WorldWideScience

Sample records for tumor volume gtv

  1. Gross tumor volume (GTV) and clinical target volume (CTV) for radiation therapy of benign skull base tumours

    International Nuclear Information System (INIS)

    Maire, J.P.; Liguoro, D.; San Galli, F.

    2001-01-01

    Skull base tumours represent a out 35 to 40% of all intracranial tumours. There are now many reports in the literature confirming the fact that about 80 to 90% of such tumours are controlled with fractionated radiotherapy. Stereotactic and 3-dimensional treatment planning techniques increase local control and central nervous system tolerance. Definition of the gross tumor volume (GTV) is generally easy with currently available medical imaging systems and computers for 3-dimensional dosimetry. The definition of the clinical target volume (CTV) is more difficult to appreciate: it is defined from the CTV plus a margin, which depends on the histology and anterior therapeutic history of the tumour. It is important to take into account the visible tumour and its possible extension pathways (adjacent bone, holes at the base of skull) and/or an anatomic region (sella turcica + adjacent cavernous sinus). It is necessary to evaluate these volumes with CT Scan and MRI to appreciate tumor extension in a 3-dimensional approach, in order to reduce the risk of marginal recurrences. The aim of this paper is to discuss volume definition as a function of tumour site and tumour type to be irradiated. (authors)

  2. A Method to Automate the Segmentation of the GTV and ITV for Lung Tumors

    International Nuclear Information System (INIS)

    Ehler, Eric D.; Bzdusek, Karl; Tome, Wolfgang A.

    2009-01-01

    Four-dimensional computed tomography (4D-CT) is a useful tool in the treatment of tumors that undergo significant motion. To fully utilize 4D-CT motion information in the treatment of mobile tumors such as lung cancer, autosegmentation methods will need to be developed. Using autosegmentation tools in the Pinnacle 3 v8.1t treatment planning system, 6 anonymized 4D-CT data sets were contoured. Two test indices were developed that can be used to evaluate which autosegmentation tools to apply to a given gross tumor volume (GTV) region of interest (ROI). The 4D-CT data sets had various phase binning error levels ranging from 3% to 29%. The appropriate autosegmentation method (rigid translational image registration and deformable surface mesh) was determined to properly delineate the GTV in all of the 4D-CT phases for the 4D-CT data sets with binning errors of up to 15%. The ITV was defined by 2 methods: a mask of the GTV in all 4D-CT phases and the maximum intensity projection. The differences in centroid position and volume were compared with manual segmentation studies in literature. The indices developed in this study, along with the autosegmentation tools in the treatment planning system, were able to automatically segment the GTV in the four 4D-CTs with phase binning errors of up to 15%.

  3. Clinical Results of Mean GTV Dose Optimized Robotic-Guided Stereotactic Body Radiation Therapy for Lung Tumors

    Directory of Open Access Journals (Sweden)

    Rene Baumann

    2018-05-01

    Full Text Available IntroductionWe retrospectively evaluated the efficacy and toxicity of gross tumor volume (GTV mean dose optimized stereotactic body radiation therapy (SBRT for primary and secondary lung tumors with and without robotic real-time motion compensation.Materials and methodsBetween 2011 and 2017, 208 patients were treated with SBRT for 111 primary lung tumors and 163 lung metastases with a median GTV of 8.2 cc (0.3–174.0 cc. Monte Carlo dose optimization was performed prioritizing GTV mean dose at the potential cost of planning target volume (PTV coverage reduction while adhering to safe normal tissue constraints. The median GTV mean biological effective dose (BED10 was 162.0 Gy10 (34.2–253.6 Gy10 and the prescribed PTV BED10 ranged 23.6–151.2 Gy10 (median, 100.8 Gy10. Motion compensation was realized through direct tracking (44.9%, fiducial tracking (4.4%, and internal target volume (ITV concepts with small (≤5 mm, 33.2% or large (>5 mm, 17.5% motion. The local control (LC, progression-free survival (PFS, overall survival (OS, and toxicity were analyzed.ResultsMedian follow-up was 14.5 months (1–72 months. The 2-year actuarial LC, PFS, and OS rates were 93.1, 43.2, and 62.4%, and the median PFS and OS were 18.0 and 39.8 months, respectively. In univariate analysis, prior local irradiation (hazard ratio (HR 0.18, confidence interval (CI 0.05–0.63, p = 0.01, GTV/PTV (HR 1.01–1.02, CI 1.01–1.04, p < 0.02, and PTV prescription, mean GTV, and maximum plan BED10 (HR 0.97–0.99, CI 0.96–0.99, p < 0.01 were predictive for LC while the tracking method was not (p = 0.97. For PFS and OS, multivariate analysis showed Karnofsky Index (p < 0.01 and tumor stage (p ≤ 0.02 to be significant factors for outcome prediction. Late radiation pneumonitis or chronic rip fractures grade 1–2 were observed in 5.3% of the patients. Grade ≥3 side effects did not occur.ConclusionRobotic SBRT is a safe and

  4. SU-E-J-79: Internal Tumor Volume Motion and Volume Size Assessment Using 4D CT Lung Data

    Energy Technology Data Exchange (ETDEWEB)

    Jurkovic, I [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Stathakis, S; Li, Y; Patel, A; Vincent, J; Papanikolaou, N; Mavroidis, P [Cancer Therapy and Research Center University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States)

    2014-06-01

    Purpose: To assess internal tumor volume change through breathing cycle and associated tumor motion using the 4DCT data. Methods: Respiration induced volume change through breathing cycle and associated motion was analyzed for nine patients that were scanned during the different respiratory phases. The examined datasets were the maximum and average intensity projections (MIP and AIP) and the 10 phases of the respiratory cycle. The internal target volume (ITV) was delineated on each of the phases and the planning target volume (PTV) was then created by adding setup margins to the ITV. Tumor motion through the phases was assessed using the acquired 4DCT dataset, which was then used to determine if the margins used for the ITV creation successfully encompassed the tumor in three dimensions. Results: Results showed that GTV motion along the superior inferior axes was the largest in all the cases independent of the tumor location and/or size or the use of abdomen compression. The extent of the tumor motion was found to be connected with the size of the GTV. The smallest GTVs exhibited largest motion vector independent of the tumor location. The motion vector size varied through the phases depending on the tumor size and location and it was smallest for phases 20 and 30. The smaller the volume of the delineated GTV, the greater its volume difference through the different respiratory phases was. The average GTV volume change was largest for the phases 60 and 70. Conclusion: Even if GTV is delineated using both AIP and MIP datasets, its motion extent will exceed the used margins especially for the very small GTV volumes. When the GTV size is less than 10 cc it is recommended to use fusion of the GTVs through all the phases to create the planning ITV.

  5. Change of tumor target volume during waiting time for intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chen Bo; Yi Junlin; Gao Li; Xu Guozhen; Huang Xiaodong; Zhang Zhong; Luo Jingwei; Li Suyan

    2007-01-01

    Objective: To determine the influence of change in tumor target volume of nasopharyngeal carcinoma (NPC) while waiting for intensity modulated radiation therapy (IMRT). Methods: From March 2005 to December 2005, 31 patients with nasopharyngeal carcinoma received IMRT as the initial treatment at the Cancer Hospital of Chinese Academic of Medical Sciences. The original simulation CT scan was acquired before IMRT planning. A second CT scan was acquired before the start of radiotherapy. Wait- ing time was defined as the duration between CT simulation and start of radiotherapy. CT-CT fusion was used to minimize the error of delineation between the first tumor target volume (GTV) and the second tumor target volume (sGTV). Tumor target volume was calculated by treatment planning system. T test was carried out to analyse the difference between GTV and sGTV. Pearson correlation and multivariate linear regression was used to analyse the influence factor of the change betweent GTV and sGTV. Results: Median waiting time was 18 days (range, 9-27 days). There were significant differences between GTV and sGTV of both primary tumor (P=0.009) and metastatic lymphoma (P=0.005 ). Both Pearson correlation and multivariate linear regression showed that the change of primary tumor target volume had significant correlation with the first tumor target volume but had no significant correlation with the waiting time, sex, age, T stage and N stage (1992 Chinese Fuzhou Staging Classification). Conclusions: Within the range of the waiting time ob- served in our study, large volume primary tumor would have had a significant increase in volume, but whether the therapeutic effect would be influenced or not would need to be proved by study of large number of cases. Patients with large volume tumor should be considered to reduce the influence of waiting time by enlarging gross target volume and clinical targe volume and by neoadjuveant chemotherapy. For avoiding the unnecessary high-dose to normal

  6. Anatomy, gross tumor volume and clinical target volume: tumors of the lower third of the esophagus and the gastro esophageal junction

    International Nuclear Information System (INIS)

    Calais, G.; Asquier, E.; Louisot, P.

    2001-01-01

    The esophagus is divided into four regions: cervical esophagus, intrathoracic esophagus with upper, mid and lower thoracic portion. Cancer may occur on each of these regions. Computed tomography of the thorax and superior abdomen and endoscopic ultrasound are necessary for reliable staging. CT simulation allows accurate definition of tumor volume. GTV includes tumor volume and regional lymph nodes. CTV encompasses GTV plus safety margin and lymph nodes areas considered to harbor potential microscopic disease. The extent of prophylactic lymph node irradiation depends on the anatomic location of the primary tumor. (author)

  7. Comparison of imaging-based gross tumor volume and pathological volume determined by whole-mount serial sections in primary cervical cancer

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-07-01

    Full Text Available Ying Zhang,1,* Jing Hu,1,* Jianping Li,1 Ning Wang,1 Weiwei Li,1 Yongchun Zhou,1 Junyue Liu,1 Lichun Wei,1 Mei Shi,1 Shengjun Wang,2 Jing Wang,2 Xia Li,3 Wanling Ma4 1Department of Radiation Oncology, 2Department of Nuclear Medicine, 3Department of Pathology, 4Department of Radiology, Xijing Hospital, Xi'an, People's Republic of China*These authors contributed equally to this workObjective: To investigate the accuracy of imaging-based gross tumor volume (GTV compared with pathological volume in cervical cancer.Methods: Ten patients with International Federation of Gynecology and Obstetrics stage I–II cervical cancer were eligible for investigation and underwent surgery in this study. Magnetic resonance imaging (MRI and fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET/computed tomography (CT scans were taken the day before surgery. The GTVs under MRI and 18F-FDG PET/CT (GTV-MRI, GTV-PET, GTV-CT were calculated automatically by Eclipse treatment-planning systems. Specimens of excised uterine cervix and cervical cancer were consecutively sliced and divided into whole-mount serial sections. The tumor border of hematoxylin and eosin-stained sections was outlined under a microscope by an experienced pathologist. GTV through pathological image (GTV-path was calculated with Adobe Photoshop.Results: The GTVs (average ± standard deviation delineated and calculated under CT, MRI, PET, and histopathological sections were 19.41 ± 11.96 cm3, 12.66 ± 10.53 cm3, 11.07 ± 9.44 cm3, and 10.79 ± 8.71 cm3, respectively. The volume of GTV-CT or GTV-MR was bigger than GTV-path, and the difference was statistically significant (P 0.05. Spearman correlation analysis showed that GTV-CT, GTV-MRI, and GTV-PET were significantly correlated with GTV-path (P < 0.01. There was no significant difference in the lesion coverage factor among the three modalities.Conclusion: The present study showed that GTV defined under 40% of maximum standardized

  8. Evaluation of PET/MRI for Tumor Volume Delineation for Head and Neck Cancer.

    Science.gov (United States)

    Wang, Kyle; Mullins, Brandon T; Falchook, Aaron D; Lian, Jun; He, Kelei; Shen, Dinggang; Dance, Michael; Lin, Weili; Sills, Tiffany M; Das, Shiva K; Huang, Benjamin Y; Chera, Bhishamjit S

    2017-01-01

    Computed tomography (CT), combined positron emitted tomography and CT (PET/CT), and magnetic resonance imaging (MRI) are commonly used in head and neck radiation planning. Hybrid PET/MRI has garnered attention for potential added value in cancer staging and treatment planning. Herein, we compare PET/MRI vs. planning CT for head and neck cancer gross tumor volume (GTV) delineation. We prospectively enrolled patients with head and neck cancer treated with definitive chemoradiation to 60-70 Gy using IMRT. We performed pretreatment contrast-enhanced planning CT and gadolinium-enhanced PET/MRI. Primary and nodal volumes were delineated on planning CT (GTV-CT) prospectively before treatment and PET/MRI (GTV-PET/MRI) retrospectively after treatment. GTV-PET/MRI was compared to GTV-CT using separate rigid registrations for each tumor volume. The Dice similarity coefficient (DSC) metric evaluating spatial overlap and modified Hausdorff distance (mHD) evaluating mean orthogonal distance difference were calculated. Minimum dose to 95% of GTVs (D95) was compared. Eleven patients were evaluable (10 oropharynx, 1 larynx). Nine patients had evaluable primary tumor GTVs and seven patients had evaluable nodal GTVs. Mean primary GTV-CT and GTV-PET/MRI size were 13.2 and 14.3 cc, with mean intersection 8.7 cc, DSC 0.63, and mHD 1.6 mm. D95 was 65.3 Gy for primary GTV-CT vs. 65.2 Gy for primary GTV-PET/MRI. Mean nodal GTV-CT and GTV-PET/MRI size were 19.0 and 23.0 cc, with mean intersection 14.4 cc, DSC 0.69, and mHD 2.3 mm. D95 was 62.3 Gy for both nodal GTV-CT and GTV-PET/MRI. In this series of patients with head and neck (primarily oropharynx) cancer, PET/MRI and CT-GTVs had similar volumes (though there were individual cases with larger differences) with overall small discrepancies in spatial overlap, small mean orthogonal distance differences, and similar radiation doses.

  9. Intensity-Modulated Radiation Therapy in Oropharyngeal Carcinoma: Effect of Tumor Volume on Clinical Outcomes

    International Nuclear Information System (INIS)

    Lok, Benjamin H.; Setton, Jeremy; Caria, Nicola; Romanyshyn, Jonathan; Wolden, Suzanne L.; Zelefsky, Michael J.; Park, Jeffery; Rowan, Nicholas; Sherman, Eric J.; Fury, Matthew G.; Ho, Alan; Pfister, David G.; Wong, Richard J.; Shah, Jatin P.; Kraus, Dennis H.; Zhang, Zhigang; Schupak, Karen D.; Gelblum, Daphna Y.; Rao, Shyam D.; Lee, Nancy Y.

    2012-01-01

    Purpose: To analyze the effect of primary gross tumor volume (pGTV) and nodal gross tumor volume (nGTV) on treatment outcomes in patients treated with definitive intensity-modulated radiation therapy (IMRT) for oropharyngeal cancer (OPC). Methods and Materials: Between September 1998 and April 2009, a total of 442 patients with squamous cell carcinoma of the oropharynx were treated with IMRT with curative intent at our center. Thirty patients treated postoperatively and 2 additional patients who started treatment more than 6 months after diagnosis were excluded. A total of 340 patients with restorable treatment plans were included in this present study. The majority of the patients underwent concurrent platinum-based chemotherapy. The pGTV and nGTV were calculated using the original clinical treatment plans. Cox proportional hazards models and log-rank tests were used to evaluate the correlation between tumor volumes and overall survival (OS), and competing risks analysis tools were used to evaluate the correlation between local failure (LF), regional failure (RF), distant metastatic failure (DMF) vs. tumor volumes with death as a competing risk. Results: Median follow-up among surviving patients was 34 months (range, 5-67). The 2-year cumulative incidence of LF, RF and DF in this cohort of patients was 6.1%, 5.2%, and 12.2%, respectively. The 2-year OS rate was 88.6%. Univariate analysis determined pGTV and T-stage correlated with LF (p < 0.0001 and p = 0.004, respectively), whereas nGTV was not associated with RF. On multivariate analysis, pGTV and N-stage were independent risk factors for overall survival (p = 0.0003 and p = 0.0073, respectively) and distant control (p = 0.0008 and p = 0.002, respectively). Conclusions: In this cohort of patients with OPC treated with IMRT, pGTV was found to be associated with overall survival, local failure, and distant metastatic failure.

  10. Definition of gross tumor volume in lung cancer: inter-observer variability

    NARCIS (Netherlands)

    van de Steene, Jan; Linthout, Nadine; de Mey, Johan; Vinh-Hung, Vincent; Claassens, Cornelia; Noppen, Marc; Bel, Arjan; Storme, Guy

    2002-01-01

    BACKGROUND AND PURPOSE: To determine the inter-observer variation in gross tumor volume (GTV) definition in lung cancer, and its clinical relevance. MATERIALS AND METHODS: Five clinicians involved in lung cancer were asked to define GTV on the planning CT scan of eight patients. Resulting GTVs were

  11. Variation of gross tumor volume and clinical target volume definition for lung cancer

    International Nuclear Information System (INIS)

    Liang Jun; Li Minghui; Chen Dongdu

    2011-01-01

    Objective: To study the variation of gross tumor volume (GTV) and clinical target volume (CTV) definition for lung cancer between different doctors. Methods: Ten lung cancer patients with PET-CT simulation were selected from January 2008 to December 2009.GTV and CTV of these patients were defined by four professors or associate professors of radiotherapy independently. Results: The mean ratios of largest to smallest GTV and CTV were 1.66 and 1.65, respectively. The mean coefficients of variation for GTV and CTV were 0.20 and 0.17, respectively. System errors of CTV definition in three dimension were less than 5 mm, which was the largest in inferior and superior (0.48 cm, 0.37 cm, 0.32 cm; F=0.40, 0.60, 0.15, P=0.755, 0.618, 0.928). Conclusions: The variation of GTV and CTV definition for lung cancer between different doctors exist. The mean ratios of largest to smallest GTV and CTV were less than 1.7. The variation was in hilar and mediastinum lymphanode regions. System error of CTV definition was the largest (<5 mm) in cranio-caudal direction. (authors)

  12. Preliminary study of the internal margin of the gross tumor volume in thoracic esophageal cancer

    International Nuclear Information System (INIS)

    Li, Jiancheng; Pan, Jianji; Wang, Linhua; Zhao, Yunhui; Liu, Di; Chen, Cheng; Zhang, He Ping; Wang, Xiaoliang

    2012-01-01

    Purpose. - To measure the displacement of the tumor of the gross tumor volume (GTV) of thoracic esophageal cancer in the calm states of end-inspiration and end-expiration for determining the internal margin of the GTV (IGTV). Methods. - Twenty-two patients with thoracic esophageal cancer who were unable to undergo surgery were identified in our hospital. The patients received radiotherapy. By using 16-slice spiral computed tomography (CT), we acquired the calm states of end-inspiration and end-expiration. The displacement and volume changes in tumor target volume were measured, and the changes were analyzed to determine if these were associated with the tidal volume and the location and length of the target volume V. In the end, we analyzed the displacement of tumor target volume and calculated the internal margin of the GTV by empirical formula. Results. - The average tidal volume was 463.6 ml. The average GTV at end-inspiration was 33.3 ml and at end-expiration was 33.35 ml. Three was not any significant between two groups (T -0.034, P > 0.05). The IGTV (X-axis direction) was 3.09 mm for the right sector and 4.08 mm for the left border; the IGTV (Z-axis direction) was 3.96 mm for the anterior border and 2.83 mm for the posterior border; and the IGTV (Y-axis direction) was 7.31 mm for the upper boundary (head direction) and 10.16 mm for the lower boundary (feet direction). The motion of the GTV showed no significant correlation with the tidal volume of patients and the length of the tumor, but in relation to the tumor location, the displacement of the lower thoracic and the middle thoracic target volumes occurred in the direction of the anterior and right, which were not significantly different (T = 0.859, 0.229, P > 0.05) The significant differences were observed for the other directions (P < 0.05). Conclusions. - Because of respiratory and organ movements, the displacement of the tumor target volume was different in all directions. Therefore, we recommend that

  13. Optimal gross tumor volume definition in lung-sparing intensity modulated radiotherapy for pleural mesothelioma: an in silico study.

    Science.gov (United States)

    Botticella, Angela; Defraene, Gilles; Nackaerts, Kristiaan; Deroose, Christophe M; Coolen, Johan; Nafteux, Philippe; Peeters, Stephanie; Ricardi, Umberto; De Ruysscher, Dirk

    2016-12-01

    The gross tumor volume (GTV) definition for malignant pleural mesothelioma (MPM) is ill-defined. We therefore investigated which imaging modality is optimal: computed tomography (CT) with intravenous contrast (IVC), positron emission tomography-CT (PET/CT) or magnetic resonance imaging (MRI). Sixteen consecutive patients with untreated stage I-IV MPM were included. Patients with prior pleurodesis were excluded. CT with IVC, 18FDG-PET/CT and MRI (T2 and contrast-enhanced T1) were obtained. CT was rigidly co-registered with PET/CT and with MRI. Three sets of pleural GTVs were defined: GTV CT , GTV CT+PET/CT and GTV CT+MRI . Quantitative and qualitative evaluations of the contoured GTVs were performed. Compared to CT-based GTV definition, PET/CT identified additional tumor sites (defined as either separate nodules or greater extent of a known tumor) in 12/16 patients. Compared to either CT or PET/CT, MRI identified additional tumor sites in 15/16 patients (p = .7). The mean GTV CT , GTV CT+PET/CT and GTV CT+MRI [±standard deviation (SD)] were 630.1 cm 3 (±302.81), 640.23 cm 3 (±302.83) and 660.8 cm 3 (±290.8), respectively. Differences in mean volumes were not significant. The mean Jaccard Index was significantly lower in MRI-based contours versus all the others. As MRI identified additional pleural disease sites in the majority of patients, it may play a role in optimal target volume definition.

  14. The Impact of Positron Emission Tomography/Computed Tomography in Edge Delineation of Gross Tumor Volume for Head and Neck Cancers

    International Nuclear Information System (INIS)

    Ashamalla, Hani; Guirgius, Adel; Bieniek, Ewa; Rafla, Sameer; Evola, Alex; Goswami, Ganesh; Oldroyd, Randall; Mokhtar, Bahaa; Parikh, Kapila

    2007-01-01

    Purpose: To study anatomic biologic contouring (ABC), using a previously described distinct halo, to unify volume contouring methods in treatment planning for head and neck cancers. Methods and Materials: Twenty-five patients with head and neck cancer at various sites were planned for radiation therapy using positron emission tomography/computed tomography (PET/CT). The ABC halo was used in all PET/CT scans to contour the gross tumor volume (GTV) edge. The CT-based GTV (GTV-CT) and PET/CT-based GTV (GTV-ABC) were contoured by two independent radiation oncologists. Results: The ABC halo was observed in all patients studied. The halo had a standard unit value of 2.19 ± 0.28. The mean halo thickness was 2.02 ± 0.21 mm. Significant volume modification (≥25%) was seen in 17 of 25 patients (68%) after implementation of GTV-ABC. Concordance among observers was increased with the use of the halo as a guide for GTV determination: 6 patients (24%) had a ≤10% volume discrepancy with CT alone, compared with 22 (88%) with PET/CT (p 3 in CT-based planning to 7.2 cm 3 in PET/CT-based planning (p < 0.001). Conclusions: Using the 'anatomic biologic halo' to contour GTV in PET/CT improves consistency among observers. The distinctive appearance of the described halo and its presence in all of the studied tumors make it attractive for GTV contouring in head and neck tumors. Additional studies are needed to confirm the correlation of the halo with presence of malignant cells

  15. Comparison of different threshold 18FDG PET with computer tomography for defining gross tumor volume in non-small cell lung carcinoma

    International Nuclear Information System (INIS)

    Chen Shaoqing; Yu Jinming; Xing Ligang; Gong Heyi; Fu Zheng; Yang Guoren

    2006-01-01

    Objective: Under different standard uptake value(SUV), to assess gross tumor volume (GTV) definition for non-small cell lung cancer (NSCLC) with 18-fluoro-deoxy-glueose positron emission tomography( 18 FDG PET) both under definite threshold (42 percent threshold) and various relative threshold (threshold SUV/maximum SUV) derived from the linear regressive function, threshold SUV=0.307 x (mean target SUV) + 0.588, with computer tomography(CT). Methods: Of 20 patients with non-small cell lung cancer, the CT GTV (GTV CT ), PET GTV with 42 percents threshold (GTV 42% ) and PET GTV with relative threshold (GTV relate ) were obtained and compared. Results: The mean GTV 42% , mean GTV relate and mean GTV CT was (13 812.5±13 841.4), (24 325.3±22 454.7) and (28350.9± 26 079.8) mm 3 , respectively, with the difference in mean GTV among these three methods significant (F =. 10, P 42% was smaller than the GTV relate and the GTV CT (P relate and GTV CT (P = 0.125 ). Conclusion: The relative threshold is more suitable to define the gross tumor volume than the definite threshold. (authors)

  16. Comparison of Tumor Volumes as Determined by Pathologic Examination and FDG-PET/CT Images of Non-Small-Cell Lung Cancer: A Pilot Study

    International Nuclear Information System (INIS)

    Yu Jinming; Li Xinke; Xing Ligang; Mu Dianbin; Fu Zheng; Sun Xiaorong; Sun Xiangyu; Yang Guoren; Zhang Baijiang; Sun Xindong; Ling, C. Clifton

    2009-01-01

    Purpose: To determine the cut-off standardized uptake value (SUV) on 18 F fluoro-2-deoxy-glucose (FDG) positron emission tomography/computed tomography (FDG-PET/CT) images that generates the best volumetric match to pathologic gross tumor volume (GTV path ) for non-small-cell lung cancer (NSCLC). Methods and Materials: Fifteen patients with NSCLC who underwent FDG-PET/CT scans followed by lobectomy were enrolled. The surgical specimen was dissected into 5-7-μm sections at approximately 4-mm intervals and stained with hematoxylin and eosin. The tumor-containing area was outlined slice by slice and the GTV path determined by summing over all the slices, taking into account the interslice thickness and fixation-induced volume reduction. The gross tumor volume from the PET images, GTV PET , was determined as a function of cut-off SUV. The optimal threshold or optimal absolute SUV was defined as the value at which the GTV PET was the same as the GTV path . Results: The fixation process induced a volumetric reduction to 82% ± 10% (range, 62-100%) of the original. The maximal SUV was 10.1 ± 3.6 (range, 4.2-18.7). The optimal threshold and absolute SUV were 31% ± 11% and 3.0 ± 1.6, respectively. The optimal threshold was inversely correlated with GTV path and tumor diameter (p path or tumor diameter (p > 0.05). Conclusion: This study evaluated the use of GTV path as a criterion for determining the optimal cut-off SUV for NSCLC target volume delineation. Confirmatory studies including more cases are being performed.

  17. GTV and CTV in radiation therapy: lung cancer

    International Nuclear Information System (INIS)

    Mornex, F.; Chapet, O.; Sentenac, I.; Loubeyre, P.; Giraud, P.; Van Houtte, P.; Bonnette, P.

    2001-01-01

    Radiotherapy plays a major role as a curative treatment of various stages non-small cell lung cancers (NSCLC): as an exclusive treatment in curative attempt for patients with unresectable stages I and II; as a preoperative treatment, which is often associated with chemotherapy, for patients with surgically stage IIIA NSCLC in clinical trials; in association with chemotherapy for unresectable stages IIIA and IIIB patients. Currently, three-dimensional conformal radiotherapy allows for some dose escalation, increasing radiation quality. However, the high inherent conformality of this radiotherapy technique requires a rigorous approach and an optimal quality of the preparation throughout the treatment procedure and specifically of the accurate definition of the safety margins (GTV, CTV...). Different questions remain specific to lung cancers: 1) Despite the absence of randomized trials, the irradiated lymph nodes volume should be only, for the majority of the authors, the visible macroscopically involved lymph nodal regions. However, local control remains low and solid arguments suggest the poor local control is due to an insufficient delivered dose. Therefore the goal of radiotherapy, in this particular location, is to improve local control by increasing the dose until the maximum normal tissue tolerance is achieved, which essentially depends on the dose to the organs at risk (OAR) and specifically for the lung, the esophagus and the spinal cord. For this reason, the irradiated volume should be as tiny as possible, leading to not including the macroscopically uninvolved lymph nodes regions in prophylactic view in the target volume; 2) The lung is one of the rare organs with extensive motion within the body, making lung tumors difficult to treat. This particular point is not specifically considered in the GTV and CTV definitions but it is important enough to be noted; 3) When radiation therapy starts after a good response to chemotherapy, the residual tumoral volume

  18. Study on delineation of tumor volume of primary locally advanced nasopharyngeal carcinoma after induction chemotherapy

    International Nuclear Information System (INIS)

    Long Jinhua; Dong Shi; Jin Feng; Wu Weili; Gan Jiaying; Chen Haixia; Li Yuanyuan; Gong Xiuyun

    2012-01-01

    Objective: To investigate the delineation of gross tumor volume (GTV) in locally advanced nasopharyngeal carcinoma (LANC) according to imageological changes before and after induction chemotherapy (IC) in order to decrease high dose area and protect normal tissue better. Methods: Between Mar 2010 to Jan 2011, 11 patients with LANC were enrolled and treated with TPF regimen followed by intensity-modulated radiotherapy (IMRT) with concurrent chemotherapy, target volumes were delineated based on fused CT imaging before and after IC following project determination. Tumor target volumes after and before IC were respectively delineated according to imaging tumor residues and were overlaid by CTV nx in order to ensure radical doses for the imaging tumor volume before IC, the resulting differences of tumor target volumes of IC before and after were measured and analyzed by paired t-test. Results: Before and after IC, the average volumes of GTV nx were respectively 44.72 cm 3 and 28.87 (t=3.89, P=0.003), the average volumes of GTV nd were respectively 32.76 cm 3 and 19.82 cm 3 (t=2.47, P=0.033), the volumes of maximum dose area in brainstem and spinal cord as well as eyeball decreased (t=2.93-4.59, all P<0.05). Conclusions: LANC treated by 3 cycle TPF regimen followed by IMRT with concurrent chemotherapy shows significant shrinkage of tumor volume. The volume of high dose region which caused by normally recovered tissues were decreased by re-delineation of target volume in brainstem and spinal cord as well as eyeball of CT images after IC. (authors)

  19. Adaptive Radiotherapy Planning on Decreasing Gross Tumor Volumes as Seen on Megavoltage Computed Tomography Images

    International Nuclear Information System (INIS)

    Woodford, Curtis; Yartsev, Slav; Dar, A. Rashid; Bauman, Glenn; Van Dyk, Jake

    2007-01-01

    Purpose: To evaluate gross tumor volume (GTV) changes for patients with non-small-cell lung cancer by using daily megavoltage (MV) computed tomography (CT) studies acquired before each treatment fraction on helical tomotherapy and to relate the potential benefit of adaptive image-guided radiotherapy to changes in GTV. Methods and Materials: Seventeen patients were prescribed 30 fractions of radiotherapy on helical tomotherapy for non-small-cell lung cancer at London Regional Cancer Program from Dec 2005 to March 2007. The GTV was contoured on the daily MVCT studies of each patient. Adapted plans were created using merged MVCT-kilovoltage CT image sets to investigate the advantages of replanning for patients with differing GTV regression characteristics. Results: Average GTV change observed over 30 fractions was -38%, ranging from -12 to -87%. No significant correlation was observed between GTV change and patient's physical or tumor features. Patterns of GTV changes in the 17 patients could be divided broadly into three groups with distinctive potential for benefit from adaptive planning. Conclusions: Changes in GTV are difficult to predict quantitatively based on patient or tumor characteristics. If changes occur, there are points in time during the treatment course when it may be appropriate to adapt the plan to improve sparing of normal tissues. If GTV decreases by greater than 30% at any point in the first 20 fractions of treatment, adaptive planning is appropriate to further improve the therapeutic ratio

  20. TU-H-CAMPUS-JeP2-03: Machine-Learning-Based Delineation Framework of GTV Regions of Solid and Ground Glass Opacity Lung Tumors at Datasets of Planning CT and PET/CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, K; Arimura, H; Jin, Z; Yabuuchi, H; Sasaki, T; Honda, H; Sasaki, M [Kyushu University, Fukuoka, Fukuoka (Japan); Kuwazuru, J [Saiseikai Fukuoka General Hospital, Fukuoka, Fukuoka (Japan); Shioyama, Y [Saga Heavy Ion Medical Accelerator in Tosu, Tosu, Saga (Japan)

    2016-06-15

    Purpose: In radiation treatment planning, delineation of gross tumor volume (GTV) is very important, because the GTVs affect the accuracies of radiation therapy procedure. To assist radiation oncologists in the delineation of GTV regions while treatment planning for lung cancer, we have proposed a machine-learning-based delineation framework of GTV regions of solid and ground glass opacity (GGO) lung tumors following by optimum contour selection (OCS) method. Methods: Our basic idea was to feed voxel-based image features around GTV contours determined by radiation oncologists into a machine learning classifier in the training step, after which the classifier produced the degree of GTV for each voxel in the testing step. Ten data sets of planning CT and PET/CT images were selected for this study. The support vector machine (SVM), which learned voxel-based features which include voxel value and magnitudes of image gradient vector that obtained from each voxel in the planning CT and PET/CT images, extracted initial GTV regions. The final GTV regions were determined using the OCS method that was able to select a global optimum object contour based on multiple active delineations with a level set method around the GTV. To evaluate the results of proposed framework for ten cases (solid:6, GGO:4), we used the three-dimensional Dice similarity coefficient (DSC), which denoted the degree of region similarity between the GTVs delineated by radiation oncologists and the proposed framework. Results: The proposed method achieved an average three-dimensional DSC of 0.81 for ten lung cancer patients, while a standardized uptake value-based method segmented GTV regions with the DSC of 0.43. The average DSCs for solid and GGO were 0.84 and 0.76, respectively, obtained by the proposed framework. Conclusion: The proposed framework with the support vector machine may be useful for assisting radiation oncologists in delineating solid and GGO lung tumors.

  1. Definition of gross tumor volume in lung cancer: inter-observer variability

    International Nuclear Information System (INIS)

    Van de Steene, Jan; Linthout, Nadine; Mey, Johan de; Vinh-Hung, Vincent; Claassens, Cornelia; Noppen, Marc; Bel, Arjan; Storme, Guy

    2002-01-01

    Background and purpose: To determine the inter-observer variation in gross tumor volume (GTV) definition in lung cancer, and its clinical relevance. Material and methods: Five clinicians involved in lung cancer were asked to define GTV on the planning CT scan of eight patients. Resulting GTVs were compared on the base of geometric volume, dimensions and extensions. Judgement of invasion of lymph node (LN) regions was evaluated using the ATS/LCSG classification of LN. Clinical relevance of the variation was studied through 3D-dosimetry of standard conformal plans: volume of critical organs (heart, lungs, esophagus, spinal cord) irradiated at toxic doses, 95% isodose volumes of GTVs, normal tissue complication probabilities (NTCP) and tumor control probabilities (TCP) were compared for evaluation of observer variability. Results: Before evaluation of observer variability, critical review of planning CT scan led to up- (two cases) and downstaging (one case) of patients as compared to the respective diagnostic scans. The defined GTVs showed an inter-observer variation with a ratio up to more than 7 between maximum and minimum geometric content. The dimensions of the primary tumor had inter-observer ranges of 4.2 (transversal), 7.9 (cranio-caudal) and 5.4 (antero-posterior) cm. Extreme extensions of the GTVs (left, right, cranial, caudal, anterior and posterior) varied with ranges of 2.8-7.3 cm due to inter-observer variation. After common review, only 63% of involved lymph node regions were delineated by the clinicians (i.e. 37% are false negative). Twenty-two percent of drawn in lymph node regions were accepted to be false positive after review. In the conformal plans, inter-observer ranges of irradiated normal tissue volume were on average 12%, with a maximum of 66%. The probability (in the population of all conformal plans) of irradiating at least 95% of the GTV with at least 95% of the nominal treatment dose decreased from 96 to 88% when swapping the matched GTV

  2. Gross tumor volume dependency on phase sorting methods of four-dimensional computed tomography images for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Yong; Lim, Sang Wook; Ma, Sun Young; Yu, Je Sang [Dept. of Radiation Oncology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan (Korea, Republic of)

    2017-09-15

    To see the gross tumor volume (GTV) dependency according to the phase selection and reconstruction methods, we measured and analyzed the changes of tumor volume and motion at each phase in 20 cases with lung cancer patients who underwent image-guided radiotherapy. We retrospectively analyzed four-dimensional computed tomography (4D-CT) images in 20 cases of 19 patients who underwent image-guided radiotherapy. The 4D-CT images were reconstructed by the maximum intensity projection (MIP) and the minimum intensity projection (Min-IP) method after sorting phase as 40%–60%, 30%–70%, and 0%–90%. We analyzed the relationship between the range of motion and the change of GTV according to the reconstruction method. The motion ranges of GTVs are statistically significant only for the tumor motion in craniocaudal direction. The discrepancies of GTV volume and motion between MIP and Min-IP increased rapidly as the wider ranges of duty cycles are selected. As narrow as possible duty cycle such as 40%–60% and MIP reconstruction was suitable for lung cancer if the respiration was stable. Selecting the reconstruction methods and duty cycle is important for small size and for large motion range tumors.

  3. Quantification of Tumor Volume Changes During Radiotherapy for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Fox, Jana; Ford, Eric; Redmond, Kristin; Zhou, Jessica; Wong, John; Song, Danny Y.

    2009-01-01

    Purpose: Dose escalation for lung cancer is limited by normal tissue toxicity. We evaluated sequential computed tomography (CT) scans to assess the possibility of adaptively reducing treatment volumes by quantifying the tumor volume reduction occurring during a course of radiotherapy (RT). Methods and Materials: A total of 22 patients underwent RT for Stage I-III non-small-cell lung cancer with conventional fractionation; 15 received concurrent chemotherapy. Two repeat CT scans were performed at a nominal dose of 30 Gy and 50 Gy. Respiration-correlated four-dimensional CT scans were used for evaluation of respiratory effects in 17 patients. The gross tumor volume (GTV) was delineated on simulation and all individual phases of the repeat CT scans. Parenchymal tumor was evaluated unless the nodal volume was larger or was the primary. Subsequent image sets were spatially co-registered with the simulation data for evaluation. Results: The median GTV reduction was 24.7% (range, -0.3% to 61.7%; p 100 cm 3 vs. 3 , and hilar and/or mediastinal involvement vs. purely parenchymal or pleural lesions. A tendency toward a greater volume reduction with increasing dose was seen, although this did not reach statistical significance. Conclusion: The results of this study have demonstrated significant alterations in the GTV seen on repeat CT scans during RT. These observations raise the possibility of using an adaptive approach toward RT of non-small-cell lung cancer to minimize the dose to normal structures and more safely increase the dose directed at the target tissues.

  4. Lipiodol injections for optimization of target volume delineation in a patient with a second tumor of the oropharynx. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Haderlein, Marlen; Merten, Ricarda; Stojanovic, Andrea; Speer, Stefan; Fietkau, Rainer; Ott, Oliver J. [University Hospitals of Erlangen, Department of Radiation Oncology, Erlangen (Germany); Scherl, Claudia [University Hospitals of Erlangen, Department of Otorhinolaryngology, Erlangen (Germany)

    2015-08-15

    Lipiodol injections were administered in the head and neck area to improve gross tumor volume (GTV) definition for small-volume re-irradiation of a 63-year-old previously irradiated patient with a second tumor of the oropharynx in the posterior wall with longitudinal ligament infiltration (cT4cN0cM0). The patient had dialysis-depending renal failure. On diagnostic computed tomography (CT), which was performed with intravenous contrast agent, the tumor in the oropharynx was not detectable. Because of dialysis-depending renal failure comorbidity, no contrast agent was applied in the planning CT and in the diagnostic magnetic resonance imaging (MRI) study. In each cross-sectional imaging study performed, the GTV, especially in craniocaudal extensions, was not safely delineable. Therefore, craniocaudal tumor margins were pharyngoscopically marked with Lipiodol injections, an iodine-containing contrast agent. In a second planning CT, the GTV could be defined with the help of the Lipiodol marks and small-volume re-irradiation was performed. No Lipiodol-associated side effects occurred in the patient. In the present case, the use of Lipiodol injections at the tumor margins facilitated the definition of the GTV. (orig.) [German] Anwendung von Lipiodolinjektionen im Kopf-Hals-Bereich zur Verbesserung der GTV-Definition bei einer kleinvolumigen Re-Bestrahlung eines 63-jaehrigen, vorbestrahlten Patienten mit einem Zweitmalignom im Oropharynx mit Infiltration des hinteren Laengsbandes (cT4cN0cM0). Nebenbefundlich bestand bei dem Patienten eine dialysepflichtige Niereninsuffizienz. Im initialen diagnostischen Kontrastmittel-CT der Hals und Thoraxregion war der Tumor nicht abgrenzbar, so dass das Bestrahlungsplanungs-CT in Anbetracht des diagnostischen CTs und der bekannten Niereninsuffizienz ohne intravenoeses Kontrastmittel durchgefuehrt wurde. Das diagnostische MRT (vgl. Abb. 1) wurde ebenfalls ohne intravenoeses Kontrastmittel durchgefuehrt wurden. In allen durchgefuehrten

  5. Tumor motion and deformation during external radiotherapy of bladder cancer

    International Nuclear Information System (INIS)

    Lotz, Heidi T.; Pos, Floris J.; Hulshof, Maarten C.C.M.; Herk, Marcel van; Lebesque, Joos V.; Duppen, Joop C.; Remeijer, Peter

    2006-01-01

    Purpose: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. Methods and Materials: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. Results: Gross tumor volume translations were largest in cranial-caudal and anterior-posterior direction (SD, 0.1 to ∼0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. Conclusions: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall

  6. Tumor motion and deformation during external radiotherapy of bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, Heidi T [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Department of Radiation Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam (Netherlands); Pos, Floris J [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Hulshof, Maarten C.C.M. [Department of Radiation Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Department of Radiation Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam (Netherlands); Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Lebesque, Joos V [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Duppen, Joop C [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2006-04-01

    Purpose: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. Methods and Materials: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. Results: Gross tumor volume translations were largest in cranial-caudal and anterior-posterior direction (SD, 0.1 to {approx}0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. Conclusions: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall.

  7. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography

    International Nuclear Information System (INIS)

    Aristophanous, Michalis; Penney, Bill C.; Martel, Mary K.; Pelizzari, Charles A.

    2007-01-01

    The increased interest in 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an ''analysis region'' to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of the

  8. PET-CT-Based Auto-Contouring in Non-Small-Cell Lung Cancer Correlates With Pathology and Reduces Interobserver Variability in the Delineation of the Primary Tumor and Involved Nodal Volumes

    International Nuclear Information System (INIS)

    Baardwijk, Angela van; Bosmans, Geert; Boersma, Liesbeth; Buijsen, Jeroen; Wanders, Stofferinus; Hochstenbag, Monique; Suylen, Robert-Jan van; Dekker, Andre; Dehing-Oberije, Cary; Houben, Ruud; Bentzen, Soren M.; Kroonenburgh, Marinus van; Lambin, Philippe; Ruysscher, Dirk de

    2007-01-01

    Purpose: To compare source-to-background ratio (SBR)-based PET-CT auto-delineation with pathology in non-small-cell lung cancer (NSCLC) and to investigate whether auto-delineation reduces the interobserver variability compared with manual PET-CT-based gross tumor volume (GTV) delineation. Methods and Materials: Source-to-background ratio-based auto-delineation was compared with macroscopic tumor dimensions to assess its validity in 23 tumors. Thereafter, GTVs were delineated manually on 33 PET-CT scans by five observers for the primary tumor (GTV-1) and the involved lymph nodes (GTV-2). The delineation was repeated after 6 months with the auto-contour provided. This contour was edited by the observers. For comparison, the concordance index (CI) was calculated, defined as the ratio of intersection and the union of two volumes (A intersection B)/(A union B). Results: The maximal tumor diameter of the SBR-based auto-contour correlated strongly with the macroscopic diameter of primary tumors (correlation coefficient = 0.90) and was shown to be accurate for involved lymph nodes (sensitivity 67%, specificity 95%). The median auto-contour-based target volumes were smaller than those defined by manual delineation for GTV-1 (31.8 and 34.6 cm 3 , respectively; p = 0.001) and GTV-2 (16.3 and 21.8 cm 3 , respectively; p 0.02). The auto-contour-based method showed higher CIs than the manual method for GTV-1 (0.74 and 0.70 cm 3 , respectively; p 3 , respectively; p = 0.11). Conclusion: Source-to-background ratio-based auto-delineation showed a good correlation with pathology, decreased the delineated volumes of the GTVs, and reduced the interobserver variability. Auto-contouring may further improve the quality of target delineation in NSCLC patients

  9. Influence of Residual Tumor Volume and Radiation Dose Coverage in Outcomes for Clival Chordoma

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Linton, Okechukwu R. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Moore, Michael G.; Ting, Jonathan Y. [Department of Otolaryngology, Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana (United States); Cohen-Gadol, Aaron A.; Shah, Mitesh V. [Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana (United States); Goodman Campbell Brain and Spine, Indianapolis, Indiana (United States)

    2016-05-01

    Purpose: The purpose of this study was to evaluate factors associated with tumor control in clival chordomas. Methods and Materials: A retrospective review of 39 patients treated with surgery and proton therapy for clival chordomas between 2004 and 2014 was performed. The median prescribed dose was 77.4 Gy (relative biological effectiveness [RBE]); range was 70.2-79.2 Gy (RBE). Minimum and median doses to gross tumor volume (GTV), radiation dose received by 1 cm{sup 3} of GTV (D1cm{sup 3}), and the equivalent uniform dose were calculated. Receiver operating characteristics curves evaluated the predictive sensitivity and specificity for local failure of potential cutpoint values for GTV and D1cm{sup 3}. Results: After a median follow-up of 51 months, the 5-year estimate of local control (LC) was 69.6% (95% confidence interval [CI] 50.0%-89.2%), and overall survival (OS) was 81.4% (95% CI: 65.3%-97.5%). Tumor histology, GTV at the time of radiation, and prescribed radiation dose were significantly associated with local control on multivariate analysis, whereas D1cm{sup 3} was associated with overall survival. Compared to those patients whose conditions remained controlled, patients experiencing tumor failure had statistically significant larger GTVs and lower D1cm{sup 3}, and prescribed and median doses to GTV. A subset of 21 patients with GTV of ≤20 cm{sup 3} and D1cm{sup 3} of >67 Gy (RBE) had a median follow-up of 47 months. The 5-year estimate of local control in this subset was 81.1% (95% CI: 61.7%-100%; P=.004, overall comparison by GTV ≤20 cm{sup 3} stratified by D1cm{sup 3}). A D1cm{sup 3} of 74.5 Gy (RBE) had 80% sensitivity for local control and 60% specificity, whereas a GTV of 9.3 cm{sup 3} had 80% sensitivity for local control and 66.7% specificity. Conclusions: Local control of clival chordomas was associated with both smaller size of residual tumor and more complete high-dose coverage of residual tumor. Multidisciplinary care should seek

  10. A comparison of perfusion computed tomography and contrast enhanced computed tomography on radiation target volume delineation using rabbit VX2 brain tumor model

    International Nuclear Information System (INIS)

    Sun Changjin; Luo Yunxiu; Yu Jinming; Lu Haibo; Li Chao; Zhang Dekang; Huang Jianming; Wang Jie; Lang Jinyi

    2010-01-01

    Objective: To compare the accuracy of blood volume perfusion imaging (perfusion CT)with contrast enhanced 64-slice spiral computed tomography (CECT) in the evaluation of gross tumor volume (GTV) and clinical target volume (CTV) using rabbits with VX2 brain tumor. Methods: Perfusion CT and CECT were performed in 20 rabbits with VX2 brain tumor. The GTV and CTV calculated with the maximal and minimal diameter of each tumor in the blood volume (BV) maps and CECT were measured and compared to those in pathological specimens. Results: The mean value of the maximal and minimal diameter of GTV was (8.19 ± 2.29) mm and (4.83 ± 1.31) mm in pathological specimens, (11.98 ±3.29) mm and (7.03±1.82) mm in BV maps, while (6.36±3.85) mm and (3.17±1.93) mm in CECT images, which were significantly different (pathological specimen vs. BV map, t = 7.17, P =0.000;pathological specimen vs. CECT, t = 8.37, P = 0.000, respectively). The mean value of the maximal and minimal diameter of CTV in pathologic specimens was (12.87 ± 3.74) mm and (7.71 ± 2.15) mm, which was significantly different from that of GTV and CTV in CECT (t = - 3. 18, P = 0. 005 and t = - 4.24, P =0.000; t= -11.59,P=0.000 and t= -9.39, P=0.000), while similar with that of GTV in BV maps (t = - 1.95,P = 0. 067; t = - 2. 06, P = 0. 054). For CECT, the margin from GTV to CTV was 81.83% ±40.33% for the maximal diameter and 276.73% ± 131.46% for the minimal. While for BV maps, the margin was 7.93% ± 17. 84% and 12.52% ± 27. 83%, which was significant different from that for CECT images (t=7.36, P=0. 000 and t= -8.78, P=0.000). Conclusions: Compared with CECT, the BV map from 64-slice spiral CT perfusion imaging might have higher accuracy in target volume delineation for brain tumor. (authors)

  11. Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, H. Helen; Balter, Peter; Tutt, Teresa; Choi, Bum; Zhang, Joy; Wang, Catherine; Chi, Melinda; Luo Dershan; Pan Tinsu; Hunjan, Sandeep; Starkschall, George; Rosen, Isaac; Prado, Karl; Liao Zhongxing; Chang, Joe; Komaki, Ritsuko; Cox, James D.; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To assess three-dimensional tumor motion caused by respiration and internal target volume (ITV) for radiotherapy of lung cancer. Methods and Materials: Respiration-induced tumor motion was analyzed for 166 tumors from 152 lung cancer patients, 57.2% of whom had Stage III or IV non-small-cell lung cancer. All patients underwent four-dimensional computed tomography (4DCT) during normal breathing before treatment. The expiratory phase of 4DCT images was used as the reference set to delineate gross tumor volume (GTV). Gross tumor volumes on other respiratory phases and resulting ITVs were determined using rigid-body registration of 4DCT images. The association of GTV motion with various clinical and anatomic factors was analyzed statistically. Results: The proportions of tumors that moved >0.5 cm along the superior-inferior (SI), lateral, and anterior-posterior (AP) axes during normal breathing were 39.2%, 1.8%, and 5.4%, respectively. For 95% of the tumors, the magnitude of motion was less than 1.34 cm, 0.40 cm, and 0.59 cm along the SI, lateral, and AP directions. The principal component of tumor motion was in the SI direction, with only 10.8% of tumors moving >1.0 cm. The tumor motion was found to be associated with diaphragm motion, the SI tumor location in the lung, size of the GTV, and disease T stage. Conclusions: Lung tumor motion is primarily driven by diaphragm motion. The motion of locally advanced lung tumors is unlikely to exceed 1.0 cm during quiet normal breathing except for small lesions located in the lower half of the lung

  12. 18F-FDG PET/CT-based gross tumor volume definition for radiotherapy in head and neck Cancer: a correlation study between suitable uptake value threshold and tumor parameters

    International Nuclear Information System (INIS)

    Kao, Chia-Hung; Hsieh, Te-Chun; Yu, Chun-Yen; Yen, Kuo-Yang; Yang, Shih-Neng; Wang, Yao-Ching; Liang, Ji-An; Chien, Chun-Ru; Chen, Shang-Wen

    2010-01-01

    To define a suitable threshold setting for gross tumor volume (GTV) when using 18 Fluoro-deoxyglucose positron emission tomography and computed tomogram (PET/CT) for radiotherapy planning in head and neck cancer (HNC). Fifteen HNC patients prospectively received PET/CT simulation for their radiation treatment planning. Biological target volume (BTV) was derived from PET/CT-based GTV of the primary tumor. The BTVs were defined as the isodensity volumes when adjusting different percentage of the maximal standardized uptake value (SUVmax), excluding any artifact from surrounding normal tissues. CT-based primary GTV (C-pGTV) that had been previously defined by radiation oncologists was compared with the BTV. Suitable threshold level (sTL) could be determined when BTV value and its morphology using a certain threshold level was observed to be the best fitness of the C-pGTV. Suitable standardized uptake value (sSUV) was calculated as the sTL multiplied by the SUVmax. Our result demonstrated no single sTL or sSUV method could achieve an optimized volumetric match with the C-pGTV. The sTL was 13% to 27% (mean, 19%), whereas the sSUV was 1.64 to 3.98 (mean, 2.46). The sTL was inversely correlated with the SUVmax [sTL = -0.1004 Ln (SUVmax) + 0.4464; R 2 = 0.81]. The sSUV showed a linear correlation with the SUVmax (sSUV = 0.0842 SUVmax + 1.248; R 2 = 0.89). The sTL was not associated with the value of C-pGTVs. In PET/CT-based BTV for HNC, a suitable threshold or SUV level can be established by correlating with SUVmax rather than using a fixed threshold

  13. Artifacts in conventional computed tomography (CT) and free breathing four-dimensional CT induce uncertainty in gross tumor volume determination

    DEFF Research Database (Denmark)

    Persson, Gitte Fredberg; Nygaard, Ditte Eklund; Af Rosenschöld, Per Munck

    2011-01-01

    was to compare delineated gross tumor volume (GTV) sizes in 3DCT, 4DCT, and BHCT scans of patients with lung tumors. METHODS AND MATERIALS: A total of 36 patients with 46 tumors referred for stereotactic radiotherapy of lung tumors were included. All patients underwent positron emission tomography (PET)/CT, 4DCT...

