and tumor-draining lymph node. Here we use dendritic cell or monocyte depletion and monocyte transfer to show that these monocyte-derived dendritic cells are critical to the activation of anti-tumor immune responses. Treatment with the immunostimulatory agents Monosodium Urate crystals and Mycobacterium smegmatis induced the accumulation of monocytes in the draining lymph node, their upregulation of CD11c and MHCII, and expression of iNOS, TNFα and IL12p40. Blocking monocyte entry into the lymph node and tumor through neutralization of the chemokine CCL2 or inhibition of Colony Stimulating Factor-1 receptor signaling prevented the generation of monocyte-derived dendritic cells, the infiltration of tumor-specific T cells into the tumor, and anti-tumor responses. In a reciprocal fashion, monocytes transferred into mice depleted of CD11c+ cells were sufficient to rescue CD8+ T cell priming in lymph node and delay tumor growth. Thus monocytes exposed to the appropriate conditions become powerful activators of tumor-specific CD8+ T cells and anti-tumor immunity.

  19. Prognostic impact of placenta growth factor and vascular endothelial growth factor A in patients with breast cancer

    DEFF Research Database (Denmark)

    Maae, Else; Olsen, Dorte Aalund; Steffensen, Karina Dahl

    2012-01-01

    such as ischemic heart disease, arthritis and tumor growth. Angiogenesis is a complex process with several growth factors involved. Because PlGF modulates VEGF-A responses, we investigated their mutual relationship and impact on breast cancer prognosis. Quantitative PlGF and VEGF-A levels were measured in 229...... tumor tissue specimen from primarily operated patients with unilateral breast cancer. Non-malignant breast tissue was also dissected near the tumor and quantitative measurements were available for 211 patients. PlGF and VEGF-A protein levels in homogenized tissue lysates were analyzed using the Luminex......Placenta growth factor (PlGF) and vascular endothelial growth factor A (VEGF-A) are angiogenic growth factors interacting competitively with the same receptors. VEGF-A is essential in both normal and pathologic conditions, but the functions of PlGF seem to be restricted to pathologic conditions...

  20. Hepatocyte growth factor/scatter factor-MET signaling in neural crest-derived melanocyte development.

    Science.gov (United States)

    Kos, L; Aronzon, A; Takayama, H; Maina, F; Ponzetto, C; Merlino, G; Pavan, W

    1999-02-01

    The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.

  1. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.

    Science.gov (United States)

    Han, Yanmei; Liu, Qiuyan; Hou, Jin; Gu, Yan; Zhang, Yi; Chen, Zhubo; Fan, Jia; Zhou, Weiping; Qiu, Shuangjian; Zhang, Yonghong; Dong, Tao; Li, Ning; Jiang, Zhengping; Zhu, Ha; Zhang, Qian; Ma, Yuanwu; Zhang, Lianfeng; Wang, Qingqing; Yu, Yizhi; Li, Nan; Cao, Xuetao

    2018-04-19

    Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119 + CD45 - CD71 + phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor β (TGF-β) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment.

    Science.gov (United States)

    Thiolloy, Sophie; Edwards, James R; Fingleton, Barbara; Rifkin, Daniel B; Matrisian, Lynn M; Lynch, Conor C

    2012-01-01

    Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment. To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays). Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.

  3. An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment.

    Directory of Open Access Journals (Sweden)

    Sophie Thiolloy

    Full Text Available Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment.To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry. Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry. Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1 the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay; and 2 that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays.Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.

  4. Tumor cell-derived PDGF-B potentiates mouse mesenchymal stem cells-pericytes transition and recruitment through an interaction with NRP-1

    Directory of Open Access Journals (Sweden)

    Haque Inamul

    2010-08-01

    Full Text Available Abstract Background New blood vessel formation, or angiogenic switch, is an essential event in the development of solid tumors and their metastatic growth. Tumor blood vessel formation and remodeling is a complex and multi-step processes. The differentiation and recruitment of mural cells including vascular smooth muscle cells and pericytes are essential steps in tumor angiogenesis. However, the role of tumor cells in differentiation and recruitment of mural cells has not yet been fully elucidated. This study focuses on the role of human tumor cells in governing the differentiation of mouse mesenchymal stem cells (MSCs to pericytes and their recruitment in the tumor angiogenesis process. Results We show that C3H/10T1/2 mouse embryonic mesenchymal stem cells, under the influence of different tumor cell-derived conditioned media, differentiate into mature pericytes. These differentiated pericytes, in turn, are recruited to bind with capillary-like networks formed by endothelial cells on the matrigel under in vitro conditions and recruited to bind with blood vessels on gel-foam under in vivo conditions. The degree of recruitment of pericytes into in vitro neo-angiogenesis is tumor cell phenotype specific. Interestingly, invasive cells recruit less pericytes as compared to non-invasive cells. We identified tumor cell-secreted platelet-derived growth factor-B (PDGF-B as a crucial factor controlling the differentiation and recruitment processes through an interaction with neuropilin-1 (NRP-1 in mesenchymal stem cells. Conclusion These new insights into the roles of tumor cell-secreted PDGF-B-NRP-1 signaling in MSCs-fate determination may help to develop new antiangiogenic strategies to prevent the tumor growth and metastasis and result in more effective cancer therapies.

  5. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    Science.gov (United States)

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  6. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  7. 26S proteasome and insulin-like growth factor-1 in serum of dogs suffering from malignant tumors.

    Science.gov (United States)

    Gerke, Ingrid; Kaup, Franz-Josef; Neumann, Stephan

    2018-04-01

    Studies in humans have shown that the ubiquitin-proteasome pathway and the insulin-like growth factor axis are involved in carcinogenesis, thus, components of these systems might be useful as prognostic markers and constitute potential therapeutic targets. In veterinary medicine, only a few studies exist on this topic. Here, serum concentrations of 26S proteasome (26SP) and insulin-like growth factor-1 (IGF-1) were measured by canine enzyme-linked immunosorbent assay (ELISA) in 43 dogs suffering from malignant tumors and 21 clinically normal dogs (control group). Relationships with tumor size, survival time, body condition score (BCS), and tumor entity were assessed. The median 26SP concentration in the tumor group was non-significantly higher than in the control group. However, dogs with mammary carcinomas displayed significantly increased 26SP levels compared to the control group and dogs with tumor size less than 5 cm showed significantly increased 26SP concentrations compared to dogs with larger tumors and control dogs. 26SP concentrations were not correlated to survival time or BCS. No significant difference in IGF-1 levels was found between the tumor group and the control group; however, IGF-1 concentrations displayed a larger range of values in the tumor group. Dogs with tumors greater than 5 cm showed significantly higher IGF-1 levels than dogs with smaller tumors. The IGF-1 concentrations were positively correlated to survival time, but no correlation with BCS was found. Consequently, serum 26SP concentrations seem to be increased in some dogs suffering from malignant tumors, especially in dogs with mammary carcinoma and smaller tumors. Increased serum IGF-1 concentrations could be an indication of large tumors and a poor prognosis.

  8. Dll4 blockade potentiates the anti-tumor effects of VEGF inhibition in renal cell carcinoma patient-derived xenografts.

    Directory of Open Access Journals (Sweden)

    Kiersten Marie Miles

    Full Text Available The Notch ligand Delta-like 4 (Dll4 is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC.Severe combined immunodeficiency (SCID mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36-62% that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38-54% and ziv-aflibercept (46%. Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72-80% growth inhibition, including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model.Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC.

  9. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  10. Stochastic models for tumoral growth

    Science.gov (United States)

    Escudero, Carlos

    2006-02-01

    Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and (2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the response of the tumor to an unfavorable perturbation during growth.

  11. Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity.

    Science.gov (United States)

    Basciani, Sabrina; Brama, Marina; Mariani, Stefania; De Luca, Gabriele; Arizzi, Mario; Vesci, Loredana; Pisano, Claudio; Dolci, Susanna; Spera, Giovanni; Gnessi, Lucio

    2005-03-01

    Leydig cell tumors are usually benign tumors of the male gonad. However, if the tumor is malignant, no effective treatments are currently available. Leydig cell tumors express platelet-derived growth factor (PDGF), kit ligand and their respective receptors, PDGFR and c-kit. We therefore evaluated the effects of imatinib mesylate (imatinib), a selective inhibitor of the c-kit and PDGFR tyrosine kinases, on the growth of rodent Leydig tumor cell lines in vivo and in vitro, and examined, in human Leydig cell tumor samples, the expression of activated PDGFR and c-kit and the mutations in exons of the c-kit gene commonly associated with solid tumors. Imatinib caused concentration-dependent decreases in the viability of Leydig tumor cell lines, which coincided with apoptosis and inhibition of proliferation and ligand-stimulated phosphorylation of c-kit and PDGFRs. Mice bearing s.c. allografts of a Leydig tumor cell line treated with imatinib p.o., had an almost complete inhibition of tumor growth, less tumor cell proliferation, increased apoptosis, and a lesser amount of tumor-associated mean vessel density compared with controls. No drug-resistant tumors appeared during imatinib treatment but tumors regrew after drug withdrawal. Human Leydig cell tumors showed an intense expression of the phosphorylated form of c-kit and a less intense expression of phosphorylated PDGFRs. No activating mutations in common regions of mutation of the c-kit gene were found. Our studies suggest that Leydig cell tumors might be a potential target for imatinib therapy.

  12. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Friedhelm, E-mail: Friedhelm.Bladt@merckgroup.com; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree [EMD Serono, and Merck Serono Research and Development, Merck KGaA, Darmstadt 64293 (Germany)

    2014-08-19

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling.

  13. Stochastic models for tumoral growth

    OpenAIRE

    Escudero, Carlos

    2006-01-01

    Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border, and surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stoch...

  14. Recombinant tumor necrosis factor alpha inhibits growth of methylcholanthrene-induced sarcoma and enhances natural killer activity of tumor-infiltrating lymphocytes in aging rats

    International Nuclear Information System (INIS)

    Ziolkowska, Maria; Nowak Joanna, J.; Janiak, Marek; Ryzewska, Alicja

    1994-01-01

    The effect of recombinant human tumor necrosis factors alpha (rHuTNF-α) on the growth of immunogenic, methylcholanthrene-induced sarcoma (MC-Sa) and natural killer (NK) cell activity of tumor-infiltrating lymphocytes (TIL) in adult and aging rats was investigated. In both groups of animals the growth of transplantable MC-Sa was markedly and similarly inhibited by multiple intratumoral (i.t.) injections of rHuTF-α. This effect was accompanied by stimulation of NK activity of tumor-infiltrating lymphocytes in adult as well as in aging rats. Studies ''in vitro'' demonstrated additionally that rHuTNF-α was a potent stimulator of NK but not of ADCC (antibody-dependent cellular cytotoxicity) activity of spleen lymphocytes from healthy animals. Our results indicate that the antitumor effect of TNF-α is comparable in adult and in aging rats bearing immunogenic MC-Sa. The inhibition of MC-Sa growth may be attributed not only to the TNF-α-induced necrosis of the neoplastic tissue but also to the ''in vivo'' stimulatory effect of this cytokine upon the NK-type function of lymphocytes infiltrating the tumor mass. (author). 31 refs, 5 figs, 2 tabs

  15. Acetate supplementation induces growth arrest of NG2/PDGFRα-positive oligodendroglioma-derived tumor-initiating cells.

    Directory of Open Access Journals (Sweden)

    Patrick M Long

    Full Text Available Cancer is associated with globally hypoacetylated chromatin and considerable attention has recently been focused on epigenetic therapies. N-acetyl-L-aspartate (NAA, the primary storage form of acetate in the brain, and aspartoacylase (ASPA, the enzyme responsible for NAA catalysis to generate acetate and ultimately acetyl-Coenzyme A for histone acetylation, are reduced in oligodendroglioma. The short chain triglyceride glyceryl triacetate (GTA, which increases histone acetylation and inhibits histone deacetylase expression, has been safely used for acetate supplementation in Canavan disease, a leukodystrophy due to ASPA mutation. We demonstrate that GTA induces cytostatic G0 growth arrest of oligodendroglioma-derived cells in vitro, without affecting normal cells. Sodium acetate, at doses comparable to that generated by complete GTA catalysis, but not glycerol also promoted growth arrest, whereas long chain triglycerides promoted cell growth. To begin to elucidate its mechanism of action, the effects of GTA on ASPA and acetyl-CoA synthetase protein levels and differentiation of established human oligodendroglioma cells (HOG and Hs683 and primary tumor-derived oligodendroglioma cells that exhibit some features of cancer stem cells (grade II OG33 and grade III OG35 relative to an oligodendrocyte progenitor line (Oli-Neu were examined. The nuclear localization of ASPA and acetyl-CoA synthetase-1 in untreated cells was regulated during the cell cycle. GTA-mediated growth arrest was not associated with apoptosis or differentiation, but increased expression of acetylated proteins. Thus, GTA-mediated acetate supplementation may provide a safe, novel epigenetic therapy to reduce the growth of oligodendroglioma cells without affecting normal neural stem or oligodendrocyte progenitor cell proliferation or differentiation.

  16. Systematic in vitro and in vivo characterization of Leukemia-inhibiting factor- and Fibroblast growth factor-derived porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Secher, Jan Ole Bertelsen; Ceylan, Ahmet; Mazzoni, Gianluca

    2017-01-01

    Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to sh...

  17. Cells competition in tumor growth poroelasticity

    Science.gov (United States)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  18. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Sun Young [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Bae, Yong Chan [Department of Plastic Surgery, School of Medicine, Pusan National University, Pusan 602-739 (Korea, Republic of); Jung, Jin Sup, E-mail: jsjung@pusan.ac.kr [Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Center for Ischemic Tissue Engineering, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Medical Research Institute, Pusan National University, Pusan 602-739 (Korea, Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  19. Modulation of radiosensitivity by growth factors

    International Nuclear Information System (INIS)

    Paris, F.

    2013-01-01

    The full text of the publication follows. For the past 70 years, radiotherapy protocols were defined to target and kill cancer cells. New research developments showed that the tissue or tumor radiosensitivities might be directly modulated by its own microenvironment. Between all the micro-environmental cells, endothelial cells are playing a unique role due to the need of angio-genesis for tumor genesis and to the microvascular endothelial cell apoptosis involved in acute normal tissue and tumor radiosensitivities. Both endothelial behaviours may be controlled by specific growth factors secreted by tumor cells. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are two cytokines involved in angio genesis and endothelial cell survival. Because radiation exposure develops opposite molecular and cellular responses by inhibiting proliferation and by enhancing apoptosis, inhibiting these cytokines has been proposed as a relevant strategy to improve radiotherapy efficiency. Drugs or antibody against VEGF, or other growth factors have been used with success to limit endothelial cell resistance, but also to transiently normalize of blood vessels to improve oxygen distribution into the tumor. However, better characterisation of the role of the cytokines will help to better improve the strategy of the use of their antagonists. We demonstrate that bFGF or sphingosin 1 phosphate (S1P), a lipid endothelial growth factor, protects endothelial cells from radiation stress by inhibiting the pre-mitotic apoptosis through enhancement of pro-survival molecular cascade, such as the Pi3K/AKT pathway, but not post-mitotic death. This discrepancy allowed a specific use of S1P as pharmacological drug protecting quiescent endothelial cells, present in normal tissue blood vessels, but not in proliferating angiogenic blood vessels, majority present in tumor blood vessel. In vivo studies are underway. (author)

  20. Cooperation of Indian Hedgehog and Vascular Endothelial Growth Factor in Tumor Angiogenesis and Growth in Human Hepatocellular Carcinomas, an Immunohistochemical Study.

    Science.gov (United States)

    Li, Yang; Liu, Yang; Wang, Guangxi; Wang, Yuxiang; Guo, Limei

    2018-04-07

    The Hedgehog pathway was recently shown to be involved in vascular development and neovascularization in human embryogenesis and disease. However, the role of Hedgehog pathway in modulating tumor angiogenesis is still unexplored. In the current study, we investigated the expression of Indian Hedgehog (Ihh) and vascular endothelial cell growth factor (VEGF) in human hepatocellular carcinomas (HCCs) with immunohistochemical staining and compared the immunoreaction data with various clinicopathologic characteristics. Immunoreactivity of Ihh and VEGF proteins was observed in 61.5% (56/91) and 64.5% (59/91) cases of HCC tumor tissues, respectively, which was considerably higher than the adjacent nonmalignant tissues. Ihh protein was observed predominantly in the cytoplasm of the tumor cells with a staining pattern of which was sparse and dot-like, or circular around the cell membrane. VEGF protein was expressed heterogenously in the cytoplasm in tumor cells and was negative in peritumoral areas in all cases. CD34 showed diffuse staining in the tumor parenchyma in most HCC specimens. The association of expression of Ihh and VEGF with tumor size was statistically significant (PIhh and VEGF proteins in HCC (r=0.6, PIhh and CD34 staining (r=0.261, P=0.012). Our findings suggest that Ihh is involved in the development of HCC. These findings are also consistent with the concept that cooperation of Ihh and VEGF modulate HCC tumor angiogenesis and growth.

  1. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    Science.gov (United States)

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  2. Dietary rice bran component γ-oryzanol inhibits tumor growth in tumor-bearing mice.

    Science.gov (United States)

    Kim, Sung Phil; Kang, Mi Young; Nam, Seok Hyun; Friedman, Mendel

    2012-06-01

    We investigated the effects of rice bran and components on tumor growth in mice. Mice fed standard diets supplemented with rice bran, γ-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet for two additional weeks. Tumor mass was significantly lower in the γ-oryzanol and less so in the phytic acid group. Tumor inhibition was associated with the following biomarkers: increases in cytolytic activity of splenic natural killer (NK) cells; partial restoration of nitric oxide production and phagocytosis in peritoneal macrophages increases in released the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 from macrophages; and reductions in the number of blood vessels inside the tumor. Pro-angiogenic biomarkers vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), and 5-lipoxygenase-5 (5-LOX) were also significantly reduced in mRNA and protein expression by tumor genes. ELISA of tumor cells confirmed reduced expression of COX-2 and 5-LOX up to 30%. Reduced COX-2 and 5-LOX expression downregulated VEGF and inhibited neoangiogenesis inside the tumors. Induction of NK activity, activation of macrophages, and inhibition of angiogenesis seem to contribute to the inhibitory mechanism of tumor regression by γ-oryzanol. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phase transitions in tumor growth: IV relationship between metabolic rate and fractal dimension of human tumor cells

    Science.gov (United States)

    Betancourt-Mar, J. A.; Llanos-Pérez, J. A.; Cocho, G.; Mansilla, R.; Martin, R. R.; Montero, S.; Nieto-Villar, J. M.

    2017-05-01

    By the use of thermodynamics formalism of irreversible processes, complex systems theory and systems biology, it is derived a relationship between the production of entropy per unit time, the fractal dimension and the tumor growth rate for human tumors cells. The thermodynamics framework developed demonstrates that, the dissipation function is a Landau potential and also the Lyapunov function of the dynamical behavior of tumor growth, which indicate the directional character, stability and robustness of the phenomenon. The entropy production rate may be used as a quantitative index of the metastatic potential of tumors. The current theoretical framework will hopefully provide a better understanding of cancer and contribute to improvements in cancer treatment.

  4. Information dynamics in carcinogenesis and tumor growth.

    Science.gov (United States)

    Gatenby, Robert A; Frieden, B Roy

    2004-12-21

    The storage and transmission of information is vital to the function of normal and transformed cells. We use methods from information theory and Monte Carlo theory to analyze the role of information in carcinogenesis. Our analysis demonstrates that, during somatic evolution of the malignant phenotype, the accumulation of genomic mutations degrades intracellular information. However, the degradation is constrained by the Darwinian somatic ecology in which mutant clones proliferate only when the mutation confers a selective growth advantage. In that environment, genes that normally decrease cellular proliferation, such as tumor suppressor or differentiation genes, suffer maximum information degradation. Conversely, those that increase proliferation, such as oncogenes, are conserved or exhibit only gain of function mutations. These constraints shield most cellular populations from catastrophic mutator-induced loss of the transmembrane entropy gradient and, therefore, cell death. The dynamics of constrained information degradation during carcinogenesis cause the tumor genome to asymptotically approach a minimum information state that is manifested clinically as dedifferentiation and unconstrained proliferation. Extreme physical information (EPI) theory demonstrates that altered information flow from cancer cells to their environment will manifest in-vivo as power law tumor growth with an exponent of size 1.62. This prediction is based only on the assumption that tumor cells are at an absolute information minimum and are capable of "free field" growth that is, they are unconstrained by external biological parameters. The prediction agrees remarkably well with several studies demonstrating power law growth in small human breast cancers with an exponent of 1.72+/-0.24. This successful derivation of an analytic expression for cancer growth from EPI alone supports the conceptual model that carcinogenesis is a process of constrained information degradation and that malignant

  5. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification

    International Nuclear Information System (INIS)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-01-01

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  6. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  7. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  8. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth

    Science.gov (United States)

    Yin, Yuan; Cai, Xing; Chen, Xi; Liang, Hongwei; Zhang, Yujing; Li, Jing; Wang, Zuoyun; Chen, Xiulan; Zhang, Wen; Yokoyama, Seiji; Wang, Cheng; Li, Liang; Li, Limin; Hou, Dongxia; Dong, Lei; Xu, Tao; Hiroi, Takachika; Yang, Fuquan; Ji, Hongbin; Zhang, Junfeng; Zen, Ke; Zhang, Chen-Yu

    2014-01-01

    An increased population of CD4+CD25highFoxp3+ regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. However, the underlying mechanism remains unclear. Here we observed an increased secretion of miR-214 in various types of human cancers and mouse tumor models. Tumor-secreted miR-214 was sufficiently delivered into recipient T cells by microvesicles (MVs). In targeted mouse peripheral CD4+ T cells, tumor-derived miR-214 efficiently downregulated phosphatase and tensin homolog (PTEN) and promoted Treg expansion. The miR-214-induced Tregs secreted higher levels of IL-10 and promoted tumor growth in nude mice. Furthermore, in vivo studies indicated that Treg expansion mediated by cancer cell-secreted miR-214 resulted in enhanced immune suppression and tumor implantation/growth in mice. The MV delivery of anti-miR-214 antisense oligonucleotides (ASOs) into mice implanted with tumors blocked Treg expansion and tumor growth. Our study reveals a novel mechanism through which cancer cell actively manipulates immune response via promoting Treg expansion. PMID:25223704

  9. NADPH promotes the rapid growth of the tumor

    Directory of Open Access Journals (Sweden)

    Hao Sheng

    2018-04-01

    Full Text Available NADPH oxidase is the main source of intracellular reactive oxygen species (ROS. ROS plays an important role in a variety of tumor types. The ROS mediated by NADPH oxidase increases the expression of hypoxia-inducible factor alpha (HIF-α through multiple signaling pathways in tumor, and HIF-α could be regulated and controlled by downstream multiple targeted genes such as vascular endothelial growth factor, glucose transporter to promote tumor angiogenesis, cell energy metabolism reprogram and tumor metastasis. Meanwhile, HIF-α can also regulate the expression of NADPH oxidase by ROS, thus further promoting development of tumor. In this review, we summarized the functions of NADPH in tumorigenesis and discussed their potential implications in cancer therapy.

  10. A Catalytic Role for Proangiogenic Marrow-Derived Cells in Tumor Neovascularization

    Science.gov (United States)

    Seandel, Marco; Butler, Jason; Lyden, David; Rafii, Shahin

    2010-01-01

    Small numbers of proangiogenic bone marrow-derived cells (BMDCs) can play pivotal roles in tumor progression. In this issue of Cancer Cell, two papers, utilizing different tumor angiogenesis models, both find that activated MMP-9 delivered by BMDCs modulates neovessel remodeling, thereby promoting tumor growth. The changes in microvascular anatomy induced by MMP-9-expressing BMDCs are strikingly different between the preirradiated tumor vascular bed model employed by Ahn and Brown and the invasive glioblastoma model utilized by Du et al., likely mirroring the complexity of the real tumor microenvironment and the intricacy of roles of different BMDC populations in mediating tumor neoangiogenesis. PMID:18328420

  11. BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer

    Science.gov (United States)

    Yusuff, Shamila; Davis, Stephani; Flaherty, Kathleen; Huselid, Eric; Patrizii, Michele; Jones, Daniel; Cao, Liangxian; Sydorenko, Nadiya; Moon, Young-Choon; Zhong, Hua; Medina, Daniel J.; Kerrigan, John; Stein, Mark N.; Kim, Isaac Y.; Davis, Thomas W.; DiPaola, Robert S.; Bertino, Joseph R.; Sabaawy, Hatem E.

    2016-01-01

    Purpose Current prostate cancer (PCa) management calls for identifying novel and more effective therapies. Self-renewing tumor-initiating cells (TICs) hold intrinsic therapy-resistance and account for tumor relapse and progression. As BMI-1 regulates stem cell self-renewal, impairing BMI-1 function for TICs-tailored therapies appears to be a promising approach. Experimental design We have previously developed a combined immunophenotypic and time-of-adherence assay to identify CD49bhiCD29hiCD44hi cells as human prostate TICs. We utilized this assay with patient derived prostate cancer cells and xenograft models to characterize the effects of pharmacological inhibitors of BMI-1. Results We demonstrate that in cell lines and patient-derived TICs, BMI-1 expression is upregulated and associated with stem cell-like traits. From a screened library, we identified a number of post-transcriptional small molecules that target BMI-1 in prostate TICs. Pharmacological inhibition of BMI-1 in patient-derived cells significantly decreased colony formation in vitro and attenuated tumor initiation in vivo, thereby functionally diminishing the frequency of TICs, particularly in cells resistant to proliferation- and androgen receptor (AR)-directed therapies, without toxic effects on normal tissues. Conclusions Our data offer a paradigm for targeting TICs and support the development of BMI-1-targeting therapy for a more effective PCa treatment. PMID:27307599

  12. Neoplastic progression of rat tracheal epithelial cells involves resistance to transforming growth factor beta

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Thomassen, D.G.

    1988-01-01

    Primary, transformed, and tumor-derived rat tracheal epithelial (RTE) cells were grown in serum-free medium containing 0 to 300 pg/mL transforming growth factor beta (TGFβ) markedly inhibited the growth of primary RTE cells with a 50% drop in the efficiency of colony formation seen at TGFβ concentrations between 10 and 30 pg/ mL. The effect of TGFβ on preneoplastic RTE cells was similar to the effect on normal primary RTE cells. Cell lines established from tumors produced by inoculation of transformed RTE cells into nude mice were relatively resistant to -TGFβ-induced growth inhibition. Resistance to TGFβ-induced growth inhibition, therefore, appears to be a late event in the development of neoplasia. (author)

  13. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    Science.gov (United States)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  14. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  15. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model.

    Science.gov (United States)

    Jablonska, Jadwiga; Leschner, Sara; Westphal, Kathrin; Lienenklaus, Stefan; Weiss, Siegfried

    2010-04-01

    Angiogenesis is a hallmark of malignant neoplasias, as the formation of new blood vessels is required for tumors to acquire oxygen and nutrients essential for their continued growth and metastasis. However, the signaling pathways leading to tumor vascularization are not fully understood. Here, using a transplantable mouse tumor model, we have demonstrated that endogenous IFN-beta inhibits tumor angiogenesis through repression of genes encoding proangiogenic and homing factors in tumor-infiltrating neutrophils. We determined that IFN-beta-deficient mice injected with B16F10 melanoma or MCA205 fibrosarcoma cells developed faster-growing tumors with better-developed blood vessels than did syngeneic control mice. These tumors displayed enhanced infiltration by CD11b+Gr1+ neutrophils expressing elevated levels of the genes encoding the proangiogenic factors VEGF and MMP9 and the homing receptor CXCR4. They also expressed higher levels of the transcription factors c-myc and STAT3, known regulators of VEGF, MMP9, and CXCR4. In vitro, treatment of these tumor-infiltrating neutrophils with low levels of IFN-beta restored expression of proangiogenic factors to control levels. Moreover, depletion of these neutrophils inhibited tumor growth in both control and IFN-beta-deficient mice. We therefore suggest that constitutively produced endogenous IFN-beta is an important mediator of innate tumor surveillance. Further, we believe our data help to explain the therapeutic effect of IFN treatment during the early stages of cancer development.

  16. The proangiogenic phenotype of tumor-derived endothelial cells is reverted by the overexpression of platelet-activating factor acetylhydrolase.

    Science.gov (United States)

    Doublier, Sophie; Ceretto, Monica; Lupia, Enrico; Bravo, Stefania; Bussolati, Benedetta; Camussi, Giovanni

    2007-10-01

    We previously reported that human tumor-derived endothelial cells (TEC) have an angiogenic phenotype related to the autocrine production of several angiogenic factors. The purpose of the present study was to evaluate whether an enhanced synthesis of platelet-activating factor (PAF) might contribute to the proangiogenic characteristics of TEC and whether its inactivation might inhibit angiogenesis. To address the potential role of PAF in the proangiogenic characteristics of TEC, we engineered TEC to stably overexpress human plasma PAF-acetylhydrolase (PAF-AH), the major PAF-inactivating enzyme, and we evaluated in vitro and in vivo angiogenesis. TECs were able to synthesize a significantly enhanced amount of PAF compared with normal human microvascular endothelial cells when stimulated with thrombin, vascular endothelial growth factor, or soluble CD154. Transfection of TEC with PAF-AH (TEC-PAF-AH) significantly inhibited apoptosis resistance and spontaneous motility of TEC. In addition, PAF and vascular endothelial growth factor stimulation enhanced the motility and adhesion of TEC but not of TEC-PAF-AH. In vitro, TEC-PAF-AH lost the characteristic ability of TEC to form vessel-like structures when plated on Matrigel. Finally, when cells were injected s.c. within Matrigel in severe combined immunodeficiency mice or coimplanted with a renal carcinoma cell line, the overexpression of PAF-AH induced a significant reduction of functional vessel formation. These results suggest that inactivation of PAF, produced by TEC, by the overexpression of plasma PAF-AH affects survival, migration, and the angiogenic response of TEC both in vitro and in vivo.

  17. Anti-tumor activity of a novel HS-mimetic-vascular endothelial growth factor binding small molecule.

    Directory of Open Access Journals (Sweden)

    Kazuyuki Sugahara

    Full Text Available The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl-3H-imidazole-4-carbaldehyde was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS, which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7 which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor.

  18. Immunohistochemical examination of effects of kefir, koumiss and commercial probiotic capsules on platelet derived growth factor-c and platelet derived growth factor receptor-alpha expression in mouse liver and kidney.

    Science.gov (United States)

    Bakir, B; Sari, E K; Aydin, B D; Yildiz, S E

    2015-04-01

    We investigated using immunohistochemistry the effects of kefir, koumiss and commercial probiotic capsules on the expression of platelet derived growth factor-c (PDGF-C) and platelet derived growth factor receptor-alpha (PDGFR-α) in mouse liver and kidney. Mice were assigned to four groups: group 1 was given commercial probiotic capsules, group 2 was given kefir, group 3 was given koumiss and group 4 was untreated. After oral administration for 15 days, body weights were recorded and liver and kidney tissue samples were obtained. Hematoxylin and eosin staining was used to examine histology. PDGF-C and PDGFR-α in liver and kidney were localized using the streptavidin-biotin peroxidase complex method (ABC). We found that the weights of the mice in the kefir, koumiss and commercial probiotic capsules groups increased compared to the control group. No differences in liver and kidney histology were observed in any of the experimental groups. Kefir, koumiss and the commercial probiotic preparation increased PDGF-C and PDGFR-α expression.

  19. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation.

    Science.gov (United States)

    Tilley, Cynthia; Deep, Gagan; Agarwal, Chapla; Wempe, Michael F; Biedermann, David; Valentová, Kateřina; Kren, Vladimir; Agarwal, Rajesh

    2016-01-01

    Basal cell carcinoma (BCC) is the most common cancer worldwide, and its current treatment options are insufficient and toxic. Surprisingly, unlike several other malignancies, chemopreventive efforts against BCC are almost lacking. Silibinin, a natural agent from milk thistle seeds, has shown strong efficacy against several cancers including ultraviolet radiation-induced skin (squamous) cancer; however, its potential activity against BCC is not yet examined. Herein, for the first time, we report the efficacy of silibinin and its oxidation product 2,3-dehydrosilibinin (DHS) against BCC both in vitro and in vivo using ASZ (p53 mutated) and BSZ (p53 deleted) cell lines derived from murine BCC tumors. Both silibinin and DHS significantly inhibited cell growth and clonogenicity while inducing apoptosis in a dose- and time-dependent manner, with DHS showing higher activity at lower concentrations. Both agents also inhibited the mitogenic signaling by reducing EGFR, ERK1/2, Akt, and STAT3 phosphorylation and suppressed the activation of transcription factors NF-κB and AP-1. More importantly, in an ectopic allograft model, oral administration of silibinin and DHS (200 mg/kg body weight) strongly inhibited the ASZ tumor growth by 44% and 71% (P < 0.05), respectively, and decreased the expression of proliferation biomarkers (PCNA and cyclin D1) as well as NF-κB p50 and c-Fos in the tumor tissues. Taken together, these results provide the first evidence for the efficacy and usefulness of silibinin and its derivative DHS against BCC, and suggest the need for additional studies with these agents in pre-clinical and clinical BCC chemoprevention and therapy models. © 2014 Wiley Periodicals, Inc.

  20. In vivo measurement of tumor estradiol and Vascular Endothelial Growth Factor in breast cancer patients

    International Nuclear Information System (INIS)

    Garvin, Stina; Dabrosin, Charlotta

    2008-01-01

    Angiogenesis, crucial for tumor progression, is a process regulated in the tissue micro-environment. Vascular endothelial growth factor (VEGF) is a potent stimulatory factor of angiogenesis and a negative prognostic indicator of breast cancer. VEGF is biologically active in the extracellular space and hitherto, there has been a lack of techniques enabling sampling of angiogenic molecules such as VEGF in situ. The majority of breast cancers are estrogen-dependent, and estrogen has been shown to regulate VEGF in normal breast tissue and experimental breast cancer. We investigated if microdialysis may be applicable in human breast cancer for sampling of extracellular VEGF in situ and to explore if there is an association with local estradiol and VEGF levels in normal and cancerous breast tissue. Microdialysis was used to sample VEGF and estradiol in tumors and adjacent normal breast tissue in postmenopausal breast cancer patients. VEGF and estradiol were also measured in plasma, and immunohistochemical staining for VEGF was performed on tumor sections. We show that in vivo levels of extracellular VEGF were significantly higher in breast cancer tumors than in normal adjacent breast tissue. There was a significant positive correlation between estradiol and extracellular VEGF in normal breast tissue. However, no correlation was detected between estradiol and VEGF in tumors or between tumor VEGF and plasma VEGF. We conclude that VEGF and estradiol correlates significantly in normal breast tissue. Microdialysis may be used to provide novel insight in breast tumor biology and the regulation of molecules in the extracellular space of human breast tumors in vivo

  1. Hepatoma-derived growth factor-related protein-3 is a novel angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Michelle E LeBlanc

    Full Text Available Hepatoma-derived growth factor-related protein-3 (Hdgfrp3 or HRP-3 was recently reported as a neurotrophic factor and is upregulated in hepatocellular carcinoma to promote cancer cell survival. Here we identified HRP-3 as a new endothelial ligand and characterized its in vitro and in vivo functional roles and molecular signaling. We combined open reading frame phage display with multi-round in vivo binding selection to enrich retinal endothelial ligands, which were systematically identified by next generation DNA sequencing. One of the identified endothelial ligands was HRP-3. HRP-3 expression in the retina and brain was characterized by Western blot and immunohistochemistry. Cell proliferation assay showed that HRP-3 stimulated the growth of human umbilical vein endothelial cells (HUVECs. HRP-3 induced tube formation of HUVECs in culture. Wound healing assay indicated that HRP-3 promoted endothelial cell migration. HRP-3 was further confirmed for its in vitro angiogenic activity by spheroid sprouting assay. HRP-3 extrinsically activated the extracellular-signal-regulated kinase ½ (ERK1/2 pathway in endothelial cells. The angiogenic activity of HRP-3 was independently verified by mouse cornea pocket assay. Furthermore, in vivo Matrigel plug assay corroborated HRP-3 activity to promote new blood vessel formation. These results demonstrated that HRP-3 is a novel angiogenic factor.

  2. Discontinuous Schedule of Bevacizumab in Colorectal Cancer Induces Accelerated Tumor Growth and Phenotypic Changes

    Directory of Open Access Journals (Sweden)

    Selma Becherirat

    2018-04-01

    Full Text Available Antiangiogenics administration in colorectal cancer patients seemed promising therapeutic approach. Inspite of early encouraging results, it however gave only modest clinical benefits. When AAG was administered with discontinuous schedule, the disease showed acceleration in certain cases. Though resistance to AAG has been extensively studied, it is not documented for discontinuous schedules. To simulate clinical situations, we subjected a patient-derived CRC subcutaneous xenograft in mice to three different protocols: 1 AAG (bevacizumab treatment for 30 days (group A (group B was the control, 2 bevacizumab treatment for 50 days (group C and bevacizumab for 30 days and 20 without treatment (group D, and 3 bevacizumab treatment for 70 days (group E and 70 days treatment with a drug-break period between day 30 and 50 (group F. The tumor growth was monitored, and at sacrifice, the vascularity of tumors was measured and the proangiogenic factors quantified. Tumor phenotype was studied by quantifying cancer stem cells. Interrupting bevacizumab during treatment accelerated tumor growth and revascularization. A significant increase of proangiogenic factors was observed when therapy was stopped. On withdrawal of bevacizumab, as also after the drug-break period, the plasmatic VEGF increased significantly. Similarly, a notable increase of CSCs after the withdrawal and drug-break period of bevacizumab was observed (P<.01. The present study indicates that bevacizumab treatment needs to be maintained because discontinuous schedules tend to trigger tumor regrowth, and increase tumor resistance and CSC heterogeneity.

  3. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  4. Numerical modelling of the influence of stromal cells on tumor growth and angiogenesis

    Science.gov (United States)

    Sakiyama, Nobuyuki; Nagayama, Katsuya

    2018-01-01

    According to the statistics provided by the Ministry of Health, Labor and Welfare the death of one in 3.5 Japanese people is attributed to tumor highlighting the need for active research on malignant tumors. Early detection can be cited as a countermeasure against malignant tumors, but it is often difficult to observe the growth process, and thorough understanding of the phenomena will aid in more efficient detection of such tumors. A malnourished benign tumor may create new blood vessels from existing ones and proliferate abnormally by absorbing nutrients from these newly created blood vessels to become malignant. Different factors influence the shape of tumors and shape is an important factor in evaluating their malignancy. Because interstitial cells greatly influence tumor growth, investigating the influence of stromal cells on tumor growth will help in developing a better understanding of the phenomenon.

  5. Knockdown of platinum-induced growth differentiation factor 15 abrogates p27-mediated tumor growth delay in the chemoresistant ovarian cancer model A2780cis

    International Nuclear Information System (INIS)

    Meier, Julia C; Haendler, Bernard; Seidel, Henrik; Groth, Philip; Adams, Robert; Ziegelbauer, Karl; Kreft, Bertolt; Beckmann, Georg; Sommer, Anette; Kopitz, Charlotte

    2015-01-01

    Molecular mechanisms underlying the development of resistance to platinum-based treatment in patients with ovarian cancer remain poorly understood. This is mainly due to the lack of appropriate in vivo models allowing the identification of resistance-related factors. In this study, we used human whole-genome microarrays and linear model analysis to identify potential resistance-related genes by comparing the expression profiles of the parental human ovarian cancer model A2780 and its platinum-resistant variant A2780cis before and after carboplatin treatment in vivo. Growth differentiation factor 15 (GDF15) was identified as one of five potential resistance-related genes in the A2780cis tumor model. Although A2780-bearing mice showed a strong carboplatin-induced increase of GDF15 plasma levels, the basal higher GDF15 plasma levels of A2780cis-bearing mice showed no further increase after short-term or long-term carboplatin treatment. This correlated with a decreased DNA damage response, enhanced AKT survival signaling and abrogated cell cycle arrest in the carboplatin-treated A2780cis tumors. Furthermore, knockdown of GDF15 in A2780cis cells did not alter cell proliferation but enhanced cell migration and colony size in vitro. Interestingly, in vivo knockdown of GDF15 in the A2780cis model led to a basal-enhanced tumor growth, but increased sensitivity to carboplatin treatment as compared to the control-transduced A2780cis tumors. This was associated with larger necrotic areas, a lobular tumor structure and increased p53 and p16 expression of the carboplatin-treated shGDF15-A2780cis tumors. Furthermore, shRNA-mediated GDF15 knockdown abrogated p27 expression as compared to control-transduced A2780cis tumors. In conclusion, these data show that GDF15 may contribute to carboplatin resistance by suppressing tumor growth through p27. These data show that GDF15 might serve as a novel treatment target in women with platinum-resistant ovarian cancer

  6. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor–superantigen conjugate

    International Nuclear Information System (INIS)

    Sun, Qingwen; Jiang, Songmin; Han, Baohui; Sun, Tongwen; Li, Zhengnan; Zhao, Lina; Gao, Qiang; Sun, Jialin

    2012-01-01

    Highlights: ► We construct and purify a fusion protein VEGF–SEA. ► VEGF–SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. ► T cells driven by VEGF–SEA were accumulated around tumor cells bearing VEGFR by mice image model. ► VEGF–SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. ► The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF–SEA treated with 15 μg, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4 + and CD8 + T cells driven by VEGF–SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF–SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  7. Association of Vascular Endothelial Growth Factor Expression with Tumor Angiogenesis and with Early Relapse in Primary Breast Cancer

    Science.gov (United States)

    Hoshina, Seigo; Takayanagi, Toshiaki; Tominaga, Takeshi

    1994-01-01

    Angiogenesis is an independent prognostic indicator in breast cancer. In this report, the relationship between expression of vascular endothclial growth factor (VEGF; a selective mitogen for endothelial cells) and the microvessel density was examined in 103 primary breast cancers. The expression of VEGF was evaluated by immunocytochemical staining using anti‐VEGF antibody. The microvessel density, which was determined by immunostaining for factor VIII antigen, in VEGF‐rich tumors was clearly higher than that in VEGF‐poor tumors (P<0.01). There was a good correlation between VEGF expression and the increment of microvessel density. Furthermore, postoperative survey demonstrated that the relapse‐free survival rate of VEGF‐rich tumors was significantly worse than that of VEGF‐poor tumors. It was suggested that the expression of VEGF is closely associated with the promotion of angiogenesis and with early relapse in primary breast cancer. PMID:7525523

  8. Effects of Acanthus ebracteatus Vahl on tumor angiogenesis and on tumor growth in nude mice implanted with cervical cancer

    International Nuclear Information System (INIS)

    Mahasiripanth, Taksanee; Hokputsa, Sanya; Niruthisard, Somchai; Bhattarakosol, Parvapan; Patumraj, Suthiluk

    2012-01-01

    The aim of this study was to examine the effects of the crude extract of Acanthus ebracteatus Vahl (AE) on tumor growth and angiogenesis by utilizing a tumor model in which nude mice were implanted with cervical cancer cells containing human papillomavirus 16 DNA (HPV-16 DNA). The growth-inhibitory effect of AE was investigated in four different cell types: CaSki (HPV-16 positive), HeLa (HPV-18 positive), hepatocellular carcinoma cells (HepG2), and human dermal fibroblast cells (HDFs). The cell viabilities and IC 50 values of AE were determined in cells incubated with AE for different lengths of time. To conduct studies in vivo, female BALB/c nude mice (aged 6–7 weeks, weighing 20–25 g) were used. A cervical cancer-derived cell line (CaSki) with integrated HPV-16 DNA was injected subcutaneously (1 × 10 7 cells/200 μL) in the middle dorsum of each animal (HPV group). One week after injection, mice were fed orally with AE crude extract at either 300 or 3000 mg/kg body weight/day for 14 or 28 days (HPV-AE groups). Tumor microvasculature and capillary vascularity were determined using laser scanning confocal microscopy. Tumor tissue was collected from each mouse to evaluate tumor histology and vascular endothelial growth factor (VEGF) immunostaining. The time-response curves of AE and the dose-dependent effect of AE on growth inhibition were determined. After a 48-hour incubation period, the IC 50 of AE in CaSki was discovered to be significantly different from that of HDFs (P < 0.05). A microvascular network was observed around the tumor area in the HPV group on days 21 and 35. Tumor capillary vascularity in the HPV group was significantly increased compared with the control group (P < 0.001). High-dose treatment of AE extract (HPV-3000AE group) significantly attenuated the increase in VEGF expression and tumor angiogenesis in mice that received either the 14- or 28-day treatment period (P < 0.001). Our novel findings demonstrated that AE crude extract could

  9. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp transcription factors

    Directory of Open Access Journals (Sweden)

    Pathi Satya

    2011-08-01

    Full Text Available Abstract Background Betulinic acid (BA inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. Methods The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a and ZBTB10 mRNA expression. Results BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS, ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. Conclusions These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.

  10. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    International Nuclear Information System (INIS)

    Chintharlapalli, Sudhakar; Papineni, Sabitha; Lei, Ping; Pathi, Satya; Safe, Stephen

    2011-01-01

    Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression. BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent

  11. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  12. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress

    Directory of Open Access Journals (Sweden)

    Stathopoulos Efstathios N

    2010-09-01

    Full Text Available Abstract Introduction Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo. Methods For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis. Results Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this

  13. Quantitative gene-expression of the tumor angiogenesis markers vascular endothelial growth factor, integrin alphaV and integrin beta3 in human neuroendocrine tumors

    DEFF Research Database (Denmark)

    Oxboel, Jytte; Binderup, Tina; Knigge, Ulrich

    2009-01-01

    , in neuroendocrine tumors. We used quantitative real-time PCR for measuring mRNA gene-expression of vascular endothelial growth factor (VEGF), integrin alphaV, and integrin beta3, and CD34 for a group of patients with neuroendocrine tumors (n=13). Tissue from patients with colorectal cancer liver metastases (n=14...... compared to both colorectal liver metastases (p=0.10) and normal liver tissue (p=0.06). In neuroendocrine tumors, gene-expression was highly variable of VEGF (530-fold), integrin alphaV (23-fold) and integrin beta3 (106-fold). Quantitative gene-expression levels of the key angiogenesis molecules VEGF......Anti-angiogenesis treatment is a promising new therapy for cancer that recently has also been suggested for patients with neuroendocrine tumors. The aim of the present study was therefore to investigate the level of tumor angiogenesis, and thereby the molecular basis for anti-angiogenesis treatment...

  14. Biochemomechanical poroelastic theory of avascular tumor growth

    Science.gov (United States)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2016-09-01

    Tumor growth is a complex process involving genetic mutations, biochemical regulations, and mechanical deformations. In this paper, a thermodynamics-based nonlinear poroelastic theory is established to model the coupling among the mechanical, chemical, and biological mechanisms governing avascular tumor growth. A volumetric growth law accounting for mechano-chemo-biological coupled effects is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the tumor growth are revealed under different environmental constraints. We show that the mechano-chemo-biological coupling triggers anisotropic and heterogeneous growth, leading to the formation of layered structures in a growing tumor. There exists a steady state in which tumor growth is balanced by resorption. The influence of external confinements on tumor growth is also examined. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly dictate the steady state of tumor volume. Qualitative and quantitative agreements with experimental observations indicate the developed model is capable of capturing the essential features of avascular tumor growth in various environments.