  14. Improved longitudinal length accuracy of gross tumor volume delineation with diffusion weighted magnetic resonance imaging for esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Hou, Dong-Liang; Shi, Gao-Feng; Gao, Xian-Shu; Asaumi, Junichi; Li, Xue-Ying; Liu, Hui; Yao, Chen; Chang, Joe Y

    2013-01-01

    To analyze the longitudinal length accuracy of gross tumor volume (GTV) delineation with diffusion weighted magnetic resonance imaging for esophageal squamous cell carcinoma (SCC). Forty-two patients from December 2011 to June 2012 with esophageal SCC who underwent radical surgery were analyzed. Routine computed tomography (CT) scan, T2-weighted MRI and diffusion weighted magnetic resonance imaging (DWI) were employed before surgery. Diffusion-sensitive gradient b-values were taken at 400, 600, and 800 s/mm 2 . Gross tumor volumes (GTV) were delineated using CT, T2-weighted MRI and DWI on different b-value images. GTV longitude length measured using the imaging modalities listed above was compared with pathologic lesion length to determine the most accurate imaging modality. CMS Xio radiotherapy planning system was used to fuse DWI scans and CT images to investigate the possibility of delineating GTV on fused images. The differences between the GTV length according to CT, T2-weighted MRI and pathology were 3.63 ± 12.06 mm and 3.46 ± 11.41 mm, respectively. When the diffusion-sensitive gradient b-value was 400, 600, and 800 s/mm 2 , the differences between the GTV length using DWI and pathology were 0.73 ± 6.09 mm, -0.54 ± 6.03 mm and −1.58 ± 5.71 mm, respectively. DWI scans and CT images were fused accurately using the radiotherapy planning system. GTV margins were depicted clearly on fused images. DWI displays esophageal SCC lengths most precisely when compared with CT or regular MRI. DWI scans fused with CT images can be used to improve accuracy to delineate GTV in esophageal SCC

  15. Interobserver variability in gross tumor volume delineation for hepatocellular carcinoma. Results of Korean Radiation Oncology Group 1207 study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk [Jeju National University School of Medicine, Department of Radiation Oncology, Jeju National University Hospital, Jeju (Korea, Republic of); Kim, Jun Won; Lee, Ik Jae [Yonsei University College of Medicine, Department of Radiation Oncology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Yoon, Won Sup [Korea University Medical Center, Department of Radiation Oncology, Ansan Hospital, Ansan (Korea, Republic of); Kang, Min Kyu [Kyungpook National University School of Medicine, Department of Radiation Oncology, Daegu (Korea, Republic of); Kim, Tae Hyun [National Cancer Center, Center for Liver Cancer, Goyang (Korea, Republic of); Kim, Jin Hee [Keimyung University School of Medicine, Department of Radiation Oncology, Dongsan Medical Center, Daegu (Korea, Republic of); Lee, Hyung-Sik [Dong-A University College of Medicine, Department of Radiation Oncology, Busan (Korea, Republic of); Park, Hee Chul [Sungkyunkwan University School of Medicine, Department of Radiation Oncology, Samsung Medical Center, Seoul (Korea, Republic of); Jang, Hong Seok; Kay, Chul Seung [The Catholic University of Korea College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of); Yoon, Sang Min [University of Ulsan College of Medicine, Department of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of); Kim, Mi-Sook [Korea Institute of Radiological and Medical Sciences, Department of Radiation Oncology, Seoul (Korea, Republic of); Seong, Jinsil [Yonsei University College of Medicine, Department of Radiation Oncology, Severance Hospital, Seodaemun-gu, Seoul (Korea, Republic of)

    2016-10-15

    There has been increasing use of external beam radiotherapy for localized treatment of hepatocellular carcinoma (HCC) with both palliative and curative intent. Quality control of target delineation in primary HCC is essential to deliver adequate doses of radiation to the primary tumor while preserving adjacent healthy organs. We analyzed interobserver variability in gross tumor volume (GTV) delineation for HCC. Twelve radiation oncologists specializing in liver malignancy participated in a multi-institutional contouring dummy-run study of nine HCC cases and independently delineated GTV on the same set of provided computed tomography images. Quantitative analysis was performed using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE) with kappa statistics calculating agreement between physicians. To quantify the interobserver variability of GTV delineations, the ratio of the actual delineated volume to the estimated consensus volume (STAPLE), the ratio of the common and encompassing volumes, and the coefficient of variation were calculated. The median kappa agreement level was 0.71 (range 0.28-0.86). The ratio of the actual delineated volume to the estimated consensus volume ranged from 0.19 to 1.93 (median 0.94) for all cases. The ratio of the common and encompassing volumes ranged from 0.001 to 0.56 (median 0.25). The coefficient of variation for GTV delineation ranged from 8 to 57 % (median 26 %). The interobserver variability in target delineation of HCC GTV in this study is noteworthy. Multi-institution studies involving radiotherapy for HCC require appropriate quality assurance programs for target delineation. (orig.) [German] Die externe kurative Strahlentherapie ist zunehmend bei der lokalisierten Behandlung hepatozellulaerer Karzinome (HCC) in palliativer und kurativer Absicht in Gebrauch. Eine Qualitaetskontrolle der Zielabgrenzung beim primaeren HCC ist entscheidend, um die passende Dosis fuer die

  16. Comparison of three approaches to delineate internal gross tumor volume based on four-dimensional CT simulation images of non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Li Fengxiang; Li Jianbin; Zhang Yingjie; Shang Dongping; Liu Tonghai; Tian Shiyu; Xu Min; Ma Changsheng

    2011-01-01

    Objective: To compare positional and volumetric differences of internal gross tumor volume (IGTV) delineated separately by three approaches based on four-dimensional CT (4DCT) for the primary tumor of non-small cell lung cancer (NLCLC). Methods: Twenty-one patients with NLCLC underwent big bore 4DCT simulation scan of the thorax. IGTVs of the primary tumor of NSCLC were delineated using three approaches as followed: (1) the gross tumor volume (GTV) on each of the ten the respiratory phases of the 4DCT image set were delineated and the ten GTV were fused to produce IGTV 10 ; (2) the GTV delineated separately based on 0% and 50% phase were fused to produce IGTV EI+EE ; (3) the visible tumor on the MIP images were delineated to produce IGTV MIP . The position of the target center, the volume of target, the degree of inclusion (DI) and the matching index (MI) were compared reciprocally between IGTV 10 , IGTV EI+EE and IGTV MIP . Results: Average differences between the position of the center of IGTVs on direction of x, y and z axes were less than 1 mm, with no statistically significant difference. The volume of IGTV 10 was larger than that of IGTV EI+EE , the difference was statistically significant (t=2.37, P=0.028); the volume of IGTV 10 was larger than that of IGTV MIP , but the difference was not statistically significant (t=1.95, P=0.065). The ratio of IGTV EI+EE with IGTV 10 , IGTV MIP with IGTV 10 were 0.85±0.08 and 0.92±0.11, respectively. DI of IGTV EI+EE in IGTV 10 , IGTV MIP in IGTV 10 were 84.78% ± 8. 95% and 88.47% ±9.04%. MI between IGTV 10 and IGTV EI+EE , IGTV 10 and IGTV MIP were 0.85 ±0.09, 0.86±0.09, respectively. Conclusions: The center displacement of the IGTVs delineated separately by the three different techniques based on 4DCT images are not obvious; IGTV EI+EE and IGTV MIP can not replace IGTV 10 , however, IGTV MIP is more close to IGTV 10 comparing to IGTV EI+EE . The ratio of GTV EI+EE with IGTV 10 is correlated to the tumor motion

  17. Early Prediction of Outcome in Advanced Head-and-Neck Cancer Based on Tumor Blood Volume Alterations During Therapy: A Prospective Study

    International Nuclear Information System (INIS)

    Cao Yue; Popovtzer, Aron; Li, Diana; Chepeha, Douglas B.; Moyer, Jeffrey S.; Prince, Mark E.; Worden, Francis; Teknos, Theodoros; Bradford, Carol; Mukherji, Suresh K.; Eisbruch, Avraham

    2008-01-01

    Purpose: To assess whether alterations in tumor blood volume (BV) and blood flow (BF) during the early course of chemo-radiotherapy (chemo-RT) for head-and-neck cancer (HNC) predict treatment outcome. Methods and Materials: Fourteen patients receiving concomitant chemo-RT for nonresectable, locally advanced HNC underwent dynamic contrast-enhanced (DCE) MRI scans before therapy and 2 weeks after initiation of chemo-RT. The BV and BF were quantified from DCE MRI. Preradiotherapy BV and BF, as well as their changes during RT, were evaluated separately in the primary gross tumor volume (GTV) and nodal GTV for association with outcomes. Results: At a median follow-up of 10 months (range, 5-27 months), 9 patients had local-regional controlled disease. One patient had regional failure, 3 had local failures, and 1 had local-regional failure. Reduction in tumor volume after 2 weeks of chemo-RT did not predict for local control. In contrast, the BV in the primary GTV after 2 weeks of chemo-RT was increased significantly in the local control patients compared with the local failure patients (p < 0.03). Conclusions: Our data suggest that an increase in available primary tumor blood for oxygen extraction during the early course of RT is associated with local control, thus yielding a predictor with potential to modify treatment. These findings require validation in larger studies

  18. Impact of Plasma Epstein-Barr Virus-DNA and Tumor Volume on Prognosis of Locally Advanced Nasopharyngeal Carcinoma

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2015-01-01

    Full Text Available This retrospective study aims to examine the association of plasma Epstein-Barr virus- (EBV- DNA levels with the tumor volume and prognosis in patients with locally advanced nasopharyngeal carcinoma (NPC. A total of 165 patients with newly diagnosed locally advanced NPC were identified from September 2011 to July 2012. EBV-DNA was detected using fluorescence quantitative polymerase chain reaction (PCR amplification. The tumor volume was calculated by the systematic summation method of computer software. The median copy number of plasma EBV-DNA before treatment was 3790 copies/mL. The median gross tumor volume of the primary nasopharyngeal tumor (GTVnx, the lymph node lesions (GTVnd, and the total GTV before treatment were 72.46, 23.26, and 106.25 cm3, respectively; the EBV-DNA levels were significantly correlated with the GTVnd and the total GTV (P<0.01. The 2-year overall survival (OS rates in patients with positive and negative pretreatment plasma EBV-DNA were 100% and 98.4% (P=1.000, and the disease-free survival (DFS rates were 94.4% and 80.8% (P=0.044, respectively. These results indicate that high pretreatment plasma EBV-DNA levels in patients with locally advanced NPC are associated with the degree of lymph node metastasis, tumor burden, and poor prognosis.

  19. Volumetric tumor burden and its effect on brachial plexus dosimetry in head and neck intensity-modulated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Romesser, Paul B.; Qureshi, Muhammad M.; Kovalchuk, Nataliya; Truong, Minh Tam, E-mail: mitruong@bu.edu

    2014-07-01

    To determine the effect of gross tumor volume of the primary (GTV-P) and nodal (GTV-N) disease on planned radiation dose to the brachial plexus (BP) in head and neck intensity-modulated radiotherapy (IMRT). Overall, 75 patients underwent definitive IMRT to a median total dose of 69.96 Gy in 33 fractions. The right BP and left BP were prospectively contoured as separate organs at risk. The GTV was related to BP dose using the unpaired t-test. Receiver operating characteristics curves were constructed to determine optimized volumetric thresholds of GTV-P and GTV-N corresponding to a maximum BP dose cutoff of > 66 Gy. Multivariate analyses were performed to account for factors associated with a higher maximal BP dose. A higher maximum BP dose (> 66 vs ≤ 66 Gy) correlated with a greater mean GTV-P (79.5 vs 30.8 cc; p = 0.001) and ipsilateral GTV-N (60.6 vs 19.8 cc; p = 0.014). When dichotomized by the optimized nodal volume, patients with an ipsilateral GTV-N ≥ 4.9 vs < 4.9 cc had a significant difference in maximum BP dose (64.2 vs 59.4 Gy; p = 0.001). Multivariate analysis confirmed that an ipsilateral GTV-N ≥ 4.9 cc was an independent predictor for the BP to receive a maximal dose of > 66 Gy when adjusted individually for BP volume, GTV-P, the use of a low anterior neck field technique, total planned radiation dose, and tumor category. Although both the primary and the nodal tumor volumes affected the BP maximal dose, the ipsilateral nodal tumor volume (GTV-N ≥ 4.9 cc) was an independent predictor for high maximal BP dose constraints in head and neck IMRT.

  20. Investigation of the Relationship Between Gross Tumor Volume Location and Pneumonitis Rates Using a Large Clinical Database of Non-Small-Cell Lung Cancer Patients

    International Nuclear Information System (INIS)

    Vinogradskiy, Yevgeniy; Tucker, Susan L.; Liao Zhongxing; Martel, Mary K.

    2012-01-01

    Purpose: Studies have suggested that function may vary throughout the lung, and that patients who have tumors located in the base of the lung are more susceptible to radiation pneumonitis. The purpose of our study was to investigate the relationship between gross tumor volume (GTV) location and pneumonitis rates using a large clinical database of 547 patients with non–small-cell lung cancer. Methods and Materials: The GTV centroids of all patients were mapped onto one common coordinate system, in which the boundaries of the coordinate system were defined by the extreme points of each individual patient lung. The data were qualitatively analyzed by graphing all centroids and displaying the data according to the presence of severe pneumonitis, tumor stage, and smoking status. The centroids were grouped according to superior–inferior segments, and the pneumonitis rates were analyzed. In addition, we incorporated the GTV centroid information into a Lyman–Kutcher–Burman normal tissue complication probability model and tested whether adding spatial information significantly improved the fit of the model. Results: Of the 547 patients analyzed, 111 (20.3%) experienced severe radiation pneumonitis. The pneumonitis incidence rates were 16%, 23%, and 21% for the superior, middle, and inferior thirds of the lung, respectively. Qualitatively, the GTV centroids of nonsmokers were notably absent from the superior portion of the lung. In addition, the GTV centroids of patients who had Stage III and IV clinical staging were concentrated toward the medial edge of the lung. The comparison between the GTV centroid model and the conventional dose–volume model did not yield a statistically significant difference in model fit. Conclusions: Lower pneumonitis rates were noted for the superior portion of the lung; however the differences were not statistically significant. For our patient cohort, incorporating GTV centroid information did not lead to a statistically significant

  1. Investigation of the relationship between gross tumor volume location and pneumonitis rates using a large clinical database of non-small-cell lung cancer patients.

    Science.gov (United States)

    Vinogradskiy, Yevgeniy; Tucker, Susan L; Liao, Zhongxing; Martel, Mary K

    2012-04-01

    Studies have suggested that function may vary throughout the lung, and that patients who have tumors located in the base of the lung are more susceptible to radiation pneumonitis. The purpose of our study was to investigate the relationship between gross tumor volume (GTV) location and pneumonitis rates using a large clinical database of 547 patients with non-small-cell lung cancer. The GTV centroids of all patients were mapped onto one common coordinate system, in which the boundaries of the coordinate system were defined by the extreme points of each individual patient lung. The data were qualitatively analyzed by graphing all centroids and displaying the data according to the presence of severe pneumonitis, tumor stage, and smoking status. The centroids were grouped according to superior-inferior segments, and the pneumonitis rates were analyzed. In addition, we incorporated the GTV centroid information into a Lyman-Kutcher-Burman normal tissue complication probability model and tested whether adding spatial information significantly improved the fit of the model. Of the 547 patients analyzed, 111 (20.3%) experienced severe radiation pneumonitis. The pneumonitis incidence rates were 16%, 23%, and 21% for the superior, middle, and inferior thirds of the lung, respectively. Qualitatively, the GTV centroids of nonsmokers were notably absent from the superior portion of the lung. In addition, the GTV centroids of patients who had Stage III and IV clinical staging were concentrated toward the medial edge of the lung. The comparison between the GTV centroid model and the conventional dose-volume model did not yield a statistically significant difference in model fit. Lower pneumonitis rates were noted for the superior portion of the lung; however the differences were not statistically significant. For our patient cohort, incorporating GTV centroid information did not lead to a statistically significant improvement in the fit of the pneumonitis model. Copyright

  2. Residual Tumor After Neoadjuvant Chemoradiation Outside the Radiation Therapy Target Volume: A New Prognostic Factor for Survival in Esophageal Cancer

    International Nuclear Information System (INIS)

    Muijs, Christina; Smit, Justin; Karrenbeld, Arend; Beukema, Jannet; Mul, Veronique; Dam, Go van; Hospers, Geke; Kluin, Phillip; Langendijk, Johannes; Plukker, John

    2014-01-01

    Purpose/Objective(s): The aim of this study was to analyze the accuracy of gross tumor volume (GTV) delineation and clinical target volume (CTV) margins for neoadjuvant chemoradiation therapy (neo-CRT) in esophageal carcinoma at pathologic examination and to determine the impact on survival. Methods and Materials: The study population consisted of 63 esophageal cancer patients treated with neo-CRT. GTV and CTV borders were demarcated in situ during surgery on the esophagus, using anatomical reference points to provide accurate information regarding tumor location at pathologic evaluation. To identify prognostic factors for disease-free survival (DFS) and overall survival (OS), a Cox regression analysis was performed. Results: After resection, macroscopic residual tumor was found outside the GTV in 7 patients (11%). Microscopic residual tumor was located outside the CTV in 9 patients (14%). The median follow-up was 15.6 months. With multivariate analysis, only microscopic tumor outside the CTV (hazard ratio [HR], 4.96; 95% confidence interval [CI], 1.03-15.36), and perineural growth (HR, 5.77; 95% CI, 1.27-26.13) were identified as independent prognostic factors for OS. The 1-year OS was 20% for patients with tumor outside the CTV and 86% for those without (P<.01). For DFS, microscopic tumor outside the CTV (HR, 5.92; 95% CI, 1.89-18.54) and ypN+ (HR, 3.36; 95% CI, 1.33-8.48) were identified as independent adverse prognostic factors. The 1-year DFS was 23% versus 77% for patients with or without tumor outside the CTV (P<.01). Conclusions: Microscopic tumor outside the CTV is associated with markedly worse OS after neo-CRT. This may either stress the importance of accurate tumor delineation or reflect aggressive tumor behavior requiring new adjuvant treatment modalities

  3. Increasing the Accuracy of Volume and ADC Delineation for Heterogeneous Tumor on Diffusion-Weighted MRI: Correlation with PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Nan-Jie [Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong (China); Wong, Chun-Sing, E-mail: drcswong@gmail.com [Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong (China); Chu, Yiu-Ching [Department of Radiology, Kwong Wah Hospital, Hong Kong (China); Guo, Hua [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing (China); Huang, Bingsheng [Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong (China); Chan, Queenie [Philips Healthcare, Hong Kong (China)

    2013-10-01

    Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using the proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.

  4. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    Science.gov (United States)

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  5. Do Tumors in the Lung Deform During Normal Respiration? An Image Registration Investigation

    International Nuclear Information System (INIS)

    Wu Jianzhou; Lei Peng; Shekhar, Raj; Li Huiling; Suntharalingam, Mohan; D'Souza, Warren D.

    2009-01-01

    Purpose: The purpose of this study was to investigate whether lung tumors may be described adequately using a rigid body assumption or whether they deform during normal respiration. Methods and Materials: Thirty patients with early stage non-small-cell lung cancer underwent four-dimensional (4D) computed tomography (CT) simulation. The gross tumor volume (GTV) was delineated on the 4D CT images. Image registration was performed in the vicinity of the GTV. The volume of interest for registration was the GTV and minimal volume of surrounding non-GTV tissue. Three types of registration were performed: translation only, translation + rotation, and deformable. The GTV contour from end-inhale was mapped to end-exhale using the registration-derived transformation field. The results were evaluated using three metrics: overlap index (OI), root-mean-squared distance (RMS), and Hausdorff distance (HD). Results: After translation only image registration, on average OI increased by 21.3%, RMS and HD reduced by 1.2 mm and 2.0 mm, respectively. The succeeding increases in OI after translation + rotation and deformable registration were 1.1% and 1.4% respectively. The succeeding reductions in RMS were 0.1 mm and 0.2 mm respectively. No reduction in HD was observed after translation + rotation and deformable image registration compared with translation only registration. The difference in the results from the three registration scenarios was independent of GTV size and motion amplitude. Conclusions: The primary effect of normal respiration on lung tumors was the translation of tumors. Rotation and deformation of lung tumors was determined to be minimal.

  6. Interobserver and intermodality variability in GTV delineation on simulation CT, FDG-PET, and MR Images of Head and Neck Cancer.

    Science.gov (United States)

    Anderson, Carryn M; Sun, Wenqing; Buatti, John M; Maley, Joan E; Policeni, Bruno; Mott, Sarah L; Bayouth, John E

    2014-09-01

    To compare the interobserver and intermodality differences in image-based identification of head and neck primary site gross tumor volumes (GTV). Modalities compared include: contrast-enhanced CT, F-18 fluorodeoxyglucose positron emission tomography (PET/CT) and contrast-enhanced MRI. Fourteen patients were simulated after immobilization for all 3 imaging modalities (CT, PET/CT, MRI). Three radiation oncologists (RO) contoured GTVs as seen on each modality. The GTV was contoured first on the contrast-enhanced CT (considered the standard), then on PET/CT, and finally on post-contrast T1 MRI. Interobserver and intermodality variability were analyzed by volume, intersection, union, and volume overlap ratio (VOR). Analysis of RO contours revealed the average volume for CT-, PET/CT-, and MRI-derived GTVs were 45cc, 35cc and 49cc, respectively. In 93% of cases PET/CT-derived GTVs had the smallest volume and in 57% of cases MRI-derived GTVs had the largest volume. CT showed the largest variation in target definition (standard deviation amongst observers 35%) compared to PET/CT (28%) and MRI (27%). The VOR was largest (indicating greatest interobserver agreement) in PET/CT (46%), followed by MRI (36%), followed by CT (34%). For each observer, the least agreement in GTV definition occurred between MRI & PET/CT (average VOR = 41%), compared to CT & PET/CT (48%) and CT & MRI (47%). A nonsignificant interobserver difference in GTVs for each modality was seen. Among three modalities, CT was least consistent, while PET/CT-derived GTVs had the smallest volumes and were most consistent. MRI combined with PET/CT provided the least agreement in GTVs generated. The significance of these differences for head & neck cancer is important to explore as we move to volume-based treatment planning based on multi-modality imaging as a standard method for treatment delivery.

  7. Comparative evaluation of 11C-MET PET-CT and MRI for GTV delineation in precision radiotherapy for gliomas

    International Nuclear Information System (INIS)

    Wang Ru; Qian Liting; Wang Shicun; Liu Wei; Luo Wenguang; Zhang Hongbo; Li Guanghu; Hu Zhigang; Liu Lei

    2014-01-01

    Objective: To evaluate the difference between MRI and 11 C-MET PET-CT for gross tumor volume (GTV) delineation in the precision radiotherapy for gliomas. Methods: Six patients with a pathologically confirmed diagnosis of gliomas were selected for target delineation. Five physicians in our department were called to delineate the GTV based on the preoperative MRI and 11 C-MET PET-CT images of these patients. The GTVs based on the two methods were compared. Results: There was no significant difference between the GTVs based on MRI and 11 C-MET PET-CT (P=0.917), and their coefficients of variation were also similar (P=0.600). The coincidences of GTVs were different among the patients, with a maximum value of 73.0% and a minimum value of 51.8%. GTV showed no significant difference when defined by different physicians on MRI and PET-CT (P=0.709); the biggest difference was 27.66 cm 3 on PET-CT and 40.37 cm 3 on MRI. Conclusions: The boundaries of gliomas defined on MRI and PET-CT are different. The GTVs delineated by different physicians on MRI and PET-CT are similar, and the biggest difference on PET-CT is smaller than that on MRI, which suggests that 11 C-MET PET-CT is a more direct way for displaying GTV. (authors)

  8. Decision Trees Predicting Tumor Shrinkage for Head and Neck Cancer: Implications for Adaptive Radiotherapy.

    Science.gov (United States)

    Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman

    2016-02-01

    To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.

  9. Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI

    Science.gov (United States)

    Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.

    2014-01-01

    The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328

  10. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, C [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX (United States); Wong, A [Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); School of Medicine, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States); Mohamed, A; Fuller, C [Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Yang, J; Court, L; Aristophanous, M [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Rao, A [Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results in non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to delineate

  11. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    International Nuclear Information System (INIS)

    Cardenas, C; Wong, A; Mohamed, A; Fuller, C; Yang, J; Court, L; Aristophanous, M; Rao, A

    2016-01-01

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results in non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to delineate

  12. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    Science.gov (United States)

    Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M

    2007-11-15

    Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.

  13. Comparison of Five Segmentation Tools for 18F-Fluoro-Deoxy-Glucose-Positron Emission Tomography-Based Target Volume Definition in Head and Neck Cancer

    International Nuclear Information System (INIS)

    Schinagl, Dominic A.X.; Vogel, Wouter V.; Hoffmann, Aswin L.; Dalen, Jorn A. van; Oyen, Wim J.; Kaanders, Johannes H.A.M.

    2007-01-01

    Purpose: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with 18 F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Methods and Materials: Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. Results: The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). Conclusions: The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition

  14. FDG–PET–CT reduces the interobserver variability in rectal tumor delineation

    International Nuclear Information System (INIS)

    Buijsen, Jeroen; Bogaard, Jørgen van den; Weide, Hiska van der; Engelsman, Stephanie; Stiphout, Ruud van; Janssen, Marco; Beets, Geerard; Beets-Tan, Regina; Lambin, Philippe; Lammering, Guido

    2012-01-01

    Background and purpose: Previously, we showed a good correlation between pathology and an automatically generated PET-contour in rectal cancer. This study analyzed the effect of the use of PET–CT scan on the interobserver variation in GTV definition in rectal cancer and the influence of PET–CT on treatment volumes. Materials and methods: Forty two patients diagnosed with rectal cancer underwent an FDG–PET–CT for radiotherapy planning. An automatic contour was created on PET-scan using the source-to-background ratio. The GTV was delineated by 5 observers in 3 rounds: using CT and MRI, using CT, MRI and PET and using CT, MRI and PET auto-contour. GTV volumes were compared and concordance indices (CI) were calculated. Since the GTV is only a small portion of the treatment volume in rectal cancer, a separate analysis was performed to evaluate the influence of PET on the definition of the CTV used in daily clinical practice and the caudal extension of the treatment volumes. Results: GTV volumes based on PET were significantly smaller. CIs increased significantly using PET and the best interobserver agreement was observed using PET auto-contours. Furthermore, we found that in up to 29% of patients the CTV based on PET extended outside the CTV used in clinical practice. The caudal border of the treatment volume can be tailored using PET-scan in low seated tumors. Influence of PET on the position of the caudal border was most pronounced in high seated tumors. Conclusion: PET–CT increases the interobserver agreement in the GTV definition in rectal cancer, helps to avoid geographical misses and allows tailoring the caudal border of the treatment volume.

  15. 3 Tesla multiparametric MRI for GTV-definition of Dominant Intraprostatic Lesions in patients with Prostate Cancer – an interobserver variability study

    International Nuclear Information System (INIS)

    Rischke, Hans Christian; Grosu, Anca L; Jilg, Cordula A; Nestle, Ursula; Fechter, Tobias; Doll, Christian; Volegova-Neher, Natalja; Henne, Karl; Scholber, Jutta; Knippen, Stefan; Kirste, Simon

    2013-01-01

    To evaluate the interobserver variability of gross tumor volume (GTV) - delineation of Dominant Intraprostatic Lesions (DIPL) in patients with prostate cancer using published MRI criteria for multiparametric MRI at 3 Tesla by 6 different observers. 90 GTV-datasets based on 15 multiparametric MRI sequences (T2w, diffusion weighted (DWI) and dynamic contrast enhanced (DCE)) of 5 patients with prostate cancer were generated for GTV-delineation of DIPL by 6 observers. The reference GTV-dataset was contoured by a radiologist with expertise in diagnostic imaging of prostate cancer using MRI. Subsequent GTV-delineation was performed by 5 radiation oncologists who received teaching of MRI-features of primary prostate cancer before starting contouring session. GTV-datasets were contoured using Oncentra Masterplan® and iplan® Net. For purposes of comparison GTV-datasets were imported to the Artiview® platform (Aquilab®), GTV-values and the similarity indices or Kappa indices (KI) were calculated with the postulation that a KI > 0.7 indicates excellent, a KI > 0.6 to < 0.7 substantial and KI > 0.5 to < 0.6 moderate agreement. Additionally all observers rated difficulties of contouring for each MRI-sequence using a 3 point rating scale (1 = easy to delineate, 2 = minor difficulties, 3 = major difficulties). GTV contouring using T2w (KI-T2w = 0.61) and DCE images (KI-DCE = 0.63) resulted in substantial agreement. GTV contouring using DWI images resulted in moderate agreement (KI-DWI = 0.51). KI-T2w and KI-DCE was significantly higher than KI-DWI (p = 0.01 and p = 0.003). Degree of difficulty in contouring GTV was significantly lower using T2w and DCE compared to DWI-sequences (both p < 0.0001). Analysis of delineation differences revealed inadequate comparison of functional (DWI, DCE) to anatomical sequences (T2w) and lack of awareness of non-specific imaging findings as a source of erroneous delineation. Using T2w and DCE sequences at 3 Tesla for GTV-definition of DIPL in

  16. Correlation between the treated volume, the GTV and the CTV at the time of brachytherapy and the histopathologic findings in 33 patients with operable cervix carcinoma

    International Nuclear Information System (INIS)

    Muschitz, S.; Petrow, P.; Briot, E.; Petit, C.; De Crevoisier, R.; Duvillard, P.; Morice, P.; Haie-Meder, C.

    2004-01-01

    Background and purpose: This study correlates the treated volume, the GTV and the CTV at the time of intracavitary brachytherapy (BT) with the histopathological findings obtained by surgery (S) in 33 patients (pts) with cervix carcinoma. Patients and methods: Sixteen pts (group I), FIGO stage IB1 (1), IB2 (4), IIB (10), IIIB (1), received external beam radiotherapy (EBT) with a total dose of 45 Gy in 5 weeks and concomitant CISPLATIN 40 mg/m 2 weekly, followed by BT up to a total dose of 15 Gy. S was performed 6-8 weeks thereafter. Seventeen pts (group II), FIGO IA2 (1), IB1 (14), IIB (2), were treated by BT alone with a total dose of 60 Gy and S after 6-8 weeks. All pts had a MRI examination after BT with a moulded applicator in situ for exact delineation of GTV, CTV and critical organs and a 3D dosimetry directly from MRI data. Results: In group I (EBT+BT+S), the histopathological findings showed complete tumour sterilization (CR) in 56% of pts. Residual disease (RD) was found in 43%. Dosimetric data showed in pts with CR a larger mean treated volume (213 vs. 166 cm 3 ) and a better mean coverage of the GTV and the CTV by the reference isodose (99 and 91%) as in pts with RD (85 and 77%). In group II (BT+S), CR was found in 52%, RD in 41%. Dosimetric data showed a larger mean treated volume (154 vs. 109 cm 3 ) for pts with RD and a mean coverage of the GTV and the CTV by the reference isodose of 97 and 84% vs. 89 and 80% for pts with CR. Conclusions: An incomplete coverage of the GTV and/or the CTV by the reference isodose is an important risk factor for RD at the time of surgery. Furthermore, for pts who received BT alone, tumour size seemed to be a limiting factor for an accurate coverage of the CTV by the reference isodose

  17. Variability of Gross Tumor Volume in Nasopharyngeal Carcinoma Using 11C-Choline and 18F-FDG PET/CT.

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    Full Text Available This study was conducted to evaluate the variability of gross tumor volume (GTV using 11C-Choline and 18F-FDG PET/CT images for nasopharyngeal carcinomas boundary definition. Assessment consisted of inter-observer and inter-modality variation analysis. Four radiation oncologists were invited to manually contour GTV by using PET/CT fusion obtained from a cohort of 12 patients with nasopharyngeal carcinoma (NPC and who underwent both 11C-Choline and 18F-FDG scans. Student's paired-sample t-test was performed for analyzing inter-observer and inter-modality variability. Semi-automatic segmentation methods, including thresholding and region growing, were also validated against the manual contouring of the two types of PET images. We observed no significant variation in the results obtained by different oncologists in terms of the same type of PET/CT volumes. Choline fusion volumes were significantly larger than the FDG volumes (p < 0.0001, mean ± SD = 18.21 ± 8.19. While significantly consistent results were obtained between the oncologists and the standard references in Choline volumes compared with those in FDG volumes (p = 0.0025. Simple semi-automatic delineation methods indicated that 11C-Choline PET images could provide better results than FDG volumes (p = 0.076, CI = [-0.29, 0.025]. 11C-Choline PET/CT may be more advantageous in GTV delineation for the radiotherapy of NPC than 18F-FDG. Phantom simulations and clinical trials should be conducted to prove the possible improvement of the treatment outcome.

  18. Intraobserver and Interobserver Variability in GTV Delineation on FDG-PET-CT Images of Head and Neck Cancers

    International Nuclear Information System (INIS)

    Breen, Stephen L.; Publicover, Julia; De Silva, Shiroma; Pond, Greg; Brock, Kristy; O'Sullivan, Brian; Cummings, Bernard; Dawson, Laura; Keller, Anne; Kim, John; Ringash, Jolie; Yu, Eugene; Hendler, Aaron; Waldron, John

    2007-01-01

    Purpose: To determine if the addition of fluorodeoxyglucose positron emission tomography (FDG-PET) data changes primary site gross tumor volumes (GTVs) in head and neck cancers. Methods and Materials: Computed tomography (CT), contrast-enhanced CT, and FDG-PET-CT scans were obtained in 10 patients with head and neck cancers. Eight experienced observers (6 head and neck oncologists and 2 neuro-radiologists) with access to clinical and radiologic reports outlined primary site GTVs on each modality. Three cases were recontoured twice to assess intraobserver variability. The magnitudes of the GTVs were compared. Intra- and interobserver variability was assessed by a two-way repeated measures analysis of variance. Inter- and intraobserver reliability were calculated. Results: There were no significant differences in the GTVs across the image modalities when compared as ensemble averages; the Wilcoxon matched-pairs signed-rank test showed that CT volumes were larger than PET-CT. Observers demonstrated the greatest consistency and were most interchangeable on contrast-enhanced CT; they performed less reliably on PET-CT. Conclusions: The addition of PET-CT to primary site GTV delineation of head and neck cancers does not change the volume of the GTV defined by this group of expert observers in this patient sample. An FDG-PET may demonstrate differences in neck node delineation and in other disease sites

  19. Reproducibility of 'Intelligent' Contouring of Gross Tumor Volume in Non-Small-Cell Lung Cancer on PET/CT Images Using a Standardized Visual Method

    International Nuclear Information System (INIS)

    Bayne, Michael; Hicks, Rodney J.; Everitt, Sarah; Fimmell, Natalie

    2010-01-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is increasingly used for delineating gross tumor volume (GTV) in non-small-cell lung cancer (NSCLC). The methodology for contouring tumor margins remains controversial. We developed a rigorous visual protocol for contouring GTV that uses all available clinical information and studied its reproducibility in patients from a prospective PET/CT planning trial. Methods and Materials: Planning PET/CT scans from 6 consecutive patients were selected. Six 'observers' (two radiation oncologists, two nuclear medicine physicians, and two radiologists) contoured GTVs for each patient using a predefined protocol and subsequently recontoured 2 patients. For the estimated GTVs and axial distances, least-squares means for each observer and for each case were calculated and compared, using the F test and pairwise t-tests. In five cases, tumor margins were also autocontoured using standardized uptake value (SUV) cutoffs of 2.5 and 3.5 and 40% SUV max . Results: The magnitude of variation between observers was small relative to the mean (coefficient of variation [CV] = 3%), and the total variation (intraclass correlation coefficient [ICC] = 3%). For estimation of superior/inferior (SI), left/right (LR), and anterior/posterior (AP) borders of the GTV, differences between observers were also small (AP, CV = 2%, ICC = 0.4%; LR, CV = 6%, ICC = 2%; SI, CV 4%, ICC = 2%). GTVs autocontoured generated using SUV 2.5, 3.5, and 40% SUV max differed widely in each case. An SUV contour of 2.5 was most closely correlated with the mean GTV defined by the human observers. Conclusions: Observer variation contributed little to total variation in the GTV and axial distances. A visual contouring protocol gave reproducible results for contouring GTV in NSCLC.

  20. Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients

    International Nuclear Information System (INIS)

    Vees, Hansjoerg; Senthamizhchelvan, Srinivasan; Ratib, Osman; Miralbell, Raymond; Weber, Damien C.; Zaidi, Habib

    2009-01-01

    The purpose of the study is to assess the contribution of 18 F-fluoro-ethyl-tyrosine ( 18 F-FET) positron emission tomography (PET) in the delineation of gross tumor volume (GTV) in patients with high-grade gliomas compared with magnetic resonance imaging (MRI) alone. The study population consisted of 18 patients with high-grade gliomas. Seven image segmentation techniques were used to delineate 18 F-FET PET GTVs, and the results were compared to the manual MRI-derived GTV (GTV MRI ). PET image segmentation techniques included manual delineation of contours (GTV man ), a 2.5 standardized uptake value (SUV) cutoff (GTV 2.5 ), a fixed threshold of 40% and 50% of the maximum signal intensity (GTV 40% and GTV 50% ), signal-to-background ratio (SBR)-based adaptive thresholding (GTV SBR ), gradient find (GTV GF ), and region growing (GTV RG ). Overlap analysis was also conducted to assess geographic mismatch between the GTVs delineated using the different techniques. Contours defined using GTV 2.5 failed to provide successful delineation technically in three patients (18% of cases) as SUV max MRI (67% of cases). Yet, PET detected frequently tumors that are not visible on MRI and added substantially tumor extension outside the GTV MRI in six patients (33% of cases). The selection of the most appropriate 18 F-FET PET-based segmentation algorithm is crucial, since it impacts both the volume and shape of the resulting GTV. The 2.5 SUV isocontour and GF segmentation techniques performed poorly and should not be used for GTV delineation. With adequate setting, the SBR-based PET technique may add considerably to conventional MRI-guided GTV delineation. (orig.)

  1. Comparison of different width detector on the gross tumor volume delineation of the solitary pulmonary lesion

    Directory of Open Access Journals (Sweden)

    Dongping Shang

    2017-01-01

    Conclusions: Different width detector had no impact on the volume and geometric position of GTV of SPL during 3DCT simulation. Using wide detector would save time and decrease radiation dose compared with the narrow one. 3DCT simulation using either 16 × 1.5 mm detector or 4 × 1.5 mm detector could not cover all tumor motion information that 4DCT offered under free breathing conditions.

  2. WE-AB-202-10: Modelling Individual Tumor-Specific Control Probability for Hypoxia in Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, S; Warren, DR; Wilson, JM; Muirhead, R; Hawkins, MA; Maughan, T; Partridge, M [University of Oxford, Oxford, Oxfordshire (United Kingdom)

    2016-06-15

    Purpose: To investigate hypoxia-guided dose-boosting for increased tumour control and improved normal tissue sparing using FMISO-PET images Methods: Individual tumor-specific control probability (iTSCP) was calculated using a modified linear-quadratic model with rectal-specific radiosensitivity parameters for three limiting-case assumptions of the hypoxia / FMISO uptake relationship. {sup 18}FMISO-PET images from 2 patients (T3N0M0) from the RHYTHM trial (Investigating Hypoxia in Rectal Tumours NCT02157246) were chosen to delineate a hypoxic region (GTV-MISO defined as tumor-to-muscle ratio > 1.3) within the anatomical GTV. Three VMAT treatment plans were created in Eclipse (Varian): STANDARD (45Gy / 25 fractions to PTV4500); BOOST-GTV (simultaneous integrated boost of 60Gy / 25fr to GTV +0.5cm) and BOOST-MISO (60Gy / 25fr to GTV-MISO+0.5cm). GTV mean dose (in EQD2), iTSCP and normal tissue dose-volume metrics (small bowel, bladder, anus, and femoral heads) were recorded. Results: Patient A showed small hypoxic volume (15.8% of GTV) and Patient B moderate hypoxic volume (40.2% of GTV). Dose escalation to 60Gy was achievable, and doses to femoral heads and small bowel in BOOST plans were comparable to STANDARD plans. For patient A, a reduced maximum bladder dose was observed in BOOST-MISO compared to BOOST-GTV (D0.1cc 49.2Gy vs 54.0Gy). For patient B, a smaller high dose volume was observed for the anus region in BOOST-MISO compared to BOOST-GTV (V55Gy 19.9% vs 100%), which could potentially reduce symptoms of fecal incontinence. For BOOST-MISO, the largest iTSCPs (A: 95.5% / B: 90.0%) assumed local correlation between FMISO uptake and hypoxia, and approached iTSCP values seen for BOOST-GTV (A: 96.1% / B: 90.5%). Conclusion: Hypoxia-guided dose-boosting is predicted to improve local control in rectal tumors when FMISO is spatially correlated to hypoxia, and to reduce dose to organs-at-risk compared to boosting the whole GTV. This could lead to organ

  3. Effects of Respiration-Averaged Computed Tomography on Positron Emission Tomography/Computed Tomography Quantification and its Potential Impact on Gross Tumor Volume Delineation

    International Nuclear Information System (INIS)

    Chi, Pai-Chun Melinda; Mawlawi, Osama; Luo Dershan; Liao Zhongxing; Macapinlac, Homer A.; Pan Tinsu

    2008-01-01

    Purpose: Patient respiratory motion can cause image artifacts in positron emission tomography (PET) from PET/computed tomography (CT) and change the quantification of PET for thoracic patients. In this study, respiration-averaged CT (ACT) was used to remove the artifacts, and the changes in standardized uptake value (SUV) and gross tumor volume (GTV) were quantified. Methods and Materials: We incorporated the ACT acquisition in a PET/CT session for 216 lung patients, generating two PET/CT data sets for each patient. The first data set (PET HCT /HCT) contained the clinical PET/CT in which PET was attenuation corrected with a helical CT (HCT). The second data set (PET ACT /ACT) contained the PET/CT in which PET was corrected with ACT. We quantified the differences between the two datasets in image alignment, maximum SUV (SUV max ), and GTV contours. Results: Of the patients, 68% demonstrated respiratory artifacts in the PET HCT , and for all patients the artifact was removed or reduced in the corresponding PET ACT . The impact of respiration artifact was the worst for lesions less than 50 cm 3 and located below the dome of the diaphragm. For lesions in this group, the mean SUV max difference, GTV volume change, shift in GTV centroid location, and concordance index were 21%, 154%, 2.4 mm, and 0.61, respectively. Conclusion: This study benchmarked the differences between the PET data with and without artifacts. It is important to pay attention to the potential existence of these artifacts during GTV contouring, as such artifacts may increase the uncertainties in the lesion volume and the centroid location

  4. Comparação entre os volumes pulmonares irradiados com técnica bidimensional e tridimensional conformada na radioterapia de pacientes com tumores de pulmão localmente avançados Comparison between irradiated lung volumes with two-dimensional and three-dimensional conformal radiotherapy techniques for locally advanced lung cancer

    Directory of Open Access Journals (Sweden)

    Heloisa de Andrade Carvalho

    2009-10-01

    Full Text Available OBJETIVO: Comparar e quantificar os volumes pulmonares irradiados utilizando planejamentos bidimensional (2D e tridimensional (3D conformado na radioterapia de tumores de pulmão. MATERIAIS E MÉTODOS: Em 27 pacientes portadores de câncer de pulmão foi feito planejamento 3D e outro correspondente em 2D. As doses prescritas variaram de 45 a 66 Gy. Foram avaliadas as doses no volume alvo planejado (PTV, volume tumoral macroscópico (GTV e pulmões (volume de pulmão que recebe 20 Gy ou 30 Gy - V20 e V30, respectivamente, e dose média. Os órgãos de risco adjacentes (medula espinhal, esôfago e coração receberam doses abaixo dos limites de tolerância. RESULTADOS: O GTV variou de 10,5 a 1.290,0 cm³ (média de 189,65 cm³. Nos planejamentos 2D foi utilizado, em média, um total de 59,33 campos, e nos planejamentos 3D, 75,65 campos. Em todas as situações analisadas houve significante (p OBJECTIVE: To compare and quantify irradiated lung volumes using two-dimensional (2D and three-dimensional (3D conformal planning for radiotherapy in the treatment of lung cancer. MATERIALS AND METHODS: 2D and 3D conformal radiotherapy plannings were performed for 27 patients with lung cancer. Prescribed doses ranged from 45 to 66 Gy. The analysis covered the doses to planning target volume (PTV, gross tumor volume (GTV and lungs (lung volume receiving 20 Gy or 30 Gy - V20 and V30, respectively, and mean dose. The doses to adjacent organs at risk (spinal cord, esophagus and heart were maintained below the tolerance limits. RESULTS: GTV ranged from 10.5 to 1,290.0 cm³ (mean, 189.65 cm³. On average, a total of 59.33 fields were utilized in the 2D planning and 75.65 fields in the 3D planning. Lung volumes were significantly preserved (P < 0.05 with the 3D conformal planning in all the evaluated cases, with about 15% decrease in the irradiated lung volumes. Lungs without tumor were most benefited from this technique. CONCLUSION: 3D radiotherapy allowed a better

  5. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Fowler, Kathryn J.; Narra, Vamsi [Department of Diagnostic Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Garcia-Ramirez, Jose L.; Schwarz, Julie K. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Grigsby, Perry W., E-mail: pgrigsby@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Gynecologic Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri (United States)

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  6. SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors

    International Nuclear Information System (INIS)

    Aristophanous, M; Yang, J; Beadle, B

    2014-01-01

    Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled according to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of

  7. SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, M; Yang, J; Beadle, B [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled according to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of

  8. Dose escalation to high-risk sub-volumes based on non-invasive imaging of hypoxia and glycolytic activity in canine solid tumors

    DEFF Research Database (Denmark)

    Clausen, Malene M.; Hansen, Anders Elias; af Rosenschold, Per Munck

    2013-01-01

    : Positron emission tomography/computed tomography (PET/CT) scans of five spontaneous canine solid tumors were included. FDG-PET/CT was obtained at day 1, 64Cu-ATSM at day 2 and 3 (3 and 24 h pi.). GTV was delineated and CT images were co-registered. Sub-volumes for 3 h and 24 h 64Cu-ATSM (Cu3 and Cu24) were...

  9. The application value of diffusion-weighted magnetic resonance imaging in gross tumor volume delineation of esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Hou Dongliang; Shi Gaofeng; Gao Xianshu

    2012-01-01

    Objective: To analyze the application value of diffusion-weighted magnetic resonance imaging (DWMRI) in gross tumor volume (GTV) delineation of esophageal squamous cell carcinoma (SCC). Methods: Twenty-nine patients with esophageal SCC treated with radical surgery were analyzed. Routine CT scan, MRI T 2 -weighted and DWMRI were employed before surgery; diffusion-sensitive gradient b-values were taken 400, 600 and 800 s/mm 2 . GTVs were delineated using CT, MRI T 2 -weighted images and DWMRI under different b-value images. The length of GTVs measured under different images was compared with the pathological length and confirm the most accurate imaging condition. Use radiotherapy planning system to fuse DWMRI images and CT images to investigate the possibility of delineate GTVs on fused images. Results: The difference of GTV length value between CT, T 2 WI images and specimen was 3.36 mm and 2.84 mm. When b =400,600 and 800 s/mm 2 , the difference between GTV length value on the DWMRI images and on specimen was 0.47 mm, -0.47 mm and - 1.53 mm; the correlation coefficient of the measuring esophageal lengths on DWMRI images and the pathological lengths was 0.928, 0.927 and 0.938. DWMRI images and CT images could fuse accurately on radiotherapy planning system. GTV margin could.show clearly on fused images. Conclusions: DWMRI images can display the esophageal carcinoma lengths and margin accurately. When DWMRI images fused with CT images, GTV margin could show clearly,it can be used to delineate GTV accurately. (authors)

  10. Origin of Tumor Recurrence After Intensity Modulated Radiation Therapy for Oropharyngeal Squamous Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Raktoe, Sawan A.S. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Dehnad, Homan, E-mail: h.dehnad@umcutrecht.nl [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Raaijmakers, Cornelis P.J. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Braunius, Weibel [Department of ENT Head and Neck Surgery, University Medical Center Utrecht, Utrecht (Netherlands); Terhaard, Chris H.J. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)

    2013-01-01

    Purpose: To model locoregional recurrences of oropharyngeal squamous cell carcinomas (OSCC) treated with primary intensity modulated radiation therapy (IMRT) in order to find the origins from which recurrences grow and relate their location to original target volume borders. Methods and Materials: This was a retrospective analysis of OSCC treated with primary IMRT between January 2002 and December 2009. Locoregional recurrence volumes were delineated on diagnostic scans and coregistered rigidly with treatment planning computed tomography scans. Each recurrence was analyzed with two methods. First, overlapping volumes of a recurrence and original target were measured ('volumetric approach') and assessed as 'in-field', 'marginal', or 'out-field'. Then, the center of mass (COM) of a recurrence volume was assumed as the origin from where a recurrence expanded, the COM location was compared with original target volume borders and assessed as 'in-field', 'marginal', or 'out-field'. Results: One hundred thirty-one OSCC were assessed. For all patients alive at the end of follow-up, the mean follow-up time was 40 months (range, 12-83 months); 2 patients were lost to follow-up. The locoregional recurrence rate was 27%. Of all recurrences, 51% were local, 23% were regional, and 26% had both local and regional recurrences. Of all recurrences, 74% had imaging available for assessment. Regarding volumetric analysis of local recurrences, 15% were in-field gross tumor volume (GTV), and 65% were in-field clinical tumor volume (CTV). Using the COM approach, we found that 70% of local recurrences were in-field GTV and 90% were in-field CTV. Of the regional recurrences, 25% were volumetrically in-field GTV, and using the COM approach, we found 54% were in-field GTV. The COM of local out-field CTV recurrences were maximally 16 mm outside CTV borders, whereas for regional recurrences, this was 17 mm. Conclusions: The

  11. A Phase II Comparative Study of Gross Tumor Volume Definition With or Without PET/CT Fusion in Dosimetric Planning for Non–Small-Cell Lung Cancer (NSCLC): Primary Analysis of Radiation Therapy Oncology Group (RTOG) 0515

    International Nuclear Information System (INIS)

    Bradley, Jeffrey; Bae, Kyounghwa; Choi, Noah; Forster, Ken; Siegel, Barry A.; Brunetti, Jacqueline; Purdy, James; Faria, Sergio; Vu, Toni; Thorstad, Wade; Choy, Hak

    2012-01-01

    Background: Radiation Therapy Oncology Group (RTOG) 0515 is a Phase II prospective trial designed to quantify the impact of positron emission tomography (PET)/computed tomography (CT) compared with CT alone on radiation treatment plans (RTPs) and to determine the rate of elective nodal failure for PET/CT-derived volumes. Methods: Each enrolled patient underwent definitive radiation therapy for non–small-cell lung cancer (≥60 Gy) and had two RTP datasets generated: gross tumor volume (GTV) derived with CT alone and with PET/CT. Patients received treatment using the PET/CT-derived plan. The primary end point, the impact of PET/CT fusion on treatment plans was measured by differences of the following variables for each patient: GTV, number of involved nodes, nodal station, mean lung dose (MLD), volume of lung exceeding 20 Gy (V20), and mean esophageal dose (MED). Regional failure rate was a secondary end point. The nonparametric Wilcoxon matched-pairs signed-ranks test was used with Bonferroni adjustment for an overall significance level of 0.05. Results: RTOG 0515 accrued 52 patients, 47 of whom are evaluable. The follow-up time for all patients is 12.9 months (2.7–22.2). Tumor staging was as follows: II = 6%; IIIA = 40%; and IIIB = 54%. The GTV was statistically significantly smaller for PET/CT-derived volumes (98.7 vs. 86.2 mL; p < 0.0001). MLDs for PET/CT plans were slightly lower (19 vs. 17.8 Gy; p = 0.06). There was no significant difference in the number of involved nodes (2.1 vs. 2.4), V20 (32% vs. 30.8%), or MED (28.7 vs. 27.1 Gy). Nodal contours were altered by PET/CT for 51% of patients. One patient (2%) has developed an elective nodal failure. Conclusions: PET/CT-derived tumor volumes were smaller than those derived by CT alone. PET/CT changed nodal GTV contours in 51% of patients. The elective nodal failure rate for GTVs derived by PET/CT is quite low, supporting the RTOG standard of limiting the target volume to the primary tumor and involved nodes.

  12. Prediction of local failures with a combination of pretreatment tumor volume and apparent diffusion coefficient in patients treated with definitive radiotherapy for hypopharyngeal or oropharyngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Ohnishi, Kayoko; Shioyama, Yoshiyuki; Hatakenaka, Masamitsu

    2011-01-01

    The purpose of this study was to investigate the clinical factors for predicting local failure after definitive radiotherapy in oropharyngeal or hypopharyngeal squamous cell carcinoma. Between July 2006 and December 2008, 64 consecutive patients with squamous cell carcinoma of the hypopharynx or the oropharynx treated with definitive radiotherapy were included in this study. Clinical factors, such as pretreatment hemoglobin (Hb) level, T-stage, gross tumor volume of primary tumors (pGTV), and maximum standardized uptake value (SUV max ) on 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET), were evaluated for the correlation with local failure. A subset analysis of 32 patients with MR images including diffusion-weighted images (DWI) as a pretreatment evaluation was also performed. The Kaplan-Meier curves, the log-rank test, and the Cox proportional hazards model were used to evaluate these clinical factors. Eleven of 64 patients experienced local recurrence, with a median follow-up time of 15 months. In the univariate analysis, Hb level (p=0.0261), T-stage (p=0.012), pGTV (p=0.0025), and SUV max (p=0.024) were significantly associated with local failure. In the multivariate analysis, pGTV (p=0.0070) remained an adverse factor for local control. In the subset analysis of 32 patients with DWI, the median apparent diffusion coefficient (ADC) value of primary tumors on DWI was 0.79 x 10 -3 mm 2 /s (range, 0.40-1.60 x 10 -3 mm 2 /s). Patients with a high ADC value (>0.79 x 10 -3 mm 2 /s) had a significantly lower local control rate than patients with a low ADC value (100% vs. 44%, p=0.0019). The rate of local failure among patients with a large pGTV and a high ADC value was 55% (6/11), whereas no local failures occurred (0%, 0/21) among patients with a small pGTV or a low ADC. These results suggest that a combination of a large tumor volume and a high ADC value could be predictive of local recurrence after definitive radiotherapy in hypopharyngeal or

  13. FDG-PET/CT Imaging for Staging and Target Volume Delineation in Preoperative Conformal Radiotherapy of Rectal Cancer

    International Nuclear Information System (INIS)

    Bassi, Maria Chiara; Turri, Lucia; Sacchetti, Gianmauro; Loi, Gianfranco; Cannillo, Barbara; La Mattina, Pierdaniele; Brambilla, Marco; Inglese, Eugenio; Krengli, Marco

    2008-01-01

    Purpose: To investigate the potential impact of using 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) on staging and target volume delineation for patients affected by rectal cancer and candidates for preoperative conformal radiotherapy. Methods and Materials: Twenty-five patients diagnosed with rectal cancer T3-4 N0-1 M0-1 and candidates for preoperative radiotherapy underwent PET/CT simulation after injection of 5.18 MBq/kg of FDG. Clinical stage was reassessed on the basis of FDG-PET/CT findings. The gross tumor volume (GTV) and the clinical target volume (CTV) were delineated first on CT and then on PET/CT images. The PET/CT-GTV and PET/CT-CTV were analyzed and compared with CT-GTV and CT-CTV, respectively. Results: In 4 of 25 cases (24%), PET/CT affected tumor staging or the treatment purpose. In 3 of 25 cases (12%) staged N0 M0, PET/CT showed FDG uptake in regional lymph nodes and in a case also in the liver. In a patient with a single liver metastasis PET/CT detected multiple lesions, changing the treatment intent from curative to palliative. The PET/CT-GTV and PET/CT-CTV were significantly greater than the CT-GTV (p = 0.00013) and CT-CTV (p = 0.00002), respectively. The mean difference between PET/CT-GTV and CT-GTV was 25.4% and between PET/CT-CTV and CT-CTV was 4.1%. Conclusions: Imaging with PET/CT for preoperative radiotherapy of rectal cancer may lead to a change in staging and target volume delineation. Stage variation was observed in 12% of cases and a change of treatment intent in 4%. The GTV and CTV changed significantly, with a mean increase in size of 25% and 4%, respectively

  14. Comparison of Rigid and Adaptive Methods of Propagating Gross Tumor Volume Through Respiratory Phases of Four-Dimensional Computed Tomography Image Data Set

    International Nuclear Information System (INIS)

    Ezhil, Muthuveni; Choi, Bum; Starkschall, George; Bucci, M. Kara; Vedam, Sastry; Balter, Peter

    2008-01-01

    Purpose: To compare three different methods of propagating the gross tumor volume (GTV) through the respiratory phases that constitute a four-dimensional computed tomography image data set. Methods and Materials: Four-dimensional computed tomography data sets of 20 patients who had undergone definitive hypofractionated radiotherapy to the lung were acquired. The GTV regions of interest (ROIs) were manually delineated on each phase of the four-dimensional computed tomography data set. The ROI from the end-expiration phase was propagated to the remaining nine phases of respiration using the following three techniques: (1) rigid-image registration using in-house software, (2) rigid image registration using research software from a commercial radiotherapy planning system vendor, and (3) rigid-image registration followed by deformable adaptation originally intended for organ-at-risk delineation using the same software. The internal GTVs generated from the various propagation methods were compared with the manual internal GTV using the normalized Dice similarity coefficient (DSC) index. Results: The normalized DSC index of 1.01 ± 0.06 (SD) for rigid propagation using the in-house software program was identical to the normalized DSC index of 1.01 ± 0.06 for rigid propagation achieved with the vendor's research software. Adaptive propagation yielded poorer results, with a normalized DSC index of 0.89 ± 0.10 (paired t test, p <0.001). Conclusion: Propagation of the GTV ROIs through the respiratory phases using rigid- body registration is an acceptable method within a 1-mm margin of uncertainty. The adaptive organ-at-risk propagation method was not applicable to propagating GTV ROIs, resulting in an unacceptable reduction of the volume and distortion of the ROIs

  15. FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    International Nuclear Information System (INIS)

    Krengli, Marco; Inglese, Eugenio; Milia, Maria E; Turri, Lucia; Mones, Eleonora; Bassi, Maria C; Cannillo, Barbara; Deantonio, Letizia; Sacchetti, Gianmauro; Brambilla, Marco

    2010-01-01

    FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 × 10 -4 ) and CT-CTV (p = 2.9 × 10 -4 ). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 × 10 -5 ) and CT-CTV (p = 6 × 10 -5 ). FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

  16. Pancreatic gross tumor volume contouring on computed tomography (CT) compared with magnetic resonance imaging (MRI): Results of an international contouring conference.

    Science.gov (United States)

    Hall, William A; Heerkens, Hanne D; Paulson, Eric S; Meijer, Gert J; Kotte, Alexis N; Knechtges, Paul; Parikh, Parag J; Bassetti, Michael F; Lee, Percy; Aitken, Katharine L; Palta, Manisha; Myrehaug, Sten; Koay, Eugene J; Portelance, Lorraine; Ben-Josef, Edgar; Erickson, Beth A

    Accurate identification of the gross tumor volume (GTV) in pancreatic adenocarcinoma is challenging. We sought to understand differences in GTV delineation using pancreatic computed tomography (CT) compared with magnetic resonance imaging (MRI). Twelve attending radiation oncologists were convened for an international contouring symposium. All participants had a clinical and research interest in pancreatic adenocarcinoma. CT and MRI scans from 3 pancreatic cases were used for contouring. CT and MRI GTVs were analyzed and compared. Interobserver variability was compared using Dice's similarity coefficient (DSC), Hausdorff distances, and Jaccard indices. Mann-Whitney tests were used to check for significant differences. Consensus contours on CT and MRI scans and constructed count maps were used to visualize the agreement. Agreement regarding the optimal method to determine GTV definition using MRI was reached. Six contour sets (3 from CT and 3 from MRI) were obtained and compared for each observer, totaling 72 contour sets. The mean volume of contours on CT was significantly larger at 57.48 mL compared with a mean of 45.76 mL on MRI, P = .011. The standard deviation obtained from the CT contours was significantly larger than the standard deviation from the MRI contours (P = .027). The mean DSC was 0.73 for the CT and 0.72 for the MRI (P = .889). The conformity index measurement was similar for CT and MRI (P = .58). Count maps were created to highlight differences in the contours from CT and MRI. Using MRI as a primary image set to define a pancreatic adenocarcinoma GTV resulted in smaller contours compared with CT. No differences in DSC or the conformity index were seen between MRI and CT. A stepwise method is recommended as an approach to contour a pancreatic GTV using MRI. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  17. Comparison of 2D and 3D algorithms for adding a margin to the gross tumor volume in the conformal radiotherapy planning of prostate cancer

    International Nuclear Information System (INIS)

    Khoo, Vincent S.; Bedford, James L.; Webb, Steve; Dearnaley, David P.

    1998-01-01

    Purpose: To evaluate the adequacy of tumor volume coverage using a three-dimensional (3D) margin-growing algorithm compared to a two-dimensional (2D) margin-growing algorithm in the conformal radiotherapy planning of prostate cancer. Methods and Materials: Two gross tumor volumes (GTV) were segmented in each of 10 patients with localized prostate cancer; prostate gland only (PO) and prostate with seminal vesicles (PSV). A predetermined margin of 10 mm was applied to these two groups (PO and PSV) using both 2D and 3D margin-growing algorithms. The 2D algorithm added a transaxial margin to each GTV slice, whereas the 3D algorithm added a volumetric margin all around the GTV. The true planning target volume (PTV) was defined as the region delineated by the 3D algorithm. The adequacy of geometric coverage of the GTV by the two algorithms was examined in a series of transaxial planes throughout the target volume. Results: The 2D margin-growing algorithm underestimated the PTV by 17% (range 12-20) in the PO group and by 20% (range 13-28) for the PSV group when compared to the 3D-margin algorithm. For the PO group, the mean transaxial difference between the 2D and 3D algorithm was 3.8 mm inferiorly (range 0-20), 1.8 mm centrally (range 0-9), and 4.4 mm superiorly (range 0-22). Considering all of these regions, the mean discrepancy anteriorly was 5.1 mm (range 0-22), posteriorly 2.2 (range 0-20), right border 2.8 mm (range 0-14), and left border 3.1 mm (range 0-12). For the PSV group, the mean discrepancy in the inferior region was 3.8 mm (range 0-20), central region of the prostate was 1.8 mm ( range 0-9), the junction region of the prostate and the seminal vesicles was 5.5 mm (range 0-30), and the superior region of the seminal vesicles was 4.2 mm (range 0-55). When the different borders were considered in the PSV group, the mean discrepancies for the anterior, posterior, right, and left borders were 6.4 mm (range 0-55), 2.5 mm (range 0-20), 2.6 mm (range 0-14), and 3

  18. Measurement of lung tumor motion using respiration-correlated CT

    International Nuclear Information System (INIS)

    Mageras, Gig S.; Pevsner, Alex; Yorke, Ellen D.; Rosenzweig, Kenneth E.; Ford, Eric C.; Hertanto, Agung; Larson, Steven M.; Lovelock, D. Michael; Erdi, Yusuf E.; Nehmeh, Sadek A.; Humm, John L.; Ling, C. Clifton

    2004-01-01

    Purpose: We investigate the characteristics of lung tumor motion measured with respiration-correlated computed tomography (RCCT) and examine the method's applicability to radiotherapy planning and treatment. Methods and materials: Six patients treated for non-small-cell lung carcinoma received a helical single-slice computed tomography (CT) scan with a slow couch movement (1 mm/s), while simultaneously respiration is recorded with an external position-sensitive monitor. Another 6 patients receive a 4-slice CT scan in a cine mode, in which sequential images are acquired for a complete respiratory cycle at each couch position while respiration is recorded. The images are retrospectively resorted into different respiration phases as measured with the external monitor (4-slice data) or patient surface displacement observed in the images (single-slice data). The gross tumor volume (GTV) in lung is delineated at one phase and serves as a visual guide for delineation at other phases. Interfractional GTV variation is estimated by scaling diaphragm position variations measured in gated radiographs at treatment with the ratio of GTV:diaphragm displacement observed in the RCCT data. Results: Seven out of 12 patients show GTV displacement with respiration of more than 1 cm, primarily in the superior-inferior (SI) direction; 2 patients show anterior-posterior displacement of more than 1 cm. In all cases, extremes in GTV position in the SI direction are consistent with externally measured extremes in respiration. Three patients show evidence of hysteresis in GTV motion, in which the tumor trajectory is displaced 0.2 to 0.5 cm anteriorly during expiration relative to inspiration. Significant (>1 cm) expansion of the GTV in the SI direction with respiration is observed in 1 patient. Estimated intrafractional GTV motion for gated treatment at end expiration is 0.6 cm or less in all cases; however; interfraction variation estimates (systematic plus random) are more than 1 cm in 3

  19. SU-E-J-228: MRI-Based Planning: Dosimetric Feasibility of Dose Painting for ADCDefined Intra-Prostatic Tumor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X; Dalah, E; Prior, P; Lawton, C; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2015-06-15

    Purpose: Apparent diffusion coefficient (ADC) map may help to delineate the gross tumor volume (GTV) in prostate gland. Dose painting with external beam radiotherapy for GTV might increase the local tumor control. The purpose of this study is to explore the maximum boosting dose on GTV using VMAT without sacrificing sparing of organs at risk (OARs) in MRI based planning. Methods: VMAT plans for 5 prostate patients were generated following the commonly used dose volume (DV) criteria based on structures contoured on T2 weighted MRI with bulk electron density assignment using electron densities derived from ICRU46. GTV for each patient was manually delineated based on ADC maps and fused to T2-weighted image set for planning study. A research planning system with Monte Carlo dose engine (Monaco, Elekta) was used to generate the VMAT plans with boosting dose on GTV gradually increased from 85Gy to 100Gy. DV parameters, including V(boosting-dose) (volume covered by boosting dose) for GTV, V75.6Gy for PTV, V45Gy, V70Gy, V72Gy and D1cc (Maximum dose to 1cc volume) for rectum and bladder, were used to measure plan quality. Results: All cases achieve at least 99.0% coverage of V(boosting-dose) on GTV and 95% coverage of V75.6Gy to the PTV. All the DV criteria, V45Gy≤50% and V70Gy≤15% for bladder and rectum, D1cc ≤77Gy (Rectum) and ≤80Gy (Bladder), V72Gy≤5% (rectum and bladder) were maintained when boosting GTV to 95Gy for all cases studied. Except for two patients, all the criteria were also met when the boosting dose goes to 100Gy. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. This research is partially supported by Elekta Inc.

  20. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms

    International Nuclear Information System (INIS)

    Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick

    2014-01-01

    The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the

  1. Target Volume Delineation in Oropharyngeal Cancer: Impact of PET, MRI, and Physical Examination

    International Nuclear Information System (INIS)

    Thiagarajan, Anuradha; Caria, Nicola; Schöder, Heiko; Iyer, N. Gopalakrishna; Wolden, Suzanne; Wong, Richard J.; Sherman, Eric; Fury, Matthew G.; Lee, Nancy

    2012-01-01

    Introduction: Sole utilization of computed tomography (CT) scans in gross tumor volume (GTV) delineation for head-and-neck cancers is subject to inaccuracies. This study aims to evaluate contributions of magnetic resonance imaging (MRI), positron emission tomography (PET), and physical examination (PE) to GTV delineation in oropharyngeal cancer (OPC). Methods: Forty-one patients with OPC were studied. All underwent contrast-enhanced CT simulation scans (CECTs) that were registered with pretreatment PETs and MRIs. For each patient, three sets of primary and nodal GTV were contoured. First, reference GTVs (GTVref) were contoured by the treating radiation oncologist (RO) using CT, MRI, PET, and PE findings. Additional GTVs were created using fused CT/PET scans (GTVctpet) and CT/MRI scans (GTVctmr) by two other ROs blinded to GTVref. To compare GTVs, concordance indices (CI) were calculated by dividing the respective overlap volumes by overall volumes. To evaluate the contribution of PE, composite GTVs derived from CT, MRI, and PET (GTVctpetmr) were compared with GTVref. Results: For primary tumors, GTVref was significantly larger than GTVctpet and GTVctmr (p 0.75), indicating that although the modalities were complementary, the added benefit was small in the context of CECTs. In addition, PE did not aid greatly in nodal GTV delineation. Conclusion: PET and MRI are complementary and combined use is ideal. However, the low CI (ctpetmr vs. ref) particularly for primary tumors underscores the limitations of defining GTVs using imaging alone. PE is invaluable and must be incorporated.

  2. Comparison of investigator-delineated gross tumor volumes and quality assurance in pancreatic cancer: Analysis of the pretrial benchmark case for the SCALOP trial.

    Science.gov (United States)

    Fokas, Emmanouil; Clifford, Charlotte; Spezi, Emiliano; Joseph, George; Branagan, Jennifer; Hurt, Chris; Nixon, Lisette; Abrams, Ross; Staffurth, John; Mukherjee, Somnath

    2015-12-01

    To evaluate the variation in investigator-delineated volumes and assess plans from the radiotherapy trial quality assurance (RTTQA) program of SCALOP, a phase II trial in locally advanced pancreatic cancer. Participating investigators (n=25) outlined a pre-trial benchmark case as per RT protocol, and the accuracy of investigators' GTV (iGTV) and PTV (iPTV) was evaluated, against the trials team-defined gold standard GTV (gsGTV) and PTV (gsPTV), using both qualitative and geometric analyses. The median Jaccard Conformity Index (JCI) and Geographical Miss Index (GMI) were calculated. Participating RT centers also submitted a radiotherapy plan for this benchmark case, which was centrally reviewed against protocol-defined constraints. Twenty-five investigator-defined contours were evaluated. The median JCI and GMI of iGTVs were 0.57 (IQR: 0.51-0.65) and 0.26 (IQR: 0.15-0.40). For iPTVs, these were 0.75 (IQR: 0.71-0.79) and 0.14 (IQR: 0.11-0.22) respectively. Qualitative analysis showed largest variation at the tumor edges and failure to recognize a peri-pancreatic lymph node. There were no major protocol deviations in RT planning, but three minor PTV coverage deviations were identified. . SCALOP demonstrated considerable variation in iGTV delineation. RTTQA workshops and real-time central review of delineations are needed in future trials. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non–small cell lung cancer patients under abdominal compression

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chunhui, E-mail: chan@coh.org; Sampath, Sagus; Schultheisss, Timothy E.; Wong, Jeffrey Y.C.

    2017-07-01

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non–small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registered with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery.

  4. Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients.

    Science.gov (United States)

    Vees, Hansjörg; Senthamizhchelvan, Srinivasan; Miralbell, Raymond; Weber, Damien C; Ratib, Osman; Zaidi, Habib

    2009-02-01

    The purpose of the study is to assess the contribution of (18)F-fluoro-ethyl-tyrosine ((18)F-FET) positron emission tomography (PET) in the delineation of gross tumor volume (GTV) in patients with high-grade gliomas compared with magnetic resonance imaging (MRI) alone. The study population consisted of 18 patients with high-grade gliomas. Seven image segmentation techniques were used to delineate (18)F-FET PET GTVs, and the results were compared to the manual MRI-derived GTV (GTV(MRI)). PET image segmentation techniques included manual delineation of contours (GTV(man)), a 2.5 standardized uptake value (SUV) cutoff (GTV(2.5)), a fixed threshold of 40% and 50% of the maximum signal intensity (GTV(40%) and GTV(50%)), signal-to-background ratio (SBR)-based adaptive thresholding (GTV(SBR)), gradient find (GTV(GF)), and region growing (GTV(RG)). Overlap analysis was also conducted to assess geographic mismatch between the GTVs delineated using the different techniques. Contours defined using GTV(2.5) failed to provide successful delineation technically in three patients (18% of cases) as SUV(max) segmentation algorithm is crucial, since it impacts both the volume and shape of the resulting GTV. The 2.5 SUV isocontour and GF segmentation techniques performed poorly and should not be used for GTV delineation. With adequate setting, the SBR-based PET technique may add considerably to conventional MRI-guided GTV delineation.

  5. Interfraction Liver Shape Variability and Impact on GTV Position During Liver Stereotactic Radiotherapy Using Abdominal Compression

    International Nuclear Information System (INIS)

    Eccles, Cynthia L.; Dawson, Laura A.; Moseley, Joanne L.; Brock, Kristy K.

    2011-01-01

    Purpose: For patients receiving liver stereotactic body radiotherapy (SBRT), abdominal compression can reduce organ motion, and daily image guidance can reduce setup error. The reproducibility of liver shape under compression may impact treatment delivery accuracy. The purpose of this study was to measure the interfractional variability in liver shape under compression, after best-fit rigid liver-to-liver registration from kilovoltage (kV) cone beam computed tomography (CBCT) scans to planning computed tomography (CT) scans and its impact on gross tumor volume (GTV) position. Methods and Materials: Evaluable patients were treated in a Research Ethics Board-approved SBRT six-fraction study with abdominal compression. Kilovoltage CBCT scans were acquired before treatment and reconstructed as respiratory sorted CBCT scans offline. Manual rigid liver-to-liver registrations were performed from exhale-phase CBCT scans to exhale planning CT scans. Each CBCT liver was contoured, exported, and compared with the planning CT scan for spatial differences, by use of in house-developed finite-element model-based deformable registration (MORFEUS). Results: We evaluated 83 CBCT scans from 16 patients with 30 GTVs. The mean volume of liver that deformed by greater than 3 mm was 21.7%. Excluding 1 outlier, the maximum volume that deformed by greater than 3 mm was 36.3% in a single patient. Over all patients, the absolute maximum deformations in the left-right (LR), anterior-posterior (AP), and superior-inferior directions were 10.5 mm (SD, 2.2), 12.9 mm (SD, 3.6), and 5.6 mm (SD, 2.7), respectively. The absolute mean predicted impact of liver volume displacements on GTV by use of center of mass displacements was 0.09 mm (SD, 0.13), 0.13 mm (SD, 0.18), and 0.08 mm (SD, 0.07) in the left-right, anterior-posterior, and superior-inferior directions, respectively. Conclusions: Interfraction liver deformations in patients undergoing SBRT under abdominal compression after rigid liver

  6. Comparison of dose-volume histograms for Tomo therapy, linear accelerator-based 3D conformal radiation therapy, and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Choi, Seong-Kwan; Chung, Woon-Kwan; Lee, Jong-Woong

    2011-01-01

    Highlights: → Evaluation of DVH from 3D CRT, IMRT and Tomo therapy was conducted for tumor therapy. → The doses of GTV and CTV were compared using DVHs from 3D CRT, IMRT and Tomo therapy. → The GTV was higher when Tomo therapy was used, while the doses of critical organ were low. → They said that Tomo therapy satisfied the goal of radiation therapy more than the others. - Abstract: Evaluation of dose-volume histograms from three-dimensional conformal radiation therapy (3D CRT), intensity-modulated radiation therapy (IMRT), and Tomo therapy was conducted. These three modalities are among the diverse treatment systems available for tumor therapy. Three patients who received tumor therapy for a malignant oligodendroglioma in the cranium, nasopharyngeal carcinoma in the cervical neck, and prostate cancer in the pelvis were selected as study subjects. Therapy plans were made for the three patients before dose-volume histograms were obtained. The doses of the gross tumor volume (GTV) and the clinical target volume (CTV) were compared using the dose-volume histograms obtained from the LINAC-based 3D CRT, IMRT planning station (Varian Eclipse-Varian, version 8.1), and Tomo therapy planning station. In addition, the doses of critical organs in the cranium, cervix, and pelvis that should be protected were compared. The GTV was higher when Tomo therapy was used compared to 3D CRT and the LINAC-based IMRT, while the doses of critical organ tissues that required protection were low. These results demonstrated that Tomo therapy satisfied the ultimate goal of radiation therapy more than the other therapies.

  7. Quantification and Minimization of Uncertainties of Internal Target Volume for Stereotactic Body Radiation Therapy of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ge Hong [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Henan Cancer Hospital, the Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Cai Jing; Kelsey, Chris R. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin Fangfang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2013-02-01

    Purpose: To quantify uncertainties in delineating an internal target volume (ITV) and to understand how these uncertainties may be individually minimized for stereotactic body radiation therapy (SBRT) of early stage non-small cell lung cancer (NSCLC). Methods and Materials: Twenty patients with NSCLC who were undergoing SBRT were imaged with free-breathing 3-dimensional computed tomography (3DCT) and 10-phase 4-dimensional CT (4DCT) for delineating gross tumor volume (GTV){sub 3D} and ITV{sub 10Phase} (ITV3). The maximum intensity projection (MIP) CT was also calculated from 10-phase 4DCT for contouring ITV{sub MIP} (ITV1). Then, ITV{sub COMB} (ITV2), ITV{sub 10Phase+GTV3D} (ITV4), and ITV{sub 10Phase+ITVCOMB} (ITV5) were generated by combining ITV{sub MIP} and GTV{sub 3D}, ITV{sub 10phase} and GTV{sub 3D}, and ITV{sub 10phase} and ITV{sub COMB}, respectively. All 6 volumes (GTV{sub 3D} and ITV1 to ITV5) were delineated in the same lung window by the same radiation oncologist. The percentage of volume difference (PVD) between any 2 different volumes was determined and was correlated to effective tumor diameter (ETD), tumor motion ranges, R{sub 3D}, and the amplitude variability of the recorded breathing signal (v) to assess their volume variations. Results: The mean (range) tumor motion (R{sub SI}, R{sub AP}, R{sub ML}, and R{sub 3D}) and breathing variability (v) were 7.6 mm (2-18 mm), 4.0 mm (2-8 mm), 3.3 mm (0-7.5 mm), 9.9 mm (4.1-18.7 mm), and 0.17 (0.07-0.37), respectively. The trend of volume variation was GTV{sub 3D} volumes were 11.1 {+-} 9.3 cc, 13.2 {+-} 10.5 cc, 14.9 {+-} 11.0 cc, 14.7 {+-} 11.4 cc, 15.9 {+-} 11.7 cc, and 16.4 {+-} 11.8 cc, respectively. All comparisons between the target volumes showed statistical significance (P{<=}.001), except for ITV2 and ITV3 (P=.594). The PVDs for all volume pairs correlated negatively with ETD (r{<=}-0.658, P{<=}.006) and positively with

  8. A general methodology for three-dimensional analysis of variation in target volume delineation

    NARCIS (Netherlands)

    Remeijer, P.; Rasch, C.; Lebesque, J. V.; van Herk, M.

    1999-01-01

    A generic method for three-dimensional (3-D) evaluation of target volume delineation in multiple imaging modalities is presented. The evaluation includes geometrical and statistical methods to estimate observer differences and variability in defining the Gross Tumor Volume (GTV) in relation to the

  9. A correlation study on position and volume variation of primary lung cancer during respiration by four-dimensional CT

    International Nuclear Information System (INIS)

    Zhang Yingjie; Li Jianbin; Tian Shiyu; Li Fengxiang; Fan Tingyong; Shao Qian; Xu Min; Lu Jie

    2011-01-01

    Objective: To investigate the correlation of position movement of primary tumor with interested organs and skin markers, and to investigate the correlation of volume variation of primary tumors and lungs during different respiration phases for patients with lung cancer at free breath condition scanned by four-dimensional CT (4DCT) simulation. Methods: 16 patients with lung cancer were scanned at free breath condition by simulation 4DCT which connected to a respiration-monitoring system. A coordinate system was created based on image of T 5 phase,gross tumor volume (GTV) and normal tissue structures of 10 phases were contoured. The three dimensional position variation of them were measured and their correlation were analyzed, and the same for the volume variation of GTV and lungs of 10 respiratory phases. Results: Movement range of lung cancer in different lobe differed extinct: 0.8 - 5.0 mm in upper lobe, 5.7 -5.9 mm in middle lobe and 10.2 - 13.7 mm in lower lobe, respectively. Movement range of lung cancer in three dimensional direction was different: z-axis 4.3 mm ± 4.3 mm > y-axis 2.2 mm ± 1.0 mm > x-axis 1.7 mm ± 1.5 mm (χ 2 =16.22, P =0.000), respectively. There was no statistical significant correlation for movement vector of GTV and interested structures (r =-0.50 - -0.01, P =0.058 - -0.961), nor for volume variation of tumor and lung (r =0.23, P =0.520). Conclusions: Based on 4DCT, statistically significant differences of GTV centroid movement are observed at different pulmonary lobes and in three dimensional directions. So individual 4DCT measurement is necessary for definition of internal target volume margin for lung cancer. (authors)

  10. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Based Radiotherapy Target Volume Definition in Non-Small-Cell Lung Cancer: Delineation by Radiation Oncologists vs. Joint Outlining With a PET Radiologist?

    International Nuclear Information System (INIS)

    Hanna, Gerard G.; Carson, Kathryn J.; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P.; Eakin, Ruth L.; Stewart, David P.; Zatari, Ashraf; O'Sullivan, Joe M.; Hounsell, Alan R.

    2010-01-01

    Purpose: 18 F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. Methods and Materials: RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV CT ) and on fused PET/CT images (GTV PETCT ). The mean percentage volume change (PVC) between GTV CT and GTV PETCT for the radiation oncologists and the PVC between GTV CT and GTV PETCT for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV CT and GTV PETCT in a single measurement. Results: For all patients, a significant difference in PVC from GTV CT to GTV PETCT exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV CT and GTV FUSED for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Conclusions: Percentage volume changes from GTV CT to GTV PETCT were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP.

  11. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?

    Science.gov (United States)

    Hanna, Gerard G; Carson, Kathryn J; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P; Eakin, Ruth L; Stewart, David P; Zatari, Ashraf; O'Sullivan, Joe M; Hounsell, Alan R

    2010-11-15

    (18)F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV(CT)) and on fused PET/CT images (GTV(PETCT)). The mean percentage volume change (PVC) between GTV(CT) and GTV(PETCT) for the radiation oncologists and the PVC between GTV(CT) and GTV(PETCT) for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV(CT) and GTV(PETCT) in a single measurement. For all patients, a significant difference in PVC from GTV(CT) to GTV(PETCT) exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV(CT) and GTV(FUSED) for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Percentage volume changes from GTV(CT) to GTV(PETCT) were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Clinicopathologic Analysis of Microscopic Extension in Lung Adenocarcinoma: Defining Clinical Target Volume for Radiotherapy

    International Nuclear Information System (INIS)

    Grills, Inga S.; Fitch, Dwight L.; Goldstein, Neal S.; Yan Di; Chmielewski, Gary W.; Welsh, Robert J.; Kestin, Larry L.

    2007-01-01

    Purpose: To determine the gross tumor volume (GTV) to clinical target volume margin for non-small-cell lung cancer treatment planning. Methods: A total of 35 patients with Stage T1N0 adenocarcinoma underwent wedge resection plus immediate lobectomy. The gross tumor size and microscopic extension distance beyond the gross tumor were measured. The nuclear grade and percentage of bronchoalveolar features were analyzed for association with microscopic extension. The gross tumor dimensions were measured on a computed tomography (CT) scan (lung and mediastinal windows) and compared with the pathologic dimensions. The potential coverage of microscopic extension for two different lung stereotactic radiotherapy regimens was evaluated. Results: The mean microscopic extension distance beyond the gross tumor was 7.2 mm and varied according to grade (10.1, 7.0, and 3.5 mm for Grade 1 to 3, respectively, p < 0.01). The 90th percentile for microscopic extension was 12.0 mm (13.0, 9.7, and 4.4 mm for Grade 1 to 3, respectively). The CT lung windows correlated better with the pathologic size than did the mediastinal windows (gross pathologic size overestimated by a mean of 5.8 mm; composite size [gross plus microscopic extension] underestimated by a mean of 1.2 mm). For a GTV contoured on the CT lung windows, the margin required to cover microscopic extension for 90% of the cases would be 9 mm (9, 7, and 4 mm for Grade 1 to 3, respectively). The potential microscopic extension dosimetric coverage (55 Gy) varied substantially between the stereotactic radiotherapy schedules. Conclusion: For lung adenocarcinomas, the GTV should be contoured using CT lung windows. Although a GTV based on the CT lung windows would underestimate the gross tumor size plus microscopic extension by only 1.2 mm for the average case, the clinical target volume expansion required to cover the microscopic extension in 90% of cases could be as large as 9 mm, although considerably smaller for high-grade tumors

  13. Shallow and deep breath lung tumor volume as estimated by spiral volumetric CT in comparison to standard axial CT using virtual simulation

    International Nuclear Information System (INIS)

    Quader, M.A.; Kalend, A.M.; Deutsch, M.; Greenberger, J.S.

    1995-01-01

    Purpose/Objective: In order to assess an individual patient tumor volume (TV) margins that are sufficient to design a beam-eye-view (BEW) conformal portal, the radiographic extent of gross tumor volume (GTV) dimensions and its fluctuation with breathing are measured by fast spiral CT scanning of patients treated for Stage II, III lung cancers using 5-6 field multi-collimated conformal beams. Materials and Methods: Over the course of conformal radiotherapy for lung cancer, a full thorax CT scans of the patient were taken by conventional axial CT scanning with patients immobilized in the treatment position and breathing normally. Patient(s) with good pulmonary function test (PFT) status were selected to perform deep breathing and re-scanned by fast spiral techniques in order to re-acquire the tomographic variation in the (GTV) with breathing. A Picker spiral ZAP-100 software running on the AQSim-PQ-2000 was used with a variable helical pitch of 1.0, 1.5 and 2.0. The variable pitch spirals were limited to tumor bed, diaphragm and lung apex area for measurements. Effect of breathing motion along x,y,z direction were then assessed for each beam-eye-view portal as seen in digitally reconstructed radiography (DRR) at the treated gantry angle. Results: Comparison of axial and spiral scans shows the progression of lung and diaphram motion with breathing can be gauged better in spiral scans. The movement of the diaphragm during shallow breathing has been found to be 2-3cm by measuring the distance between the most inferior and superior slices where diaphragm is present. The variation of the tumor dimensions along AP/PA and lateral direction seems to be less sensitive to breathing than those along inferior-superior direction. Conclusion: The fast spiral CT scanning is sensitive to patient lung motion and can be used to determine the fluctuations of the gross tumor volume with breathing. The extent of the fluctuation is location dependent and increases as one moves from the

  14. A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view

    Science.gov (United States)

    Li, Guang; Cohen, Patrice; Xie, Huchen; Low, Daniel; Li, Diana; Rimner, Andreas

    2012-11-01

    To investigate the feasibility of four-dimensional radiotherapy (4DRT) planning from a tumor-tracking beam's eye view (ttBEV) with reliable gross tumor volume (GTV) delineation, realistic normal tissue representation, high planning accuracy and low clinical workload, we propose and validate a novel 4D conformal planning strategy based on a synthesized 3.5D computed tomographic (3.5DCT) image with a motion-compensated tumor. To recreate patient anatomy from a ttBEV in the moving tumor coordinate system for 4DRT planning (or 4D planning), the centers of delineated GTVs in all phase CT images of 4DCT were aligned, and then the aligned CTs were averaged to produce a new 3.5DCT image. This GTV-motion-compensated CT contains a motionless target (with motion artifacts minimized) and motion-blurred normal tissues (with a realistic temporal density average). Semi-automatic threshold-based segmentation of the tumor, lung and body was applied, while manual delineation was used for other organs at risk (OARs). To validate this 3.5DCT-based 4D planning strategy, five patients with peripheral lung lesions of small size (tumor and a minor beam aperture and weighting adjustment to maintain plan conformality. The dose-volume histogram (DVH) of the 4DCT plan was created with two methods: one is an integrated DVH (iDVH4D), which is defined as the temporal average of all 3D-phase-plan DVHs, and the other (DVH4D) is based on the dose distribution in a reference phase CT image by dose warping from all phase plans using the displacement vector field (DVF) from a free-form deformable image registration (DIR). The DVH3.5D (for the 3.5DCT plan) was compared with both iDVH4D and DVH4D. To quantify the DVH difference between the 3.5DCT plan and the 4DCT plan, two methods were used: relative difference (%) of the areas underneath the DVH curves and the volumes receiving more than 20% (V20) and 50% (V50) of prescribed dose of these 4D plans. The volume of the delineated GTV from different phase

  15. Predictive and prognostic value of tumor volume and its changes during radical radiotherapy of stage III non-small cell lung cancer. A systematic review

    International Nuclear Information System (INIS)

    Kaesmann, Lukas; Niyazi, Maximilian; Fleischmann, Daniel; Blanck, Oliver; Baumann, Rene; Baues, Christian; Klook, Lisa; Rosenbrock, Johannes; Trommer-Nestler, Maike; Dobiasch, Sophie; Eze, Chukwuka; Gauer, Tobias; Goy, Yvonne; Giordano, Frank A.; Sautter, Lisa; Hausmann, Jan; Henkenberens, Christoph; Kaul, David; Thieme, Alexander H.; Krug, David; Schmitt, Daniela; Maeurer, Matthias; Panje, Cedric M.; Suess, Christoph; Ziegler, Sonia; Ebert, Nadja; Medenwald, Daniel; Ostheimer, Christian

    2018-01-01

    Lung cancer remains the leading cause of cancer-related mortality worldwide. Stage III non-small cell lung cancer (NSCLC) includes heterogeneous presentation of the disease including lymph node involvement and large tumour volumes with infiltration of the mediastinum, heart or spine. In the treatment of stage III NSCLC an interdisciplinary approach including radiotherapy is considered standard of care with acceptable toxicity and improved clinical outcome concerning local control. Furthermore, gross tumour volume (GTV) changes during definitive radiotherapy would allow for adaptive replanning which offers normal tissue sparing and dose escalation. A literature review was conducted to describe the predictive value of GTV changes during definitive radiotherapy especially focussing on overall survival. The literature search was conducted in a two-step review process using PubMed registered /Medline registered with the key words ''stage III non-small cell lung cancer'' and ''radiotherapy'' and ''tumour volume'' and ''prognostic factors''. After final consideration 17, 14 and 9 studies with a total of 2516, 784 and 639 patients on predictive impact of GTV, GTV changes and its impact on overall survival, respectively, for definitive radiotherapy for stage III NSCLC were included in this review. Initial GTV is an important prognostic factor for overall survival in several studies, but the time of evaluation and the value of histology need to be further investigated. GTV changes during RT differ widely, optimal timing for re-evaluation of GTV and their predictive value for prognosis needs to be clarified. The prognostic value of GTV changes is unclear due to varying study qualities, re-evaluation time and conflicting results. The main findings were that the clinical impact of GTV changes during definitive radiotherapy is still unclear due to heterogeneous study designs with varying quality

  16. 18F-fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen

    International Nuclear Information System (INIS)

    Seitz, Oliver; Chambron-Pinho, Nicole; Sader, Rober; Middendorp, Markus; Mack, Martin; Vogl, Thomas J.; Bisdas, Sotirios

    2009-01-01

    The purpose of this paper is to evaluate the impact of adding combined 18 F-PET/CT to MRI for T and N staging of the oral and oropharyngeal cancer and calculation of the gross tumor volume (GTV) having histopathology as reference standard. PET/CT and MRI were performed in 66 patients with suspected oral and oropharyngeal cancer (41 primary tumors/25 recurrent tumors) and nodal disease (114 nodes). Statistical analysis included the McNemar test, sensitivity, specificity for the diagnostic modalities as well as regression analysis, and Bland-Altman graphs for calculated tumor volumes. There was no statistically significant difference between the two modalities compared to pathological findings regarding detection of disease (P≥0.72). The sensitivity/specificity for tumor detection were 100/80% and 96.72/60% for MRI and PET/CT, respectively. The sensitivity/specificity for nodal metastases were 88.46/75% and 83.81/73.91% for MRI and PET/CT, respectively. In 18% of cases, the MRI-based T staging resulted in an overestimation of the pathologic tumor stage. The corresponding rate for PET/CT was 22%. Regarding the treated necks, both modalities showed 100% sensitivity for detection of the recurrent lesions. In necks with histologically N0 staging, MRI and PET/CT gave 22% and 26% false positive findings, respectively. The mean tumor volume in the pathologic specimen was 16.6±18.6 ml, the mean volume derived by the MR imaging was 17.6±19.1 ml while the estimated by PET/CT volume was 18.8±18.1 ml (P≤0.007 between the three methods). The Bland-Altman analysis showed a better agreement between PET/CT and MRI. The diagnostic performance of FDG-PET/CT in the local staging of oral cancer is not superior to MRI. (orig.)