  15. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    International Nuclear Information System (INIS)

    Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D.; Eisinger-Mathason, T.S. Karin; Choy, Edwin; Kirsch, David G.; Simon, M. Celeste

    2015-01-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm 3 within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm 3 for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature

  16. Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts

    International Nuclear Information System (INIS)

    Peterson, Sarah M; Concino, Michael F; Liaw, Lucy; Martini, Paolo GV; Iskenderian, Andrea; Cook, Lynette; Romashko, Alla; Tobin, Kristen; Jones, Michael; Norton, Angela; Gómez-Yafal, Alicia; Heartlein, Michael W

    2010-01-01

    Extracellular human sulfatases modulate growth factor signaling by alteration of the heparin/heparan sulfate proteoglycan (HSPG) 6-O-sulfation state. HSPGs bind to numerous growth factor ligands including fibroblast growth factors (FGF), epidermal growth factors (EGF), and vascular endothelial growth factors (VEGF), and are critically important in the context of cancer cell growth, invasion, and metastasis. We hypothesized that sulfatase activity in the tumor microenvironment would regulate tumor growth in vivo. We established a model of stable expression of sulfatases in the human breast cancer cell line MDA-MB-231 and purified recombinant human Sulfatase 2 (rhSulf2) for exogenous administration. In vitro studies were performed to measure effects on breast cancer cell invasion and proliferation, and groups were statistically compared using Student's t-test. The effects of hSulf2 on tumor progression were tested using in vivo xenografts with two methods. First, MDA-MB-231 cells stably expressing hSulf1, hSulf2, or both hSulf1/hSulf2 were grown as xenografts and the resulting tumor growth and vascularization was compared to controls. Secondly, wild type MDA-MB-231 xenografts were treated by short-term intratumoral injection with rhSulf2 or vehicle during tumor growth. Ultrasound analysis was also used to complement caliper measurement to monitor tumor growth. In vivo studies were statistically analyzed using Student's t test. In vitro, stable expression of hSulf2 or administration of rhSulf2 in breast cancer cells decreased cell proliferation and invasion, corresponding to an inhibition of ERK activation. Stable expression of the sulfatases in xenografts significantly suppressed tumor growth, with complete regression of tumors expressing both hSulf1 and hSulf2 and significantly smaller tumor volumes in groups expressing hSulf1 or hSulf2 compared to control xenografts. Despite significant suppression of tumor volume, sulfatases did not affect vascular

  17. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis.

    Science.gov (United States)

    Besmer, Dahlia M; Curry, Jennifer M; Roy, Lopamudra D; Tinder, Teresa L; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y; Gendler, Sandra J; Mukherjee, Pinku

    2011-07-01

    MUC1 is overexpressed and aberrantly glycosylated in more than 60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In this study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared with both KC and KCM. Cell lines derived from KCKO tumors have significantly less tumorigenic capacity compared with cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared with mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor, platelet-derived growth factor, or matrix metalloproteinase 9. Further, significantly less KCKO cells entered the G(2)-M phase of the cell cycle compared with the KCM cells. Proteomics and Western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of mitogen-activated protein kinase (MAPK), as well as a significant decrease in nestin and tubulin-α2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. ©2011 AACR

  18. Hypoxia promotes tumor growth in linking angiogenesis to immune escape

    Directory of Open Access Journals (Sweden)

    Salem eCHOUAIB

    2012-02-01

    Full Text Available Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides as potential targets, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection and contains many overlapping mechanisms to evade antigen specific immunotherapy. Obviously, tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival and metastasis. Among the hypoxia-induced genes, hypoxia-inducible factor (HIF-1 and vascular endothelial growth factor (VEGF play a determinant role in promoting tumor cell growth and survival. In this regard, hypoxia is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed.

  19. Coupled Hybrid Continuum-Discrete Model of Tumor Angiogenesis and Growth.

    Directory of Open Access Journals (Sweden)

    Jie Lyu

    Full Text Available The processes governing tumor growth and angiogenesis are codependent. To study the relationship between them, we proposed a coupled hybrid continuum-discrete model. In this model, tumor cells, their microenvironment (extracellular matrixes, matrix-degrading enzymes, and tumor angiogenic factors, and their network of blood vessels, described by a series of discrete points, were considered. The results of numerical simulation reveal the process of tumor growth and the change in microenvironment from avascular to vascular stage, indicating that the network of blood vessels develops gradually as the tumor grows. Our findings also reveal that a tumor is divided into three regions: necrotic, semi-necrotic, and well-vascularized. The results agree well with the previous relevant studies and physiological facts, and this model represents a platform for further investigations of tumor therapy.

  20. Hepatic Radiofrequency Ablation–induced Stimulation of Distant Tumor Growth Is Suppressed by c-Met Inhibition

    Science.gov (United States)

    Kumar, Gaurav; Moussa, Marwan; Wang, Yuanguo; Rozenblum, Nir; Galun, Eithan; Goldberg, S. Nahum

    2016-01-01

    Purpose To elucidate how hepatic radiofrequency (RF) ablation affects distant extrahepatic tumor growth by means of two key molecular pathways. Materials and Methods Rats were used in this institutional animal care and use committee–approved study. First, the effect of hepatic RF ablation on distant subcutaneous in situ R3230 and MATBIII breast tumors was evaluated. Animals were randomly assigned to standardized RF ablation, sham procedure, or no treatment. Tumor growth rate was measured for 3½ to 7 days. Then, tissue was harvested for Ki-67 proliferative indexes and CD34 microvascular density. Second, hepatic RF ablation was performed for hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and c-Met receptor expression measurement in periablational rim, serum, and distant tumor 24 hours to 7 days after ablation. Third, hepatic RF ablation was combined with either a c-Met inhibitor (PHA-665752) or VEGF receptor inhibitor (semaxanib) and compared with sham or drug alone arms to assess distant tumor growth and growth factor levels. Finally, hepatic RF ablation was performed in rats with c-Met–negative R3230 tumors for comparison with the native c-Met–positive line. Tumor size and immunohistochemical quantification at day 0 and at sacrifice were compared with analysis of variance and the two-tailed Student t test. Tumor growth curves before and after treatment were analyzed with linear regression analysis to determine mean slopes of pre- and posttreatment growth curves on a per-tumor basis and were compared with analysis of variance and paired two-tailed t tests. Results After RF ablation of normal liver, distant R3230 tumors were substantially larger at 7 days compared with tumors treated with the sham procedure and untreated tumors, with higher growth rates and tumor cell proliferation. Similar findings were observed in MATBIII tumors. Hepatic RF ablation predominantly increased periablational and serum HGF and downstream distant tumor

  1. Acceleration of wound healing with stem cell-derived growth factors.

    Science.gov (United States)

    Tamari, Masayuki; Nishino, Yudai; Yamamoto, Noriyuki; Ueda, Minoru

    2013-01-01

    Recently, it has been revealed that bone marrow-derived mesenchymal stem cells (MSCs) accelerate the healing of skin wounds. Although the proliferative capacity of MSCs decreases with age, MSCs secrete many growth factors. The present study examined the effect of mesenchymal stem cell-conditioned medium (MSC-CM) on wound healing. The wound-healing process was observed macroscopically and histologically using an excisional wound-splinting mouse model, and the expression level of hyaluronic acid related to the wound healing process was observed to evaluate the wound-healing effects of MSC, MSC-CM, and control (phosphate-buffered saline). The MSC and MSC-CM treatments accelerated wound healing versus the control group. At 7 days after administration, epithelialization was accelerated, thick connective tissue had formed in the skin defect area, and the wound area was reduced in the MSC and MSC-CM groups versus the control group. At 14 days, infiltration of inflammatory cells was decreased versus 7 days, and the wounds were closed in the MSC and MSC-CM groups, while a portion of epithelium was observed in the control group. At 7 and 14 days, the MSC and MSC-CM groups expressed significantly higher levels of hyaluronic acid versus the control group (P wound healing versus the control group to a similar degree. Accordingly, it is suggested that the MSC-CM contains growth factor derived from stem cells, is able to accelerate wound healing as well as stem cell transplantation, and may become a new therapeutic method for wound healing in the future.

  2. Dynamics of tumor oxygenation, CD31 staining and transforming growth factor-β levels after treatment with radiation or cyclophosphamide in the rat 13762 mammary carcinoma

    International Nuclear Information System (INIS)

    Kakeji, Yoshihiro; Maehara, Yoshihiko; Ikebe, Masahiko; Teicher, Beverly A.

    1997-01-01

    Purpose: Tumors are dynamic tissues that undergo marked molecular, biochemical, and physiologic changes in response to cytotoxic anticancer therapies. Understanding the changes in tumor oxygenation and transforming growth factor-β expression may allow improved treatment regimens to be developed. Methods and Materials: The effects of a single dose of radiation therapy (20 Gy) or a single dose of chemotherapy (cyclophosphamide, 250 mg/kg) on several molecular and physiologic parameters of the rat 13762 mammary carcinoma growing subcutaneously in female Fischer 344 rats were explored. Results: Treatment of the tumor-bearing animals with 20 Gy of radiation killed about two logs (99%) of the 13762 tumor cells, and treatment with cyclophosphamide (250 mg/kg) killed about 1.5 logs (95%) of the 13762 tumor cells. Hypoxia, as determined by a pO 2 electrode, initially decreased in the tumors of treated animals until 6 h. posttreatment and then increased, so that 24 h. after administration of the radiation therapy or the chemotherapy the number of intratumoral vessels as determined by CD31 staining increased until about 24 h after cytotoxic therapy. Transforming growth factor-β1, measured by radioimmunoassay, peaked in the serum between 6 h and 18 h and again between 72 h and 96 h after radiation therapy and peaked in the tumor at 24 h and again at 72 h after radiation therapy. The first serum peak after cyclophosphamide was 3 h after drug injection, with second peaks at 36 h and 48 h after drug administration. In the tumor, transforming growth factor-β1 peaked between 6 h and 8 h after drug administration and again 36 h and 72 h after drug. Apoptosis was maximal 6 h after 20 Gy and 24 h after cyclophosphamide. Vascular endothelial growth factor was also increased in tumors after cytotoxic therapy. Conclusions: These changes in the tumor physiologic status are sufficient to protect the tumor from a second cytotoxic insult administered days afterwards and to result in a

  3. Malignant melanoma of the nasal cavity: a case report with examination of KIT and platelet derived growth factor receptor-α (PDGFRA

    Directory of Open Access Journals (Sweden)

    Tadashi Terada

    2011-10-01

    Full Text Available Although several clinicopathological studies of malignant melanoma of the nasal cavity have been reported, there are no studies of the expression and gene mutation of KIT and platelet derived growth factor receptor-α (PDGFRA in melanoma of the nasal cavity. A 92-year-old Japanese woman consulted to our hospital because of right nasal obstruction and epistaxis. Physical examination and imaging modalities showed a tumor of the right nasal cavity. A biopsy was taken, and it showed malignant epithelioid cells with melanin deposition. Immunohistochemically, the tumor was positive for S100 protein, HMB45, p53, Ki-67 (labeling=20%, KIT and PDGFRA. The tumor was negative for cytokeratins (AE1/3 and CAM5.2. A genetic analysis using PCR-direct sequencing revealed no mutation of KIT gene (exons 9, 11, 13, and 17 or the PDGFRA gene (exons 12 and 18. The pathological diagnosis was primary malignant melanoma of the nasal cavity. The tumor was reduced in size by local resection and chemotherapy (Darthmose regimen: dacarbazine, carmustine, cisplatine, and tamoxifen, and the patient is now alive and free from metastasis 9 months after the first manifestation. In conclusion, the author reported a case of melanoma of the nasal cavity expressing KIT and PDGFRA without gene mutations of KIT and PDGFRA.

  4. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging.

    Science.gov (United States)

    Liu, Heng; Chen, Xiao; Xue, Wei; Chu, Chengchao; Liu, Yu; Tong, Haipeng; Du, Xuesong; Xie, Tian; Liu, Gang; Zhang, Weiguo

    The highly infiltrative and invasive nature of glioma cells often leads to blurred tumor margins, resulting in incomplete tumor resection and tumor recurrence. Accurate detection and precise delineation of glioma help in preoperative delineation, surgical planning and survival prediction. In this study, recombinant epidermal growth factor-like domain-1, derived from human coagulation factor VII, was conjugated to iron oxide nanoparticles (IONPs) for targeted glioma magnetic resonance (MR) imaging. The synthesized EGF1-EGFP-IONPs exhibited excellent targeting ability toward tissue factor (TF)-positive U87MG cells and human umbilical vein endothelial cells in vitro, and demonstrated persistent and efficient MR contrast enhancement up to 12 h for preclinical glioma models with high targeting specificity in vivo. They hold great potential for clinical translation and developing targeted theranostics against brain glioma.

  5. Assessment of Hypoxia in the Stroma of Patient-Derived Pancreatic Tumor Xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Lohse, Ines; Lourenco, Corey; Ibrahimov, Emin; Pintilie, Melania [Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9 (Canada); Tsao, Ming-Sound [Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9 (Canada); Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, ON M5G2C4 (Canada); Department of Laboratory Medicine and Pathobiology, 27 King’s College Circle, University of Toronto, Toronto, ON M5S1A1 (Canada); Hedley, David W., E-mail: david.hedley@uhn.ca [Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9 (Canada); Departments of Medical Biophysics University of Toronto, 610 University Ave., Toronto, ON M5G2M9 (Canada); Departments of Medicine, University of Toronto, 610 University Ave., Toronto, ON M5G2M9 (Canada); Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, 610 University Ave., Toronto, ON M5G2M9 (Canada)

    2014-02-26

    The unusually dense stroma of pancreatic cancers is thought to play an important role in their biological aggression. The presence of hypoxia is also considered an adverse prognostic factor. Although it is usually assumed that this is the result of effects of hypoxia on the epithelial component, it is possible that hypoxia exerts indirect effects via the tumor stroma. We therefore measured hypoxia in the stroma of a series of primary pancreatic cancer xenografts. Nine patient-derived pancreatic xenografts representing a range of oxygenation levels were labeled by immunohistochemistry for EF5 and analyzed using semi-automated pattern recognition software. Hypoxia in the tumor and stroma was correlated with tumor growth and metastatic potential. The extent of hypoxia varied from 1%–39% between the different models. EF5 labeling in the stroma ranged from 0–20% between models, and was correlated with the level of hypoxia in the tumor cell area, but not microvessel density. Tumor hypoxia correlated with spontaneous metastasis formation with the exception of one hypoxic model that showed disproportionately low levels of hypoxia in the stroma and was non-metastatic. Our results demonstrate that hypoxia exists in the stroma of primary pancreatic cancer xenografts and suggest that stromal hypoxia impacts the metastatic potential.

  6. Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors

    Science.gov (United States)

    Ahmed, Muhammad S.; Rainer, Carolyn; Nielsen, Sebastian R.; Quaranta, Valeria; Weyer-Czernilofsky, Ulrike; Engle, Danielle D.; Perez-Mancera, Pedro A.; Coupland, Sarah E.; Taktak, Azzam; Bogenrieder, Thomas; Tuveson, David A.; Campbell, Fiona; Schmid, Michael C.; Mielgo, Ainhoa

    2017-01-01

    Tumor-associated macrophages (TAM) and myofibroblasts are key drivers in cancer that are associated with drug resistance in many cancers, including pancreatic ductal adenocarcinoma (PDAC). However, our understanding of the molecular mechanisms by which TAM and fibroblasts contribute to chemoresistance is unclear. In this study, we found that TAM and myofibroblasts directly support chemoresistance of pancreatic cancer cells by secreting insulin-like growth factors (IGF) 1 and 2, which activate insulin/IGF receptors on pancreatic cancer cells. Immunohistochemical analysis of biopsies from patients with pancreatic cancer revealed that 72% of the patients expressed activated insulin/IGF receptors on tumor cells, and this positively correlates with increased CD163+ TAM infiltration. In vivo, we found that TAM and myofibroblasts were the main sources of IGF production, and pharmacologic blockade of IGF sensitized pancreatic tumors to gemcitabine. These findings suggest that inhibition of IGF in combination with chemotherapy could benefit patients with PDAC, and that insulin/IGF1R activation may be used as a biomarker to identify patients for such therapeutic intervention. PMID:27742686

  7. Geometrical approach to tumor growth

    OpenAIRE

    Escudero, Carlos

    2006-01-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (200...

  8. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    International Nuclear Information System (INIS)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-01-01

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice

  9. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen, E-mail: srrshurology@163.com

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  10. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer.

    Science.gov (United States)

    Martey, Orleans; Nimick, Mhairi; Taurin, Sebastien; Sundararajan, Vignesh; Greish, Khaled; Rosengren, Rhonda J

    2017-01-01

    Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA) micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks) also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg) for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles.

  11. Phosphoproteomic fingerprinting of epidermal growth factor signaling and anticancer drug action in human tumor cells.

    Science.gov (United States)

    Lim, Yoon-Pin; Diong, Lang-Shi; Qi, Robert; Druker, Brian J; Epstein, Richard J

    2003-12-01

    Many proteins regulating cancer cell growth are tyrosine phosphorylated. Using antiphosphotyrosine affinity chromatography, thiourea protein solubilization, two-dimensional PAGE, and mass spectrometry, we report here the characterization of the epidermal growth factor (EGF)-induced phosphoproteome in A431 human epidermoid carcinoma cells. Using this approach, more than 50 distinct tyrosine phosphoproteins are identifiable within five main clusters-cytoskeletal proteins, signaling enzymes, SH2-containing adaptors, chaperones, and focal adhesion proteins. Comparison of the phosphoproteomes induced in vitro by transforming growth factor-alpha and platelet-derived growth factor demonstrates the pathway- and cell-specific nature of the phosphoproteomes induced. Elimination of both basal and ligand-dependent phosphoproteins by cell exposure to the EGF receptor catalytic inhibitor gefitinib (Iressa, ZD1839) suggests either an autocrine growth loop or the presence of a second inhibited kinase in A431 cells. By identifying distinct patterns of phosphorylation involving novel signaling substrates, and by clarifying the mechanism of action of anticancer drugs, these findings illustrate the potential of immunoaffinity-based phosphoproteomics for guiding the discovery of new drug targets and the rational utilization of pathway-specific chemotherapies.

  12. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  13. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression.

    Directory of Open Access Journals (Sweden)

    Danilo Marimpietri

    Full Text Available Neuroblastoma (NB is the most common extracranial solid tumor in childhood, with grim prognosis in a half of patients. Exosomes are nanometer-sized membrane vesicles derived from the multivesicular bodies (MVBs of the endocytic pathway and released by normal and neoplastic cells. Tumor-derived exosomes have been shown in different model systems to carry molecules that promote cancer growth and dissemination. In this respect, we have here performed the first characterization and proteomic analysis of exosomes isolated from human NB cell lines by filtration and ultracentrifugation. Electron microscopy demonstrated that NB-derived exosomes exhibited the characteristic cup-shaped morphology. Dynamic light scattering studies showed a bell-shaped curve and a polydispersity factor consistent with those of exosomes. Zeta potential values suggested a good nanoparticle stability. We performed proteomic analysis of NB-derived exosomes by two dimension liquid chromatography separation and mass spectrometry analyses using the multidimensional protein identification technology strategy. We found that the large majority of the proteins identified in NB derived exosomes are present in Exocarta database including tetraspanins, fibronectin, heat shock proteins, MVB proteins, cytoskeleton-related proteins, prominin-1 (CD133, basigin (CD147 and B7-H3 (CD276. Expression of the CD9, CD63 and CD81 tetraspanins, fibronectin, CD133, CD147 and CD276 was validated by flow cytometry. Noteworthy, flow cytometric analysis showed that NB-derived exosomes expressed the GD2 disialoganglioside, the most specific marker of NB. In conclusion, this study shows that NB-derived exosomes express a discrete set of molecules involved in defense response, cell differentiation, cell proliferation and regulation of other important biological process. Thus, NB-derived exosomes may play an important role in the modulation of tumor microenvironment and represent potential tumor biomarkers.

  14. Pancreatic Ductal Adenocarcinoma (PDA) mice lacking Mucin 1 have a profound defect in tumor growth and metastasis

    Science.gov (United States)

    Besmer, Dahlia M.; Curry, Jennifer M.; Roy, Lopamudra D.; Tinder, Teresa L.; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y.; Gendler, Sandra J.; Mukherjee, Pinku

    2011-01-01

    MUC1 is over expressed and aberrantly glycosolated in >60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In the present study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared to both KC and KCM. Cell lines derived from KCKO tumors have significantly lower tumorigenic capacity compared to cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared to mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), or matrix metalloproteinase-9 (MMP9). Further, significantly fewer KCKO cells entered the G2M phase of the cell cycle compared to the KCM cells. Proteomics and western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of MAPK, as well as a significant decrease in Nestin and Tubulin α-2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse in order to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. PMID:21558393

  15. Transgenic Overexpression of the Proprotein Convertase Furin Enhances Skin Tumor Growth

    Directory of Open Access Journals (Sweden)

    Jian Fu

    2012-04-01

    Full Text Available Furin, one of the members of the family of proprotein convertases (PCs, ubiquitously expressed as a type I membrane-bound proteinase, activates several proteins that contribute to tumor progression. In vitro studies using cancer cell lines and clinical specimens demonstrated that furin processes important substrates such as insulin-like growth factor 1 receptor (IGF-1R and transforming growth factor β, leading to increased tumor growth and progression. Despite the numerous studies associating furin with tumor development, its effects in preclinical models has not been comprehensively studied. In this study, we sought to determine the protumorigenic role of furin in vivo after a two-stage chemical carcinogenesis protocol in transgenic mice in which furin expression was targeted to the epidermal basal layer. We found that processing of the PC substrate IGF-1R and the proliferation rate of mouse epidermis was enhanced in transgenic mice when compared with their WT counterparts. Histopathologic diagnoses of the tumors demonstrated that furin transgenic mice (line F47 developed twice as many squamous carcinomas as the control, WT mice (P < .002. Similarly, tumors cells from transgenic mice were able to process PC substrates more efficiently than tumor cells from WT mice. Furthermore, furin expression resulted in a higher SCC volume in transgenic mice as well as an increase in the percentage of high-grade SCC, including poorly differentiated and spindle cell carcinomas. In conclusion, expression of furin in the basal layer of the epidermis increased tumor development and enhanced tumor growth, supporting the consideration of furin as a potential target for cancer treatment.

  16. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    Science.gov (United States)

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  17. Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation

    International Nuclear Information System (INIS)

    Sedlmaier, Angela; Wernert, Nicolas; Gallitzendörfer, Rainer; Abouzied, Mekky M; Gieselmann, Volkmar; Franken, Sebastian

    2011-01-01

    HDGF is a growth factor which is overexpressed in a wide range of tumors. Importantly, expression levels were identified as a prognostic marker in some types of cancer such as melanoma. To investigate the presumed oncogenic/transforming capacity of HDGF, we generated transgenic mice overexpressing HDGF in melanocytes. These mice were bred with mice heterozygous for a defective copy of the Ink4a tumor suppressor gene and were exposed to UV light to increase the risk for tumor development both genetically and physiochemically. Mice were analyzed by immunohistochemistry and Western blotting. Furthermore, primary melanocytes were isolated from different strains created. Transgenic animals overexpressed HDGF in hair follicle melanocytes. Interestingly, primary melanocytes isolated from transgenic animals were not able to differentiate in vitro whereas cells isolated from wild type and HDGF-deficient animals were. Although, HDGF -/- /Ink4a +/- mice displayed an increased number of epidermoid cysts after exposure to UV light, no melanomas or premelanocytic alterations could be detected in this mouse model. The results therefore provide no evidence that HDGF has a transforming capacity in tumor development. Our results in combination with previous findings point to a possible role in cell differentiation and suggest that HDGF promotes tumor progression after secondary upregulation and may represent another protein fitting into the concept of non-oncogene addiction of tumor tissue

  18. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-June [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Yoon, Changhwan [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Park, Do Joong [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Department of Surgery, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Kim, Yeo-Jung [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Schmidt, Benjamin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Lee, Yoon-Jin [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Tap, William D. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Eisinger-Mathason, T.S. Karin [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Choy, Edwin [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Simon, M. Celeste [Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Howard Hughes Medical Institute (United States); and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.

  19. Influence of storage conditions on the release of growth factors in platelet-rich blood derivatives

    Directory of Open Access Journals (Sweden)

    Düregger Katharina

    2016-09-01

    Full Text Available Thrombocytes can be concentrated in blood derivatives and used as autologous transplants e.g. for wound treatment due to the release of growth factors such as platelet derived growth factor (PDGF. Conditions for processing and storage of these platelet-rich blood derivatives influence the release of PDGF from the platelet-bound α-granules into the plasma. In this study Platelet rich plasma (PRP and Platelet concentrate (PC were produced with a fully automated centrifugation system. Storage of PRP and PC for 1 h up to 4 months at temperatures between −20°C and +37°C was applied with the aim of evaluating the influence on the amount of released PDGF. Storage at −20°C resulted in the highest release of PDGF in PRP and a time dependency was determined: prolonged storage up to 1 month in PRP and 10 days in PC increased the release of PDGF. Regardless of the storage conditions, the release of PDGF per platelet was higher in PC than in PRP.

  20. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    Science.gov (United States)

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model.

  1. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.

    Science.gov (United States)

    Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu

    2017-08-25

    To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor

  2. Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.

    Directory of Open Access Journals (Sweden)

    Chen Qian

    Full Text Available Platelet-derived growth factor receptor alpha (PDGFRα is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures.To address the temporal requirement of Pdgfra in embryonic development.We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies.Current study showed that (i conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5 resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives.Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b if mutations / sequence variations of these regulatory elements cause these anomalies.

  3. Gastrointestinal Stromal Tumor: Diagnosis and Prognosis; Tumor estromal gastrointestinal: diagnostico y pronostico

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M. T.; Olmedilla, P.; Gonzalez, S.; Oliver, J. M. [Fundacion Hospital de Alcorcon. Madrid (Spain)

    2003-07-01

    Gastrointestinal stromal tumors (GIST) are mesenquimal tumors derived from cell precursors. They have the capacity for myogenic and neurogenic differentiation and are characterized by expression of KIT protein (tyrosine kinase growth factor). Clinically, they exhibit various biological behaviors. We present 8 cases of GIST, describing both their radiological manifestation through computerized tomography (CT) and most accepted criteria for benignity and malignancy. We also describe the response of one meta statically diagnosed tumor to tyrosine kinase inhibitor. (Author) 9 refs.

  4. Induction of antiproliferative connective tissue growth factor expression in Wilms' tumor cells by sphingosine-1-phosphate receptor 2.

    Science.gov (United States)

    Li, Mei-Hong; Sanchez, Teresa; Pappalardo, Anna; Lynch, Kevin R; Hla, Timothy; Ferrer, Fernando

    2008-10-01

    Connective tissue growth factor (CTGF), a member of the CCN family of secreted matricellular proteins, regulates fibrosis, angiogenesis, cell proliferation, apoptosis, tumor growth, and metastasis. However, the role of CTGF and its regulation mechanism in Wilms' tumor remains largely unknown. We found that the bioactive lipid sphingosine-1-phosphate (S1P) induced CTGF expression in a concentration- and time-dependent manner in a Wilms' tumor cell line (WiT49), whereas FTY720-phosphate, an S1P analogue that binds all S1P receptors except S1P2, did not. Further, the specific S1P2 antagonist JTE-013 completely inhibited S1P-induced CTGF expression, whereas the S1P1 antagonist VPC44116 did not, indicating that this effect was mediated by S1P2. This was confirmed by adenoviral transduction of S1P2 in WiT49 cells, which showed that overexpression of S1P2 increased the expression of CTGF. Induction of CTGF by S1P was sensitive to ROCK inhibitor Y-27632 and c-Jun NH2-terminal kinase inhibitor SP600125, suggesting the requirement of RhoA/ROCK and c-Jun NH2-terminal kinase pathways for S1P-induced CTGF expression. Interestingly, the expression levels of CTGF were decreased in 8 of 10 Wilms' tumor tissues compared with matched normal tissues by quantitative real-time PCR and Western blot analysis. In vitro, human recombinant CTGF significantly inhibited the proliferation of WiT49 cells. In addition, overexpression of CTGF resulted in significant inhibition of WiT49 cell growth. Taken together, these data suggest that CTGF protein induced by S1P2 might act as a growth inhibitor in Wilms' tumor.

  5. Ethanol stimulates tumor progression and expression of vascular endothelial growth factor in chick embryos.

    Science.gov (United States)

    Gu, Jian-Wei; Bailey, Amelia Purser; Sartin, Amanda; Makey, Ian; Brady, Ann L

    2005-01-15

    The mechanisms by which alcohol consumption causes cancer have not been established due to a lack of experimental studies. A chick embryo chorioallantoic membrane (CAM) model that bore human fibrosarcoma (HT1080) was used to determine whether the administration of physiologically relevant doses of ethanol could stimulate tumor growth, angiogenesis, metastasis, and vascular endothelial growth factor (VEGF) expression in tumors. HT1080 cells were inoculated onto the "upper CAM" on Day 8, saline or ethanol was administrated at a dose of 0.25 g/kg per day on the CAM, and the tumors were harvested on Day 17. VEGF mRNA and protein were determined by Northern blot analysis and enzyme-linked immunosorbent assay. Intratumoral vascular volume density (IVVD) was determined by point counting on periodic acid-Schiff-stained sections. Intravasation of HT1080 cells was determined using human-Alu polymerase chain reaction analysis. The effects of ethanol on VEGF expression and cell proliferation were examined in cultured HT1080 cells. Ethanol treatment for 9 days caused a 2.2-fold increase in tumor volume (867 +/- 138 mm(3) vs. 402 +/- 28 mm(3)), a 2.1-fold increase in IVVD (0.021 +/- 0.004 mm(3)/mm(3) vs. 0.010 mm(3)/mm(3) +/- 0.002 mm(3)/mm(3)), and a significant increase in VEGF mRNA or protein expression in tumors compared with a group of control embryos (n = 6 embryos; P 8-fold in the intravasated HT1080 cells in the CAM group compared with the control group (n = 6 embryos; P < 0.01). Physiologically relevant levels of ethanol (10 mM and 20 mM) caused a dose-related increase in VEGF mRNA and protein expression in cultured HT1080 cells. The ethanol-HT1080-conditioned media increased the proliferation of endothelial cells, but not of HT1080 cells. The findings suggest that the induction of angiogenesis and VEGF expression by ethanol represents an important mechanism of cancer progression associated with alcoholic beverage consumption. (c) 2004 American Cancer Society.

  6. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-02-27

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

  7. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors.

    Science.gov (United States)

    Heimberger, Amy B; Crotty, Laura E; Archer, Gary E; Hess, Kenneth R; Wikstrand, Carol J; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2003-09-15

    The epidermal growth factor receptor (EGFR) is often amplified and structurally rearranged in malignant gliomas and other tumors such as breast and lung, with the most common mutation being EGFRvIII. In the study described here, we tested in mouse models a vaccine consisting of a peptide encompassing the tumor-specific mutated segment of EGFRvIII (PEP-3) conjugated to keyhole limpet hemocyanin [KLH (PEP-3-KLH)]. C57BL/6J or C3H mice were vaccinated with PEP-3-KLH and subsequently challenged either s.c. or intracerebrally with a syngeneic melanoma cell line stably transfected with a murine homologue of EGFRvIII. Control mice were vaccinated with KLH. To test its effect on established tumors, C3H mice were also challenged intracerebrally and subsequently vaccinated with PEP-3-KLH. S.c. tumors developed in all of the C57BL/6J mice vaccinated with KLH in Freund's adjuvant, and there were no long-term survivors. Palpable tumors never developed in 70% of the PEP-3-KLH-vaccinated mice. In the C57BL/6J mice receiving the PEP-3-KLH vaccine, the tumors that did develop were significantly smaller than those in the control group (P PEP-3-KLH vaccination did not result in significant cytotoxic responses in standard cytotoxicity assays; however, antibody titers against PEP-3 were enhanced. The passive transfer of sera from the immunized mice to nonimmunized mice protected 31% of the mice from tumor development (P PEP-3-KLH-vaccinated mice. Peptide vaccination was also sufficiently potent to have marked efficacy against intracerebral tumors, resulting in a >173% increase in median survival time, with 80% of the C3H mice achieving long-term survival (P = 0.014). In addition, C3H mice with established intracerebral tumor that received a single treatment of PEP-3-KLH showed a 26% increase in median survival time, with 40% long-term survival (P = 0.007). Vaccination with an EGFRvIII-specific peptide is efficacious against both s.c. and established intracerebral tumors. The

  8. Sonic Hedgehog Signaling Promotes Tumor Growth

    National Research Council Canada - National Science Library

    Bushman, Wade

    2007-01-01

    ... of the DOD New Investigator award indicate that Shh signaling promotes tumor growth. This proposal addresses the hypothesis that Sonic hedgehog signaling promotes tumor growth by activating stromal cell gene expression...

  9. Platelet-derived growth factor (PDGF)-signaling mediates radiation-induced apoptosis in human prostate cancer cells with loss of p53 function

    International Nuclear Information System (INIS)

    Kim, Harold E.; Han, Sue J.; Kasza, Thomas; Han, Richard; Choi, Hyeong-Seon; Palmer, Kenneth C.; Kim, Hyeong-Reh C.

    1997-01-01

    Platelet-derived growth factor (PDGF) signals a diversity of cellular responses in vitro, including cell proliferation, survival, transformation, and chemotaxis. PDGF functions as a 'competence factor' to induce a set of early response genes expressed in G 1 including p21 WAF1/CIP1 , a functional mediator of the tumor suppressor gene p53 in G 1 /S checkpoint. For PDGF-stimulated cells to progress beyond G 1 and transit the cell cycle completely, progression factors in serum such as insulin and IGF-1 are required. We have recently shown a novel role of PDGF in inducing apoptosis in growth-arrested murine fibroblasts. The PDGF-induced apoptosis is rescued by insulin, suggesting that G 1 /S checkpoint is a critical determinant for PDGF-induced apoptosis. Because recent studies suggest that radiation-induced signal transduction pathways interact with growth factor-mediated signaling pathways, we have investigated whether activation of the PDGF-signaling facilitates the radiation-induced apoptosis in the absence of functional p53. For this study we have used the 125-IL cell line, a mutant p53-containing, highly metastatic, and hormone-unresponsive human prostate carcinoma cell line. PDGF signaling is constitutively activated by transfection with a p28 v-sis expression vector, which was previously shown to activate PDGF α- and β- receptors. Although the basal level of p21 WAF1/CIP1 expression and radiation-induced apoptosis were not detectable in control 125-IL cells as would be predicted in mutant p53-containing cells, activation of PDGF-signaling induced expression of p21 WAF1/CIP1 and radiation-induced apoptosis. Our study suggests that the level of 'competence' growth factors including PDGF may be one of the critical determinants for radiation-induced apoptosis, especially in cells with loss of p53 function at the site of radiotherapy in vivo

  10. Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells

    NARCIS (Netherlands)

    Jin, S.; Hansson, E.M.; Tikka, S.; Lanner, F.; Sahlgren, C.; Farnebo, F.; Baumann, M.; Kalimo, H.; Lendahl, U.

    2008-01-01

    Notch signaling is critically important for proper architecture of the vascular system, and mutations in NOTCH3 are associated with CADASIL, a stroke and dementia syndrome with vascular smooth muscle cell (VSMC) dysfunction. In this report, we link Notch signaling to platelet-derived growth factor

  11. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    International Nuclear Information System (INIS)

    Kakudo, Natsuko; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-01-01

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor γ2 (PPARγ2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration

  12. Prognostic value of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 blood levels in breast cancer.

    NARCIS (Netherlands)

    Hartog, H.; Boezen, H.M.; Jong, M.M. de; Schaapveld, M.; Wesseling, J.; Graaf, W.T.A. van der

    2013-01-01

    High circulating insulin-like growth factor 1 (IGF-1) levels are firmly established as a risk factor for developing breast cancer, especially estrogen positive tumors. The effect of circulating IGF-1 on prognosis once a tumor is established is unknown. The authors explored the effect of IGF-1 blood

  13. Prognostic value of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 blood levels in breast cancer

    NARCIS (Netherlands)

    Hartog, H; Boezen, H M; de Jong, M M; Schaapveld, M; Wesseling, J; van der Graaf, W T A

    2013-01-01

    High circulating insulin-like growth factor 1 (IGF-1) levels are firmly established as a risk factor for developing breast cancer, especially estrogen positive tumors. The effect of circulating IGF-1 on prognosis once a tumor is established is unknown. The authors explored the effect of IGF-1 blood

  14. Taguchi method for partial differential equations with application in tumor growth.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M; Arotăriţei, D; Popescu, Marilena

    2014-01-01

    The growth of tumors is a highly complex process. To describe this process, mathematical models are needed. A variety of partial differential mathematical models for tumor growth have been developed and studied. Most of those models are based on the reaction-diffusion equations and mass conservation law. A variety of modeling strategies have been developed, each focusing on tumor growth. Systems of time-dependent partial differential equations occur in many branches of applied mathematics. The vast majority of mathematical models in tumor growth are formulated in terms of partial differential equations. We propose a mathematical model for the interactions between these three cancer cell populations. The Taguchi methods are widely used by quality engineering scientists to compare the effects of multiple variables, together with their interactions, with a simple and manageable experimental design. In Taguchi's design of experiments, variation is more interesting to study than the average. First, Taguchi methods are utilized to search for the significant factors and the optimal level combination of parameters. Except the three parameters levels, other factors levels other factors levels would not be considered. Second, cutting parameters namely, cutting speed, depth of cut, and feed rate are designed using the Taguchi method. Finally, the adequacy of the developed mathematical model is proved by ANOVA. According to the results of ANOVA, since the percentage contribution of the combined error is as small. Many mathematical models can be quantitatively characterized by partial differential equations. The use of MATLAB and Taguchi method in this article illustrates the important role of informatics in research in mathematical modeling. The study of tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.

  15.  The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis

    Directory of Open Access Journals (Sweden)

    Krzysztof Fink

    2012-09-01

    Full Text Available Extracellular matrix metalloproteinases (MMPs are a family of endopeptydases which recquire a zinc ion at their active site, for proteolityc activity. There are six members of the MMP family: matrilysins, collagenases, stromelysins, gelatinases, membrane MMPs and other MMPs. Activity of MMPs is regulated at the level of gene transcription, mRNA stability, zymogene proteolitic activation, inhibition of an active enzyme and MMP degradation. Tissue inhibitors of metalloproteinases (TIMPs are main intracellular inhibitors of MMPs. Host cells can be stimulated by tumor cells to produce MMPs by secreted interleukins, interferons, growth factors and an extracellular matrix metalloproteinase inducer (EMMPRIN. MMPs are produced by tumor cells, fibroblasts, macrophages, mast cells, polimorphonuclear neutrophiles (PMNs and endothelial cells (ECs. MMPs affect many stages of tumor development, facilitating its growth through promoting tumor cells proliferation, invasion and migration, new blood vessels formation and blocking tumor cells apoptosis. MMPs can promote tumor development in several ways. ECM degradation results in release of peptide growth factors. Growth factors linked with cell surface or binding proteins can also be liberated by MMPs. MMPs can indirectly regulate integrin signalling or cleave E-cadherins, facilitating cell migration. MMPs support metastasis inducing an epithelial to mesenchymal transition (EMT. MMP also support transendothelial migration. MMPs support angiogenesis by releasing pro-angiogenic factors and degrading ECM to support ECs migration. Cell surface growth factor receptors are also cleaved by MMPs, which results in inhibition of tumor development, so is release of anti-angiogenic factors from ECM. 

  16. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    Science.gov (United States)

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  17. Post-transcriptional regulation of vascular endothelial growth factor: Implications for tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Peter S Yoo; Abby L Mulkeen; Charles H Cha

    2006-01-01

    Vascular endothelial growth factor (VEGF) is a potent secreted mitogen critical for physiologic and tumor angiogenesis. Regulation of VEGF occurs at several levels, including transcription, mRNA stabilization,translation, and differential cellular localization of various isoforms. Recent advances in our understanding of posttranscriptional regulation of VEGF include identification of the stabilizing mRNA binding protein, HuR, and the discovery of internal ribosomal entry sites in the 5'UTR of the VEGF mRNA. Monoclonal anti-VEGF antibody was recently approved for use in humans, but suffers from the need for high systemic doses. RNA interference (RNAi)technology is being used in vitro and in animal models with promising results. Here, we review the literature on post-transcriptional regulation of VEGF and describe recent progress in targeting these mechanisms for therapeutic benefit.

  18. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis.

    Science.gov (United States)

    Terzuoli, Erika; Donnini, Sandra; Giachetti, Antonio; Iñiguez, Miguel A; Fresno, Manuel; Melillo, Giovanni; Ziche, Marina

    2010-08-15

    2-(3,4-dihydroxyphenil)-ethanol (DPE), a polyphenol present in olive oil, has been found to attenuate the growth of colon cancer cells, an effect presumably related to its anti-inflammatory activity. To further explore the effects of DPE on angiogenesis and tumor growth we investigated the in vivo efficacy of DPE in a HT-29 xenograft model and in vitro activities in colon cancer cells exposed to interleukin-1beta (IL-1beta) and prostaglandin E-2 (PGE-2). DPE (10 mg/kg/day for 14 days) inhibited tumor growth, reducing vessel lumina and blood perfusion to tumor, and diminished expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), and microsomal prostaglandin-E synthase-1 (mPGEs-1). In vitro, DPE (100 mumol/L) neither affected cell proliferation nor induced apoptosis in HT-29 and WiDr cells. DPE prevented the IL-1beta-mediated increase of mPGEs-1 expression and PGE-2 generation, as it did the silencing of HIF-1alpha. Moreover, DPE blocked mPGEs-1-dependent expression of VEGF and inhibited endothelial sprouting induced by tumor cells in a coculture system. PGE-2 triggers a feed-forward loop involving HIF-1alpha, which impinges on mPGEs-1 and VEGF expression, events prevented by DPE via extracellular signal-related kinase 1/2. The reduction of PGE-2 and VEGF levels, caused by DPE, was invariably associated with a marked decrease in HIF-1alpha expression and activity, independent of proteasome activity, indicating that the DPE effects on tumor growth and angiogenesis are dependent on the inhibition of HIF-1alpha translation. We show that the in vivo DPE antitumor effect is associated with anti-inflammatory and antiangiogenic activities resulting from the downregulation of the HIF-1alpha/mPGEs-1/VEGF axis.

  19. Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Simona Berardi

    2013-01-01

    Full Text Available Tumor microenvironment is essential for multiple myeloma (MM growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management.

  20. Simulating tumor growth in confined heterogeneous environments

    International Nuclear Information System (INIS)

    Gevertz, Jana L; Torquato, Salvatore; Gillies, George T

    2008-01-01

    The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics

  1. Epidermal growth factor receptor signaling promotes metastatic prostate cancer through microRNA-96-mediated downregulation of the tumor suppressor ETV6.

    Science.gov (United States)

    Tsai, Yuan-Chin; Chen, Wei-Yu; Siu, Man Kit; Tsai, Hong-Yuan; Yin, Juan Juan; Huang, Jiaoti; Liu, Yen-Nien

    2017-01-01

    It has been suggested that ETV6 serves as a tumor suppressor; however, its molecular regulation and cellular functions remain unclear. We used prostate cancer as a model system and demonstrated a molecular mechanism in which ETV6 can be regulated by epidermal growth factor receptor (EGFR) signaling through microRNA-96 (miR-96)-mediated downregulation. In addition, EGFR acts as a transcriptional coactivator that binds to the promoter of primary miR-96 and transcriptionally regulates miR-96 levels. We analyzed two sets of clinical prostate cancer samples, confirmed association patterns that were consistent with the EGFR-miR-96-ETV6 signaling model and demonstrated that the reduced ETV6 levels were associated with malignant prostate cancer. Based on results derived from multiple approaches, we identified the biological functions of ETV6 as a tumor suppressor that inhibits proliferation and metastasis in prostate cancer. We present a molecular mechanism in which EGFR activation leads to the induction of miR-96 expression and suppression of ETV6, which contributes to prostate cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Overview of Methods Able to Overcome Impediments to tumor Drug Delivery with Special Attention to Tumor Interstitial Fluid.

    Directory of Open Access Journals (Sweden)

    Gianfranco eBaronzio

    2015-07-01

    Full Text Available Every drug used to treat cancer (chemotherapeutics, immunologic, monoclonal antibodies, nanoparticles, radionuclides must reach the targeted cells through the tumor environment at adequate concentrations, in order to exert their cell-killing effects. For any of these agents to reach the goal cells they must overcome a number of impediments created by the tumor microenvironment, beginning with tumor interstitial fluid pressure (TIFP and a multifactorial increase in composition of the extracellular matrix (ECM. A primary modifier of tumor microenvironment is hypoxia, which increases the production of growth factors such as vascular endothelial growth factor (VEGF and platelet-derived growth factor (PDGF. These growth factors released by both tumor cells and bone marrow recruited myeloid cells (MDS, form abnormal vasculature characterized by vessels that are tortuous and more permeable. Increased leakiness combined with increased inflammatory byproducts accumulates fluid within the tumor mass [tumor interstitial fluid (TIF], ultimately creating an increased pressure (TIFP. Fibroblasts are also up-regulated by the tumor microenvironment, and deposit fibers that further augment the density of the extracellular matrix (ECM, thus, further worsening the TIFP. Increased TIFP with the ECM are the major obstacles to adequate drug delivery. By decreasing TIFP and decreasing ECM density, we can expect an associated rise in drug concentration within the tumor itself. In this overview we will describe all the methods (drugs, nutraceuticals, physical methods of treatment able to lower TIFP and to modify ECM that can be used for increasing drug concentration within the tumor tissue.

  3. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer

    Directory of Open Access Journals (Sweden)

    Martey O

    2017-10-01

    Full Text Available Orleans Martey,1 Mhairi Nimick,1 Sebastien Taurin,1 Vignesh Sundararajan,1 Khaled Greish,2 Rhonda J Rosengren1 1Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand; 2Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain Abstract: Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene-1-methylpiperidine-4-one (RL71, that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles. Keywords: curcumin derivatives, nanomedicine, EGFR, biodistribution

  4. Platelet-derived growth factor receptor beta: a novel urinary biomarker for recurrence of non-muscle-invasive bladder cancer.

    Science.gov (United States)

    Feng, Jiayu; He, Weifeng; Song, Yajun; Wang, Ying; Simpson, Richard J; Zhang, Xiaorong; Luo, Gaoxing; Wu, Jun; Huang, Chibing

    2014-01-01

    Non-muscle-invasive bladder cancer (NMIBC) is one of the most common malignant tumors in the urological system with a high risk of recurrence, and effective non-invasive biomarkers for NMIBC relapse are still needed. The human urinary proteome can reflect the status of the microenvironment of the urinary system and is an ideal source for clinical diagnosis of urinary system diseases. Our previous work used proteomics to identify 1643 high-confidence urinary proteins in the urine from a healthy population. Here, we used bioinformatics to construct a cancer-associated protein-protein interaction (PPI) network comprising 16 high-abundance urinary proteins based on the urinary proteome database. As a result, platelet-derived growth factor receptor beta (PDGFRB) was selected for further validation as a candidate biomarker for NMIBC diagnosis and prognosis. Although the levels of urinary PDGFRB showed no significant difference between patients pre- and post-surgery (n = 185, P>0.05), over 3 years of follow-up, urinary PDGFRB was shown to be significantly higher in relapsed patients (n = 68) than in relapse-free patients (n = 117, P<0.001). The levels of urinary PDGFRB were significantly correlated with the risk of 3-year recurrence of NMIBC, and these levels improved the accuracy of a NMIBC recurrence risk prediction model that included age, tumor size, and tumor number (area under the curve, 0.862; 95% CI, 0.809 to 0.914) compared to PDGFR alone. Therefore, we surmise that urinary PDGFRB could serve as a non-invasive biomarker for predicting NMIBC recurrence.