  17. Clinical Implementation of Intrafraction Cone Beam Computed Tomography Imaging During Lung Tumor Stereotactic Ablative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruijiang; Han, Bin; Meng, Bowen [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Maxim, Peter G.; Xing, Lei; Koong, Albert C. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Diehn, Maximilian, E-mail: Diehn@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States)

    2013-12-01

    Purpose: To develop and clinically evaluate a volumetric imaging technique for assessing intrafraction geometric and dosimetric accuracy of stereotactic ablative radiation therapy (SABR). Methods and Materials: Twenty patients received SABR for lung tumors using volumetric modulated arc therapy (VMAT). At the beginning of each fraction, pretreatment cone beam computed tomography (CBCT) was used to align the soft-tissue tumor position with that in the planning CT. Concurrent with dose delivery, we acquired fluoroscopic radiograph projections during VMAT using the Varian on-board imaging system. Those kilovolt projections acquired during millivolt beam-on were automatically extracted, and intrafraction CBCT images were reconstructed using the filtered backprojection technique. We determined the time-averaged target shift during VMAT by calculating the center of mass of the tumor target in the intrafraction CBCT relative to the planning CT. To estimate the dosimetric impact of the target shift during treatment, we recalculated the dose to the GTV after shifting the entire patient anatomy according to the time-averaged target shift determined earlier. Results: The mean target shift from intrafraction CBCT to planning CT was 1.6, 1.0, and 1.5 mm; the 95th percentile shift was 5.2, 3.1, 3.6 mm; and the maximum shift was 5.7, 3.6, and 4.9 mm along the anterior-posterior, left-right, and superior-inferior directions. Thus, the time-averaged intrafraction gross tumor volume (GTV) position was always within the planning target volume. We observed some degree of target blurring in the intrafraction CBCT, indicating imperfect breath-hold reproducibility or residual motion of the GTV during treatment. By our estimated dose recalculation, the GTV was consistently covered by the prescription dose (PD), that is, V100% above 0.97 for all patients, and minimum dose to GTV >100% PD for 18 patients and >95% PD for all patients. Conclusions: Intrafraction CBCT during VMAT can provide

  18. {sup 18}F-fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Oliver; Chambron-Pinho, Nicole; Sader, Rober [JW Goethe University, Department of Oromaxillofacial Surgery, Frankfurt (Germany); Middendorp, Markus [JW Goethe University, Department of Nuclear Medicine, Frankfurt (Germany); Mack, Martin; Vogl, Thomas J. [JW Goethe University, Department of Radiology, Frankfurt (Germany); Bisdas, Sotirios [Eberhard Karls University, Department of Neuroradiology, Tuebingen (Germany)

    2009-10-15

    The purpose of this paper is to evaluate the impact of adding combined {sup 18}F-PET/CT to MRI for T and N staging of the oral and oropharyngeal cancer and calculation of the gross tumor volume (GTV) having histopathology as reference standard. PET/CT and MRI were performed in 66 patients with suspected oral and oropharyngeal cancer (41 primary tumors/25 recurrent tumors) and nodal disease (114 nodes). Statistical analysis included the McNemar test, sensitivity, specificity for the diagnostic modalities as well as regression analysis, and Bland-Altman graphs for calculated tumor volumes. There was no statistically significant difference between the two modalities compared to pathological findings regarding detection of disease (P{>=}0.72). The sensitivity/specificity for tumor detection were 100/80% and 96.72/60% for MRI and PET/CT, respectively. The sensitivity/specificity for nodal metastases were 88.46/75% and 83.81/73.91% for MRI and PET/CT, respectively. In 18% of cases, the MRI-based T staging resulted in an overestimation of the pathologic tumor stage. The corresponding rate for PET/CT was 22%. Regarding the treated necks, both modalities showed 100% sensitivity for detection of the recurrent lesions. In necks with histologically N0 staging, MRI and PET/CT gave 22% and 26% false positive findings, respectively. The mean tumor volume in the pathologic specimen was 16.6{+-}18.6 ml, the mean volume derived by the MR imaging was 17.6{+-}19.1 ml while the estimated by PET/CT volume was 18.8{+-}18.1 ml (P{<=}0.007 between the three methods). The Bland-Altman analysis showed a better agreement between PET/CT and MRI. The diagnostic performance of FDG-PET/CT in the local staging of oral cancer is not superior to MRI. (orig.)

  19. Target volumes in gastric cancer radiation therapy

    International Nuclear Information System (INIS)

    Caudry, M.; Maire, J.P.; Ratoanina, J.L.; Escarmant, P.

    2001-01-01

    The spread of gastric adenocarcinoma may follow three main patterns: hemato-genic, lymphatic and intraperitoneal. A GTV should be considered in preoperative or exclusive radiation therapy. After non-radical surgery, a 'residual GTV' will be defined with the help of the surgeon. The CTV encompasses three intricated volumes. a) A 'tumor bed' volume. After radical surgery, local recurrences appear as frequent as distant metastases. The risk depends upon the depth of parietal invasion and the nodal status. Parietal infiltration may extend beyond macroscopic limits of the tumor, especially in dinitis plastica. Therefore this volume will include: the tumor and the remaining stomach or their 'bed of resection', a part of the transverse colon, the duodenum, the pancreas and the troncus of the portal vein. In postoperative RT, this CTV also includes the jejuno-gastric or jejuno-esophageal anastomosis. b) A peritoneal volume. For practical purposes, two degrees of spread must be considered: (1) contiguous microscopic extension from deeply invasive T3 and T4 tumors, that remain amenable to local sterilization with doses of 45-50 Gy, delivered in a CTV including the peritoneal cavity at the level of the gastric bed, and under the parietal incision; (2) true 'peritoneal carcinomatosis', with widespread seeds, where chemotherapy (systemic or intraperitoneal) is more appropriate. c) A lymphatic volume including the lymph node groups 1 to 16 of the Japanese classification. This volume must encompass the hepatic pedicle and the splenic hilum. In proximal tumors, it is possible to restrict the lover part of the CTV to the lymphatic volume, and therefore to avoid irradiation of large intestinal and renal volumes. In distal and proximal tumors, involvement of resection margins is of poor prognosis -a radiation boost must be delivered at this level. The CTV in tumors of the cardia should encompass the lover part of the thoracic esophagus and the corresponding posterior mediastinum. In

  20. Microinvasion of liver metastases from colorectal cancer: predictive factors and application for determining clinical target volume

    International Nuclear Information System (INIS)

    Qian, Yang; Zeng, Zhao-Chong; Ji, Yuan; Xiao, Yin-Ping

    2015-01-01

    This study evaluates the microscopic characteristics of liver metastases from colorectal cancer (LMCRC) invasion and provides a reference for expansion from gross tumor volume (GTV) to clinical targeting volume (CTV). Data from 129 LMCRC patients treated by surgical resection at our hospital between January 2008 and September 2009 were collected for study. Tissue sections used for pathology and clinical data were reviewed. Patient information used for the study included gender, age, original tumor site, number of tumors, tumor size, levels of carcinoembryonic antigen (CEA) and carbohydrate antigen 199 (CA199), synchronous or metachronous liver metastases, and whether patients received chemotherapy. The distance of liver microinvasion from the tumor boundary was measured microscopically by two senior pathologists. Of 129 patients evaluated, 81 (62.8 %) presented microinvasion distances from the tumor boundary ranging between 1.0 − 7.0 mm. A GTV-to-CTV expansion of 5, 6.7, or 7.0 mm was required to provide a 95, 99, or 100 % probability, respectively, of obtaining clear resection margins by microscopic observation. The extent of invasion was not related to gender, age, synchronous or metachronous liver metastases, tumor size, CA199 level, or chemotherapy. The extent of invasion was related to original tumor site, CEA level, and number of tumors. A scoring system was established based on the latter three positive predictors. Using this system, an invasion distance less than 3 mm was measured in 93.4 % of patients with a score of ≤1 point, but in only 85.7 % of patients with a score of ≤2 points. The extent of tumor invasion in our LMCRC patient cohort correlated with original tumor site, CEA level, and number of tumors. These positive predictors may potentially be used as a scoring system for determining GTV-to-CTV expansion

  1. Predictive and prognostic value of tumor volume and its changes during radical radiotherapy of stage III non-small cell lung cancer. A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Kaesmann, Lukas [University of Luebeck, Department of Radiation Oncology, Luebeck (Germany); Niyazi, Maximilian; Fleischmann, Daniel [LMU Munich, Department of Radiation Oncology, Munich (Germany); German Cancer Consortium (DKTK), partner site Munich, Munich (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); Blanck, Oliver; Baumann, Rene [University Medical Center Schleswig-Holstein, Department of Radiation Oncology, Kiel (Germany); Baues, Christian; Klook, Lisa; Rosenbrock, Johannes; Trommer-Nestler, Maike [University Hospital of Cologne, Department of Radiotherapy, Cologne (Germany); Dobiasch, Sophie [Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany); Eze, Chukwuka [LMU Munich, Department of Radiation Oncology, Munich (Germany); Gauer, Tobias; Goy, Yvonne [University Medical Center Hamburg-Eppendorf, Department of Radiotherapy and Radio-Oncology, Hamburg (Germany); Giordano, Frank A.; Sautter, Lisa [University Medical Center Mannheim, Department of Radiation Oncology, Mannheim (Germany); Hausmann, Jan [University Medical Center Duesseldorf, Department of Radiation Oncology, Duesseldorf (Germany); Henkenberens, Christoph [Hannover Medical School, Department of Radiation and Special Oncology, Hannover (Germany); Kaul, David; Thieme, Alexander H. [Charite School of Medicine and University Hospital, Campus Virchow-Klinikum, Department of Radiation Oncology, Berlin (Germany); Krug, David; Schmitt, Daniela [University Hospital Heidelberg and National Center for Radiation Research in Oncology (NCRO) and Heidelberg Institute for Radiation Oncology (HIRO), Department of Radiation Oncology, Heidelberg (Germany); Maeurer, Matthias [University Medical Center Jena, Department of Radiation Oncology, Jena (Germany); Panje, Cedric M. [Kantonsspital St. Gallen, Department of Radiation Oncology, St. Gallen (Switzerland); Suess, Christoph [University Medical Center Regensburg, Department of Radiation Oncology, Regensburg (Germany); Ziegler, Sonia [University Medical Center Erlangen, Department of Radiation Oncology, Erlangen (Germany); Ebert, Nadja [University Medical Center Dresden, Department of Radiation Oncology, Dresden (Germany); OncoRay - National Center for Radiation Research in Oncology, Dresden (Germany); Medenwald, Daniel [Martin Luther University Halle-Wittenberg, Department of Radiation Oncology, Faculty of Medicine, Halle (Germany); Ostheimer, Christian [Martin Luther University Halle-Wittenberg, Department of Radiation Oncology, Faculty of Medicine, Halle (Germany); Klinik und Poliklinik fuer Strahlentherapie, Universitaetsklinikum Halle (Saale) (Germany); Collaboration: Young DEGRO Trial Group

    2018-02-15

    Lung cancer remains the leading cause of cancer-related mortality worldwide. Stage III non-small cell lung cancer (NSCLC) includes heterogeneous presentation of the disease including lymph node involvement and large tumour volumes with infiltration of the mediastinum, heart or spine. In the treatment of stage III NSCLC an interdisciplinary approach including radiotherapy is considered standard of care with acceptable toxicity and improved clinical outcome concerning local control. Furthermore, gross tumour volume (GTV) changes during definitive radiotherapy would allow for adaptive replanning which offers normal tissue sparing and dose escalation. A literature review was conducted to describe the predictive value of GTV changes during definitive radiotherapy especially focussing on overall survival. The literature search was conducted in a two-step review process using PubMed registered /Medline registered with the key words ''stage III non-small cell lung cancer'' and ''radiotherapy'' and ''tumour volume'' and ''prognostic factors''. After final consideration 17, 14 and 9 studies with a total of 2516, 784 and 639 patients on predictive impact of GTV, GTV changes and its impact on overall survival, respectively, for definitive radiotherapy for stage III NSCLC were included in this review. Initial GTV is an important prognostic factor for overall survival in several studies, but the time of evaluation and the value of histology need to be further investigated. GTV changes during RT differ widely, optimal timing for re-evaluation of GTV and their predictive value for prognosis needs to be clarified. The prognostic value of GTV changes is unclear due to varying study qualities, re-evaluation time and conflicting results. The main findings were that the clinical impact of GTV changes during definitive radiotherapy is still unclear due to heterogeneous study designs with varying quality

  2. Target volumes in gastric cancer radiation therapy; Les volumes-cibles de la radiotherapie des adenocarcinomes gastriques

    Energy Technology Data Exchange (ETDEWEB)

    Caudry, M.; Maire, J.P. [Hopital Saint Andre, Service de Cancerologie, 33 - Bordeaux (France); Ratoanina, J.L.; Escarmant, P. [Hopital Clarac, Service de Radiotherapie et de Cancerologie, 97 - Fort de France (France)

    2001-10-01

    The spread of gastric adenocarcinoma may follow three main patterns: hemato-genic, lymphatic and intraperitoneal. A GTV should be considered in preoperative or exclusive radiation therapy. After non-radical surgery, a 'residual GTV' will be defined with the help of the surgeon. The CTV encompasses three intricated volumes. a) A 'tumor bed' volume. After radical surgery, local recurrences appear as frequent as distant metastases. The risk depends upon the depth of parietal invasion and the nodal status. Parietal infiltration may extend beyond macroscopic limits of the tumor, especially in dinitis plastica. Therefore this volume will include: the tumor and the remaining stomach or their 'bed of resection', a part of the transverse colon, the duodenum, the pancreas and the troncus of the portal vein. In postoperative RT, this CTV also includes the jejuno-gastric or jejuno-esophageal anastomosis. b) A peritoneal volume. For practical purposes, two degrees of spread must be considered: (1) contiguous microscopic extension from deeply invasive T3 and T4 tumors, that remain amenable to local sterilization with doses of 45-50 Gy, delivered in a CTV including the peritoneal cavity at the level of the gastric bed, and under the parietal incision; (2) true 'peritoneal carcinomatosis', with widespread seeds, where chemotherapy (systemic or intraperitoneal) is more appropriate. c) A lymphatic volume including the lymph node groups 1 to 16 of the Japanese classification. This volume must encompass the hepatic pedicle and the splenic hilum. In proximal tumors, it is possible to restrict the lover part of the CTV to the lymphatic volume, and therefore to avoid irradiation of large intestinal and renal volumes. In distal and proximal tumors, involvement of resection margins is of poor prognosis -a radiation boost must be delivered at this level. The CTV in tumors of the cardia should encompass the lover part of the thoracic esophagus and the

  3. Adaptive Radiotherapy for Locally Advanced Non–Small-Cell Lung Cancer Does Not Underdose the Microscopic Disease and has the Potential to Increase Tumor Control

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Richter, Anne; Wilbert, Juergen; Flentje, Michael; Partridge, Mike

    2011-01-01

    Purpose: To evaluate doses to the microscopic disease (MD) in adaptive radiotherapy (ART) for locally advanced non–small-cell lung cancer (NSCLC) and to model tumor control probability (TCP). Methods and Materials: In a retrospective planning study, three-dimensional conformal treatment plans for 13 patients with locally advanced NSCLC were adapted to shape and volume changes of the gross tumor volume (GTV) once or twice during conventionally fractionated radiotherapy with total doses of 66 Gy; doses in the ART plans were escalated using an iso-mean lung dose (MLD) approach compared to non-adapted treatment. Dose distributions to the volumes of suspect MD were simulated for a scenario with synchronous shrinkage of the MD and GTV and for a scenario of a stationary MD despite GTV shrinkage; simulations were performed using deformable image registration. TCP calculations considering doses to the GTV and MD were performed using three different models. Results: Coverage of the MD at 50 Gy was not compromised by ART. Coverage at 60 Gy in the scenario of a stationary MD was significantly reduced from 92% ± 10% to 73% ± 19% using ART; however, the coverage was restored by iso-MLD dose escalation. Dose distributions in the MD were sufficient to achieve a TCP >80% on average in all simulation experiments, with the clonogenic cell density the major factor influencing TCP. The combined TCP for the GTV and MD was 19.9% averaged over all patients and TCP models in non-adaptive treatment with 66 Gy. Iso-MLD dose escalation achieved by ART increased the overall TCP by absolute 6% (adapting plan once) and by 8.7% (adapting plan twice) on average. Absolute TCP values were significantly different between the TCP models; however, all TCP models suggested very similar TCP increase by using ART. Conclusions: Adaptation of radiotherapy to the shrinking GTV did not compromise dose coverage of volumes of suspect microscopic disease and has the potential to increase TCP by >40% compared

  4. SU-E-J-182: A Feasibility Study Evaluating Automatic Identification of Gross Tumor Volume for Breast Cancer Radiotherapy Using Dynamic Contrast-Enhanced MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C; Horton, J; Yin, F; Blitzblau, R; Palta, M; Chang, Z [Duke University Medical Center, Durham, NC (United States)

    2014-06-01

    Purpose: To develop a computerized pharmacokinetic model-free Gross Tumor Volume (GTV) segmentation method based on dynamic contrastenhanced MRI (DCE-MRI) data that can improve physician GTV contouring efficiency. Methods: 12 patients with biopsy-proven early stage breast cancer with post-contrast enhanced DCE-MRI images were analyzed in this study. A fuzzy c-means (FCM) clustering-based method was applied to segment 3D GTV from pre-operative DCE-MRI data. A region of interest (ROI) is selected by a clinician/physicist, and the normalized signal evolution curves were calculated by dividing the signal intensity enhancement value at each voxel by the pre-contrast signal intensity value at the corresponding voxel. Three semi-quantitative metrics were analyzed based on normalized signal evolution curves: initial Area Under signal evolution Curve (iAUC), Immediate Enhancement Ratio (IER), and Variance of Enhancement Slope (VES). The FCM algorithm wass applied to partition ROI voxels into GTV voxels and non-GTV voxels by using three analyzed metrics. The partition map for the smaller cluster is then generated and binarized with an automatically calculated threshold. To reduce spurious structures resulting from background, a labeling operation was performed to keep the largest three-dimensional connected component as the identified target. Basic morphological operations including hole-filling and spur removal were useutilized to improve the target smoothness. Each segmented GTV was compared to that drawn by experienced radiation oncologists. An agreement index was proposed to quantify the overlap between the GTVs identified using two approaches and a thershold value of 0.4 is regarded as acceptable. Results: The GTVs identified by the proposed method were overlapped with the ones drawn by radiation oncologists in all cases, and in 10 out of 12 cases, the agreement indices were above the threshold of 0.4. Conclusion: The proposed automatic segmentation method was shown to

  5. SU-E-J-182: A Feasibility Study Evaluating Automatic Identification of Gross Tumor Volume for Breast Cancer Radiotherapy Using Dynamic Contrast-Enhanced MR Imaging

    International Nuclear Information System (INIS)

    Wang, C; Horton, J; Yin, F; Blitzblau, R; Palta, M; Chang, Z

    2014-01-01

    Purpose: To develop a computerized pharmacokinetic model-free Gross Tumor Volume (GTV) segmentation method based on dynamic contrastenhanced MRI (DCE-MRI) data that can improve physician GTV contouring efficiency. Methods: 12 patients with biopsy-proven early stage breast cancer with post-contrast enhanced DCE-MRI images were analyzed in this study. A fuzzy c-means (FCM) clustering-based method was applied to segment 3D GTV from pre-operative DCE-MRI data. A region of interest (ROI) is selected by a clinician/physicist, and the normalized signal evolution curves were calculated by dividing the signal intensity enhancement value at each voxel by the pre-contrast signal intensity value at the corresponding voxel. Three semi-quantitative metrics were analyzed based on normalized signal evolution curves: initial Area Under signal evolution Curve (iAUC), Immediate Enhancement Ratio (IER), and Variance of Enhancement Slope (VES). The FCM algorithm wass applied to partition ROI voxels into GTV voxels and non-GTV voxels by using three analyzed metrics. The partition map for the smaller cluster is then generated and binarized with an automatically calculated threshold. To reduce spurious structures resulting from background, a labeling operation was performed to keep the largest three-dimensional connected component as the identified target. Basic morphological operations including hole-filling and spur removal were useutilized to improve the target smoothness. Each segmented GTV was compared to that drawn by experienced radiation oncologists. An agreement index was proposed to quantify the overlap between the GTVs identified using two approaches and a thershold value of 0.4 is regarded as acceptable. Results: The GTVs identified by the proposed method were overlapped with the ones drawn by radiation oncologists in all cases, and in 10 out of 12 cases, the agreement indices were above the threshold of 0.4. Conclusion: The proposed automatic segmentation method was shown to

  6. Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman packing: Clinical experience and dose-volume histogram analysis

    International Nuclear Information System (INIS)

    Weitmann, Hajo Dirk; Poetter, Richard; Waldhaeusl, Claudia; Nechvile, Elisabeth; Kirisits, Christian; Knocke, Tomas Hendrik

    2005-01-01

    Purpose: The aim of this study was to evaluate dose distribution within uterus (clinical target volume [CTV]) and tumor (gross tumor volume [GTV]) and the resulting clinical outcome based on systematic three-dimensional treatment planning with dose-volume adaptation. Dose-volume assessment and adaptation in organs at risk and its impact on side effects were investigated in parallel. Methods and Materials: Sixteen patients with either locally confined endometrial carcinoma (n = 15) or adenocarcinoma of uterus and ovaries after bilateral salpingo-oophorectomy (n = 1) were included. Heyman packing was performed with mean 11 Norman-Simon applicators (3-18). Three-dimensional treatment planning based on computed tomography (n = 29) or magnetic resonance imaging (n = 18) was done in all patients with contouring of CTV, GTV, and organs at risk. Dose-volume adaptation was achieved by dwell location and time variation (intensity modulation). Twelve patients treated with curative intent received five to seven fractions of high-dose-rate brachytherapy (7 Gy per fraction) corresponding to a total dose of 60 Gy (2 Gy per fraction and α/β of 10 Gy) to the CTV. Four patients had additional external beam radiotherapy (range, 10-40 Gy). One patient had salvage brachytherapy and 3 patients were treated with palliative intent. A dose-volume histogram analysis was performed in all patients. On average, 68% of the CTV and 92% of the GTV were encompassed by the 60 Gy reference volume. Median minimum dose to 90% of CTV and GTV (D90) was 35.3 Gy and 74 Gy, respectively. Results: All patients treated with curative intent had complete remission (12/12). After a median follow-up of 47 months, 5 patients are alive without tumor. Seven patients died without tumor from intercurrent disease after median 22 months. The patient with salvage treatment had a second local recurrence after 27 months and died of endometrial carcinoma after 57 months. In patients treated with palliative intent

  7. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    Science.gov (United States)

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  8. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non–Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage?

    Directory of Open Access Journals (Sweden)

    Naseer Ahmed

    2017-03-01

    Full Text Available Introduction: Modern radiotherapy with 4-dimensional computed tomographic (4D-CT image acquisition for non–small cell lung cancer (NSCLC captures respiratory-mediated tumor motion to provide more accurate target delineation. This study compares conventional 3-dimensional (3D conformal radiotherapy (3DCRT plans generated with standard helical free-breathing CT (FBCT with plans generated on 4D-CT contoured volumes to determine whether target volume coverage is affected. Materials and methods: Fifteen patients with stage I to IV NSCLC were enrolled in the study. Free-breathing CT and 4D-CT data sets were acquired at the same simulation session and with the same immobilization. Gross tumor volume (GTV for primary and/or nodal disease was contoured on FBCT (GTV_3D. The 3DCRT plans were obtained, and the patients were treated according to our institution’s standard protocol using FBCT imaging. Gross tumor volume was contoured on 4D-CT for primary and/or nodal disease on all 10 respiratory phases and merged to create internal gross tumor volume (IGTV_4D. Clinical target volume margin was 5 mm in both plans, whereas planning tumor volume (PTV expansion was 1 cm axially and 1.5 cm superior/inferior for FBCT-based plans to incorporate setup errors and an estimate of respiratory-mediated tumor motion vs 8 mm isotropic margin for setup error only in all 4D-CT plans. The 3DCRT plans generated from the FBCT scan were copied on the 4D-CT data set with the same beam parameters. GTV_3D, IGTV_4D, PTV, and dose volume histogram from both data sets were analyzed and compared. Dice coefficient evaluated PTV similarity between FBCT and 4D-CT data sets. Results: In total, 14 of the 15 patients were analyzed. One patient was excluded as there was no measurable GTV. Mean GTV_3D was 115.3 cm 3 and mean IGTV_4D was 152.5 cm 3 ( P = .001. Mean PTV_3D was 530.0 cm 3 and PTV_4D was 499.8 cm 3 ( P = .40. Both gross primary and nodal disease analyzed separately were larger

  9. A phantom study of tumor contouring on PET imaging

    International Nuclear Information System (INIS)

    Chen Song; Li Xuena; Li Yaming; Yin Yafu; Li Na; Han Chunqi

    2010-01-01

    Objective: To explore an algorithm to define the threshold value for tumor contouring on 18 F-fluorodeoxyglucose (FDG) PET imaging. Methods: A National Electrical Manufacturing Association (NEMA)NU 2 1994 PET phantom with 5 spheres of different diameters were filled with 18 F-FDG. Seven different sphere-to-background ratios were obtained and the phantom was scanned by Discovery LS 4. For each sphere-to-background ratio, the maximum standardized uptake value (SUV max ) of each sphere, the SUV of the border of each sphere (SUV border ), the mean SUV of a 1 cm region of background (SUV bg ) and the diameter (D) of each sphere were measured. SPSS 13.0 software was used for curve fitting and regression analysis to obtain the threshold algorithm. The calculated thresholds were applied to delineate 29 pathologically confirmed lung cancer lesions on PET images and the obtained volumes were compared with the volumes contoured on CT images in lung window. Results: The algorithm for defining contour threshold is TH% = 33.1% + 46.8% SUV bg /SUV max + 13.9%/D (r = 0.994) by phantom studies. For 29 lung cancer lesions, the average gross tumor volumes (GTV) delineated on PET and CT are (7.36±1.62) ml and (8.31±2.05) ml, respectively (t = -1.26, P>0.05). Conclusion: The proposed threshold algorithm for tumor contouring on PET image could provide comparable GTV with CT. (authors)

  10. TU-G-BRA-05: Predicting Volume Change of the Tumor and Critical Structures Throughout Radiation Therapy by CT-CBCT Registration with Local Intensity Correction

    Energy Technology Data Exchange (ETDEWEB)

    Park, S; Robinson, A; Kiess, A; Quon, H; Wong, J; Lee, J [Johns Hopkins University, Baltimore, MD (United States); Plishker, W [IGI Technologies Inc., College Park, MD (United States); Shekhar, R [IGI Technologies Inc., College Park, MD (United States); Children’s National Medical Center, Washington, D.C. (United States)

    2015-06-15

    Purpose: The purpose of this study is to develop an accurate and effective technique to predict and monitor volume changes of the tumor and organs at risk (OARs) from daily cone-beam CTs (CBCTs). Methods: While CBCT is typically used to minimize the patient setup error, its poor image quality impedes accurate monitoring of daily anatomical changes in radiotherapy. Reconstruction artifacts in CBCT often cause undesirable errors in registration-based contour propagation from the planning CT, a conventional way to estimate anatomical changes. To improve the registration and segmentation accuracy, we developed a new deformable image registration (DIR) that iteratively corrects CBCT intensities using slice-based histogram matching during the registration process. Three popular DIR algorithms (hierarchical B-spline, demons, optical flow) augmented by the intensity correction were implemented on a graphics processing unit for efficient computation, and their performances were evaluated on six head and neck (HN) cancer cases. Four trained scientists manually contoured nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs for each case, to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial software, VelocityAI (Varian Medical Systems Inc.). Results: Manual contouring showed significant variations, [-76, +141]% from the mean of all four sets of contours. The volume differences (mean±std in cc) between the average manual segmentation and four automatic segmentations are 3.70±2.30(B-spline), 1.25±1.78(demons), 0.93±1.14(optical flow), and 4.39±3.86 (VelocityAI). In comparison to the average volume of the manual segmentations, the proposed approach significantly reduced the estimation error by 9%(B-spline), 38%(demons), and 51%(optical flow) over the conventional mutual information based method (VelocityAI). Conclusion: The proposed CT-CBCT registration with local CBCT intensity correction

  11. SU-F-R-54: CT-Texture Based Early Tumor Treatment Response Assessment During Radiation Therapy Delivery: Small Cell Versus Non-Small Cell Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J; Gore, E; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: Tumor treatment response may potentially be assessed during radiation therapy (RT) by analyzing changes in CT-textures. We investigated the different early RT-responses between small cell (SCLC) and non-small cell lung cancer (NSCLC) as assessed by CT-texture. Methods: Daily diagnostic-quality CT acquired during routine CT-guided RT using a CT-on-Rails for 13-NSCLC and 5-SCLC patients were analyzed. These patient had ages ranging from 45–78 and 38–63 years, respectively, for NSCLC and SCLC groups, and tumor-stages ranging from T2-T4, and were treated with either RT or chemotherapy and RT with 45–66Gy/ 20–34 fractions. Gross-tumor volume (GTV) contour was generated on each daily CT by populating GTV contour from simulation to daily CTs with manual editing if necessary. CT-texture parameters, such as Hounsfield Unit (HU) histogram, mean HU, skewness, kurtosis, entropy, and short-run high-gray level emphasis (SRHGLE), were calculated in GTV from each daily CT-set using an in house software tool. Difference in changes of these texture parameters during RT between NSCLC and SCLC was analyzed and compared with GTV volume changes. Results: Radiation-induced changes in CT-texture were different between SCLC and NSCLC. Average changes from first to the last fractions for NSCLC and SCLC in GTV were 28±10(12–44) and 30±15(11–47) HU (mean HU reduction), 12.7% and 18.3% (entropy), 50% and 55% (SRHGLE), 19% and 22% (kurtosis), and 5.2% and 22% (skewness), respectively. Good correlation in kurtosis changes and GTV was seen (R{sup 2}=0.8923) for SCLC, but not for NSCLC (R{sup 2}=0.4748). SCLC had better correlations between GTV volume reduction and entropy (SCLC R{sup 2}=0.847; NSCLC R{sup 2}=0.6485), skewness (SCLC R{sup 2}=0.935; NSCLC R{sup 2}=0.7666), or SRHGLE (SCLC R{sup 2}=0.9619; NSCLC R{sup 2}=0.787). Conclusion: NSCLC and SCLC exhibited different early RT-responses as assessed by CT-texture changes during RT-delivery. The observed larger changes in

  12. A Treatment Planning Comparison of Combined Photon-Proton Beams Versus Proton Beams-Only for the Treatment of Skull Base Tumors

    International Nuclear Information System (INIS)

    Feuvret, Loic; Noel, Georges; Weber, Damien C.; Pommier, Pascal; Ferrand, Regis; De Marzi, Ludovic; Dhermain, Frederic; Alapetite, Claire; Mammar, Hamid; Boisserie, Gilbert; Habrand, Jean-Louis; Mazeron, Jean-Jacques

    2007-01-01

    Purpose: To compare treatment planning between combined photon-proton planning (CP) and proton planning (PP) for skull base tumors, so as to assess the potential limitations of CP for these tumors. Methods and Materials: Plans for 10 patients were computed for both CP and PP. Prescribed dose was 67 cobalt Gray equivalent (CGE) for PP; 45 Gy (photons) and 22 CGE (protons) for CP. Dose-volume histograms (DVHs) were calculated for gross target volume (GTV), clinical target volume (CTV), normal tissues (NT), and organs at risk (OARs) for each plan. Results were analyzed using DVH parameters, inhomogeneity coefficient (IC), and conformity index (CI). Results: Mean doses delivered to the GTVs and CTVs with CP (65.0 and 61.7 CGE) and PP (65.3 and 62.2 Gy CGE) were not significantly different (p > 0.1 and p = 0.72). However, the dose inhomogeneity was drastically increased with CP, with a mean significant incremental IC value of 10.5% and CP of 6.8%, for both the GTV (p = 0.01) and CTV (p = 0.04), respectively. The CI 80% values for the GTV and CTV were significantly higher with PP compared with CP. Compared with CP, the use of protons only led to a significant reduction of NT and OAR irradiation, in the intermediate-to-low dose (≤80% isodose line) range. Conclusions: These results suggest that the use of CP results in levels of target dose conformation similar to those with PP. Use of PP significantly reduced the tumor dose inhomogeneity and the delivered intermediate-to-low dose to NT and OARs, leading us to conclude that this treatment is mainly appropriate for tumors in children

  13. Four-dimensional measurement of intrafractional respiratory motion of pancreatic tumors using a 256 multi-slice CT scanner

    International Nuclear Information System (INIS)

    Mori, Shinichiro; Hara, Ryusuke; Yanagi, Takeshi; Sharp, Gregory C.; Kumagai, Motoki; Asakura, Hiroshi; Kishimoto, Riwa; Yamada, Shigeru; Kandatsu, Susumu; Kamada, Tadashi

    2009-01-01

    Purpose: To quantify pancreas and pancreatic tumor movement due to respiratory motion using volumetric cine CT images. Materials and methods: Six patients with pancreatic tumors were scanned in cine mode with a 256 multi-slice CT scanner under free breathing conditions. Gross tumor volume (GTV) and pancreas were manually contoured on the CT data set by a radiation oncologist. Intrafractional respiratory movement of the GTV and pancreas was calculated, and the results were compared between the respiratory ungated and gated phases, which is a 30% duty cycle around exhalation. Results: Respiratory-induced organ motion was observed mainly in the anterior abdominal side than the posterior side. Average GTV displacement (ungated/gated phases) was 0.7 mm/0.2 mm in both the left and right directions, and 2.5 mm/0.9 mm in the anterior, 0.1 mm/0 mm in the posterior, and 8.9 mm/2.6 mm in the inferior directions. Average pancreas center of mass displacement relative to that at peak exhalation was mainly in the inferior direction, at 9.6 mm in the ungated phase and 2.3 mm in the gated phase. Conclusions: By allowing accurate determination of the margin, quantitative analysis of tumor and pancreas displacement provides useful information in treatment planning in all radiation approaches for pancreatic tumors.

  14. Targetting in atelectatic lung by positron emission tomography in non-small cell lung cancer patients treated with three-dimensional conformal radiation therapy

    International Nuclear Information System (INIS)

    Wang Kai; Wang Luhua; Liang Jun; Ou Guangfei; Lu Jima

    2006-01-01

    Objective: To investigate the potential benefit of incorporating fluorodeoxyglucose positron e- mission tomography (FDG PET) to delineate tire gross tumor volume(GTV) in patients with non-small cell lung cancer (NSCLC) complicated with atelectasis who are to be treated with three-dimensional conformal radiation therapy (3DCRT). Methods: Fourteen patients histopathologically proven as having NSCLC with image diagnosed as complicated with various degrees were studied in this study. All patients were scanned with both thoracic CT and thoracic or whole body PET. The GTV was delineated basing on both CT image and PET image (CT-GTV, PET- GTV) and the volume of each GTV(designated CT-GTV and PET-GTV) was compared by 3DCRT plan. Results: Each paired CT-GTV and PET-GTV was different from each other. All patients' GTV was reduced to an average of 27 cm 3 (20.4%) with median CT-PET of 133 cm 3 (90-180 cm 3 ) and median PET-GTV of 106 cm 3 , with a in- crease of 16.9%, 22 cm 3 ). The reduction of PET-GTV was due to PET could so differ cancer-induced atelectasis from gross tumor that it reduced the tarbet volume and spared more surrounding normal tissues. Conclusions: The incorporation of FDG PET data with gross tumor delineation is able to improve the accuracy of 3DCRT for non-small cell lung cancer patients complicated with atelectasis. (authors)

  15. Correlation between metabolic tumor volume and pathologic tumor volume in squamous cell carcinoma of the oral cavity

    International Nuclear Information System (INIS)

    Murphy, James D.; Chisholm, Karen M.; Daly, Megan E.; Wiegner, Ellen A.; Truong, Daniel; Iagaru, Andrei; Maxim, Peter G.; Loo, Billy W.; Graves, Edward E.; Kaplan, Michael J.; Kong, Christina; Le, Quynh-Thu

    2011-01-01

    Purpose: To explore the relationship between pathologic tumor volume and volume estimated from different tumor segmentation techniques on 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in oral cavity cancer. Materials and methods: Twenty-three patients with squamous cell carcinoma of the oral tongue had PET–CT scans before definitive surgery. Pathologic tumor volume was estimated from surgical specimens. Metabolic tumor volume (MTV) was defined from PET–CT scans as the volume of tumor above a given SUV threshold. Multiple SUV thresholds were explored including absolute SUV thresholds, relative SUV thresholds, and gradient-based techniques. Results: Multiple MTV’s were associated with pathologic tumor volume; however the correlation was poor (R 2 range 0.29–0.58). The ideal SUV threshold, defined as the SUV that generates an MTV equal to pathologic tumor volume, was independently associated with maximum SUV (p = 0.0005) and tumor grade (p = 0.024). MTV defined as a function of maximum SUV and tumor grade improved the prediction of pathologic tumor volume (R 2 = 0.63). Conclusions: Common SUV thresholds fail to predict pathologic tumor volume in head and neck cancer. The optimal technique that allows for integration of PET–CT with radiation treatment planning remains to be defined. Future investigation should incorporate biomarkers such as tumor grade into definitions of MTV.

  16. Lack of Correlation Between External Fiducial Positions and Internal Tumor Positions During Breath-Hold CT

    International Nuclear Information System (INIS)

    Hunjan, Sandeep; Starkschall, George; Prado, Karl; Dong Lei; Balter, Peter

    2010-01-01

    Purpose: For thoracic tumors, if four-dimensional computed tomography (4DCT) is unavailable, the internal margin can be estimated by use of breath-hold (BH) CT scans acquired at end inspiration (EI) and end expiration (EE). By use of external surrogates for tumor position, BH accuracy is estimated by minimizing the difference between respiratory extrema BH and mean equivalent-phase free breathing (FB) positions. We tested the assumption that an external surrogate for BH accuracy correlates with internal tumor positional accuracy during BH CT. Methods and Materials: In 16 lung cancer patients, 4DCT images, as well as BH CT images at EI and EE, were acquired. Absolute differences between BH and mean equivalent-phase (FB) positions were calculated for both external fiducials and gross tumor volume (GTV) centroids as metrics of external and internal BH accuracy, respectively, and the results were correlated. Results: At EI, the absolute difference between mean FB and BH fiducial displacement correlated poorly with the absolute difference between FB and BH GTV centroid positions on CT images (R 2 = 0.11). Similarly, at EE, the absolute difference between mean FB and BH fiducial displacements correlated poorly with the absolute difference between FB and BH GTV centroid positions on CT images (R 2 = 0.18). Conclusions: External surrogates for tumor position are not an accurate metric of BH accuracy for lung cancer patients. This implies that care should be taken when using such an approach because an incorrect internal margin could be generated.

  17. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.

    Directory of Open Access Journals (Sweden)

    Lu Guo

    Full Text Available To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors.A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT and tri-modality (MRI/CT/PET image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV, the average distance between surface and centroid (ADSC, and the local standard deviation (SDlocal. Analysis of COV was also performed to evaluate intra-observer volume variation.The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09 and 0.07(± 0.01 for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05 with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm and patient 3 (from 0.42 cm to 0.36 cm with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00 with the tri-modality method as compared with using the dual-modality method.With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.

  18. International Spine Radiosurgery Consortium Consensus Guidelines for Target Volume Definition in Spinal Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Cox, Brett W.; Spratt, Daniel E.; Lovelock, Michael; Bilsky, Mark H.; Lis, Eric; Ryu, Samuel; Sheehan, Jason; Gerszten, Peter C.; Chang, Eric; Gibbs, Iris; Soltys, Scott; Sahgal, Arjun; Deasy, Joe; Flickinger, John; Quader, Mubina; Mindea, Stefan

    2012-01-01

    Purpose: Spinal stereotactic radiosurgery (SRS) is increasingly used to manage spinal metastases. However, target volume definition varies considerably and no consensus target volume guidelines exist. This study proposes consensus target volume definitions using common scenarios in metastatic spine radiosurgery. Methods and Materials: Seven radiation oncologists and 3 neurological surgeons with spinal radiosurgery expertise independently contoured target and critical normal structures for 10 cases representing common scenarios in metastatic spine radiosurgery. Each set of volumes was imported into the Computational Environment for Radiotherapy Research. Quantitative analysis was performed using an expectation maximization algorithm for Simultaneous Truth and Performance Level Estimation (STAPLE) with kappa statistics calculating agreement between physicians. Optimized confidence level consensus contours were identified using histogram agreement analysis and characterized to create target volume definition guidelines. Results: Mean STAPLE agreement sensitivity and specificity was 0.76 (range, 0.67-0.84) and 0.97 (range, 0.94-0.99), respectively, for gross tumor volume (GTV) and 0.79 (range, 0.66-0.91) and 0.96 (range, 0.92-0.98), respectively, for clinical target volume (CTV). Mean kappa agreement was 0.65 (range, 0.54-0.79) for GTV and 0.64 (range, 0.54-0.82) for CTV (P<.01 for GTV and CTV in all cases). STAPLE histogram agreement analysis identified optimal consensus contours (80% confidence limit). Consensus recommendations include that the CTV should include abnormal marrow signal suspicious for microscopic invasion and an adjacent normal bony expansion to account for subclinical tumor spread in the marrow space. No epidural CTV expansion is recommended without epidural disease, and circumferential CTVs encircling the cord should be used only when the vertebral body, bilateral pedicles/lamina, and spinous process are all involved or there is extensive metastatic

  19. Clinical variability of target volume description and treatment plans in conformal radiotherapy in muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Logue, John P; Sharrock, Carole L; Cowan, Richard A.; Read, Graham; Marrs, Julie; Mott, David

    1996-01-01

    Purpose/Objective: The delineation of tumor and the production of a treatment plan to encompass this is the prime step in radiotherapy planning. Conformal radiotherapy is developing rapidly and although plentiful research has addressed the implementation of the radiotherapy prescription, scant attention has been made to the fundamental step of production, by the clinician, of an appropriate target volume. As part of an ongoing randomized trial of conformal radiotherapy, in bladder cancer, we have therefore assessed the interphysician variability of radiologists and radiation oncologists (RO) in assessing Gross Tumor Volume(GTV) (ICRU 50) and the adherence of the radiation oncologists to the study protocol of producing a Planning Target Volume (PTV). Materials and Methods: Four patients with T3 carcinoma of bladder who had been entered into the trial were identified. The clinical details, MR scans and CT scans were made available. Eight RO and 3 dedicated diagnostic oncology radiologists were invited to directly outline the GTV onto CT images on a planning computer consul. The RO in addition created a PTV following the trial protocol of 15mm margin around the GTV. Three RO sub-specialized in Urological radiotherapy; all RO had completed training. Volumes were produced, for each clinician, and comparison of these volumes and their isocenters were analyzed. In addition the margins allowed were measured and compared. Results: There was a maximum variation ratio (largest to smallest volume outlined) of the GTV in the four cases of 1.74 among radiologists and 3.74 among oncologists. There was a significant difference (p=0.01) in mean GTV between RO and the radiologists. The mean GTV of the RO exceeded the radiologists by a factor of 1.29 with a mean difference of 13.4 cm 3 The between observer variance within speciality comprised only 9.9% of the total variance in the data having accounted for case and observers speciality. The variation ratio in PTV among oncologists

  20. Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT

    International Nuclear Information System (INIS)

    Weiss, Elisabeth; Wijesooriya, Krishni; Dill, S. Vaughn; Keall, Paul J.

    2007-01-01

    Purpose: To investigate temporospatial variations of tumor and normal tissue during respiration in lung cancer patients. Methods and Materials: In 14 patients, gross tumor volume (GTV) and normal tissue structures were manually contoured on four-dimensional computed tomography (4D-CT) scans. Structures were evaluated for volume changes, centroid (center of mass) motion, and phase dependence of variations relative to inspiration. Only volumetrically complete structures were used for analysis (lung in 2, heart in 8, all other structures in >10 patients). Results: During respiration, the magnitude of contoured volumes varied up to 62.5% for GTVs, 25.5% for lungs, and 12.6% for hearts. The range of maximum three-dimensional centroid movement for individual patients was 1.3-24.0 mm for GTV, 2.4-7.9 mm for heart, 5.2-12.0 mm for lungs, 0.3-5.5 mm for skin markers, 2.9-10.0 mm for trachea, and 6.6-21.7 mm for diaphragm. During respiration, the centroid positions of normal structures varied relative to the centroid position of the respective GTV by 1.5-8.1 mm for heart, 2.9-9.3 mm for lungs, 1.2-9.2 mm for skin markers, 0.9-7.1 mm for trachea, and 2.7-16.4 mm for diaphragm. Conclusion: Using 4D-CT, volumetric changes, positional alterations as well as changes in the position of contoured structures relative to the GTV were observed with large variations between individual patients. Although the interpretation of 4D-CT data has considerable uncertainty because of 4D-CT artifacts, observer variations, and the limited acquisition time, the findings might have a significant impact on treatment planning

  1. CT and MRI matching for radiotherapy planning in head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rasch, C; Keus, R; Touw, A; Lebesque, J; Van Herk, M [Nederlands Kanker Inst. ` Antoni van Leeuwenhoekhuis` , Amsterdam (Netherlands)

    1995-12-01

    The objective of this study was to evaluate the impact of matched CT and MRI information on target delineation in radiotherapy planning for head and neck tumors. MRI images of eight patients with head and neck cancer in supine position, not necessarily obtained in radiotherapy treatment position were matched to the CT scans made in radiotherapy position using automatic three-dimensional chamfer-matching of bony structures. Four independent observers delineated the Gross Tumor Volume (GTV) in CT scans and axial and sagittal MR scans. The GTV`s were compared, overlapping volumes and non-overlapping volumes between the different datasets and observers were determined. In all patients a good match of CT and MRI information was accomplished in the head region. The combined information provided a better visualisation of the GTV, oedema and normal tissues compared with CT or MRI alone. Determination of overlapping and non-overlapping volumes proved to be a valuable tool to measure uncertainties in the determination of the GTV. CT-MRI matching in patients with head and neck tumors is feasible and makes a more accurate irradiation with higher tumor doses and less normal tissue complications possible. Remaining uncertainties in the determination of the GTV can be quantified using the combined information of MRI and CT.

  2. Anatomic and Pathologic Variability During Radiotherapy for a Hybrid Active Breath-Hold Gating Technique

    International Nuclear Information System (INIS)

    Glide-Hurst, Carri K.; Gopan, Ellen; Hugo, Geoffrey D.

    2010-01-01

    Purpose: To evaluate intra- and interfraction variability of tumor and lung volume and position using a hybrid active breath-hold gating technique. Methods and Materials: A total of 159 repeat normal inspiration active breath-hold CTs were acquired weekly during radiotherapy for 9 lung cancer patients (12-21 scans per patient). A physician delineated the gross tumor volume (GTV), lungs, and spinal cord on the first breath-hold CT, and contours were propagated semiautomatically. Intra- and interfraction variability of tumor and lung position and volume were evaluated. Tumor centroid and border variability were quantified. Results: On average, intrafraction variability of lung and GTV centroid position was 0.1). Increases in free-breathing tidal volume were associated with increases in breath-hold ipsilateral lung volume (p < 0.05). Conclusions: The breath-hold technique was reproducible within 2 mm during each fraction. Interfraction variability of GTV position and shape was substantial because of tumor volume and breath-hold lung volume change during therapy. These results support the feasibility of a hybrid breath-hold gating technique and suggest that online image guidance would be beneficial.

  3. A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications

    NARCIS (Netherlands)

    Johnson, Corinne; Price, Gareth; Khalifa, Jonathan; Faivre-Finn, Corinne; Dekker, Andre; Moore, Christopher; van Herk, Marcel

    2017-01-01

    The gross tumour volume (GTV) is predictive of clinical outcome and consequently features in many machine-learned models. 4D-planning, however, has prompted substitution of the GTV with the internal gross target volume (iGTV). We present and validate a method to synthesise GTV data from the iGTV,

  4. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.

    Science.gov (United States)

    Sloth Møller, Ditte; Knap, Marianne Marquard; Nyeng, Tine Bisballe; Khalil, Azza Ahmed; Holt, Marianne Ingerslev; Kandi, Maria; Hoffmann, Lone

    2017-11-01

    Minimizing the planning target volume (PTV) while ensuring sufficient target coverage during the entire respiratory cycle is essential for free-breathing radiotherapy of lung cancer. Different methods are used to incorporate the respiratory motion into the PTV. Fifteen patients were analyzed. Respiration can be included in the target delineation process creating a respiratory GTV, denoted iGTV. Alternatively, the respiratory amplitude (A) can be measured based on the 4D-CT and A can be incorporated in the margin expansion. The GTV expanded by A yielded GTV + resp, which was compared to iGTV in terms of overlap. Three methods for PTV generation were compared. PTV del (delineated iGTV expanded to CTV plus PTV margin), PTV σ (GTV expanded to CTV and A was included as a random uncertainty in the CTV to PTV margin) and PTV ∑ (GTV expanded to CTV, succeeded by CTV linear expansion by A to CTV + resp, which was finally expanded to PTV ∑ ). Deformation of tumor and lymph nodes during respiration resulted in volume changes between the respiratory phases. The overlap between iGTV and GTV + resp showed that on average 7% of iGTV was outside the GTV + resp implying that GTV + resp did not capture the tumor during the full deformable respiration cycle. A comparison of the PTV volumes showed that PTV σ was smallest and PTV Σ largest for all patients. PTV σ was in mean 14% (31 cm 3 ) smaller than PTV del , while PTV del was 7% (20 cm 3 ) smaller than PTV Σ . PTV σ yields the smallest volumes but does not ensure coverage of tumor during the full respiratory motion due to tumor deformation. Incorporating the respiratory motion in the delineation (PTV del ) takes into account the entire respiratory cycle including deformation, but at the cost, however, of larger treatment volumes. PTV Σ should not be used, since it incorporates the disadvantages of both PTV del and PTV σ .

  5. SU-G-BRA-04: Simulation of Errors in Maximal Intensity Projection (MIP)-Based Lung Tumor Internal Target Volumes (ITV) Using Real-Time 2D MRI and Deformable Image Registration Based Lung Tumor Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D; Kishan, A; Santhanam, A; Min, Y; O’Connell, D; Lamb, J; Cao, M; Agazaryan, N; Yang, Y; Lee, P; Low, D [University of California, Los Angeles, Ca (United States)

    2016-06-15

    Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the first frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric

  6. SU-G-BRA-04: Simulation of Errors in Maximal Intensity Projection (MIP)-Based Lung Tumor Internal Target Volumes (ITV) Using Real-Time 2D MRI and Deformable Image Registration Based Lung Tumor Tracking

    International Nuclear Information System (INIS)

    Thomas, D; Kishan, A; Santhanam, A; Min, Y; O’Connell, D; Lamb, J; Cao, M; Agazaryan, N; Yang, Y; Lee, P; Low, D

    2016-01-01

    Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the first frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric

  7. Correlation of primary middle and distal esophageal cancers motion with surrounding tissues using four-dimensional computed tomography.

    Science.gov (United States)

    Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Guo, Bing; Shang, Dongping

    2016-01-01

    To investigate the correlation of gross tumor volume (GTV) motion with the structure of interest (SOI) motion and volume variation for middle and distal esophageal cancers using four-dimensional computed tomography (4DCT). Thirty-three patients with middle or distal esophageal carcinoma underwent 4DCT simulation scan during free breathing. All image sets were registered with 0% phase, and the GTV, apex of diaphragm, lung, and heart were delineated on each phase of the 4DCT data. The position of GTV and SOI was identified in all 4DCT phases, and the volume of lung and heart was also achieved. The phase relationship between the GTV and SOI was estimated through Pearson's correlation test. The mean peak-to-peak displacement of all primary tumors in the lateral (LR), anteroposterior (AP), and superoinferior (SI) directions was 0.13 cm, 0.20 cm, and 0.30 cm, respectively. The SI peak-to-peak motion of the GTV was defined as the greatest magnitude of motion. The displacement of GTV correlated well with heart in three dimensions and significantly associated with bilateral lung in LR and SI directions. A significant correlation was found between the GTV and apex of the diaphragm in SI direction (r left=0.918 and r right=0.928). A significant inverse correlation was found between GTV motion and varying lung volume, but the correlation was not significant with heart (r LR=-0.530, r AP=-0.531, and r SI=-0.588) during respiratory cycle. For middle and distal esophageal cancers, GTV should expand asymmetric internal margins. The primary tumor motion has quite good correlation with diaphragm, heart, and lung.

  8. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Chapman, Christopher [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of Michigan School of Medicine, Ann Arbor, MI (United States); Rao, Aarti [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Davis, School of Medicine, Davis, CA (United States); Shen, John [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); University of California, Irvine, School of Medicine, Irvine, CA (United States); Quinlan-Davidson, Sean [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Department of Radiation Oncology, McMaster University, Juravinski Cancer Centre, Hamilton, Ontario (Canada); Filion, Edith J. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); Departement de Medecine, Service de Radio-Oncologie, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Wakelee, Heather A.; Colevas, A. Dimitrios [Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); Whyte, Richard I. [Department of Cardiothoracic Surgery, Division of General Thoracic Surgery, Stanford University School of Medicine, Stanford, CA (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA (United States); and others

    2012-09-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18-25 Gy) (Group 1), and larger tumors (gross tumor volume {>=}12 mL) received multifraction regimens with BED {>=}100 Gy (total dose, 50-60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  9. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  10. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    International Nuclear Information System (INIS)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D

    2015-01-01

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted

  11. Tumor Volume-Adapted Dosing in Stereotactic Ablative Radiotherapy of Lung Tumors

    International Nuclear Information System (INIS)

    Trakul, Nicholas; Chang, Christine N.; Harris, Jeremy; Chapman, Christopher; Rao, Aarti; Shen, John; Quinlan-Davidson, Sean; Filion, Edith J.; Wakelee, Heather A.; Colevas, A. Dimitrios; Whyte, Richard I.

    2012-01-01

    Purpose: Current stereotactic ablative radiotherapy (SABR) protocols for lung tumors prescribe a uniform dose regimen irrespective of tumor size. We report the outcomes of a lung tumor volume-adapted SABR dosing strategy. Methods and Materials: We retrospectively reviewed the outcomes in 111 patients with a total of 138 primary or metastatic lung tumors treated by SABR, including local control, regional control, distant metastasis, overall survival, and treatment toxicity. We also performed subset analysis on 83 patients with 97 tumors treated with a volume-adapted dosing strategy in which small tumors (gross tumor volume <12 mL) received single-fraction regimens with biologically effective doses (BED) <100 Gy (total dose, 18–25 Gy) (Group 1), and larger tumors (gross tumor volume ≥12 mL) received multifraction regimens with BED ≥100 Gy (total dose, 50–60 Gy in three to four fractions) (Group 2). Results: The median follow-up time was 13.5 months. Local control for Groups 1 and 2 was 91.4% and 92.5%, respectively (p = 0.24) at 12 months. For primary lung tumors only (excluding metastases), local control was 92.6% and 91.7%, respectively (p = 0.58). Regional control, freedom from distant metastasis, and overall survival did not differ significantly between Groups 1 and 2. Rates of radiation pneumonitis, chest wall toxicity, and esophagitis were low in both groups, but all Grade 3 toxicities developed in Group 2 (p = 0.02). Conclusion: A volume-adapted dosing approach for SABR of lung tumors seems to provide excellent local control for both small- and large-volume tumors and may reduce toxicity.

  12. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, Elizabeth H., E-mail: ebaldini@partners.org [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Abrams, Ross A. [Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois (United States); Bosch, Walter [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Roberge, David [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Haas, Rick L.M. [Department of Radiotherapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Catton, Charles N. [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Indelicato, Daniel J. [Department of Radiation Oncology, University of Florida Medical Center, Jacksonville, Florida (United States); Olsen, Jeffrey R. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Deville, Curtiland [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Chen, Yen-Lin [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Finkelstein, Steven E. [Translational Research Consortium, 21st Century Oncology, Scottsdale, Arizona (United States); DeLaney, Thomas F. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Wang, Dian [Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois (United States)

    2015-08-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.

  13. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    International Nuclear Information System (INIS)

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-01-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed

  14. Microscopic Disease Extension in Three Dimensions for Non–Small-Cell Lung Cancer: Development of a Prediction Model Using Pathology-Validated Positron Emission Tomography and Computed Tomography Features

    International Nuclear Information System (INIS)

    Loon, Judith van; Siedschlag, Christian; Stroom, Joep; Blauwgeers, Hans; Suylen, Robert-Jan van; Knegjens, Joost; Rossi, Maddalena; Baardwijk, Angela van; Boersma, Liesbeth; Klomp, Houke; Vogel, Wouter; Burgers, Sjaak; Gilhuijs, Kenneth

    2012-01-01

    Purpose: One major uncertainty in radiotherapy planning of non–small-cell lung cancer concerns the definition of the clinical target volume (CTV), meant to cover potential microscopic disease extension (MDE) around the macroscopically visible tumor. The primary aim of this study was to establish pretreatment risk factors for the presence of MDE. The secondary aim was to establish the impact of these factors on the accuracy of positron emission tomography (PET) and computed tomography (CT) to assess the total tumor-bearing region at pathologic examination (CTV path ). Methods and Materials: 34 patients with non–small-cell lung cancer who underwent CT and PET before lobectomy were included. Specimens were examined microscopically for MDE. The gross tumor volume (GTV) on CT and PET (GTV CT and GTV PET , respectively) was compared with the GTV and the CTV at pathologic examination, tissue deformations being taken into account. Using multivariate logistic regression, image-based risk factors for the presence of MDE were identified, and a prediction model was developed based on these factors. Results: MDE was found in 17 of 34 patients (50%). The MDE did not exceed 26 mm in 90% of patients. In multivariate analysis, two parameters (mean CT tumor density and GTV CT ) were significantly associated with MDE. The area under the curve of the two-parameter prediction model was 0.86. Thirteen tumors (38%, 95% CI: 24–55%) were identified as low risk for MDE, being potential candidates for reduced-intensity therapy around the GTV. In the low-risk group, the effective diameter of the GTV CT/PET accurately represented the CTV path . In the high-risk group, GTV CT/PET underestimated the CTV path with, on average, 19.2 and 26.7 mm, respectively. Conclusions: CT features have potential to predict the presence of MDE. Tumors identified as low risk of MDE show lower rates of disease around the GTV than do high-risk tumors. Both CT and PET accurately visualize the CTV path in low

  15. Predictive factors of symptomatic radiation pneumonitis in primary and metastatic lung tumors treated with stereotactic ablative body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Pyo; Lee, Jeong Shim; Cho, Yeona; Chung, Seung Yeun; Lee, Jason Joon Bock; Lee, Chang Geol; Cho, Jae Ho [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-06-15

    Although stereotactic ablative body radiotherapy (SABR) is widely used therapeutic technique, predictive factors of radiation pneumonitis (RP) after SABR remain undefined. We aimed to investigate the predictive factors affecting RP in patients with primary or metastatic lung tumors who received SABR. From 2012 to 2015, we reviewed 59 patients with 72 primary or metastatic lung tumors treated with SABR, and performed analyses of clinical and dosimetric variables related to symptomatic RP. SABR was delivered as 45–60 Gy in 3–4 fractions, which were over 100 Gy in BED when the α/β value was assumed to be 10. Tumor volume and other various dose volume factors were analyzed using median value as a cutoff value. RP was graded per the Common Terminology Criteria for Adverse Events v4.03. At the median follow-up period of 11 months, symptomatic RP was observed in 13 lesions (12 patients, 18.1%), including grade 2 RP in 11 lesions and grade 3 in 2 lesions. Patients with planning target volume (PTV) of ≤14.35 mL had significantly lower rates of symptomatic RP when compared to others (8.6% vs. 27%; p = 0.048). Rates of symptomatic RP in patients with internal gross tumor volume (iGTV) >4.21 mL were higher than with ≤4.21 mL (29.7% vs. 6.1%; p = 0.017). The incidence of symptomatic RP following treatment with SABR was acceptable with grade 2 RP being observed in most patients. iGTV over 4.21 mL and PTV of over 14.35 mL were significant predictive factors related to symptomatic RP.

  16. Variability of Target and Normal Structure Delineation Using Multimodality Imaging for Radiation Therapy of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dalah, Entesar; Moraru, Ion [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Paulson, Eric [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Erickson, Beth [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2014-07-01

    Purpose: To explore the potential of multimodality imaging (dynamic contrast–enhanced magnetic resonance imaging [DCE-MRI], apparent diffusion-coefficient diffusion-weighted imaging [ADC-DWI], fluorodeoxyglucose positron emission tomography [FDG-PET], and computed tomography) to define the gross tumor volume (GTV) and organs at risk in radiation therapy planning for pancreatic cancer. Delineated volumetric changes of DCE-MRI, ADC-DWI, and FDG-PET were assessed in comparison with the finding on 3-dimensional/4-dimensional CT with and without intravenous contrast, and with pathology specimens for resectable and borderline resectable cases of pancreatic cancer. Methods and Materials: We studied a total of 19 representative patients, whose DCE-MRI, ADC-DWI, and FDG-PET data were reviewed. Gross tumor volume and tumor burden/active region inside pancreatic head/neck or body were delineated on MRI (denoted GTV{sub DCE}, and GTV{sub ADC}), a standardized uptake value (SUV) of 2.5, 40%SUVmax, and 50%SUVmax on FDG-PET (GTV2.5, GTV{sub 40%}, and GTV{sub 50%}). Volumes of the pancreas, duodenum, stomach, liver, and kidneys were contoured according to CT (V{sub CT}), T1-weighted MRI (V{sub T1}), and T2-weighted MRI (V{sub T2}) for 7 patients. Results: Significant statistical differences were found between the GTVs from DCE-MRI, ADC-DW, and FDG-PET, with a mean and range of 4.73 (1.00-9.79), 14.52 (3.21-25.49), 22.04 (1.00-45.69), 19.10 (4.84-45.59), and 9.80 (0.32-35.21) cm{sup 3} for GTV{sub DCE}, GTV{sub ADC}, GTV2.5, GTV{sub 40%}, and GTV{sub 50%}, respectively. The mean difference and range in the measurements of maximum dimension of tumor on DCE-MRI, ADC-DW, SUV2.5, 40%SUVmax, and 50%SUVmax compared with pathologic specimens were −0.84 (−2.24 to 0.9), 0.41 (−0.15 to 2.3), 0.58 (−1.41 to 3.69), 0.66 (−0.67 to 1.32), and 0.15 (−1.53 to 2.38) cm, respectively. The T1- and T2-based volumes for pancreas, duodenum, stomach, and liver were generally smaller

  17. Variability of Target and Normal Structure Delineation Using Multimodality Imaging for Radiation Therapy of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Dalah, Entesar; Moraru, Ion; Paulson, Eric; Erickson, Beth; Li, X. Allen

    2014-01-01

    Purpose: To explore the potential of multimodality imaging (dynamic contrast–enhanced magnetic resonance imaging [DCE-MRI], apparent diffusion-coefficient diffusion-weighted imaging [ADC-DWI], fluorodeoxyglucose positron emission tomography [FDG-PET], and computed tomography) to define the gross tumor volume (GTV) and organs at risk in radiation therapy planning for pancreatic cancer. Delineated volumetric changes of DCE-MRI, ADC-DWI, and FDG-PET were assessed in comparison with the finding on 3-dimensional/4-dimensional CT with and without intravenous contrast, and with pathology specimens for resectable and borderline resectable cases of pancreatic cancer. Methods and Materials: We studied a total of 19 representative patients, whose DCE-MRI, ADC-DWI, and FDG-PET data were reviewed. Gross tumor volume and tumor burden/active region inside pancreatic head/neck or body were delineated on MRI (denoted GTV DCE , and GTV ADC ), a standardized uptake value (SUV) of 2.5, 40%SUVmax, and 50%SUVmax on FDG-PET (GTV2.5, GTV 40% , and GTV 50% ). Volumes of the pancreas, duodenum, stomach, liver, and kidneys were contoured according to CT (V CT ), T1-weighted MRI (V T1 ), and T2-weighted MRI (V T2 ) for 7 patients. Results: Significant statistical differences were found between the GTVs from DCE-MRI, ADC-DW, and FDG-PET, with a mean and range of 4.73 (1.00-9.79), 14.52 (3.21-25.49), 22.04 (1.00-45.69), 19.10 (4.84-45.59), and 9.80 (0.32-35.21) cm 3 for GTV DCE , GTV ADC , GTV2.5, GTV 40% , and GTV 50% , respectively. The mean difference and range in the measurements of maximum dimension of tumor on DCE-MRI, ADC-DW, SUV2.5, 40%SUVmax, and 50%SUVmax compared with pathologic specimens were −0.84 (−2.24 to 0.9), 0.41 (−0.15 to 2.3), 0.58 (−1.41 to 3.69), 0.66 (−0.67 to 1.32), and 0.15 (−1.53 to 2.38) cm, respectively. The T1- and T2-based volumes for pancreas, duodenum, stomach, and liver were generally smaller compared with those from CT, except for the kidneys

  18. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging

    International Nuclear Information System (INIS)

    Dong, Xinzhe; Wu, Peipei; Yu, Jinming; Xing, Ligang; Sun, Xiaorong; Li, Wenwu; Wan, Honglin

    2015-01-01

    This study aims to explore whether the intra-tumour 18 F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received 18 F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV) ) were delineated on the CT images (GTV CT ), the fused PET/CT images (GTV PET-CT ) and the PET images, using a threshold at 40% SUV max (GTV PET40% ) or the SUV cut-off value of 2.5 (GTV PET2.5 ). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV CT , GTV PET-CT , GTV PET40% and GTV PET2.5 was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system.

  19. A technique for adaptive image-guided helical tomotherapy for lung cancer

    International Nuclear Information System (INIS)

    Ramsey, Chester R.; Langen, Katja M.; Kupelian, Patrick A.; Scaperoth, Daniel D.; Meeks, Sanford L.; Mahan, Stephen L.; Seibert, Rebecca M.

    2006-01-01

    Purpose: The gross tumor volume (GTV) for many lung cancer patients can decrease during the course of radiation therapy. As the tumor reduces in size during treatment, the margin added around the GTV effectively becomes larger, which can result in the excessive irradiation of normal lung tissue. The specific goal of this study is to evaluate the feasibility of using image-guided adaptive radiation therapy to adjust the planning target volume weekly based on the previous week's CT image sets that were used for image-guided patient setup. Methods and Materials: Megavoltage computed tomography (MVCT) images of the GTV were acquired daily on a helical tomotherapy system. These images were used to position the patient and to measure reduction in GTV volume. A planning study was conducted to determine the amount of lung-sparing that could have been achieved if adaptive therapy had been used. Treatment plans were created in which the target volumes were reduced after tumor reduction was measured. Results: A total of 158 MVCT imaging sessions were performed on 7 lung patients. The GTV was reduced by 60-80% during the course of treatment. The tumor reduction in the first 60 days of treatment can be modeled using the second-order polynomial R 0.0002t 2 - 0.0219t + 1.0, where R is the percent reduction in GTV, and t is the number of elapsed days. Based on these treatment planning studies, the absolute volume of ipsilateral lung receiving 20 Gy can be reduced between 17% and 23% (21% mean) by adapting the treatment delivery. The benefits of adaptive therapy are the greatest for tumor volumes ≥25 cm 3 and are directly dependent on GTV reduction during treatment. Conclusions: Megavoltage CT-based image guidance can be used to position lung cancer patients daily. This has the potential to decrease margins associated with daily setup error. Furthermore, the adaptive therapy technique described in this article can decrease the volume of healthy lung tissue receiving above 20 Gy

  20. Comparison of three dosimetric techniques to take in account lung tumor motion: gating-like technique results lead to advice the use of gating device even in the cases of pre-operative irradiation

    International Nuclear Information System (INIS)

    Beneyton, V.; Billaud, G.; Niederst, C.; Meyer, P.; Schumacher, C.; Karamanoukian, D.; Noel, G.; Bourhala, K.

    2010-01-01

    Purpose: Comparison of three dosimetric techniques of lung tumor delineation to integrate tumor motion during breathing. Patients and method: Nineteen patients with T1-3N0M0 malignant lung tumor were treated with definitive chemoradiotherapy (14 cases) or pre-surgery chemo radiation. Doses were, respectively, 66 and 46 Gy. CT-scan for delineation was performed during three phases of breathing: free breathing and deep breath-hold inspiration and expiration. G.T.V. (gross tumor volume) was delineated on the three sequences. The classic technique included G.T.V. from the free-breathing sequence plus a C.T.V. (clinical target volume) margin of 5 to 8 mm plus a P.T.V. (planning target volume) margin of 7 to 10 mm (including I.T.V. [internal target volume] margin and set-up margin). The gating-like technique included G.T.V. from the deep breath-hold inspiration sequence plus a C.T.V. margin of 5 to 8 mm plus a P.T.V. margin of 2 mm. The three-volume technique, included G.T.V. as a result of the fusion of G.T.V.s from the three sequences plus a C.T.V. margin of 5 to 8 mm plus a P.T.V. margin of 2 mm. Dosimetry was calculated for the three P.T.V.s, if possible, with the same fields number and position. Dose constraints and rules were imposed to accept dosimetries: firstly spinal cord maximal dose less than 45 Gy, followed by V95 % for P.T.V. greater than or equal to 95 %, and V20 GY Gy for lung less than or equal to 30 %, V30 GY Gy for lung less than or equal to 20 %. Results: G.T.V.s were not statistically different between the three methods of delineation. P.T.V.s were significantly lower with the gating-like technique. V95% of the P.T.V. were not different between the three techniques. With the classic-, the gating-like- and the 3-volume techniques, dosimetry was considered as acceptable, respectively in 15, 18 and 15 cases. Comparisons of constraint values showed that the gating-like method gave the best results. In the case of pre-operative management, the gating

  1. Observation of Interfractional Variations in Lung Tumor Position Using Respiratory Gated and Ungated Megavoltage Cone-Beam Computed Tomography

    International Nuclear Information System (INIS)

    Chang, Jenghwa; Mageras, Gig S.; Yorke, Ellen; De Arruda, Fernando; Sillanpaa, Jussi; Rosenzweig, Kenneth E.; Hertanto, Agung; Pham, Hai; Seppi, Edward; Pevsner, Alex; Ling, C. Clifton; Amols, Howard

    2007-01-01

    Purpose: To evaluate the use of megavoltage cone-beam computed tomography (MV CBCT) to measure interfractional variation in lung tumor position. Methods and Materials: Eight non-small-cell lung cancer patients participated in the study, 4 with respiratory gating and 4 without. All patients underwent MV CBCT scanning at weekly intervals. Contoured planning CT and MV CBCT images were spatially registered based on vertebral anatomy, and displacements of the tumor centroid determined. Setup error was assessed by comparing weekly portal orthogonal radiographs with digitally reconstructed radiographs generated from planning CT images. Hypothesis testing was performed to test the statistical significance of the volume difference, centroid displacement, and setup uncertainty. Results: The vertebral bodies and soft tissue portions of tumor within lung were visible on the MV CBCT scans. Statistically significant systematic volume decrease over the course of treatment was observed for 1 patient. The average centroid displacement between simulation CT and MV CBCT scans were 2.5 mm, -2.0 mm, and -1.5 mm with standard deviations of 2.7 mm, 2.7 mm, and 2.6 mm in the right-left, anterior-posterior and superior-inferior directions. The mean setup errors were smaller than the centroid shifts, while the standard deviations were comparable. In most cases, the gross tumor volume (GTV) defined on the MV CBCT was located on average at least 5 mm inside a 10 mm expansion of the GTV defined on the planning CT scan. Conclusions: The MV CBCT technique can be used to image lung tumors and may prove valuable for image-guided radiotherapy. Our conclusions must be verified in view of the small patient number

  2. Correlation of primary middle and distal esophageal cancers motion with surrounding tissues using four-dimensional computed tomography

    Directory of Open Access Journals (Sweden)

    Wang W

    2016-06-01

    Full Text Available Wei Wang,1 Jianbin Li,1 Yingjie Zhang,1 Qian Shao,1 Min Xu,1 Bing Guo,1 Dongping Shang2 1Department of Radiation Oncology, 2Department of Big Bore CT Room, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China Purpose: To investigate the correlation of gross tumor volume (GTV motion with the structure of interest (SOI motion and volume variation for middle and distal esophageal cancers using four-dimensional computed tomography (4DCT.Patients and methods: Thirty-three patients with middle or distal esophageal carcinoma underwent 4DCT simulation scan during free breathing. All image sets were registered with 0% phase, and the GTV, apex of diaphragm, lung, and heart were delineated on each phase of the 4DCT data. The position of GTV and SOI was identified in all 4DCT phases, and the volume of lung and heart was also achieved. The phase relationship between the GTV and SOI was estimated through Pearson’s correlation test.Results: The mean peak-to-peak displacement of all primary tumors in the lateral (LR, anteroposterior (AP, and superoinferior (SI directions was 0.13 cm, 0.20 cm, and 0.30 cm, respectively. The SI peak-to-peak motion of the GTV was defined as the greatest magnitude of motion. The displacement of GTV correlated well with heart in three dimensions and significantly associated with bilateral lung in LR and SI directions. A significant correlation was found between the GTV and apex of the diaphragm in SI direction (rleft=0.918 and rright=0.928. A significant inverse correlation was found between GTV motion and varying lung volume, but the correlation was not significant with heart (rLR=–0.530, rAP=–0.531, and rSI=–0.588 during respiratory cycle.Conclusion: For middle and distal esophageal cancers, GTV should expand asymmetric internal margins. The primary tumor motion has quite good correlation with diaphragm, heart, and lung. Keywords

  3. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang

    2015-06-01

    This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.

  4. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    International Nuclear Information System (INIS)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.

    2014-01-01

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models

  5. Utilize target motion to cover clinical target volume (ctv) - a novel and practical treatment planning approach to manage respiratory motion

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Kong Fengming; Ryu, Samuel; Chetty, Indrin J.; Movsas, Benjamin

    2008-01-01

    Purpose: To use probability density function (PDF) to model motion effects and incorporate this information into treatment planning for lung cancers. Material and methods: PDFs were calculated from the respiratory motion traces of 10 patients. Motion effects were evaluated by convolving static dose distributions with various PDFs. Based on a differential dose prescription with relatively lower dose to the clinical target volume (CTV) than to the gross tumor volume (GTV), two approaches were proposed to incorporate PDFs into treatment planning. The first approach uses the GTV-based internal target volume (ITV) as the planning target volume (PTV) to ensure full dose to the GTV, and utilizes the motion-induced dose gradient to cover the CTV. The second approach employs an inhomogeneous static dose distribution within a minimized PTV to best match the prescription dose gradient. Results: Motion effects on dose distributions were minimal in the anterior-posterior (AP) and lateral directions: a 10-mm motion only induced about 3% of dose reduction in the peripheral target region. The motion effect was remarkable in the cranial-caudal direction. It varied with the motion amplitude, but tended to be similar for various respiratory patterns. For the first approach, a 10-15 mm motion would adequately cover the CTV (presumed to be 60-70% of the GTV dose) without employing the CTV in planning. For motions 15-mm. An example of inhomogeneous static dose distribution in a reduced PTV was given, and it showed significant dose reduction in the normal tissue without compromising target coverage. Conclusions: Respiratory motion-induced dose gradient can be utilized to cover the CTV and minimize the lung dose without the need for more sophisticated technologies

  6. Contouring and dose calculation in head and neck cancer radiotherapy after reduction of metal artifacts in CT images

    DEFF Research Database (Denmark)

    Hansen, Christian Rønn; Lübeck Christiansen, Rasmus; Lorenzen, Ebbe Laugaard

    2017-01-01

    of metal artifact reduction (MAR) in H&N patients in terms of delineation consistency and dose calculation precision in radiation treatment planning. Material and methods: Tumor and OAR delineations were evaluated in planning CT scans of eleven oropharynx patients with streaking artifacts in the tumor...... region preceding curative radiotherapy (RT). The GTV-tumor (GTV-T), GTV-node and parotid glands were contoured by four independent observers on standard CT images and MAR images. Dose calculation was evaluated on thirty H&N patients with dental implants near the treated volume. For each patient, the dose...

  7. Prospective Randomized Double-Blind Pilot Study of Site-Specific Consensus Atlas Implementation for Rectal Cancer Target Volume Delineation in the Cooperative Group Setting

    International Nuclear Information System (INIS)

    Fuller, Clifton D.; Nijkamp, Jasper; Duppen, Joop C.; Rasch, Coen R.N.; Thomas, Charles R.; Wang, Samuel J.; Okunieff, Paul; Jones, William E.; Baseman, Daniel; Patel, Shilpen; Demandante, Carlo G.N.; Harris, Anna M.; Smith, Benjamin D.; Katz, Alan W.; McGann, Camille

    2011-01-01

    Purpose: Variations in target volume delineation represent a significant hurdle in clinical trials involving conformal radiotherapy. We sought to determine the effect of a consensus guideline-based visual atlas on contouring the target volumes. Methods and Materials: A representative case was contoured (Scan 1) by 14 physician observers and a reference expert with and without target volume delineation instructions derived from a proposed rectal cancer clinical trial involving conformal radiotherapy. The gross tumor volume (GTV), and two clinical target volumes (CTVA, including the internal iliac, presacral, and perirectal nodes, and CTVB, which included the external iliac nodes) were contoured. The observers were randomly assigned to receipt (Group A) or nonreceipt (Group B) of a consensus guideline and atlas for anorectal cancers and then instructed to recontour the same case/images (Scan 2). Observer variation was analyzed volumetrically using the conformation number (CN, where CN = 1 equals total agreement). Results: Of 14 evaluable contour sets (1 expert and 7 Group A and 6 Group B observers), greater agreement was found for the GTV (mean CN, 0.75) than for the CTVs (mean CN, 0.46-0.65). Atlas exposure for Group A led to significantly increased interobserver agreement for CTVA (mean initial CN, 0.68, after atlas use, 0.76; p = .03) and increased agreement with the expert reference (initial mean CN, 0.58; after atlas use, 0.69; p = .02). For the GTV and CTVB, neither the interobserver nor the expert agreement was altered after atlas exposure. Conclusion: Consensus guideline atlas implementation resulted in a detectable difference in interobserver agreement and a greater approximation of expert volumes for the CTVA but not for the GTV or CTVB in the specified case. Visual atlas inclusion should be considered as a feature in future clinical trials incorporating conformal RT.

  8. Prospective randomized double-blind pilot study of site-specific consensus atlas implementation for rectal cancer target volume delineation in the cooperative group setting

    Science.gov (United States)

    Fuller, Clifton D.; Nijkamp, Jasper; Duppen, Joop; Rasch, Coen R.N.; Thomas, Charles R.; Wang, Samuel J.; Okunieff, Paul; Jones, William E.; Baseman, Daniel; Patel, Shilpen; Demandante, Carlo G. N.; Harris, Anna M.; Smith, Benjamin D.; Katz, Alan W.; McGann, Camille; Harper, Jennifer L.; Chang, Daniel T.; Smalley, Stephen; Marshall, David T.; Goodman, Karyn A.; Papanikolaou, Niko; Kachnic, Lisa A.

    2010-01-01

    Purpose Variation in target volume delineation represents a significant hurdle in clinical trials involving conformal radiotherapy. We sought to determine the impact of a consensus guideline-based visual atlas on contouring of target volumes. Methods A representative case and target volume delineation instructions derived from a proposed rectal cancer clinical trial involving conformal radiotherapy were contoured (Scan1) by 14 physician observers and a reference expert. Gross tumor volume (GTV), and 2 clinical target volumes (CTVA, comprising internal iliac, pre-sacral, and peri-rectal nodes, and CTVB, external iliac nodes) were contoured. Observers were randomly assigned to receipt (Group_A) /non-receipt (Group_B) of a consensus guideline and atlas for anorectal cancers, then instructed to re-contour the same case/images (Scan2). Observer variation was analyzed volumetrically using conformation number (CN, where CN=1 equals a total agreement). Results In 14 evaluable contour sets (1 expert, 7 Group_A, 6 Group_B), there was greater agreement for GTV (mean CN 0.75) than CTVs (mean CN 0.46–0.65). Atlas exposure for Group_A led to a significant increased inter-observer agreement for CTVA (mean initial CN 0.68, post-atlas 0.76; p=0.03), as well as increased agreement with the expert reference (initial mean CN 0.58, 0.69 post-atlas; p=0.02). For GTV and CTVB, neither inter-observer nor expert agreement was altered after atlas exposure. Conclusion Consensus guideline atlas implementation resulted in a detectable difference in inter-observer agreement and greater approximation of expert volumes for CTVA, but not GTV or CTVB, in the specified case. Visual atlas inclusion should be considered as a feature in future clinical trials incorporating conformal radiotherapy. PMID:20400244

  9. Predictive Treatment Management: Incorporating a Predictive Tumor Response Model Into Robust Prospective Treatment Planning for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng, E-mail: zhangp@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Yorke, Ellen; Hu, Yu-Chi; Mageras, Gig [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-02-01

    Purpose: We hypothesized that a treatment planning technique that incorporates predicted lung tumor regression into optimization, predictive treatment planning (PTP), could allow dose escalation to the residual tumor while maintaining coverage of the initial target without increasing dose to surrounding organs at risk (OARs). Methods and Materials: We created a model to estimate the geometric presence of residual tumors after radiation therapy using planning computed tomography (CT) and weekly cone beam CT scans of 5 lung cancer patients. For planning purposes, we modeled the dynamic process of tumor shrinkage by morphing the original planning target volume (PTV{sub orig}) in 3 equispaced steps to the predicted residue (PTV{sub pred}). Patients were treated with a uniform prescription dose to PTV{sub orig}. By contrast, PTP optimization started with the same prescription dose to PTV{sub orig} but linearly increased the dose at each step, until reaching the highest dose achievable to PTV{sub pred} consistent with OAR limits. This method is compared with midcourse adaptive replanning. Results: Initial parenchymal gross tumor volume (GTV) ranged from 3.6 to 186.5 cm{sup 3}. On average, the primary GTV and PTV decreased by 39% and 27%, respectively, at the end of treatment. The PTP approach gave PTV{sub orig} at least the prescription dose, and it increased the mean dose of the true residual tumor by an average of 6.0 Gy above the adaptive approach. Conclusions: PTP, incorporating a tumor regression model from the start, represents a new approach to increase tumor dose without increasing toxicities, and reduce clinical workload compared with the adaptive approach, although model verification using per-patient midcourse imaging would be prudent.

  10. Stereotactic Ablative Radiation Therapy for Subcentimeter Lung Tumors: Clinical, Dosimetric, and Image Guidance Considerations

    International Nuclear Information System (INIS)

    Louie, Alexander V.; Senan, Suresh; Dahele, Max; Slotman, Ben J.; Verbakel, Wilko F.A.R.

    2014-01-01

    Purpose: Use of stereotactic ablative radiation therapy (SABR) for subcentimeter lung tumors is controversial. We report our outcomes for tumors with diameter ≤1 cm and their visibility on cone beam computed tomography (CBCT) scans and retrospectively evaluate the planned dose using a deterministic dose calculation algorithm (Acuros XB [AXB]). Methods and Materials: We identified subcentimeter tumors from our institutional SABR database. Tumor size was remeasured on an artifact-free phase of the planning 4-dimensional (4D)-CT. Clinical plan doses were generated using either a pencil beam convolution or an anisotropic analytic algorithm (AAA). All AAA plans were recalculated using AXB, and differences among D95 and mean dose for internal target volume (ITV) and planning target volume (PTV) on the average intensity CT dataset, as well as for gross tumor volume (GTV) on the end respiratory phases were reported. For all AAA patients, CBCT scans acquired during each treatment fraction were evaluated for target visibility. Progression-free and overall survival rates were calculated using the Kaplan-Meier method. Results: Thirty-five patients with 37 subcentimeter tumors were eligible for analysis. For the 22 AAA plans recalculated using AXB, Mean D95 ± SD values were 2.2 ± 4.4% (ITV) and 2.5 ± 4.8% (PTV) lower using AXB; whereas mean doses were 2.9 ± 4.9% (ITV) and 3.7 ± 5.1% (PTV) lower. Calculated AXB doses were significantly lower in one patient (difference in mean ITV and PTV doses, as well as in mean ITV and PTV D95 ranged from 22%-24%). However, the end respiratory phase GTV received at least 95% of the prescription dose. Review of 92 CBCT scans from all AAA patients revealed that the tumor was visualized in 82 images, and its position could be inferred in other images. The 2-year local progression-free survival was 100%. Conclusions: Patients with subcentimeter lung tumors are good candidates for SABR, given the dosimetry, ability to localize

  11. Comparison of 2D and 3D algorithms for adding a margin to the gross tumor volume in the conformal radiotherapy planning of prostate cancer

    International Nuclear Information System (INIS)

    Khoo, V.S.; Bedford, J.L.; Webb, S.; Dearnaley, D.P.

    1997-01-01

    Purpose: To evaluate the adequacy of tumor volume coverage using a three dimensional (3D) margin growing algorithm compared to a two dimensional (2D) margin growing algorithm in the conformal radiotherapy planning of prostate cancer. Methods and Materials: Two gross tumor volumes (GTV) were segmented in each of ten patients with localized prostate cancer: prostate gland only (PO) and prostate with seminal vesicles (PSV). A margin of 10 mm was applied to these two groups (PO and PSV) using both the 2D and 3D margin growing algorithms. The true planning target volume (PTV) was defined as the region delineated by the 3D algorithm. Adequacy of geometric coverage of the GTV with the two algorithms was examined throughout the target volume. Discrepancies between the two margin methods were measured in the transaxial plane. Results: The 2D algorithm underestimated the PTV by 17% (range 12-20) in the PO group and by 20% (range 13-28) for the PSV group when compared to the 3D algorithm. For both the PO and PSV groups, the inferior coverage of the PTV was consistently underestimated by the 2D margin algorithm when compared to the 3D margins with a mean radial distance of 4.8 mm (range 0-10). In the central region of the prostate gland, the anterior, posterior, and lateral PTV borders were underestimated with the 2D margin in both the PO and PSV groups by a mean of 3.6 mm (range 0-9), 2.1 mm (range 0-8), and 1.8 (range 0-9) respectively. The PTV coverage of the PO group superiorly was radially underestimated by 4.5mm (range 0-14) when comparing the 2D margins to the 3D margins. For the PSV group, the junction region between the prostate and the seminal vesicles was underestimated by the 2D margin by a mean transaxial distance of 18.1 mm in the anterior PTV border (range 4-30), 7.2 mm posteriorly (range 0-20), and 3.7 mm laterally (range 0-14). The superior region of the seminal vesicles in the PSV group was also consistently underestimated with a radial discrepancy of 3.3 mm

  12. Use of Respiratory-Correlated Four-Dimensional Computed Tomography to Determine Acceptable Treatment Margins for Locally Advanced Pancreatic Adenocarcinoma

    International Nuclear Information System (INIS)

    Goldstein, Seth D.; Ford, Eric C.; Duhon, Mario; McNutt, Todd; Wong, John; Herman, Joseph M.

    2010-01-01

    Purpose: Respiratory-induced excursions of locally advanced pancreatic adenocarcinoma could affect dose delivery. This study quantified tumor motion and evaluated standard treatment margins. Methods and Materials: Respiratory-correlated four-dimensional computed tomography images were obtained on 30 patients with locally advanced pancreatic adenocarcinoma; 15 of whom underwent repeat scanning before cone-down treatment. Treatment planning software was used to contour the gross tumor volume (GTV), bilateral kidneys, and biliary stent. Excursions were calculated according to the centroid of the contoured volumes. Results: The mean ± standard deviation GTV excursion in the superoinferior (SI) direction was 0.55 ± 0.23 cm; an expansion of 1.0 cm adequately accounted for the GTV motion in 97% of locally advanced pancreatic adenocarcinoma patients. Motion GTVs were generated and resulted in a 25% average volume increase compared with the static GTV. Of the 30 patients, 17 had biliary stents. The mean SI stent excursion was 0.84 ± 0.32 cm, significantly greater than the GTV motion. The xiphoid process moved an average of 0.35 ± 0.12 cm, significantly less than the GTV. The mean SI motion of the left and right kidneys was 0.65 ± 0.27 cm and 0.77 ± 0.30 cm, respectively. At repeat scanning, no significant changes were seen in the mean GTV size (p = .8) or excursion (p = .3). Conclusion: These data suggest that an asymmetric expansion of 1.0, 0.7, and 0.6 cm along the respective SI, anteroposterior, and medial-lateral directions is recommended if a respiratory-correlated four-dimensional computed tomography scan is not available to evaluate the tumor motion during treatment planning. Surrogates of tumor motion, such as biliary stents or external markers, should be used with caution.

  13. Multimodality imaging with CT, MR and FDG-PET for radiotherapy target volume delineation in oropharyngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Bird, David; Scarsbrook, Andrew F.; Sykes, Jonathan; Ramasamy, Satiavani; Subesinghe, Manil; Carey, Brendan; Wilson, Daniel J.; Roberts, Neil; McDermott, Gary; Karakaya, Ebru; Bayman, Evrim; Sen, Mehmet; Speight, Richard; Prestwich, Robin J.D.

    2015-01-01

    This study aimed to quantify the variation in oropharyngeal squamous cell carcinoma gross tumour volume (GTV) delineation between CT, MR and FDG PET-CT imaging. A prospective, single centre, pilot study was undertaken where 11 patients with locally advanced oropharyngeal cancers (2 tonsil, 9 base of tongue primaries) underwent pre-treatment, contrast enhanced, FDG PET-CT and MR imaging, all performed in a radiotherapy treatment mask. CT, MR and CT-MR GTVs were contoured by 5 clinicians (2 radiologists and 3 radiation oncologists). A semi-automated segmentation algorithm was used to contour PET GTVs. Volume and positional analyses were undertaken, accounting for inter-observer variation, using linear mixed effects models and contour comparison metrics respectively. Significant differences in mean GTV volume were found between CT (11.9 cm 3 ) and CT-MR (14.1 cm 3 ), p < 0.006, CT-MR and PET (9.5 cm 3 ), p < 0.0009, and MR (12.7 cm 3 ) and PET, p < 0.016. Substantial differences in GTV position were found between all modalities with the exception of CT-MR and MR GTVs. A mean of 64 %, 74 % and 77 % of the PET GTVs were included within the CT, MR and CT-MR GTVs respectively. A mean of 57 % of the MR GTVs were included within the CT GTV; conversely a mean of 63 % of the CT GTVs were included within the MR GTV. CT inter-observer variability was found to be significantly higher in terms of position and/or volume than both MR and CT-MR (p < 0.05). Significant differences in GTV volume were found between GTV volumes delineated by radiologists (9.7 cm 3 ) and oncologists (14.6 cm 3 ) for all modalities (p = 0.001). The use of different imaging modalities produced significantly different GTVs, with no single imaging technique encompassing all potential GTV regions. The use of MR reduced inter-observer variability. These data suggest delineation based on multimodality imaging has the potential to improve accuracy of GTV definition. ISRCTN Registry: ISRCTN34165059. Registered 2

  14. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  15. An evaluation of the variability of tumor-shape definition derived by experienced observers from CT images of supraglottic carcinomas (ACRIN protocol 6658)

    International Nuclear Information System (INIS)

    Cooper, Jay S.; Mukherji, Suresh K.; Toledano, Alicia Y.; Beldon, Clifford; Schmalfuss, Ilona M.; Amdur, Robert; Sailer, Scott; Loevner, Laurie A.; Kousouboris, Phil; Ang, K. Kian; Cormack, Jean; Sicks, JoRean M.S.

    2007-01-01

    Purpose: Accurate target definition is considered essential for sophisticated, image-guided radiation therapy; however, relatively little information has been reported that measures our ability to identify the precise shape of targets accurately. We decided to assess the manner in which eight 'experts' interpreted the size and shape of tumors based on 'real-life' contrast-enhanced computed tomographic (CT) scans. Methods and Materials: Four neuroradiologists and four radiation oncologists (the authors) with considerable experience and presumed expertise in treating head-and-neck tumors independently contoured, slice-by-slice, his/her interpretation of the precise gross tumor volume (GTV) on each of 20 sets of CT scans taken from 20 patients who previously were enrolled in Radiation Therapy Oncology Group protocol 91-11. Results: The average proportion of overlap (i.e., the degree of agreement) was 0.532 (95% confidence interval 0.457 to 0.606). There was a slight tendency for the proportion of overlap to increase with increasing average GTV. Conclusions: Our work suggests that estimation of tumor shape currently is imprecise, even for experienced physicians. In consequence, there appears to be a practical limit to the current trend of smaller fields and tighter margins

  16. Geometrical Comparison Measures for Tumor Delineation, what do they mean for the Actual Dosis Plan?

    DEFF Research Database (Denmark)

    Hollensen, Christian; Persson, G.; Højgaard, L.

    2012-01-01

    Purpose/Objective: Gross tumour volume (GTV) delineation is central for radiotherapy planning. It provides the basis of the clinical target volume and finally the planning target volume (PTV) which is used for dose optimization. GTV delineations are prone to intermethod and inter......observer variation. In clinical studies this variation is commonly represented by geometrical volume comparison measures (GVCMs) as volume assessment, centre of mass and overlap. The correlation between these measures and the radiotherapy plan are however unclear. The aim of the present study is to investigate...... the correlation between GVCMs and the radiotherapy plans of patients with peripheral lung tumours. Materials and Methods: Peripheral lung tumours of 10 patients referred for stereotactic body radiotherapy in 2008 were delineated by 3 radiologists and 3 oncologists. From these GTV delineations 6 different...

  17. Pretreatment tumor SUV{sub max} predicts disease-specific and overall survival in patients with head and neck soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seung Cheol; Roh, Jong-Lyel; Choi, Seung-Ho; Nam, Soon Yuhl; Kim, Sang Yoon [University of Ulsan College of Medicine, Departments of Otolaryngology, Asan Medical Center, Songpa-gu, Seoul (Korea, Republic of); Oh, Jungsu S.; Moon, Hyojeong; Kim, Jae Seung [University of Ulsan College of Medicine, Departments of Nuclear Medicine, Asan Medical Center, Seoul (Korea, Republic of); Cho, Kyung-Ja [University of Ulsan College of Medicine, Departments of Pathology, Asan Medical Center, Seoul (Korea, Republic of)

    2017-01-15

    Head and neck soft tissue sarcoma (HNSTS) is a rare type of tumor with various histological presentations and clinical behaviors. {sup 18}F-FDG PET/CT is being increasingly used for staging, grading, and predicting treatment outcomes in various types of human cancers, although this modality has been rarely studied in the survival prediction of HNSTS. Here we examined the prognostic value of tumor metabolic parameters measured using {sup 18}F-FDG PET/CT in patients with HNSTS. This study included 36 consecutive patients with HNSTS who underwent {sup 18}F-FDG PET/CT scanning prior to treatment at our institution. Tumor gross total volume (GTV) was measured from pretreatment contrast-enhanced CT scans, and maximum standardized uptake value (SUV{sub max}), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured using pretreatment {sup 18}F-FDG PET/CT scans. Univariate and multivariate Cox proportional hazard regression analyses were used to identify associations between imaging parameters and disease-specific survival (DSS) or overall survival (OS). Univariate analyses showed that SUV{sub max}, MTV, and TLG, but not GTV, were significantly associated with DSS and OS (all P < 0.05). After controlling for clinicopathological factors, SUV{sub max}, MTV, and TLG were significantly associated with DSS and OS (all P < 0.05). Patients with a tumor SUV{sub max} value of >7.0 experienced an approximately fivefold increase in mortality in terms of DSS and OS relative to those with a tumor SUV{sub max} <7.0. Quantitative metabolic measurements on pretreatment {sup 18}F-FDG PET/CT can yield values that are significantly predictive of survival after treatment for HNSTS. (orig.)

  18. Adaptive radiotherapy for invasive bladder cancer: A feasibility study

    International Nuclear Information System (INIS)

    Pos, Floris J.; Hulshof, Maarten; Lebesque, Joos; Lotz, Heidi; Tienhoven, Geertjan van; Moonen, Luc; Remeijer, Peter

    2006-01-01

    Purpose: To evaluate the feasibility of adaptive radiotherapy (ART) in combination with a partial bladder irradiation. Methods and Materials: Twenty-one patients with solitary T1-T4 N0M0 bladder cancer were treated to the bladder tumor + 2 cm margin planning target volume (PTV CONV ). During the first treatment week, five daily computed tomography (CT) scans were made immediately before or after treatment. In the second week, a volume was constructed encompassing the gross tumor volumes (GTVs) on the planning scan and the five CT scans (GTV ART ). The GTV ART was expanded with a 1 cm margin for the construction of a PTV ART . Starting in the third week, patients were treated to PTV ART . Repeat CT scans were used to evaluate treatment accuracy. Results: On 5 of 91 repeat CT scans (5%), the GTV was not adequately covered by the PTV ART . On treatment planning, there was only one scan in which the GTV was not adequately covered by the 95% isodose. On average, the treatment volumes were reduced by 40% when comparing PTV ART with PTV CONV (p < 0.0001). Conclusion: The adaptive strategy for bladder cancer is an effective way to deal with treatment errors caused by variations in bladder tumor position and leads to a substantial reduction in treatment volumes

  19. Adaptive radiotherapy for invasive bladder cancer: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Pos, Floris J [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Hulshof, Maarten [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Lebesque, Joos [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Lotz, Heidi [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Tienhoven, Geertjan van [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Moonen, Luc [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2006-03-01

    Purpose: To evaluate the feasibility of adaptive radiotherapy (ART) in combination with a partial bladder irradiation. Methods and Materials: Twenty-one patients with solitary T1-T4 N0M0 bladder cancer were treated to the bladder tumor + 2 cm margin planning target volume (PTV{sub CONV}). During the first treatment week, five daily computed tomography (CT) scans were made immediately before or after treatment. In the second week, a volume was constructed encompassing the gross tumor volumes (GTVs) on the planning scan and the five CT scans (GTV{sub ART}). The GTV{sub ART} was expanded with a 1 cm margin for the construction of a PTV{sub ART}. Starting in the third week, patients were treated to PTV{sub ART}. Repeat CT scans were used to evaluate treatment accuracy. Results: On 5 of 91 repeat CT scans (5%), the GTV was not adequately covered by the PTV{sub ART}. On treatment planning, there was only one scan in which the GTV was not adequately covered by the 95% isodose. On average, the treatment volumes were reduced by 40% when comparing PTV{sub ART} with PTV{sub CONV} (p < 0.0001). Conclusion: The adaptive strategy for bladder cancer is an effective way to deal with treatment errors caused by variations in bladder tumor position and leads to a substantial reduction in treatment volumes.

  20. Tumor response parameters for head and neck cancer derived from tumor-volume variation during radiation therapy

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V.