  5. Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development.

    Science.gov (United States)

    Shi, Qiaoni; Chen, Ye-Guang

    2017-10-01

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation, differentiation, migration and death, and plays a critical role in embryogenesis and tissue homeostasis. Its deregulation results in various diseases including tumor formation. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), also play key roles in the development and progression of many types of tumors. It has been realized that TGF-β signaling and RTK pathways interact with each other and their interplay is important for cancer development. They are mutually regulated and cooperatively modulate cell survival and migration, epithelial-mesenchymal transition, and tumor microenvironment to accelerate tumorigenesis and tumor metastasis. RTKs can modulate Smad-dependent transcription or cooperate with TGF-β to potentiate its oncogenic activity, while TGF-β signaling can in turn control RTK signaling by regulating their activities or expression. This review summarizes current understandings of the interplay between TGF-β signaling and RTKs and its influence on tumor development.

  6. Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1.

    Science.gov (United States)

    Lee, S Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W Marston; Bottaro, Donald P; Vasselli, James R

    2008-10-01

    Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-alpha (TGF-alpha), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knock-down cells had escaped shRNA suppression. EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen.

  7. Von Hippel-Lindau Tumor Suppressor Gene Loss in Renal Cell Carcinoma Promotes Oncogenic Epidermal Growth Factor Receptor Signaling via Akt-1 and MEK1

    Science.gov (United States)

    Lee, S. Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W. Marston; Bottaro, Donald P.; Vasselli, James R.

    2008-01-01

    Objectives Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-α (TGF-α), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Methods Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. Results RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knockdown cells had escaped shRNA suppression. Conclusions EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen. PMID:18243508

  8. Harnessing high density lipoproteins to block transforming growth factor beta and to inhibit the growth of liver tumor metastases.

    Directory of Open Access Journals (Sweden)

    José Medina-Echeverz

    Full Text Available Transforming growth factor β (TGF-β is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144 linked to apolipoprotein A-I (ApoA-I through a flexible linker (pApoLinkerP144. The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144. The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2-/-IL2rγ-/- immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms.

  9. Molecular cloning and functional characterization of the human platelet-derived growth factor alpha receptor gene promoter

    NARCIS (Netherlands)

    Afink, G. B.; Nistér, M.; Stassen, B. H.; Joosten, P. H.; Rademakers, P. J.; Bongcam-Rudloff, E.; van Zoelen, E. J.; Mosselman, S.

    1995-01-01

    Expression of the platelet-derived growth factor alpha receptor (PDGF alpha R) is strictly regulated during mammalian development and tumorigenesis. The molecular mechanisms involved in the specific regulation of PDGF alpha R expression are unknown, but transcriptional regulation of the PDGF alpha R

  10. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    International Nuclear Information System (INIS)

    St Denny, I.H.; Glinka, K.G.; Nemecek, G.M.; Stuetz, A.

    1987-01-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5μM T in fibroblast incubation media was associated with increased [ 3 H]thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6μM reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 μM. Neither the uptake of [ 3 H]thymidine nor the specific binding of 125 I-PDGF to fibroblast receptors was significantly affected by 10 μM T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism

  11. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    Energy Technology Data Exchange (ETDEWEB)

    St. Denny, I.H.; Glinka, K.G.; Nemecek, G.M. (Sandoz Research Institute, East Hanover, NJ (USA)); Stuetz, A. (Sandoz Forschungsinstitut, Vienna (Austria))

    1987-05-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5{mu}M T in fibroblast incubation media was associated with increased ({sup 3}H)thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6{mu}M reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 {mu}M. Neither the uptake of ({sup 3}H)thymidine nor the specific binding of {sup 125}I-PDGF to fibroblast receptors was significantly affected by 10 {mu}M T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism.

  12. Clinical and biological significance of hepatoma-derived growth factor in Ewing's sarcoma.

    Science.gov (United States)

    Yang, Yang; Li, Hui; Zhang, Fenfen; Shi, Huijuan; Zhen, Tiantian; Dai, Sujuan; Kang, Lili; Liang, Yingjie; Wang, Jin; Han, Anjia

    2013-11-01

    We sought to investigate the clinicopathological significance and biological function of hepatoma-derived growth factor (HDGF) in Ewing's sarcoma. Our results showed that HDGF expression is up-regulated in Ewing's sarcoma. Nuclear HDGF expression is significantly associated with tumour volume (p Ewing's sarcoma cell growth, proliferation and enhances tumourigenesis, both in vitro and in vivo. Meanwhile, HDGF knock-down causes cell cycle arrest and enhanced sensitization to serum starvation-induced apoptosis. Furthermore, recombinant HDGF promotes proliferation and colony formation of Ewing's sarcoma cells. Ninety-eight candidate HDGF downstream genes were identified in Ewing's sarcoma cells using cDNA microarray analysis. In addition, we found that HDGF knock-down inhibited FLI1 expression in Ewing's sarcoma cells at the mRNA and protein levels. Our findings suggest that HDGF exhibits oncogenic properties and may be a novel prognostic factor in Ewing's sarcoma. Targeting HDGF might be a potential therapeutic strategy for Ewing's sarcoma. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI: http://dx.doi.org/10.7554/eLife.10250.001 PMID:26920219

  14. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li Dongxi, E-mail: lidongxi@mail.nwpu.edu.c [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Xu Wei; Guo, Yongfeng; Xu Yong [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-01-31

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  15. Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment

    International Nuclear Information System (INIS)

    Li Dongxi; Xu Wei; Guo, Yongfeng; Xu Yong

    2011-01-01

    We investigate a stochastic model of tumor growth derived from the catalytic Michaelis-Menten reaction with positional and environmental fluctuations under subthreshold periodic treatment. Firstly, the influences of environmental fluctuations on the treatable stage are analyzed numerically. Applying the standard theory of stochastic resonance derived from the two-state approach, we derive the signal-to-noise ratio (SNR) analytically, which is used to measure the stochastic resonance phenomenon. It is found that the weak environmental fluctuations could induce the extinction of tumor cells in the subthreshold periodic treatment. The positional stability is better in favor of the treatment of the tumor cells. Besides, the appropriate and feasible treatment intensity and the treatment cycle should be highlighted considered in the treatment of tumor cells.

  16. Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Bilgiç, Ayhan; Toker, Aysun; Işık, Ümit; Kılınç, İbrahim

    2017-03-01

    It has been suggested that neurotrophins are involved in the etiopathogenesis of attention-deficit/hyperactivity disorder (ADHD). This study aimed to investigate whether there are differences in serum brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and neurotrophin-3 (NTF3) levels between children with ADHD and healthy controls. A total of 110 treatment-naive children with the combined presentation of ADHD and 44 healthy controls aged 8-18 years were enrolled in this study. The severity of ADHD symptoms was determined by scores on the Conners' Parent Rating Scale-Revised Short and Conners' Teacher Rating Scale-Revised Short. The severity of depression and anxiety symptoms of the children were evaluated by the self-report inventories. Serum levels of neurotrophins were measured using commercial enzyme-linked immunosorbent assay kits. The multivariate analysis of covariance (MANCOVA) revealed a significant main effect of groups in the levels of serum neurotrophins, an effect that was independent of age, sex, and the severity of the depression and anxiety. The analysis of covariance (ANCOVA) indicated that the mean serum GDNF and NTF3 levels of ADHD patients were significantly higher than that of controls. However, serum BDNF and NGF levels did not show any significant differences between groups. No correlations between the levels of serum neurotrophins and the severity of ADHD were observed. These results suggest that elevated serum GDNF and NTF3 levels may be related to ADHD in children.

  17. Mesothelioma patient derived tumor xenografts with defined BAP1 mutations that mimic the molecular characteristics of human malignant mesothelioma

    International Nuclear Information System (INIS)

    Kalra, Neetu; Zhang, Jingli; Thomas, Anish; Xi, Liqiang; Cheung, Mitchell; Talarchek, Jacqueline; Burkett, Sandra; Tsokos, Maria G; Chen, Yuanbin; Raffeld, Mark; Miettinen, Markku; Pastan, Ira; Testa, Joseph R; Hassan, Raffit

    2015-01-01

    The development and evaluation of new therapeutic approaches for malignant mesothelioma has been sparse due, in part, to lack of suitable tumor models. We established primary mesothelioma cultures from pleural and ascitic fluids of five patients with advanced mesothelioma. Electron microscopy and immunohistochemistry (IHC) confirmed their mesothelial origin. Patient derived xenografts were generated by injecting the cells in nude or SCID mice, and malignant potential of the cells was analyzed by soft agar colony assay. Molecular profiles of the primary patient tumors, early passage cell cultures, and patient derived xenografts were assessed using mutational analysis, fluorescence in situ hybridization (FISH) analysis and IHC. Primary cultures from all five tumors exhibited morphologic and IHC features consistent to those of mesothelioma cells. Mutations of BAP1 and CDKN2A were each detected in four tumors. BAP1 mutation was associated with the lack of expression of BAP1 protein. Three cell cultures, all of which were derived from BAP1 mutant primary tumors, exhibited anchorage independent growth and also formed tumors in mice, suggesting that BAP1 loss may enhance tumor growth in vivo. Both early passage cell cultures and mouse xenograft tumors harbored BAP1 mutations and CDKN2A deletions identical to those found in the corresponding primary patient tumors. The mesothelioma patient derived tumor xenografts with mutational alterations that mimic those observed in patient tumors which we established can be used for preclinical development of novel drug regimens and for studying the functional aspects of BAP1 biology in mesothelioma. The online version of this article (doi:10.1186/s12885-015-1362-2) contains supplementary material, which is available to authorized users

  18. Microultrasound Molecular Imaging of Vascular Endothelial Growth Factor Receptor 2 in a Mouse Model of Tumor Angiogenesis

    Directory of Open Access Journals (Sweden)

    Joshua J. Rychak

    2007-09-01

    Full Text Available High-frequency microultrasound imaging of tumor progression in mice enables noninvasive anatomic and functional imaging at excellent spatial and temporal resolution, although microultrasonography alone does not offer molecular scale data. In the current study, we investigated the use of microbubble ultrasound contrast agents bearing targeting ligands specific for molecular markers of tumor angiogenesis using high-frequency microultrasound imaging. A xenograft tumor model in the mouse was used to image vascular endothelial growth factor receptor 2 (VEGFR-2 expression with microbubbles conjugated to an anti-VEGFR-2 monoclonal antibody or an isotype control. Microultrasound imaging was accomplished at a center frequency of 40 MHz, which provided lateral and axial resolutions of 40 and 90 μm, respectively. The B-mode (two-dimensional mode acoustic signal from microbubbles bound to the molecular target was determined by an ultrasound-based destruction-subtraction scheme. Quantification of the adherent microbubble fraction in nine tumor-bearing mice revealed significant retention of VEGFR-2-targeted microbubbles relative to control-targeted microbubbles. These data demonstrate that contrast-enhanced microultrasound imaging is a useful method for assessing molecular expression of tumor angiogenesis in mice at high resolution.

  19. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth

    Energy Technology Data Exchange (ETDEWEB)

    Stagg, Brian C., E-mail: briancstagg@gmail.com; Uehara, Hironori; Lambert, Nathan; Rai, Ruju; Gupta, Isha; Radmall, Bryce; Bates, Taylor; Ambati, Balamurali K. [John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132 (United States)

    2014-11-26

    Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.

  20. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elias G., E-mail: george.elias@medstar.net; Hasskamp, Joanne H.; Sharma, Bhuvnesh K. [Maryland Melanoma Center, Weinberg Cancer Institute, Franklin Square Hospital Center, Baltimore, MD (United States)

    2010-05-07

    Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  1. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination.

    Science.gov (United States)

    Fierro, Fernando A; Sierralta, Walter D; Epuñan, Maria J; Minguell, José J

    2004-01-01

    Marrow stroma represents an advantageous environment for development of micrometastatic cells. Within the cellular structure of marrow stroma, mesenchymal stem cells (MSC) have been postulated as an interacting target for disseminated cancer cells. The studies reported here were performed to gain more information on the interaction of the human breast cancer cell line MCF-7 with human bone marrow-derived MSC cells and to investigate whether this interaction affects tumor cell properties. The results showed that after co-culture with MSC, changes were detected in the morphology, proliferative capacity and aggregation pattern of MCF-7 cells, but these parameters were not affected after the co-culture of MSC cells with a non-tumorigenic breast epithelial cell line, MCF-10. Since the indirect culture of MCF-7 with MSC or its products also resulted in functional changes in the tumor cells, we evaluated whether these effects could be attributed to growth factors produced by MSC cells. It was found that VEGF and IL-6 mimic the effects produced by MSC or its products on the proliferation and aggregation properties of MCF-7, cells, respectively. Thus, it seems that after entry of disseminated tumor cells into the marrow space, their proliferative and morphogenetic organization patterns are modified after interaction with distinct stromal cells and/or with specific signals from the marrow microenvironment.

  2. Prevention of Human Lymphoproliferative Tumor Formation in Ovarian Cancer Patient-Derived Xenografts

    Directory of Open Access Journals (Sweden)

    Kristina A. Butler

    2017-08-01

    Full Text Available Interest in preclinical drug development for ovarian cancer has stimulated development of patient-derived xenograft (PDX or tumorgraft models. However, the unintended formation of human lymphoma in severe combined immunodeficiency (SCID mice from Epstein-Barr virus (EBV–infected human lymphocytes can be problematic. In this study, we have characterized ovarian cancer PDXs which developed human lymphomas and explore methods to suppress lymphoproliferative growth. Fresh human ovarian tumors from 568 patients were transplanted intraperitoneally in SCID mice. A subset of PDX models demonstrated atypical patterns of dissemination with mediastinal masses, hepatosplenomegaly, and CD45-positive lymphoblastic atypia without ovarian tumor engraftment. Expression of human CD20 but not CD3 supported a B-cell lineage, and EBV genomes were detected in all lymphoproliferative tumors. Immunophenotyping confirmed monoclonal gene rearrangements consistent with B-cell lymphoma, and global gene expression patterns correlated well with other human lymphomas. The ability of rituximab, an anti-CD20 antibody, to suppress human lymphoproliferation from a patient's ovarian tumor in SCID mice and prevent growth of an established lymphoma led to a practice change with a goal to reduce the incidence of lymphomas. A single dose of rituximab during the primary tumor heterotransplantation process reduced the incidence of CD45-positive cells in subsequent PDX lines from 86.3% (n = 117 without rituximab to 5.6% (n = 160 with rituximab, and the lymphoma rate declined from 11.1% to 1.88%. Taken together, investigators utilizing PDX models for research should routinely monitor for lymphoproliferative tumors and consider implementing methods to suppress their growth.

  3. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  4. [Risk factors associated with bacterial growth in derivative systems from cerebrospinal liquid in pediatric patients].

    Science.gov (United States)

    de Jesús Vargas-Lares, José; Andrade-Aguilera, Angélica Rocío; Díaz-Peña, Rafael; Barrera de León, Juan Carlos

    2015-01-01

    To determine risk factors associated with bacterial growth in systems derived from cerebrospinal fluid in pediatric patients. Case and controls study from January to December 2012, in patients aged <16 years who were carriers of hydrocephalus and who required placement or replacement of derivative system. Cases were considered as children with cultures with bacterial growth and controls with negative bacterial growth. Inferential statistics with Chi-squared and Mann-Whitney U tests. Association of risk with odds ratio. We reviewed 746 registries, cases n=99 (13%) and controls n=647 (87%). Masculine gender 58 (57%) vs. feminine gender 297 (46%) (p=0.530). Age of cases: median, five months and controls, one year (p=0.02). Median weight, 7 vs. 10 kg (p=0.634). Surgical interventions: median n=2 (range, 1-8) vs. n=1 (range, 1-7). Infection rate, 13.2%. Main etiology ductal stenosis, n=29 (29%) vs. n=50 (23%) (p=0.530). Non-communicating, n=50 (51%) vs. 396 (61%) (p=0.456). Predominant microorganisms: enterobacteria, pseudomonas, and enterococcus. Non-use of iodized dressing OR=2.6 (range, 1.8-4.3), use of connector OR=6.8 (range, 1.9-24.0), System replacement OR=2.0 (range, 1.3-3.1), assistant without surgical facemask OR=9.7 (range, 2.3-42.0). Being a breastfeeding infant, of low weight, non-application of iodized dressing, use of connector, previous derivation, and lack of adherence to aseptic technique were all factors associated with ependymitis.

  5. Modulation of clonogenicity, growth, and radiosensitivity of three human epidermoid tumor cell lines by a fibroblastic environment

    International Nuclear Information System (INIS)

    Gery, Bernard; Little, John B.; Coppey, Jacques

    1996-01-01

    Purpose: To develop a model vitro system to examine the influence of fibroblasts on the growth and survival of human tumor cells after exposure to ionizing radiation. Methods and Materials: The cell system consists of three epidermoid carcinoma cell lines derived from head and neck tumors having differing growth potentials and intrinsic radiosensitivities, as well as a low passage skin fibroblast strain from a normal human donor. The tumor cells were seeded for five days prior to exposure to radiation: (a) in the presence of different numbers of fibroblasts, (b) in conditioned medium from stationary fibroblast cultures, and (c) on an extracted fibroblastic matrix. Results: When grown with fibroblasts, all three tumor cell lines showed increased clonogenicity and increased radioresistance. The radioprotective effect was maximal at a density of approximately 10 5 fibroblasts/100 mm Petri dish, and was greatest in the intrinsically radiosensitive tumor cell line. On the other hand, the effects of incubation with conditioned medium or on a fibroblastic matrix varied among the tumor cell lines. Thus, the protective effect afforded by coculture with fibroblasts must involve several cellular factors related to the fibroblast itself. Conclusions: These observations emphasize the importance of cultural conditions on the apparent radiosensitivity of human tumor cell lines, and suggest that the fibroblastic connective tissue enveloping the malignant cells should be considered when the aim is to establish a radiopredictive assay from surgical tumors fragments

  6. Targeted inhibition of osteosarcoma tumor growth by bone marrow-derived mesenchymal stem cells expressing cytosine deaminase/5-fluorocytosine in tumor-bearing mice.

    Science.gov (United States)

    NguyenThai, Quynh-Anh; Sharma, Neelesh; Luong, Do Huynh; Sodhi, Simrinder Singh; Kim, Jeong-Hyun; Kim, Nameun; Oh, Sung-Jong; Jeong, Dong Kee

    2015-01-01

    Mesenchymal stem cells (MSCs) are considered as an attractive approach for gene or drug delivery in cancer therapy. In the present study, the ability of human bone marrow-derived MSCs expressing the cytosine deaminase/5-fluorocytosine prodrug (CD/5-FC MSCs) to target the human osteosarcoma cell line Cal72 was evaluated. The stable CD/5-FC MSC cell line was established by transfection of pEGFP containing the cytosine deaminase gene into MSCs with G418 selection. The anti-tumor effect was verified by a bystander effect assay in vitro and co-injection of Cal72 and CD/5-FC MSCs in cancer-bearing mice. The therapeutic CD/5-FC MSCs retained the characteristics of multipotent cells, such as differentiation into adipocytes/osteocytes and expression of mesenchymal markers (CD90 and CD44), and showed migration toward Cal72 cells to a greater extent than the native MSCs. The bystander effect assay showed that the CD/5-FC MSCs significantly augmented Cal72 cytotoxicity in direct co-culture and in the presence of 5-FC through the application of conditioned medium. In osteosarcoma-bearing mice, the CD/5-FC MSCs inhibited tumor growth compared to control mice subcutaneously injected with only Cal72 cells. Taken together, these findings suggest that CD/5-FC MSCs may be suitable for targeting human osteosarcoma. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration

    Directory of Open Access Journals (Sweden)

    Yu T

    2016-02-01

    Full Text Available Ting Yu,1,* Bei Xu,1,* Lili He,2 Shan Xia,3 Yan Chen,1 Jun Zeng,1 Yongmei Liu,1 Shuangzhi Li,1 Xiaoyue Tan,4 Ke Ren,1 Shaohua Yao,1 Xiangrong Song1 1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 2College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, 3Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan, 4Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%, probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on

  8. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    Science.gov (United States)

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  9. Cryospectrophotometric determination of tumor intravascular oxyhemoglobin saturations: dependence on vascular geometry and tumor growth.

    Science.gov (United States)

    Fenton, B M; Rofstad, E K; Degner, F L; Sutherland, R M

    1988-12-21

    To delineate the complex relationships between overall tumor oxygenation and vascular configuration, intravascular oxyhemoglobin (HbO2) saturation distributions were measured with cryospectrophotometric techniques. Four factors related to vascular morphometry and tumor growth were evaluated: a) vessel diameter, b) distance of vessel from the tumor surface, c) tumor volume, and d) vascular density. To measure intertumor heterogeneity, two murine sarcomas (RIF-1 and KHT) and two human ovarian carcinoma xenografts (OWI and MLS) were utilized. In contrast to skeletal muscle, a preponderance of very low HbO2 saturations was observed for both large and small tumors of all lines. Saturations up to about 90% were also generally present, however, even in very large tumors. Variations in vascular configuration were predominantly tumor-line dependent rather than due to inherent characteristics of the host vasculature, and widely disparate HbO2 distributions were found for alternate lines implanted in identical host mice. Although peripheral saturations remained fairly constant with tumor growth, HbO2 values were markedly lower for vessels nearer the tumor center and further decreased with increasing tumor volume. HbO2 saturations did not change substantially with increasing vascular density (except for KHT tumors), although density did decrease with increasing distance from tumor surface. Combined effects of vessel diameter, tumor volume, and vessel location on HbO2 saturations were complex and varied markedly with both tumor line and vessel class. For specific classes, HbO2 distributions correlated closely with radiobiological hypoxic fractions, i.e., for tumor lines in which hypoxic fraction increased substantially with tumor volume, corresponding HbO2 values decreased, while for lines in which hypoxic fraction remained constant, HbO2 values also were unchanged. Although these trends may also be a function of differing oxygen consumption rates between tumor lines

  10. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    International Nuclear Information System (INIS)

    De Veirman, Kim; Rao, Luigia; De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els; Van Riet, Ivan; Frassanito, Maria Antonia; Di Marzo, Lucia; Vacca, Angelo; Vanderkerken, Karin

    2014-01-01

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease

  11. Cancer Associated Fibroblasts and Tumor Growth: Focus on Multiple Myeloma

    Energy Technology Data Exchange (ETDEWEB)

    De Veirman, Kim, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Rao, Luigia [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); De Bruyne, Elke; Menu, Eline; Van Valckenborgh, Els [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Van Riet, Ivan [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium); Stem Cell Laboratory, Division of Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels 1090 (Belgium); Frassanito, Maria Antonia [Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Medical School, Bari I-70124 (Italy); Di Marzo, Lucia; Vacca, Angelo [Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Medical School, Bari I-70124 (Italy); Vanderkerken, Karin, E-mail: kdeveirm@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels 1090 (Belgium)

    2014-06-27

    Cancer associated fibroblasts (CAFs) comprise a heterogeneous population that resides within the tumor microenvironment. They actively participate in tumor growth and metastasis by production of cytokines and chemokines, and the release of pro-inflammatory and pro-angiogenic factors, creating a more supportive microenvironment. The aim of the current review is to summarize the origin and characteristics of CAFs, and to describe the role of CAFs in tumor progression and metastasis. Furthermore, we focus on the presence of CAFs in hypoxic conditions in relation to multiple myeloma disease.

  12. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    OpenAIRE

    Yun Qian; Yun Qian; Qixin Han; Wei Chen; Wei Chen; Jialin Song; Jialin Song; Xiaotian Zhao; Yuanming Ouyang; Yuanming Ouyang; Weien Yuan; Cunyi Fan

    2017-01-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of differen...

  13. Oncolytic adenovirus targeting cyclin E overexpression repressed tumor growth in syngeneic immunocompetent mice

    International Nuclear Information System (INIS)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Wechman, Stephen L.; Li, Xiao-Feng; McMasters, Kelly M.; Zhou, Heshan Sam

    2015-01-01

    Clinical trials have indicated that preclinical results obtained with human tumor xenografts in mouse models may overstate the potential of adenovirus (Ad)-mediated oncolytic therapies. We have previously demonstrated that the replication of human Ads depends on cyclin E dysregulation or overexpression in cancer cells. ED-1 cell derived from mouse lung adenocarcinomas triggered by transgenic overexpression of human cyclin E may be applied to investigate the antitumor efficacy of oncolytic Ads. Ad-cycE was used to target cyclin E overexpression in ED-1 cells and repress tumor growth in a syngeneic mouse model for investigation of oncolytic virotherapies. Murine ED-1 cells were permissive for human Ad replication and Ad-cycE repressed ED-1 tumor growth in immunocompetent FVB mice. ED-1 cells destroyed by oncolytic Ads in tumors were encircled in capsule-like structures, while cells outside the capsules were not infected and survived the treatment. Ad-cycE can target cyclin E overexpression in cancer cells and repress tumor growth in syngeneic mouse models. The capsule structures formed after Ad intratumoral injection may prevent viral particles from spreading to the entire tumor. The online version of this article (doi:10.1186/s12885-015-1731-x) contains supplementary material, which is available to authorized users

  14. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotaro; Ichimura, Eri; Enomoto, Aya; Suzuki, Yuri [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan); Itoh, Tatsuki [Department of Food Science and Nutrition, Kinki University School of Agriculture, Nara, Nara (Japan); Imano, Motohiro [Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka (Japan); Tanabe, Genzoh; Muraoka, Osamu [Laboratory of Pharmaceutical Organic Chemistry, School of Pharmacy, Kinki University, Kowakae, Higashi-, Osaka (Japan); Matsuda, Hideaki [Department of Natural Drugs Resources, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan); Satou, Takao [Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka (Japan); Nishida, Shozo, E-mail: nishida@phar.kindai.ac.jp [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan)

    2016-09-01

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. - Highlights: • Mangiferin prolongs survival in mice by inhibiting metastasis and tumor growth • Mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation • Mangiferin regulates the expression of MMPs, VLAs, and apoptosis regulatory proteins.

  15. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    2009-11-01

    Full Text Available Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  16. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Science.gov (United States)

    Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A

    2009-11-23

    Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  17. Bone marrow-derived CD13+ cells sustain tumor progression

    Science.gov (United States)

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b+CD13+ myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b+CD13+ myeloid cells could become a non-malignant target for the development of novel anticancer regimens. PMID:25339996

  18. Selection, calibration, and validation of models of tumor growth.

    Science.gov (United States)

    Lima, E A B F; Oden, J T; Hormuth, D A; Yankeelov, T E; Almeida, R C

    2016-11-01

    This paper presents general approaches for addressing some of the most important issues in predictive computational oncology concerned with developing classes of predictive models of tumor growth. First, the process of developing mathematical models of vascular tumors evolving in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the most plausible models among these classes, given relevant observational data; third, the statistical calibration and validation of models in these classes, and finally, the prediction of key Quantities of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most challenging aspects of this endeavor is that all of these issues often involve confounding uncertainties: in observational data, in model parameters, in model selection, and in the features targeted in the prediction. Our approach can be referred to as "model agnostic" in that no single model is advocated; rather, a general approach that explores powerful mixture-theory representations of tissue behavior while accounting for a range of relevant biological factors is presented, which leads to many potentially predictive models. Then representative classes are identified which provide a starting point for the implementation of OPAL, the Occam Plausibility Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) and to determine if the model is a valid tool for predicting tumor growth and morphology ( in vivo ). All of these approaches account for uncertainties in the model, the observational data, the model parameters, and the target QOI. We demonstrate these processes by comparing a list of models for tumor growth, including reaction-diffusion models, phase-fields models, and models with and without mechanical deformation effects, for glioma growth measured in murine experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in laboratory

  19. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  20. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  1. Gastrointestinal Stromal Tumor: Diagnosis and Prognosis

    International Nuclear Information System (INIS)

    Martin, M. T.; Olmedilla, P.; Gonzalez, S.; Oliver, J. M.

    2003-01-01

    Gastrointestinal stromal tumors (GIST) are mesenquimal tumors derived from cell precursors. They have the capacity for myogenic and neurogenic differentiation and are characterized by expression of KIT protein /tyrosine kinase growth factor). Clinically, they exhibit various biological behaviors. We present 8 cases of GIST, describing both their radiological manifestation through computerized tomography (CT) and most accepted criteria for benignity and malignancy. We also describe the response of one meta statically diagnosed tumor to tyrosine kinase inhibitor. (Author) 9 refs

  2. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells.

    Science.gov (United States)

    Koochekpour, S; Jeffers, M; Wang, P H; Gong, C; Taylor, G A; Roessler, L M; Stearman, R; Vasselli, J R; Stetler-Stevenson, W G; Kaelin, W G; Linehan, W M; Klausner, R D; Gnarra, J R; Vande Woude, G F

    1999-09-01

    Loss of function in the von Hippel-Lindau (VHL) tumor suppressor gene occurs in familial and most sporadic renal cell carcinomas (RCCs). VHL has been linked to the regulation of cell cycle cessation (G(0)) and to control of expression of various mRNAs such as for vascular endothelial growth factor. RCC cells express the Met receptor tyrosine kinase, and Met mediates invasion and branching morphogenesis in many cell types in response to hepatocyte growth factor/scatter factor (HGF/SF). We examined the HGF/SF responsiveness of RCC cells containing endogenous mutated (mut) forms of the VHL protein (VHL-negative RCC) with that of isogenic cells expressing exogenous wild-type (wt) VHL (VHL-positive RCC). We found that VHL-negative 786-0 and UOK-101 RCC cells were highly invasive through growth factor-reduced (GFR) Matrigel-coated filters and exhibited an extensive branching morphogenesis phenotype in response to HGF/SF in the three-dimensional (3D) GFR Matrigel cultures. In contrast, the phenotypes of A498 VHL-negative RCC cells were weaker, and isogenic RCC cells ectopically expressing wt VHL did not respond at all. We found that all VHL-negative RCC cells expressed reduced levels of tissue inhibitor of metalloproteinase 2 (TIMP-2) relative to the wt VHL-positive cells, implicating VHL in the regulation of this molecule. However, consistent with the more invasive phenotype of the 786-0 and UOK-101 VHL-negative RCC cells, the levels of TIMP-1 and TIMP-2 were reduced and levels of the matrix metalloproteinases 2 and 9 were elevated compared to the noninvasive VHL-positive RCC cells. Moreover, recombinant TIMPs completely blocked HGF/SF-mediated branching morphogenesis, while neutralizing antibodies to the TIMPs stimulated HGF/SF-mediated invasion in vitro. Thus, the loss of the VHL tumor suppressor gene is central to changes that control tissue invasiveness, and a more invasive phenotype requires additional genetic changes seen in some but not all RCC lines. These

  3. Factor XIIIa is expressed by fibroblasts in fibrovascular tumors.

    Science.gov (United States)

    Nemeth, A J; Penneys, N S

    1989-10-01

    Factor XIIIa (FXIIIa), a blood and intracellularly produced coagulation factor, has been found in a variety of cell types including fibroblast-like mesenchymal cells, and has been shown to stimulate the proliferation of fibroblasts and some neoplastic cells in vitro. We have already shown that the dendritic fibroblasts composing the fibrous papule contain this factor. We hypothesized that histopathologically similar fibrovascular tumors may also express FXIIIa and, in this report, show that the large stellate fibroblasts found in acquired digital fibrokeratomas, angiofibromas (adenoma sebaceum of Pringle), and oral fibroma (oral fibrous hyperplasia) also express FXIIIa. We postulate that FXIIIa, possibly acting as a growth factor, may be a common denominator in the pathogenesis of these tumors. Another possibility is that these tumors may be the consequence of a local overproduction of FXIIIa in response to an, as yet, unidentified stimulus.

  4. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  5. Injectable Biodegradable Polyurethane Scaffolds with Release of Platelet-derived Growth Factor for Tissue Repair and Regeneration

    Science.gov (United States)

    Hafeman, Andrea E.; Li, Bing; Yoshii, Toshitaka; Zienkiewicz, Katarzyna; Davidson, Jeffrey M.; Guelcher, Scott A.

    2013-01-01

    Purpose The purpose of this work was to investigate the effects of triisocyanate composition on the biological and mechanical properties of biodegradable, injectable polyurethane scaffolds for bone and soft tissue engineering. Methods Scaffolds were synthesized using reactive liquid molding techniques, and were characterized in vivo in a rat subcutaneous model. Porosity, dynamic mechanical properties, degradation rate, and release of growth factors were also measured. Results Polyurethane scaffolds were elastomers with tunable damping properties and degradation rates, and they supported cellular infiltration and generation of new tissue. The scaffolds showed a two-stage release profile of platelet-derived growth factor, characterized by a 75% burst release within the first 24 h and slower release thereafter. Conclusions Biodegradable polyurethanes synthesized from triisocyanates exhibited tunable and superior mechanical properties compared to materials synthesized from lysine diisocyanates. Due to their injectability, biocompatibility, tunable degradation, and potential for release of growth factors, these materials are potentially promising therapies for tissue engineering. PMID:18516665

  6. The role of vascular endothelial growth factor in proliferation of odontogenic cysts and tumors: An immunohistochemical study.

    Science.gov (United States)

    Gupta, Bhavana; Chandra, Shaleen; Singh, Anil; Sah, Kunal; Raj, Vineet; Gupta, Vivek

    2016-01-01

    Vascular endothelial growth factor (VEGF) is capable of initiating angiogenesis in blood vessels and may act as mitogenic agent for epithelium of odontogenic cysts and tumors. This study was conducted to evaluate the role of epithelial VEGF expression in odontogenic cysts and ameloblastoma and its correlation with argyrophilic nucleolar organizer region counts to assess its role in their biological behavior. In this retrospective cross-sectional study, 45 histologically confirmed cases, 15 cases of each of keratocystic odontogenic tumors (KCOTs), dentigerous cysts, and ameloblastomas were examined for immunohistochemical expression for epithelial VEGF, and argyrophilic nucleolar organizer regions (AgNORs) (used as secondary marker in this study) staining was done for comparing the proliferative capacity with VEGF. KCOT shows mild expression within the basal layers and strong expression in the suprabasal layer whereas, in dentigerous cysts, a majority showed no VEGF expression whereas ameloblastomas showed strong expression in all cases by stellate reticulum-like cells at the center of the follicles and suprabasal layers of epithelium. The results of AgNOR counts were higher in KCOTs as compared to ameloblastoma and least in dentigerous cysts. VEGF expression by the epithelium of odontogenic cysts and tumors may play a role in epithelial proliferation via autocrine mechanism as reflected by increased AgNOR counts. The angiogenic activity via paracrine pathway may be responsible for the difference in growth rate and neoplastic behavior of the lesions.

  7. Tumor-induced osteomalacia with elevated fibroblast growth factor 23: a case of phosphaturic mesenchymal tumor mixed with connective tissue variants and review of the literature.

    Science.gov (United States)

    Hu, Fang-Ke; Yuan, Fang; Jiang, Cheng-Ying; Lv, Da-Wei; Mao, Bei-Bei; Zhang, Qiang; Yuan, Zeng-Qiang; Wang, Yan

    2011-11-01

    Tumor-induced osteomalacia (TIO), or oncogenic osteomalacia (OOM), is a rare acquired paraneoplastic disease characterized by renal phosphate wasting and hypophosphatemia. Recent evidence shows that tumor-overexpressed fibroblast growth factor 23 (FGF23) is responsible for the hypophosphatemia and osteomalacia. The tumors associated with TIO are usually phosphaturic mesenchymal tumor mixed connective tissue variants (PMTMCT). Surgical removal of the responsible tumors is clinically essential for the treatment of TIO. However, identifying the responsible tumors is often difficult. Here, we report a case of a TIO patient with elevated serum FGF23 levels suffering from bone pain and hypophosphatemia for more than three years. A tumor was finally located in first metacarpal bone by octreotide scintigraphy and she was cured by surgery. After complete excision of the tumor, serum FGF23 levels rapidly decreased, dropping to 54.7% of the preoperative level one hour after surgery and eventually to a little below normal. The patient's serum phosphate level rapidly improved and returned to normal level in four days. Accordingly, her clinical symptoms were greatly improved within one month after surgery. There was no sign of tumor recurrence during an 18-month period of follow-up. According to pathology, the tumor was originally diagnosed as "lomangioma" based upon a biopsy sample, "proliferative giant cell tumor of tendon sheath" based upon sections of tumor, and finally diagnosed as PMTMCT by consultation one year after surgery. In conclusion, although an extremely rare disease, clinicians and pathologists should be aware of the existence of TIO and PMTMCT, respectively.

  8. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Elias G. Elias

    2010-05-01

    Full Text Available Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  9. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor; Kong, Say Li; Sengupta, Debarka; Tan, Iain B; Phyo, Wai Min; Lee, Daniel; Hu, Min; Iliescu, Ciprian; Alexander, Irina; Goh, Wei Lin; Rahmani, Mehran; Suhaimi, Nur-Afidah Mohamed; Vo, Jess H; Tai, Joyce A; Tan, Joanna H; Chua, Clarinda; Ten, Rachel; Lim, Wan Jun; Chew, Min Hoe; Hauser, Charlotte; van Dam, Rob M; Lim, Wei-Yen; Prabhakar, Shyam; Lim, Bing; Koh, Poh Koon; Robson, Paul; Ying, Jackie Y; Hillmer, Axel M; Tan, Min-Han

    2016-01-01

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  10. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  11. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2.Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation.These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  12. Quantification of platelets and platelet derived growth factors from platelet-rich-plasma (PRP) prepared at different centrifugal force (g) and time.

    Science.gov (United States)

    Arora, Satyam; Doda, Veena; Kotwal, Urvershi; Dogra, Mitu

    2016-02-01

    Platelet derived biomaterials represent a key source of cytokines and growth factors extensively used for tissue regeneration; wound healing and tissue repair. Our study was to quantify platelets and growth factors released by PRP when prepared at different centrifugal force (g) and time. Our study was approved by the institutional ethical committee. One hundred millilitres of whole blood (WB) was collected in bag with CPDA as the anticoagulant(AC); (14 mL for 100 mL WB ratio). Nine aliquots of 10 mL each were made from the bag and set of three aliquots were made a group. PRP was prepared at varying centrifugal force (group A: -110 g, group B: -208 g & group C: -440 g) & time (1: -5 min, 2: -10 min & 3: -20 min). Contents of each PRP prepared were analysed. Commercial sandwich ELISA kits were used to quantify the concentrations of CD62P (Diaclone SAS; France), Platelet derived growth factors-AB (Qayee-Bio; China), transforming growth factor-β1 (DRG; Germany) and vascular endothelial growth factor (Boster Immuno Leader; USA) released in each PRP prepared. Eight volunteers were enrolled in the study (24-30 years). The baseline blood counts of all the volunteers were comparable (p ≥ 0.05). Mean ± SD of platelet yield of all nine groups ranged from 17.2 ± 4.2% to 78.7 ± 5.7%. Each PRP was activated with calcified thromboplastin to quantify the growth factors released by them. Significantly higher (p < 0.05) transforming growth factor-β1 and vascular endothelial growth factor were released compared to the baseline. Our study highlights the variation in both force (g) and time results in changes at cellular level and growth factor concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The PCa Tumor Microenvironment.

    Science.gov (United States)

    Sottnik, Joseph L; Zhang, Jian; Macoska, Jill A; Keller, Evan T

    2011-12-01

    The tumor microenvironment (TME) is a very complex niche that consists of multiple cell types, supportive matrix and soluble factors. Cells in the TME consist of both host cells that are present at tumor site at the onset of tumor growth and cells that are recruited in either response to tumor- or host-derived factors. PCa (PCa) thrives on crosstalk between tumor cells and the TME. Crosstalk results in an orchestrated evolution of both the tumor and microenvironment as the tumor progresses. The TME reacts to PCa-produced soluble factors as well as direct interaction with PCa cells. In return, the TME produces soluble factors, structural support and direct contact interactions that influence the establishment and progression of PCa. In this review, we focus on the host side of the equation to provide a foundation for understanding how different aspects of the TME contribute to PCa progression. We discuss immune effector cells, specialized niches, such as the vascular and bone marrow, and several key protein factors that mediate host effects on PCa. This discussion highlights the concept that the TME offers a potentially very fertile target for PCa therapy.

  14. Evidence that platelet-derived growth factor may be a novel endogenous pyrogen in the central nervous system.

    Science.gov (United States)

    Pelá, I R; Ferreira, M E; Melo, M C; Silva, C A; Coelho, M M; Valenzuela, C F

    2000-05-01

    Platelet-derived growth factor (PDGF) exerts neurotrophic and neuromodulatory actions in the mammalian central nervous system (CNS). Like the cytokines, PDGF primarily signals through tyrosine phosphorylation-dependent pathways that activate multiple intracellular molecules including Janus family kinases. We previously showed that microinjection of PDGF-BB into the lateral ventricle induced a febrile response in rats that was reduced by pretreatment with Win 41662, a potent inhibitor of PDGF receptors (Pelá IR, Ferreira MES, Melo MCC, Silva CAA, and Valenzuela CF. Ann NY Acad Sci 856: 289-293, 1998). In this study, we further characterized the role of PDGF-BB in the febrile response in rats. Microinjection of PDGF-BB into the third ventricle produced a dose-dependent increase in colonic temperature that peaked 3-4 h postinjection. Win 41662 attenuated fever induced by intraperitoneal injection of bacterial lipopolysaccharide, suggesting that endogenous PDGF participates in the febrile response to this exogenous pyrogen. Importantly, febrile responses induced by tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 were unchanged by Win 41662. Both indomethacin and dexamethasone blocked the PDGF-BB-induced increase in colonic temperature, and, therefore, we postulate that PDGF-BB may act via prostaglandin- and/or inducible enzyme-dependent pathways. Thus our findings suggest that PDGF-BB is an endogenous CNS mediator of the febrile response in rats.

  15. Abnormal platelet-derived growth factor signaling accounting for lung hypoplasia in experimental congenital diaphragmatic hernia.

    Science.gov (United States)

    Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem

    2010-10-01

    The pathogenesis of pulmonary hypoplasia in congenital diaphragmatic hernia (CDH) is not fully understood. Platelet-derived growth factor A (PDGFA) and platelet-derived growth factor receptor α (PDGFRα) play a crucial role in lung development. It has been reported that PDGF induces H(2)O(2)-production and that oxidative stress may be an important mechanism for the impaired lung development in the nitrofen rat model. We hypothesized that pulmonary expression of PDGFA and PDGFRα is altered in the nitrofen induced CDH model. Pregnant rats received 100 mg nitrofen or vehicle on gestational day 9 (D9) and were sacrificed on D15, D18 or D21. RNA was extracted from fetal left lungs and mRNA levels of PDGFA and PDGFRα were determined using real-time polymerase chain reaction. Immunohistochemistry for protein expression of PDGFA and PDGFRα was performed. Pulmonary H(2)O(2) was measured colorimetrically. mRNA levels of PDGFRα at D15 (4.50 ± 0.87) and PDGFA at D18 (2.90 ± 1.38) were increased in the nitrofen group (P stress during lung development. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Silencing of Foxp3 delays the growth of murine melanomas and modifies the tumor immunosuppressive environment

    Directory of Open Access Journals (Sweden)

    Franco-Molina MA

    2016-01-01

    Full Text Available Moisés A Franco-Molina,* Diana F Miranda-Hernández,* Edgar Mendoza-Gamboa, Pablo Zapata-Benavides, Erika E Coronado-Cerda, Crystel A Sierra-Rivera, Santiago Saavedra-Alonso, Reyes S Taméz-Guerra, Cristina Rodríguez-Padilla Immunology and Virology Department, Biological Sciences Faculty, University Autonoma of Nuevo León (UANL, San Nicolás de los Garza, Nuevo León, Mexico*These authors contributed equally to this work Abstract: Forkhead box p3 (Foxp3 expression was believed to be specific for T-regulatory cells but has recently been described in non-hematopoietic cells from different tissue origins and in tumor cells from both epithelial and non-epithelial tissues. The aim of this study was to elucidate the role of Foxp3 in murine melanoma. The B16F10 cell line Foxp3 silenced with small interference Foxp3 plasmid transfection was established and named B16F10.1. These cells had lower levels of Foxp3 mRNA (quantitative real-time reverse transcription-polymerase chain reaction [0.235-fold], protein (flow cytometry [0.02%], CD25+ expression (0.06%, cellular proliferation (trypan blue staining, and interleukin (IL-2 production (enzyme-linked immunosorbent assay [72.35 pg/mL] than those in B16F10 wild-type (WT cells (P<0.05. Subcutaneous inoculation of the B16F10.1 cell line into C57BL/6 mice delayed the time of visible tumor appearance, increased the time of survival, and affected the weight of tumors, and also decreased the production of IL-10, IL-2, and transforming growth factor beta compared with mice inoculated with the B16F10 WT cell line. The B16F10.1 cells derived from tumors and free of T-cells (isolated by Dynabeads and plastic attachment expressed relatively lower levels of Foxp3 and CD25+ than B16F10 WT cells (P<0.05 in a time-dependent manner. The population of tumor-infiltrating lymphocytes of T CD4+ cells (CD4+, CD4+CD25+, and CD4+CD25+Foxp3+ increased in a time-dependent manner (P<0.05 in tumors derived from B16F10 WT cells

  17. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    International Nuclear Information System (INIS)

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G.

    1989-01-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity

  18. Augmented macrophage differentiation and polarization of tumor-associated macrophages towards M1 subtype in listeria-administered tumor-bearing host.

    Science.gov (United States)

    Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra

    2012-09-01

    This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.

  19. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Adriana Albini

    2018-04-01

    Full Text Available The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.

  20. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival

    International Nuclear Information System (INIS)

    Jutten, Barry; Keulers, Tom G.; Schaaf, Marco B.E.; Savelkouls, Kim; Theys, Jan; Span, Paul N.; Vooijs, Marc A.; Bussink, Johan; Rouschop, Kasper M.A.

    2013-01-01

    Background and purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. Material and methods: Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. Results: We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. Conclusions: The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors

  1. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice

    DEFF Research Database (Denmark)

    Kamoun, Walid S; Ley, Carsten D; Farrar, Christian T

    2009-01-01

    anti-VEGF agents may decrease tumor contrast-enhancement, vascularity, and edema, the mechanisms leading to improved survival in patients remain incompletely understood. Our goal was to determine whether alleviation of edema by anti-VEGF agents alone could increase survival in mice. METHODS: We treated...... mice bearing three different orthotopic models of glioblastoma with a VEGF-targeted kinase inhibitor, cediranib. Using intravital microscopy, molecular techniques, and magnetic resonance imaging (MRI), we measured survival, tumor growth, edema, vascular morphology and function, cancer cell apoptosis...... by an increase in plasma collagen IV. These rapid changes in tumor vascular morphology and function led to edema alleviation -- as measured by MRI and by dry/wet weight measurement of water content -- but did not affect tumor growth. By immunohistochemistry, we found a transient decrease in macrophage...