    2013-01-01

    Purpose: The main goal of this paper is to reconstruct a distribution of cell survival fractions from tumor-volume variation for a heterogeneous group of head and neck cancer patients and compare this distribution to the data from predictive assays. Methods: To characterize the tumor-volume variation during radiation therapy treatment, the authors use a two-level tumor-volume model of cell population that separates the entire tumor cell population into two subpopulations of viable cells and lethally damaged cells. This parameterized radiobiological model is integrated with a least squares objective function and a simulated annealing optimization algorithm to describe time-dependent tumor-volume variation rates in individual patients. Several constraints have been used in the optimization problem because tumor-volume variation during radiotherapy is described by a sum of exponentials; therefore, the problem of accurately fitting a model to measured data is ill-posed. The model was applied to measured tumor-volume variation curves from a clinical study on tumor-volume variation during radiotherapy for 14 head and neck cancer patients in which an integrated CT/linear particle accelerator (LINAC) system was used for tumor-volume measurements. Results: The two-level cell population tumor-volume modeling is capable of describing tumor-volume variation throughout the entire treatment for 11 of the 14 patients. For three patients, the tumor-volume variation was described only during the initial part of treatment, a fact that may be related to the neglected hypoxia in the two-level approximation. The predicted probability density distribution for the survival fractions agrees with the data obtained using in vitro studies with predictive assays. The mean value 0.35 of survival fraction obtained in this study is larger than the value 0.32 from in vitro studies, which could be expected because of greater repair in vivo. The mean half-life obtained in this study for the head

  1. Quantitative analysis of tumor shrinkage due to chemotherapy and its implication for radiation treatment planning in limited-stage small-cell lung cancer

    International Nuclear Information System (INIS)

    Xia, Bing; Wang, Jia-Zhou; Liu, Qi; Cheng, Jing-Yi; Zhu, Zheng-Fei; Fu, Xiao-Long

    2013-01-01

    The optimal timing of chemoradiotherapy in limited-stage small-cell lung cancer (LS-SCLC) hasn’t been established, although evidence from studies supported that patients can benefit from early radiation therapy. The purpose of this study was to quantify tumor shrinkage in response to induction chemotherapy (IC), evaluate the impact of tumor shrinkage on radiation dosimetric parameters and determine its implication for the timing of radiation therapy for patients with LS-SCLC. Twenty patients with LS-SCLC who were treated with IC followed by concomitant radiation therapy were investigated retrospectively. Ten patients received 1 cycle of IC, and 10 patients received 2 cycles of IC. Pre-IC CT imaging was coregistered with a simulation CT, and virtual radiation plans were created for pre- and post-IC thoracic disease in each case. The changes in the gross target volume (GTV), planning target volume (PTV) and dosimetric factors associated with the lungs, esophagus and heart were analyzed. The mean GTV and PTV for all of the patients decreased by 60.9% and 40.2%, respectively, which resulted in a significant reduction in the radiation exposure to the lungs, esophagus and heart. Changes in the PTV and radiation exposure of normal tissue were not significantly affected by the number of chemotherapy cycles delivered, although patients who received 2 cycles of IC had a greater decrease in GTV than those who received only 1 cycle of IC (69.6% vs. 52.1%, p = 0.273). Our data showed that targeting the tumor post-IC may reduce the radiation dose to normal tissue in patients with LS-SCLC. However, the benefit to the normal tissue was not increased by an additional cycle of IC. These findings suggest that the first cycle of chemotherapy is very important for tumor shrinkage and that initiating thoracic radiation therapy at the second cycle of chemotherapy may be a reasonable strategy for timing of radiation therapy in LS-SCLC treatment

  2. SU-G-JeP3-13: Use of Volumetric Indices to Study the Viability of Respiratory Gating in Conjunction with Abdominal Compression in the Management of Non-Small Cell Lung Cancer Tumors Using Stereotactic Body Radiation Therapy Under the Conditions of Controlled Breathing

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, H; Gomez, J [Roswell Park Cancer Institute, Buffalo, NY (United States)

    2016-06-15

    Purpose: AAPM TG-76 report advises lung patients experiencing tumor motion >5mm to use some form of motion management with even smaller limit for complex/special procedures like SBRT. Generally, either respiratory gating or abdominal compression is used for motion management. In this retrospective study, we are using an innovative index, Volumetric Indices (VI) = (GTVnn AND GTV{sub 50+}Xmm)/(GTVnn) to quantify how much of the tumor remains within 1, 2, and 3mm margins throughout the breathing cycle using GTV{sub 50+}Xmm margin on GTV{sub 50}[nn=0,10,20,…90]. Using appropriate limits, VI can provide tumor motion information and to check if RPM gates could have been used in conjunction with abdominal compression to better manage tumor motion. Methods: 64 SBRT patients with a total of 67 lung tumors were studied. 4DCT scans were taken, fully capturing tumor motion throughout the 10 phases of the breathing cycle. For each phase, Gross Tumor Volume (GTV) was segmented and appropriates structures were defined to determine VI values. For the 2mm margin, VI values less than 0.95 for peripheral lesions and 0.97 for central lesions indicate tumor movement greater than 4mm. VI values for 1mm and 3mm margins were also analyzed signifying tumor motion of 2mm & 6mm, respectively. Results: Of the 64 patients, 35 (55%) had motion greater than 4mm & could have benefited from respiratory gating. For 5/8 (63%) middle lobe lesions, 21/27 (78%) lower lobe lesions, and 10/32 (31%) upper lobe lesions, gating could have resulted in smaller ITV. 32/55 (58%) peripheral lesions and 4/12 (33%) central lesions could have had gating. Average ITV decreased by 1.25cc (11.43%) and average VI increased by 0.11. Conclusion: Out of 64 patients, 55% exhibited motion greater than 4mm even with abdominal compression. Even with abdominalcompression, lung tumors can move >4mm as the degree of pressure which a patient can tolerate, is patient specific.

  3. Target volume delineation for head and neck cancer intensity-modulated radiotherapy; Delineation des volumes cibles des cancers des voies aerodigestives superieures en radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Lapeyre, M.; Toledano, I.; Bourry, N. [Departement de radiotherapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Bailly, C. [Unite de radiodiagnostic, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Cachin, F. [Unite de medecine nucleaire, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France)

    2011-10-15

    This article describes the determination and the delineation of the target volumes for head-and-neck cancers treated with intensity-modulated radiotherapy (IMRT). The delineation of the clinical target volumes (CTV) on the computerized tomography scanner (CT scan) requires a rigorous methodology due to the complexity of head-and-neck anatomy. The clinical examination with a sketch of pretreatment tumour extension, the surgical and pathological reports and the adequate images (CT scan, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography) are necessary for the delineation. The target volumes depend on the overall strategy: sequential IMRT or simultaneous integrated boost-IMRT (SIB-IMRT). The concept of selectivity of the potential subclinical disease near the primary tumor and the selection of neck nodal targets are described according to the recommendations and the literature. The planing target volume (PTV), mainly reflecting setup errors (random and systematic), results from a uniform 4-5 mm expansion around the CTV. We propose the successive delineation of: (1) the gross volume tumour (GTV); (2) the 'high risk' CTV1 around the GTV or including the postoperative tumour bed in case of positive margins or nodal extra-capsular spread (65-70 Gy in 30-35 fractions); (3) the CTV2 'intermediate risk' around the CTV1 for SIB-IMRT (59-63 Gy in 30-35 fractions); (4) the 'low-risk' CTV3 (54-56 Gy in 30-35 fractions); (5) the PTVs. (authors)

  4. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    International Nuclear Information System (INIS)

    Ahmed, Merina; Schmidt, Maria; Sohaib, Aslam; Kong, Christine; Burke, Kevin; Richardson, Cheryl; Usher, Marianne; Brennan, Sinead; Riddell, Angela; Davies, Mark; Newbold, Kate; Harrington, Kevin J.; Nutting, Christopher M.

    2010-01-01

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm 3 , p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm 3 , p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and improved

  5. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Merina [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Schmidt, Maria [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Sohaib, Aslam [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Kong, Christine; Burke, Kevin [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Richardson, Cheryl; Usher, Marianne [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Brennan, Sinead [Department of Radiotherapy, St. James' s Hospital, Dublin (Ireland); Riddell, Angela [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Davies, Mark; Newbold, Kate [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Harrington, Kevin J; Nutting, Christopher M [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Institute of Cancer Research, London (United Kingdom)

    2010-02-15

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm{sup 3}, p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm{sup 3}, p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and

  6. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    International Nuclear Information System (INIS)

    Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.

    2016-01-01

    Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)_5_0_G_y or PTV_6_2_._5_G_y (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D_9_8 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D_9_8 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D_9_8 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D_9_8 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be

  7. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: samantha.warren@oncology.ox.ac.uk [Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford (United Kingdom); Partridge, Mike [Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford (United Kingdom); Bolsi, Alessandra; Lomax, Anthony J. [Centre for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Hurt, Chris [Wales Cancer Trials Unit, School of Medicine, Heath Park, Cardiff (United Kingdom); Crosby, Thomas [Velindre Cancer Centre, Velindre Hospital, Cardiff (United Kingdom); Hawkins, Maria A. [Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford (United Kingdom)

    2016-05-01

    Purpose: Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials: For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV){sub 50Gy} or PTV{sub 62.5Gy} (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results: SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D{sub 98} was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D{sub 98} was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D{sub 98} was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D{sub 98} was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions: The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup

  8. Measurement of tumor volumes of hepatocellular carcinoma (HCC) by computed tomography (CT). Correlation with several tumor markers

    Energy Technology Data Exchange (ETDEWEB)

    Yoneshima, Manabu; Sawabu, Norio; Toya, Daishu

    1984-09-01

    Tumor volumes of HCC were measured by CT using planimeter and the clinical value of this measurement was evaluated by comparing several tumor markers. Tumor volumes measured by CT roughly agreed with those measured by angiography. In some cases, volumes from ultrasonography were smaller than those from CT and angiography. Tumor volumes measured by CT correlated significantly with the levels of ..cap alpha..-fetoprotein (AFP) but didn't relate to the presence of hepatoma specific ..gamma..-GTP isoenzyme (novel ..gamma..-GTP) nor to the values and positivities of LAI assay. In small HCCs (<=30 cm/sup 3/), the presence of novel ..gamma..-GTP and the levels of AFP were significantly lower than for larger tumors of HCC, but LAI assay wasn't lower. The non-tumorous volumes and the ratio of the non-tumorous volume to the whole liver volume didn't relate to the tests of liver function except for the presence of ascites.

  9. Dose and volume specification for reporting NCT. An ICRU-IAEA initiative

    International Nuclear Information System (INIS)

    Wambersie, A.; Gahbauer, R.A.; Whitmore, G.; Levin, C.V.

    2000-01-01

    The present recommendations result from of an ICRU-IAEA initiative for harmonization of reporting NCT (Neutron Capture Therapy). As stated by the ISNCT, harmonization of reporting is required to understand what has actually been done and interpret the clinical results on the basis of reliable information. Prescription of a treatment remains the responsibility of the radiation oncologist in charge of the patient. Complete oncological data should be reported, including Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) as well as Planning Target Volume (PTV), Treated Volume and Organs/Structures at Risk. A reference point for reporting dose should be selected in the central part of the PTV/CTV. At each point of interest, the four components contributing to the absorbed dose and the weighting factors applied to take account of the RBE (Relative Biological Effectiveness) differences should be specified. (author)

  10. CyberKnife with tumor tracking: An effective alternative to wedge resection for high-risk surgical patients with stage I non-small cell lung cancer (NSCLC

    Directory of Open Access Journals (Sweden)

    Sean eCollins

    2012-02-01

    Full Text Available Published data suggests that wedge resection for stage I NSCLC results in improved overall survival compared to stereotactic body radiation therapy (SBRT. We report CyberKnife outcomes for high-risk surgical patients with biopsy-proven stage I NSCLC. PET/CT imaging was completed for staging. Three-to-five gold fiducial markers were implanted in or near tumors to serve as targeting references. Gross tumor volumes (GTVs were contoured using lung windows; the margins were expanded by 5 mm to establish the planning treatment volume (PTV. Treatment plans were designed using hundreds of pencil beams. Doses delivered to the PTV ranged from 42-60 Gy in 3 fractions. The 30-Gy isodose contour extended at least 1cm from the GTV to eradicate microscopic disease. Treatments were delivered using the CyberKnife system with tumor tracking. Examination and PET/CT imaging occurred at 3-month follow-up intervals. Forty patients (median age 76 with a median maximum tumor diameter of 2.6 cm (range, 1.4-5.0 cm and a mean post-bronchodilator percent predicted forced expiratory volume in 1 second (FEV1 of 57% (range, 21 - 111% were treated. A mean dose of 50 Gy was delivered to the PTV over 3 to 13 days (median, 7 days. The 30-Gy isodose contour extended a mean 1.9 cm from the GTV. At a median 44 months (range, 12 -72 months follow-up, the 3-year Kaplan-Meier locoregional control and overall survival estimates compare favorably with contemporary wedge resection outcomes at 91% and 75% , respectively. CyberKnife is an effective treatment approach for stage I NSCLC that is similar to wedge resection, eradicating tumors with 1 to 2 cm margins in order to preserve lung function. Prospective randomized trials comparing CyberKnife with wedge resection are necessary to confirm equivalence.

  11. Brain tumor locating in 3D MR volume using symmetry

    Science.gov (United States)

    Dvorak, Pavel; Bartusek, Karel

    2014-03-01

    This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.

  12. MRI versus {sup 68}Ga-PSMA PET/CT for gross tumour volume delineation in radiation treatment planning of primary prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zamboglou, Constantinos; Kirste, Simon; Fechter, Tobias; Grosu, Anca-Ligia [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); German Cancer Consortium (DKTK), Heidelberg (Germany); Wieser, Gesche [University Medical Center Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Hennies, Steffen [University Medical Center Goettingen, Department of Radiation Oncology, Goettingen (Germany); Rempel, Irene; Soschynski, Martin; Langer, Mathias [University Medical Center Freiburg, Department of Radiology, Freiburg (Germany); Rischke, Hans Christian [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); Jilg, Cordula A. [University Medical Center Freiburg, Department of Urology, Freiburg (Germany); Meyer, Philipp T. [German Cancer Consortium (DKTK), Heidelberg (Germany); University Medical Center Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Bock, Michael [German Cancer Consortium (DKTK), Heidelberg (Germany); University Medical Center Freiburg, Department of Radiology, Freiburg (Germany)

    2016-05-15

    Multiparametric magnetic resonance imaging (mpMRI) is widely used in radiation treatment planning of primary prostate cancer (PCA). Focal dose escalation to the dominant intraprostatic lesions (DIPL) may lead to improved PCA control. Prostate-specific membrane antigen (PSMA) is overexpressed in most PCAs. {sup 68}Ga-labelled PSMA inhibitors have demonstrated promising results in detection of PCA with PET/CT. The aim of this study was to compare {sup 68}Ga-PSMA PET/CT with MRI for gross tumour volume (GTV) definition in primary PCA. This retrospective study included 22 patients with primary PCA analysed after {sup 68}Ga-PSMA PET/CT and mpMRI. GTVs were delineated on MR images by two radiologists (GTV-MRIrad) and two radiation oncologists separately. Both volumes were merged leading to GTV-MRIint. GTVs based on PET/CT were delineated by two nuclear medicine physicians in consensus (GTV-PET). Laterality (left, right, and left and right prostate lobes) on mpMRI, PET/CT and pathological analysis after biopsy were assessed. Mean GTV-MRIrad, GTV-MRIint and GTV-PET were 5.92, 3.83 and 11.41 cm{sup 3}, respectively. GTV-PET was significant larger then GTV-MRIint (p = 0.003). The MRI GTVs GTV-MRIrad and GTV-MRIint showed, respectively, 40 % and 57 % overlap with GTV-PET. GTV-MRIrad and GTV-MRIint included the SUVmax of GTV-PET in 12 and 11 patients (54.6 % and 50 %), respectively. In nine patients (47 %), laterality on mpMRI, PET/CT and histopathology after biopsy was similar. Ga-PSMA PET/CT and mpMRI provided concordant results for delineation of the DIPL in 47 % of patients (40 % - 54 % of lesions). GTV-PET was significantly larger than GTV-MRIint. {sup 68}Ga-PSMA PET/CT may have a role in radiation treatment planning for focal radiation to the DIPL. Exact correlation of PET and MRI images with histopathology is needed. (orig.)

  13. CyberKnife with Tumor Tracking: An Effective Treatment for High-Risk Surgical Patients with Stage I Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Viola J.; Oermann, Eric [Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States); Vahdat, Saloomeh [Department of Pathology, Georgetown University Hospital, Washington, DC (United States); Rabin, Jennifer; Suy, Simeng; Yu, Xia; Collins, Sean P. [Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States); Subramaniam, Deepa [Division of Hematology and Oncology, Georgetown University Hospital, Washington, DC (United States); Banovac, Filip [Department of Radiology, Georgetown University Hospital, Washington, DC (United States); Anderson, Eric [Division of Pulmonary, Critical Care and Sleep Medicine, Georgetown University Hospital, Washington, DC (United States); Collins, Brian T., E-mail: collinsb@gunet.georgetown.edu [Department of Radiation Medicine, Georgetown University Hospital, Washington, DC (United States)

    2012-02-01

    Published data suggests that wedge resection for stage I non-small cell lung cancer (NSCLC) is associated with improved overall survival compared to stereotactic body radiation therapy. We report CyberKnife outcomes for high-risk surgical patients with biopsy-proven stage I NSCLC. PET/CT imaging was completed for staging. Three-to-five gold fiducial markers were implanted in or near tumors to serve as targeting references. Gross tumor volumes (GTVs) were contoured using lung windows; the margins were expanded by 5 mm to establish the planning treatment volume (PTV). Treatment plans were designed using a mean of 156 pencil beams. Doses delivered to the PTV ranged from 42 to 60 Gy in three fractions. The 30 Gy isodose contour extended at least 1 cm from the GTV to eradicate microscopic disease. Treatments were delivered using the CyberKnife system with tumor tracking. Examination and PET/CT imaging occurred at 3 month follow-up intervals. Forty patients (median age 76) with a median maximum tumor diameter of 2.6 cm (range, 1.4–5.0 cm) and a mean post-bronchodilator percent predicted forced expiratory volume in 1 s (FEV1) of 57% (range, 21–111%) were treated. A median dose of 48 Gy was delivered to the PTV over 3–13 days (median, 7 days). The 30 Gy isodose contour extended a mean 1.9 cm from the GTV. At a median 44 months (range, 12–72 months) follow-up, the 3 year Kaplan–Meier locoregional control and overall survival estimates compare favorably with contemporary wedge resection outcomes at 91 and 75%, respectively. CyberKnife is an effective treatment approach for stage I NSCLC that is similar to wedge resection, eradicating tumors with 1–2 cm margins in order to preserve lung function. Prospective randomized trials comparing CyberKnife with wedge resection are necessary to confirm equivalence.

  14. Investigation of pancreas tumour movements and of their potential markers by four-dimensional scanography: implication for image-guided radiotherapy; etude des mouvements des tumeurs du pancreas et de leurs marqueurs potentiels par scanographie quadridimensionnelle: implication pour la radiotherapie guidee par l'image

    Energy Technology Data Exchange (ETDEWEB)

    Huguet, F. [Hopital Tenon, Paris (France); Yorke, E.; Davidson, M.; Zhang, Z.; Jackson, A.; Mageras, G.; Wu, A.; Goodman, K. [Memorial Sloan-Kettering Cancer Center, New York (United States)

    2011-10-15

    The authors report the study which aimed at quantifying pancreas tumour movements induced by breathing by using four-dimensional scanography, and at assessing the reliability of biliary prosthesis, of intra-tumor fiducials, and of an external maker as position markers of the gross tumour volume (GTV). The authors analyzed scanography images acquired during the simulation of 22 patients treated for locally advanced pancreas cancer by intensity-modulated conformational irradiation with respiratory gating. Average movements in different directions have measured. Respiratory gating limits the GTV movement amplitude by 40 to 60 per cent. GTV movements are in good correlation with that of biliary prostheses and intra-tumor fiducials. Short communication

  15. Investigation of pancreas tumour movements and of their potential markers by four-dimensional scanography: implication for image-guided radiotherapy

    International Nuclear Information System (INIS)

    Huguet, F.; Yorke, E.; Davidson, M.; Zhang, Z.; Jackson, A.; Mageras, G.; Wu, A.; Goodman, K.

    2011-01-01

    The authors report the study which aimed at quantifying pancreas tumour movements induced by breathing by using four-dimensional scanography, and at assessing the reliability of biliary prosthesis, of intra-tumor fiducials, and of an external maker as position markers of the gross tumour volume (GTV). The authors analyzed scanography images acquired during the simulation of 22 patients treated for locally advanced pancreas cancer by intensity-modulated conformational irradiation with respiratory gating. Average movements in different directions have measured. Respiratory gating limits the GTV movement amplitude by 40 to 60 per cent. GTV movements are in good correlation with that of biliary prostheses and intra-tumor fiducials. Short communication

  16. Transcranial sonography: integration into target volume definition for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Vordermark, Dirk; Becker, Georg; Flentje, Michael; Richter, Susanne; Goerttler-Krauspe, Irene; Koelbl, Oliver

    2000-01-01

    Purpose: Recent studies indicate that transcranial sonography (TCS) reliably displays the extension of malignant brain tumors. The effect of integrating TCS into radiotherapy planning for glioblastoma multiforme (GBM) was investigated herein. Methods and Materials: Thirteen patients subtotally resected for GBM underwent TCS during radiotherapy planning and were conventionally treated (54 to 60 Gy). Gross tumor volumes (GTVs) and stereotactic boost planning target volumes (PTVs, 3-mm margin) were created, based on contrast enhancement on computed tomography (CT) only (PTV CT ) or the combined CT and TCS information (PTV CT+TCS ). Noncoplonar conformal treatment plans for both PTVs were compared. Tumor progression patterns and preoperative magnetic resonance imaging (MRI) were related to both PTVs. Results: A sufficient temporal bone window for TCS was present in 11 of 13 patients. GTVs as defined by TCS were considerably larger than the respective CT volumes: Of the composite GTV CT+TCS (median volume 42 ml), 23%, 13%, and 66% (medians) were covered by the overlap of both methods, CT only and TCS only, respectively. Median sizes of PTV CT and PTV CT+TCS were 34 and 74 ml, respectively. Addition of TCS to CT information led to a median increase of the volume irradiated within the 80% isodose by 32 ml (median factor 1.51). PTV CT+TCS volume was at median 24% of a 'conventional' MRI(T2)-based PTV. Of eight progressions analyzed, three and six occurred inside the 80% isodose of the plans for PTV CT and for PTV CT+TCS , respectively. Conclusion: Addition of TCS tumor volume to the contrast-enhancing CT volume in postoperative radiotherapy planning for GBM increases the treated volume by a median factor of 1.5. Since a high frequency of marginal recurrences is reported from dose-escalation trials of this disease, TCS may complement established methods in PTV definition

  17. P04.02 Analysis of 18F-DOPA PET imaging for target volume definition in patients with recurrent glioblastoma treated with proton therapy

    Science.gov (United States)

    Amelio, D.; Scartoni, D.; Palucci, A.; Vennarini, S.; Giacomelli, I.; Lemoine, S.; Donner, D.; Farace, P.; Chierichetti, F.; Amichetti, M.

    2017-01-01

    Abstract Introduction: Target volume definition is of critical relevance when re-irradiation is delivered and steep dose gradient irradiation techniques, such as proton therapy (PT), are employed. Aim of the study is to investigate the impact of 18F-DOPA on target volume contouring in recurrent glioblastoma (rGBM) patients (pts) undergoing re-irradiation with PT. MATERIAL AND METHODS: We investigated the differences in volume and relationship of magnetic resonance imaging (MRI)- vs. DOPA PET-derived gross tumor volumes (GTVs) of 14 rGBM pts re-irradiated with PT between January and November 2016. All pts had been previously treated with photon radiotherapy (60 Gy) with concomitant and adjuvant temozolomide. All the pts received morphological MRI with contrast enhancement medium administration and 18F-DOPA PET-CT study. We used the pathological distribution of 18F-DOPA in brain tissue to identify the so-called Biological Tumor Volume (BTV). Such areas were assessed using a tumor to normal brain ratio > 2. Moreover, any area of contrast enhancement on MRI was used to identify the MRI-based GTV (MRGTV). Definitive GTV included MRGTV plus BTV. Clinical target volume was generated by adding to GTV a 3-mm uniform margin manually corrected in proximity of anatomical barriers. CTV was expanded by 4 mm to create planning target volume. All pts received 36 GyRBE in 18 fractions. Mean values of differently delineated GTVs were compared each other by paired Student’s t-test; p < 0.05 was considered significant. To further compare MRGTV and BTV, the overlapping (MRGTV ^ BTV) and the composite (MRGTV U BTV) volumes were calculated, and a concordance index (CI) was defined as the ratio between the overlap and composite volumes. Results: MRGTV (mean 14.9 ± 14.5 cc) was larger than BTV (mean 10.9 ± 9.8 cc) although this difference was not statistically significant. The composite volume (mean 20.9 ± 14.7 cc) was significantly larger than each single volume (p < 0

  18. Evaluation and comparison of New 4DCT based strategies for proton treatment planning for lung tumors

    International Nuclear Information System (INIS)

    Wang, Ning; Patyal, Baldev; Ghebremedhin, Abiel; Bush, David

    2013-01-01

    To evaluate different strategies for proton lung treatment planning based on four-dimensional CT (4DCT) scans. Twelve cases, involving only gross tumor volumes (GTV), were evaluated. Single image sets of (1) maximum intensity projection (MIP3) of end inhale (EI), middle exhale (ME) and end exhale (EE) images; (2) average intensity projection (AVG) of all phase images; and (3) EE images from 4DCT scans were selected as primary images for proton treatment planning. Internal target volumes (ITVs) outlined by a clinician were imported into MIP3, AVG, and EE images as planning targets. Initially, treatment uncertainties were not included in planning. Each plan was imported into phase images of 4DCT scans. Relative volumes of GTVs covered by 95% of prescribed dose and mean ipsilateral lung dose of a phase image obtained by averaging the dose in inspiration and expiration phases were used to evaluate the quality of a plan for a particular case. For comparing different planning strategies, the mean of the averaged relative volumes of GTVs covered by 95% of prescribed dose and its standard deviation for each planning strategy for all cases were used. Then, treatment uncertainties were included in planning. Each plan was recalculated in phase images of 4DCT scans. Same strategies were used for plan evaluation except dose-volume histograms of the planning target volumes (PTVs) instead of GTVs were used and the mean and standard deviation of the relative volumes of PTVs covered by 95% of prescribed dose and the ipsilateral lung dose were used to compare different planning strategies. MIP3 plans without treatment uncertainties yielded 96.7% of the mean relative GTV covered by 95% of prescribed dose (standard deviations of 5.7% for all cases). With treatment uncertainties, MIP3 plans yielded 99.5% of mean relative PTV covered by 95% of prescribed dose (standard deviations of 0.7%). Inclusion of treatment uncertainties improved PTV dose coverage but also increased the ipsilateral

  19. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Doke, K; Pokhrel, D; Aguilera, N; Lominska, C [University of Kansas Medical Center, Kansas City, KS (United States)

    2016-06-15

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.

  20. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    International Nuclear Information System (INIS)

    Badkul, R; Doke, K; Pokhrel, D; Aguilera, N; Lominska, C

    2016-01-01

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.

  1. Target volume definition for {sup 18}F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Schaefer-Schuler, Andrea; Hellwig, Dirk; Kirsch, Carl-Martin [Saarland University Medical Centre, Department of Nuclear Medicine, Homburg/Saar (Germany); Kremp, Stephanie; Ruebe, Christian [Saarland University Medical Centre, Department of Radio-oncology, Homburg/Saar (Germany); Groeschel, Andreas [Saarland University Medical Centre, Department of Pneumology, Homburg/Saar (Germany)

    2007-04-15

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN{sub PET}). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN{sub PET}). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV{sub vis}; 40% SUV{sub max}: GTV{sub 40}; SUV=2.5: GTV{sub 2.5}; target/background (T/B) algorithm: GTV{sub bg}). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUV{sub max} = 2.5; p = 0.0001 for technical delineability by GTV{sub 2.5}; p = 0.003 by GTV{sub 40}), favouring the GTV{sub bg} method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring. (orig.)

  2. Grading of vestibular schwannomas and corresponding tumor volumes: ramifications for radiosurgery.

    Science.gov (United States)

    Mindermann, T; Schlegel, I

    2013-01-01

    Patients with vestibular schwannomas (VS) are either assigned to watchful waiting, microsurgical resection, or radiosurgery. Decision making on how to proceed is based on parameters such as age, tumor growth, loss of hearing, and the tumor's Koos grading. In order to correlate Koos grading with tumor volume, patient records of 235 patients with VS who underwent Gamma Knife radiosurgery (GKRS) were retrospectively reviewed. From 1994 to 2009, 235 consecutive patients underwent GKRS for sporadic VS at the Zurich Gamma Knife Center. Median follow up was 62.8 ± 33.0 months. Of the 235 tumors, 32 (13.6 %) were graded Koos I with a volume of 0.25 ± 0.3 cc; 71 (30.2 %) were graded Koos II with a volume of 0.57 ± 0.54 cc; 70 (29.8 %) were graded Koos III with a volume of 1.82 ± 1.88 cc; and 62 (26.4 %) were graded Koos IV with a volume of 4.17 ± 2.75 cc. Tumor progression was defined as a volume increase > 20 % at 2 years or later following GKRS. Overall tumor progression occurred in 21/235 (8.9 %) patients at 3.4 ± 0.9 years. Tumor progression did not differ statistically significantly in the various Koos grades: 1/32 (3.1 %) patients with VS Koos Grade I, 7/71 (9.8 %) patients with VS Koos Grade II, 6/70 (8.6 %) patients with VS Koos Grade III, and 7/62 (11.3 %) patients with VS Koos Grade IV. To our knowledge, this is the first work correlating the various Koos grades of VS to their respective tumor volumes. In our patients, tumor volumes of VS Koos Grade IV were limited because all of our patients were eligible for radiosurgery. In our series, the outcome following GKRS for patients with VS Koos Grade IV tumors did not differ from patients with VS Koos Grades I-III. We therefore suggest to limit Koos Grade IV VS to tumor volumes 6 cc that may not be eligible for radiosurgery.

  3. Proton radiation therapy for retinoblastoma: Comparison of various intraocular tumor locations and beam arrangements

    International Nuclear Information System (INIS)

    Krengli, Marco; Hug, Eugen B.; Adams, Judy A.; Smith, Alfred R.; Tarbell, Nancy J.; Munzenrider, John E.

    2005-01-01

    Purpose: To study the optimization of proton beam arrangements for various intraocular tumor locations; and to correlate isodose distributions with various target and nontarget structures. Methods and materials: We considered posterior-central, nasal, and temporal tumor locations, with straight, intrarotated, or extrarotated eye positions. Doses of 46 cobalt grey equivalent (CGE) to gross tumor volume (GTV) and 40 CGE to clinical target volume (CTV) (2 CGE per fraction) were assumed. Using three-dimensional planning, we compared isodose distributions for lateral, anterolateral oblique, and anteromedial oblique beams and dose-volume histograms of CTVs, GTVs, lens, lacrimal gland, bony orbit, and soft tissues. Results: All beam arrangements fully covered GTVs and CTVs with optimal lens sparing. Only 15% of orbital bone received doses ≥20 CGE with a lateral beam, with 20-26 CGE delivered to two of three growth centers. The anterolateral oblique approach with an intrarotated eye resulted in additional reduction of bony volume and exposure of only one growth center. No appreciable dose was delivered to the contralateral eye, brain tissue, or pituitary gland. Conclusions: Proton therapy achieved homogeneous target coverage with true lens sparing. Doses to orbit structures, including bony growth centers, were minimized with different beam arrangements and eye positions. Proton therapy could reduce the risks of second malignancy and cosmetic and functional sequelae

  4. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina [Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98195-6043 (United States); Yartsev, Slav [London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario 46A 4L6 (Canada)

    2014-06-15

    Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained

  5. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose–Volume Parameters and First Clinical Results

    International Nuclear Information System (INIS)

    Dimopoulos, Johannes C.A.; Schmid, Maximilian P.; Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Pötter, Richard

    2012-01-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45–50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model (α/β = 10 Gy for tumor; α/β = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV (± 1 standard deviation) at diagnosis was 45.3 (±30) cm 3 , and the mean GTV at brachytherapy was 10 (±14) cm 3 . The mean D90 for the HRCTV was 86 (±13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 (±20) Gy, 76 (±16) Gy, 70 (±9) Gy, and 60 (±9) Gy, respectively. After a median follow-up of 43 months (range, 19–87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and organs at risk are in a comparable

  6. Treatment of Locally Advanced Vaginal Cancer With Radiochemotherapy and Magnetic Resonance Image-Guided Adaptive Brachytherapy: Dose-Volume Parameters and First Clinical Results

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Johannes C.A. [Department of Radiation Oncology, Metropolitan Hospital, Athens (Greece); Schmid, Maximilian P., E-mail: maximilian.schmid@akhwien.at [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria); Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard [Department of Radiotherapy, Medical University of Vienna, Vienna (Austria)

    2012-04-01

    Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and

  7. Comparison of primary tumour volumes delineated on four-dimensional computed tomography maximum intensity projection and 18F-fluorodeoxyglucose positron emission tomography computed tomography images of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Duan, Yili; Li, Jianbin; Zhang, Yingjie; Wang, Wei; Fan, Tingyong; Shao, Qian; Xu, Min; Guo, Yanluan; Sun, Xiaorong; Shang, Dongping

    2015-01-01

    The study aims to compare the positional and volumetric differences of tumour volumes based on the maximum intensity projection (MIP) of four-dimensional CT (4DCT) and 18 F-fluorodexyglucose ( 18 F-FDG) positron emission tomography CT (PET/CT) images for the primary tumour of non-small cell lung cancer (NSCLC). Ten patients with NSCLC underwent 4DCT and 18 F-FDG PET/CT scans of the thorax on the same day. Internal gross target volumes (IGTVs) of the primary tumours were contoured on the MIP images of 4DCT to generate IGTV MIP . Gross target volumes (GTVs) based on PET (GTV PET ) were determined with nine different threshold methods using the auto-contouring function. The differences in the volume, position, matching index (MI) and degree of inclusion (DI) of the GTV PET and IGTV MIP were investigated. In volume terms, GTV PET2.0 and GTV PET20% approximated closely to IGTV MIP with mean volume ratio of 0.93 ± 0.45 and 1.06 ± 0.43, respectively. The best MI was between IGTV MIP and GTV PET20% (0.45 ± 0.23). The best DI of IGTV MIP in GTV PET was IGTV MIP in GTV PET20% (0.61 ± 0.26). In 3D PET images, the GTVPET contoured by standardised uptake value (SUV) 2.0 or 20% of maximal SUV (SUV max ) approximate closely to the IGTV MIP in target size, while the spatial mismatch is apparent between them. Therefore, neither of them could replace IGTV MIP in spatial position and form. The advent of 4D PET/CT may improve the accuracy of contouring the perimeter for moving targets.

  8. Radiation therapy for chordoma and chondrosarcoma of the skull base and the cervical spine. Prognostic factors and patterns of failure

    International Nuclear Information System (INIS)

    Noel, G.; Jauffret, E.; Mammar, H.; Ferrand, R.; Habrand, J.L.; Crevoisier, R. de; Haie-Meder, C.; Beaudre, A.; Dederke, S.; Hasboun, D.; Boisserie, G.; Pontvert, D.; Gaboriaud, G.; Guedea, F.; Petriz, L.; Mazeron, J.J.

    2003-01-01

    Background: Prospective analysis of local tumor control, survival and treatment complications in 67 consecutive patients treated with fractionated photon and proton radiation for chordoma or chondrosarcoma of the base of the skull and the cervical spine. Patients and Methods: Between December 1995 and January 2000, 67 patients with a median age of 52 years (range: 14-85 years), were treated at the Centre de Protontherapie d'Orsay (CPO), France, using the 201-MeV proton beam, 49 for chordoma and 18 for chondrosarcoma. Irradiation combined high-energy photons and protons. Photons represented two thirds of the total dose and protons one third. The median total dose delivered within gross tumor volume (GTV) was 67 cobalt gray equivalents (CGE; range: 60-70 CGE). Results: Within a median follow-up of 29 months (range: 4-71 months), the 3-year local control rates were 71% and 85% for chordomas and chondrosarcomas, respectively, and the 3-year overall survival rates 88% and 75%, respectively. 14 tumors (21.5%) failed locally (eight within the GTV, four within the clinical target volume [CTV], and two without further assessment). Seven patients died from their tumor and another one from a nonrelated condition (pulmonary embolism). The maximum tumor diameter and, similarly, the GTV were larger in relapsing patients, compared with the rest of the population: 56 mm vs 44 mm (p = 0.024) and 50 ml vs 22 ml (p = 0.0083), respectively. In univariate analysis, age ≤ 52 years at the time of radiotherapy (p = 0.002), maximum diameter < 45 mm (p = 0.02), and GTV < 28 ml (p = 0.02) impacted positively on local control. On multivariate analysis, only age was an independent prognostic factor of local control. Conclusion: In chordomas and chondrosarcomas of the skull base and cervical spine, combined photon and proton radiation therapy offers excellent chances of cure. In two thirds of the cases, relapses are located in the GTV. Maximum diameter, GTV, and age are prognostic indicators

  9. SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma

    International Nuclear Information System (INIS)

    Qayyum, F; Armato, S; Straus, C; Husain, A; Vigneswaran, W; Kindler, H

    2015-01-01

    Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volume of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology

  10. SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, F; Armato, S; Straus, C; Husain, A; Vigneswaran, W; Kindler, H [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volume of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology.

  11. Postoperative radiotherapy for glioma: improved delineation of the clinical target volume using the geodesic distance calculation.

    Directory of Open Access Journals (Sweden)

    DanFang Yan

    Full Text Available OBJECTS: To introduce a new method for generating the clinical target volume (CTV from gross tumor volume (GTV using the geodesic distance calculation for glioma. METHODS: One glioblastoma patient was enrolled. The GTV and natural barriers were contoured on each slice of the computer tomography (CT simulation images. Then, a graphic processing unit based on a parallel Euclidean distance transform was used to generate the CTV considering natural barriers. Three-dimensional (3D visualization technique was applied to show the delineation results. Speed of operation and precision were compared between this new delineation method and the traditional method. RESULTS: In considering spatial barriers, the shortest distance from the point sheltered from these barriers equals the sum of the distance along the shortest path between the two points; this consists of several segments and evades the spatial barriers, rather than being the direct Euclidean distance between two points. The CTV was generated irregularly rather than as a spherical shape. The time required to generate the CTV was greatly reduced. Moreover, this new method improved inter- and intra-observer variability in defining the CTV. CONCLUSIONS: Compared with the traditional CTV delineation, this new method using geodesic distance calculation not only greatly shortens the time to modify the CTV, but also has better reproducibility.

  12. PET CT Thresholds for Radiotherapy Target Definition in Non-Small-Cell Lung Cancer: How Close are we to the Pathologic Findings?

    International Nuclear Information System (INIS)

    Wu Kailiang; Ung, Yee C.; Hornby, Jennifer

    2010-01-01

    Purpose: Optimal target delineation threshold values for positron emission tomography (PET) and computed tomography (CT) radiotherapy planning is controversial. In this present study, different PET CT threshold values were used for target delineation and then compared pathologically. Methods and Materials: A total of 31 non-small-cell lung cancer patients underwent PET CT before surgery. The maximal diameter (MD) of the pathologic primary tumor was obtained. The CT-based gross tumor volumes (GTV CT ) were delineated for CT window-level thresholds at 1,600 and -300 Hounsfield units (HU) (GTV CT1 ); 1,600 and -400 (GTV CT2 ); 1,600 and -450 HU (GTV CT3 ); 1,600 and -600 HU (GTV CT4 ); 1,200 and -700 HU (GTV CT5 ); 900 and -450 HU (GTV CT6 ); and 700 and -450 HU (GTV CT7 ). The PET-based GTVs (GTV PET ) were autocontoured at 20% (GTV 20 ), 30% (GTV 30 ), 40% (GTV 40 ), 45% (GTV 45 ), 50% (GTV 50 ), and 55% (GTV 55 ) of the maximal intensity level. The MD of each image-based GTV in three-dimensional orientation was determined. The MD of the GTV PET and GTV CT were compared with the pathologically determined MD. Results: The median MD of the GTV CT changed from 2.89 (GTV CT2 ) to 4.46 (GTV CT7 ) as the CT thresholds were varied. The correlation coefficient of the GTV CT compared with the pathologically determined MD ranged from 0.76 to 0.87. The correlation coefficient of the GTV CT1 was the best (r = 0.87). The median MD of GTV PET changed from 5.72cm to 2.67cm as the PET thresholds increased. The correlation coefficient of the GTV PET compared with the pathologic finding ranged from 0.51 to 0.77. The correlation coefficient of GTV 50 was the best (r = 0.77). Conclusion: Compared with the MD of GTV PET , the MD of GTV CT had better correlation with the pathologic MD. The GTV CT1 and GTV 50 had the best correlation with the pathologic results.

  13. Predictors for replanning in loco-regionally advanced nasopharyngeal carcinoma patients undergoing intensity-modulated radiation therapy: a prospective observational study

    International Nuclear Information System (INIS)

    Yan, DanFang; Yan, SenXiang; Wang, QiDong; Liao, XinBiao; Lu, ZhongJie; Wang, YiXiang

    2013-01-01

    Replanning in intensity-modulated radiotherapy (IMRT) has been reported to improve quality of life and loco-regional control in patients with nasopharyngeal cancer (NPC). Determination of the criteria for replanning is, however, urgently needed. We conducted a prospective study to determine when and for what type of patients is replanning preferred through weekly repeat computed tomography (CT) imaging during the course of IMRT. We recruited 20 patients who were diagnosed as having loco-regionally advanced, non-metastatic stage III or IVa NPC and treated with concurrent platinum-based chemoradiotherapy (CRT) using IMRT. Patients received CT simulation (sim-CT) and plain magnetic resonance imaging (MRI) plus diffusion-weighted imaging (DWI) weekly for five consecutive weeks. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated and recorded weekly based on the CT-CT fusion. The relationship between GTV/CTV reduction and clinical characteristics of the patients were assessed using Pearson correlation test. GTV and CTV decreased during the treatment by 36.03 mL (range, 10.91–98.82 mL) and 76.79 mL (range, 33.94–125.14 mL), respectively, after 25 fractions of treatment. The percentage reductions from their initial volume were 38.4% (range, 25.3–50.7%) and 11.8% (range, 6.7–18.3%), respectively. The greatest reductions in GTV and CTV were observed at the fourth week (i.e., upon completion of 20 fractions), compared to pre-treatment sim-CT. Weight loss and CTV reduction were significantly correlated with pre-treatment body mass index (BMI) (r = 0.58, P = 0.012, and r = 0.48, P = 0.046, respectively). However, no significant correlation was observed between CTV reduction and initial tumor volume. In addition, GTV reduction was not significantly correlated with pre-treatment tumor volume (P = 0.65), but negatively correlated with pre-treatment tumor apparent diffusion coefficient (ADC) values (r = −0.46, P = 0.042). Our results indicate

  14. Dose distribution and clinical response of glioblastoma treated with boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)], E-mail: mhide-m@gk9.so-net.ne.jp; Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Kumada, H. [Japan Atomic Energy Agency, Shirakatashirane 2-4, Tokai (Japan); Nakai, K.; Shirakawa, M.; Tsurubuchi, T.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)

    2009-07-15

    The dose distribution and failure pattern after treatment with the external beam boron neutron capture therapy (BNCT) protocol were retrospectively analyzed. BSH (5 g/body) and BPA (250 mg/kg) based BNCT was performed in eight patients with newly diagnosed glioblastoma. The gross tumor volume (GTV) and clinical target volume (CTV)-1 were defined as the residual gadolinium-enhancing volume. CTV-2 and CTV-3 were defined as GTV plus a margin of 2 and 3 cm, respectively. As additional photon irradiation, a total X-ray dose of 30 Gy was given to the T2 high intensity area on MRI. Five of the eight patients were alive at analysis for a mean follow-up time of 20.3 months. The post-operative median survival time of the eight patients was 27.9 months (95% CI=21.0-34.8). The minimum tumor dose of GTV, CTV-2, and CTV-3 averaged 29.8{+-}9.9, 15.1{+-}5.4, and 12.4{+-}2.9 Gy, respectively. The minimum tumor non-boron dose of GTV, CTV-2, and CTV-3 averaged 2.0{+-}0.5, 1.3{+-}0.3, and 1.1{+-}0.2 Gy, respectively. The maximum normal brain dose, skin dose, and average brain dose were 11.4{+-}1.5, 9.6{+-}1.4, and 3.1{+-}0.4 Gy, respectively. The mean minimum dose at the failure site in cases of in-field recurrence (IR) and out-field recurrence (OR) was 26.3{+-}16.7 and 14.9 GyEq, respectively. The calculated doses at the failure site were at least equal to the tumor control doses which were previously reported. We speculate that the failure pattern was related to an inadequate distribution of boron-10. Further improvement of the microdistribution of boron compounds is expected, and may improve the tumor control by BNCT.

  15. Non-invasive pre-clinical MR imaging of prostate tumor hypoxia for radiation therapy prognosis

    Directory of Open Access Journals (Sweden)

    Derek White

    2014-03-01

    Full Text Available Purpose: To investigate the usefulness of Oxygen-Enhanced Magnetic Resonance Imaging (OE-MRI changes in signal intensity related to oxygen challenge for predicting tumor response to radiation therapy.Methods: Dynamic MR signal changes were acquired using Varian 4.7T small animal MR scanner prior to image-guided radiation therapy (IGRT of small (n = 6 and large subcutaneous (n = 5 prostate tumors in adult male rats. An interleaved blood-oxygen level dependent (BOLD and tissue-oxygen level dependent (TOLD data acquisition or (IBT was performed using a baseline of medical air as positive control and using medical oxygen as a breathing challenge. BOLD used a 2-D multi-slice spoiled gradient-echo with multi-echo sequence. TOLD used a 2-D multi-slice spoiled gradient-echo sequence. Voxel changes in signal intensity were determined by a correlation coefficient mapping technique. Irradiation technique planned consisted of 1F × 15 Gy AP/PA or 2F × 7.5 Gy AP/PA to the gross tumor volume (GTV. Tumor growth measurements were recorded over time to assess the response to IGRT.Results: BOLD and TOLD signals variously illustrated positive or negative impulse responses in the tumor ROI due to inhaling medical oxygen. Correlation coefficient mapping demonstrated heterogeneity in tumors after inhaling medical oxygen. BOLD and TOLD signals exhibited increased changes in signal intensities after the first fraction of dose. Multi-fractionation had minimum effect until the second fraction of dose was applied. Tumor growth delays were observed when inhaling medical oxygen during IGRT.Conclusion: OE-MRI is a non-invasive imaging modality that can provide insight to the oxygen status of tumors. Observed increase percent changes in BOLD and TOLD signal intensities after the first fraction of dose suggest tumors experienced reoxygenation. OE-MRI could be used for predicting tumor response to IGRT when using medical oxygen for increasing GTV radiosensitivity, suggesting

  16. SU-F-R-47: Quantitative Shape Relationship Analysis of PTV Modification for Critical Anatomy Sparing and Its Impact On Pathologic Response for Neoadjuvant Stereotactic Radiotherapy for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Z; Rosati, L; Chen, L; Robertson, S; Moore, J; Peng, L; Mian, O; Narang, A; Hacker-Prietz, A; Herman, J; McNutt, T [Johns Hopkins University, Baltimore, MD (United States)

    2016-06-15

    Purpose: Stereotactic body radiation therapy (SBRT) may be used to increase surgery candidacy in borderline resectable (BRPC) and locally advanced (LAPC) pancreatic cancer. However, the planning target volume (PTV) may need to be limited to avoid toxicity when the gross tumor volume (GTV) is anatomically involved with surrounding critical structures. Our study aims to characterize the coverage of GTV and investigate the association between modified PTV and pathologic (pCR) or near pathologic (npCR) complete response rates determined from the surgical specimen. Methods: Patients treated with neoadjuvant pancreas SBRT followed by surgery from 2010–2015 were selected from Oncospace. Overlap volume histogram (OVH) analysis was performed to determine the extent of compromise of the PTV from both the GTV and a standard target (GTV+3mm). Subsequently, normalized overlap volume (%) was calculated for: (1) GTV-PTV, and (2) GTV+3mm expansion-PTV. A logistic regression model was used to identify the association between the overlap ratios and ≥ npCR(pCR/npCR) stratified by active breathing control (ABC) versus free-breathing status. Results: Eighty-one (BRPC: n=42, LAPC: n=39) patients were available for analysis. Nearly 40% (31/81) had ≥npCR and 75% (61/81) were able to complete ABC. Mean coverage of the GTV-PTV was 92.6% (range, 59.9%–100%, SD = 8.68) and coverage of the GTV+3mm expansion-PTV was 85. 2% (range, 59.9% −100.0%, SD= 8.67). Among the patients with ABC, every 10% increase in GTV coverage doubled the odds to have ≥npCR (OR = 1.82, p=0.06). Coverage of GTV+3mm expansion was not associated with ≥npCR regardless of ABC status. Conclusion: Preferential sparing of critical anatomy over GTV-PTV coverage with ABC management suggests worse ≥npCR rates for neoadjuvant SBRT in BRPC and LAPC. Limiting the GTV and GTV+3mm expansion in free-breathing patients was not associated with pathologic response perhaps due to larger GTV definitions as a result of motion

  17. SU-F-R-47: Quantitative Shape Relationship Analysis of PTV Modification for Critical Anatomy Sparing and Its Impact On Pathologic Response for Neoadjuvant Stereotactic Radiotherapy for Pancreatic Cancer

    International Nuclear Information System (INIS)

    Cheng, Z; Rosati, L; Chen, L; Robertson, S; Moore, J; Peng, L; Mian, O; Narang, A; Hacker-Prietz, A; Herman, J; McNutt, T

    2016-01-01

    Purpose: Stereotactic body radiation therapy (SBRT) may be used to increase surgery candidacy in borderline resectable (BRPC) and locally advanced (LAPC) pancreatic cancer. However, the planning target volume (PTV) may need to be limited to avoid toxicity when the gross tumor volume (GTV) is anatomically involved with surrounding critical structures. Our study aims to characterize the coverage of GTV and investigate the association between modified PTV and pathologic (pCR) or near pathologic (npCR) complete response rates determined from the surgical specimen. Methods: Patients treated with neoadjuvant pancreas SBRT followed by surgery from 2010–2015 were selected from Oncospace. Overlap volume histogram (OVH) analysis was performed to determine the extent of compromise of the PTV from both the GTV and a standard target (GTV+3mm). Subsequently, normalized overlap volume (%) was calculated for: (1) GTV-PTV, and (2) GTV+3mm expansion-PTV. A logistic regression model was used to identify the association between the overlap ratios and ≥ npCR(pCR/npCR) stratified by active breathing control (ABC) versus free-breathing status. Results: Eighty-one (BRPC: n=42, LAPC: n=39) patients were available for analysis. Nearly 40% (31/81) had ≥npCR and 75% (61/81) were able to complete ABC. Mean coverage of the GTV-PTV was 92.6% (range, 59.9%–100%, SD = 8.68) and coverage of the GTV+3mm expansion-PTV was 85. 2% (range, 59.9% −100.0%, SD= 8.67). Among the patients with ABC, every 10% increase in GTV coverage doubled the odds to have ≥npCR (OR = 1.82, p=0.06). Coverage of GTV+3mm expansion was not associated with ≥npCR regardless of ABC status. Conclusion: Preferential sparing of critical anatomy over GTV-PTV coverage with ABC management suggests worse ≥npCR rates for neoadjuvant SBRT in BRPC and LAPC. Limiting the GTV and GTV+3mm expansion in free-breathing patients was not associated with pathologic response perhaps due to larger GTV definitions as a result of motion

  18. Comparison of target volumes in radiotherapy defined on scanner and on PET-T.D.M. with {sup 18}F-F.D.G. in the frame of head and neck cancers; Comparaison des volumes cibles en radiotherapie definis sur scanner et sur TEP-TDM au 18F FDG dans le cadre des cancers de la tete et du cou

    Energy Technology Data Exchange (ETDEWEB)

    Henriques De Figueiredo, B.; Barret, O.; Allard, M.; Fernandez, P. [Service de medecine nucleaire, CHU de Pellegrin, Bordeaux, (France); Demeaux, H.; Maire, J.P.; Lagarde, P. [service de radiotherapie, hopital Saint-Andre, Bordeaux, (France); Kantor, G.; Richau, P. [departement de radiotherapie, institut Bergonie, Bordeaux, (France); De Mones Del Pujol, E. [service d' ORL, hopital Pellegrin, Bordeaux, (France)

    2009-05-15

    The objective is to study in a prospective way, in the frame of head and neck cancers, the impact of the positron computed tomography with {sup 18}F fluorodeoxyglucose (PET-F.D.G.) on the limitation of target volumes in radiotherapy. In conclusions, the gross tumor volume (G.T.V.) defined on PET is smaller than this one defined on scanner, that could be interesting in radiotherapy, in the perspective of a dose escalation. In addition, areas of discordance exist between the clinical target volumes (C.T.V.70 and C.T.V.50) defined on PET and on scanner. These discordances, synonyms of under or over estimation of target volumes, could have important clinical consequences in term of local control and toxicity. (N.C.)