  2. Are genetic variants in the platelet-derived growth factor [beta] gene associated with chronic pancreatitis?

    Science.gov (United States)

    Muddana, Venkata; Park, James; Lamb, Janette; Yadav, Dhiraj; Papachristou, Georgios I; Hawes, Robert H; Brand, Randall; Slivka, Adam; Whitcomb, David C

    2010-11-01

    Platelet-derived growth factor [beta] (PDGF-[beta]) is a major signal in proliferation and matrix synthesis through activated pancreatic stellate cells, leading to fibrosis of the pancreas. Recurrent acute pancreatitis (RAP) seems to predispose to chronic pancreatitis (CP) in some patients but not others. We tested the hypothesis that 2 known PDGF-[beta] polymorphisms are associated with progression from RAP to CP. We also tested the hypothesis that PDGF-[beta] polymorphisms in combination with environmental risk factors such as alcohol and smoking are associated with CP. Three hundred eighty-two patients with CP (n = 176) and RAP (n = 206) and 251 controls were evaluated. Platelet-derived growth factor [beta] polymorphisms +286 A/G (rs#1800818) seen in 5'-UTR and +1135 A/C (rs#1800817) in first intron were genotyped using single-nucleotide polymorphism polymerase chain reaction approach and confirmed by DNA sequencing. The genotypic frequencies for PDGF-[beta] polymorphisms in positions +286 and +1135 were found to be similar in controls and patients with RAP and CP. There was no difference in genotypic frequencies among RAP, CP, and controls in subjects in the alcohol and smoking subgroups. Known variations in the PDGF-[beta] gene do not have a significant effect on promoting or preventing fibrogenesis in pancreatitis. Further evaluation of this important pathway is warranted.

  3. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  4. Growth factor receptors as molecular targets for cancer diagnosis and therapy

    International Nuclear Information System (INIS)

    Zalutsky, M. R.

    1997-01-01

    Growth factor receptors are of great interest as molecular targets for the diagnosis and treatment of cancer. Growth factor receptors are frequently over expressed on malignant cell populations since many cellular oncogenes encode either growth factors of their receptors. The wild-type epidermal growth factor receptor has a molecular weight of 170 kD and is over expressed on gliomas, bladder tumors, squamous cells carcinomas and breast carcinomas. Another growth factor oncogene, c-erb B-2, encodes a 185-kD glycoprotein found on the surface of gliomas, breast and ovarian cancers as well as other carcinomas of epithelial origin. In addition to causing over expression, oncogenic transformation also can result in genomic re-arrangements. An important example from the perspective of targeting is EGFRvIII, a deletion mutant which lacks amino acids 6-273 in the extracellular domain of the epiderma growth factor receptor. The EGFRvIII molecule (145 kD) may be of great value for targeting because it appears to be tumor-specific. Antibodies have been developed with specific reactivity with these growth factor receptors. Since these antibodies are internalized into the cell after receptor binding, it is necessary to use radiolabeling methods which residualize the radioactivity in the tumor cell after intracellular catabolism. To investigate this problem they have evaluated the effect of radioiodination method on the in vitro an in vivo properties of an anti-EGFRvIII antibody. Methods studied were Iodogen, tyramine-cellobiose, and N-succinimidyl 5-iodo-3-pyridine-carboxylate with the last offering optimal localization in a human xenograft model

  5. Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    International Nuclear Information System (INIS)

    Porcile, Carola; Bajetto, Adriana; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio; Schettini, Gennaro

    2005-01-01

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1α treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1α induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer

  6. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF).

    Science.gov (United States)

    Masuki, Hideo; Okudera, Toshimitsu; Watanebe, Taisuke; Suzuki, Masashi; Nishiyama, Kazuhiko; Okudera, Hajime; Nakata, Koh; Uematsu, Kohya; Su, Chen-Yao; Kawase, Tomoyuki

    2016-12-01

    The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF). PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-β1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1β, IL-6) were determined using ELISA kits. Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses. These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

  7. Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: a novel vaccine for cancer therapy.

    Science.gov (United States)

    Koyama, Yoshiyuki; Ito, Tomoko; Hasegawa, Aya; Eriguchi, Masazumi; Inaba, Toshio; Ushigusa, Takahiro; Sugiura, Kikuya

    2016-11-01

    To examine the potential of exosomes derived from the tumor cells, which had been genetically modified to express a Mycobacterium tuberculosis antigen, as a cancer vaccine aimed at overcoming the weak immunogenicity of tumor antigens. We transfected B16 melanoma cells with a plasmid encoding the M. tuberculosis antigen, early secretory antigenic target-6 (ESAT-6). The secreted exosomes bearing both tumor-associated antigens and the pathogenic antigen (or their epitopes) were collected. When the exosomes were injected into foot pads of mice, they significantly (p exosomes significantly suppressed (p exosomes derived from the non-transfected B16 cells showed no effect on tumor growth, although both exosomes should have similar tumor antigens. Exosomes bearing both tumor antigens and the M. tuberculosis antigen (or their epitopes) have a high potential as a candidate for cancer vaccine to overcome the immune escape by tumor cells.

  8. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M.

    2011-01-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75 NTR , a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75 NTR . For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75 NTR . This latter signaling through p75 NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75 NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  9. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Obesity and Cancer Metabolism: A Perspective on Interacting Tumor-Intrinsic and Extrinsic Factors.

    Science.gov (United States)

    Doerstling, Steven S; O'Flanagan, Ciara H; Hursting, Stephen D

    2017-01-01

    Obesity is associated with increased risk and poor prognosis of many types of cancers. Several obesity-related host factors involved in systemic metabolism can influence tumor initiation, progression, and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. Such host factors include systemic metabolic regulators including insulin, insulin-like growth factor 1, adipokines, inflammation-related molecules, and steroid hormones, as well as the cellular and structural components of the tumor microenvironment, particularly adipose tissue. These secreted and structural host factors are extrinsic to, and interact with, the intrinsic metabolic characteristics of cancer cells to influence their growth and spread. This review will focus on the interplay of these tumor cell-intrinsic and extrinsic factors in the context of energy balance, with the objective of identifying new intervention targets for preventing obesity-associated cancer.

  11. A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes without Growth Factor Stimulation

    Science.gov (United States)

    2011-01-01

    A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes Without Growth Factor Stimulation...Ph.D.3 This work describes the differentiation of adipose-derived mesenchymal stem cells (ASC) in a composite hy- drogel for use as a vascularized...tissue from a single population of ASC. This work underscores the importance of the extracellular matrix in controlling stem cell phenotype. It is our

  12. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention.

    Directory of Open Access Journals (Sweden)

    David E Blask

    Full Text Available The central circadian clock within the suprachiasmatic nucleus (SCN plays an important role in temporally organizing and coordinating many of the processes governing cancer cell proliferation and tumor growth in synchrony with the daily light/dark cycle which may contribute to endogenous cancer prevention. Bioenergetic substrates and molecular intermediates required for building tumor biomass each day are derived from both aerobic glycolysis (Warburg effect and lipid metabolism. Using tissue-isolated human breast cancer xenografts grown in nude rats, we determined that circulating systemic factors in the host and the Warburg effect, linoleic acid uptake/metabolism and growth signaling activities in the tumor are dynamically regulated, coordinated and integrated within circadian time structure over a 24-hour light/dark cycle by SCN-driven nocturnal pineal production of the anticancer hormone melatonin. Dim light at night (LAN-induced melatonin suppression disrupts this circadian-regulated host/cancer balance among several important cancer preventative signaling mechanisms, leading to hyperglycemia and hyperinsulinemia in the host and runaway aerobic glycolysis, lipid signaling and proliferative activity in the tumor.

  13. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and -7 and E-cadherin.

    Science.gov (United States)

    Miyata, Yasuyoshi; Sagara, Yuji; Kanda, Shigeru; Hayashi, Tomayoshi; Kanetake, Hiroshi

    2009-04-01

    Hepatocyte growth factor receptor/c-Met is associated with malignant aggressiveness and survival in various cancers including bladder cancer. Although phosphorylation of hepatocyte growth factor receptor/c-Met is essential for its function, the pathologic significance of phosphorylated hepatocyte growth factor receptor/c-Met in bladder cancer remains elusive. We investigated the clinical significance of its expression, and its correlation with cancer cell progression-related molecules. The expression levels of 2 tyrosine residues of hepatocyte growth factor receptor/c-Met (pY1234/1235 and pY1349) were examined immunohistochemically in 133 specimens with nonmetastatic bladder cancer. We also investigated their correlation with matrix metalloproteinase-1, -2, -7, and -14; urokinase-type plasminogen activator; E-cadherin; CD44 standard, variant 3, and variant 6; and vascular endothelial growth factor. Expression of phosphorylated hepatocyte growth factor receptor/c-Met was detected in cancer cells, but was rare in normal urothelial cells. Although hepatocyte growth factor receptor/c-Met, pY1234/1235 hepatocyte growth factor receptor/c-Met, and pY1349 hepatocyte growth factor receptor/c-Met were associated with pT stage, multivariate analysis identified pY1349 hepatocyte growth factor receptor/c-met expression only as a significant factor for high pT stage. Expression of pY1349 hepatocyte growth factor receptor/c-Met was a marker of metastasis and (P = .001) and cause-specific survival (P = .003). Expressions of matrix metalloproteinase-2, matrix metalloproteinase-7, and E-cadherin correlated with pY1349 hepatocyte growth factor receptor/c-Met expression. Our results demonstrated that pY1349 hepatocyte growth factor receptor/c-Met plays an important role in tumor development, and its expression is a significant predictor of metastasis and survival of patients with bladder cancer. The results suggest that these activities are mediated, at least in part, by matrix

  14. Transplant of stem cells derived from bone marrow and granulocytic growth factor in acute and chronic ischemic myocardiopathy

    International Nuclear Information System (INIS)

    Senior Juan M; Cuellar Francisco; Velasquez Oscar; Velasquez Margarita; Navas Claudia M; Ortiz Sergio; Delgado Juan A; Guillerrno, Blanco; Londono Juan L; Coronado Manuel A; Gomez Francisco; Alzate, Fernando Leon; Zuluaga Alejandra

    2007-01-01

    Recent studies have shown the safety and efficacy of the stem cells derived from bone marrow (BMC) implant with concomitant administration of stimulating factor of granulocyte colonies in patients with acute myocardial infarction with ST segment elevation and in chronic ischemic cardiopathy. An open prospective (before and after) design was made to evaluate the safety and efficacy of cell therapy associated to growth factor administration. The first experience with this kind of therapy is reported. Methodology: this is a 6 months follow-up report of patients with acute and chronic ischemic cardiopathy to who transplant of stem cells derived from bone marrow mobilized with granulocyte colonies growth stimulating factor via coronary arteries or epicardium was realized. Two groups of patients were included: Ten patients with anterior wall infarct and 2. Five patients with chronic ischemic cardiopathy, all with extensive necrosis demonstrated by absence of myocardial viability through nuclear medicine and ejection fraction of less than 40%. Results: significant improvement of ejection fraction from 29.44 ± 3.36 to 37.6 ± 5.3 with p<0.001 and decrease of ventricular systolic and diastolic volume without statistical significance (p =0.31 and 0.4 respectively) were demonstrated. Exercise capacity evidenced by increment in the six minutes test, exercise time and the MET number achieved, increased in a significant way. There were significant changes in the perfusion defect from the second follow-up month and no complications directly related to the stem cells derived from bone marrow transplant or the use of stimulating granulocyte colony factor were presented. Conclusions: this is the first experience of stem cells derived from bone marrow transplant associated to the administration of stimulating granulocyte growth colony factor in which recovery of left ventricular function was demonstrated, as well as improvement in exercise capacity and in the perfusion defect

  15. Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Ribeiro-Resende Victor

    2012-07-01

    Full Text Available Abstract Background Among the essential biological roles of bone marrow-derived cells, secretion of many soluble factors is included and these small molecules can act upon specific receptors present in many tissues including the nervous system. Some of the released molecules can induce proliferation of Schwann cells (SC, satellite cells and lumbar spinal cord astrocytes during early steps of regeneration in a rat model of sciatic nerve transection. These are the major glial cell types that support neuronal survival and axonal growth following peripheral nerve injury. Fibroblast growth factor-2 (FGF-2 is the main mitogenic factor for SCs and is released in large amounts by bone marrow-derived cells, as well as by growing axons and endoneurial fibroblasts during development and regeneration of the peripheral nervous system (PNS. Results Here we show that bone marrow-derived cell treatment induce an increase in the expression of FGF-2 in the sciatic nerve, dorsal root ganglia and the dorsolateral (DL region of the lumbar spinal cord (LSC in a model of sciatic nerve transection and connection into a hollow tube. SCs in culture in the presence of bone marrow derived conditioned media (CM resulted in increased proliferation and migration. This effect was reduced when FGF-2 was neutralized by pretreating BMMC or CM with a specific antibody. The increased expression of FGF-2 was validated by RT-PCR and immunocytochemistry in co-cultures of bone marrow derived cells with sciatic nerve explants and regenerating nerve tissue respectivelly. Conclusion We conclude that FGF-2 secreted by BMMC strongly increases early glial proliferation, which can potentially improve PNS regeneration.

  16. Reliability of using circulating tumor cells for detecting epidermal growth factor receptor mutation status in advanced non-small-cell lung cancer patients: a meta-analysis and systematic review

    Directory of Open Access Journals (Sweden)

    Hu F

    2018-03-01

    Full Text Available Fang Hu,* Xiaowei Mao,* Yujun Zhang, Xiaoxuan Zheng, Ping Gu, Huimin Wang, Xueyan ZhangDepartment of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this workPurpose: To evaluate the clinical value of circulating tumor cells as a surrogate to detect epidermal growth factor receptor mutation in advanced non-small-cell lung cancer (NSCLC patients.Methods: We searched the electronic databases, and all articles meeting predetermined selection criteria were included in this study. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. The evaluation indexes of the diagnostic performance were the summary receiver operating characteristic curve and area under the summary receiver operating characteristic curve.Results: Eight eligible publications with 255 advanced NSCLC patients were included in this meta-analysis. Taking tumor tissues as reference, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of circulating tumor cells for detecting the epidermal growth factor receptor mutation status were found to be 0.82 (95% confidence interval [CI]: 0.50–0.95, 0.95 (95% CI: 0.24–1.00, 16.81 (95% CI: 0.33–848.62, 0.19 (95% CI: 0.06–0.64, and 86.81 (95% CI: 1.22–6,154.15, respectively. The area under the summary receiver operating characteristic curve was 0.92 (95% CI: 0.89–0.94. The subgroup analysis showed that the factors of blood volume, histological type, EGFR-tyrosine kinase inhibitor therapy, and circulating tumor cell and tissue test methods for EGFR accounted for the significant difference of the pooled specificity. No significant difference was found between the pooled sensitivity of the subgroup.Conclusion: Our meta-analysis confirmed that circulating tumor cells are a good surrogate for

  17. Corallocins A-C, Nerve Growth and Brain-Derived Neurotrophic Factor Inducing Metabolites from the Mushroom Hericium coralloides.

    Science.gov (United States)

    Wittstein, Kathrin; Rascher, Monique; Rupcic, Zeljka; Löwen, Eduard; Winter, Barbara; Köster, Reinhard W; Stadler, Marc

    2016-09-23

    Three new natural products, corallocins A-C (1-3), along with two known compounds were isolated from the mushroom Hericium coralloides. Their benzofuranone and isoindolinone structures were elucidated by spectral methods. All corallocins induced nerve growth factor and/or brain-derived neurotrophic factor expression in human 1321N1 astrocytes. Furthermore, corallocin B showed antiproliferative activity against HUVEC and human cancer cell lines MCF-7 and KB-3-1.

  18. Differential Expression and Clinical Significance of Transforming Growth Factor-Beta Isoforms in GBM Tumors.

    Science.gov (United States)

    Roy, Laurent-Olivier; Poirier, Marie-Belle; Fortin, David

    2018-04-08

    Glioblastoma (GBM) represents the most common and aggressive malignant primary brain tumors in adults. Response to standard treatment is transitory and the survival of clinical trial cohorts are little more than 14 months. GBM are characterized by excessive proliferation, invasiveness, and radio-/chemoresistance features; which are strongly upregulated by transforming growth factor-beta (TGF-β). We hypothesized that TGF-β gene expression could correlate with overall survival (OS) and serve as a prognostic biomarker. TGF-β₁ and -β₂ expression were analyzed by qPCR in 159 GBM tumor specimens. Kaplan-Meier and multivariate analyses were used to correlate expression with OS and progression-free survival (PFS). In GBM, TGF-β₁ and -β₂ levels were 33- and 11-fold higher respectively than in non-tumoral samples. Kaplan-Meier and multivariate analyses revealed that high to moderate expressions of TGF-β₁ significantly conferred a strikingly poorer OS and PFS in newly diagnosed patients. Interestingly, at relapse, neither isoforms had meaningful impact on clinical evolution. We demonstrate that TGF-β₁ is the dominant isoform in newly diagnosed GBM rather than the previously acknowledged TGF-β₂. We believe our study is the first to unveil a significant relationship between TGF-β₁ expression and OS or PFS in newly diagnosed GBM. TGF-β₁ could serve as a prognostic biomarker or target affecting treatment planning and patient follow-up.

  19. Differential Expression and Clinical Significance of Transforming Growth Factor-Beta Isoforms in GBM Tumors

    Directory of Open Access Journals (Sweden)

    Laurent-Olivier Roy

    2018-04-01

    Full Text Available Glioblastoma (GBM represents the most common and aggressive malignant primary brain tumors in adults. Response to standard treatment is transitory and the survival of clinical trial cohorts are little more than 14 months. GBM are characterized by excessive proliferation, invasiveness, and radio-/chemoresistance features; which are strongly upregulated by transforming growth factor-beta (TGF-β. We hypothesized that TGF-β gene expression could correlate with overall survival (OS and serve as a prognostic biomarker. TGF-β1 and -β2 expression were analyzed by qPCR in 159 GBM tumor specimens. Kaplan–Meier and multivariate analyses were used to correlate expression with OS and progression-free survival (PFS. In GBM, TGF-β1 and -β2 levels were 33- and 11-fold higher respectively than in non-tumoral samples. Kaplan–Meier and multivariate analyses revealed that high to moderate expressions of TGF-β1 significantly conferred a strikingly poorer OS and PFS in newly diagnosed patients. Interestingly, at relapse, neither isoforms had meaningful impact on clinical evolution. We demonstrate that TGF-β1 is the dominant isoform in newly diagnosed GBM rather than the previously acknowledged TGF-β2. We believe our study is the first to unveil a significant relationship between TGF-β1 expression and OS or PFS in newly diagnosed GBM. TGF-β1 could serve as a prognostic biomarker or target affecting treatment planning and patient follow-up.

  20. IL-33 activates tumor stroma to promote intestinal polyposis.

    Science.gov (United States)

    Maywald, Rebecca L; Doerner, Stephanie K; Pastorelli, Luca; De Salvo, Carlo; Benton, Susan M; Dawson, Emily P; Lanza, Denise G; Berger, Nathan A; Markowitz, Sanford D; Lenz, Heinz-Josef; Nadeau, Joseph H; Pizarro, Theresa T; Heaney, Jason D

    2015-05-12

    Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.

  1. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    Directory of Open Access Journals (Sweden)

    Yun Qian

    2017-10-01

    Full Text Available Stem cell treatment and platelet-rich plasma (PRP therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  2. Structure activity relationships of quinoxalin-2-one derivatives as platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors, derived from molecular modeling.

    Science.gov (United States)

    Mori, Yoshikazu; Hirokawa, Takatsugu; Aoki, Katsuyuki; Satomi, Hisanori; Takeda, Shuichi; Aburada, Masaki; Miyamoto, Ken-ichi

    2008-05-01

    We previously reported a quinoxalin-2-one compound (Compound 1) that had inhibitory activity equivalent to existing platelet-derived growth factor-beta receptor (PDGFbeta R) inhibitors. Lead optimization of Compound 1 to increase its activity and selectivity, using structural information regarding PDGFbeta R-ligand interactions, is urgently needed. Here we present models of the PDGFbeta R kinase domain complexed with quinoxalin-2-one derivatives. The models were constructed using comparative modeling, molecular dynamics (MD) and ligand docking. In particular, conformations derived from MD, and ligand binding site information presented by alpha-spheres in the pre-docking processing, allowed us to identify optimal protein structures for docking of target ligands. By carrying out molecular modeling and MD of PDGFbeta R in its inactive state, we obtained two structural models having good Compound 1 binding potentials. In order to distinguish the optimal candidate, we evaluated the structural activity relationships (SAR) between the ligand-binding free energies and inhibitory activity values (IC50 values) for available quinoxalin-2-one derivatives. Consequently, a final model with a high SAR was identified. This model included a molecular interaction between the hydrophobic pocket behind the ATP binding site and the substitution region of the quinoxalin-2-one derivatives. These findings should prove useful in lead optimization of quinoxalin-2-one derivatives as PDGFb R inhibitors.

  3. Growth factors and new periodontology

    Directory of Open Access Journals (Sweden)

    Paknejad M

    1999-06-01

    Full Text Available Growth factors are biological mediators that have a key roll in proliferation, chemotaxy and"ndifferentiation by acting on specific receptors on the surface of cells and regulating events in wound"nhealing.They can be considered hormones that are not released in to the blood stream but have one a"nlocal action. Some of these factors can regulate premature change in GO to Gl phase in cell devesion"ncycle and even may stimulate synthesis of DNA in suitable cells, Growth substances, primarily secreted"nby fibroblasts, endothelia! cells, macrophages and platelet, include platelet derived growth factor"n(PDGF, insulin like growth factor (IGF transforming growth factor (TGFa and (3 and bone"nmorphogenetic proteins BMPs that approximately are the most important of them. (BMPs could be"nused to control events during periodontal, craniofacial and implant wound healing through favoring bone"nformation"nAccording toLynch, combination of PGDF and IGF1 would be effective in promoting growth of all the"ncomponents of the periodontium."nThe aim of this study was to characterize growth factor and review the literature to determine the"nmechanism of their function, classification and application in implant and periodontal treatment.

  4. Peptides Derived from Type IV Collagen, CXC Chemokines, and Thrombospondin-1 Domain-Containing Proteins Inhibit Neovascularization and Suppress Tumor Growth in MDA-MB-231 Breast Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Jacob E. Koskimaki

    2009-12-01

    Full Text Available Angiogenesis or neovascularization, the process of new blood vessel formation from preexisting microvasculature, involves interactions among several cell types including parenchymal, endothelial cells, and immune cells. The formation of new vessels is tightly regulated by a balance between endogenous proangiogenic and antiangiogenic factors to maintain homeostasis in tissue; tumor progression and metastasis in breast cancer have been shown to be angiogenesis-dependent. We previously introduced a systematic methodology to identify putative endogenous antiangiogenic peptides and validated these predictions in vitro in human umbilical vein endothelial cell proliferation and migration assays. These peptides are derived from several protein families including type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins. On the basis of the results from the in vitro screening, we have evaluated the ability of one peptide selected from each family named pentastatin-1, chemokinostatin-1, and properdistatin, respectively, to suppress angiogenesis in an MDA-MB-231 human breast cancer orthotopic xenograft model in severe combined immunodeficient mice. Peptides were administered intraperitoneally once per day. We have demonstrated significant suppression of tumor growth in vivo and subsequent reductions in microvascular density, indicating the potential of these peptides as therapeutic agents for breast cancer.

  5. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  6. GROWTH FACTORS AND COX2 IN WOUND HEALING: AN EXPERIMENTAL STUDY WITH EHRLICH TUMORS.

    Science.gov (United States)

    Salgado, Flávio L L; Artigiani-Neto, Ricardo; Lopes-Filho, Gaspar de Jesus

    2016-01-01

    Healing is an innate biological phenomenon, and carcinogenesis acquired, but with common humoral and cellular elements. Carcinogenesis interferes negatively in healing. To evaluate the histological changes in laparotomy scars of healthy Balb/c mice and with an Ehrlich tumor in its various forms of presentation. Fifty-four mice were divided into three groups of 18 animals. First group was the control; the second had Ehrlich tumor with ascites; and the third had the subcutaneous form of this tumor. Seven days after tumor inoculation, all 54 mice were submitted to laparotomy. All of the animals in the experiment were operated on again on 7th day after surgery, with resection of the scar and subsequent euthanasia of the animal. The scars were sent for histological assessment using immunohistochemical techniques to evaluate Cox-2 (cyclooxygenase 2), VEGF (vascular endothelial growth factor) and FGF (fibroblast growth factor). Semi-quantitatively analysis was done in the laparotomy scars and in the abdominal walls far away from the site of the operation. Assessing the weight of the animals, the correct inoculation of the tumor and weight gain in the group with tumoral ascites was observed. The histological studies showed that groups with the tumor showed a statistically significant higher presence of Cox-2 compared to the control. In the Cox-2 analysis of the abdominal wall, the ascites group showed the most significant difference. VEGF did not present any significant differences between the three groups, regardless of the site. The FGF showed a significant increase in animals with the tumor. Histological findings in both laparotomy scar and the abdominal wall showed that with Ehrlich's neoplasia there was an exacerbated inflammatory response, translated by more intense expression of Cox-2 and greater fibroblast proliferation, translated by more intense expression of FGF, that is, it stimulated both the immediate inflammatory reactions, observed with Cox-2 reactions, and

  7. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    International Nuclear Information System (INIS)

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-01-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and β-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  8. Naturally occurring, tumor-specific, therapeutic proteins.

    Science.gov (United States)

    Argiris, Konstantinos; Panethymitaki, Chrysoula; Tavassoli, Mahvash

    2011-05-01

    The emerging approach to cancer treatment known as targeted therapies offers hope in improving the treatment of therapy-resistant cancers. Recent understanding of the molecular pathogenesis of cancer has led to the development of targeted novel drugs such as monoclonal antibodies, small molecule inhibitors, mimetics, antisense and small interference RNA-based strategies, among others. These compounds act on specific targets that are believed to contribute to the development and progression of cancers and resistance of tumors to conventional therapies. Delivered individually or combined with chemo- and/or radiotherapy, such novel drugs have produced significant responses in certain types of cancer. Among the most successful novel compounds are those which target tyrosine kinases (imatinib, trastuzumab, sinutinib, cetuximab). However, these compounds can cause severe side-effects as they inhibit pathways such as epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor, which are also important for normal functions in non-transformed cells. Recently, a number of proteins have been identified which show a remarkable tumor-specific cytotoxic activity. This toxicity is independent of tumor type or specific genetic changes such as p53, pRB or EGFR aberrations. These tumor-specific killer proteins are either derived from common human and animal viruses such as E1A, E4ORF4 and VP3 (apoptin) or of cellular origin, such as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) and MDA-7 (melanoma differentiation associated-7). This review aims to present a current overview of a selection of these proteins with preferential toxicity among cancer cells and will provide an insight into the possible mechanism of action, tumor specificity and their potential as novel tumor-specific cancer therapeutics.

  9. Growth/differentiation factor-5 significantly enhances periodontal wound healing/regeneration compared with platelet-derived growth factor-BB in dogs.

    Science.gov (United States)

    Kwon, Hyuk-Rak; Wikesjö, Ulf M E; Park, Jung-Chul; Kim, Young-Taek; Bastone, Patrizia; Pippig, Susanne D; Kim, Chong-Kwan

    2010-08-01

    Recombinant human growth/differentiation factor-5 (rhGDF-5) in a particulate beta-tricalcium phosphate (beta-TCP) carrier is being evaluated to support periodontal regeneration. The objective of this study was to evaluate periodontal wound healing/regeneration following an established clinical (benchmark) protocol including surgical implantation of rhGDF-5/beta-TCP in comparison with that following implantation of recombinant human platelet-derived growth factor-BB (rhPDGF) combined with a particulate beta-TCP biomaterial using an established canine defect model. Bilateral, 4 x 5 mm (width x depth), one-wall, critical-size, intrabony periodontal defects were surgically created at the mandibular second and fourth pre-molar teeth in five adult Beagle dogs. Defect sites were randomized to receive rhGDF-5/beta-TCP or the rhPDGF construct followed by wound closure for primary intention healing. The animals were sacrificed following an 8-week healing interval for histological and histometric examination. Clinical healing was generally uneventful. Sites receiving rhGDF-5/beta-TCP exhibited a significantly enhanced cementum formation compared with sites receiving the rhPDGF construct, averaging (+/-SD) 4.49+/-0.48 versus 2.72+/-0.91 mm (palveolar bone. Both protocols displayed beta-TCP residues apparently undergoing resorption. Application of both materials appears safe, as they were associated with limited, if any, adverse events. rhGDF-5/beta-TCP shows a significant potential to support/accelerate periodontal wound healing/regeneration. Application of rhGDF-5/beta-TCP appears safe and should be further evaluated in human clinical trials.

  10. Biologic significance of receptor-binding cancer antigen expressed on SiSo cells (RCAS1) as a pivotal regulator of tumor growth through angiogenesis in human uterine cancer.

    Science.gov (United States)

    Sonoda, Kenzo; Miyamoto, Shingo; Yamazaki, Ayano; Kobayashi, Hiroaki; Nakashima, Manabu; Mekada, Eisuke; Wake, Norio

    2007-11-01

    The expression of receptor-binding cancer antigen expressed on SiSo cells (RCAS1) is related significantly to the overall survival of patients with various cancers. RCAS1 reportedly induces apoptotic cell death in peripheral lymphocytes, which may contribute to the escape of tumor cells from immune surveillance. RCAS1 expression also has been related to tumor invasiveness and size in uterine cervical cancer. To clarify whether RCAS1 exacerbates tumor progression, the authors investigated the association between RCAS1 expression and tumor growth potential. The authors constructed small interfering ribonucleic acid (RNA) (siRNA) to target RCAS1. After transfection of siRNA and the RCAS1-encoding gene, growth of tumor cells was assessed in vitro and in vivo. The correlation between RCAS1 expression and angiogenesis was investigated in the transfected cells and in inoculated tumors from nude mice. In addition, the same association was investigated immunohistochemically with tissue samples from patients with uterine cervical cancer. Knockdown of RCAS1 expression by siRNA significantly suppressed the in vivo growth of SiSo and HOUA tumor cells (P cell growth was not affected significantly. Enhanced RCAS1 expression significantly promoted in vivo growth, but not in vitro growth, of tumors derived from COS-7 cells (P = .0039). Introduction of the RCAS1-encoding gene increased expression of vascular endothelial growth factor (VEGF). In uterine cervical cancer, RCAS1 expression was associated significantly with VEGF expression (P = .0407) and with microvessel density (P = .0108). RCAS1 may be a pivotal regulator of tumor growth through angiogenesis. Continued exploration of the biologic function of RCAS1 may allow the development of novel therapeutic strategies for uterine cancer.

  11. Association of coatomer proteins with the beta-receptor for platelet-derived growth factor

    DEFF Research Database (Denmark)

    Hansen, Klaus; Rönnstrand, L; Rorsman, C

    1997-01-01

    The nonreceptor tyrosine kinase Src binds to and is activated by the beta-receptor for platelet-derived growth factor (PDGF). The interaction leads to Src phosphorylation of Tyr934 in the kinase domain of the receptor. In the course of the functional characterization of this phosphorylation, we...... of intracellular vesicle transport. In order to explore the functional significance of the interaction between alpha- and beta'-COP and the PDGF receptor, a receptor mutant was made in which the conserved histidine residue 928 was mutated to an alanine residue. The mutant receptor, which was unable to bind alpha...

  12. BRE enhances in vivo growth of tumor cells

    International Nuclear Information System (INIS)

    Chan, Ben Chung-Lap; Li Qing; Chow, Stephanie Ka-Yee; Ching, Arthur Kar-Keung; Liew, Choong Tsek; Lim, Pak-Leong; Lee, Kenneth Ka-Ho; Chan, John Yeuk-Hon; Chui, Y.-L.

    2005-01-01

    Human BRE, a death receptor-associating intracellular protein, attenuates apoptotic response of human and mouse tumor cell lines to death receptor stimuli in vitro. In this report, we addressed whether the in vitro antiapoptotic effect of BRE could impact on tumor growth in vivo. We have shown that the mouse Lewis lung carcinoma D122 stable transfectants of human BRE expression vector developed into local tumor significantly faster than the stable transfectants of empty vector and parental D122, in both the syngeneic C57BL/6 host and nude mice. In vitro growth of the BRE stable transfectants was, however, not accelerated. No significant difference in metastasis between the transfectants and the parental D122 was detected. Thus, overexpression of BRE promotes local tumor growth but not metastasis. We conclude that the enhanced tumor growth is more likely due to the antiapoptotic activity of BRE than any direct effect of the protein on cell proliferation

  13. A new ODE tumor growth modeling based on tumor population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Oroji, Amin; Omar, Mohd bin [Institute of Mathematical Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia amin.oroji@siswa.um.edu.my, mohd@um.edu.my (Malaysia); Yarahmadian, Shantia [Mathematics Department Mississippi State University, USA Syarahmadian@math.msstate.edu (United States)

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  14. A new ODE tumor growth modeling based on tumor population dynamics

    International Nuclear Information System (INIS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-01-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan

  15. Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus–oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10...... with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P

  16. Modulation of gap junctional intercellular communication between human smooth muscle cells by leukocyte-derived growth factors and cytokines in relation to atherogenesis

    NARCIS (Netherlands)

    Mensink, A.

    1997-01-01


    In this thesis, the effect of leukocyte-derived growth factors and cytokines on GJIC between SMC was investigated. GJIC is regarded as an important mechanism in the control of cell growth, cell differentiation and tissue homeostasis. Disturbance of SMC growth control is regarded to be a

  17. Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer.

    Science.gov (United States)

    Daman, Zahra; Faghihi, Homa; Montazeri, Hamed

    2018-05-02

    Recently, salinomycin (SAL) has been reported to inhibit proliferation and induce apoptosis in various tumors. The aim of this study was to deliver SAL to orthotopic model of pancreatic cancer by the aid of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). The NPs were physico-chemically characterized and evaluated for cytotoxicity on luciferase-transduced AsPC-1 cells in vitro as well as implanted orthotopically into the pancreas of nude mice. SAL (3.5 mg/kg every other day) blocked tumor growth by 52% compared to the control group after 3 weeks of therapy. Western blotting of tumor protein extracts indicated that SAL treatment leads to up-regulation of E-cadherin, β-catenin, and transforming growth factor beta receptor (TGFβR) expressions in AsPC-1 orthotopic tumor. Noteworthy, immunofluorescence staining of adjacent tumor sections showed that treatment with SAL NPs cause significant apoptosis in the tumor cells rather than the stroma. Further investigations also revealed that TGFβR2 over-expression was induced in stroma cells after treatment with SAL NPs. These results highlight SAL-loaded PLGA NPs as a promising system for pancreatic cancer treatment, while the mechanistic questions need to be subsequently tested.

  18. Platelet-derived growth factor-C and -D in the cardiovascular system and diseases.

    Science.gov (United States)

    Lee, Chunsik; Li, Xuri

    2018-08-01

    The cardiovascular system is among the first organs formed during development and is pivotal for the formation and function of the rest of the organs and tissues. Therefore, the function and homeostasis of the cardiovascular system are finely regulated by many important molecules. Extensive studies have shown that platelet-derived growth factors (PDGFs) and their receptors are critical regulators of the cardiovascular system. Even though PDGF-C and PDGF-D are relatively new members of the PDGF family, their critical roles in the cardiovascular system as angiogenic and survival factors have been amply demonstrated. Understanding the functions of PDGF-C and PDGF-D and the signaling pathways involved may provide novel insights into both basic biomedical research and new therapeutic possibilities for the treatment of cardiovascular diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Multi-channel promotion of lung cancer progress by bone marrow derived mesenchymal stem cells in tumor microenvironment].

    Science.gov (United States)

    Luo, D; Hu, S Y; Liu, G X

    2018-02-23

    Objective: To observe the growth and metastasis of lung cancer promoted by bone marrow derived mesenchymal stem cells (BMSCs) in tumor microenvironment and investigate the underlined mechanisms. Methods: Specific chemotaxis of BMSCs towards lung cancer was observed, and the tumor growth and metastasis were assessed in vivo . Furthermore, CD34 expression determined by immunohistochemistry was used to assess the microvessel density (MVD), and the expressions of GFP and α-SMA determined by immunofluorescence were used to detect the BMSCs derived mesenchymal cells. We investigated the effect of BMSCs on migration, invasion of lung cancer cells including A549 and H446 cells by using scratch assays and Transwell Assay in vitro. We also explored the effect of BMSCs on epithelial mesenchymal transition of A549 and H446 cells by observing the phenotype transition and E-Cadherin protein expression detected by Western blot. At last, we screened the potentially key soluble factors by enzyme linked immunosorbent assay (ELISA). Results: In NOD mice, labeled BMSCs injected via tail vein were special chemotaxis to tumor cells, and promoted the tumor growth [the time of tumor formation in A549+ BMSCs and A549 alone was (5.0±1.5) days and (10.0±3.6) days, respectively, P cell carcinoma and promoted the migration and invasion of lung cancer cells (the A of cells in the migrated lower chambers of A549+ BMSCs and A549 alone was 1.9±0.2 and 1.1±0.1, respectively, P cells in the migrated lower chambers of H446+ BMSCs and H446 alone was 1.9±0.3 and 0.9±0.2, respectively, P cell shape was longer and sharper, the intercellular junctions were reduced and the relative expression level of E-Cadherin protein in A549 co-cultured with BMDCs was 0.36, significantly down-regulated when compared to 0.55 of A549 alone ( P cells alone ( P <0.05). The concentration of IL-6 in the conditional medium of BMSCs, A549 co-cultured with BMSCs and H446 co-cultured with BMSCs was 910.5, 957.2, and 963

  20. Is podoplanin expression associated with transforming growth factor-β signaling in odontogenic cysts and tumors?

    Science.gov (United States)

    Etemad-Moghadam, Shahroo; Alaeddini, Mojgan

    2018-03-26

    Induction of podoplanin by transforming growth factor-β (TGF-β) has been shown in a number of lesions but not in odontogenic tumors (OTs). We evaluated the association between these markers in OTs for the first time and compared their expression among the different neoplasms. Immunohistochemistry using monoclonal antibody against podoplanin and TGF-β was performed on 76 odontogenic cysts and tumors. Spearman's correlation coefficient, Kruskal-Wallis, and Mann-Whitney U tests followed by adjustment with Bonferroni were used for statistical analysis (P keratocysts, and calcifying odontogenic cysts. Significant differences were observed only between OMs and each of the other neoplasms. Podoplanin immunostaining in the connective tissue was absent in most lesions. TGF-β was significantly different among the study sample but not between the lesions in paired comparisons. None of the studied OTs showed significant correlations between podoplanin-TGF-β, in either the epithelium or the stroma. These markers were also descriptively reported in calcifying epithelial odontogenic tumors. The inductive effect of TGF-β on podoplanin seems to be limited, if any, in odontogenic lesions. Podoplanin appears to play a role in some aspects of OTs with epithelial or mixed origins. Despite the possible participation of podoplanin in tumorigenesis, it may not necessarily be involved in the aggressive behavior of OTs. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    Science.gov (United States)

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  2. Nerve Growth Factor in Cancer Cell Death and Survival

    Energy Technology Data Exchange (ETDEWEB)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M., E-mail: adrienne.gorman@nuigalway.ie [Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway (Ireland)

    2011-02-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75{sup NTR}, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75{sup NTR}. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75{sup NTR}. This latter signaling through p75{sup NTR} promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75{sup NTR} mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer.

  3. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Song; Thapa, Ruby; Chi, Zhexu [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Xiu Jun [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Tang, Xiuwen, E-mail: xiuwentang@zju.edu.cn [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China)

    2014-05-16

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.

  4. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Yamagishi, Naoko; Teshima-Kondo, Shigetada; Masuda, Kiyoshi; Nishida, Kensei; Kuwano, Yuki; Dang, Duyen T; Dang, Long H; Nikawa, Takeshi; Rokutan, Kazuhito

    2013-01-01

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  5. Growth-inhibiting effect of tumor necrosis factor on human umbilical vein endothelial cells is enhanced with advancing age in vitro

    International Nuclear Information System (INIS)

    Shimada, Y.; Kaji, K.; Ito, H.; Noda, K.; Matsuo, M.

    1990-01-01

    We have examined the effects of in vitro aging on the growth capacity of human umbilical vein endothelial cells (HUVECs) under the influence of tumor necrosis factor (TNF) with or without interferon-gamma (IFN-gamma). The growth and colony-forming abilities of control cells were impaired with advancing age in vitro, especially at later stages (more than 70-80% of life span completed). It was found that treatment with TNF inhibited growth and colony-forming efficiency at any in vitro age. The effects of TNF were shown to increase with increasing in vitro age, as reflected by a more pronounced increase in doubling times, a decrease in saturation density, and a reduction in colony-forming efficiency. However, the characteristics of TNF receptors, including the dissociation constant, and the number of TNF-binding sites per cell-surface area remained rather constant. The effect of TNF was augmented by IFN-gamma at a dose that alone affected growth and colony formation only slightly. The augmentation by IFN-gamma was also found to depend on in vitro age; the synergy with TNF in the deterioration of colony-forming ability was observed only in aged cells. These results suggest that the intrinsic responsiveness of HUVECs to growth-inhibiting factors, as well as to growth-stimulating factors, changes during aging in vitro

  6. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors.

    Science.gov (United States)

    Amable, Paola Romina; Carias, Rosana Bizon Vieira; Teixeira, Marcus Vinicius Telles; da Cruz Pacheco, Italo; Corrêa do Amaral, Ronaldo José Farias; Granjeiro, José Mauro; Borojevic, Radovan

    2013-06-07

    Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 10(6) to 1.9 × 10(6) platelets/μl). Platelets were highly purified, because only platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of several growth factors, including platelet-derived growth factor and TGF. Our study resulted in a consistent PRP preparation method that yielded a cytokine and growth factor pool

  7. Human adipose-derived mesenchymal stromal cell pigment epithelium-derived factor cytotherapy modifies genetic and epigenetic profiles of prostate cancer cells.

    Science.gov (United States)

    Zolochevska, Olga; Shearer, Joseph; Ellis, Jayne; Fokina, Valentina; Shah, Forum; Gimble, Jeffrey M; Figueiredo, Marxa L

    2014-03-01

    Adipose-derived mesenchymal stromal cells (ASCs) are promising tools for delivery of cytotherapy against cancer. However, ASCs can exert profound effects on biological behavior of tumor cells. Our study aimed to examine the influence of ASCs on gene expression and epigenetic methylation profiles of prostate cancer cells as well as the impact of expressing a therapeutic gene on modifying the interaction between ASCs and prostate cancer cells. ASCs were modified by lentiviral transduction to express either green fluorescent protein as a control or pigment epithelium-derived factor (PEDF) as a therapeutic molecule. PC3 prostate cancer cells were cultured in the presence of ASC culture-conditioned media (CCM), and effects on PC3 or DU145. Ras cells were examined by means of real-time quantitative polymerase chain reaction, EpiTect methyl prostate cancer-focused real-time quantitative polymerase chain reaction arrays, and luciferase reporter assays. ASCs transduced with lentiviral vectors were able to mediate expression of several tumor-inhibitory genes, some of which correlated with epigenetic methylation changes on cocultured PC3 prostate cancer cells. When PC3 cells were cultured with ASC-PEDF CCM, we observed a shift in the balance of gene expression toward tumor inhibition, which suggests that PEDF reduces the potential tumor-promoting activity of unmodified ASCs. These results suggest that ASC-PEDF CCM can promote reprogramming of tumor cells in a paracrine manner. An improved understanding of genetic and epigenetic events in prostate cancer growth in response to PEDF paracrine therapy would enable a more effective use of ASC-PEDF, with the goal of achieving safer yet more potent anti-tumor effects. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  9. Continuous Release of Tumor-Derived Factors Improves the Modeling of Cachexia in Muscle Cell Culture

    Directory of Open Access Journals (Sweden)

    Robert W. Jackman

    2017-09-01

    Full Text Available Cachexia is strongly associated with a poor prognosis in cancer patients but the biological trigger is unknown and therefore no therapeutics exist. The loss of skeletal muscle is the most deleterious aspect of cachexia and it appears to depend on secretions from tumor cells. Models for studying wasting in cell culture consist of experiments where skeletal muscle cells are incubated with medium conditioned by tumor cells. This has led to candidates for cachectic factors but some of the features of cachexia in vivo are not yet well-modeled in cell culture experiments. Mouse myotube atrophy measured by myotube diameter in response to medium conditioned by mouse colon carcinoma cells (C26 is consistently less than what is seen in muscles of mice bearing C26 tumors with moderate to severe cachexia. One possible reason for this discrepancy is that in vivo the C26 tumor and skeletal muscle share a circulatory system exposing the muscle to tumor factors in a constant and increasing way. We have applied Transwell®-adapted cell culture conditions to more closely simulate conditions found in vivo where muscle is exposed to the ongoing kinetics of constant tumor secretion of active factors. C26 cells were incubated on a microporous membrane (a Transwell® insert that constitutes the upper compartment of wells containing plated myotubes. In this model, myotubes are exposed to a constant supply of cancer cell secretions in the medium but without direct contact with the cancer cells, analogous to a shared circulation of muscle and cancer cells in tumor-bearing animals. The results for myotube diameter support the idea that the use of Transwell® inserts serves as a more physiological model of the muscle wasting associated with cancer cachexia than the bolus addition of cancer cell conditioned medium. The Transwell® model supports the notion that the dose and kinetics of cachectic factor delivery to muscle play a significant role in the extent of pathology.

  10. Monitoring multiple myeloma by idiotype-specific peptide binders of tumor-derived exosomes.

    Science.gov (United States)

    Iaccino, Enrico; Mimmi, Selena; Dattilo, Vincenzo; Marino, Fabiola; Candeloro, Patrizio; Di Loria, Antonio; Marimpietri, Danilo; Pisano, Antonio; Albano, Francesco; Vecchio, Eleonora; Ceglia, Simona; Golino, Gaetanina; Lupia, Antonio; Fiume, Giuseppe; Quinto, Ileana; Scala, Giuseppe

    2017-10-13

    Tumor-derived exosomes (TDEs) play a pivotal role in tumor establishment and progression, and are emerging biomarkers for tumor diagnosis in personalized medicine. To date, there is a lack of efficient technology platforms for exosome isolation and characterization. Multiple myeloma (MM) is an incurable B-cell malignancy due to the rapid development of drug-resistance. MM-released exosomes express the immunoglobulin B-cell receptor (Ig-BCR) of the tumor B-cells, which can be targeted by Idiotype-binding peptides (Id-peptides). In this study, we analyzed the production of MM-released exosomes in the murine 5T33MM multiple myeloma model as biomarkers of tumor growth. To this end, we selected Id-peptides by screening a phage display library using as bait the Ig-BCR expressed by 5T33MM cells. By FACS, the FITC-conjugated Id-peptides detected the MM-released exosomes in the serum of 5T33MM-engrafted mice, levels of which are correlated with tumor progression at an earlier time point compared to serum paraprotein. These results indicate that Id-peptide-based recognition of MM-released exosomes may represent a very sensitive diagnostic approach for clinical evaluation of disease progression.

  11. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  12. Human adipose tissue-derived mesenchymal stem cells inhibit T-cell lymphoma growth in vitro and in vivo.

    Science.gov (United States)

    Ahn, Jin-Ok; Chae, Ji-Sang; Coh, Ye-Rin; Jung, Woo-Sung; Lee, Hee-Woo; Shin, Il-Seob; Kang, Sung-Keun; Youn, Hwa-Young

    2014-09-01

    Human mesenchymal stem cells (hMSCs) are thought to be one of the most reliable stem cell sources for a variety of cell therapies. This study investigated the anti-tumor effect of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) on EL4 murine T-cell lymphoma in vitro and in vivo. The growth-inhibitory effect of hAT-MSCs on EL4 tumor cells was evaluated using a WST-1 cell proliferation assay. Cell-cycle arrest and apoptosis were investigated by flow cytometry and western blot. To evaluate an anti-tumor effect of hAT-MSCs on T-cell lymphoma in vivo, CM-DiI-labeled hAT-MSCs were circumtumorally injected in tumor-bearing nude mice, and tumor size was measured. hAT-MSCs inhibited T-cell lymphoma growth by altering cell-cycle progression and inducing apoptosis in vitro. hAT-MSCs inhibited tumor growth in tumor-bearing nude mice and prolonged survival time. Immunofluorescence analysis showed that hAT-MSCs migrated to tumor sites. hAT-MSCs suppress the growth of T-cell lymphoma, suggesting a therapeutic option for T-cell lymphoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy.

    Science.gov (United States)

    Piñol-Jurado, Patricia; Gallardo, Eduard; de Luna, Noemi; Suárez-Calvet, Xavier; Sánchez-Riera, Carles; Fernández-Simón, Esther; Gomis, Clara; Illa, Isabel; Díaz-Manera, Jordi

    2017-08-01

    Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. HET0016, a selective inhibitor of 20-HETE synthesis, decreases pro-angiogenic factors and inhibits growth of triple negative breast cancer in mice.

    Directory of Open Access Journals (Sweden)

    Thaiz Ferraz Borin

    Full Text Available A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and in vitro cell line. MDA-MB-231 tumor cells were implanted in animals' right flank and randomly assigned to early (1 and 2, starting treatments on day 0, or delayed groups (3 and 4 on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05. Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found in vitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05 compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day's data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days.

  15. SU-E-T-751: Three-Component Kinetic Model of Tumor Growth and Radiation Response for Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y; Dahlman, E; Leder, K; Hui, S [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: To develop and study a kinetic model of tumor growth and its response to stereotactic radiosurgery (SRS) by assuming that the cells in irradiated tumor volume were made of three types. Methods: A set of ordinary differential equations (ODEs) were derived for three types of cells and a tumor growth rate. It is assumed that the cells were composed of actively proliferating cells, lethally damaged-dividing cells, and non-dividing cells. We modeled the tumor volume growth with a time-dependent growth rate to simulate the saturation of growth. After SRS, the proliferating cells were permanently damaged and converted to the lethally damaged cells. The amount of damaged cells were estimated by the LQ-model. The damaged cells gradually stopped dividing/proliferating and died with a constant rate. The dead cells were cleared from their original location with a constant rate. The total tumor volume was the sum of the three components. The ODEs were numerically solved with appropriate initial conditions for a given dosage. The proposed model was used to model an animal experiment, for which the temporal change of a rhabdomyosarcoma tumor volume grown in a rat was measured with time resolution sufficient to test the model. Results: To fit the model to the experimental data, the following characteristics were needed with the model parameters. The α-value in the LQ-model was smaller than the commonly used value; furthermore, it decreased with increasing dose. At the same time, the tumor growth rate after SRS had to increase. Conclusions: The new 3-component model of tumor could simulate the experimental data very well. The current study suggested that the radiation sensitivity and the growth rate of the proliferating tumor cells may change after irradiation and it depended on the dosage used for SRS. These preliminary observations must be confirmed by future animal experiments.

  16. Model of avascular tumor growth and response to low dose exposure

    International Nuclear Information System (INIS)

    Rodriguez Aguirre, J M; Custidiano, E R

    2011-01-01

    A single level cellular automata model is described and used to simulate early tumor growth, and the response of the tumor cells under low dose radiation affects. In this model the cell cycle of the population of normal and cancer cells is followed. The invasion mechanism of the tumor is simulated by a local factor that takes into account the microenvironment hardness to cell development, in a picture similar to the AMTIH model. The response of normal and cancer cells to direct effects of radiation is tested for various models and a model of bystander response is implemented.

  17. Occurrence of mutations in the epidermal growth factor receptor gene in X-ray-induced rat lung tumors

    International Nuclear Information System (INIS)

    Kitahashi, Tsukasa; Takahashi, Mami; Yamada, Yutaka

    2008-01-01

    Epidermal growth factor receptor (EGFR) gene alterations have been found in human lung cancers. However, there is no information on the factors inducing EGFR mutations. In rodents, K-ras mutations are frequently found in many lung carcinogenesis models, but hitherto, Egfr mutations have not been reported. Their presence was therefore investigated in representative lung carcinogenesis models with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosobis(2-hydroxypropyl)amine (BHP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) and ethyl carbamate (urethane), as well as X-ray irradiation. With the chemical carcinogenesis models, no mutations were detected in Egfr, which is in clear contrast to the high rates observed in either codon 12 or 61 of K-ras (21/23 of the lung tumors induced with NNK, 4/5 with MelQx, 1/4 with urethane and 7/18 with BHP). However, in the X-ray-induced lung tumors, Egfr mutations with amino acid substitution were observed in exons 18 and 21 (4/12, 33%), but no activating mutation of K-ras was detected. In addition, one and four silent mutations were identified in K-ras (exon 1) and Egfr (exons 18, 20 and 21), respectively. Most mutations in both Egfr and K-ras were G/C→A/T transitions (7/8, 88% and 31/34, 91%, respectively). Although, the mutational patterns in equivalent human lesions were not completely coincident, this first report of Egfr mutations in an experimental lung tumor model suggests that X-rays or other factors producing oxygen radicals could cause EGFR mutations in some proportion of lung cancers in humans. (author)

  18. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo.

    Science.gov (United States)

    Trindade, Alexandre; Djokovic, Dusan; Gigante, Joana; Mendonça, Liliana; Duarte, António

    2017-03-14

    The inhibition of Delta-like 4 (Dll4)/Notch signaling has been shown to result in excessive, nonfunctional vessel proliferation and significant tumor growth suppression. However, safety concerns emerged with the identification of side effects resulting from chronic Dll4/Notch blockade. Alternatively, we explored the endothelial Dll4 overexpression using different mouse tumor models. We used a transgenic mouse model of endothelial-specific Dll4 overexpression, previously produced. Growth kinetics and vascular histopathology of several types of solid tumors was evaluated, namely Lewis Lung Carcinoma xenografts, chemically-induced skin papillomas and RIP1-Tag2 insulinomas. We found that increased Dll4/Notch signaling reduces tumor growth by reducing vascular endothelial growth factor (VEGF)-induced endothelial proliferation, tumor vessel density and overall tumor blood supply. In addition, Dll4 overexpression consistently improved tumor vascular maturation and functionality, as indicated by increased vessel calibers, enhanced mural cell recruitment and increased network perfusion. Importantly, the tumor vessel normalization is not more effective than restricted vessel proliferation, but was found to prevent metastasis formation and allow for increased delivery to the tumor of concomitant chemotherapy, improving its efficacy. By reducing endothelial sensitivity to VEGF, these results imply that Dll4/Notch stimulation in tumor microenvironment could be beneficial to solid cancer patient treatment by reducing primary tumor size, improving tumor drug delivery and reducing metastization. Endothelial specific Dll4 overexpression thus appears as a promising anti-angiogenic modality that might improve cancer control.

  19. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Alma Y. Galvez-Contreras

    2017-07-01

    Full Text Available Growth factors (GFs are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD and autism spectrum disorders (ASD. In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF, glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders.

  20. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Galvez-Contreras, Alma Y.; Campos-Ordonez, Tania; Gonzalez-Castaneda, Rocio E.; Gonzalez-Perez, Oscar

    2017-01-01

    Growth factors (GFs) are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders. PMID:28751869

  1. Effect of platelet-derived growth factor-BB on bone formation in calvarial defects: an experimental study in rabbits

    DEFF Research Database (Denmark)

    Vikjaer, D; Blom, S; Hjørting-Hansen, E

    1997-01-01

    The effect of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) on bone healing was examined in calvarial defects in rabbits. Bicortical circular (critical size) defects were prepared in the calvarial bone of 16 rabbits. The defects were closed on the dural side and covered externally...

  2. Blockade of A2b Adenosine Receptor Reduces Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells in a Mouse Model of Melanoma

    Directory of Open Access Journals (Sweden)

    Raffaella Iannone

    2013-12-01

    Full Text Available The A2b receptor (A2bR belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10 and monocyte chemoattractant protein 1 (MCP-1 and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs. Depletion of CD11b+Gr1+ cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b+Gr1+ cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8+ T cells and natural killer T (NKT cells and increased levels of T helper 1 (Th1-like cytokines. Adoptive transfer of CD11b+Gr1+ cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.

  3. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  4. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  5. Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model

    Directory of Open Access Journals (Sweden)

    Meixensberger Jürgen

    2010-01-01

    Full Text Available Abstract Background It was previously demonstrated that the dipeptide carnosine inhibits growth of cultured cells isolated from patients with malignant glioma. In the present work we investigated whether carnosine also affects tumor growth in vivo and may therefore be considered for human cancer therapy. Results A mouse model was used to investigate whether tumor growth in vivo can be inhibited by carnosine. Therefore, NIH3T3 fibroblasts, conditionally expressing the human epidermal growth factor receptor 2 (HER2/neu, were implanted into the dorsal skin of nude mice, and tumor growth in treated animals was compared to control mice. In two independent experiments nude mice that received tumor cells received a daily intra peritoneal injection of 500 μl of 1 M carnosine solution. Measurable tumors were detected 12 days after injection. Aggressive tumor growth in control animals, that received a daily intra peritoneal injection of NaCl solution started at day 16 whereas aggressive growth in mice treated with carnosine was delayed, starting around day 19. A significant effect of carnosine on tumor growth was observed up to day 24. Although carnosine was not able to completely prevent tumor growth, a microscopic examination of tumors revealed that those from carnosine treated animals had a significant lower number of mitosis (p Conclusion As a naturally occurring substance with a high potential to inhibit growth of malignant cells in vivo, carnosine should be considered as a potential anti-cancer drug. Further experiments should be performed in order to understand how carnosine acts at the molecular level.

  6. Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model.

    Science.gov (United States)

    Renner, Christof; Zemitzsch, Nadine; Fuchs, Beate; Geiger, Kathrin D; Hermes, Matthias; Hengstler, Jan; Gebhardt, Rolf; Meixensberger, Jürgen; Gaunitz, Frank

    2010-01-06

    It was previously demonstrated that the dipeptide carnosine inhibits growth of cultured cells isolated from patients with malignant glioma. In the present work we investigated whether carnosine also affects tumor growth in vivo and may therefore be considered for human cancer therapy. A mouse model was used to investigate whether tumor growth in vivo can be inhibited by carnosine. Therefore, NIH3T3 fibroblasts, conditionally expressing the human epidermal growth factor receptor 2 (HER2/neu), were implanted into the dorsal skin of nude mice, and tumor growth in treated animals was compared to control mice. In two independent experiments nude mice that received tumor cells received a daily intra peritoneal injection of 500 microl of 1 M carnosine solution. Measurable tumors were detected 12 days after injection. Aggressive tumor growth in control animals, that received a daily intra peritoneal injection of NaCl solution started at day 16 whereas aggressive growth in mice treated with carnosine was delayed, starting around day 19. A significant effect of carnosine on tumor growth was observed up to day 24. Although carnosine was not able to completely prevent tumor growth, a microscopic examination of tumors revealed that those from carnosine treated animals had a significant lower number of mitosis (p < 0.0003) than untreated animals, confirming that carnosine affects proliferation in vivo. As a naturally occurring substance with a high potential to inhibit growth of malignant cells in vivo, carnosine should be considered as a potential anti-cancer drug. Further experiments should be performed in order to understand how carnosine acts at the molecular level.

  7. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD.

    Science.gov (United States)

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K; Miyazaki, Hideki; Michael, Iacovos P; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-02-16

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis.

  8. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species

    Science.gov (United States)

    Alcayaga-Miranda, Francisca; González, Paz L.; Lopez-Verrilli, Alejandra; Varas-Godoy, Manuel; Aguila-Díaz, Carolina; Contreras, Luis; Khoury, Maroun

    2016-01-01

    Mesenchymal stem cells (MSCs) secrete exosomes that are capable of modifying the tumor environment through different mechanisms including changes in the cancer-cell secretome. This activity depends on their cargo content that is largely defined by their cellular origin. Endometrial cells are fine regulators of the angiogenic process during the menstrual cycle that includes an angiostatic condition that is associated with the end of the cycle. Hence, we studied the angiogenic activity of menstrual stem cells (MenSCs)-secreted exosomes on prostate PC3 tumor cells. Our results showed that exosomes induce a reduction in VEGF secretion and NF-κB activity. Lower reactive oxygen species (ROS) production in exosomes-treated cells was detected by the DCF method, suggesting that the inhibition of the intracellular ROS impacts both NF-κB and VEGF pathways. We confirmed using tubule formation and plug transplantation assays that MenSCs-exosomes suppress the secretion of pro-angiogenic factors by the PC3 cells in a ROS-dependent manner. The inhibition of the tumor angiogenesis and, consequently, the tumor growth was also confirmed using a xenograft mouse model. Additionally, the anti-tumoral effect was associated with a reduction of tumor hemoglobin content, vascular density and inhibition of VEGF and HIF-1α expression. Importantly, we demonstrate that the exosomes anti-angiogenic effect is specific to the menstrual cell source, as bone marrow MSCs-derived exosomes showed an opposite effect on the VEGF and bFGF expression in tumor cells. Altogether, our results indicate that MenSCs-derived exosomes acts as blockers of the tumor-induced angiogenesis and therefore could be suitable for anti-cancer therapies. PMID:27286448

  9. Treatment of Experimental Brain Tumors with Trombospondin-1 Derived Peptides: an In Vivo Imaging Study

    Directory of Open Access Journals (Sweden)

    A. Bogdanov, Jr.

    1999-11-01

    Full Text Available Antiangiogenic and antiproliferative effects of synthetic D-reverse peptides derived from the type 1 repeats of thrombospondin (TSP1 [1,2] were studied in rodent C6 glioma and 9L gliosarcomas. To directly measure tumor size and vascular parameters, we employed in vivo magnetic resonance (MR imaging and corroborated results by traditional morphometric tissue analysis. Rats bearing either C6 or 9L tumors were treated with TSP1-derived peptide (D-reverse amKRFKQDGGWSHWSPWSSac, n=13 or a control peptide (D-reverse am KRAKQAGGASHASPASSac, n=12 at 10 mg/kg, administered either intravenously or through subcutaneous miniosmotic pumps starting 10 days after tumor implantation. Eleven days later, the effect of peptide treatment was evaluated. TSP1 peptide-treated 9L tumors (50.7±44.2 mm3, n=7 and C6 tumors (41.3±34.2 mm3, n=6 were significantly smaller than tumors treated with control peptide (9L: 215.7±67.8 mm3, n=6; C6:184.2±105.2 mm3, n=6. In contrast, the in vivo vascular volume fraction, the mean vascular area (determined by microscopy, and the microvascular density of tumors were not significantly different in any of the experimental groups. In cell culture, TSP1, and the amKRFKQDGGWSHWSPWSSac peptide showed antiproliferative effects against C6 with an IC of 45 nM for TSP1. These results indicate that TSP1derived peptides retard brain tumor growth presumably as a result of slower de novo blood vessel formation and synergistic direct antiproliferative effects on tumor cells. We also show that in vivo MR imaging can be used to assess treatment efficacy of novel antiangiogenic drugs non-invasively, which has obvious implications for clinical trials.

  10. Combination of interferon-alpha and 5-fluorouracil inhibits endothelial cell growth directly and by regulation of angiogenic factors released by tumor cells

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Tanemura, Masahiro; Umeshita, Koji; Doki, Yuichiro; Mori, Masaki; Nagano, Hiroaki; Yamamoto, Hirofumi; Noda, Takehiro; Murakami, Masahiro; Kobayashi, Shogo; Marubashi, Shigeru; Eguchi, Hidetoshi; Takeda, Yutaka

    2009-01-01

    The combination therapy of interferon (IFN)-alpha and 5-fluorouracil (5-FU) improved the prognosis of the patients with hepatocellular carcinoma (HCC). To determine the molecular mechanisms of the anti-tumor and anti-angiogenic effects, we examined the direct anti-proliferative effects on human umbilical vein endothelial cells (HUVEC) and indirect effects by regulating secretion of angiogenic factors from HCC cells. The direct effects on HUVEC were examined by TUNEL, Annexin-V assays and cell cycles analysis. For analysis of the indirect effects, the apoptosis induced by the conditioned medium from HCC cell treated by IFN-alpha/5-FU and expression of angiogenic factors was examined. IFN-alpha and 5-FU alone had anti-proliferative properties on HUVEC and their combination significantly inhibited the growth (compared with control, 5-FU or IFN alone). TUNEL and Annexin-V assays showed no apoptosis. Cell cycle analysis revealed that IFN-alpha and 5-FU delayed cell cycle progression in HUVEC with S-phase accumulation. The conditioned medium from HuH-7 cells after treatment with IFN/5-FU significantly inhibited HUVEC growth and induced apoptosis, and contained high levels of angiopoietin (Ang)-1 and low levels of vascular endothelial growth factor (VEGF) and Ang-2. Knockdown of Ang-1 in HuH-7 cells abrogated the anti-proliferative effects on HUVEC while knockdown of Ang-2 partially rescue the cells. These results suggested that IFN-alpha and 5-FU had direct growth inhibitory effects on endothelial cells, as well as anti-angiogenic effects through regulation of angiogenic factors released from HCC cells. Modulation of VEGF and Angs secretion by IFN-alpha and 5-FU may contribute to their anti-angiogenic and anti-tumor effects on HCC

  11. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao; Zhou, Xi

    2015-01-01

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  12. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun-Hai; Zhao, Chun-Liu [Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20020 (China); Ding, Lan-Bao [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Zhou, Xi, E-mail: modelmap@139.com [Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20020 (China)

    2015-10-09

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  13. Effect of Irradiation on Tumor Microenvironment and Bone Marrow Cell Migration in a Preclinical Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Jonathan L. [Department of Biological Sciences, Oakland University, Rochester, Michigan (United States); Department of Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan (United States); Krueger, Sarah A.; Hanna, Alaa [Department of Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan (United States); Raffel, Thomas R. [Department of Biological Sciences, Oakland University, Rochester, Michigan (United States); Wilson, George D. [Department of Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan (United States); Madlambayan, Gerard J. [Department of Biological Sciences, Oakland University, Rochester, Michigan (United States); Marples, Brian, E-mail: Brian.Marples@beaumont.edu [Department of Radiation Oncology, William Beaumont Health System, Royal Oak, Michigan (United States)

    2016-09-01

    Purpose: To characterize the tumor microenvironment after standard radiation therapy (SRT) and pulsed radiation therapy (PRT) in Lewis lung carcinoma (LLC) allografts. Methods and Materials: Subcutaneous LLC tumors were established in C57BL/6 mice. Standard RT or PRT was given at 2 Gy/d for a total dose of 20 Gy using a 5 days on, 2 days off schedule to mimic clinical delivery. Radiation-induced tumor microenvironment changes were examined after treatment using flow cytometry and antibody-specific histopathology. Normal tissue effects were measured using noninvasive {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography after naïve animals were given whole-lung irradiation to 40 Gy in 4 weeks using the same 2-Gy/d regimens. Results: Over the 2 weeks of therapy, PRT was more effective than SRT at reducing tumor growth rate (0.31 ± 0.02 mm{sup 3}/d and 0.55 ± 0.04 mm{sup 3}/d, respectively; P<.007). Histopathology showed a significant comparative reduction in the levels of Ki-67 (14.5% ± 3%), hypoxia (10% ± 3.5%), vascular endothelial growth factor (2.3% ± 1%), and stromal-derived factor-1α (2.5% ± 1.4%), as well as a concomitant decrease in CD45{sup +} bone marrow–derived cell (BMDC) migration (7.8% ± 2.2%) after PRT. The addition of AMD3100 also decreased CD45{sup +} BMDC migration in treated tumors (0.6% ± 0.1%). Higher vessel density was observed in treated tumors. No differences were observed in normal lung tissue after PRT or SRT. Conclusions: Pulsed RT–treated tumors exhibited slower growth and reduced hypoxia. Pulsed RT eliminated initiation of supportive mechanisms utilized by tumors in low oxygen microenvironments, including angiogenesis and recruitment of BMDCs.

  14. Determinants of serum brain-derived neurotrophic factor

    NARCIS (Netherlands)

    Bus, B. A. A.; Molendijk, M. L.; Penninx, B. J. W. H.; Buitelaar, J. K.; Kenis, G.; Prickaerts, J.; Elzinga, B. M.; Voshaar, R. C. Oude

    Background: Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of growth factors and affects the survival and plasticity of neurons in the adult central nervous system. The high correlation between cortical and serum BDNF levels has led to many human studies on BDNF levels

  15. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    Science.gov (United States)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  16. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Dittmann, Florian; Le, Matthieu; Shih, Helen A; Menze, Bjoern H; Ayache, Nicholas; Konukoglu, Ender

    2014-01-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher–Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  17. Kinetic and biochemical studies on tumor growth. Comprehensive progress report, October 1, 1967--April 1, 1975

    International Nuclear Information System (INIS)

    Dethlefsen, L.A.

    1975-01-01

    The growth kinetics of four lines of the C3H mammary tumor have been studied by standard autoradiographic procedures in combination with volumetric growth curve analysis. Thus, such parameters as volumetric doubling time, mean cell generation time, growth fraction, and cell loss have been measured. Two of these lines (Slow and S102F) are currently being used for studying hormone responsiveness both in vivo and in vitro and the perturbed kinetics following insults with therapeutic agents. The respective values for the above parameters are: Slow; 21.0 days, 34 hours, 0.20, 9 percent per day, and S102F; 2.5 days, 17 hours, 0.60, 27 percent per day. A direct method ( 125 I-IUdR Method) for measuring cell loss has also been developed. This method consists of injecting mice with 125 I-IUdR and then measuring the loss of 125 I-activity from the tumor. The antigenic status of these tumors has been studied as one possible factor underlying the different growth kinetics. The mouse's immunological system was either suppressed (thymectomy and whole-body x-irradiation) or stimulated (previous exposure to tumor cells) and the percent takes, latent period, and growth rates measured. There was no evidence for a strong antigenic factor in any of these tumors. Hydroxyurea is being used as a tool for studying the perturbed cellular kinetics of the duodenum and the Slow and S102F tumors. The methods used are autoradiography, volumetric growth curve analysis, and measurements of the rates of DNA synthesis. Hormone effects on growth have been studied. Insulin had no effect but large doses of corticosterone (20 μg/ml and greater) were inhibitory and prolactin appeared to partially reverse these effects in the Slow line. (U.S.)

  18. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    Directory of Open Access Journals (Sweden)

    M. Bud Nelson

    2001-01-01

    Full Text Available High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, and sequence analysis. Immune complexes containing shed tumor antigen and anti-shed tumor antigen Ab cross-linked FcγRl-expressing tumor cells, which resulted in an induction of tumor cell proliferation and of shed tumor antigen production. Use of selective tyrosine kinase inhibitors demonstrated that tumor cell proliferation induced by immune complex cross-linking of FcγRl is dependent on the tyrosine kinase signal transduction pathway. A selective inhibitor of phosphatidylinositol-3 kinase also inhibited this induction of tumor cell proliferation. These findings support a role for immune complexes and FcγRl expression by tumor cells in augmentation of tumor growth and a metastatic phenotype.

  19. Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response

    Science.gov (United States)

    Levy, Liran; Mishalian, Inbal; Bayuch, Rachel; Zolotarov, Lida; Michaeli, Janna; Fridlender, Zvi G

    2015-01-01

    It has been shown that inhibitors of the immune system reside in the spleen and inhibit the endogenous antitumor effects of the immune system. We hypothesized that splenectomy would inhibit the growth of relatively large non-small lung cancer (NSCLC) tumors by modulating the systemic inhibition of the immune system, and in particular Myeloid Derived Suppressor Cells (MDSC). The effect of splenectomy was evaluated in several murine lung cancer models. We found that splenectomy reduces tumor growth and the development of lung metastases, but only in advanced tumors. In immune-deficient NOD-SCID mice the effect of splenectomy on tumor growth and metastatic spread disappeared. Splenectomy significantly reduced the presence of MDSC, and especially monocytic-MDSC in the circulation and inside the tumor. Specific reduction of the CCR2+ subset of monocytic MDSC was demonstrated, and the importance of the CCL2-CCR2 axis was further shown by a marked reduction in CCL2 following splenectomy. These changes were followed by changes in the macrophages contents of the tumors to become more antitumorigenic, and by increased activation of CD8+ Cytotoxic T-cells (CTL). By MDSC depletion, and adoptive transfer of MDSCs, we demonstrated that the effect of splenectomy on tumor growth was substantially mediated by MDSC cells. We conclude that the spleen is an important contributor to tumor growth and metastases, and that splenectomy can blunt this effect by depletion of MDSC, changing the amount and characteristics of myeloid cells and enhancing activation of CTL. PMID:26137413

  20. Mechanism of Cancer Growth Suppression of Alpha-Fetoprotein Derived Growth Inhibitory Peptides (GIP): Comparison of GIP-34 versus GIP-8 (AFPep). Updates and Prospects

    Energy Technology Data Exchange (ETDEWEB)

    Mizejewski, Gerald J. [Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States)

    2011-06-20

    The Alpha-fetoprotein (AFP) derived Growth Inhibitory Peptide (GIP) is a 34-amino acid segment of the full-length human AFP molecule that inhibits tumor growth and metastasis. The GIP-34 and its carboxy-terminal 8-mer segment, termed GIP-8, were found to be effective as anti-cancer therapeutic peptides against nine different human cancer types. Following the uptake of GIP-34 and GIP-8 into the cell cytoplasm, each follows slightly different signal transduction cascades en route to inhibitory pathways of tumor cell growth and proliferation. The parallel mechanisms of action of GIP-34 versus GIP-8 are demonstrated to involve interference of signaling transduction cascades that ultimately result in: (1) cell cycle S-phase/G2-phase arrest; (2) prevention of cyclin inhibitor degradation; (3) protection of p53 from inactivation by phosphorylation; and (4) blockage of K{sup +} ion channels opened by estradiol and epidermal growth factor (EGF). The overall mechanisms of action of both peptides are discussed in light of their differing modes of cell attachment and uptake fortified by RNA microarray analysis and electrophysiologic measurements of cell membrane conductance and resistance. As a chemotherapeutic adjunct, the GIPs could potentially aid in alleviating the negative side effects of: (1) tamoxifen resistance, uterine hyperplasia/cancer, and blood clotting; (2) Herceptin antibody resistance and cardiac (arrest) arrhythmias; and (3) doxorubicin's bystander cell toxicity.

  1. Effects of chronic aluminum exposure on learning and memory and brain-derived nerve growth factor in rats

    Institute of Scientific and Technical Information of China (English)

    潘宝龙

    2013-01-01

    Objective To investigate the effects of chronic aluminum exposure on the learning and memory abilities and brain-derived nerve growth factor (BDNF) in SpragueDawley (SD) rats.Methods Thirty-two male SD rats were randomly and equally divided into 4 groups:control group and high-,middle-,and low-dose exposure groups.The rats in high-,middle-,and low-dose expo-

  2. Accessing key steps of human tumor progression in vivo by using an avian embryo model

    Science.gov (United States)

    Hagedorn, Martin; Javerzat, Sophie; Gilges, Delphine; Meyre, Aurélie; de Lafarge, Benjamin; Eichmann, Anne; Bikfalvi, Andreas

    2005-02-01

    Experimental in vivo tumor models are essential for comprehending the dynamic process of human cancer progression, identifying therapeutic targets, and evaluating antitumor drugs. However, current rodent models are limited by high costs, long experimental duration, variability, restricted accessibility to the tumor, and major ethical concerns. To avoid these shortcomings, we investigated whether tumor growth on the chick chorio-allantoic membrane after human glioblastoma cell grafting would replicate characteristics of the human disease. Avascular tumors consistently formed within 2 days, then progressed through vascular endothelial growth factor receptor 2-dependent angiogenesis, associated with hemorrhage, necrosis, and peritumoral edema. Blocking of vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor signaling pathways by using small-molecule receptor tyrosine kinase inhibitors abrogated tumor development. Gene regulation during the angiogenic switch was analyzed by oligonucleotide microarrays. Defined sample selection for gene profiling permitted identification of regulated genes whose functions are associated mainly with tumor vascularization and growth. Furthermore, expression of known tumor progression genes identified in the screen (IL-6 and cysteine-rich angiogenic inducer 61) as well as potential regulators (lumican and F-box-only 6) follow similar patterns in patient glioma. The model reliably simulates key features of human glioma growth in a few days and thus could considerably increase the speed and efficacy of research on human tumor progression and preclinical drug screening. angiogenesis | animal model alternatives | glioblastoma

  3. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors

    Science.gov (United States)

    2013-01-01

    Introduction Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. Methods PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Results Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 106 to 1.9 × 106 platelets/μl). Platelets were highly purified, because only blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of

  4. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    Science.gov (United States)

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  5. In silico modeling for tumor growth visualization.

    Science.gov (United States)

    Jeanquartier, Fleur; Jean-Quartier, Claire; Cemernek, David; Holzinger, Andreas

    2016-08-08

    Cancer is a complex disease. Fundamental cellular based studies as well as modeling provides insight into cancer biology and strategies to treatment of the disease. In silico models complement in vivo models. Research on tumor growth involves a plethora of models each emphasizing isolated aspects of benign and malignant neoplasms. Biologists and clinical scientists are often overwhelmed by the mathematical background knowledge necessary to grasp and to apply a model to their own research. We aim to provide a comprehensive and expandable simulation tool to visualizing tumor growth. This novel Web-based application offers the advantage of a user-friendly graphical interface with several manipulable input variables to correlate different aspects of tumor growth. By refining model parameters we highlight the significance of heterogeneous intercellular interactions on tumor progression. Within this paper we present the implementation of the Cellular Potts Model graphically presented through Cytoscape.js within a Web application. The tool is available under the MIT license at https://github.com/davcem/cpm-cytoscape and http://styx.cgv.tugraz.at:8080/cpm-cytoscape/ . In-silico methods overcome the lack of wet experimental possibilities and as dry method succeed in terms of reduction, refinement and replacement of animal experimentation, also known as the 3R principles. Our visualization approach to simulation allows for more flexible usage and easy extension to facilitate understanding and gain novel insight. We believe that biomedical research in general and research on tumor growth in particular will benefit from the systems biology perspective.

  6. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  7. Platelet-derived growth factor induces phosphorylation of a 64-kDa nuclear protein

    International Nuclear Information System (INIS)

    Shawver, L.K.; Pierce, G.F.; Kawahara, R.S.; Deuel, T.F.

    1989-01-01

    The platelet-derived growth factor (PDGF) stimulated the phosphorylation of a nuclear protein of 64 kDa (pp64) in nuclei of nontransformed normal rat kidney (NRK) cells. Low levels of phosphorylation of pp64 were observed in nuclei of serum-starved NRK cells. Fetal calf serum (FCS), PDGF, and homodimeric v-sis and PDGF A-chain protein enhanced the incorporation of 32P into pp64 over 4-fold within 30 min and over 8-fold within 2 h of exposure of NRK cells to the growth factors. In contrast, constitutive phosphorylation of 32P-labeled pp64 in nuclei of NRK cells transformed by the simian sarcoma virus (SSV) was high and only minimally stimulated by PDGF and FCS. 32P-Labeled pp64 was isolated from nuclei of PDGF-stimulated nontransformed NRK cells; the 32P of pp64 was labile in 1 M KOH, and pp64 was not significantly recognized by anti-phosphotyrosine antisera, suggesting that the PDGF-induced phosphorylation of pp64 occurred on serine or on threonine residues. However, pp64 from SSV-transformed NRK cell nuclei was significantly stable to base hydrolysis and was immunoprecipitated with anti-phosphotyrosine antisera, suggesting that pp64 from SSV-transformed cell nuclei is phosphorylated also on tyrosine. FCS, PDGF, and PDGF A- and B-chain homodimers thus stimulate the rapid time-dependent phosphorylation of a 64-kDa nuclear protein shortly after stimulation of responsive cells. The growth factor-stimulated phosphorylation of pp64 and the constitutive high levels of pp64 phosphorylation in cells transformed by SSV suggest important roles for pp64 and perhaps regulated nuclear protein kinases and phosphatases in cell division and proliferation

  8. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    Directory of Open Access Journals (Sweden)

    Tirassa P

    2015-10-01

    Full Text Available Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR, Institute of Cell Biology and Neurobiology (IBCN, 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI, Rome, Italy; 4International Psychoanalytical Association (IPA, London, UKAbstract: The light information pathways and their relationship with the body rhythms have generated a new insight into the neurobiology and the neurobehavioral sciences, as well as into the clinical approaches to human diseases associated with disruption of circadian cycles. Light-based strategies and/or drugs acting on the circadian rhythms have widely been used in psychiatric patients characterized by mood-related disorders, but the timing and dosage use of the various treatments, although based on international guidelines, are mainly dependent on the psychiatric experiences. Further, many efforts have been made to identify biomarkers able to disclose the circadian-related aspect of diseases, and therefore serve as diagnostic, prognostic, and therapeutic tools in clinic to assess the different mood-related symptoms, including pain, fatigue, sleep disturbance, loss of interest or pleasure, appetite, psychomotor changes, and cognitive impairments. Among the endogenous factors suggested to be involved in mood regulation, the neurotrophins, nerve growth factor, and brain-derived neurotrophic factor show anatomical and functional link with the circadian system and mediate some of light-induced effects in brain. In addition, in humans, both nerve growth factor and brain-derived neurotrophic factor have showed a daily rhythm, which correlate with the morningness–eveningness dimensions, and are influenced by light, suggesting their potential role as biomarkers for chronotypes and/or chronotherapy. The evidences of the relationship between the diverse mood-related disorders

  9. Caspase-1 from Human Myeloid-Derived Suppressor Cells Can Promote T Cell-Independent Tumor Proliferation.

    Science.gov (United States)

    Zeng, Qi; Fu, Juan; Korrer, Michael; Gorbounov, Mikhail; Murray, Peter J; Pardoll, Drew; Masica, David L; Kim, Young J

    2018-05-01

    Immunosuppressive myeloid-derived suppressive cells (MDSCs) are characterized by their phenotypic and functional heterogeneity. To better define their T cell-independent functions within the tumor, sorted monocytic CD14 + CD11b + HLA-DR low/- MDSCs (mMDSC) from squamous cell carcinoma patients showed upregulated caspase-1 activity, which was associated with increased IL1β and IL18 expression. In vitro studies demonstrated that mMDSCs promoted caspase-1-dependent proliferation of multiple squamous carcinoma cell lines in both human and murine systems. In vivo , growth rates of B16, MOC1, and Panc02 were significantly blunted in chimeric mice adoptively transferred with caspase-1 null bone marrow cells under T cell-depleted conditions. Adoptive transfer of wild-type Gr-1 + CD11b + MDSCs from tumor-bearing mice reversed this antitumor response, whereas caspase-1 inhibiting thalidomide-treated MDSCs phenocopied the antitumor response found in caspase-1 null mice. We further hypothesized that MDSC caspase-1 activity could promote tumor-intrinsic MyD88-dependent carcinogenesis. In mice with wild-type caspase-1, MyD88-silenced tumors displayed reduced growth rate, but in chimeric mice with caspase-1 null bone marrow cells, MyD88-silenced tumors did not display differential tumor growth rate. When we queried the TCGA database, we found that caspase-1 expression is correlated with overall survival in squamous cell carcinoma patients. Taken together, our findings demonstrated that caspase-1 in MDSCs is a direct T cell-independent mediator of tumor proliferation. Cancer Immunol Res; 6(5); 566-77. ©2018 AACR . ©2018 American Association for Cancer Research.

  10. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ.

    Science.gov (United States)

    Pahl, Jens H W; Kwappenberg, Kitty M C; Varypataki, Eleni M; Santos, Susy J; Kuijjer, Marieke L; Mohamed, Susan; Wijnen, Juul T; van Tol, Maarten J D; Cleton-Jansen, Anne-Marie; Egeler, R Maarten; Jiskoot, Wim; Lankester, Arjan C; Schilham, Marco W

    2014-03-10

    In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/- IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ-activated M2-like macrophages had low anti-tumor activity, IL-10-polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our

  11. New Chimeric Antigen Receptor Design for Solid Tumors

    Directory of Open Access Journals (Sweden)

    Yuedi Wang

    2017-12-01

    Full Text Available In recent years, chimeric antigen receptor (CAR T-cell therapy has become popular in immunotherapy, particularly after its tremendous success in the treatment of lineage-restricted hematologic cancers. However, the application of CAR T-cell therapy for solid tumors has not reached its full potential because of the lack of specific tumor antigens and inhibitory factors in suppressive tumor microenvironment (TME (e.g., programmed death ligand-1, myeloid-derived suppressor cells, and transforming growth factor-β. In this review, we include some limitations in CAR design, such as tumor heterogeneity, indefinite spatial distance between CAR T-cell and its target cell, and suppressive TME. We also summarize some new approaches to overcome these hurdles, including targeting neoantigens and/or multiple antigens at once and depleting some inhibitory factors.

  12. Mifepristone inhibits MPA-and FGF2-induced mammary tumor growth but not FGF2-induced mammary hyperplasia

    Directory of Open Access Journals (Sweden)

    Juan P. Cerliani

    2010-12-01

    Full Text Available We have previously demonstrated a crosstalk between fibroblast growth factor 2 (FGF2 and progestins inducing experimental breast cancer growth. The aim of the present study was to compare the effects of FGF2 and of medroxyprogesterone acetate (MPA on the mouse mammary glands and to investigate whether the antiprogestin RU486 was able to reverse the MPA- or FGF2-induced effects on both, mammary gland and tumor growth. We demonstrate that FGF2 administered locally induced an intraductal hyperplasia that was not reverted by RU486, suggesting that FGF2-induced effects are progesterone receptor (PR-independent. However, MPA-induced paraductal hyperplasia was reverted by RU486 and a partial agonistic effect was observed in RU486-treated glands. Using C4-HD tumors which only grow in the presence of MPA, we showed that FGF2 administered intratumorally was able to stimulate tumor growth as MPA. The histology of FGF2-treated tumors showed different degrees of gland differentiation. RU486 inhibited both, MPA or FGF2 induced tumor growth. However, only complete regression was observed in MPA-treated tumors. Our results support the hypothesis that stromal FGF2 activates PR inducing hormone independent tumor growth.

  13. In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Hsieh WJ

    2012-06-01

    Full Text Available Wan-Ju Hsieh,1 Chan-Jung Liang,1 Jen-Jie Chieh,4 Shu-Huei Wang,1 I-Rue Lai,1 Jyh-Horng Chen,2 Fu-Hsiung Chang,3 Wei-Kung Tseng,4–6 Shieh-Yueh Yang,4 Chau-Chung Wu,7 Yuh-Lien Chen11Institute of Anatomy and Cell Biology, College of Medicine, 2Department of Electrical Engineering, 3Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan; 4Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan; 5Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Taipei, Taiwan; 6Department of Medical Imaging and Radiological Sciences, I-Shou University, Taipei, Taiwan; 7Department of Internal Medicine and Primary Care Medicine, National Taiwan University Hospital, Taipei, TaiwanBackground: Active targeting by specific antibodies combined with nanoparticles is a promising technology for cancer imaging and detection by magnetic resonance imaging (MRI. The aim of the present study is to investigate whether the systemic delivery of antivascular endothelial growth factor antibodies conjugating to the surface of functionalized supermagnetic iron oxide nanoparticles (anti-VEGF-NPs led to target-specific accumulation in the tumor.Methods: The VEGF expression in human colon cancer and in Balb/c mice bearing colon cancers was examined by immunohistochemistry. The distribution of these anti-VEGF-NPs particles or NPs particles were evaluated by MRI at days 1, 2, or 9 after the injection into the jugular vein of Balb/c mice bearing colon cancers. Tumor and normal tissues (liver, spleen, lung, and kidney were collected and were examined by Prussian blue staining to determine the presence and distribution of NPs in the tissue sections.Results: VEGF is highly expressed in human and mouse colon cancer tissues. MRI showed significant changes in the T*2 signal and T2 relaxation in the anti-VEGF-NP- injected-mice, but not in mice injected with NP alone. Examination of paraffin

  14. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    Directory of Open Access Journals (Sweden)

    Chen X-C

    2008-10-01

    Full Text Available Abstract Background Bone marrow-derived stromal cells (BMSCs are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor. Methods Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Receptor-1 (sFlt-1. The anti-angiogenesis of sFlt-1 in BMSCs was determined using endothelial cells proliferation inhibition assay and alginate encapsulation assay. The anti-tumor effects of BMSCs expressing sFlt-1 through tail-vein infusion were evaluated in two mouse tumor metastases models. Results BMSCs genetically modified with Adv-GFP-sFlt-1 could effectively express and secret sFlt-1. BMSCs loaded with sFlt-1 gene could preferentially home to tumor loci and decrease lung metastases and prolong lifespan in mouse tumor model through inducing anti-angiogenesis and apoptosis in tumors. Conclusion We demonstrated that BMSCs might be employed as a promising vehicle for tumor gene therapy which can effectively not only improve the concentration of anticancer therapeutics in tumors, but also modify the tumor microenvironment.

  15. Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation.

    Science.gov (United States)

    Ahirwar, Dinesh K; Nasser, Mohd W; Ouseph, Madhu M; Elbaz, Mohamad; Cuitiño, Maria C; Kladney, Raleigh D; Varikuti, Sanjay; Kaul, Kirti; Satoskar, Abhay R; Ramaswamy, Bhuvaneswari; Zhang, Xiaoli; Ostrowski, Michael C; Leone, Gustavo; Ganju, Ramesh K

    2018-05-03

    The chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models. Elucidation of mechanisms using in vitro and in vivo model systems revealed that CXCL12 enhances tumor cell intravasation by increasing vascular permeability and expansion of a leaky tumor vasculature. Furthermore, our studies revealed CXCL12 enhances permeability by recruiting endothelial precursor cells and decreasing endothelial tight junction and adherence junction proteins. High expression of stromal CXCL12 in large cohort of breast cancer patients was directly correlated to blood vessel density and inversely correlated to recurrence and overall patient survival. In addition, our analysis revealed that stromal CXCL12 levels in combination with number of CD31+ blood vessels confers poorer patient survival compared to individual protein level. However, no correlation was observed between epithelial CXCL12 and patient survival or blood vessel density. Our findings describe the novel interactions between fibroblasts-derived CXCL12 and endothelial cells in facilitating tumor cell intrvasation, leading to distant metastasis. Overall, our studies indicate that cross-talk between fibroblast-derived CXCL12 and endothelial cells could be used as novel biomarker and strategy for developing tumor microenvironment based therapies against aggressive and metastatic breast cancer.

  16. Luteolin and its inhibitory effect on tumor growth in systemic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Shailendra, E-mail: shailendrakapoor@yahoo.com [74 crossing place, Mechanicsville, VA (United States)

    2013-04-01

    Lamy et al have provided interesting data in their recent article in your esteemed journal. Luteolin augments apoptosis in a number of systemic malignancies. Luteolin reduces tumor growth in breast carcinomas. Luteolin mediates this effect by up-regulating the expression of Bax and down-regulating the expression of Bcl-xL. EGFR-induced MAPK activation is also attenuated. As a result there is increased G2/ M phase arrest. These effects have been seen both in vivo as well as in vitro. It also reduces ERα expression and causes inhibition of IGF-1 mediated PI3K–Akt pathway. Luteolin also activates p38 resulting in nuclear translocation of the apoptosis-inducing factor. Simultaneously it also activates ERK. As a result there is increased intra-tumoral apoptosis which is caspase dependent as well as caspase independent. - Highlights: ► Luteolin and tumor growth in breast carcinomas. ► Luteolin and pulmonary cancer. ► Luteolin and colon cancer.

  17. Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism.

    Science.gov (United States)

    Ziegler, Kathryn M; Considine, Robert V; True, Eben; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2016-04-01

    Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p TGP-47 cells. These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  18. Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis.

    Science.gov (United States)

    Stampanoni Bassi, Mario; Iezzi, Ennio; Marfia, Girolama A; Simonelli, Ilaria; Musella, Alessandra; Mandolesi, Georgia; Fresegna, Diego; Pasqualetti, Patrizio; Furlan, Roberto; Finardi, Annamaria; Mataluni, Giorgia; Landi, Doriana; Gilio, Luana; Centonze, Diego; Buttari, Fabio

    2018-04-14

    In the early phases of relapsing-remitting multiple sclerosis (RR-MS), a clear correlation between brain lesion load and clinical disability is often lacking, originating the so-called clinico-radiological paradox. Different factors may contribute to such discrepancy. In particular, synaptic plasticity may reduce the clinical expression of brain damage producing enduring enhancement of synaptic strength largely dependent on neurotrophin-induced protein synthesis. Cytokines released by the immune cells during acute inflammation can alter synaptic transmission and plasticity possibly influencing the clinical course of MS. In addition, immune cells may promote brain repair during the post-acute phases, by secreting different growth factors involved in neuronal and oligodendroglial cell survival. Platelet-derived growth factor (PDGF) is a neurotrophic factor that could be particularly involved in clinical recovery. Indeed, PDGF promotes long-term potentiation of synaptic activity in vitro and in MS and could therefore represent a key factor improving the clinical compensation of new brain lesions. The aim of the present study is to explore whether cerebrospinal fluid (CSF) PDGF concentrations at the time of diagnosis may influence the clinical course of RR-MS. At the time of diagnosis, we measured in 100 consecutive early MS patients the CSF concentrations of PDGF, of the main pro- and anti-inflammatory cytokines, and of reliable markers of neuronal damage. Clinical and radiological parameters of disease activity were prospectively collected during follow-up. CSF PDGF levels were positively correlated with prolonged relapse-free survival. Radiological markers of disease activity, biochemical markers of neuronal damage, and clinical parameters of disease progression were instead not influenced by PDGF concentrations. Higher CSF PDGF levels were associated with an anti-inflammatory milieu within the central nervous system. Our results suggest that PDGF could promote a

  19. Gene expression and hormone autonomy in radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Persinger, S.M.; Town, C.D.