  19. Target volume determination in radiotherapy for non-small-cell lung cancer-facts and questions

    International Nuclear Information System (INIS)

    Kepka, L.; Bujko, K.

    2003-01-01

    Although the precise target volume definition in conformal radiotherapy is required by ICRU Report 50 and 62, this task in radiotherapy for non-small-cell lung cancer (NSCLC) is often controversial and strict accordance with ICRU requirements is hard to achieve. The Gross Tumour Volume (GTV) definition depends mainly on the imaging method used. We discuss the use of new imaging modalities, like PET, in GTV definition. The Clinical Target Volume (CTV) definition remains a separate, and still unresolved problem, especially in the part concerning the Elective Nodal Irradiation (ENI). Nowadays, there is no unified attitude among radiation oncologists regarding the necessity and extent of ENI. The common use of combined treatment modalities and the tendency to dose escalation, both increasing the potential toxicity, result in the more frequent use of involved-fields techniques. Problems relating to margins during Planning Target Volume (PTV) of lung cancer irradiation are also discussed. Another issue is the Interclinician variability in target volumes definition, especially when there is data indicating that the GTV, as defined by 3 D-treatment planning in NSCLC radiotherapy, may be highly prognostic for survival. We postulate that special attention should be paid to detailed precision of target volume determination in departmental and trial protocols. Careful analysis of patterns of failures from ongoing protocols will enable us to formulate the guidelines for target volume definition in radiotherapy for lung cancer. (author)

  20. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    International Nuclear Information System (INIS)

    Kageji, Teruyoshi; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-01-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively

  1. Stereological quantification of tumor volume, mean nuclear volume and total number of melanoma cells correlated with morbidity and mortality

    DEFF Research Database (Denmark)

    Bønnelykke-Behrndtz, Marie Louise; Sørensen, Flemming Brandt; Damsgaard, Tine Engberg

    2008-01-01

    potential indicators of prognosis. Sixty patients who underwent surgery at the Department of Plastic Surgery, Aarhus University Hospital, from 1991 to 1994 were included in the study. Total tumor volume was estimated by the Cavalieri technique, total number of tumor cells by the optical dissector principle...... showed a significant impact on both disease-free survival (p=0.001) and mortality (p=0.009). In conclusion, tumor volume and total number of cancer cells were highly reproducible but did not add additional, independent prognostic information regarding the study population.......Stereological quantification of tumor volume, total number of tumor cells and mean nuclear volume provides unbiased data, regardless of the three-dimensional shape of the melanocytic lesion. The aim of the present study was to investigate whether these variables are reproducible and may represent...

  2. Adaptation requirements due to anatomical changes in free-breathing and deep-inspiration breath-hold for standard and dose-escalated radiotherapy of lung cancer patients

    DEFF Research Database (Denmark)

    Sibolt, Patrik; Ottosson, Wiviann; Sjöström, David

    2015-01-01

    to investigate the need for adaptation due to anatomical changes, for both standard (ST) and DE plans in free-breathing (FB) and DIBH. Material and methods. The effect of tumor shrinkage (TS), pleural effusion (PE) and atelectasis was investigated for patients and for a CIRS thorax phantom. Sixteen patients were...... volume. Results. Phantom simulations resulted in maximum deviations in mean dose to the GTV-T ( GTV-T ) of -1% for 3 cm PE and centrally located tumor, and + 3% for TS from 5 cm to 1 cm diameter for an anterior tumor location. For the majority of the patients, simulated PE resulted in a decreasing...

  3. A comparison between radiation therapists and medical specialists in the use of kilovoltage cone-beam computed tomography scans for potential lung cancer radiotherapy target verification and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Watt, Sandie Carolyn, E-mail: sandie.watt@sswahs.gov.au [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); University of Sydney, Sydney, NSW (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); Vinod, Shalini K. [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Dimigen, Marion [Department of Radiology, Liverpool Hospital, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Descallar, Joseph [Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW (Australia); Zogovic, Branimere [Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Atyeo, John [University of Sydney, Sydney, NSW (Australia); Wallis, Sian [University of Western Sydney, NSW (Australia); Holloway, Lois C. [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); University of Sydney, Sydney, NSW (Australia); Institute of Medical Physics, University of Sydney, Sydney, NSW (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia. (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia)

    2016-04-01

    Target volume matching using cone-beam computed tomography (CBCT) is the preferred treatment verification method for lung cancer in many centers. However, radiation therapists (RTs) are trained in bony matching and not soft tissue matching. The purpose of this study was to determine whether RTs were equivalent to radiation oncologists (ROs) and radiologists (RDs) in alignment of the treatment CBCT with the gross tumor volume (GTV) defined at planning and in delineating the GTV on the treatment CBCT, as may be necessary for adaptive radiotherapy. In this study, 10 RTs, 1 RO, and 1 RD performed a manual tumor alignment and correction of the planning GTV to a treatment CBCT to generate an isocenter correction distance for 15 patient data sets. Participants also contoured the GTV on the same data sets. The isocenter correction distance and the contoured GTVs from the RTs were compared with the RD and RO. The mean difference in isocenter correction distances was 0.40 cm between the RO and RD, 0.51 cm between the RTs, and RO and 0.42 cm between the RTs and RD. The 95% CIs were smaller than the equivalence limit of 0.5 cm, indicating that the RTs were equivalent to the RO and RD. For GTV delineation comparisons, the RTs were not found to be equivalent to the RD or RO. The alignment of the planning defined GTV and treatment CBCT using soft tissue matching by the RTs has been shown to be equivalent to those by the RO and RD. However, tumor delineation by the RTs on the treatment CBCT was not equivalent to that of the RO and RD. Thus, it may be appropriate for RTs to undertake soft tissue alignment based on CBCT; however, further investigation may be necessary before RTs undertake delineation for adaptive radiotherapy purposes.

  4. A comparison between radiation therapists and medical specialists in the use of kilovoltage cone-beam computed tomography scans for potential lung cancer radiotherapy target verification and adaptation

    International Nuclear Information System (INIS)

    Watt, Sandie Carolyn; Vinod, Shalini K.; Dimigen, Marion; Descallar, Joseph; Zogovic, Branimere; Atyeo, John; Wallis, Sian; Holloway, Lois C.

    2016-01-01

    Target volume matching using cone-beam computed tomography (CBCT) is the preferred treatment verification method for lung cancer in many centers. However, radiation therapists (RTs) are trained in bony matching and not soft tissue matching. The purpose of this study was to determine whether RTs were equivalent to radiation oncologists (ROs) and radiologists (RDs) in alignment of the treatment CBCT with the gross tumor volume (GTV) defined at planning and in delineating the GTV on the treatment CBCT, as may be necessary for adaptive radiotherapy. In this study, 10 RTs, 1 RO, and 1 RD performed a manual tumor alignment and correction of the planning GTV to a treatment CBCT to generate an isocenter correction distance for 15 patient data sets. Participants also contoured the GTV on the same data sets. The isocenter correction distance and the contoured GTVs from the RTs were compared with the RD and RO. The mean difference in isocenter correction distances was 0.40 cm between the RO and RD, 0.51 cm between the RTs, and RO and 0.42 cm between the RTs and RD. The 95% CIs were smaller than the equivalence limit of 0.5 cm, indicating that the RTs were equivalent to the RO and RD. For GTV delineation comparisons, the RTs were not found to be equivalent to the RD or RO. The alignment of the planning defined GTV and treatment CBCT using soft tissue matching by the RTs has been shown to be equivalent to those by the RO and RD. However, tumor delineation by the RTs on the treatment CBCT was not equivalent to that of the RO and RD. Thus, it may be appropriate for RTs to undertake soft tissue alignment based on CBCT; however, further investigation may be necessary before RTs undertake delineation for adaptive radiotherapy purposes.

  5. 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer

    International Nuclear Information System (INIS)

    Wang Hui; Vees, Hansjoerg; Miralbell, Raymond; Wissmeyer, Michael; Steiner, Charles; Ratib, Osman; Senthamizhchelvan, Srinivasan; Zaidi, Habib

    2009-01-01

    Background and purpose: We evaluate the contribution of 18 F-choline PET/CT in the delineation of gross tumour volume (GTV) in local recurrent prostate cancer after initial irradiation using various PET image segmentation techniques. Materials and methods: Seventeen patients with local-only recurrent prostate cancer (median = 5.7 years) after initial irradiation were included in the study. Rebiopsies were performed in 10 patients that confirmed the local recurrence. Following injection of 300 MBq of 18 F-fluorocholine, dynamic PET frames (3 min each) were reconstructed from the list-mode acquisition. Five PET image segmentation techniques were used to delineate the 18 F-choline-based GTVs. These included manual delineation of contours (GTV man ) by two teams consisting of a radiation oncologist and a nuclear medicine physician each, a fixed threshold of 40% and 50% of the maximum signal intensity (GTV 40% and GTV 50% ), signal-to-background ratio-based adaptive thresholding (GTV SBR ), and a region growing (GTV RG ) algorithm. Geographic mismatches between the GTVs were also assessed using overlap analysis. Results: Inter-observer variability for manual delineation of GTVs was high but not statistically significant (p = 0.459). In addition, the volumes and shapes of GTVs delineated using semi-automated techniques were significantly higher than those of GTVs defined manually. Conclusions: Semi-automated segmentation techniques for 18 F-choline PET-guided GTV delineation resulted in substantially higher GTVs compared to manual delineation and might replace the latter for determination of recurrent prostate cancer for partial prostate re-irradiation. The selection of the most appropriate segmentation algorithm still needs to be determined.

  6. 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer.

    Science.gov (United States)

    Wang, Hui; Vees, Hansjörg; Miralbell, Raymond; Wissmeyer, Michael; Steiner, Charles; Ratib, Osman; Senthamizhchelvan, Srinivasan; Zaidi, Habib

    2009-11-01

    We evaluate the contribution of (18)F-choline PET/CT in the delineation of gross tumour volume (GTV) in local recurrent prostate cancer after initial irradiation using various PET image segmentation techniques. Seventeen patients with local-only recurrent prostate cancer (median=5.7 years) after initial irradiation were included in the study. Rebiopsies were performed in 10 patients that confirmed the local recurrence. Following injection of 300 MBq of (18)F-fluorocholine, dynamic PET frames (3 min each) were reconstructed from the list-mode acquisition. Five PET image segmentation techniques were used to delineate the (18)F-choline-based GTVs. These included manual delineation of contours (GTV(man)) by two teams consisting of a radiation oncologist and a nuclear medicine physician each, a fixed threshold of 40% and 50% of the maximum signal intensity (GTV(40%) and GTV(50%)), signal-to-background ratio-based adaptive thresholding (GTV(SBR)), and a region growing (GTV(RG)) algorithm. Geographic mismatches between the GTVs were also assessed using overlap analysis. Inter-observer variability for manual delineation of GTVs was high but not statistically significant (p=0.459). In addition, the volumes and shapes of GTVs delineated using semi-automated techniques were significantly higher than those of GTVs defined manually. Semi-automated segmentation techniques for (18)F-choline PET-guided GTV delineation resulted in substantially higher GTVs compared to manual delineation and might replace the latter for determination of recurrent prostate cancer for partial prostate re-irradiation. The selection of the most appropriate segmentation algorithm still needs to be determined.

  7. Comparative evaluation of 11C-MET PET-CT and MRI for GTV delineation in precision radiotherapy for gliomas%基于11C-MET PET-CT与MRI对脑胶质瘤精确放疗GTV勾画的比较研究

    Institute of Scientific and Technical Information of China (English)

    王如; 钱立庭; 汪世存; 刘伟; 罗文广; 张洪波; 李广虎; 胡智刚; 刘磊

    2014-01-01

    目的 探讨11C-MET PET-CT和MRI图像对脑胶质瘤GTV确定的差异.方法 选取6例经病理证实为胶质瘤患者的术前MRI及11C-MET PET-CT图像,分别由我科5位医师在两种图像资料上勾画GTV,比较两者差异.结果 在MRI11C-MET PET-CT上勾画的GTV体积相似(P=0.917),GTV变异系数也相似(P =0.600).勾画的GTV重合度最大为73.0%、最小为51.8%.方差分析显示不同勾画者之间在两种图像资料上勾画的GTV相似(P =0.709),但PET-CT组GTV最大差值为27.66 cm3,而MRI组的为40.37 cm3.结论 MRI与PET-CT显示的肿瘤边界存在差异,不同勾画者勾画的GTV相似,PET-CT组的GTV最大差值较MRI组的小,11C-MET PET-CT显示GTV较为直观.%Objective To evaluate the difference between MRI and 11C-MET PET-CT for gross tumor volume (GTV) delineation in the precision radiotherapy for gliomas.Methods Six patients with a pathologically confirmed diagnosis of gliomas were selected for target delineation.Five physicians in our department were called to delineate the GTV based on the preoperative MRI and 11C-MET PET-CT images of these patients.The GTVs based on the two methods were compared.Results There was no significant difference between the GTVs based on MRI and 11C-MET PET-CT (P =0.917),and their coefficients of variation were also similar (P =0.600).The coincidences of GTVs were different among the patients,with a maximum value of 73.0% and a minimum value of 51.8%.GTV showed no significant difference when defined by different physicians on MRI and PET-CT (P =0.709) ; the biggest difference was 27.66 cm3 on PET-CT and 40.37 cm3 on MRI.Conclusions The boundaries of gliomas defined on MRI and PET-CT are different.The GTVs delineated by different physicians on MRI and PET-CT are similar,and the biggest difference on PET-CT is smaller than that on MRI,which suggests that 11C-MET PET-CT is a more direct way for displaying GTV.

  8. Evaluation of Tumor Shape Variability in Head-and-Neck Cancer Patients Over the Course of Radiation Therapy Using Implanted Gold Markers

    International Nuclear Information System (INIS)

    Hamming-Vrieze, Olga; Kranen, Simon Robert van; Beek, Suzanne van; Heemsbergen, Wilma; Herk, Marcel van; Brekel, Michiel Wilhelmus Maria van den; Sonke, Jan-Jakob; Rasch, Coenraad Robert Nico

    2012-01-01

    Purpose: This study quantifies tumor shape variability in head-and-neck cancer patients during radiation therapy using implanted markers. Methods and Materials: Twenty-seven patients with oropharyngeal tumors treated with (chemo)radiation were included. Helical gold markers (0.35 × 2 mm, 3-10/patient, average 6) were implanted around the tumor. Markers were identified on planning computed tomography (CT) and daily cone beam CT (CBCT). After bony anatomy registration, the daily vector length on CBCT in reference to the planning CT and daily marker movement perpendicular to the gross tumor volume (GTV) surface at planning CT (d normal ) of each marker were analyzed. Time trends were assessed with linear regression of the normal > markers . In 2 patients, 2 markers were implanted in normal tissue to evaluate migration by measuring intermarker distances. Results: Marker implantation was feasible without complications. Three-dimensional vectors (4827 measurements, mean 0.23 cm, interquartile ratio 0.24 cm) were highest in base of tongue sublocalization (P<.001) and bulky tumors (vectors exceeded 0.5 cm in 5.7% [0-20 mL], 12.0% [21-40 mL], and 21.7% [≥41 mL], respectively [P<.001] of measurements). The measured inward time trend in 11/27 patients correlated with the visual observed marker pattern. In patients with an outward trend (5/27) or no trend (11/27), visual observation showed predominantly an inhomogeneous pattern. Remarkably, in 6 patients, outward marker movement was observed in the posterior pharyngeal wall. The difference in distance between normal tissue markers (1 SD) was 0.05-0.06 cm without time trend, indicating that implanted markers did not migrate. Conclusions: During head-and-neck radiation therapy, normal tissue markers remained stable. Changes in position of tumor markers depended on sublocalization and tumor volume. Large differences in marker patterns between patients as well as within patients were observed. Based on our study, the cranial

  9. Outcomes of Modestly Hypofractionated Radiation for Lung Tumors: Pre- and Mid-Treatment Positron Emission Tomography-Computed Tomography Metrics as Prognostic Factors.

    Science.gov (United States)

    Harris, Jeremy P; Chang-Halpenny, Christine N; Maxim, Peter G; Quon, Andrew; Graves, Edward E; Diehn, Maximilian; Loo, Billy W

    2015-11-01

    Many patients with lung tumors have tumors too large for stereotactic ablative radiotherapy and comorbidities precluding concurrent chemotherapy. We report the outcomes of 29 patients treated with hypofractionated radiotherapy (RT) to 60 to 66 Gy in 3-Gy fractions. We also report an exploratory analysis of the prognostic value of the pre- and mid-RT positron emission tomography-computed tomography. Modestly hypofractionated radiation therapy (HypoRT; 60-66 Gy in 3-Gy fractions) allows patients with locally advanced thoracic tumors and poor performance status to complete treatment within a shorter period without concurrent chemotherapy. We evaluated the outcomes and imaging prognostic factors of HypoRT. We retrospectively reviewed the data from all patients with primary and metastatic intrathoracic tumors treated with HypoRT from 2006 to 2012. We analyzed the survival and toxicity outcomes, including overall survival (OS), progression-free survival (PFS), local recurrence (LR), and distant metastasis. We also evaluated the following tumor metrics in an exploratory analysis: gross tumor volume (GTV), maximum standardized uptake value (SUVMax), and metabolic tumor volume using a threshold of ≥ 50% of the SUVMax (MTV50%) or the maximum gradient of fluorine-18 fluorodeoxyglucose uptake (MTVEdge). We assessed the association of these metrics and their changes from before to mid-RT using positron emission tomography-computed tomography (PET-CT) with OS and PFS. We identified 29 patients, all with pre-RT and 20 with mid-RT PET-CT scans. The median follow-up period was 15 months. The 2-year overall and non-small-cell lung cancer-only rate for OS, PFS, and LR, was 59% and 59%, 52% and 41%, and 27% and 32%, respectively. No grade ≥ 3 toxicities developed. The median decrease in GTV, SUVMax, and MTVEdge was 11%, 24%, and 18%, respectively. Inferior OS was associated with a larger pre-RT MTVEdge (P = .005) and pre-RT MTV50% (P = .007). Inferior PFS was associated with a

  10. Evaluating Tumor Response of Non-Small Cell Lung Cancer Patients With {sup 18}F-Fludeoxyglucose Positron Emission Tomography: Potential for Treatment Individualization

    Energy Technology Data Exchange (ETDEWEB)

    Toma-Dasu, Iuliana, E-mail: Iuliana.Livia.Dasu@ki.se [Medical Radiation Physics, Stockholm University and Karolinska Institutet, Stockholm (Sweden); Uhrdin, Johan [RaySearch Laboratories AB, Stockholm (Sweden); Lazzeroni, Marta [Medical Radiation Physics, Karolinska Institutet, Stockholm (Sweden); Carvalho, Sara; Elmpt, Wouter van; Lambin, Philippe [Department of Radiation Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht (Netherlands); Dasu, Alexandru [Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping (Sweden)

    2015-02-01

    Objective: To assess early tumor responsiveness and the corresponding effective radiosensitivity for individual patients with non-small cell lung cancer (NSCLC) based on 2 successive {sup 18}F-fludeoxyglucose positron emission tomography (FDG-PET) scans. Methods and Materials: Twenty-six NSCLC patients treated in Maastricht were included in the study. Fifteen patients underwent sequential chemoradiation therapy, and 11 patients received concomitant chemoradiation therapy. All patients were imaged with FDG before the start and during the second week of radiation therapy. The sequential images were analyzed in relation to the dose delivered until the second image. An operational quantity, effective radiosensitivity, α{sub eff}, was determined at the voxel level. Correlations were sought between the average α{sub eff} or the fraction of negative α{sub eff} values and the overall survival at 2 years. Separate analyses were performed for the primary gross target volume (GTV), the lymph node GTV, and the clinical target volumes (CTVs). Results: Patients receiving sequential treatment could be divided into responders and nonresponders, using a threshold for the average α{sub eff} of 0.003 Gy{sup −1} in the primary GTV, with a sensitivity of 75% and a specificity of 100% (P<.0001). Choosing the fraction of negative α{sub eff} as a criterion, the threshold 0.3 also had a sensitivity of 75% and a specificity of 100% (P<.0001). Good prognostic potential was maintained for patients receiving concurrent chemotherapy. For lymph node GTV, the correlation had low statistical significance. A cross-validation analysis confirmed the potential of the method. Conclusions: Evaluation of the early response in NSCLC patients showed that it is feasible to determine a threshold value for effective radiosensitivity corresponding to good response. It also showed that a threshold value for the fraction of negative α{sub eff} could also be correlated with poor response. The proposed

  11. Target volume definition in conformal radiotherapy for prostate cancer: quality assurance in the MRC RT-01 trial

    International Nuclear Information System (INIS)

    Seddon, B.S.; Wilson, J.; Khoo, V.; Dearnaley, D.; Bidmead, M.

    2000-01-01

    Prior to randomization of patients into the UK Medical Research Council multicentre randomized trial (RT-01) of conformal radiotherapy (CFRT) in prostate cancer, clinicians at participating centres were required to complete a quality assurance (QA) clinical planning exercise to enable an investigation of inter-observer variability in gross target volume (GTV) and normal structure outlining. Thirteen participating centres and two investigators completed the clinical planning exercise of three practice planning cases. Clinicians were asked to draw outlines of the GTV, rectum and bladder on hard-copy computerized tomography (CT) films of the pelvis, which were transferred onto the Cadplan computer planning system by a single investigator. Centre, inferior and superior CT levels of GTV, rectum and bladder were noted, and volume calculations performed. Planning target volumes (PTV) were generated using automatic volume expansion of GTVs by a 1 cm margin. Anterior, right and left lateral beam eye views (BEV) of the PTVs were generated. Using a common central point, the BEV PTVs were superimposed for each beam direction of each case. Radial PTV variation was investigated by measurement of a novel parameter, termed the radial line measurement variation (RLMV). GTV central slice and length were defined with reasonable consistency. The RLMV analysis showed that the main part of the prostate gland, bladder and inferior rectum were outlined with good consistency among clinicians. However, the outlining of the prostatic apex, superior aspect of the prostate projecting into the bladder, seminal vesicles, the base of seminal vesicles and superior rectum were more variable. This exercise has demonstrated adequate consistency of GTV definition. The RLMV method of analysis indicates particular regions of clinician uncertainty. Appropriate feedback has been given to all participating clinicians, and the final RT-01 trial protocol has been modified to accommodate these findings

  12. Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer

    International Nuclear Information System (INIS)

    Bradley, Jeffrey D.; Nofal, Ahmed N.; El Naqa, Issam M.; Lu, Wei; Liu, Jubei; Hubenschmidt, James; Low, Daniel A.; Drzymala, Robert E.; Khullar, Divya

    2006-01-01

    Background and Purpose: To compare helical, MIP and AI 4D CT imaging, for the purpose of determining the best CT-based volume definition method for encompassing the mobile gross tumor volume (mGTV) within the planning target volume (PTV) for stereotactic body radiation therapy (SBRT) in stage I lung cancer. Materials and methods: Twenty patients with medically inoperable peripheral stage I lung cancer were planned for SBRT. Free-breathing helical and 4D image datasets were obtained for each patient. Two composite images, the MIP and AI, were automatically generated from the 4D image datasets. The mGTV contours were delineated for the MIP, AI and helical image datasets for each patient. The volume for each was calculated and compared using analysis of variance and the Wilcoxon rank test. A spatial analysis for comparing center of mass (COM) (i.e. isocenter) coordinates for each imaging method was also performed using multivariate analysis of variance. Results: The MIP-defined mGTVs were significantly larger than both the helical- (p 0.001) and AI-defined mGTVs (p = 0.012). A comparison of COM coordinates demonstrated no significant spatial difference in the x-, y-, and z-coordinates for each tumor as determined by helical, MIP, or AI imaging methods. Conclusions: In order to incorporate the extent of tumor motion from breathing during SBRT, MIP is superior to either helical or AI images for defining the mGTV. The spatial isocenter coordinates for each tumor were not altered significantly by the imaging methods

  13. Iterative volume morphing and learning for mobile tumor based on 4DCT.

    Science.gov (United States)

    Mao, Songan; Wu, Huanmei; Sandison, George; Fang, Shiaofen

    2017-02-21

    During image-guided cancer radiation treatment, three-dimensional (3D) tumor volumetric information is important for treatment success. However, it is typically not feasible to image a patient's 3D tumor continuously in real time during treatment due to concern over excessive patient radiation dose. We present a new iterative morphing algorithm to predict the real-time 3D tumor volume based on time-resolved computed tomography (4DCT) acquired before treatment. An offline iterative learning process has been designed to derive a target volumetric deformation function from one breathing phase to another. Real-time volumetric prediction is performed to derive the target 3D volume during treatment delivery. The proposed iterative deformable approach for tumor volume morphing and prediction based on 4DCT is innovative because it makes three major contributions: (1) a novel approach to landmark selection on 3D tumor surfaces using a minimum bounding box; (2) an iterative morphing algorithm to generate the 3D tumor volume using mapped landmarks; and (3) an online tumor volume prediction strategy based on previously trained deformation functions utilizing 4DCT. The experimental performance showed that the maximum morphing deviations are 0.27% and 1.25% for original patient data and artificially generated data, which is promising. This newly developed algorithm and implementation will have important applications for treatment planning, dose calculation and treatment validation in cancer radiation treatment.

  14. Tumor Volume Estimation and Quasi-Continuous Administration for Most Effective Bevacizumab Therapy.

    Science.gov (United States)

    Sápi, Johanna; Kovács, Levente; Drexler, Dániel András; Kocsis, Pál; Gajári, Dávid; Sápi, Zoltán

    2015-01-01

    Bevacizumab is an exogenous inhibitor which inhibits the biological activity of human VEGF. Several studies have investigated the effectiveness of bevacizumab therapy according to different cancer types but these days there is an intense debate on its utility. We have investigated different methods to find the best tumor volume estimation since it creates the possibility for precise and effective drug administration with a much lower dose than in the protocol. We have examined C38 mouse colon adenocarcinoma and HT-29 human colorectal adenocarcinoma. In both cases, three groups were compared in the experiments. The first group did not receive therapy, the second group received one 200 μg bevacizumab dose for a treatment period (protocol-based therapy), and the third group received 1.1 μg bevacizumab every day (quasi-continuous therapy). Tumor volume measurement was performed by digital caliper and small animal MRI. The mathematical relationship between MRI-measured tumor volume and mass was investigated to estimate accurate tumor volume using caliper-measured data. A two-dimensional mathematical model was applied for tumor volume evaluation, and tumor- and therapy-specific constants were calculated for the three different groups. The effectiveness of bevacizumab administration was examined by statistical analysis. In the case of C38 adenocarcinoma, protocol-based treatment did not result in significantly smaller tumor volume compared to the no treatment group; however, there was a significant difference between untreated mice and mice who received quasi-continuous therapy (p = 0.002). In the case of HT-29 adenocarcinoma, the daily treatment with one-twelfth total dose resulted in significantly smaller tumors than the protocol-based treatment (p = 0.038). When the tumor has a symmetrical, solid closed shape (typically without treatment), volume can be evaluated accurately from caliper-measured data with the applied two-dimensional mathematical model. Our results

  15. SU-E-T-304: Dosimetric Comparison of Cavernous Sinus Tumors: Heterogeneity Corrected Pencil Beam (PB-Hete) Vs. X-Ray Voxel Monte Carlo (XVMC) Algorithms for Stereotactic Radiotherapy (SRT)

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, D; Sood, S; Badkul, R; Jiang, H; Saleh, H; Wang, F [University of Kansas Hospital, Kansas City, KS (United States)

    2015-06-15

    Purpose: To compare dose distributions calculated using PB-hete vs. XVMC algorithms for SRT treatments of cavernous sinus tumors. Methods: Using PB-hete SRT, five patients with cavernous sinus tumors received the prescription dose of 25 Gy in 5 fractions for planning target volume PTV(V100%)=95%. Gross tumor volume (GTV) and organs at risk (OARs) were delineated on T1/T2 MRI-CT-fused images. PTV (range 2.1–84.3cc, mean=21.7cc) was generated using a 5mm uniform-margin around GTV. PB-hete SRT plans included a combination of non-coplanar conformal arcs/static beams delivered by Novalis-TX consisting of HD-MLCs and a 6MV-SRS(1000 MU/min) beam. Plans were re-optimized using XVMC algorithm with identical beam geometry and MLC positions. Comparison of plan specific PTV(V99%), maximal, mean, isocenter doses, and total monitor units(MUs) were evaluated. Maximal dose to OARs such as brainstem, optic-pathway, spinal cord, and lenses as well as normal tissue volume receiving 12Gy(V12) were compared between two algorithms. All analysis was performed using two-tailed paired t-tests of an upper-bound p-value of <0.05. Results: Using either algorithm, no dosimetrically significant differences in PTV coverage (PTVV99%,maximal, mean, isocenter doses) and total number of MUs were observed (all p-values >0.05, mean ratios within 2%). However, maximal doses to optic-chiasm and nerves were significantly under-predicted using PB-hete (p=0.04). Maximal brainstem, spinal cord, lens dose and V12 were all comparable between two algorithms, with exception of one patient with the largest PTV who exhibited 11% higher V12 with XVMC. Conclusion: Unlike lung tumors, XVMC and PB-hete treatment plans provided similar PTV coverage for cavernous sinus tumors. Majority of OARs doses were comparable between two algorithms, except for small structures such as optic chiasm/nerves which could potentially receive higher doses when using XVMC algorithm. Special attention may need to be paid on a case

  16. Registration of clinical volumes to beams-eye-view images for real-time tracking

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.; Mishra, Pankaj; Berbeco, Ross I., E-mail: rberbeco@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield units into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.

  17. Endoscopic clipping for gastrointestinal tumors. A method to define the target volume more precisely

    International Nuclear Information System (INIS)

    Riepl, M.; Klautke, G.; Fehr, R.; Fietkau, R.; Pietsch, A.

    2000-01-01

    Background: In many cases it is not possible to exactly define the extension of carcinoma of the gastrointestinal tract with the help of computertomography scans made for 3-D-radiation treatment planning. Consequently, the planning of external beam radiotherapy is made more difficult for the gross tumor volume as well as, in some cases, also for the clinical target volume. Patients and Methods: Eleven patients with macrosocpic tumors (rectal cancer n = 5, cardiac cancer n = 6) were included. Just before 3-D planning, the oral and aboral border of the tumor was marked endoscopically with hemoclips. Subsequently, CT scans for radiotherapy planning were made and the clinical target volume was defined. Five to 6 weeks thereafter, new CT scans were done to define the gross tumor volume for boost planning. Two investigators independently assessed the influence of the hemoclips on the different planning volumes, and whether the number of clips was sufficient to define the gross tumor volume. Results: In all patients, the implantation of the clips was done without complications. Start of radiotherapy was not delayed. With the help of the clips it was possible to exactly define the position and the extension of the primary tumor. The clinical target volume was modified according to the position of the clips in 5/11 patients; the gross tumor volume was modified in 7/11 patients. The use of the clips made the documentation and verification of the treatment portals by the simulator easier. Moreover, the clips helped the surgeon to define the primary tumor region following marked regression after neoadjuvant therapy in 3 patients. Conclusions: Endoscopic clipping of gastrointestinal tumors helps to define the tumor volumes more precisely in radiation therapy. The clips are easily recognized on the portal films and, thus, contribute to quality control. (orig.) [de

  18. Computed Tomography Number Changes Observed During Computed Tomography–Guided Radiation Therapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Feng, Mei; Yang, Cungeng; Chen, Xiaojian; Xu, Shouping; Moraru, Ion; Lang, Jinyi; Schultz, Christopher; Li, X. Allen

    2015-01-01

    Purpose: To investigate CT number (CTN) changes in gross tumor volume (GTV) and organ at risk (OAR) according to daily diagnostic-quality CT acquired during CT-guided intensity modulated radiation therapy for head and neck cancer (HNC) patients. Methods and Materials: Computed tomography scans acquired using a CT-on-rails during daily CT-guided intensity modulated radiation therapy for 15 patients with stage II to IVa squamous cell carcinoma of the head and neck were analyzed. The GTV, parotid glands, spinal cord, and nonspecified tissue were generated on each selected daily CT. The changes in CTN distributions and the mean and mode values were collected. Pearson analysis was used to assess the correlation between the CTN change, organ volume reduction, and delivered radiation dose. Results: Volume and CTN changes for GTV and parotid glands can be observed during radiation therapy delivery for HNC. The mean (±SD) CTNs in GTV and ipsi- and contralateral parotid glands were reduced by 6 ± 10, 8 ± 7, and 11 ± 10 Hounsfield units, respectively, for all patients studied. The mean CTN changes in both spinal cord and nonspecified tissue were almost invisible (<2 Hounsfield units). For 2 patients studied, the absolute mean CTN changes in GTV and parotid glands were strongly correlated with the dose delivered (P<.001 and P<.05, respectively). For the correlation between CTN reductions and delivered isodose bins for parotid glands, the Pearson coefficient varied from −0.98 (P<.001) in regions with low-dose bins to 0.96 (P<.001) in high-dose bins and were patient specific. Conclusions: The CTN can be reduced in tumor and parotid glands during the course of radiation therapy for HNC. There was a fair correlation between CTN reduction and radiation doses for a subset of patients, whereas the correlation between CTN reductions and volume reductions in GTV and parotid glands were weak. More studies are needed to understand the mechanism for the radiation-induced CTN changes

  19. Defining a radiotherapy target with positron emission tomography

    International Nuclear Information System (INIS)

    Black, Quinten C.; Grills, Inga S.; Kestin, Larry L.; Wong, Ching-Yee O.; Wong, John W.; Martinez, Alvaro A.; Yan Di

    2004-01-01

    Purpose: F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging is now considered the most accurate clinical staging study for non-small-cell lung cancer (NSCLC) and is also important in the staging of multiple other malignancies. Gross tumor volume (GTV) definition for radiotherapy, however, is typically based entirely on computed tomographic data. We performed a series of phantom studies to determine an accurate and uniformly applicable method for defining a GTV with FDG-PET. Methods and materials: A model-based method was tested by a phantom study to determine a threshold, or unique cutoff of standardized uptake value based on body weight (standardized uptake value [SUV]) for FDG-PET based GTV definition. The degree to which mean target SUV, background FDG concentration, and target volume influenced that GTV definition were evaluated. A phantom was constructed consisting of a 9.0-L cylindrical tank. Glass spheres with volumes ranging from 12.2 to 291.0 cc were suspended within the tank, with a minimum separation of 4 cm between the edges of the spheres. The sphere volumes were selected based on the range of NSCLC patient tumor volumes seen in our clinic. The tank and spheres were filled with a variety of known concentrations of FDG in several experiments and then scanned using a General Electric Advance PET scanner. In the initial experiment, six spheres with identical volumes were filled with varying concentrations of FDG (mean SUV 1.85 ∼ 9.68) and suspended within a background bath of FDG at a similar concentration to that used in clinical practice (0.144 μCi/mL). The second experiment was identical to the first, but was performed at 0.144 and 0.036 μCi/mL background concentrations to determine the effect of background FDG concentration on sphere definition. In the third experiment, six spheres with volumes of 12.2 to 291.0 cc were filled with equal concentrations of FDG and suspended in a standard background FDG concentration of 0.144

  20. Implantation and Stability of Metallic Fiducials Within Pulmonary Lesions

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Forbes, Alan; Willoughby, Twyla R. M.S.; Wallace, Karen; Manon, Rafael R.; Meeks, Sanford L.; Herrera, Luis; Johnston, Alan; Herran, Juan J.

    2007-01-01

    Purpose: To report and describe implantation techniques and stability of metallic fiducials in lung lesions to be treated with external beam radiotherapy. Methods and Materials: Patients undergoing radiation therapy for small early-stage lung cancer underwent implantation with small metallic markers. Implantation was either transcutaneous under computed tomographic (CT) or fluoroscopic guidance or transbronchial with the superDimension/Bronchus system (radiofrequency signal-based bronchoscopy guidance related to CT images). Results: Implantation was performed transcutaneously in 15 patients and transbronchially in 8 patients. Pneumothorax occurred with eight of the 15 transcutaneous implants, six of which required chest tube placement. None of the patients who underwent transbronchial implantation developed pneumothorax. Successfully inserted markers were all usable during gated image-guided radiotherapy. Marker stability was determined by observing the variation in gross target volume (GTV) centroid relative to the marker on repeated CT scans. Average three-dimensional variation in the GTV center relative to the marker was 2.6 ± 1.3 (SD) mm, and the largest variation along any anatomic axis for any patient was <5 mm. Average GTV volume decrease during the observation period was 34% ± 23%. Gross tumor volumes do not appear to shrink uniformly about the center of the tumor, but rather the tumor shapes deform substantially throughout treatment. Conclusions: Transbronchial marker placement is less invasive than transcutaneous placement, which is associated with high pneumothorax rates. Although marker geometry can be affected by tumor shrinkage, implanted markers are stable within tumors throughout the treatment duration regardless of implantation method

  1. 18F-Fdg-PET-guided Planning and Re-Planning (Adaptive) Radiotherapy in Head and Neck Cancer: Current State of Art.

    Science.gov (United States)

    Farina, Eleonora; Ferioli, Martina; Castellucci, Paolo; Farina, Arianna; Zanirato Rambaldi, Giuseppe; Cilla, Savino; Cammelli, Silvia; Fanti, Stefano; Morganti, Alessio G

    2017-12-01

    A review of the literature is proposed as a contribution to current knowledge on technical, physical, and clinical issues about PET-guided planning and re-planning radiotherapy (RT) in head and neck cancer. PubMed and Scopus electronic databases were searched for articles including clinical trials. Search terms were "gross tumor volume (GTV) delineation", "head and neck cancer", "radiotherapy", "adaptive radiotherapy" in combination with "PET". A 18 F-FDG-PET and CT-scan comparison in GTV definition for RT planning of head and neck cancer was shown in twenty-seven clinical trials with a total of 712 patients. Only two clinical trials focused on PET-guided adaptive radiotherapy (ART) with a total of 31 patients. 18 F-FDG-PET is able to achieve an accurate and precise definition of GTV boundaries during RT planning, especially in combination with CT-scan. ART strategies are proposed to evaluate tumor volume changes, plan boost irradiation on metabolically active residual neoplasm and protect organs at risk (OaRs). Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Tumor shrinkage assessed by volumetric MRI in the long-term follow-up after stereotactic radiotherapy of meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Astner, Sabrina T.; Theodorou, Marilena; Dobrei-Ciuchendea, Mihaela; Kopp, Christine; Molls, Michael [Dept. of Radiotherapy and Radiooncology, Klinikum rechts der Isar, Technical Univ. of Munich (Germany); Auer, Florian [Dept. of Neuroradiology, Klinikum rechts der Isar, Technical Univ. of Munich (Germany); Grosu, Anca-Ligia [Dept. of Radiotherapy, Univ. Hospital Freiburg (Germany)

    2010-08-15

    Purpose: To evaluate tumor volume reduction in the follow-up of meningiomas after fractionated stereotactic radiotherapy (FSRT) or linac radiosurgery (RS) by using magnetic resonance imaging (MRI). Patients and Methods: In 59 patients with skull base meningiomas, gross tumor volume (GTV) was outlined on contrast-en-hanced MRI before and median 50 months (range 11-92 months) after stereotactic radiotherapy. MRI was performed as an axial three-dimensional gradient-echo T1-weighted sequence at 1.6 mm slice thickness without gap (3D-MRI). Results were compared to the reports of diagnostic findings. Results: Mean tumor size of all 59 meningiomas was 13.9 ml (0.8-62.9 ml) before treatment. There was shrinkage of the treated meningiomas in all but one patient. Within a median volumetric follow-up of 50 months (11-95 months), an absolute mean volume reduction of 4 ml (0-18 ml) was seen. The mean relative size reduction compared to the volume before radiotherapy was 27% (0-73%). Shrinkage measured by 3D-MRI was greater at longer time intervals after radiotherapy. The mean size reduction was 17%, 23%, and 30% (at < 24 months, 24-48 months, and 48-72 months). Conclusion: By using 3D-MRI in almost all patients undergoing radiotherapy of a meningioma, tumor shrinkage is detected. The data presented here demonstrate that volumetric assessment from 3D-MRI provides additional information to routinely used radiologic response measurements. After FSRT or RS, a mean size reduction of 25-45% can be expected within 4 years. (orig.)

  3. Comparison of CT and integrated PET-CT based radiation therapy planning in patients with malignant pleural mesothelioma

    International Nuclear Information System (INIS)

    Pehlivan, Berrin; Topkan, Erkan; Onal, Cem; Nursal, Gul Nihal; Yuksel, Oznur; Dolek, Yemliha; Yavuz, Melek Nur; Yavuz, Ali Aydin

    2009-01-01

    When combined with adequate tumoricidal doses, accurate target volume delineation remains to be the one of the most important predictive factors for radiotherapy (RT) success in locally advanced or medically inoperable malignant pleural mesothelioma (MPM) patients. Recently, 18-fluorodeoxyglucose positron emission tomography (PET) has demonstrated significant improvements in diagnosis and accurate staging of MPM. However, role of additional PET data has not been studied in RT planning (RTP) of patients with inoperable MPM or in those who refuse surgery. Therefore, we planned to compare CT with co-registered PET-CT as the basis for delineating target volumes in these patients group. Retrospectively, the CT and co-registered PET-CT data of 13 patients with histologically proven MPM were utilized to delineate target volumes separately. For each patient, target volumes (gross tumor volume [GTV], clinical target volume [CTV], and planning target volume [PTV]) were defined using the CT and PET-CT fusion data sets. The PTV was measured in two ways: PTV1 was CTV plus a 1-cm margin, and PTV2 was GTV plus a 1-cm margin. We analyzed differences in target volumes. In 12 of 13 patients, compared to CT-based delineation, PET-CT-based delineation resulted in a statistically significant decrease in the mean GTV, CTV, PTV1, and PTV2. In these 12 patients, mean GTV decreased by 47.1% ± 28.4%, mean CTV decreased by 38.7% ± 24.7%, mean PTV1 decreased by 31.1% ± 23.1%, and mean PTV2 decreased by 40.0% ± 24.0%. In 4 of 13 patients, hilar lymph nodes were identified by PET-CT that was not identified by CT alone, changing the nodal status of tumor staging in those patients. This study demonstrated the usefulness of PET-CT-based target volume delineation in patients with MPM. Co-registration of PET and CT information reduces the likelihood of geographic misses, and additionally, significant reductions observed in target volumes may potentially allow escalation of RT dose beyond

  4. Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: A 'Big Brother' evaluation

    International Nuclear Information System (INIS)

    Steenbakkers, Roel J.H.M.; Duppen, Joop C.; Fitton, Isabelle; Deurloo, Kirsten E.I.; Zijp, Lambert; Uitterhoeve, Apollonia L.J.; Rodrigus, Patrick T.R.; Kramer, Gijsbert W.P.; Bussink, Johan; Jaeger, Katrien De; Belderbos, Jose S.A.; Hart, Augustinus A.M.; Nowak, Peter J.C.M.; Herk, Marcel van; Rasch, Coen R.N.

    2005-01-01

    Background and purpose: To evaluate the process of target volume delineation in lung cancer for optimization of imaging, delineation protocol and delineation software. Patients and methods: Eleven radiation oncologists (observers) from five different institutions delineated the Gross Tumor Volume (GTV) including positive lymph nodes of 22 lung cancer patients (stages I-IIIB) on CT only. All radiation oncologist-computer interactions were recorded with a tool called 'Big Brother'. For each radiation oncologist and patient the following issues were analyzed: delineation time, number of delineated points and corrections, zoom levels, level and window (L/W) settings, CT slice changes, use of side windows (coronal and sagittal) and software button use. Results: The mean delineation time per GTV was 16 min (SD 10 min). The mean delineation time for lymph node positive patients was on average 3 min larger (P=0.02) than for lymph node negative patients. Many corrections (55%) were due to L/W change (e.g. delineating in mediastinum L/W and then correcting in lung L/W). For the lymph node region, a relatively large number of corrections was found (3.7 corr/cm 2 ), indicating that it was difficult to delineate lymph nodes. For the tumor-atelectasis region, a relative small number of corrections was found (1.0 corr/cm 2 ), indicating that including or excluding atelectasis into the GTV was a clinical decision. Inappropriate use of L/W settings was frequently found (e.g. 46% of all delineated points in the tumor-lung region were delineated in mediastinum L/W settings). Despite a large observer variation in cranial and caudal direction of 0.72 cm (1 SD), the coronal and sagittal side windows were not used in 45 and 60% of the cases, respectively. For the more difficult cases, observer variation was smaller when the coronal and sagittal side windows were used. Conclusions: With the 'Big Brother' tool a method was developed to trace the delineation process. The differences between

  5. High-Frequency Jet Ventilation for Complete Target Immobilization and Reduction of Planning Target Volume in Stereotactic High Single-Dose Irradiation of Stage I Non-Small Cell Lung Cancer and Lung Metastases

    International Nuclear Information System (INIS)

    Fritz, Peter; Kraus, Hans-Joerg; Muehlnickel, Werner; Sassmann, Volker; Hering, Werner; Strauch, Konstantin

    2010-01-01

    Purpose: To demonstrate the feasibility of complete target immobilization by means of high-frequency jet ventilation (HFJV); and to show that the saving of planning target volume (PTV) on the stereotactic body radiation therapy (SBRT) under HFJV, compared with SBRT with respiratory motion, can be predicted with reliable accuracy by computed tomography (CT) scans at peak inspiration phase. Methods and Materials: A comparison regarding different methods for defining the PTV was carried out in 22 patients with tumors that clearly moved with respiration. A movement span of the gross tumor volume (GTV) was defined by fusing respiration-correlated CT scans. The PTV enclosed the GTV positions with a safety margin throughout the breathing cycle. To create a PTV from CT scans acquired under HFJV, the same margins were drawn around the immobilized target. In addition, peak inspiration phase CT images (PIP-CTs) were used to approximate a target immobilized by HFJV. Results: The resulting HFJV-PTVs were between 11.6% and 45.4% smaller than the baseline values calculated as respiration-correlated CT-PTVs (median volume reduction, 25.4%). Tentative planning by means of PIP-CT PTVs predicted that in 19 of 22 patients, use of HFJV would lead to a reduction in volume of ≥20%. Using this threshold yielded a positive predictive value of 0.89, as well as a sensitivity of 0.94 and a specificity of 0.5. Conclusions: In all patients, SBRT under HFJV provided a reliable immobilization of the GTVs and achieved a reduction in PTVs, regardless of patient compliance. Tentative planning facilitated the selection of patients who could better undergo radiation in respiratory standstill, both with greater accuracy and lung protection.