    1989-01-01

    In order to study the molecular genetics of factor controlling plant cell growth, we have isolated a group of radiation-induced tumors from Arabidopsis thaliana. Tumors appeared on plants derived from 60 Co gamma-irradiated seed or seedlings, and are capable of hormone-autonomous growth in culture. We have used vertebrate oncogene probes to explore the hypothesis that the tumors arose by the radiation-induced activation of growth-regulating plant oncogenes. One probe, int-2, was used to isolate cDNA clones representing an mRNA differentially expressed between tumors and hormone-dependent callus tissue. The genomic organization and function of this and other differentially expressed Arabidopsis sequences are being further characterized. A second area of study concerns the hormonal status of individual tumors. Tumor tissue varies in color, texture, and degree of differentiation: while some tumors appear undifferentiated, one consistently produces roots, and others occasionally develop shoots or leaflets. The tumors have characteristic growth rates on hormone-free medium, and growth in response to exogenous hormones differs among the tumors themselves and from wild-type. Characterization of the relationships between hormonal status, morphogenesis, and gene expression should yield valuable insights into the mechanisms regulating plant growth and development

  20. Tumor stromal vascular endothelial growth factor A is predictive of poor outcome in inflammatory breast cancer

    International Nuclear Information System (INIS)

    Arias-Pulido, Hugo; Chaher, Nabila; Gong, Yun; Qualls, Clifford; Vargas, Jake; Royce, Melanie

    2012-01-01

    Inflammatory breast cancer (IBC) is a highly angiogenic disease; thus, antiangiogenic therapy should result in a clinical response. However, clinical trials have demonstrated only modest responses, and the reasons for these outcomes remain unknown. Therefore, the purpose of this retrospective study was to determine the prognostic value of protein levels of vascular endothelial growth factor (VEGF-A), one of the main targets of antiangiogenic therapy, and its receptors (VEGF-R1 and -R2) in IBC tumor specimens. Specimens from IBC and normal breast tissues were obtained from Algerian patients. Tumor epithelial and stromal staining of VEGF-A, VEGF-R1, and VEGF-R2 was evaluated by immunohistochemical analysis in tumors and normal breast tissues; this expression was correlated with clinicopathological variables and breast cancer-specific survival (BCSS) and disease-free survival (DFS) duration. From a set of 117 IBC samples, we evaluated 103 ductal IBC tissues and 25 normal specimens. Significantly lower epithelial VEGF-A immunostaining was found in IBC tumor cells than in normal breast tissues (P <0.01), cytoplasmic VEGF-R1 and nuclear VEGF-R2 levels were slightly higher, and cytoplasmic VEGF-R2 levels were significantly higher (P = 0.04). Sixty-two percent of IBC tumors had high stromal VEGF-A expression. In univariate analysis, stromal VEGF-A levels predicted BCSS and DFS in IBC patients with estrogen receptor-positive (P <0.01 for both), progesterone receptor-positive (P = 0.04 and P = 0.03), HER2+ (P = 0.04 and P = 0.03), and lymph node involvement (P <0.01 for both). Strikingly, in a multivariate analysis, tumor stromal VEGF-A was identified as an independent predictor of poor BCSS (hazard ratio [HR]: 5.0; 95% CI: 2.0-12.3; P <0.01) and DFS (HR: 4.2; 95% CI: 1.7-10.3; P <0.01). To our knowledge, this is the first study to demonstrate that tumor stromal VEGF-A expression is a valuable prognostic indicator of BCSS and DFS at diagnosis and can therefore be used to

  1. Platelet-derived growth factor receptors in the human central nervous system : autoradiographic distribution and receptor densities in multiple sclerosis

    NARCIS (Netherlands)

    De Keyser, J; Wilczak, N

    1997-01-01

    Platelet derived growth factor (PDGF) receptors were studied in postmortem adult human brain and cervical spinal cord using autoradiography with human recombinant I-125-PDGF-BB. PDGF-BB binds to the three different dimers of PDGF receptors (alpha alpha, alpha beta and beta beta) PDGF receptors were

  2. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    Science.gov (United States)

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. The potential of tumor-derived exosomes for noninvasive cancer monitoring.

    Science.gov (United States)

    Whiteside, Theresa L

    2015-01-01

    Tumor-derived exosomes (TEX) are emerging as a new type of cancer biomarker. TEX are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEX are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEX as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward.

  4. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    Science.gov (United States)

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  5. THE TUMOR MACROENVIRONMENT: CANCER-PROMOTING NETWORKS BEYOND TUMOR BEDS

    OpenAIRE

    Rutkowski, Melanie R.; Svoronos, Nikolaos; Puchalt, Alfredo Perales; Conejo-Garcia, Jose R.

    2015-01-01

    During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, and myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the mac...

  6. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.

    Science.gov (United States)

    Yin, Tao; He, Sisi; Liu, Xiaoling; Jiang, Wei; Ye, Tinghong; Lin, Ziqiang; Sang, Yaxiong; Su, Chao; Wan, Yang; Shen, Guobo; Ma, Xuelei; Yu, Min; Guo, Fuchun; Liu, Yanyang; Li, Ling; Hu, Qiancheng; Wang, Yongsheng; Wei, Yuquan

    2015-01-01

    Hemorrhage is a common clinical manifestation in patients with cancer. Intratumor hemorrhage has been demonstrated to be a poor prognostic factor for cancer patients. In this study, we investigated the role of RBCs and hemoglobin (Hb) in the process of tumor progression and therapeutical response. RBCs and Hb potently promoted tumor cell proliferation and syngenic tumor growth. RBCs and Hb activated the reactive oxygen species-NF-κB pathway in both tumor cells and macrophages. RBCs and Hb also induced chemoresistance mediated, in part, by upregulating ABCB1 gene expression. Tumor growth induced by RBCs was accompanied by an inflammatory signature, increased tumor vasculature, and influx of M2 macrophages. In both the peritoneal cavity and tumor microenvironment, extravascular RBCs rapidly recruited monocyte-macrophages into the lesion sites. In addition, RBCs and Hb increased several nucleotide-binding oligomerization domain-like receptors' expression and induced IL-1β release. Our results provide novel insights into the protumor function of RBCs and Hb as endogenous danger signals, which can promote tumor cell proliferation, macrophage recruitment, and polarization. Hemorrhage may represent a useful prognostic factor for cancer patients because of its role in tumor promotion and chemoresistance. Copyright © 2014 by The American Association of Immunologists, Inc.

  7. Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Sawanyawisuth Kanlayanee

    2011-08-01

    Full Text Available Abstract Background Cyclophilin A (CypA expression is associated with malignant phenotypes in many cancers. However, the role and mechanisms of CypA in liver fluke-associated cholangiocarcinoma (CCA are not presently known. In this study, we investigated the expression of CypA in CCA tumor tissues and CCA cell lines as well as regulation mechanisms of CypA in tumor growth using CCA cell lines. Methods CypA expression was determined by real time RT-PCR, Western blot or immunohistochemistry. CypA silence or overexpression in CCA cells was achieved using gene delivery techniques. Cell proliferation was assessed using MTS assay or Ki-67 staining. The effect of silencing CypA on CCA tumor growth was determined in nude mice. The effect of CypA knockdown on ERK1/2 activation was assessed by Western blot. Results CypA was upregulated in 68% of CCA tumor tissues. Silencing CypA significantly suppressed cell proliferation in several CCA cell lines. Likewise, inhibition of CypA peptidyl-prolyl cis-trans isomerase (PPIase activity using cyclosporin A (CsA decreased cell proliferation. In contrast, overexpression of CypA resulted in 30% to 35% increases in proliferation of CCA cell lines. Interestingly, neither silence nor overexpression of CypA affected cell proliferation of a non-tumor human cholangiocyte cell line, MMNK1. Suppression of CypA expression attenuated ERK1/2 activity in CCA M139 cells by using both transient and stable knockdown methods. In the in vivo study, there was a 43% reduction in weight of tumors derived from CypA-silenced CCA cell lines compared with control vector CCA tumors in mice; these tumors with stable CypA silencing showed a reduced cell proliferation. Conclusions CypA is upregulated in majority of CCA patients' tissues and confers a significant growth advantage in CCA cells. Suppression of CypA expression decreases proliferation of CCA cell lines in vitro and reduces tumor growth in the nude mouse model. Inhibition of Cyp

  8. Targeted silencing of elongation factor 2 kinase suppresses growth and sensitizes tumors to doxorubicin in an orthotopic model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Ibrahim Tekedereli

    Full Text Available Eukaryotic elongation factor 2 kinase (eEF-2K, through its phosphorylation of elongation factor 2 (eEF2, provides a mechanism by which cells can control the rate of the elongation phase of protein synthesis. The activity of eEF-2K is increased in rapidly proliferating malignant cells, is inhibited during mitosis, and may contribute to the promotion of autophagy in response to anti-cancer therapies. The purpose of this study was to examine the therapeutic potential of targeting eEF-2K in breast cancer tumors. Through the systemic administration of liposomal eEF-2K siRNA (twice a week, i.v. 150 µg/kg, the expression of eEF-2K was down-regulated in vivo in an orthotopic xenograft mouse model of a highly aggressive triple negative MDA-MB-231 tumor. This targeting resulted in a substantial decrease in eEF2 phosphorylation in the tumors, and led to the inhibition of tumor growth, the induction of apoptosis and the sensitization of tumors to the chemotherapy agent doxorubicin. eEF-2K down-modulation in vitro resulted in a decrease in the expression of c-Myc and cyclin D1 with a concomitant increase in the expression of p27(Kip1. A decrease in the basal activity of c-Src (phospho-Tyr-416, focal adhesion kinase (phospho-Tyr-397, and Akt (phospho-Ser-473 was also detected following eEF-2K down-regulation in MDA-MB-231 cells, as determined by Western blotting. Where tested, similar results were seen in ER-positive MCF-7 cells. These effects were also accompanied by a decrease in the observed invasive phenotype of the MDA-MB-231 cells. These data support the notion that the disruption of eEF-2K expression in breast cancer cells results in the down-regulation of signaling pathways affecting growth, survival and resistance and has potential as a therapeutic approach for the treatment of breast cancer.

  9. Mitochondria are the target organelle of differentiation-inducing factor-3, an anti-tumor agent isolated from Dictyostelium discoideum [corrected].

    Directory of Open Access Journals (Sweden)

    Yuzuru Kubohara

    Full Text Available Differentiation-inducing factor-3 (DIF-3, found in the cellular slime mold Dictyostelium discoideum, and its derivatives such as butoxy-DIF-3 (Bu-DIF-3 are potent anti-tumor agents. However, the precise mechanisms underlying the actions of DIF-3 remain to be elucidated. In this study, we synthesized a green fluorescent derivative of DIF-3, BODIPY-DIF-3, and a control fluorescent compound, Bu-BODIPY (butyl-BODIPY, and investigated how DIF-like molecules behave in human cervical cancer HeLa cells by using both fluorescence and electron microscopy. BODIPY-DIF-3 at 5-20 µ M suppressed cell growth in a dose-dependent manner, whereas Bu-BODIPY had minimal effect on cell growth. When cells were incubated with BODIPY-DIF-3 at 20 µM, it penetrated cell membranes within 0.5 h and localized mainly in mitochondria, while Bu-BODIPY did not stain the cells. Exposure of cells for 1-3 days to DIF-3, Bu-DIF-3, BODIPY-DIF-3, or CCCP (a mitochondrial uncoupler induced substantial mitochondrial swelling, suppressing cell growth. When added to isolated mitochondria, DIF-3, Bu-DIF-3, and BOIDPY-DIF-3, like CCCP, dose-dependently promoted the rate of oxygen consumption, but Bu-BODIPY did not. Our results suggest that these bioactive DIF-like molecules suppress cell growth, at least in part, by disturbing mitochondrial activity. This is the first report showing the cellular localization and behavior of DIF-like molecules in mammalian tumor cells.

  10. Intermittent Hypoxia Is Associated With High Hypoxia Inducible Factor-1α but Not High Vascular Endothelial Growth Factor Cell Expression in Tumors of Cutaneous Melanoma Patients

    Directory of Open Access Journals (Sweden)

    Isaac Almendros

    2018-04-01

    Full Text Available Epidemiological associations linking between obstructive sleep apnea and poorer solid malignant tumor outcomes have recently emerged. Putative pathways proposed to explain that these associations have included enhanced hypoxia inducible factor (HIF-1α and vascular endothelial growth factor (VEGF cell expression in the tumor and altered immune functions via intermittent hypoxia (IH. Here, we examined relationships between HIF-1α and VEGF expression and nocturnal IH in cutaneous melanoma (CM tumor samples. Prospectively recruited patients with CM tumor samples were included and underwent overnight polygraphy. General clinical features, apnea–hypopnea index (AHI, desaturation index (DI4%, and CM characteristics were recorded. Histochemical assessments of VEGF and HIF-1α were performed, and the percentage of positive cells (0, <25, 25–50, 51–75, >75% was blindly tabulated for VEGF expression, and as 0, 0–5.9, 6.0–10.0, >10.0% for HIF-1α expression, respectively. Cases with HIF-1α expression >6% (high expression were compared with those <6%, and VEGF expression >75% of cells was compared with those with <75%. 376 patients were included. High expression of VEGF and HIF-1α were seen in 88.8 and 4.2% of samples, respectively. High expression of VEGF was only associated with increasing age. However, high expression of HIF-1α was significantly associated with age, Breslow index, AHI, and DI4%. Logistic regression showed that DI4% [OR 1.03 (95% CI: 1.01–1.06] and Breslow index [OR 1.28 (95% CI: 1.18–1.46], but not AHI, remained independently associated with the presence of high HIF-1α expression. Thus, IH emerges as an independent risk factor for higher HIF-1α expression in CM tumors and is inferentially linked to worse clinical CM prognostic indicators.

  11. Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms.

    Science.gov (United States)

    Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Khazak, Vladimir; El-Deiry, Wafik S

    2018-01-22

    Small molecule ONC201 is an investigational anti-tumor agent that upregulates intra-tumoral TRAIL expression and the integrated stress response pathway. A Phase I clinical trial using ONC201 therapy in advanced cancer patients has been completed and the drug has progressed into Phase II trials in several cancer types. Colorectal cancer (CRC) remains one of the leading causes of cancer worldwide and metastatic disease has a poor prognosis. Clinical trials in CRC and other tumor types have demonstrated that therapeutics targeting the vascular endothelial growth factor (VEGF) pathway, such as bevacizumab, are effective in combination with certain chemotherapeutic agents. We investigated the potential combination of VEGF inhibitors such as bevacizumab and its murine-counterpart; along with other anti-angiogenic agents and ONC201 in both CRC xenograft and patient-derived xenograft (PDX) models. We utilized non-invasive imaging and immunohistochemistry to determine potential mechanisms of action. Our results demonstrate significant tumor regression or complete tumor ablation in human xenografts with the combination of ONC201 with bevacizumab, and in syngeneic MC38 colorectal cancer xenografts using a murine VEGF-A inhibitor. Imaging demonstrated the impact of this combination on decreasing tumor growth and tumor metastasis. Our results indicate that ONC201 and anti-angiogenic agents act through distinct mechanisms while increasing tumor cell death and inhibiting proliferation. With the use of both a murine VEGF inhibitor in syngeneic models, and bevacizumab in human cell line-derived xenografts, we demonstrate that ONC201 in combination with anti-angiogenic therapies such as bevacizumab represents a promising approach for further testing in the clinic for the treatment of CRC.

  12. Tumor-derived Matrix Metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer

    International Nuclear Information System (INIS)

    Zhang, Bin; Niu, Yun; Niu, Ruifang; Sun, Baocun; Hao, Xishan; Cao, Xuchen; Liu, Yanxue; Cao, Wenfeng; Zhang, Fei; Zhang, Shiwu; Li, Hongtao; Ning, Liansheng; Fu, Li

    2008-01-01

    Experimental evidence suggests that matrix metalloproteinase-13 (MMP-13) protein may promote breast tumor progression. However, its relevance to the progression of human breast cancer is yet to be established. Furthermore, it is not clear whether MMP-13 can be used as an independent breast cancer biomarker. This study was conducted to assess the expression profile of MMP-13 protein in invasive breast carcinomas to determine its diagnostic and prognostic significance, as well as its correlation with other biomarkers including estrogen receptor (ER), progesterone receptor (PR), Her-2/neu, MMP-2, MMP-9, tissue inhibitor of MMP-1 and -2 (TIMP-1 and TIMP-2). Immunohistochemistry (IHC) was performed on paraffin-embedded tissue microarray containing specimens from 263 breast carcinomas. The intensity and the extent of IHC were scored by pathologists in blind fashion. The correlation of the gene expression profiles with patients' clinicopathological features and clinical outcomes were analyzed for statistical significance. MMP-13 protein was detected in the cytoplasm of the malignant cells and the peritumoral stromal cells. MMP-13 expression by tumor cells (p < 0.001) and stromal fibroblasts (p <0.001) both correlated with carcinoma infiltration of lymph nodes. MMP-13 also correlated with the expression of Her-2/neu (p = 0.015) and TIMP-1 (p < 0.010), respectively in tumor cells. Tumor-derived, but not stromal fibroblast-derived, MMP-13 correlated with aggressive tumor phenotypes. Moreover, high levels of MMP-13 expression were associated with decreased overall survival. In parallel, the prognostic value of MMP-13 expressed by peritumoral fibroblasts seems less significant. Our data suggest that lymph node status, tumor size, Her-2/neu expression, TIMP-1 and MMP-13 expression in cancer cells are independent prognostic factors. Tumor-derived, but not stromal fibroblast-derived, MMP-13 correlated with aggressive tumor phenotypes, and inversely correlated with the

  13. Association of preoperative radiation effect with tumor angiogenesis and vascular endothelial growth factor in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Shintani, Satoru; Kiyota, Akihisa; Mihara, Mariko; Nakahara, Yuuji; Terakado, Nagaaki; Ueyama, Yoshiya; Matsumura, Tomohiro

    2000-01-01

    This study examined the relationship between tumor angiogenesis and the radiation-induced response, evaluated based on pathological changes, in oral squamous cell carcinoma patients treated with preoperative radiation therapy. Forty-one cases of squamous cell carcinoma treated with preoperative radiation therapy were investigated. Tumor angiogenesis was assessed by scoring the intratumor microvessel density (IMVD). Expression of vascular endothelial growth factor (VEGF) was also evaluated before and after preoperative radiotherapy. There was no correlation between IMVD in the specimens before therapy and the pathological response to radiation therapy. However, radiation therapy decreased IMVD in the specimens after therapy. A significant association was observed between VEGF expression and resistance to radiation therapy: only 4 of the 21 patients whose tumors exhibited a high level (2+ or 3+) of VEGF staining experienced a major (3+ or 4+) pathological response to radiation therapy. Furthermore, an increasing level of VEGF expression after radiation therapy was observed in non-effective (0 to 2+) response cases. These results suggest that VEGF expression and the induction of this protein are related to radiosensitivity and could be used to predict the effects of preoperative radiation therapy on oral squamous cell carcinoma. (author)

  14. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    International Nuclear Information System (INIS)

    Miettinen, Johanna A.; Pietilae, Mika; Salonen, Riikka J.; Ohlmeier, Steffen; Ylitalo, Kari; Huikuri, Heikki V.; Lehenkari, Petri

    2011-01-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-α) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-α exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-α exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-α exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-α exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-α exposure, which might influence MSC differentiation stage and capacity.

  15. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, Johanna A., E-mail: johanna.miettinen@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Pietilae, Mika [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Salonen, Riikka J. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Ohlmeier, Steffen [Proteomics Core Facility, Biocenter Oulu, Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Ylitalo, Kari; Huikuri, Heikki V. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland)

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.

  16. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Kanakubo, Emi; Chan, John K

    2005-01-01

    The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7), a powerful, heparin-binding growth factor for breast epithelial cells. Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors

  17. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    Directory of Open Access Journals (Sweden)

    Kanakubo Emi

    2005-09-01

    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. Methods We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7, a powerful, heparin-binding growth factor for breast epithelial cells. Results Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Conclusion Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors.

  18. Extracellular matrix organization modulates fibroblast growth and growth factor responsiveness.

    Science.gov (United States)

    Nakagawa, S; Pawelek, P; Grinnell, F

    1989-06-01

    To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.

  19. Regional perfusion and oxygenation of tumors upon methylxanthine derivative administration

    International Nuclear Information System (INIS)

    Kelleher, Debra K.; Thews, Oliver; Vaupel, Peter

    1998-01-01

    Purpose: The use of methylxanthine derivatives has been postulated as a means of increasing tumor perfusion and thus ameliorating tumor hypoxia. The aim of this study was to quantify and compare the effects of three methylxanthine derivatives: pentoxifylline (PX), torbafylline (TB), and HWA 138 (HW) on tumor perfusion and oxygenation. Methods and Materials: Anesthetized Sprague Dawley rats with DS-sarcomas implanted subcutaneously onto the hind foot dorsum were used in this study. Mean arterial blood pressure (MABP) was measured throughout experiments. Regional red blood cell (RBC) flux was monitored using a multichannel laser Doppler device and tumor oxygenation on a more global level was assessed polarographically using an O 2 -sensitive catheter electrode. The methylxanthine derivatives were administered as a single dose intraperitoneally (for PX 50 mg/kg; for TB and HW 75 mg/kg). Results: Following drug administration, initial decreases in MABP down to 75% of baseline values were observed for all three substances. PX, HW, and TB caused initial transient reductions in mean RBC flux followed by gradual increases to values of 137 ± 27 %, 139 ± 14 %, and 122 ± 14 % respectively at t = 60 min. Following a small initial decrease upon drug administration, O 2 partial pressure (pO 2 ) rose to 160 ± 31 %, 153 ± 34 %, and 121 ± 11 % for PX, HW, and TB, respectively at t = 60 min. At the end of the observation period (t = 90 min), increases in RBC flux and pO 2 were still evident. When individual tumors were considered, a variety of patterns (including opposing effects) for changes in RBC flux were seen, not necessarily reflected in the mean values. Thus, while the methylxanthine derivatives caused an increased average tumor perfusion, there is evidence suggesting that a redistribution of tumor blood flow occurs which may amplify preexisting heterogeneity. Conclusions: Substantial improvements in tumor oxygenation and perfusion were observed after administration of

  20. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways

    International Nuclear Information System (INIS)

    Laxmanan, Sreenivas; Robertson, Stuart W.; Wang Enfeng; Lau, Julie S.; Briscoe, David M.; Mukhopadhyay, Debabrata

    2005-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that plays an important role in tumor growth and progression. Recent evidence suggests an alternate, albeit indirect, role of VEGF on host immune response to tumors. VEGF appears to diminish host immunity by altering the function of major antigen-presenting cells such as dendritic cells (DCs) [D.I. Gabrilovich, T. Ishida, S. Nadaf, J.E. Ohm, D.P. Carbone, Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function, Clin. Cancer Res. 5 (1999) 2963-2970, D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov, S. Nadaf, D.P. Carbone, Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo, Blood 92 (1998) 4150-4166, T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, D.I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells, J. Immunol. 160 (1998) 1224-1232.]. DCs are prime initiators of host immunity as they are known to activate both primary as well as secondary immune responses [J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka, Immunobiology of dendritic cells, Ann. Rev. Immunol. 18 (2000) 767-811.]. However, the exact nature of how VEGF suppresses DC function is not fully clear. In this report, we show that DCs cultured in the presence of VEGF are less potent in stimulating antigen-specific T-cells. Furthermore, by using DCs derived from Id1 -/- mice that are defective in Flt-1 signaling, we demonstrated that the inhibitory function of VEGF on DC function is most likely mediated by Flt-1. Thus, the role of VEGF in downregulating host immunity may highlight a unique role of VEGF in the pathogenesis of cancer

  1. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  2. Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes

    International Nuclear Information System (INIS)

    Kodama, Atsushi; Yanai, Tokuma; Sakai, Hiroki; Matsuura, Satoko; Murakami, Mami; Murai, Atsuko; Mori, Takashi; Maruo, Kouji; Kimura, Tohru; Masegi, Toshiaki

    2009-01-01

    Human hemangiosarcoma (HSA) tends to have a poor prognosis; its tumorigenesis has not been elucidated, as there is a dearth of HSA clinical specimens and no experimental model for HSA. However, the incidence of spontaneous HSA is relatively high in canines; therefore, canine HSA has been useful in the study of human HSA. Recently, the production of angiogenic growth factors and their receptors in human and canine HSA has been reported. Moreover, the growth-factor environment of HSA is very similar to that of pathophysiological angiogenesis, which some homeobox genes regulate in the transcription of angiogenic molecules. In the present study, we established 6 xenograft canine HSA tumors and detected the expression of growth factors, their receptors, and angiogenic homeobox genes. Six primary canine HSAs were xenografted to nude mice subcutaneously and serially transplanted. Subsequently, the expressions of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factors (bFGF), flt-1 and flk-1 (receptors of VEGF-A), FGFR-1, and angiogenic homeobox genes HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 were investigated in original and xenograft tumors by histopathology, immunostaining, and reverse transcription polymerase chain reaction (RT-PCR), using canine-specific primer sets. Histopathologically, xenograft tumors comprised a proliferation of neoplastic cells that were varied in shape, from spindle-shaped and polygonal to ovoid; some vascular-like structures and vascular clefts of channels were observed, similar to those in the original tumors. The expression of endothelial markers (CD31 and vWF) was detected in xenograft tumors by immunohistochemistry and RT-PCR. Moreover, the expression of VEGF-A, bFGF, flt-1, flk-1, FGFR-1, HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 was detected in xenograft tumors. Interestingly, expressions of bFGF tended to be higher in 3 of the xenograft HSA tumors than in the other tumors. We established 6 xenograft canine HSA

  3. The Use of Recombinant Human Platelet-Derived Growth Factor for Maxillary Sinus Augmentation.

    Science.gov (United States)

    Kubota, Atsushi; Sarmiento, Hector; Alqahtani, Mohammed Saad; Llobell, Arturo; Fiorellini, Joseph P

    The maxillary sinus augmentation procedure has become a predictable treatment to regenerate bone for implant placement. The purpose of this study was to evaluate the effect of recombinant human platelet-derived growth factor BB (rhPDGF-BB) combined with a deproteinized cancellous bovine bone graft for sinus augmentation. The lateral window approach was used for maxillary sinuses with minimal residual bone. After a healing period of 4 months, dental implants were placed and then restored following a 2-month osseointegration period. The result demonstrated increased bone height and ISQ values and a 100% survival rate. This study indicates that the addition of rhPDGF-BB to deproteinized cancellous bovine bone accelerated the healing period in maxillary sinuses with minimal native bone.

  4. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Young Woo; Oh, Ji-Eun [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Baik, Soon Koo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Department of Internal Medicine, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Rhee, Ki-Jong [Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of); Shin, Ha Cheol; Kim, Yong Man [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Ahn, Chan Mug [Department of Basic Science, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kong, Jee Hyun [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@pharmicell.com [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Shim, Kwang Yong, E-mail: kyshim@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage

  5. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Eom, Young Woo; Oh, Ji-Eun; Lee, Jong In; Baik, Soon Koo; Rhee, Ki-Jong; Shin, Ha Cheol; Kim, Yong Man; Ahn, Chan Mug; Kong, Jee Hyun; Kim, Hyun Soo; Shim, Kwang Yong

    2014-01-01

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage

  6. Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Cyran, Clemens C.; Sennino, Barbara; Fu, Yanjun; Rogut, Victor; Shames, David M.; Chaopathomkul, Bundit; Wendland, Michael F.; McDonald, Donald M.; Brasch, Robert C.; Raatschen, Hans-Juergen

    2012-01-01

    Purpose: To correlate dynamic MRI assays of macromolecular endothelial permeability with microscopic area–density measurements of vascular endothelial growth factor (VEGF) in tumors. Methods and material: This study compared tumor xenografts from two different human cancer cell lines, MDA-MB-231 tumors (n = 5), and MDA-MB-435 (n = 8), reported to express respectively higher and lower levels of VEGF. Dynamic MRI was enhanced by a prototype macromolecular contrast medium (MMCM), albumin-(Gd-DTPA)35. Quantitative estimates of tumor microvascular permeability (K PS ; μl/min × 100 cm 3 ), obtained using a two-compartment kinetic model, were correlated with immunohistochemical measurements of VEGF in each tumor. Results: Mean K PS was 2.4 times greater in MDA-MB-231 tumors (K PS = 58 ± 30.9 μl/min × 100 cm 3 ) than in MDA-MB-435 tumors (K PS = 24 ± 8.4 μl/min × 100 cm 3 ) (p < 0.05). Correspondingly, the area–density of VEGF in MDA-MB-231 tumors was 2.6 times greater (27.3 ± 2.2%, p < 0.05) than in MDA-MB-435 cancers (10.5 ± 0.5%, p < 0.05). Considering all tumors without regard to cell type, a significant positive correlation (r = 0.67, p < 0.05) was observed between MRI-estimated endothelial permeability and VEGF immunoreactivity. Conclusion: Correlation of MRI assays of endothelial permeability to a MMCM and VEGF immunoreactivity of tumors support the hypothesis that VEGF is a major contributor to increased macromolecular permeability in cancers. When applied clinically, the MMCM-enhanced MRI approach could help to optimize the appropriate application of VEGF-inhibiting therapy on an individual patient basis.

  7. Development of lutetium-labeled bombesin derivates: relationship between structure and diagnostic-therapeutic activity for prostate tumor

    International Nuclear Information System (INIS)

    Pujatti, Priscilla Brunelli

    2009-01-01

    Bombesin (BBN) receptors - in particular, the gastrin-releasing peptide (GRP) receptor peptide - have been shown to be massively over expressed in several human tumors types, including prostate cancer, and could be an alternative as target for its treatment by radionuclide therapy (RNT). A large number of BBN analogs had already been synthesized for this purpose and have shown to reduce tumor growth in mice. Nevertheless, most of the studied analogs exhibit high abdominal accumulation, especially in pancreas. This abdominal accumulation may represent a problem in clinical use of radiolabeled bombesin analogs probably due to serious side effects to patients. The goal of the present work was to radiolabel a novel series of bombesin derivatives with lutetium-177 and to evaluate the relationship between their structure and diagnostic-therapeutic activity for prostate tumor. The generic structure of studied peptides is DOTA-Phe-(Gly) n -BBN(6-14), where DOTA is the chelator, n is the number of glycine amino acids of Phe-(Gly) n spacer and BBN(6-14) is the bombesin sequence from the amino acid 6 to the amino acid 14. Preliminary studies were done to establish the ideal labeling conditions for obtaining the highest yield of labeled bombesin derivatives, determined by instant thin layer chromatography (ITLC-SG) and high performance liquid chromatography (HPLC). The stability of the preparations was evaluated either after storing at 2-8 degree C or incubation in human serum at 37 degree C and the partition coefficient was determined in n:octanol:water. In vivo studies were performed in both healthy Balb-c and Nude mice bearing PC-3 xenografts, in order to characterize the biological properties of labeled peptides. In vitro studies involved the evaluation of cold bombesin derivatives effect in PC-3 cells proliferation. Bombesin derivatives were successfully labeled with high yield at optimized conditions and exhibited high stability at 4 degree C. The analysis of the

  8. Immune mechanisms in Ehrlich ascites tumor growth in mice

    International Nuclear Information System (INIS)

    Marusic, M.

    1979-01-01

    Normal mice immunised with irradiated Ehrlich ascites tumor (EAT) cells rejected EAT challenge given 2 weeks later but T-cell-deficient thymectomised lethally irradiated, and bone-marrow-reconstituted (TIR) mice succumbed. However, when TIR mice were injected i.v. with thymus, lymph node, or spleen cells from normalsyngetic donors immediately following i.p. injection of irradiated EAT cells, they rejected the subsequent tumor challenge. This induction of immunity in TIR mice was shown to be T-cell dependent. Spleen cells from EAT- bearing mice given immediately after irradiated tumor cells were also able to promote rejection of EAT challenge in TIR mice. Spleen cells from EAT-immune mice inhibited EAT growth when admixed with tumor cells prior to i.p. injection into normal recipients, but had no effect on progressive tumor growth when given i.v. immediately after i.p. tumor injection. Immune serum inhibited i.p. EAT growth when given either i.p. or i.v. Whereas inhibition of EAT growth by admixed spleen cells was shown to be T-cell independent. The data indicate that T lymphocytes are required only in the induction phase of the immune reponse of mice against EAT, while the efferent phase of the response is accomplished by serum antibodies, perhaps through an interaction with host macrophages. (author)

  9. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells

    Science.gov (United States)

    Cheng, Tzuling; Sudderth, Jessica; Yang, Chendong; Mullen, Andrew R.; Jin, Eunsook S.; Matés, José M.; DeBerardinis, Ralph J.

    2011-01-01

    Tumor cells require a constant supply of macromolecular precursors, and interrupting this supply has been proposed as a therapeutic strategy in cancer. Precursors for lipids, nucleic acids, and proteins are generated in the tricarboxylic acid (TCA) cycle and removed from the mitochondria to participate in biosynthetic reactions. Refilling the pool of precursor molecules (anaplerosis) is therefore crucial to maintain cell growth. Many tumor cells use glutamine to feed anaplerosis. Here we studied how “glutamine-addicted” cells react to interruptions of glutamine metabolism. Silencing of glutaminase (GLS), which catalyzes the first step in glutamine-dependent anaplerosis, suppressed but did not eliminate the growth of glioblastoma cells in culture and in vivo. Profiling metabolic fluxes in GLS-suppressed cells revealed induction of a compensatory anaplerotic mechanism catalyzed by pyruvate carboxylase (PC), allowing the cells to use glucose-derived pyruvate rather than glutamine for anaplerosis. Although PC was dispensable when glutamine was available, forcing cells to adapt to low-glutamine conditions rendered them absolutely dependent on PC for growth. Furthermore, in other cell lines, measuring PC activity in nutrient-replete conditions predicted dependence on specific anaplerotic enzymes. Cells with high PC activity were resistant to GLS silencing and did not require glutamine for survival or growth, but displayed suppressed growth when PC was silenced. Thus, PC-mediated, glucose-dependent anaplerosis allows cells to achieve glutamine independence. Induction of PC during chronic suppression of glutamine metabolism may prove to be a mechanism of resistance to therapies targeting glutaminolysis. PMID:21555572

  10. Growth factors: biological and clinical aspects

    International Nuclear Information System (INIS)

    Ruifrok, A.C.C.; McBride, W.H.

    1999-01-01

    Purpose: The purpose of this meeting summary is to provide an overview of cytokine research and its role in radiation oncology. Methods and Materials: The sixth annual Radiation Workshop was held at the International Festival Institute at Round Top, TX. Results: Presentations of seventeen speakers provided the framework for discussions on the biological and clinical aspects of cytokine research. Conclusion: Orchestration of coordinated cellular responses over the time course of radiation effects requires the interaction of many growth factors with their receptors as well as cell-cell and cell-matrix interactions. Cytokine networks and integrated systems are important in tumor development, cancer treatment, and normal and tumor response to cancer treatment

  11. Urinary transforming growth factors in neoplasia: separation of 125I-labeled transforming growth factor-alpha from epidermal growth factor in human urine

    International Nuclear Information System (INIS)

    Stromberg, K.; Hudgins, W.R.

    1986-01-01

    Purified human epidermal growth factor (hEGF) from urine promotes anchorage-independent cell growth in soft agar medium. This growth is enhanced by transforming growth factor-beta (TGF-beta), and is specifically inhibited by hEGF antiserum. Transforming growth factors of the alpha type (TGF-alpha), potentially present in normal human urine or urine from tumor-bearing patients, also promote anchorage-independent cell growth and compete with EGF for membrane receptor binding. Consequently, TGF-alpha cannot be distinguished from urinary hEGF by these two functional assays. Therefore, a technique for separation of TGF-alpha and related peptides from urinary EGF based on biochemical characteristics would be useful. Radioiodination of characterized growth factors [mouse EGF (mEGF), hEGF, and rat TGF-alpha (rTGF-alpha)], which were then separately added to human urine, was used to evaluate a resolution scheme that separates TGF-alpha from the high level of background hEGF present in human urine. Methyl bonded microparticulate silica efficiently adsorbed the 125 I-labeled mEGF, 125 I-labeled hEGF, and 125 I-labeled rTGF-alpha that were added to 24-h human urine samples. Fractional elution with acetonitrile (MeCN) of the adsorbed silica released approximately 70 to 80% of the 125 I-labeled mEGF and 125 I-labeled hEGF between 25 and 30% MeCN, and over 80% of the 125 I-labeled rTGF-alpha between 15 and 25% MeCN, with retention after dialysis of less than 0.2 and 1.7% of the original urinary protein, respectively. A single-step enrichment of about 400-fold for mEGF and hEGF, and 50-fold for rTGF-alpha were achieved rapidly. 125 I-labeled mEGF and 125 I-labeled hEGF eluted later than would be predicted on the basis of their reported molecular weight of approximately 6000, whereas 125 I-labeled rTGF-alpha eluted from Bio-Gel P-10 at an approximate molecular weight of 8000 to 9000

  12. Micro-computed tomography derived anisotropy detects tumor provoked deviations in bone in an orthotopic osteosarcoma murine model.

    Directory of Open Access Journals (Sweden)

    Heather A Cole

    Full Text Available Radiographic imaging plays a crucial role in the diagnosis of osteosarcoma. Currently, computed-tomography (CT is used to measure tumor-induced osteolysis as a marker for tumor growth by monitoring the bone fractional volume. As most tumors primarily induce osteolysis, lower bone fractional volume has been found to correlate with tumor aggressiveness. However, osteosarcoma is an exception as it induces osteolysis and produces mineralized osteoid simultaneously. Given that competent bone is highly anisotropic (systematic variance in its architectural order renders its physical properties dependent on direction of load and that tumor induced osteolysis and osteogenesis are structurally disorganized relative to competent bone, we hypothesized that μCT-derived measures of anisotropy could be used to qualitatively and quantitatively detect osteosarcoma provoked deviations in bone, both osteolysis and osteogenesis, in vivo. We tested this hypothesis in a murine model of osteosarcoma cells orthotopically injected into the tibia. We demonstrate that, in addition to bone fractional volume, μCT-derived measure of anisotropy is a complete and accurate method to monitor osteosarcoma-induced osteolysis. Additionally, we found that unlike bone fractional volume, anisotropy could also detect tumor-induced osteogenesis. These findings suggest that monitoring tumor-induced changes in the structural property isotropy of the invaded bone may represent a novel means of diagnosing primary and metastatic bone tumors.

  13. Bacteria-induced release of white cell--and platelet-derived vascular endothelial growth factor in vitro

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Werther, K; Mynster, T

    2001-01-01

    BACKGROUND AND OBJECTIVES: Poor prognosis after resection of primary colorectal cancer may be related to the combination of perioperative blood transfusion and subsequent development of infectious complications. White blood cell--and platelet-derived cancer growth substances, including vascular...... endothelial growth factor (VEGF), may be involved in this process. Therefore, we studied the in vitro release of VEGF from white blood cells and platelets stimulated by bacterial antigens and supernatants from stored red cell components. MATERIALS AND METHODS: Eight units of whole blood (WB) and eight units...... of buffy-coat-depleted red cell (SAGM) blood were donated by healthy blood donors. Subsequently, half of every unit was leucocyte depleted by filtration, and all 32 half-units were stored under standard conditions for 35 days. Just after storage, and on days 7, 21 and 35 during storage, aliquots...

  14. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Clausen, Bettina Hjelm; Babcock, Alicia

    2009-01-01

    Microglia and infiltrating leukocytes are considered major producers of tumor necrosis factor (TNF), which is a crucial player in cerebral ischemia and brain inflammation. We have identified a neuroprotective role for microglial-derived TNF in cerebral ischemia in mice. We show that cortical...

  15. Cystatin E/M Suppresses Tumor Cell Growth through Cytoplasmic Retention of NF-κB

    Science.gov (United States)

    Soh, Hendrick; Venkatesan, Natarajan; Veena, Mysore S.; Ravichandran, Sandhiya; Zinabadi, Alborz; Basak, Saroj K.; Parvatiyar, Kislay; Srivastava, Meera; Liang, Li-Jung; Gjertson, David W.; Torres, Jorge Z.; Moatamed, Neda A.

    2016-01-01

    We and others have shown that the cystatin E/M gene is inactivated in primary human tumors, pointing to its role as a tumor suppressor gene. However, the molecular mechanism of tumor suppression is not yet understood. Using plasmid-directed cystatin E/M gene overexpression, a lentivirus-mediated tetracycline-inducible vector system, and human papillomavirus 16 (HPV 16) E6 and E7 gene-immortalized normal human epidermal keratinocytes, we demonstrated intracellular and non-cell-autonomous apoptotic growth inhibition of tumor cell lines and that growth inhibition is associated with cytoplasmic retention of NF-κB. We further demonstrated decreased phosphorylation of IκB kinase (IKKβ) and IκBα in the presence of tumor necrosis factor alpha (TNF-α), confirming the role of cystatin E/M in the regulation of the NF-κB signaling pathway. Growth suppression of nude mouse xenograft tumors carrying a tetracycline-inducible vector system was observed with the addition of doxycycline in drinking water, confirming that the cystatin E/M gene is a tumor suppressor gene. Finally, immunohistochemical analyses of cervical carcinoma in situ and primary tumors have shown a statistically significant inverse relationship between the expression of cystatin E/M and cathepsin L and a direct relationship between the loss of cystatin E/M expression and nuclear expression of NF-κB. We therefore propose that the cystatin E/M suppressor gene plays an important role in the regulation of NF-κB. PMID:27090639

  16. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    Science.gov (United States)

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  17. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    Directory of Open Access Journals (Sweden)

    Sejal Desai

    Full Text Available Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2 and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper

  18. Differential expression of growth factor receptors and membrane-bound tumor markers for imaging in male and female breast cancer.

    Directory of Open Access Journals (Sweden)

    Jeroen F Vermeulen

    Full Text Available INTRODUCTION: Male breast cancer accounts for 0.5-1% of all breast cancers and is generally diagnosed at higher stage than female breast cancers and therefore might benefit from earlier detection and targeted therapy. Except for HER2 and EGFR, little is known about expression of growth factor receptors in male breast cancer. We therefore investigated expression profiles of growth factor receptors and membrane-bound tumor markers in male breast cancer and gynecomastia, in comparison with female breast cancer. METHODS: Tissue microarrays containing 133 male breast cancer and 32 gynecomastia cases were stained by immunohistochemistry for a panel of membrane-bound targets and compared with data on 266 female breast cancers. RESULTS: Growth factor receptors were variably expressed in 4.5% (MET up to 38.5% (IGF1-R of male breast cancers. Compared to female breast cancer, IGF1-R and carbonic anhydrase 12 (CAXII were more frequently and CD44v6, MET and FGFR2 less frequently expressed in male breast cancer. Expression of EGFR, HER2, CAIX, and GLUT1 was not significantly different between male and female breast cancer. Further, 48.1% of male breast cancers expressed at least one and 18.0% expressed multiple growth factor receptors. Since individual membrane receptors are expressed in only half of male breast cancers, a panel of membrane markers will be required for molecular imaging strategies to reach sensitivity. A potential panel of markers for molecular imaging, consisting of EGFR, IGF1-R, FGFR2, CD44v6, CAXII, GLUT1, and CD44v6 was positive in 77% of male breast cancers, comparable to female breast cancers. CONCLUSIONS: Expression patterns of growth factor receptors and hypoxia membrane proteins in male breast cancer are different from female breast cancer. For molecular imaging strategies, a putative panel consisting of markers for EGFR, IGF1-R, FGFR2, GLUT1, CAXII, CD44v6 was positive in 77% of cases and might be considered for development of

  19. Novel Drosophila receptor that binds multiple growth factors

    International Nuclear Information System (INIS)

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-01-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10 -6 to 10 -8 M. The 100 kDa protein can be affinity-labeled with these 125 I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by 125 I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors

  20. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

    Science.gov (United States)

    Choi, Hyeong Sim; Lee, Kangwook; Kim, Min Kyoung; Lee, Kang Min; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-04-19

    Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.

  1. Withaferin A Suppresses Liver Tumor Growth in a Nude Mouse ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of withaferin A on tumor growth and metastasis in liver in a nude mouse model. Methods: Withaferin A was injected through a portal vein to the orthotopic liver tumor in a nude mice model. Xenogen in vivo imaging system was used to monitor tumor growth and metastasis. The effect of ...

  2. Inhibition of Stromal PlGF Suppresses the Growth of Prostate Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Dietmar Abraham

    2013-09-01

    Full Text Available The growth and vascularization of prostate cancer is dependent on interactions between cancer cells and supporting stromal cells. The primary stromal cell type found in prostate tumors is the carcinoma-associated fibroblast, which produces placental growth factor (PlGF. PlGF is a member of the vascular endothelial growth factor (VEGF family of angiogenic molecules and PlGF mRNA levels increase after androgen deprivation therapy in prostate cancer. In this study, we show that PlGF has a direct dose-dependent proliferative effect on human PC-3 prostate cancer cells in vitro and fibroblast-derived PlGF increases PC-3 proliferation in co-culture. In xenograft tumor models, intratumoral administration of murine PlGF siRNA reduced stromal-derived PlGF expression, reduced tumor burden and decreased the number of Ki-67 positive proliferating cells associated with reduced vascular density. These data show that targeting stromal PlGF expression may represent a therapeutic target for the treatment of prostate cancer.

  3. Local Control of Lung Derived Tumors by Diffusing Alpha-Emitting Atoms Released From Intratumoral Wires Loaded With Radium-224

    International Nuclear Information System (INIS)

    Cooks, Tomer; Schmidt, Michael; Bittan, Hadas; Lazarov, Elinor; Arazi, Lior; Kelson, Itzhak; Keisari, Yona

    2009-01-01

    Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with 224 Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors in athymic mice. The efficacy of the short-lived daughters of 224 Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.

  4. More inflammation but less brain-derived neurotrophic factor in antisocial personality disorder.

    Science.gov (United States)

    Wang, Tzu-Yun; Lee, Sheng-Yu; Hu, Ming-Chuan; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chu, Chun-Hsien; Lin, Shih-Hsien; Li, Chia-Ling; Wang, Liang-Jen; Chen, Po See; Chen, Shih-Heng; Huang, San-Yuan; Tzeng, Nian-Sheng; Lee, I Hui; Chen, Kao Chin; Yang, Yen Kuang; Hong, Jau-Shyong; Lu, Ru-Band

    2017-11-01

    Antisocial personality disorder (ASPD) is highly comorbid with substance use disorders (SUDs). We hypothesize that chronic neuroinflammation and the loss of neurotrophic factors prompts the pathogenesis of both disorders. We used ELISA to measure plasma levels of proinflammatory (tumor necrosis factor-α [TNF-α], C-reactive protein [CRP]) and anti-inflammatory factors (transforming growth factor-β1 [TGF-β1] and interleukin-10 [IL-10]), and brain-derived neurotrophic factor (BDNF) in male patients with ASPD (n=74), SUDs (n=168), ASPD comorbid with SUDs (ASPD+SUDs) (n=438), and Healthy Controls (HCs) (n=81). A multivariate analysis of covariance (MANCOVA) controlled for possible confounders was used to compare cytokines and BDNF levels between groups. The results of MANCOVA adjusted for age showed a significant (pdisorder (OUD) and other SUDs groups showed that the IL-10 levels were specifically higher in OUD and ASPD±OUD groups than other SUDs (P≤0.001). We conclude that uncontrolled inflammation and losing neurotrophic factors, with or without comorbid SUDs, underlies ASPD. IL-10 expression might be more specifically associated with OUD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Quantitation and gompertzian analysis of tumor growth

    DEFF Research Database (Denmark)

    Rygaard, K; Spang-Thomsen, M

    1998-01-01

    to transform the experimental data into useful growth curves. A transformed Gompertz function is used as the basis for calculating relevant parameters pertaining to tumor growth and response to therapy. The calculations are facilitated by use of a computer program which performs the necessary calculations...... and presents the growth data in graphic form....

  6. Expression of Hepatoma-derived growth factor family members in the adult central nervous system

    Directory of Open Access Journals (Sweden)

    Abouzied Mekky M

    2006-01-01

    Full Text Available Abstract Background Hepatoma-derived growth factor (HDGF belongs to a polypeptide family containing five additional members called HDGF related proteins 1–4 (HRP-1 to -4 and Lens epithelial derived growth factor. Whereas some family members such as HDGF and HRP-2 are expressed in a wide range of tissues, the expression of others is very restricted. HRP-1 and -4 are only expressed in testis, HRP-3 only in the nervous system. Here we investigated the expression of HDGF, HRP-2 and HRP-3 in the central nervous system of adult mice on the cellular level by immunohistochemistry. In addition we performed Western blot analysis of various brain regions as well as neuronal and glial cell cultures. Results HDGF was rather evenly expressed throughout all brain regions tested with the lowest expression in the substantia nigra. HRP-2 was strongly expressed in the thalamus, prefrontal and parietal cortex, neurohypophysis, and the cerebellum, HRP-3 in the bulbus olfactorius, piriform cortex and amygdala complex. HDGF and HRP-2 were found to be expressed by neurons, astrocytes and oligodendrocytes. In contrast, strong expression of HRP-3 in the adult nervous system is restricted to neurons, except for very weak expression in oligodendrocytes in the brain stem. Although the majority of neurons are HRP-3 positive, some like cerebellar granule cells are negative. Conclusion The coexpression of HDGF and HRP-2 in glia and neurons as well as the coexpression of all three proteins in many neurons suggests different functions of members of the HDGF protein family in cells of the central nervous system that might include proliferation as well as cell survival. In addition the restricted expression of HRP-3 point to a special function of this family member for neuronal cells.

  7. The prognostic value of epidermal growth factor receptor is related to tumor differentiation and the overall treatment time of radiotherapy in squamous cell carcinomas of the head and neck

    DEFF Research Database (Denmark)

    Eriksen, Jesper Grau; Steiniche, Torben; Askaa, Jon

    2004-01-01

    Accelerated repopulation in head-and-neck carcinomas might be related to the expression of proliferative factors such as epidermal growth factor receptor (EGFr). The present study focuses on the prognostic value of EGFr for T-site control and the relation to tumor cell differentiation and overall...

  8. A quantitative theory of solid tumor growth, metabolic rate and vascularization.

    Directory of Open Access Journals (Sweden)

    Alexander B Herman

    Full Text Available The relationships between cellular, structural and dynamical properties of tumors have traditionally been studied separately. Here, we construct a quantitative, predictive theory of solid tumor growth, metabolic rate, vascularization and necrosis that integrates the relationships between these properties. To accomplish this, we develop a comprehensive theory that describes the interface and integration of the tumor vascular network and resource supply with the cardiovascular system of the host. Our theory enables a quantitative understanding of how cells, tissues, and vascular networks act together across multiple scales by building on recent theoretical advances in modeling both healthy vasculature and the detailed processes of angiogenesis and tumor growth. The theory explicitly relates tumor vascularization and growth to metabolic rate, and yields extensive predictions for tumor properties, including growth rates, metabolic rates, degree of necrosis, blood flow rates and vessel sizes. Besides these quantitative predictions, we explain how growth rates depend on capillary density and metabolic rate, and why similar tumors grow slower and occur less frequently in larger animals, shedding light on Peto's paradox. Various implications for potential therapeutic strategies and further research are discussed.

  9. Tumor-Induced Osteomalacia Caused by Primary Fibroblast Growth Factor 23 Secreting Neoplasm in Axial Skeleton: A Case Report

    Directory of Open Access Journals (Sweden)

    Gunjan Y. Gandhi

    2012-01-01

    Full Text Available We report the case of a 66-year-old woman with tumor-induced osteomalacia (TIO caused by fibroblast growth factor 23 (FGF-23 secreting mesenchymal tumor localized in a lumbar vertebra and review other cases localized to the axial skeleton. She presented with nontraumatic low back pain and spontaneous bilateral femur fractures. Laboratory testing was remarkable for low serum phosphorus, phosphaturia, and significantly elevated serum FGF-23 level. Magnetic resonance imaging (MRI of the lumbar spine showed a focal lesion in the L-4 vertebra which was hypermetabolic on positron emission tomography (PET scan. A computed tomography (CT guided needle biopsy showed a low grade spindle cell neoplasm with positive FGF-23 mRNA expression by reverse transcriptase polymerase chain reaction (RT-PCR, confirming the diagnosis of a phosphaturic mesenchymal tumor mixed connective tissue variant (PMTMCT. The patient elected to have surgery involving anterior resection of L-4 vertebra with subsequent normalization of serum phosphorus. Including the present case, we identified 12 cases of neoplasms localized to spine causing TIO. To our knowledge, this paper represents the first documented case of lumbar vertebra PMT causing TIO. TIO is a rare metabolic bone disorder that carries a favorable prognosis. When a lesion is identifiable, surgical intervention is typically curative.

  10. Connective tissue growth factor (CTGF) and cancer progression.

    Science.gov (United States)

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  11. Role of Tumor-Derived Chemokines in Osteolytic Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Salvatore J. Coniglio

    2018-06-01

    Full Text Available Metastasis is the primary cause of mortality and morbidity in cancer patients. The bone marrow is a common destination for many malignant cancers, including breast carcinoma (BC, prostate carcinoma, multiple myeloma, lung carcinoma, uterine cancer, thyroid cancer, bladder cancer, and neuroblastoma. The molecular mechanism by which metastatic cancer are able to recognize, infiltrate, and colonize bone are still unclear. Chemokines are small soluble proteins which under normal physiological conditions mediate chemotactic trafficking of leukocytes to specific tissues in the body. In the context of metastasis, the best characterized role for the chemokine system is in the regulation of primary tumor growth, survival, invasion, and homing to specific secondary sites. However, there is ample evidence that metastatic tumors exploit chemokines to modulate the metastatic niche within bone which ultimately results in osteolytic bone disease. In this review, we examine the role of chemokines in metastatic tumor growth within bone. In particular, the chemokines CCL2, CCL3, IL-8/CXCL8, and CXCL12 are consistently involved in promoting osteoclastogenesis and tumor growth. We will also evaluate the suitability of chemokines as targets for chemotherapy with the use of neutralizing antibodies and chemokine receptor-specific antagonists.

  12. Properties of a non-bioactive fluorescent derivative of differentiation-inducing factor-3, an anti-tumor agent found in Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Yuzuru Kubohara

    2014-03-01

    Full Text Available Differentiation-inducing factor-3 (DIF-3, found in the cellular slime mold Dictyostelium discoideum, and its derivatives, such as butoxy-DIF-3 (Bu-DIF-3, are potent anti-tumor agents. To investigate the activity of DIF-like molecules in tumor cells, we recently synthesized a green fluorescent DIF-3 derivative, BODIPY-DIF-3G, and analyzed its bioactivity and cellular localization. In this study, we synthesized a red (orange fluorescent DIF-3 derivative, BODIPY-DIF-3R, and compared the cellular localization and bioactivities of the two BODIPY-DIF-3s in HeLa human cervical cancer cells. Both fluorescent compounds penetrated the extracellular membrane within 0.5 h and localized mainly to the mitochondria. In formalin-fixed cells, the two BODIPY-DIF-3s also localized to the mitochondria, indicating that the BODIPY-DIF-3s were incorporated into mitochondria independently of the mitochondrial membrane potential. After treatment for 3 days, BODIPY-DIF-3G, but not BODIPY-DIF-3R, induced mitochondrial swelling and suppressed cell proliferation. Interestingly, the swollen mitochondria were stainable with BODIPY-DIF-3G but not with BODIPY-DIF-3R. When added to isolated mitochondria in vitro, BODIPY-DIF-3G increased dose-dependently the rate of O2 consumption, but BODIPY-DIF-3R did not. These results suggest that the bioactive BODIPY-DIF-3G suppresses cell proliferation, at least in part, by altering mitochondrial activity, whereas the non-bioactive BODIPY-DIF-3R localizes to the mitochondria but does not affect mitochondrial activity or cell proliferation.

  13. Radiographically determined growth kinetics of primary lung tumors in the dog

    International Nuclear Information System (INIS)

    Perry, R.E.; Weller, R.E.; Buschbom, R.L.; Dagle, G.E.; Park, J.F.

    1989-10-01

    Tumor growth rate patterns especially tumor doubling time (TDT), have been extensively evaluated in man. Studies involving the determination of TDT in humans are limited, however, by the number of cases, time consistent radiographic tumor measurements, and inability to perform experimental procedures. In animals similar constraints do not exist. Lifespan animal models lend themselves well to tumor growth pattern analysis. Experimental studies have been designed to evaluate both the biological effects and growth patterns of induced and spontaneous tumors. The purpose of this study was to calculate the tumor volume doubling times (TCDT) for radiation-induced and spontaneous primary pulmonary neoplasms in dogs to see if differences existed due to etiology, sex or histologic cell type, and to determine if the time of tumor onset could be extrapolated from the TVDT. 3 refs

  14. TPL2 (Therapeutic Targeting Tumor Progression Locus-2)/ATF4 (Activating Transcription Factor-4)/SDF1α (Chemokine Stromal Cell-Derived Factor-α) Axis Suppresses Diabetic Retinopathy.

    Science.gov (United States)

    Lai, De-Wei; Lin, Keng-Hung; Sheu, Wayne Huey-Herng; Lee, Maw-Rong; Chen, Chung-Yu; Lee, Wen-Jane; Hung, Yi-Wen; Shen, Chin-Chang; Chung, Tsung-Ju; Liu, Shing-Hwa; Sheu, Meei-Ling

    2017-09-01

    Diabetic retinopathy is characterized by vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. However, the mechanisms underlying the association between diabetes mellitus and progression retinopathy remain unclear. TPL2 (tumor progression locus 2), a serine-threonine protein kinase, exerts a pathological effect on vascular angiogenesis. This study investigated the role of N ε -(carboxymethyl)lysine, a major advanced glycation end products, and the involved TPL2-related molecular signals in diabetic retinopathy using models of in vitro and in vivo and human samples. Serum N ε -(carboxymethyl)lysine levels and TPL2 kinase activity were significantly increased in clinical patients and experimental animals with diabetic retinopathy. Intravitreal administration of pharmacological blocker or neutralizing antibody inhibited TPL2 and effectively suppressed the pathological characteristics of retinopathy in streptozotocin-induced diabetic animal models. Intravitreal VEGF (vascular endothelial growth factor) neutralization also suppressed the diabetic retinopathy in diabetic animal models. Mechanistic studies in primary human umbilical vein endothelial cells and primary retinal microvascular endothelial cells from streptozotocin-diabetic rats, db/db mice, and samples from patients with diabetic retinopathy revealed a positive parallel correlation between N ε -(carboxymethyl)lysine and the TPL2/chemokine SDF1α (stromal cell-derived factor-α) axis that is dependent on endoplasmic reticulum stress-related molecules, especially ATF4 (activating transcription factor-4). This study demonstrates that inhibiting the N ε -(carboxymethyl)lysine-induced TPL2/ATF4/SDF1α axis can effectively prevent diabetes mellitus-mediated retinal microvascular dysfunction. This signaling axis may include the therapeutic potential for other diseases involving pathological neovascularization or macular edema. © 2017

  15. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    International Nuclear Information System (INIS)

    Addison, Christina L; Belperio, John A; Burdick, Marie D; Strieter, Robert M

    2004-01-01

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  16. Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1

    International Nuclear Information System (INIS)

    Nogueira, Leticia M; Lavigne, Jackie A; Chandramouli, Gadisetti V R; Lui, Huaitian; Barrett, J Carl; Hursting, Stephen D

    2012-01-01

    The prevalence of obesity, an established risk and progression factor for breast and many other cancer types, remains very high in the United States and throughout the world. Calorie restriction (CR), a reduced-calorie dietary regimen typically involving a 20–40% reduction in calorie consumption, prevents or reverses obesity, and inhibits mammary and other types of cancer in multiple tumor model systems. Unfortunately, the mechanisms underlying the tumor inhibitory effects of CR are poorly understood, and a better understanding of these mechanisms may lead to new intervention targets and strategies for preventing or controlling cancer. We have previously shown that the anticancer effects of CR are associated with decreased systemic levels of insulin-like growth factor-1 (IGF-1), the primary source of which is liver. We have also reported that CR strongly suppresses tumor development and growth in multiple mammary cancer models. To identify CR-responsive genes and pathways, and to further characterize the role of IGF-1 as a mediator of the anticancer effects of CR, we assessed hepatic and mammary gland gene expression, hormone levels and growth of orthotopically transplanted mammary tumors in control and CR mice with and without exogenous IGF-1. C57BL/6 mice were fed either control AIN-76A diet ad libitum (AL), subjected to 20%, 30%, or 40% CR plus placebo timed-release pellets, or subjected to 30% or 40% CR plus timed-release pellets delivering murine IGF-1 (mIGF-1, 20 μg/day). Compared with AL-fed controls, body weights were decreased 14.3% in the 20% CR group, 18.5% in the 30% CR group, and 38% in the 40% CR group; IGF-1 infusion had no effect on body weight. Hepatic transcriptome analyses indicated that compared with 20% CR, 30% CR significantly modulated more than twice the number of genes and 40% CR more than seven times the number of genes. Many of the genes specific to the 40% CR regimen were hepatic stress-related and/or DNA damage-related genes

  17. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    Science.gov (United States)

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  18. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma

    International Nuclear Information System (INIS)

    Geng Ling; Shinohara, Eric T.; Kim, Dong; Tan Jiahuai; Osusky, Kate; Shyr, Yu; Hallahan, Dennis E.

    2006-01-01

    Purpose: Glioblastoma multiforme (GBM) is a devastating brain neoplasm that is essentially incurable. Although radiation therapy prolongs survival, GBMs progress within areas of irradiation. Recent studies in invertebrates have shown that STI571 (Gleevec; Novartis, East Hanover, NJ) enhances the cytotoxicity of ionizing radiation. In the present study, the effectiveness of STI571 in combination with radiation was studied in mouse models of GBM. Methods and Materials: Murine GL261 and human D54 GBM cell lines formed tumors in brains and hind limbs of C57BL6 and nude mice, respectively. GL261 and D54 cells were treated with 5 μmol/L of STI571 for 1 h and/or irradiated with 3 Gy. Protein was analyzed by Western immunoblots probed with antibodies to caspase 3, cleaved caspase 3, phospho-Akt, Akt, and platelet-derived growth factor receptor (PDGFR) α and β. Tumor volumes were assessed in mice bearing GL261 or D54 tumors treated with 21 Gy administered in seven fractionated doses. Histologic sections from STI571-treated mice were stained with phospho-Akt and phospho-PDGFR β antibodies. Kaplan-Meier survival curves were used to study the response of mice bearing intracranial implants of GL261. Results: STI571 penetrated the blood-brain barrier, which resulted in a reduction in phospho-PDGFR in GBM. STI571-induced apoptosis in GBM was significantly enhanced by irradiation. STI571 combined with irradiation induced caspase 3 cleavage in GBM cells. Glioblastoma multiforme response to therapy correlated with an increase in tumor growth delay and survival when STI571 was administered in conjunction with daily irradiation. Conclusion: These findings suggest that STI571 has the potential to augment radiotherapy and thereby improve median survival

  19. Does tumor size have its prognostic role in colorectal cancer? Re-evaluating its value in colorectal adenocarcinoma with different macroscopic growth pattern.

    Science.gov (United States)

    Dai, Weixing; Li, Yaqi; Meng, Xianke; Cai, Sanjun; Li, Qingguo; Cai, Guoxiang

    2017-09-01

    Few previous studies have taken the growth pattern into consideration when analyzing the prognostic value of tumor size in colorectal cancer (CRC). We sought to reveal the prognostic role of tumor size in different macroscopic growth patterns of CRC. Using Cancer Center datasets, we identified 4057 cases with colorectal adenocarcinoma treated with curative resection. Macroscopic growth patterns of tumors were classified into three types: infiltrative, ulcerative and expansive types based on tumor gross appearance. Univariate and multivariate Cox regression analyses were performed to evaluate the prognostic factors for overall survival (OS) and disease-free survival (DFS). In whole cohort, tumor size was an independent factor for OS (HR 1.10, 95%CI 1.04-1.16, p colorectal adenocarcinoma of infiltrative type, while only for OS in patients of ulcerative type. Copyright © 2017. Published by Elsevier Ltd.

  20. In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies

    Directory of Open Access Journals (Sweden)

    vFatemeh Kazemi-Lomedasht v

    2017-05-01

    Full Text Available Objective(s: Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size and good penetration to tumor tissues makes them promising tools in drug development.  Development of NBs targeting both human and mouse VEGF is required for understanding their in vivo functions.  Therefore, development of cross-species reactive anti-VEGF Nbs for immunotherapy of lung cancer was the main aim of the current study. Materials and Methods: Here we developed NBs from Camelus dromedarius library with high specificity and binding affinity to both human and mouse VEGF. In vitro and In vivo function of developed NB was evaluated on human endothelial cells and lung epithelial tumor cells (TC-1. Results: A nanobody showed the highest affinity to human and mouse VEGF and potently inhibited VEGF in the ELISA experiment. Anti-VEGF NBs significantly inhibited in vitro human endothelial cell migration through blockade of VEGF (P=0.045. Anti-VEGF NBs also significantly inhibited in vivo TC-1 growth in a dose-dependent manner (P=0.001 and resulted in higher survival rate in the nanobody treated group Conclusion: These findings demonstrate the potential of anti-VEGF NBsin tumor growth inhibition and are promising as novel cancer therapeutic candidate.

  1. In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe

    Science.gov (United States)

    Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong

    2018-02-01

    Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.

  2. Rapid Visualization of Human Tumor Xenografts through Optical Imaging with a Near-Infrared Fluorescent Anti–Epidermal Growth Factor Receptor Nanobody

    Directory of Open Access Journals (Sweden)

    Sabrina Oliveira

    2012-01-01

    Full Text Available Given that overexpression of the epidermal growth factor receptor (EGFR is found in many types of human epithelial cancers, noninvasive molecular imaging of this receptor is of great interest. A number of studies have employed monoclonal antibodies as probes; however, their characteristic long half-life in the bloodstream has encouraged the development of smaller probes. In this study, an anti-EGFR nanobody-based probe was developed and tested in comparison with cetuximab for application in optical molecular imaging. To this aim, the anti-EGFR nanobody 7D12 and cetuximab were conjugated to the near-infrared fluorophore IRDye800CW. 7D12-IR allowed the visualization of tumors as early as 30 minutes postinjection, whereas with cetuximab-IR, no signal above background was observed at the tumor site. Quantification of the IR-conjugated proteins in the tumors revealed ≈ 17% of injected dose per gram 2 hours after injection of 7D12-IR, which was significantly higher than the tumor uptake obtained 24 hours after injection of cetuximab-IR. This difference is associated with the superior penetration and distribution of 7D12-IR within the tumor. These results demonstrate that this anti-EGFR nanobody conjugated to the NIR fluorophore has excellent properties for rapid preclinical optical imaging, which holds promise for its future use as a complementary diagnostic tool in humans.

  3. Cytogenetic evaluation of human glial tumors: correlation of overexpression of epidermal growth factor receptor (EGFB) with abnormalities of chromosome 7

    International Nuclear Information System (INIS)

    Bell, C.W.

    1987-01-01

    Chromosome banding analysis of human glial tumors were performed using G- and Q-banding techniques in an attempt to establish recurring sites of chromosome change. Results revealed a nonrandom karyotypic profile including aneuploidy and considerable variation in chromosome number (range 40 → 200). All tumors examined displayed numerical abnormalities, with the most common numeric change being a gain of chromosome 7. An attempt was then made to correlate the observed chromosome 7 changes with activation of the cellular proto-oncogene c-erb-B, whose produce is the epidermal growth factor receptor (EGFR). Six human glial tumors were analyzed for 125 I-EGF binding, EGFR gene copy number, EGFR gene rearrangement, mRNA expression, and karyotypic profile. Saturation analysis at 4 0 C revealed significant numbers of EGFR's in all 6 tumors. Southern blotting analysis utilizing cDNA probes for the EGFR failed to demonstrate significant amplification or structural rearrangement of the EFGR gene. The results suggest that overexpression of the EGFR may be related to an alternative mechanism, other than gene amplification and elevated mRNA levels, such as the regulation of receptor biosynthesis and degradation. In summary, findings indicate that alterations of chromosome 7 are the most prevalent chromosomal change in human glial tumors, and that these alterations may lead to overexpression of the protooncogene c-erb-B

  4. Combined Stimulation with the Tumor Necrosis Factor α and the Epidermal Growth Factor Promotes the Proliferation of Hepatocytes in Rat Liver Cultured Slices

    Directory of Open Access Journals (Sweden)

    Francis Finot

    2012-01-01

    Full Text Available The culture liver slices are mainly used to investigate drug metabolism and xenobiotic-mediated liver injuries while apoptosis and proliferation remain unexplored in this culture model. Here, we show a transient increase in LDH release and caspase activities indicating an ischemic injury during the slicing procedure. Then, caspase activities decrease and remain low in cultured slices demonstrating a low level of apoptosis. The slicing procedure is also associated with the G0/G1 transition of hepatocytes demonstrated by the activation of stress and proliferation signalling pathways including the ERK1/2 and JNK1/2/3 MAPKinases and the transient upregulation of c-fos. The cells further progress up to mid-G1 phase as indicated by the sequential induction of c-myc and p53 mRNA levels after the slicing procedure and at 24 h of culture, respectively. The stimulation by epidermal growth factor induces the ERK1/2 phosphorylation but fails to activate expression of late G1 and S phase markers such as cyclin D1 and Cdk1 indicating that hepatocytes are arrested in mid-G1 phase of the cell cycle. However, we found that combined stimulation by the proinflammatory cytokine tumor necrosis factor α and the epidermal growth factor promotes the commitment to DNA replication as observed in vivo during the liver regeneration.

  5. Plasmin-driven fibrinolysis facilitates skin tumor growth in a gender-dependent manner

    DEFF Research Database (Denmark)

    Hald, Andreas; Eickhardt, Hanne; Maerkedahl, Rasmus Baadsgaard

    2012-01-01

    deficiency was due to thrombosis and lost patency of the tumor vasculature, resulting in tumor necrosis. The connection between plasmin-dependent fibrinolysis, vascular patency, and tumor growth was further substantiated as the effect of plasminogen deficiency on tumor growth could be reverted...

  6. Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors

    International Nuclear Information System (INIS)

    Tuomela, Johanna; Valta, Maija; Seppänen, Jani; Tarkkonen, Kati; Väänänen, H Kalervo; Härkönen, Pirkko

    2009-01-01

    Prostate cancer metastasizes to regional lymph nodes and distant sites but the roles of lymphatic and hematogenous pathways in metastasis are not fully understood. We studied the roles of VEGF-C and VEGFR3 in prostate cancer metastasis by blocking VEGFR3 using intravenous adenovirus-delivered VEGFR3-Ig fusion protein (VEGFR3-Ig) and by ectopic expression of VEGF-C in PC-3 prostate tumors in nude mice. VEGFR3-Ig decreased the density of lymphatic capillaries in orthotopic PC-3 tumors (p < 0.05) and inhibited metastasis to iliac and sacral lymph nodes. In addition, tumor volumes were smaller in the VEGFR3-Ig-treated group compared with the control group (p < 0.05). Transfection of PC-3 cells with the VEGF-C gene led to a high level of 29/31 kD VEGF-C expression in PC-3 cells. The size of orthotopic and subcutaneous PC-3/VEGF-C tumors was significantly greater than that of PC-3/mock tumors (both p < 0.001). Interestingly, while most orthotopic PC-3 and PC-3/mock tumors grown for 4 weeks metastasized to prostate-draining lymph nodes, orthotopic PC-3/VEGF-C tumors primarily metastasized to the lungs. PC-3/VEGF-C tumors showed highly angiogenic morphology with an increased density of blood capillaries compared with PC-3/mock tumors (p < 0.001). The data suggest that even though VEGF-C/VEGFR3 pathway is primarily required for lymphangiogenesis and lymphatic metastasis, an increased level of VEGF-C can also stimulate angiogenesis, which is associated with growth of orthotopic prostate tumors and a switch from a primary pattern of lymph node metastasis to an increased proportion of metastases at distant sites

  7. In Vivo Imaging of Xenograft Tumors Using an Epidermal Growth Factor Receptor-Specific Affibody Molecule Labeled with a Near-infrared Fluorophore

    Directory of Open Access Journals (Sweden)

    Haibiao Gong

    2010-02-01

    Full Text Available Overexpression of epidermal growth factor receptor (EGFR is associated with many types of cancers. It is of great interest to noninvasively image the EGFR expression in vivo. In this study, we labeled an EGFR-specific Affibody molecule (Eaff with a near-infrared (NIR dye IRDye800CW maleimide and tested the binding of this labeled molecule (Eaff800 in cell culture and xenograft mouse tumor models. Unlike EGF, Eaff did not activate the EGFR signaling pathway. Results showed that Eaff800 was bound and taken up specifically by EGFR-overexpressing A431 cells. When Eaff800 was intravenously injected into nude mice bearing A431 xenograft tumors, the tumor could be identified 1 hour after injection and it became most prominent after 1 day. Images of dissected tissue sections demonstrated that the accumulation of Eaff800 was highest in the liver, followed by the tumor and kidney. Moreover, in combination with a human EGFR type 2 (HER2-specific probe Haff682, Eaff800 could be used to distinguish between EGFR- and HER2-overexpressing tumors. Interestingly, the organ distribution pattern and the clearance rate of Eaff800 were different from those of Haff682. In conclusion, Eaff molecule labeled with a NIR fluorophore is a promising molecular imaging agent for EGFR-overexpressing tumors.

  8. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    International Nuclear Information System (INIS)

    Yin, Shu-Cheng; Guo, Wei; Tao, Ze-Zhang

    2013-01-01

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression

  9. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shu-Cheng [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Tao, Ze-Zhang, E-mail: zezhangtao@gmail.com [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  10. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures.

    Science.gov (United States)

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-08-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Genomic Analyses Reveal Global Functional Alterations That Promote Tumor Growth and Novel Tumor Suppressor Genes in Natural Killer-Cell Malignancies

    DEFF Research Database (Denmark)

    Kucuk, Can; Iqbal, Javeed; J. deLeeuw, Ronald

    in cell proliferation, growth and energy metabolic processes important for the neoplastic cells. In deleted regions, genes showing decreased expression included transcription factors or repressors (e.g. SP4, PRDM1, NCOR1 and ZNF10), tumor suppressors or negative regulators of the cell cycle (e.g. CDKN2C...

  12. Insulin-like growth factor II: complexity of biosynthesis and receptor binding

    DEFF Research Database (Denmark)

    Gammeltoft, S; Christiansen, Jan; Nielsen, F C

    1991-01-01

    Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line......, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-II receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very...

  13. 15-Deoxy-Δ12,14-prostaglandin J2 and thiazolidinediones transactivate epidermal growth factor and platelet-derived growth factor receptors in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Ichiki, Toshihiro; Tokunou, Tomotake; Fukuyama, Kae; Iino, Naoko; Masuda, Satoko; Takeshita, Akira

    2004-01-01

    Proliferation of vascular smooth muscle cells (VSMCs) is induced by various mitogens through activation of extracellular signal-regulated protein kinase (ERK) pathway. We recently reported that peroxisome proliferator-activated receptor (PPAR)γ activators such as 15-deoxy-Δ 12,14 -prostaglandin J2 (15-d-PGJ2) and thiazolidinediones (TZDs) activated MEK/ERK pathway through phosphatidylinositol 3-kinase (PI3-K) and induced proliferation of VSMCs. However, the precise mechanisms of PPARγ activators-induced activation of PI3-K/ERK pathway have not been determined. We examined whether transactivation of growth factor receptor is involved in this process. Stimulation of VSMCs with 15-d-PGJ2 or TZDs for 15 min induced phosphorylation of ERK1/2 and Akt. 15-d-PGJ2- or TZDs-induced phosphorylation of ERK1/2 and Akt was inhibited by AG1478, an inhibitor of epidermal growth factor receptor (EGF-R) as well as AG1295, an inhibitor of platelet derived growth factor receptor (PDGF-R). 15-d-PGJ2-induced phosphorylation of both EGF-R and PDGF-R. GM6001, a matrix metalloproteinase inhibitor, and PP2, a Src family protein kinase inhibitor, suppressed 15-d-PGJ2- and TZDs-induced phosphorylation of EGF-R and PDGFβ-R as well as activation of ERK1/2 and Akt. PDGFβ-R was co-immunoprecipitated with EGF-R, regardless of the presence or absence of 15-d-PGJ2. These data suggest that 15-d-PGJ2 and TZDs activate PI3-K/ERK pathway through Src family kinase- and matrix metalloproteinase-dependent transactivation of EGF-R and PDGF-R. Both receptors seemed to associate constitutively. This novel signaling mechanisms may contribute to diverse biological functions of PPARγ activators

  14. S100A9 interaction with TLR4 promotes tumor growth.

    Directory of Open Access Journals (Sweden)

    Eva Källberg

    Full Text Available By breeding TRAMP mice with S100A9 knock-out (S100A9(-/- animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b(+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68(+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9(-/- and TLR4(-/-, but not in RAGE(-/- animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b(+ cells. Lastly, treatment of mice with a small molecule (ABR-215050 that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies.

  15. S100A9 Interaction with TLR4 Promotes Tumor Growth

    Science.gov (United States)

    Källberg, Eva; Vogl, Thomas; Liberg, David; Olsson, Anders; Björk, Per; Wikström, Pernilla; Bergh, Anders; Roth, Johannes; Ivars, Fredrik; Leanderson, Tomas

    2012-01-01

    By breeding TRAMP mice with S100A9 knock-out (S100A9−/−) animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9−/− and TLR4−/−, but not in RAGE−/− animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b+ cells. Lastly, treatment of mice with a small molecule (ABR-215050) that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies. PMID:22470535

  16. Regulation of human lung fibroblast C1q-receptors by transforming growth factor-beta and tumor necrosis factor-alpha.

    Science.gov (United States)

    Lurton, J; Soto, H; Narayanan, A S; Raghu, G

    1999-03-01

    Transforming growth factor-beta (TGF-beta) and tumor necrosis factor-alpha (TNF-alpha) are two polypeptide mediators which are believed to play a role in the evolution of idiopathic pulmonary fibrosis (IPF). We have evaluated the effect of these two substances on the expression of receptors for collagen (cC1q-R) and globular (gC1q-R) domains of C1q and on type I collagen in human lung fibroblasts. Two fibroblast subpopulations differing in C1q receptor expression were obtained by culturing human lung explants in medium containing fresh human serum and heated plasma-derived serum and separating them based on C1q binding [Narayanan, Lurton and Raghu: Am J Resp Cell Mol Biol. 1998; 17:84]. The cells, referred to as HH and NL cells, respectively, were exposed to TGF-beta and TNF-alpha in serum-free conditions. The levels of mRNA were assessed by in situ hybridization and Northern analysis, and protein levels compared after SDS-polyacrylamide gel electrophoresis and Western blotting. NL cells exposed to TGF-beta and TNF-alpha contained 1.4 and 1.6 times as much cC1q-R mRNA, respectively, whereas in HH cells cC1q-R mRNA increased 2.0- and 2.4-fold. The gC1q-R mRNA levels increased to a lesser extent in both cells. These increases were not reflected in protein levels of CC1q-R and gC1q-R, which were similar to or less than controls. Both TGF-beta and TNF-alpha also increased procollagen [I] mRNA levels in both cells. Overall, TNF-alpha caused a greater increase and the degree of response by HH fibroblasts to both TGF-beta and TNF-alpha was higher than NL cells. These results indicated that TGF-beta and TNF-alpha upregulate the mRNA levels for cC1q-R and collagen and that they do not affect gC1q-R mRNA levels significantly. They also indicated different subsets of human lung fibroblasts respond differently to inflammatory mediators.

  17. A flagellin-derived toll-like receptor 5 agonist stimulates cytotoxic lymphocyte-mediated tumor immunity.

    Directory of Open Access Journals (Sweden)

    Nicholas D Leigh

    Full Text Available Toll-like receptor (TLR mediated recognition of pathogen associated molecular patterns allows the immune system to rapidly respond to a pathogenic insult. The "danger context" elicited by TLR agonists allows an initially non-immunogenic antigen to become immunogenic. This ability to alter environment is highly relevant in tumor immunity, since it is inherently difficult for the immune system to recognize host-derived tumors as immunogenic. However, immune cells may have encountered certain TLR ligands associated with tumor development, yet the endogenous stimulation is typically not sufficient to induce spontaneous tumor rejection. Of special interest are TLR5 agonists, because there are no endogenous ligands that bind TLR5. CBLB502 is a pharmacologically optimized TLR5 agonist derived from Salmonella enterica flagellin. We examined the effect of CBLB502 on tumor immunity using two syngeneic lymphoma models, both of which do not express TLR5, and thus do not directly respond to CBLB502. Upon challenge with the T-cell lymphoma RMAS, CBLB502 treatment after tumor inoculation protects C57BL/6 mice from death caused by tumor growth. This protective effect is both natural killer (NK cell- and perforin-dependent. In addition, CBLB502 stimulates clearance of the B-cell lymphoma A20 in BALB/c mice in a CD8(+ T cell-dependent fashion. Analysis on the cellular level via ImageStream flow cytometry reveals that CD11b(+ and CD11c(+ cells, but neither NK nor T cells, directly respond to CBLB502 as determined by NFκB nuclear translocation. Our findings demonstrate that CBLB502 stimulates a robust antitumor response by directly activating TLR5-expressing accessory immune cells, which in turn activate cytotoxic lymphocytes.

  18. Altered tumor growth in vivo after immunization of mice with antitumor antibodies

    International Nuclear Information System (INIS)

    Gorczynski, R.M.; Kennedy, M.; Polidoulis, I.; Price, G.B.

    1984-01-01

    A comparison has been made between the growth patterns of two spontaneously appearing mammary adenocarcinomas in murine bone marrow radiation chimeras and in mice preimmunized with monoclonal antibodies (MAb) detecting embryo-associated antigenic determinants. A correlation was seen between the ability of the embryo-immunized chimeras to produce cytotoxic antibody to the tumors, as assessed by an antibody-dependent cellular cytotoxic assay, and the permissiveness of the mice for growth of a tumor transplant. In addition, mice deliberately preimmunized with cytotoxic MAb (antibody-dependent cellular cytotoxic assay) allowed more rapid growth specifically of that tumor earlier found to be most sensitive to the MAb used for immunization. By comparing the changing antigenic phenotype of tumor cells serially passaged through different immunized, nonimmunized mice, evidence was found suggesting that immunization could cause either antigen modulation of transferred tumor cells or a (transient) selective advantage to antigenically discrete subpopulations within the heterogeneous tumor population. Finally, a study has been made of the growth pattern of tumor cells transplanted into mice immunized with rabbit antibodies directed against the murine MAb. In this case, tumor growth was slowed preferentially for the tumor reactive with the specific MAb, and again, predictable changes in the antigenic spectrum of tumor cells harvested from these animals were observed. Our overall findings are interpreted in terms of the involvement of networks of antibodies reacting with embryo-associated antigens in the regulation of growth of the murine mammary adenocarcinomas studied

  19. Dialkoxyquinazolines: Screening Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    International Nuclear Information System (INIS)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom, Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor, Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-01-01

    The epidermal growth factor receptor (EGFR), a long-standing drug development target, is also a desirable target for imaging. Sixteen dialkoxyquinazoline analogs, suitable for labeling with positron-emitting isotopes, have been synthesized and evaluated in a battery of in vitro assays to ascertain their chemical and biological properties. These characteristics provided the basis for the adoption of a selection schema to identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of the compounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFR tyrosine kinase. All of the analogs inhibited ligand-induced EGFR tyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimated octanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline as well as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the best combination of characteristics that warrant radioisotope labeling and further evaluation in tumor-bearing mice

  20. Complex diagnostic approaches in metastases of tumors in skeleton. VII

    International Nuclear Information System (INIS)

    Bek, V.; Stepan, J.; Hausner, P.; Vosecky, M.; Konopasek, B.; Novy, F.

    1987-01-01

    In addition to the current methods of imaging the skeleton and of histomorphological and cytomorphological examinations of the bone marrow and the bone tissue, an ever growing attention is devoted to humoral factors affecting the metabolism of the skeleton. Prostaglandins, or in a broader sense, eicosanoids are in the forefront of the attention. Their relations is studied to immune and endocrine mechanisms and to growth factors (TGF (transforming growth factor), EDF (epidermal growth factor), PDGF (platelet derived growth factor)). Specific monoclonal antibodies to the membrane and cytoplasma structures of malignant cells represent an important shift towards improved detection of disseminated tumor cells in the bone marrow. Computerized tomography and nuclear magnetic resonance contribute to improved definition in bone diagnosis. The condition of bone metabolism can be assessed by whole-body retention using technetium-labelled phosphate complexes. The methods offering information on the state of blood supply for the skeleton are also important. Common tests of bone marrow metastasis detection combine with the determination of the presence of tumor markers (CEA (carcinoembryonic antigen), TPA (tissue polypeptide antigen), plasminogen activator, polyamine, etc.). Upon heterogeneity of cell populations in the tumor, an urgent need arises for the clinician to penetrate down to the cellular and the subcellular levels of the malignant growth with the aim of identifying biological potency of the individual cell clones, including their capability of produce and proliferate metastases. We are approaching this desirable target through the flow cytometry method. (author). 30 refs

  1. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peigen; Allam, Ayman; Perez, Luis A; Taghian, Alphonse; Freeman, Jill; Suit, Herman D

    1995-04-30

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-{alpha}) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-{alpha} with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm{sup 3}, mice were randomly assigned to treatment: rHuTNF-{alpha} alone compared with normal saline control; or local radiation plus rHuTNF-{alpha} vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-{alpha} on this tumor. The TCD{sub 50} (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-{alpha} with local radiation. Results: Tumor growth in mice treated with a dose of 150 {mu}g/kg body weight rHuTNF-{alpha}, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-{alpha} also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-{alpha} starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD{sub 50} from the control value of 60.9 Gy to 50.5 Gy (p < 0.01). Conclusion: rHuTNF-{alpha} exhibits an antitumor effect against U87 xenograft in nude mice, as evidenced by an increased delay in tumor growth as well as cell loss factor. Also, there was an augmentation of tumor curability when given in combination with radiotherapy, resulting in a significantly lower TCD{sub 50} value in the treatment vs. the

  2. Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors.

    Science.gov (United States)

    Fendrich, V; Lopez, C L; Manoharan, J; Maschuw, K; Wichmann, S; Baier, A; Holler, J P; Ramaswamy, A; Bartsch, D K; Waldmann, J

    2014-10-01

    Accumulating evidence suggests a role for angiotensin-converting enzymes involving the angiotensin II-receptor 1 (AT1-R) and the cyclooxygenase pathway in carcinogenesis. The effects of ASS and enalapril were assessed in vitro and in a transgenic mouse model of pancreatic neuroendocrine neoplasms (pNENs). The effects of enalapril and ASS on proliferation and expression of the AGTR1A and its target gene vascular endothelial growth factor (Vegfa) were assessed in the neuroendocrine cell line BON1. Rip1-Tag2 mice were treated daily with either 0.6 mg/kg bodyweight of enalapril i.p., 20 mg/kg bodyweight of ASS i.p., or a vehicle in a prevention (weeks 5-12) and a survival group (week 5 till death). Tumor surface, weight of pancreatic glands, immunostaining for AT1-R and nuclear factor kappa beta (NFKB), and mice survival were analyzed. In addition, sections from human specimens of 20 insulinomas, ten gastrinomas, and 12 non-functional pNENs were evaluated for AT1-R and NFKB (NFKB1) expression and grouped according to the current WHO classification. Proliferation was significantly inhibited by enalapril and ASS in BON1 cells, with the combination being the most effective. Treatment with enalapril and ASS led to significant downregulation of known target genes Vegf and Rela at RNA level. Tumor growth was significantly inhibited by enalapril and ASS in the prevention group displayed by a reduction of tumor size (84%/67%) and number (30%/45%). Furthermore, daily treatment with enalapril and ASS prolonged the overall median survival compared with vehicle-treated Rip1-Tag2 (107 days) mice by 9 and 17 days (P=0.016 and P=0.013). The AT1-R and the inflammatory transcription factor NFKB were abolished completely upon enalapril and ASS treatment. AT1-R and NFKB expressions were observed in 80% of human pNENs. Enalapril and ASS may provide an approach for chemoprevention and treatment of pNENs. © 2014 Society for Endocrinology.

  3. Hypoxia-Inducible Regulation of a Prodrug-Activating Enzyme for Tumor-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Toru Shibata

    2002-01-01

    Full Text Available Previous studies have suggested that tumor hypoxia could be exploited for cancer gene therapy. Using hypoxia-responsive elements derived from the human vascular endothelial growth factor gene, we have generated vectors expressing a bacterial nitroreductase. (20NTR gene that can activate the anticancer prodrug CB1954. Stable transfectants of human HT1080 tumor cells with hypoxia-inducible vectors were established with G418 selection. Hypoxic induction of NTR protein correlated with increased sensitivity to in vitro exposure of HT 1080 cells to the prodrug. Growth delay assays were performed with established tumor xenografts derived from the same cells to detect the in vivo efficacy of CB1954 conversion to its cytotoxic form. Significant antitumor effects were achieved with intraperitoneal injections of CB1954 both in tumors that express NTR constitutively or with a hypoxia-inducible promoter. In addition, respiration of 10% O2 increased tumor hypoxia in vivo and enhanced the antitumor effects. Taken together, these results demonstrate that hypoxia-inducible vectors may be useful for tumor-selective gene therapy, although the problem of delivery of the vector to the tumors, particularly to the hypoxic cells in the tumors, is not addressed by these studies.

  4. B16 melanoma tumor growth is delayed in mice in an age-dependent manner

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2012-08-01

    Full Text Available A major risk factor for cancer is increasing age, which suggests that syngeneic tumor implants in old mice would grow more rapidly. However, various reports have suggested that old mice are not as permissive to implanted tumor cells as young mice. In order to determine and characterize the age-related response to B16 melanoma, we implanted 5×105 tumor cells into 8, 16, 24, and 32-month-old male C57BL/6 (B6 and C57BL/6×BALB/c F1 (CB6 F1 mice subcutaneously in the inguinal and axillary spaces, or intradermally in the lateral flank. Results showed decreased tumor volume with increasing age, which varied according to mouse genetic background and the implanted site. The B6 strain showed robust tumor growth at 8 months of age at the inguinal implantation site, with an average tumor volume of 1341.25 mm3. The 16, 24, and 32-month age groups showed a decrease in tumor growth with tumor volumes of 563.69, 481.02, and 264.55 mm3, respectively (p≤0.001. The axillary implantation site was less permissive in 8-month-old B6 mice with an average tumor volume of 761.52 mm3. The 24- and 32-month age groups showed a similar decrease in tumor growth with tumor volumes of 440 and 178.19 mm3, respectively (p≤0.01. The CB6F1 strain was not as tumor permissive at 8 months of age as B6 mice with average tumor volumes of 446.96 and 426.91 mm3 for the inguinal and axillary sites, respectively. There was a decrease in tumor growth at 24 months of age at both inguinal and axillary sites with an average tumor volume of 271.02 and 249.12 mm3, respectively (p≤0.05. The strain dependence was not apparent in 8-month-old mice injected intradermally with B16 melanoma cells, with average tumor volumes of 736.82 and 842.85 mm3 for B6 and CB6 F1, respectively. However, a strain difference was seen in 32-month-old B6 mice with an average decrease in tumor volume of 250.83 mm3 (p≤0.01. In contrast, tumor growth significantly decreased earlier in CB6 F1 mice with average

  5. Stochastic fluctuation induced the competition between extinction and recurrence in a model of tumor growth

    International Nuclear Information System (INIS)

    Li, Dongxi; Xu, Wei; Sun, Chunyan; Wang, Liang

    2012-01-01

    We investigate the phenomenon that stochastic fluctuation induced the competition between tumor extinction and recurrence in the model of tumor growth derived from the catalytic Michaelis–Menten reaction. We analyze the probability transitions between the extinction state and the state of the stable tumor by the Mean First Extinction Time (MFET) and Mean First Return Time (MFRT). It is found that the positional fluctuations hinder the transition, but the environmental fluctuations, to a certain level, facilitate the tumor extinction. The observed behavior could be used as prior information for the treatment of cancer. -- Highlights: ► Stochastic fluctuation induced the competition between extinction and recurrence. ► The probability transitions are investigated. ► The positional fluctuations hinder the transition. ► The environmental fluctuations, to a certain level, facilitate the tumor extinction. ► The observed behavior can be used as prior information for the treatment of cancer.

  6. Nilotinib Enhances Tumor Angiogenesis and Counteracts VEGFR2 Blockade in an Orthotopic Breast Cancer Xenograft Model with Desmoplastic Response

    Directory of Open Access Journals (Sweden)

    Sara Zafarnia

    2017-11-01

    Full Text Available Vascular endothelial growth factor (VEGF/VEGF receptor (VEGFR-targeted therapies predominantly affect nascent, immature tumor vessels. Since platelet-derived growth factor receptor (PDGFR blockade inhibits vessel maturation and thus increases the amount of immature tumor vessels, we evaluated whether the combined PDGFR inhibition by nilotinib and VEGFR2 blockade by DC101 has synergistic therapy effects in a desmoplastic breast cancer xenograft model. In this context, besides immunohistological evaluation, molecular ultrasound imaging with BR55, the clinically used VEGFR2-targeted microbubbles, was applied to monitor VEGFR2-positive vessels noninvasively and to assess the therapy effects on tumor angiogenesis. DC101 treatment alone inhibited tumor angiogenesis, resulting in lower tumor growth and in significantly lower vessel density than in the control group after 14 days of therapy. In contrast, nilotinib inhibited vessel maturation but enhanced VEGFR2 expression, leading to markedly increased tumor volumes and a significantly higher vessel density. The combination of both drugs led to an almost similar tumor growth as in the DC101 treatment group, but VEGFR2 expression and microvessel density were higher and comparable to the controls. Further analyses revealed significantly higher levels of tumor cell–derived VEGF in nilotinib-treated tumors. In line with this, nilotinib, especially in low doses, induced an upregulation of VEGF and IL-6 mRNA in the tumor cells in vitro, thus providing an explanation for the enhanced angiogenesis observed in nilotinib-treated tumors in vivo. These findings suggest that nilotinib inhibits vessel maturation but counteracts the effects of antiangiogenic co-therapy by enhancing VEGF expression by the tumor cells and stimulating tumor angiogenesis.

  7. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling.

    Directory of Open Access Journals (Sweden)

    Ashish Lal

    2011-11-01

    Full Text Available A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2 as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4. Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.

  8. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling.

    Science.gov (United States)

    Lal, Ashish; Thomas, Marshall P; Altschuler, Gabriel; Navarro, Francisco; O'Day, Elizabeth; Li, Xiao Ling; Concepcion, Carla; Han, Yoon-Chi; Thiery, Jerome; Rajani, Danielle K; Deutsch, Aaron; Hofmann, Oliver; Ventura, Andrea; Hide, Winston; Lieberman, Judy

    2011-11-01

    A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.

  9. Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling

    Science.gov (United States)

    O'Day, Elizabeth; Li, Xiao Ling; Concepcion, Carla; Han, Yoon-Chi; Thiery, Jerome; Rajani, Danielle K.; Deutsch, Aaron; Hofmann, Oliver; Ventura, Andrea; Hide, Winston; Lieberman, Judy

    2011-01-01

    A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ∼90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a–regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division. PMID:22102825

  10. Role of Tumor Collagenase Stimulating Factor in Breast Cancer Invasion and Metastasis.

    Science.gov (United States)

    1997-12-01

    involving hazardous organisms, theZinvestigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories. ’Z...sequencing and characterization of the tumor cell-derived collagenase stimulatory factor. Arch. Biochem. Biophys., 285: 90-96, 1991. 15. Prescott , J

  11. The Impact of Environmental Light Intensity on Experimental Tumor Growth.

    Science.gov (United States)

    Suckow, Mark A; Wolter, William R; Duffield, Giles E

    2017-09-01

    Cancer research requires for consistent models that minimize environmental variables. Within the typical laboratory animal housing facility, animals may be exposed to varying intensities of light as a result of cage type, cage position, light source, and other factors; however, studies evaluating the differential effect of light intensity during the light phase on tumor growth are lacking. The effect of cage face light intensity, as determined by cage rack position was evaluated with two tumor models using the C57Bl/6NHsd mouse and transplantable B16F10 melanoma cells or Lewis lung carcinoma (LLC) cells. Animals were housed in individually-ventilated cages placed at the top, middle, or bottom of the rack in a diagonal pattern so that the top cage was closest to the ceiling light source, and cage face light intensity was measured. Following a two-week acclimation period at the assigned cage position, animals were subcutaneously administered either 1.3×10 6 B16F10 melanoma cells or 2.5×10 5 Lewis lung carcinoma cells. Weights of excised tumors were measured following euthanasia 18 days (melanoma) or 21 days (LCC) after tumor cell administration. Cage face light intensity was significantly different depending on the location of the cage, with cages closest to the light source have the greatest intensity. Mean tumor weights were significantly less (plight intensity mice compared to high and low light intensity mice. The environmental light intensity to which experimental animals are exposed may vary markedly with cage location and can significantly influence experimental tumor growth, thus supporting the idea that light intensity should be controlled as an experimental variable for animals used in cancer research. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Hyperbolastic modeling of tumor growth with a combined treatment of iodoacetate and dimethylsulphoxide

    International Nuclear Information System (INIS)

    Eby, Wayne M; Tabatabai, Mohammad A; Bursac, Zoran

    2010-01-01

    An understanding of growth dynamics of tumors is important in understanding progression of cancer and designing appropriate treatment strategies. We perform a comparative study of the hyperbolastic growth models with the Weibull and Gompertz models, which are prevalently used in the field of tumor growth. The hyperbolastic growth models H1, H2, and H3 are applied to growth of solid Ehrlich carcinoma under several different treatments. These are compared with results from Gompertz and Weibull models for the combined treatment. The growth dynamics of the solid Ehrlich carcinoma with the combined treatment are studied using models H1, H2, and H3, and the models are highly accurate in representing the growth. The growth dynamics are also compared with the untreated tumor, the tumor treated with only iodoacetate, and the tumor treated with only dimethylsulfoxide, and the combined treatment. The hyperbolastic models prove to be effective in representing and analyzing the growth dynamics of the solid Ehrlich carcinoma. These models are more precise than Gompertz and Weibull and show less error for this data set. The precision of H3 allows for its use in a comparative analysis of tumor growth rates between the various treatments

  13. Genetic ablation of soluble tumor necrosis factor with preservation of membrane tumor necrosis factor is associated with neuroprotection after focal cerebral ischemia

    DEFF Research Database (Denmark)

    Madsen, Pernille M; Clausen, Bettina H; Degn, Matilda

    2016-01-01

    Microglia respond to focal cerebral ischemia by increasing their production of the neuromodulatory cytokine tumor necrosis factor, which exists both as membrane-anchored tumor necrosis factor and as cleaved soluble tumor necrosis factor forms. We previously demonstrated that tumor necrosis factor...... reduced infarct volumes at one and five days after stroke. This was associated with improved functional outcome after experimental stroke. No changes were found in the mRNA levels of tumor necrosis factor and tumor necrosis factor-related genes (TNFR1, TNFR2, TACE), pro-inflammatory cytokines (IL-1β, IL-6...... knockout mice display increased lesion volume after focal cerebral ischemia, suggesting that tumor necrosis factor is neuroprotective in experimental stroke. Here, we extend our studies to show that mice with intact membrane-anchored tumor necrosis factor, but no soluble tumor necrosis factor, display...

  14. Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy.

    Science.gov (United States)

    Zhang, Bo; Shi, Wei; Jiang, Ting; Wang, Lanting; Mei, Heng; Lu, Heng; Hu, Yu; Pang, Zhiqing

    2016-09-20

    Effective delivery of nanomedicines to tumor tissues depends on both the tumor microenvironment and nanomedicine properties. Accordingly, tumor microenvironment modification or advanced design of nanomedicine was emerging to improve nanomedicine delivery to tumors. However, few studies have emphasized the necessity to optimize the tumor microenvironment and nanomedicine properties simultaneously to improve tumor treatment. In the present study, imatinib mesylate (IMA) was used to normalize the tumor microenvironment including platelet-derived growth factor receptor-β expression inhibition, tumor vessel normalization, and tumor perfusion improvement as demonstrated by immunofluorescence staining. In addition, the effect of tumor microenvironment normalization on tumor delivery of nanomedicines with different sizes was carefully investigated. It was shown that IMA treatment significantly reduced the accumulation of nanoparticles (NPs) around 110 nm but enhanced the accumulation of micelles around 23 nm by in vivo fluorescence imaging experiment. Furthermore, IMA treatment limited the distribution of NPs inside tumors but increased that of micelles with a more homogeneous pattern. Finally, the anti-tumor efficacy study displayed that IMA pretreatment could significantly increase the therapeutic effects of paclitaxel-loaded micelles. All-together, a new strategy to improve nanomedicine delivery to tumor was provided by optimizing both nanomedicine size and the tumor microenvironment simultaneously, and it will have great potential in clinics for tumor treatment.

  15. Transforming growth factor alpha (TGFα regulates granulosa cell tumor (GCT cell proliferation and migration through activation of multiple pathways.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available Granulosa cell tumors (GCTs are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.

  16. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration.

    Science.gov (United States)

    Yu, Ting; Xu, Bei; He, Lili; Xia, Shan; Chen, Yan; Zeng, Jun; Liu, Yongmei; Li, Shuangzhi; Tan, Xiaoyue; Ren, Ke; Yao, Shaohua; Song, Xiangrong

    2016-01-01

    Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely

  17. Expression of adrenomedullin in human colorectal tumors and its role in cell growth and invasion in vitro and in xenograft growth in vivo

    International Nuclear Information System (INIS)

    Nouguerède, Emilie; Berenguer, Caroline; Garcia, Stéphane; Bennani, Bahia; Delfino, Christine; Nanni, Isabelle; Dahan, Laetitia; Gasmi, Mohamed; Seitz, Jean-François; Martin, Pierre-Marie; Ouafik, L'Houcine

    2013-01-01

    Adrenomedullin (AM) is a multifunctional peptide vasodilator that transduces its effects through calcitonin receptor-like receptor/receptor activity-modifying protein-2 and -3 (CLR/RAMP2 and CLR/RAMP3). In this study, real-time quantitative reverse transcription demonstrated a significant expression of AM mRNA in tumor samples from colorectal cancer (CRC) patients in clinical stage II, III, and IV when compared with normal colorectal tissue. AM, CLR, RAMP2, and RAMP3 proteins were immunohistochemically localized in the carcinomatous epithelial compartment of CRC tissue. Tissue microarray analysis revealed a clear increase of AM, CLR, RAMP2, and RAMP3 staining in lymph node and distant metastasis when compared with primary tumors. The human colon carcinoma cells HT-29 expressed and secreted AM into the culture medium with a significant increase under hypoxia. Treatment of HT-29 cells with synthetic AM stimulated cell proliferation and invasion in vitro. Incubation with anti-AM antibody (αAM), anti-AM receptors antibodies (αAMR), or AM antagonist AM 22–52 inhibited significantly basal levels of proliferation of HT-29 cells, suggesting that AM may function as an autocrine growth factor for CRC cells. Treatment with αAM significantly suppressed the growth of HT-29 tumor xenografts in vivo. Histological examination of αAM-treated tumors showed evidence of disruption of tumor vascularity with decreased microvessel density, depletion of endothelial cells and pericytes, and increased tumor cell apoptosis. These findings highlight the potential importance of AM and its receptors in the progression of CRC and support the conclusion that αAM treatment inhibits tumor growth by suppression of angiogenesis and tumor growth, suggesting that AM may be a useful therapeutic target

  18. Ketoconazole attenuates radiation-induction of tumor necrosis factor

    Energy Technology Data Exchange (ETDEWEB)

    Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.; Weichselbaum, R.R. [Dana Farber Cancer Institute, Boston, MA (United States)

    1994-07-01

    Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2 inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.

  19. Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells

    OpenAIRE

    Matsumoto, Akihiro; Takahashi, Yuki; Nishikawa, Makiya; Sano, Kohei; Morishita, Masaki; Charoenviriyakul, Chonlada; Saji, Hideo; Takakura, Yoshinobu

    2017-01-01

    Exosomes are extracellular vesicles released by various cell types and play roles in cell?cell communication. Several studies indicate that cancer cell?derived exosomes play important pathophysiological roles in tumor progression. Biodistribution of cancer cell?derived exosomes in tumor tissue is an important factor for determining their role in tumor proliferation; however, limited studies have assessed the biodistribution of exosomes in tumor tissues. In the present study, we examined the e...

  20. The Insulin-like Growth Factor System in Cancer Prevention: Potential of Dietary intervention Strategies

    NARCIS (Netherlands)

    Voskuil, D.W.; Vrieling, A.; Veer, van 't L.J.; Kampman, E.; Rookus, M.A.

    2005-01-01

    The insulin-like growth factor (IGF) system is related to proliferation and tumor growth, and high levels of circulating IGF-I are thought to be a risk factor for several types of cancer. This review summarizes the epidemiologic evidence for an association between circulating IGF-I and cancer risk

  1. The insulin-like growth factor system in cancer prevention: potential of dietary intervention strategies.

    NARCIS (Netherlands)

    Voskuil, D.W.; Vrieling, A.; Veer, L.J. van 't; Kampman, E.; Rookus, M.A.

    2005-01-01

    The insulin-like growth factor (IGF) system is related to proliferation and tumor growth, and high levels of circulating IGF-I are thought to be a risk factor for several types of cancer. This review summarizes the epidemiologic evidence for an association between circulating IGF-I and cancer risk

  2. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Story, M.T.

    1989-01-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue

  3. Inhibition of the release of soluble tumor necrosis factor receptors in experimental endotoxemia by an anti-tumor necrosis factor-alpha antibody

    NARCIS (Netherlands)

    Jansen, J.; van der Poll, T.; Levi, M. [=Marcel M.; ten Cate, H.; Gallati, H.; ten Cate, J. W.; van Deventer, S. J.

    1995-01-01

    The role of tumor necrosis factor-alpha in the shedding of soluble tumor necrosis factor receptors in endotoxemia was investigated. The appearance of the soluble tumor necrosis factor receptors was assessed in four healthy volunteers following an intravenous injection of tumor necrosis factor-alpha

  4. Presence of Insulin-Like Growth Factor Binding Proteins Correlates With Tumor-Promoting Effects of Matrix Metalloproteinase 9 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Park

    2015-05-01

    Full Text Available The stroma of breast cancer can promote the disease’s progression, but whether its composition and functions are shared among different subtypes is poorly explored. We compared stromal components of a luminal [mouse mammary tumor virus (MMTV–Neu] and a triple-negative/basal-like [C3(1–Simian virus 40 large T antigen (Tag] genetically engineered breast cancer mouse model. The types of cytokines and their expression levels were very different in the two models, as was the extent of innate immune cell infiltration; however, both models showed infiltration of innate immune cells that expressed matrix metalloproteinase 9 (MMP9, an extracellular protease linked to the progression of many types of cancer. By intercrossing with Mmp9 null mice, we found that the absence of MMP9 delayed tumor onset in the C3(1-Tag model but had no effect on tumor onset in the MMTV-Neu model. We discovered that protein levels of insulin-like growth factor binding protein-1 (IGFBP-1, an MMP9 substrate, were increased in C3(1-Tag;Mmp9−/− compared to C3(1-Tag;Mmp9+/+ tumors. In contrast, IGFBP-1 protein expression was low in MMTV-Neu tumors regardless of Mmp9 status. IGFBP-1 binds and antagonizes IGFs, preventing them from activating their receptors to promote cell proliferation and survival. Tumors from C3(1-Tag;Mmp9−/− mice had reduced IGF-1 receptor phosphorylation, consistent with slower tumor onset. Finally, gene expression analysis of human breast tumors showed that high expression of IGFBP mRNA was strongly correlated with good prognosis but not when MMP9 mRNA was also highly expressed. In conclusion, MMP9 has different effects on breast cancer progression depending on whether IGFBPs are expressed.

  5. Interaction of hematoporphyrin derivative, light, and ionizing radiation in a rat glioma model

    International Nuclear Information System (INIS)

    Kostron, H.; Swartz, M.R.; Miller, D.C.; Martuza, R.L.

    1986-01-01

    The effects of hematoporphyrin derivative, light, and cobalt 60 ( 60 Co) irradiation were studied in a rat glioma model using an in vivo and an in vitro clonogenic assay. There was no effect on tumor growth by visible light or by a single dose of 60 Co irradiation at 4 Gy or 8 Gy, whereas 16 Gy inhibited tumor growth to 40% versus the control. Hematoporphyrin derivative alone slightly stimulated growth (P less than 0.1). Light in the presence of 10 mg hematoporphyrin derivative/kg inhibited tumor growth to 32%. 60 Co irradiation in the presence of hematoporphyrin derivative produced a significant tumor growth inhibition (P less than 0.02). This growth inhibition was directly related to the concentration of hematoporphyrin derivative. The addition of 60 Co to light in the presence of hematoporphyrin derivative produced a greater growth inhibition than light or 60 Co irradiation alone. This effect was most pronounced when light was applied 30 minutes before 60 Co irradiation. Our experiments in a subcutaneous rat glioma model suggest a radiosensitizing effect of hematoporphyrin derivative. Furthermore, the photodynamic inactivation is enhanced by the addition of 60 Co irradiation. These findings may be of importance in planning new treatment modalities in malignant brain tumors

  6. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection

    Science.gov (United States)

    Korbecki, Jan; Gutowska, Izabela; Kojder, Ireneusz; Jeżewski, Dariusz; Goschorska, Marta; Łukomska, Agnieszka; Lubkowska, Anna; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2018-01-01

    Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the ‘hallmarks of cancer’ in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme. PMID:29467963

  7. Heat shock protein 90-sheltered overexpression of insulin-like growth factor 1 receptor contributes to malignancy of thymic epithelial tumors.

    Science.gov (United States)

    Breinig, Marco; Mayer, Philipp; Harjung, Andreas; Goeppert, Benjamin; Malz, Mona; Penzel, Roland; Neumann, Olaf; Hartmann, Arndt; Dienemann, Hendrik; Giaccone, Giuseppe; Schirmacher, Peter; Kern, Michael André; Chiosis, Gabriela; Rieker, Ralf Joachim

    2011-04-15

    The underlying molecular mechanisms of thymic epithelial malignancies (TEMs) are poorly understood. Consequently, there is a lack of efficacious targeted therapies and patient prognosis remains dismal, particularly for advanced TEMs. We sought to investigate protumorigenic mechanism relevant to this understudied cancer. Recently established cell lines derived from thymic epithelial tumors were used as a model system. The antitumor activity of specific heat shock protein 90 (Hsp90) inhibitors was investigated by an analysis of cell viability, cell cycle, and apoptosis using MTT-assays and flow cytometry. Western blotting was used to investigate the altered expression of Hsp90 clients. Pharmacological inhibitors against select Hsp90 clients, as well as RNAi, were employed to test the relevance of each client independently. Tissue microarray analysis was performed to match the in vitro findings with observations obtained from patient-derived samples. Hsp90 inhibition significantly reduces cell viability of thymic carcinoma cells, induces cell cycle arrest and apoptosis, and blocks invasiveness. Hsp90 inhibition triggers the degradation of multiple oncogenic clients, for example insulin-like growth factor 1 receptor (IGF-1R), CDK4, and the inactivation of PI3K/Akt and RAF/Erk signaling. Mechanistically, the IGF/IGF-1R-signaling axis contributes to the establishment of the antiapoptotic phenotype of thymic cancer cells. Finally, IGF-1R is overexpressed in advanced TEMs. We have unraveled a novel protumorigenic mechanism in TEMs, namely Hsp90-capacitated overexpression of IGF-1R, which confers apoptosis evasion in malignant thymic epithelial cells. Our data indicate that Hsp90 inhibition, which simultaneously blocks multiple cancer hallmarks, represents a therapeutic strategy in TEMs that may merit evaluation in clinical trials. ©2011 AACR.

  8. Tumor-derived transforming growth factor-beta 1 and interleukin-6 are chemotactic for lymphokine-activated killer cells

    NARCIS (Netherlands)

    Delens, N.; Torreele, E.; Savelkoul, H.; Baetselier, de P.; Bouwens, L.

    1994-01-01

    Adherent lymphokine-activated killer (A-LAK) cells are purified IL-2 activated natural killer (NK) cells with potent anti-tumor cytotoxic activity. They have been used in the adoptive immunotherapy of metastatic cancers. However, it has been shown that intravenously transferred LAK cells have a poor

  9. Inhibition of tumor growth by targeted anti-EGFR/IGF-1R Nanobullets depends on efficient blocking of cell survival pathways

    NARCIS (Netherlands)

    van der Meel, Roy; Oliveira, Sabrina; Altintas, Isil; Heukers, R.; Pieters, Ebel H.E.; van Bergen en Henegouwen, Paul M.P.; Storm, Gerrit; Hennink, Wim E.; Kok, Robbert J.; Schiffelers, Raymond M.

    2013-01-01

    The clinical efficacy of epidermal growth factor receptor (EGFR)-targeted inhibitors is limited due to resistance mechanisms of the tumor such as activation of compensatory pathways. Crosstalk between EGFR and insulin-like growth factor 1 (IGF-1R) signaling has been frequently described to be

  10. Although Abundant in Tumor Tissue, Mast Cells Have No Effect on Immunological Micro-milieu or Growth of HPV-Induced or Transplanted Tumors

    Directory of Open Access Journals (Sweden)

    Shanawaz Mohammed Ghouse

    2018-01-01

    Full Text Available Summary: High numbers of mast cells populate the stroma of many types of neoplasms, including human papilloma virus-induced benign and malignant tumors in man and mouse. Equipped with numerous pattern recognition receptors and capable of executing important pro-inflammatory responses, mast cells are considered innate sentinels that significantly impact tumor biology. Mast cells were reported to promote human papilloma virus (HPV-induced epithelial hyperproliferation and neo-angiogenesis in an HPV-driven mouse model of skin cancer. We analyzed HPV-induced epithelial hyperplasia and squamous cell carcinoma formation, as well as growth of tumors inoculated into the dermis, in mice lacking skin mast cells. Unexpectedly, the absence of mast cells had no effect on HPV-induced epithelial growth or angiogenesis, on growth kinetics of inoculated tumors, or on the immunological tumor micro-milieu. Thus, the conspicuous recruitment of mast cells into tumor tissues cannot necessarily be equated with important mast cell functions in tumor growth. : Mast cells accumulate in high numbers in many human tumors, and they are widely viewed as important promoters of tumor growth. Ghouse et al. show that growth, angiogenesis, and the immunological micro-milieu of tumors growing in mice genetically deficient for mast cells are unchanged compared to control tumors. Keywords: mast cells, HPV-induced skin cancer, tumor angiogenesis, tumor micro-milieu

  11. Shoot-derived abscisic acid promotes root growth.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  12. Effect of Mirtazapine Treatment on Serum Levels of Brain-Derived Neurotrophic Factor and Tumor Necrosis Factor-α in Patients of Major Depressive Disorder with Severe Depression.

    Science.gov (United States)

    Gupta, Rachna; Gupta, Keshav; Tripathi, A K; Bhatia, M S; Gupta, Lalit K

    2016-01-01

    This study evaluated the clinical efficacy of mirtazapine and its effect on serum brain-derived neurotrophic factor (BDNF) and tumor necrosis factor-α (TNF-α) levels in patients of major-depressive disorder (MDD) with severe depression. Patients (aged 18-60) with MDD diagnosed by DSM-IV criteria, and Hamilton Rating Scale for Depression (HAM-D) score ≥25 were included (n = 30). Mirtazapine was given in the doses of 30 mg/day. All patients were followed up for 12 weeks for the evaluation of clinical efficacy, safety along with serum BDNF and TNF-α levels. HAM-D score at the start of treatment was 30.1 ± 1.92, which significantly (p depressed patients and treatment response is associated with an increase in serum BDNF and a decrease in serum TNF-α levels. © 2016 S. Karger AG, Basel.

  13. Functional evaluation of bone marrow derived DC of tumor bearing mice after immunotherapy

    International Nuclear Information System (INIS)

    Li Min; Chen Cheng; Gu Tao; Zhou Huan; Zhang Feng; Zhu Yibei; Yu Gehua; Zhang Xueguang; Gu Zongjiang

    2006-01-01

    Objective: To evaluate the function of bone marrow derived DC of tumor bearing mice after immunotherapy. Methods: Tumor bearing mice were immunized with DC vaccine plus injection of agonistic anti-4-1BB monoclonal antibody. The proliferation of T cells primed with bone marrow derived DC of tumor bearing mice after immunotherapy was tested by 3 H-TdR incorporation. ELISA was employed to determine the levels of IL-2, IFN-γ and IL-10 secreted by DC primed T cells. Results: Bone marrow derived DC of tumor bearing mice was less efficient in stimulating the proliferation of T cells and IL-2 and IFN-γ secretion made by T cells. After immunotherapy, the proliferation of cells and IL-2 and IFN-γ secretionmade by T cells were enhanced. Conclusion: The function of bone marrow derived DC of tumor bearing mice after immunotherapy was ameliorated. (authors)

  14. Prostate-derived Ets factor, an oncogenic driver in breast cancer.

    Science.gov (United States)

    Sood, Ashwani K; Geradts, Joseph; Young, Jessica

    2017-05-01

    Prostate-derived Ets factor (PDEF), a member of the Ets family of transcription factors, differs from other family members in its restricted expression in normal tissues and its unique DNA-binding motif. These interesting attributes coupled with its aberrant expression in cancer have rendered PDEF a focus of increasing interest by tumor biologists. This review provides a current understanding of the characteristics of PDEF expression and its role in breast cancer. The bulk of the evidence is consistent with PDEF overexpression in most breast tumors and an oncogenic role for this transcription factor in breast cancer. In addition, high PDEF expression in estrogen receptor-positive breast tumors showed significant correlation with poor overall survival in several independent cohorts of breast cancer patients. Together, these findings demonstrate PDEF to be an oncogenic driver of breast cancer and a biomarker of poor prognosis in this cancer. Based on this understanding and the limited expression of PDEF in normal human tissues, the development of PDEF-based therapeutics for prevention and treatment of breast cancer is also discussed.

  15. Choline Phospholipid Metabolites of Human Vascular Endothelial Cells Altered by Cyclooxygenase Inhibition, Growth Factor Depletion, and Paracrine Factors Secreted by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Noriko Mori

    2003-04-01

    Full Text Available Magnetic resonance studies have previously shown that solid tumors and cancer cells in culture typically exhibit high phosphocholine and total choline. Treatment of cancer cells with the anti-inflammatory agent, indomethacin (INDO, reverted the phenotype of choline phospholipid metabolites in cancer cells towards a less malignant phenotype. Since endothelial cells form a key component of tumor vasculature, in this study, we used MR spectroscopy to characterize the phenotype of choline phospholipid metabolites in human umbilical vein endothelial cells (HUVECs. We determined the effect of growth factors, the anti-inflammatory agent INDO, and conditioned media obtained from a malignant cell line, on choline phospholipid metabolites. Growth factor depletion or treatment with INDO induced similar changes in the choline phospholipid metabolites of HUVECs. Treatment with conditioned medium obtained from MDA-MB-231 cancer cells induced changes similar to the presence of growth factor supplements. These results suggest that cancer cells secrete growth factors and/or other molecules that influence the choline phospholipid metabolism of HUVECs. The ability of INDO to alter choline phospholipid metabolism in the presence of growth factor supplements suggests that the inflammatory response pathways of HUVECs may play a role in cancer cell-HUVEC interaction and in the response of HUVECs to growth factors.

  16. Hypoxia-inducible factor-1α mediates the toll-like receptor 4 signaling pathway leading to anti-tumor effects in human hepatocellular carcinoma cells under hypoxic conditions.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Shuchen; Li, Mingrong; Huang, Haiying; Li, Jingyuan; Zhou, Changwei

    2016-08-01

    Hypoxia-inducible factor-1α (HIF-1α) and toll-like receptor 4 (TLR4) are involved in numerous mechanisms of cancer biology, including cell proliferation and survival; however the interaction of the two factors under hypoxic conditions remains unclear. The present study investigated the in vitro mechanism that results in the suppression of tumor cell growth and cellular functions when HIF-1α is silenced. In the present study, the human hepatocellular carcinoma HepG2 cell line was transfected with short hairpin RNA (shRNA) against HIF-1α and cultured under hypoxic conditions (1% O 2 for 24 h). The expression of HIF-1α and various growth factors, including epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2), were examined using quantitative polymerase chain reaction and immunoblotting. Tumor growth was measured using a Cell Counting Kit-8 assay and tumor activity was measured using tumor cell invasion and migration assays. Lipopolysaccharide and TAK-242 were used to activate and inhibit TLR4, respectively, to observe the role of TLR4 in the HIF-1α silenced tumor cells. The expression of TLR4 signaling pathway associates, including myeloid differentiation primary response gene 88 (MyD88), apoptosis signal-regulating kinase 1 (ASK1), p38 mitogen-activated protein kinases and HIF-1α, were analyzed by western blot assay. Under hypoxic conditions, silencing of HIF-1α expression suppressed tumor cell growth and regulated the expression of tumor growth-associated genes, including EGF, HGF, VEGF and FG2. Suppression of tumor cell invasion and migration was also observed in the HIF-1α silenced HepG2 cell line. In addition, TLR4 was identified to be involved in HIF-1α and MyD88 accumulation, and activation of ASK1 and p38 were demonstrated to be critical for TLR4-mediated HIF-1α pathway. In conclusion, silencing of HIF-1α expression may induce anti-tumor effects under hypoxic

  17. The role of macrophage derived growth factors in pulmonary fibrosis

    International Nuclear Information System (INIS)

    Pickrell, J.A.; Jarpe, M.; Benson, J.M.; Henderson, R.F.

    1988-01-01

    Factors released from rat alveolar macrophages exposed to high (95 μg/mL) concentrations of the fibrogenic agent, nickel subsulfide, were found to inhibit the proliferation of cultured lung epithelial cells and stimulate the growth of fibroblasts. Such factors, if present in the alveoli of rats exposed by inhalation to nickel subsulfide in vivo, may play a role in inhibiting re-epithelization of nickel-damaged lungs and in stimulating fibroblast proliferation, leading to pulmonary fibrosis. (author)

  18. Near Infrared Optical Visualization of Epidermal Growth Factor Receptors Levels in COLO205 Colorectal Cell Line, Orthotopic Tumor in Mice and Human Biopsies

    Directory of Open Access Journals (Sweden)

    Philip Lazarovici

    2013-07-01

    Full Text Available In this study, we present the applicability of imaging epidermal growth factor (EGF receptor levels in preclinical models of COLO205 carcinoma cells in vitro, mice with orthotopic tumors and ex vivo colorectal tumor biopsies, using EGF-labeled with IRDye800CW (EGF-NIR. The near infrared (NIR bio-imaging of COLO205 cultures indicated specific and selective binding, reflecting EGF receptors levels. In vivo imaging of tumors in mice showed that the highest signal/background ratio between tumor and adjacent tissue was achieved 48 hours post-injection. Dissected colorectal cancer tissues from different patients demonstrated ex vivo specific imaging using the NIR bio-imaging platform of the heterogeneous distributed EGF receptors. Moreover, in the adjacent gastrointestinal tissue of the same patients, which by Western blotting was demonstrated as EGF receptor negative, no labeling with EGF-NIR probe was detected. Present results support the concept of tumor imaging by measuring EGF receptor levels using EGF-NIR probe. This platform is advantageous for EGF receptor bio-imaging of the NCI-60 recommended panel of tumor cell lines including 6–9 colorectal cell lines, since it avoids radioactive probes and is appropriate for use in the clinical setting using NIR technologies in a real-time manner.

  19. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E; Henning, Susanne M; Vadgama, Jaydutt V

    2017-06-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa , has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo , which provides a high promise in its translation to human application.

  20. The Tumor Macroenvironment: Cancer-Promoting Networks Beyond Tumor Beds.

    Science.gov (United States)

    Rutkowski, Melanie R; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Conejo-Garcia, Jose R

    2015-01-01

    During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the macroenvironment and the primary tumor will enable the design of specific therapies that have the potential to prevent dissemination and metastatic spread. This chapter will summarize recent findings detailing how the primary tumor and systemic tumor macroenvironment coordinate malignant progression. © 2015 Elsevier Inc. All rights reserved.

  1. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    Science.gov (United States)

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  2. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems

    Science.gov (United States)

    Wu, Min; Frieboes, Hermann B.; McDougall, Steven R.; Chaplain, Mark A.J.; Cristini, Vittorio; Lowengrub, John

    2013-01-01

    The flow of interstitial fluid and the associated interstitial fluid pressure (IFP) in solid tumors and surrounding host tissues have been identified as critical elements in cancer growth and vascularization. Both experimental and theoretical studies have shown that tumors may present elevated IFP, which can be a formidable physical barrier for delivery of cell nutrients and small molecules into the tumor. Elevated IFP may also exacerbate gradients of biochemical signals such as angiogenic factors released by tumors into the surrounding tissues. These studies have helped to understand both biochemical signaling and treatment prognosis. Building upon previous work, here we develop a vascular tumor growth model by coupling a continuous growth model with a discrete angiogenesis model. We include fluid/oxygen extravasation as well as a continuous lymphatic field, and study the micro-environmental fluid dynamics and their effect on tumor growth by accounting for blood flow, transcapillary fluid flux, interstitial fluid flow, and lymphatic drainage. We thus elucidate further the non-trivial relationship between the key elements contributing to the effects of interstitial pressure in solid tumors. In particular, we study the effect of IFP on oxygen extravasation and show that small blood/lymphatic vessel resistance and collapse may contribute to lower transcapillary fluid/oxygen flux, thus decreasing the rate of tumor growth. We also investigate the effect of tumor vascular pathologies, including elevated vascular and interstitial hydraulic conductivities inside the tumor as well as diminished osmotic pressure differences, on the fluid flow across the tumor capillary bed, the lymphatic drainage, and the IFP. Our results reveal that elevated interstitial hydraulic conductivity together with poor lymphatic function is the root cause of the development of plateau profiles of the IFP in the tumor, which have been observed in experiments, and contributes to a more uniform

  3. Growth suppression of MCF-7 cancer cell-derived xenografts in nude mice by caveolin-1

    International Nuclear Information System (INIS)

    Wu Ping; Wang Xiaohui; Li Fei; Qi Baoju; Zhu Hua; Liu Shuang; Cui Yeqing; Chen Jianwen

    2008-01-01

    Caveolin-1 is an essential structural constituent of caveolae membrane domains that has been implicated in mitogenic signaling and oncogenesis. However, the exact functional role of caveolin-1 still remains controversial. In this report, utilizing MCF-7 human breast adenocarcinoma cells stably transfected with caveolin-1 (MCF-7/cav-1 cells), we demonstrate that caveolin-1 expression dramatically inhibits invasion and migration of these cells. Importantly, in vivo experiments employing xenograft tumor models demonstrated that expression of caveolin-1 results in significant growth inhibition of breast tumors. Moreover, a dramatic delay in tumor progression was observed in MCF-7/cav-1 cells as compared with MCF-7 cells. Histological analysis of tumor sections demonstrated a marked decrease in the percentage of proliferating tumor cells (Ki-67 assay) along with an increase in apoptotic tumor cells (TUNEL assay) in MCF-7/cav-1-treated animals. Our current findings provide for the first time in vivo evidence that caveolin-1 can indeed function as a tumor suppressor in human breast adenocarcinoma derived from MCF-7 cells rather than as a tumor promoter

  4. Metastasis and growth of friend tumor cells in irradiated syngeneic hosts

    International Nuclear Information System (INIS)

    Matioli, G.

    1974-01-01

    Friend tumor cells (FTC) have been studied by growing them in lethally irradiated syngeneic mice. After establishing the FTC dilution factor (delta), extinction factor (Q), and the optimal time for colony counts, the FTC kinetic was analyzed by the recovery curve method. It was found that FTC growth is different from that experienced by normal or leukemic Friend stem cells when tested by the same in vivo assay. The most interesting differences were the high metastatic activity, the lack of differentiation, the deterministic growth, and the independence from the spleen microenvironment experienced by the FTC, in contrast with the normal and leukemic stem cells. In addition, the estimate of the critical size the FTC colony has to reach before releasing the first metastatic cells is presented. (U.S.)

  5. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  6. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  7. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  8. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  9. Tenascin in meningioma: expression is correlated with anaplasia, vascular endothelial growth factor expression, and peritumoral edema but not with tumor border shape.

    Science.gov (United States)

    Kiliç, Türker; Bayri, Yaşar; Ozduman, Koray; Acar, Melih; Diren, Semin; Kurtkaya, Ozlem; Ekinci, Gazanfer; Buğra, Kuyaş; Sav, Aydin; Ozek, M Memet; Pamir, M Necmettin

    2002-07-01

    Tenascin is an extracellular matrix glycoprotein that is expressed during embryogenesis, inflammation, angiogenesis, and carcinogenesis. The aim of this study was to investigate how tenascin expression relates to histological grade, angiogenesis, and radiological findings in meningiomas. Twenty typical, 20 atypical, and 5 malignant meningiomas were studied retrospectively. Tenascin expression and vascular endothelial growth factor (VEGF) expression in the tumor tissue were investigated by immunohistochemistry. Tenascin messenger ribonucleic acid expression was also studied by comparative reverse transcriptase-polymerase chain reaction. Magnetic resonance images from each case were assessed for peritumoral edema and tumor border shape. The atypical and malignant meningiomas showed higher levels of tenascin expression than the typical meningiomas. The more sensitive messenger ribonucleic acid-based methods confirmed this finding. Tenascin expression was correlated with peritumoral edema and VEGF expression but not with tumor border shape. In the 13 tumors with marked tenascin expression, peritumoral edema was Grade 0 in one, Grade 1 in three, and Grade 2 in nine specimens. In the same 13 tumors, VEGF expression was Grade 1 in five and Grade 2 in eight specimens, and the findings for tumor border shape were Grade 0 in seven, Grade 1 in four, and Grade 2 in two specimens. In meningiomas, tenascin expression is correlated with anaplasia, tumor-associated edema, and VEGF expression but not with tumor border shape. This protein may play a role in the neoplastic and/or angiogenic processes in atypical and malignant meningiomas and may thus be a potential target for meningioma therapy.

  10. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy

    Directory of Open Access Journals (Sweden)

    Carlos Rosas

    2014-01-01

    Full Text Available BACKGROUND: During the last few years it has been shown in several laboratories that Celecoxib (Cx, a non-steroidal anti-inflammatory agent (NSAID normally used for pain and arthritis, mediates antitumor and antiangiogenic effects. However, the effects of this drug on a tumor cell line resistant to chemotherapeutical drugs used in cancer have not been described. Herein we evaluate the angiogenic and antitumor effects of Cx in the development of a drug-resistant mammary adenocarcinoma tumor (TA3-MTXR. RESULTS: Cx reduces angiogenesis in the chick embryonic chorioallantoic membrane assay (CAM, inhibits the growth and microvascular density of the murine TA3-MTXR tumor, reduces microvascular density of tumor metastases, promotes apoptosis and reduces vascular endothelial growth factor (VEGF production and cell proliferation in the tumor. CONCLUSION: The antiangiogenic and antitumor Cx effects correlate with its activity on other tumor cell lines, suggesting that Prostaglandins (PGs and VEGF production are involved. These results open the possibility of using Celecoxib combined with other experimental therapies, ideally aiming to get synergic effects.

  11. PDX-MI: Minimal Information for Patient-Derived Tumor Xenograft Models

    NARCIS (Netherlands)

    Meehan, Terrence F.; Conte, Nathalie; Goldstein, Theodore; Inghirami, Giorgio; Murakami, Mark A.; Brabetz, Sebastian; Gu, Zhiping; Wiser, Jeffrey A.; Dunn, Patrick; Begley, Dale A.; Krupke, Debra M.; Bertotti, Andrea; Bruna, Alejandra; Brush, Matthew H.; Byrne, Annette T.; Caldas, Carlos; Christie, Amanda L.; Clark, Dominic A.; Dowst, Heidi; Dry, Jonathan R.; Doroshow, James H.; Duchamp, Olivier; Evrard, Yvonne A.; Ferretti, Stephane; Frese, Kristopher K.; Goodwin, Neal C.; Greenawalt, Danielle; Haendel, Melissa A.; Hermans, Els; Houghton, Peter J.; Jonkers, Jos; Kemper, Kristel; Khor, Tin O.; Lewis, Michael T.; Lloyd, K. C. Kent; Mason, Jeremy; Medico, Enzo; Neuhauser, Steven B.; Olson, James M.; Peeper, Daniel S.; Rueda, Oscar M.; Seong, Je Kyung; Trusolino, Livio; Vinolo, Emilie; Wechsler-Reya, Robert J.; Weinstock, David M.; Welm, Alana; Weroha, S. John; Amant, Frédéric; Pfister, Stefan M.; Kool, Marcel; Parkinson, Helen; Butte, Atul J.; Bult, Carol J.

    2017-01-01

    Patient-derived tumor xenograft (PDX) mouse models have emerged as an important oncology research platform to study tumor evolution, mechanisms of drug response and resistance, and tailoring chemotherapeutic approaches for individual patients. The lack of robust standards for reporting on PDX models

  12. Immunohistochemical expression of platelet-derived growth factor receptors in ovarian cancer patients with long-term follow-up

    DEFF Research Database (Denmark)

    Madsen, Christine Vestergaard; Dahl Steffensen, Karina; Waldstrøm, Marianne

    2012-01-01

    relation to histopathological parameters and long-term overall survival. Methods. The immunohistochemical expression of PDGFR-α and PDGFR-β was investigated in tumor and stromal cells in 170 patients with histologically verified epithelial ovarian cancer. Results. Almost half of the tumor specimens showed......Introduction. The well-documented role of the PDGF system in tumor growth and angiogenesis has prompted the development of new biological agents targeting the PDGF system. The aim of the present study was to analyze the expression of the PDGF-receptors in ovarian cancer and to investigate its...... high expression of PDGFR-α and PDGFR-β in tumor cells (43% and 41%) and in stromal compartments (32% and 44%). There was a significant association between high expression of PDGFR-α and high expression of PDGFR-β in both tumor and stromal cells. Coexpression of PDGFR-α and PDGFR-β in stromal cells...

  13. Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.

    Science.gov (United States)

    Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K

    2016-09-01

    Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. An investigation into the stability of commercial versus MG63-derived hepatocyte growth factor under flow cultivation conditions.

    Science.gov (United States)

    Meneghello, Giulia; Storm, Michael P; Chaudhuri, Julian B; De Bank, Paul A; Ellis, Marianne J

    2015-03-01

    The scale-up of tissue engineering cell culture must ensure that conditions are maintained while also being cost effective. Here we analyse the stability of hepatocyte growth factor (HGF) to investigate whether concentrations change under dynamic conditions, and compare commercial recombinant human HGF as an additive in 'standard medium', to HGF secreted by the osteosarcoma cell line MG63 as a 'preconditioned medium'. After 3 h under flow conditions, HGF in the standard medium degraded to 40% of its original concentration but HGF in the preconditioned medium remained at 100%. The concentration of secreted HGF was 10 times greater than the working concentration of commercially-available HGF. Thus HGF within this medium has increased stability; MG63-derived HGF should therefore be investigated as a cost-effective alternative to current lyophilised powders for use in in vitro models. Furthermore, we recommend that those intending to use HGF (or other growth factors) should consider similar stability testing before embarking on experiments with media flow.

  15. Measurements of humidified particle number size distributions in a Finnish boreal forest: derivation of hygroscopic particle growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Birmili, W.; Schwirn, K.; Nowak, A.; Rose, D.; Wiedensohler, A. (Leibniz Institute for Tropospheric Research, Leipzig (Germany)); Petaejae, T.; Haemeri, K.; Aalto, P.; Kulmala, M.; Boy, M. (Dept. of Physics, Univ. of Helsinki (Finland)); Joutsensaari, J. (Univ. of Kuopio, Dept. of Physics (Finland))

    2009-07-01

    Dry and humidified size distributions of atmospheric particles were characterised at the atmospheric research station SMEAR 2, Finland between May and July 2004. Particles were classified in a size range between 3 and 800 nm at controlled relative humidities up to 90% by two instruments complementary in size range (HDMPS; Nano-HDMPS). Using the summation method, descriptive hygroscopic growth factors (DHGF) were derived for particle diameters between 70 and 300 nm by comparing dry and humidified size distributions. At 90% relative humidity, DHGF showed mean values between 1.25 and 1.45 in the accumulation mode, between 1.20 and 1.25 in the Aitken mode, and between 1.15 and 1.20 in the nucleation mode. Due to the high size resolution of the method, the transition in DHGF between the Aitken and accumulation modes, which reflects differences in the soluble fraction, could be pinpointed efficiently. For the accumulation mode, experimental DHGFs were compared to those calculated from a simplistic growth model initialised by in-situ chemical composition measurements, and yielded maximum deviations around 0.1. The variation in DHGF could only imperfectly be linked to meteorological factors. A pragmatic parameterisation of DHGF as a function of particle diameter and relative humidity was derived, and subsequently used to study the sensitivity of the condensational sink parameter (CS) as a function of height in a well-mixed boundary layer. (orig.)

  16. The influence of elevated levels of platelet-derived endothelial cell growth factor/thymidine phosphorylase on tumourigenicity, tumour growth, and oxygenation

    International Nuclear Information System (INIS)

    Griffiths, L.; Stratford, I.J.

    1998-01-01

    Purpose: Investigation of the effect of platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP) on various aspects of tumour growth in a xenograft model, including growth rate, tumourigenicity and oxygenation levels. Methods and Materials: MDA 231 breast cancer cells overexpressing PD-ECGF/TP protein were made by retroviral transduction. These cells were grown in vitro and in vivo as xenografts. Direct measurement of tumours was used to record growth parameters, while the comet assay with the bioreductive drug RSU 1069 was used to assess tumour cell oxygenation. Results: We report that MDA 231 breast tumour cell lines expressing an increased range of levels of PD-ECGF/TP have increased tumourigenicity positively related to the level of PD-ECGF/TP when implanted in nude mice. As previously reported, tumours grown from these overexpressing cell lines grew faster than the parental line. These tumours expressed higher levels of TP activity and showed increased immunocytochemical staining for PD-ECGF. In addition, the rate of growth was found to be positively related to the level of PD-ECGF/TP expressed by the tumour cells. When the comet assay was used to compare the oxygenation status of cells between the parental and PD-ECGF/TP overexpressing tumours, the latter were found to have a larger proportion of well oxygenated cells. This is consistent with these tumours having an increased and functionally competent vascular supply in response to the expression of PD-ECGF/TP. Conclusion: PD-ECGF/TP appears to be capable of influencing tumourigenicity, angiogenesis and tumour growth in a proportional manner and can directly influence tumour oxygenation levels via its role in formation of functional vasculature

  17. Advanced Research of Fibroblast Growth Factor Receptor 
in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Dan PU

    2013-11-01

    Full Text Available Lung cancer is severely threatening human health. In recent years, the treatment for lung adenocarcinoma has made a great progress, targeted therapy has been widely applied in clinic, and benefits amount of patients. However, in squamous cell lung cancer, the incidence of epidermal growth factor receptor (EGFR gene mutant and ALK fusion gene are low,and targeted therapy like Tarceva and crizotinib, can hardly work. Since the fibroblast growth factors (fibroblast growth factor, FGF pathway is considered to be related to tumor cell proliferation, metastasis and angiogenesis, more and more researches proved the amplification of fibroblast growth factor receptor (FGFR in squamous cell lung cancer. Experiments in vivo and in vitro found that blocking FGF pathway could reduce the proliferation of tumor cells and inhibit metastasis. The FGF pathway might be a new target for treatment of squamous cell lung cancer. This article reviews the effect of FGFR in tumorigenesis,as well as the prospect as a therapeutic target in non-small cell lung cancer.

  18. A Big Bang model of human colorectal tumor growth.

    Science.gov (United States)

    Sottoriva, Andrea; Kang, Haeyoun; Ma, Zhicheng; Graham, Trevor A; Salomon, Matthew P; Zhao, Junsong; Marjoram, Paul; Siegmund, Kimberly; Press, Michael F; Shibata, Darryl; Curtis, Christina

    2015-03-01

    What happens in early, still undetectable human malignancies is unknown because direct observations are impractical. Here we present and validate a 'Big Bang' model, whereby tumors grow predominantly as a single expansion producing numerous intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 15 colorectal tumors showed an absence of selective sweeps, uniformly high intratumoral heterogeneity (ITH) and subclone mixing in distant regions, as postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations and not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear 'born to be bad', with subclone mixing indicative of early malignant potential. This new model provides a quantitative framework to interpret tumor growth dynamics and the origins of ITH, with important clinical implications.

  19. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads

    International Nuclear Information System (INIS)

    Ruddell, Alanna; Croft, Alexandra; Kelly-Spratt, Karen; Furuya, Momoko; Kemp, Christopher J

    2014-01-01

    Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes

  20. Tumors induce coordinate growth of artery, vein, and lymphatic vessel triads.

    Science.gov (United States)

    Ruddell, Alanna; Croft, Alexandra; Kelly-Spratt, Karen; Furuya, Momoko; Kemp, Christopher J

    2014-05-21

    Tumors drive blood vessel growth to obtain oxygen and nutrients to support tumor expansion, and they also can induce lymphatic vessel growth to facilitate fluid drainage and metastasis. These processes have generally been studied separately, so that it is not known how peritumoral blood and lymphatic vessels grow relative to each other. The murine B16-F10 melanoma and chemically-induced squamous cell carcinoma models were employed to analyze large red-colored vessels growing between flank tumors and draining lymph nodes. Immunostaining and microscopy in combination with dye injection studies were used to characterize these vessels. Each peritumoral red-colored vessel was found to consist of a triad of collecting lymphatic vessel, vein, and artery, that were all enlarged. Peritumoral veins and arteries were both functional, as detected by intravenous dye injection. The enlarged lymphatic vessels were functional in most mice by subcutaneous dye injection assay, however tumor growth sometimes blocked lymph drainage to regional lymph nodes. Large red-colored vessels also grew between benign papillomas or invasive squamous cell carcinomas and regional lymph nodes in chemical carcinogen-treated mice. Immunostaining of the red-colored vessels again identified the clustered growth of enlarged collecting lymphatics, veins, and arteries in the vicinity of these spontaneously arising tumors. Implanted and spontaneously arising tumors induce coordinate growth of blood and lymphatic vessel triads. Many of these vessel triads are enlarged over several cm distance between the tumor and regional lymph nodes. Lymphatic drainage was sometimes blocked in mice before lymph node metastasis was detected, suggesting that an unknown mechanism alters lymph drainage patterns before tumors reach draining lymph nodes.