  6. Early Assessment of Treatment Responses During Radiation Therapy for Lung Cancer Using Quantitative Analysis of Daily Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo; Yang, Cungeng [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Wu, Hui [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou (China); Tai, An [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Dalah, Entesar [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah (United Arab Emirates); Zheng, Cheng [Biostatistics, Joseph. J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (United States); Johnstone, Candice [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Kong, Feng-Ming [Department of Radiation Oncology, Indiana University, Indianapolis, Indiana (United States); Gore, Elizabeth [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2017-06-01

    Purpose: To investigate early tumor and normal tissue responses during the course of radiation therapy (RT) for lung cancer using quantitative analysis of daily computed tomography (CT) scans. Methods and Materials: Daily diagnostic-quality CT scans acquired using CT-on-rails during CT-guided RT for 20 lung cancer patients were quantitatively analyzed. On each daily CT set, the contours of the gross tumor volume (GTV) and lungs were generated and the radiation dose delivered was reconstructed. The changes in CT image intensity (Hounsfield unit [HU]) features in the GTV and the multiple normal lung tissue shells around the GTV were extracted from the daily CT scans. The associations between the changes in the mean HUs, GTV, accumulated dose during RT delivery, and patient survival rate were analyzed. Results: During the RT course, radiation can induce substantial changes in the HU histogram features on the daily CT scans, with reductions in the GTV mean HUs (dH) observed in the range of 11 to 48 HU (median 30). The dH is statistically related to the accumulated GTV dose (R{sup 2} > 0.99) and correlates weakly with the change in GTV (R{sup 2} = 0.3481). Statistically significant increases in patient survival rates (P=.038) were observed for patients with a higher dH in the GTV. In the normal lung, the 4 regions proximal to the GTV showed statistically significant (P<.001) HU reductions from the first to last fraction. Conclusion: Quantitative analysis of the daily CT scans indicated that the mean HUs in lung tumor and surrounding normal tissue were reduced during RT delivery. This reduction was observed in the early phase of the treatment, is patient specific, and correlated with the delivered dose. A larger HU reduction in the GTV correlated significantly with greater patient survival. The changes in daily CT features, such as the mean HU, can be used for early assessment of the radiation response during RT delivery for lung cancer.

  7. Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: Potential of MRI on delineation of target, pathoanatomic structures, and organs at risk

    International Nuclear Information System (INIS)

    Dimopoulos, Johannes; Schard, Gerdi; Berger, Daniel; Lang, Stefan; Goldner, Gregor; Helbich, Thomas; Poetter, Richard

    2006-01-01

    Purpose: To compare magnetic resonance imaging (MRI) findings at different stages of cervix cancer treatment and to define the potential of MRI to delineate the gross tumor volume (GTV), clinical target volume (CTV), pathoanatomic structures, and organs at risk (OAR) in brachytherapy. Methods and Materials: Forty-nine patients underwent MRI at diagnosis and at brachytherapy. The ability to discriminate anatomic structures on MRI was assessed (quality factor: 0 = inability to discriminate; 1 = fair discrimination; 2 = good discrimination; 3 = excellent discrimination). The overall ability to visualize (percentage of patients with quality factors greater than 0) and the overall discrimination quality score (mean quality factors of all patients) were estimated for the applicator, GTV at diagnosis (GTV D ), GTV at brachytherapy (GTV BT )/'gray zones,' cervix rim/uterine corpus, OAR, vaginal wall, and parametria. Results: The overall ability to visualize the applicator on MRI at brachytherapy was 100%; for the GTV BT /'gray zones,' cervix rim/uterine corpus, OAR, and vaginal wall, visualization was 98% (overall discrimination quality factors: 1.2, 2.9, 2.1, 1.9, 1.7, and 2.6). Three of 4 borders of parametrial space were defined in more than 98% (discrimination quality factors: 2.9, 2.1, and 1.2). Conclusion: Magnetic resonance imaging provides appropriate information for definition of the applicator, GTV, CTV, pathoanatomic structures, and OAR that enables precise delineation for cervix cancer brachytherapy

  8. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading.

    Science.gov (United States)

    Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki

    2017-10-01

    This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.

  9. Estimation of tumor volume and its prognostic significance to study the biological behavior of carcinoma of cervix

    Directory of Open Access Journals (Sweden)

    Leelavathi Dawson

    2016-01-01

    Results: The median age of the patients in this group was 47.5 years, with a range of 30–80 years. The major histological type of carcinoma among 40 cases is squamous cell carcinoma (SCC (in 90% of cases, and 10% had adenocarcinoma. Pathological staging of the carcinoma cervix showed stage Ib, IIa, IIb, and IVa (35%, 20%, 40%, and 5%. Tumor volume estimated on pathological specimens of 40 cases ranged from 230 cumm to 49,760 cumm with a mean of 14,844 cumm. 12 (30% cases had tumor volume more than 15,000 cumm, 12 (30% cases had tumor volume <5000 cumm and 16 (40% cases had tumor volume between 5000 and 15,000 cumm. 17% of the tumors with tumor volume <5000 cumm showed lymph node metastases, whereas 67% (out of 12cases of cases with tumor volume more than 15,000 cumm showed lymph node metastases. 67% of the tumors with tumor volume <5000 cumm showed 0/4 organs involvement, whereas all cases with tumor volume more than 15,000 cumm showed more than one organ involvement among vagina, uterus, parametrium or bladder/rectum. Fibronectin positivity was seen in 22 out of 44 cases (55%. Macrophages were seen surrounding the group of tumor cells by LN5 immunostaining. Conclusion: Tumor volume can be considered as an independent prognostic factor to assess the spread of the tumor. Cases with tumor volume <5000 cumm show low risk in terms of parametrial involvement and lymph node metastasis and those with tumor volume more than 15,000 cumm showed more organ spread. Fibronectin positivity carries some importance in low-risk cases. For macrophages, further detailed study needs to be carried out.

  10. Tumor Volume Reduction Rate After Preoperative Chemoradiotherapy as a Prognostic Factor in Locally Advanced Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Seung-Gu [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Department of Radiation Oncology, Soonchunhyang University College of Medicine, Cheonan (Korea, Republic of); Kim, Dae Yong, E-mail: radiopiakim@hanmail.net [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of); Park, Ji Won; Oh, Jae Hwan; Kim, Sun Young; Chang, Hee Jin; Kim, Tae Hyun; Kim, Byung Chang; Sohn, Dae Kyung; Kim, Min Ju [Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of)

    2012-02-01

    Purpose: To investigate the prognostic significance of tumor volume reduction rate (TVRR) after preoperative chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC). Methods and Materials: In total, 430 primary LARC (cT3-4) patients who were treated with preoperative CRT and curative radical surgery between May 2002 and March 2008 were analyzed retrospectively. Pre- and post-CRT tumor volumes were measured using three-dimensional region-of-interest MR volumetry. Tumor volume reduction rate was determined using the equation TVRR (%) = (pre-CRT tumor volume - post-CRT tumor volume) Multiplication-Sign 100/pre-CRT tumor volume. The median follow-up period was 64 months (range, 27-99 months) for survivors. Endpoints were disease-free survival (DFS) and overall survival (OS). Results: The median TVRR was 70.2% (mean, 64.7% {+-} 22.6%; range, 0-100%). Downstaging (ypT0-2N0M0) occurred in 183 patients (42.6%). The 5-year DFS and OS rates were 77.7% and 86.3%, respectively. In the analysis that included pre-CRT and post-CRT tumor volumes and TVRR as continuous variables, only TVRR was an independent prognostic factor. Tumor volume reduction rate was categorized according to a cutoff value of 45% and included with clinicopathologic factors in the multivariate analysis; ypN status, circumferential resection margin, and TVRR were significant prognostic factors for both DFS and OS. Conclusions: Tumor volume reduction rate was a significant prognostic factor in LARC patients receiving preoperative CRT. Tumor volume reduction rate data may be useful for tailoring surgery and postoperative adjuvant therapy after preoperative CRT.

  11. Calculating the tumor volume of acoustic neuromas: comparison of ABC/2 formula with planimetry method.

    Science.gov (United States)

    Yu, Yi-Lin; Lee, Meei-Shyuan; Juan, Chun-Jung; Hueng, Dueng-Yuan

    2013-08-01

    The ABC/2 equation is commonly applied to measure the volume of intracranial hematoma. However, the precision of ABC/2 equation in estimating the tumor volume of acoustic neuromas is less addressed. The study is to evaluate the accuracy of the ABC/2 formula by comparing with planimetry method for estimating the tumor volumes. Thirty-two patients diagnosed with acoustic neuroma received contrast-enhanced magnetic resonance imaging of brain were recruited. The volume was calculated by the ABC/2 equation and planimetry method (defined as exact volume) at the same time. The 32 patients were divided into three groups by tumor volume to avoid volume-dependent overestimation (6 ml). The tumor volume by ABC/2 method was highly correlated to that calculated by planimetry method using linear regression analysis (R2=0.985). Pearson correlation coefficient (r=0.993, pABC/2 formula is an easy method in estimating the tumor volume of acoustic neuromas that is not inferior to planimetry method. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Beadle, Beth M.; Garden, Adam S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Schwartz, David L. [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 (United States)

    2015-09-15

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented

  13. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy.

    Science.gov (United States)

    Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis

    2015-09-01

    To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the

  14. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Yang, Jinzhong; Aristophanous, Michalis; Beadle, Beth M.; Garden, Adam S.; Schwartz, David L.

    2015-01-01

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm"3 (range, 6.6–44.3 cm"3), while the PET segmented GTV was 10.2 cm"3 (range, 2.8–45.1 cm"3). The median physician-defined GTV was 22.1 cm"3 (range, 4.2–38.4 cm"3). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was

  15. [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning

    Directory of Open Access Journals (Sweden)

    Bamberg Michael

    2009-11-01

    Full Text Available Abstract Purpose The observation that human meningioma cells strongly express somatostatin receptor (SSTR 2 was the rationale to analyze retrospectively in how far DOTATOC PET/CT is helpful to improve target volume delineation for intensity modulated radiotherapy (IMRT. Patients and Methods In 26 consecutive patients with preferentially skull base meningioma, diagnostic magnetic resonance imaging (MRI and planning-computed tomography (CT was complemented with data from [68Ga]-DOTA-D Phe1-Tyr3-Octreotide (DOTATOC-PET/CT. Image fusion of PET/CT, diagnostic computed tomography, MRI and radiotherapy planning CT as well as target volume delineation was performed with OTP-Masterplan®. Initial gross tumor volume (GTV definition was based on MRI data only and was secondarily complemented with DOTATOC-PET information. Irradiation was performed as EUD based IMRT, using the Hyperion Software package. Results The integration of the DOTATOC data led to additional information concerning tumor extension in 17 of 26 patients (65%. There were major changes of the clinical target volume (CTV which modify the PTV in 14 patients, minor changes were realized in 3 patients. Overall the GTV-MRI/CT was larger than the GTV-PET in 10 patients (38%, smaller in 13 patients (50% and almost the same in 3 patients (12%. Most of the adaptations were performed in close vicinity to bony skull base structures or after complex surgery. Median GTV based on MRI was 18.1 cc, based on PET 25.3 cc and subsequently the CTV was 37.4 cc. Radiation planning and treatment of the DOTATOC-adapted volumes was feasible. Conclusion DOTATOC-PET/CT information may strongly complement patho-anatomical data from MRI and CT in cases with complex meningioma and is thus helpful for improved target volume delineation especially for skull base manifestations and recurrent disease after surgery.

  16. A simple, quantitative method using alginate gel to determine rat colonic tumor volume in vivo.

    Science.gov (United States)

    Irving, Amy A; Young, Lindsay B; Pleiman, Jennifer K; Konrath, Michael J; Marzella, Blake; Nonte, Michael; Cacciatore, Justin; Ford, Madeline R; Clipson, Linda; Amos-Landgraf, James M; Dove, William F

    2014-04-01

    Many studies of the response of colonic tumors to therapeutics use tumor multiplicity as the endpoint to determine the effectiveness of the agent. These studies can be greatly enhanced by accurate measurements of tumor volume. Here we present a quantitative method to easily and accurately determine colonic tumor volume. This approach uses a biocompatible alginate to create a negative mold of a tumor-bearing colon; this mold is then used to make positive casts of dental stone that replicate the shape of each original tumor. The weight of the dental stone cast correlates highly with the weight of the dissected tumors. After refinement of the technique, overall error in tumor volume was 16.9% ± 7.9% and includes error from both the alginate and dental stone procedures. Because this technique is limited to molding of tumors in the colon, we utilized the Apc(Pirc/+) rat, which has a propensity for developing colonic tumors that reflect the location of the majority of human intestinal tumors. We have successfully used the described method to determine tumor volumes ranging from 4 to 196 mm³. Alginate molding combined with dental stone casting is a facile method for determining tumor volume in vivo without costly equipment or knowledge of analytic software. This broadly accessible method creates the opportunity to objectively study colonic tumors over time in living animals in conjunction with other experiments and without transferring animals from the facility where they are maintained.

  17. Toward Semi-automated Assessment of Target Volume Delineation in Radiotherapy Trials: The SCOPE 1 Pretrial Test Case

    Energy Technology Data Exchange (ETDEWEB)

    Gwynne, Sarah, E-mail: Sarah.Gwynne2@wales.nhs.uk [Department of Clinical Oncology, Velindre Cancer Centre, Cardiff, Wales (United Kingdom); Spezi, Emiliano; Wills, Lucy [Department of Medical Physics, Velindre Cancer Centre, Cardiff, Wales (United Kingdom); Nixon, Lisette; Hurt, Chris [Wales Cancer Trials Unit, School of Medicine, Cardiff University, Cardiff, Wales (United Kingdom); Joseph, George [Department of Diagnostic Radiology, Velindre Cancer Centre, Cardiff, Wales (United Kingdom); Evans, Mererid [Department of Clinical Oncology, Velindre Cancer Centre, Cardiff, Wales (United Kingdom); Griffiths, Gareth [Wales Cancer Trials Unit, School of Medicine, Cardiff University, Cardiff, Wales (United Kingdom); Crosby, Tom [Department of Clinical Oncology, Velindre Cancer Centre, Cardiff, Wales (United Kingdom); Staffurth, John [Division of Cancer, School of Medicine, Cardiff University, Cardiff, Wales (United Kingdom)

    2012-11-15

    Purpose: To evaluate different conformity indices (CIs) for use in the analysis of outlining consistency within the pretrial quality assurance (Radiotherapy Trials Quality Assurance [RTTQA]) program of a multicenter chemoradiation trial of esophageal cancer and to make recommendations for their use in future trials. Methods and Materials: The National Cancer Research Institute SCOPE 1 trial is an ongoing Cancer Research UK-funded phase II/III randomized controlled trial of chemoradiation with capecitabine and cisplatin with or without cetuximab for esophageal cancer. The pretrial RTTQA program included a detailed radiotherapy protocol, an educational package, and a single mid-esophageal tumor test case that were sent to each investigator to outline. Investigator gross tumor volumes (GTVs) were received from 50 investigators in 34 UK centers, and CERR (Computational Environment for Radiotherapy Research) was used to perform an assessment of each investigator GTV against a predefined gold-standard GTV using different CIs. A new metric, the local conformity index (l-CI), that can localize areas of maximal discordance was developed. Results: The median Jaccard conformity index (JCI) was 0.69 (interquartile range, 0.62-0.70), with 14 of 50 investigators (28%) achieving a JCI of 0.7 or greater. The median geographical miss index was 0.09 (interquartile range, 0.06-0.16), and the mean discordance index was 0.27 (95% confidence interval, 0.25-0.30). The l-CI was highest in the middle section of the volume, where the tumor was bulky and more easily definable, and identified 4 slices where fewer than 20% of investigators achieved an l-CI of 0.7 or greater. Conclusions: The available CIs analyze different aspects of a gold standard-observer variation, with JCI being the most useful as a single metric. Additional information is provided by the l-CI and can focus the efforts of the RTTQA team in these areas, possibly leading to semi-automated outlining assessment.

  18. Toward Semi-automated Assessment of Target Volume Delineation in Radiotherapy Trials: The SCOPE 1 Pretrial Test Case

    International Nuclear Information System (INIS)

    Gwynne, Sarah; Spezi, Emiliano; Wills, Lucy; Nixon, Lisette; Hurt, Chris; Joseph, George; Evans, Mererid; Griffiths, Gareth; Crosby, Tom; Staffurth, John

    2012-01-01

    Purpose: To evaluate different conformity indices (CIs) for use in the analysis of outlining consistency within the pretrial quality assurance (Radiotherapy Trials Quality Assurance [RTTQA]) program of a multicenter chemoradiation trial of esophageal cancer and to make recommendations for their use in future trials. Methods and Materials: The National Cancer Research Institute SCOPE 1 trial is an ongoing Cancer Research UK-funded phase II/III randomized controlled trial of chemoradiation with capecitabine and cisplatin with or without cetuximab for esophageal cancer. The pretrial RTTQA program included a detailed radiotherapy protocol, an educational package, and a single mid-esophageal tumor test case that were sent to each investigator to outline. Investigator gross tumor volumes (GTVs) were received from 50 investigators in 34 UK centers, and CERR (Computational Environment for Radiotherapy Research) was used to perform an assessment of each investigator GTV against a predefined gold-standard GTV using different CIs. A new metric, the local conformity index (l-CI), that can localize areas of maximal discordance was developed. Results: The median Jaccard conformity index (JCI) was 0.69 (interquartile range, 0.62-0.70), with 14 of 50 investigators (28%) achieving a JCI of 0.7 or greater. The median geographical miss index was 0.09 (interquartile range, 0.06-0.16), and the mean discordance index was 0.27 (95% confidence interval, 0.25-0.30). The l-CI was highest in the middle section of the volume, where the tumor was bulky and more easily definable, and identified 4 slices where fewer than 20% of investigators achieved an l-CI of 0.7 or greater. Conclusions: The available CIs analyze different aspects of a gold standard–observer variation, with JCI being the most useful as a single metric. Additional information is provided by the l-CI and can focus the efforts of the RTTQA team in these areas, possibly leading to semi-automated outlining assessment.

  19. [Effect of image fusion technology of radioactive particles implantation before and after the planning target and dosimetry].

    Science.gov (United States)

    Jiang, Y L; Yu, J P; Sun, H T; Guo, F X; Ji, Z; Fan, J H; Zhang, L J; Li, X; Wang, J J

    2017-08-01

    Objective: To compare the post-implant target volumes and dosimetric evaluation with pre-plan, the gross tumor volume(GTV) by CT image fusion-based and the manual delineation of target volume in CT guided radioactive seeds implantation. Methods: A total of 10 patients treated under CT-guidance (125)I seed implantation during March 2016 to April 2016 were analyzed in Peking University Third Hospital.All patients underwent pre-operative CT simulation, pre-operative planning, implantation seeds, CT scanning after seed implantation and dosimetric evaluation of GTV.In every patient, post-implant target volumes were delineated by both two methods, and were divided into two groups. Group 1: image fusion pre-implantation simulation and post-operative CT image, then the contours of GTV were automatically performed by brachytherapy treatment planning system; Group 2: the contouring of the GTV on post-operative CT image were performed manually by three senior radiation oncologists independently. The average of three data was sets. Statistical analyses were performed using SPSS software, version 3.2.0. The paired t -test was used to compare the target volumes and D(90) parameters in two modality. Results: In Group 1, average volume of GTV in post-operation group was 12-167(73±56) cm(3). D(90) was 101-153 (142±19)Gy. In Group 2, they were 14-186(80±58)cm(3) and 96-146(122±16) Gy respectively. In both target volumes and D(90), there was no statistical difference between pre-operation and post-operation in Group 1.The D(90) was slightly lower than that of pre-plan group, but there was no statistical difference ( P =0.142); in Group 2, between pre-operation and post-operation group, there was a significant statistical difference in the GTV ( P =0.002). The difference of D(90) was similarly ( P manual delineation of target volume by maximum reduce the interference from artificial factor and metal artifacts. Further work and more cases are required in the future.

  20. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.

    Science.gov (United States)

    Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R

    2010-05-01

    Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  1. 18F-FDG PET-CT Simulation for Non-Small-Cell Lung Cancer: Effect in Patients Already Staged by PET-CT

    International Nuclear Information System (INIS)

    Hanna, Gerard G.; McAleese, Jonathan; Carson, Kathryn J.; Stewart, David P.; Cosgrove, Vivian P.; Eakin, Ruth L.; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H.; Young, V.A. Linda D.C.R.; O'Sullivan, Joe M.

    2010-01-01

    Purpose: Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. Methods and Materials: A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. Results: PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV CT to GTV FUSED was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). Conclusion: PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  2. Impact of removed tumor volume and location on patient outcome in glioblastoma.

    Science.gov (United States)

    Awad, Al-Wala; Karsy, Michael; Sanai, Nader; Spetzler, Robert; Zhang, Yue; Xu, Yizhe; Mahan, Mark A

    2017-10-01

    Glioblastoma is an aggressive primary brain tumor with devastatingly poor prognosis. Multiple studies have shown the benefit of wider extent of resection (EOR) on patient overall survival (OS) and worsened survival with larger preoperative tumor volumes. However, the concomitant impact of postoperative tumor volume and eloquent location on OS has yet to be fully evaluated. We performed a retrospective chart review of adult patients treated for glioblastoma from January 2006 through December 2011. Adherence to standardized postoperative chemoradiation protocols was used as an inclusion criterion. Detailed volumetric and location analysis was performed on immediate preoperative and immediate postoperative magnetic resonance imaging. Cox proportional hazard modeling approach was employed to explore the modifying effects of EOR and eloquent location after adjusting for various confounders and associated characteristics, such as preoperative tumor volume and demographics. Of the 471 screened patients, 141 were excluded because they did not meet all inclusion criteria. The mean (±SD) age of the remaining 330 patients (60.6% male) was 58.9 ± 12.9 years; the mean preoperative and postoperative Karnofsky performance scores (KPSs) were 76.2 ± 10.3 and 80.0 ± 16.6, respectively. Preoperative tumor volume averaged 33.2 ± 29.0 ml, postoperative residual was 4.0 ± 8.1 ml, and average EOR was 88.6 ± 17.6%. The observed average follow-up was 17.6 ± 15.7 months, and mean OS was 16.7 ± 14.4 months. Survival analysis showed significantly shorter survival for patients with lesions in periventricular (16.8 ± 1.7 vs. 21.5 ± 1.4 mo, p = 0.03), deep nuclei/basal ganglia (11.6 ± 1.7 vs. 20.6 ± 1.2, p = 0.002), and multifocal (12.0 ± 1.4 vs. 21.3 ± 1.3 months, p = 0.0001) locations, but no significant influence on survival was seen for eloquent cortex sites (p = 0.14, range 0.07-0.9 for all individual

  3. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy

    International Nuclear Information System (INIS)

    Grosu, Anca-Ligia; Weber, Wolfgang A.; Astner, Sabrina T.; Adam, Markus; Krause, Bernd J.; Schwaiger, Markus; Molls, Michael; Nieder, Carsten

    2006-01-01

    Purpose: To evaluate the role of 11 C-methionine positron emission tomography (MET-PET) in target volume delineation for meningiomas and to determine the interobserver variability. Methods and Materials: Two independent observers performed treatment planning in 10 patients according to a prospective written protocol. In the first step, they used coregistered computed tomography (CT) and magnetic resonance imaging (MRI). In the second step, MET-PET was added to CT/MRI (image fusion based on mutual information). Results: The correlation between gross tumor volume (GTVs) delineated by the two observers based on CT/MRI was r = 0.855 (Spearman's correlation coefficient, p = 0.002) and r = 0.988 (p = 0.000) when MET-PET/CT/MRI were used. The number of patients with agreement in more then 80% of the outlined volume increased with the availability of MET-PET from 1 in 10 to 5 in 10. The median volume of intersection between the regions delineated by two observers increased significantly from 69% (from the composite volume) to 79%, by the addition of MET-PET (p = 0.005). The information of MET-PET was useful to delineate GTV in the area of cavernous sinus, orbit, and base of the skull. Conclusions: The hypothesis-generating findings of potential normal tissue sparing and reduced interobserver variability provide arguments for invasive studies of the correlation between MET-PET images and histologic tumor extension and for prospective trials of target volume delineation with CT/MRI/MET-PET image fusion

  4. Defining the target volume for post-operative radiotherapy after D2 dissection in gastric cancer by CT-based vessel-guided delineation

    International Nuclear Information System (INIS)

    Yoon, Hong In; Chang, Jee Suk; Lim, Joon Seok; Noh, Sung Hoon; Hyung, Woo Jin; An, Ji Yeong; Lee, Yong Chan; Rha, Sun Young; Kim, Kyung Hwan; Koom, Woong Sub

    2013-01-01

    Purpose: To determine the recurrent nodal gross tumor volume (rnGTV) based on CT-guided vascular structure to refine the clinical target volume (CTV) delineation in postoperative radiotherapy for advanced gastric cancer following radical gastrectomy with D2 dissection. Materials and methods: We retrospectively reviewed follow-up images from 91 patients with their first regional recurrence after D2 dissection in stage III gastric cancer with N3 disease. We defined rnGTV as recurrent nodes shown in follow-up CT images, in which one diagnostic radiologist with specialty of gastrointestinal tract investigated. We drew rnGTVs at the equivalent location based on the same vessels of reference comparing CT images to recurrence CT images. Results: We propose vessel-based locations of rnGTVs on CT images with axial and coronal views. We show different patterns of regional recurrence according to the location of primary gastric cancer using CT and digitally reconstructed radiograph (DRR) images. Frequently recurred sites, overlapped by more than five rnGTVs, are depicted in a DRR image. Conclusions: This study suggests vessel-based delineations of rnGTVs on CT images depending on nodal recurrence sites from follow-up images after D2 lymphadenectomy. Our results could help reduce the inter-observer variation of CTV delineation after D2 dissection in gastric cancer

  5. TH-AB-BRA-08: Simulated Tumor Tracking in An MRI Linac for Lung Tumor Lesions Using the Monaco Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ward, S; Kim, A; McCann, C; Ruschin, M; Cheung, P; Sahgal, A; Keller, B [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)

    2016-06-15

    Purpose: To simulate tumor tracking in an Elekta MRI-linac (MRL) and to compare this tracking method with our current ITV approach in terms of OAR sparing for lung cancer patients. Methods: Five SABR-NSCLC patients with central lung tumors were selected for reasons of potential enhancement of tumor-tissue delineation using MRI. The Monaco TPS was used to compare the current clinical ITV approach to a simulated, novel tracking method which used a 7MV MRL beam in the presence of an orthogonal 1.5 T magnetic field (4D-MRL method). In the simulated tracking scenario, achieved using the virtual couch shift (VCS), the PTV was defined using an isotropic 5mm margin applied to the GTV of each phase, as acquired from an 8-phase amplitude-binned 4DCT. These VCS plans were optimized and weighted on each phase. The dose weighting was performed using the patient-specific breathing traces. The doses were accumulated on the inhale phase. The two methods were compared by assessing the OAR DVHs. Results: The 4D-MRL method resulted in a reduced target volume (by an average of 29% over all patients). The benefits of using an MRL tracking system depended on the tumor motion amplitude and the relative OAR motion (ROM) to the target. The reduction in mean doses to parallel organs was up to 3 Gy for the heart and 2.1 Gy for the lung. The reductions in maximum doses to serial organs were up to 9.4 Gy, 5.6 Gy, and 8.7 Gy for the esophagus, spinal cord, and the trachea, respectively. Serial organs benefited from MRL tracking when the ROM was ≥ 0.3 cm despite small tumor motion amplitude in some cases. Conclusions: This work demonstrated the potential benefit for an MRL tracking system to spare OARs in SABR-NSCLC patients with central tumors. The benefits are embodied in the target volume reduction. This project was made possible with the financial support of Elekta.

  6. A study of respiration-correlated cone-beam CT scans to correct target positioning errors in radiotherapy of thoracic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, J. P.; McNamara, J.; Yorke, E.; Pham, H.; Rimner, A.; Rosenzweig, K. E.; Mageras, G. S. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States)

    2012-10-15

    Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged images for determining tumor deviations. Methods: Eleven stage II-IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no correction

  7. A study of respiration-correlated cone-beam CT scans to correct target positioning errors in radiotherapy of thoracic cancer

    International Nuclear Information System (INIS)

    Santoro, J. P.; McNamara, J.; Yorke, E.; Pham, H.; Rimner, A.; Rosenzweig, K. E.; Mageras, G. S.

    2012-01-01

    Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged images for determining tumor deviations. Methods: Eleven stage II–IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no correction

  8. SU-E-T-525: Dose Volume Histograms (DVH) Analysis and Comparison with ICRU Point Doses in MRI Guided HDR Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; McClinton, C; Kumar, P; Mitchell, M [University of Kansas Medical Center, Kansas City, KS (United States)

    2014-06-01

    Purpose: Brachytherapy plays a crucial role in management of cervix cancer. MRI compatible applicators have made it possible to accurately delineate gross-target-volume(GTV) and organs-at-risk(OAR) volumes, as well as directly plan, optimize and adapt dose-distribution for each insertion. We sought to compare DVH of tumor-coverage and OARs to traditional Point-A, ICRU-38 bladder and rectum point-doses for four different planning-techniques. Methods: MRI based 3D-planning was performed on Nucletron-Oncentra-TPS for 3 selected patients with varying tumor-sizes and anatomy. GTV,high-risk-clinical-target-volume(HR-CTV), intermediate-risk-clinical-target-volume(IR-CTV) and OARs: rectum, bladder, sigmoid-colon, vaginal-mucosa were delineated. Three conventionally used techniques: mg-Radium-equivalent(RaEq),equal-dwell-weights(EDW), Medical-College-of-Wisconsin proposed points-optimization (MCWO) and a manual-graphical-optimization(MGO) volume-coverage based technique were applied for each patient. Prescription was 6Gy delivered to point-A in Conventional techniques (RaEq, EDW, MCWO). For MGO, goal was to achieve 90%-coverage (D90) to HR-CTV with prescription-dose. ICRU point doses for rectum and bladder, point-A doses, DVH-doses for HR-CTV-D90,0.1cc-volume(D0.1),1ccvolume( D1),2cc-volume(D2) were collected for all plans and analyzed . Results: Mean D90 for HR-CTV normalized to MGO were 0.89,0.84,0.9,1.0 for EDW, RaEq, MCWO, MGO respectively. Mean point-A doses were 21.7% higher for MGO. Conventional techniques with Point-A prescriptions under covered HR-CTV-D90 by average of 12% as compared to MGO. Rectum, bladder and sigmoid doses were highest in MGO-plans for ICRU points as well as D0.1,D1 and D2 doses. Among conventional-techniques, rectum and bladder ICRU and DVH doses(0.1,1,2cc) were not significantly different (within 7%).Rectum D0.1 provided good estimation of ICRU-rectum-point doses (within 3.9%),rectum D0.1 were higher from 0.8 to 3.9% while bladder D0

  9. Co-clinical quantitative tumor volume imaging in ALK-rearranged NSCLC treated with crizotinib

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Mizuki, E-mail: Mizuki_Nishino@DFCI.HARVARD.EDU [Department of Radiology, Brigham and Women’s Hospital, 450 Brookline Ave., Boston MA, 02215 (United States); Department of Imaging, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston MA, 02215 (United States); Sacher, Adrian G.; Gandhi, Leena; Chen, Zhao; Akbay, Esra [Department of Medical Oncology and Department of Medicine Dana-Farber Cancer Institute and Brigham and Women’s Hospital 450 Brookline Ave., Boston MA, 02215 (United States); Fedorov, Andriy; Westin, Carl F.; Hatabu, Hiroto [Department of Radiology, Brigham and Women’s Hospital, 450 Brookline Ave., Boston MA, 02215 (United States); Johnson, Bruce E.; Hammerman, Peter; Wong, Kwok-kin [Department of Medical Oncology and Department of Medicine Dana-Farber Cancer Institute and Brigham and Women’s Hospital 450 Brookline Ave., Boston MA, 02215 (United States)

    2017-03-15

    Highlights: • Role of co-clinical studies in precision cancer medicine is increasingly recognized. • This study compared tumor volume in co-clinical trials of ALK-rearranged NSCLC. • Similarities and differences of tumor volume changes in mice and humans were noted. • The study provides insights to optimize murine co-clinical trial designs. - Abstract: Purpose: To evaluate and compare the volumetric tumor burden changes during crizotinib therapy in mice and human cohorts with ALK-rearranged non-small-cell lung cancer (NSCLC). Methods: Volumetric tumor burden was quantified on serial imaging studies in 8 bitransgenic mice with ALK-rearranged adenocarcinoma treated with crizotinib, and in 33 human subjects with ALK-rearranged NSCLC treated with crizotinib. The volumetric tumor burden changes and the time to maximal response were compared between mice and humans. Results: The median tumor volume decrease (%) at the maximal response was −40.4% (range: −79.5%–+11.7%) in mice, and −72.9% (range: −100%–+72%) in humans (Wilcoxon p = 0.03). The median time from the initiation of therapy to maximal response was 6 weeks in mice, and 15.7 weeks in humans. Overall volumetric response rate was 50% in mice and 97% in humans. Spider plots of tumor volume changes during therapy demonstrated durable responses in the human cohort, with a median time on therapy of 13.1 months. Conclusion: The present study described an initial attempt to evaluate quantitative tumor burden changes in co-clinical imaging studies of genomically-matched mice and human cohorts with ALK-rearranged NSCLC treated with crizotinib. Differences are noted in the degree of maximal volume response between the two cohorts in this well-established paradigm of targeted therapy, indicating a need for further studies to optimize co-clinical trial design and interpretation.

  10. Co-clinical quantitative tumor volume imaging in ALK-rearranged NSCLC treated with crizotinib

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Sacher, Adrian G.; Gandhi, Leena; Chen, Zhao; Akbay, Esra; Fedorov, Andriy; Westin, Carl F.; Hatabu, Hiroto; Johnson, Bruce E.; Hammerman, Peter; Wong, Kwok-kin

    2017-01-01

    Highlights: • Role of co-clinical studies in precision cancer medicine is increasingly recognized. • This study compared tumor volume in co-clinical trials of ALK-rearranged NSCLC. • Similarities and differences of tumor volume changes in mice and humans were noted. • The study provides insights to optimize murine co-clinical trial designs. - Abstract: Purpose: To evaluate and compare the volumetric tumor burden changes during crizotinib therapy in mice and human cohorts with ALK-rearranged non-small-cell lung cancer (NSCLC). Methods: Volumetric tumor burden was quantified on serial imaging studies in 8 bitransgenic mice with ALK-rearranged adenocarcinoma treated with crizotinib, and in 33 human subjects with ALK-rearranged NSCLC treated with crizotinib. The volumetric tumor burden changes and the time to maximal response were compared between mice and humans. Results: The median tumor volume decrease (%) at the maximal response was −40.4% (range: −79.5%–+11.7%) in mice, and −72.9% (range: −100%–+72%) in humans (Wilcoxon p = 0.03). The median time from the initiation of therapy to maximal response was 6 weeks in mice, and 15.7 weeks in humans. Overall volumetric response rate was 50% in mice and 97% in humans. Spider plots of tumor volume changes during therapy demonstrated durable responses in the human cohort, with a median time on therapy of 13.1 months. Conclusion: The present study described an initial attempt to evaluate quantitative tumor burden changes in co-clinical imaging studies of genomically-matched mice and human cohorts with ALK-rearranged NSCLC treated with crizotinib. Differences are noted in the degree of maximal volume response between the two cohorts in this well-established paradigm of targeted therapy, indicating a need for further studies to optimize co-clinical trial design and interpretation.

  11. Impact of Pretreatment Tumor Growth Rate on Outcome of Early-Stage Lung Cancer Treated With Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Atallah, Soha; Cho, B.C. John; Allibhai, Zishan; Taremi, Mojgan; Giuliani, Meredith [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Brade, Anthony; Sun, Alexander; Bezjak, Andrea [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Hope, Andrew J., E-mail: andrew.hope@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2014-07-01

    Purpose: To determine the influence of pretreatment tumor growth rate on outcomes in patients with early-stage non-small cell lung cancer (NSCLC) treated with stereotactic body radiation therapy (SBRT). Methods and Materials: A review was conducted on 160 patients with T1-T2N0M0 NSCLC treated with SBRT at single institution. The patient's demographic and clinical data, time interval (t) between diagnostic and planning computed tomography (CT), vital status, disease status, and cause of death were extracted from a prospectively kept database. Differences in gross tumor volume between diagnostic CT (GTV1) and planning CT (GTV2) were recorded, and growth rate was calculated by use of specific growth rate (SGR). Kaplan-Meier curves were constructed for overall survival (OS). Differences between groups were compared with a log-rank test. Multivariate analyses were performed by use of the Cox proportional hazard model with SGR and other relevant clinical factors. Cumulative incidence was calculated for local, regional, and distant failures by use of the competing risk approach and was compared with Gray's test. Results: The median time interval between diagnostic and planning CT was 82 days. The patients were divided into 2 groups, and the median SGR was used as a cut-off. The median survival times were 38.6 and 27.7 months for the low and high SGR groups, respectively (P=.03). Eastern Cooperative Oncology Group performance status (P=.01), sex (P=.04), SGR (P=.03), and GTV2 (P=.002) were predictive for OS in multivariable Cox regression analysis and, except sex, were similarly predictive for failure-free survival (FFS). The 3-year cumulative incidences of regional failure were 19.2% and 6.0% for the high and low SGR groups, respectively (P=.047). Conclusion: High SGR was correlated with both poorer OS and FFS in patients with early-stage NSCLC treated with SBRT. If validated, this measurement may be useful in identifying patients most likely to benefit from

  12. Triphasic contrast enhanced CT simulation with bolus tracking for pancreas SBRT target delineation.

    Science.gov (United States)

    Godfrey, Devon J; Patel, Bhavik N; Adamson, Justus D; Subashi, Ergys; Salama, Joseph K; Palta, Manisha

    Bolus-tracked multiphasic contrast computed tomography (CT) is often used in diagnostic radiology to enhance the visibility of pancreas tumors, but is uncommon in radiation therapy pancreas CT simulation, and its impact on gross tumor volume (GTV) delineation is unknown. This study evaluates the lesion conspicuity and consistency of pancreas stereotactic body radiation therapy (SBRT) GTVs contoured in the different contrast phases of triphasic CT simulation scans. Triphasic, bolus-tracked planning CT simulation scans of 10 consecutive pancreas SBRT patients were acquired, yielding images of the pancreas during the late arterial (LA), portal venous (PV), and either the early arterial or delayed phase. GTVs were contoured on each phase by a gastrointestinal-specialized radiation oncologist and reviewed by a fellowship-trained abdominal radiologist who specializes in pancreatic imaging. The volumes of the registered GTVs, their overlap ratio, and the 3-dimensional margin expansions necessary for each GTV to fully encompass GTVs from the other phases were calculated. The contrast difference between tumor and normal pancreas was measured, and 2 radiation oncologists rank-ordered the phases according to their value for the lesion-contouring task. Tumor-to-pancreas enhancement was on average much larger for the LA and PV than the delayed phase or early arterial phases; the LA and PV phases were also consistently preferred by the radiation oncologists. Enhancement differences among the phases resulted in highly variable GTV volumes with no observed trends. Overlap ratios ranged from 18% to 75% across all 3 phases, improving to 43% to 91% when considering only the preferred LA and PV phases. GTV expansions necessary to encompass all GTVs ranged from 0.3 to 1.8 cm for all 3 phases, improving slightly to 0.1 to 1.4 cm when considering just the LA and PV phases. For pancreas SBRT, we recommend combining the GTVs from a multiphasic CT simulation with bolus-tracking, including

  13. Interobserver Variability in Target Definition for Hepatocellular Carcinoma With and Without Portal Vein Thrombus: Radiation Therapy Oncology Group Consensus Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Theodore S., E-mail: tshong1@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Bosch, Walter R. [Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, Missouri (United States); Krishnan, Sunil [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kim, Tae K. [Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women' s College Hospital, University of Toronto, Toronto, Ontario (Canada); Mamon, Harvey J. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Shyn, Paul [Department of Radiology, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ben-Josef, Edgar [Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania (United States); Seong, Jinsil [Department of Radiation Oncology, Yonsei University Medical College, Seoul (Korea, Republic of); Haddock, Michael G. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Cheng, Jason C. [Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (China); Feng, Mary U. [Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan (United States); Stephans, Kevin L. [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio (United States); Roberge, David [Department of Radiation Oncology, Montreal General Hospital/McGill University Health Centre, Montreal, Quebec (Canada); Crane, Christopher [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); and others

    2014-07-15

    Purpose: Defining hepatocellular carcinoma (HCC) gross tumor volume (GTV) requires multimodal imaging, acquired in different perfusion phases. The purposes of this study were to evaluate the variability in contouring and to establish guidelines and educational recommendations for reproducible HCC contouring for treatment planning. Methods and Materials: Anonymous, multiphasic planning computed tomography scans obtained from 3 patients with HCC were identified and distributed to a panel of 11 gastrointestinal radiation oncologists. Panelists were asked the number of HCC cases they treated in the past year. Case 1 had no vascular involvement, case 2 had extensive portal vein involvement, and case 3 had minor branched portal vein involvement. The agreement between the contoured total GTVs (primary + vascular GTV) was assessed using the generalized kappa statistic. Agreement interpretation was evaluated using Landis and Koch's interpretation of strength of agreement. The S95 contour, defined using the simultaneous truth and performance level estimation (STAPLE) algorithm consensus at the 95% confidence level, was created for each case. Results: Of the 11 panelists, 3 had treated >25 cases in the past year, 2 had treated 10 to 25 cases, 2 had treated 5 to 10 cases, 2 had treated 1 to 5 cases, 1 had treated 0 cases, and 1 did not respond. Near perfect agreement was seen for case 1, and substantial agreement was seen for cases 2 and 3. For case 2, there was significant heterogeneity in the volume identified as tumor thrombus (range 0.58-40.45 cc). For case 3, 2 panelists did not include the branched portal vein thrombus, and 7 panelists contoured thrombus separately from the primary tumor, also showing significant heterogeneity in volume of tumor thrombus (range 4.52-34.27 cc). Conclusions: In a group of experts, excellent agreement was seen in contouring total GTV. Heterogeneity exists in the definition of portal vein thrombus that may impact treatment

  14. A study on quantitative analysis of field size and dose by using gating system in 4D conformal radiation treatment

    Science.gov (United States)

    Ji, Youn-Sang; Dong, Kyung-Rae; Kim, Chang-Bok; Chung, Woon-Kwan; Cho, Jae-Hwan; Lee, Hae-Kag

    2012-10-01

    This study evaluated the gating-based 4-D conformal radiation therapy (4D-CT) treatment planning by a comparison with the common 3-D conformal radiation therapy (3D-CT) treatment planning and examined the change in treatment field size and dose to the tumors and adjacent normal tissues because an unnecessary dose is also included in the 3-D treatment planning for the radiation treatment of tumors in the chest and abdomen. The 3D-CT and gating-based 4D-CT images were obtained from patients who had undergone radiation treatment for chest and abdomen tumors in the oncology department. After establishing a treatment plan, the CT treatment and planning system were used to measure the change in field size for analysis. A dose volume histogram (DVH) was used to calculate the appropriate dose to planning target volume (PTV) tumors and adjacent normal tissue. The difference in the treatment volume of the chest was 0.6 and 0.83 cm on the X- and Y-axis, respectively, for the gross tumor volume (GTV). Accordingly, the values in the 4D-CT treatment planning were smaller and the dose was more concentrated by 2.7% and 0.9% on the GTV and clinical target volume (CTV), respectively. The normal tissues in the surrounding normal tissues were reduced by 3.0%, 7.2%, 0.4%, 1.7%, 2.6% and 0.2% in the bronchus, chest wall, esophagus, heart, lung and spinal cord, respectively. The difference in the treatment volume of the abdomen was 0.72 cm on the X-axis and 0.51 cm on the Y-axis for the GTV; and 1.06 cm on the X-axis and 1.85 cm on the Y-axis for the PTV. Therefore, the values in the 4D-CT treatment planning were smaller. The dose was concentrated by 6.8% and 4.3% on the GTV and PTV, respectively, whereas the adjacent normal tissues in the cord, Lt. kidney, Rt. kidney, small bowels and whole liver were reduced by 3.2%, 4.2%, 1.5%, 6.2% and 12.7%, respectively. The treatment field size was smaller in volume in the case of the 4D-CT treatment planning. In the DVH, the 4D-CT treatment

  15. Changes in Treatment Volume of Hormonally Treated and Untreated Cancerous Prostate and its Impact on Rectal Dose

    International Nuclear Information System (INIS)

    Lilleby, Wolfgang; Dale, Einar; Olsen, Dag R.; Gude, Unn; Fossaa, Sophie D.

    2003-01-01

    Late chronic side effects of the rectum constitute one of the principal limiting factors for curative radiation therapy in patients with prostate cancer. The purpose of the study was to determine the impact of immediate androgen deprivation (IAD) prior to conformal radiotherapy on rectal volume exposed to high doses, as compared with a deferred treatment strategy (DAD). Twenty-five patients (13 in the IAD group and 12 in the DAD group) with bulky tumours of the prostate, T3pN1-2M0 from the prospective EORTC trial 30846 were analysed. Three-dimensional conformal radiation treatment plans (3D CRT) using a 4-field box technique were generated based on the digitized computed tomographic or magnetic resonance findings acquired during the first 9 months after inclusion in the EORTC trial. Dose-volume histograms (DVHs) were calculated for the prostate and rectum. In the DAD group, there was no obvious alteration in the mean size of the prostate or other evaluated structures. In the IAD patients, a statistically significant reduction of approximately 40% of the gross tumour volume (GTV) was reached after a 6 months' course of hormonal treatment (p<0.001). High-dose rectal volume was correlated with the volume changes of the GTV (p<0.001). Mean rectal volume receiving 95% or more of the target dose was significantly reduced by 20%. Our study confirms the effect of downsizing of locally advanced prostate tumours following AD treatment and demonstrates the interdependence of the high-dose rectal volume with the volume changes of the GTV. However, the mean beneficial sparing of rectal volume was outweighed in some patients by considerable inter-patient variations

  16. Evaluation of gross tumor size using CT, 18F-FDG PET, integrated 18F-FDG PET/CT and pathological analysis in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yu Huiming; Liu Yunfang; Hou Ming; Liu Jie; Li Xiaonan; Yu Jinming

    2009-01-01

    Purpose: The correlation of gross tumor sizes between combined 18 F-FDG PET/CT images and macroscopic surgical samples has not yet been studied in detail. In the present study, we compared CT, 18 F-FDG PET and combined 18 F-FDG PET/CT for the delineation of gross tumor volume (GTV) and validated the results through examination of the macroscopic surgical specimen. Methods: Fifty-two operable non-small cell lung cancer (NSCLC) patients had integrated 18 F-FDG PET/CT scans preoperatively and pathological examination post-operation. Four separate maximal tumor sizes at X (lateral direction), Y (ventro-dorsal direction) and Z (cranio-caudal direction) axis were measured on 18 F-FDG PET, CT, combined 18 F-FDG PET/CT and surgical specimen, respectively. Linear regression was calculated for each of the three imaging measurements versus pathological measurement. Results: No significant differences were observed among the tumor sizes measured by three images and pathological method. Compared with pathological measurement, CT size at X, Y, Z axis was larger, whereas combined 18 F-FDG PET/CT and 18 F-FDG PET size were smaller. Combined 18 F-FDG PET/CT size was more similar to the pathological size than that of 18 F-FDG PET or CT. Results of linear regressions showed that integrated 18 F-FDG PET/CT was the most accurate modality in measuring the size of cancer. Conclusions: 18 F-FDG PET/CT correlates more faithfully with pathological findings than 18 F-FDG PET or CT. Integrated 18 F-FDG PET/CT is an effective tool to define the target of GTV in radiotherapy.

  17. Correlation of Tumor and Peritumoral Edema Volumes with Survival in Patients with Cerebral Metastases.

    Science.gov (United States)

    Kerschbaumer, Johannes; Bauer, Marlies; Popovscaia, Marina; Grams, Astrid E; Thomé, Claudius; Freyschlag, Christian F

    2017-02-01

    Surgical resection in combination with radiotherapy in selected cases remains the best option for patients with cerebral metastases. Postoperative relapse of brain metastases occurs frequently and can be reduced by postoperative whole-brain radiotherapy (WBRT). Continuous spread of tumor cells from the primary lesions is debated as a cause of recurrence. It is well known that in gliomas, infiltration takes place within the surrounding edema. Obviously, most brain metastases are usually associated with peritumoral edema, which may act as an indicator of infiltration and more aggressive tumor biology. Therefore, we aimed to investigate the correlation of tumor and edema volumes with overall survival in patients with cerebral metastases. A total of 143 patients diagnosed with brain metastasis (male:female=1.1:1) who underwent surgical resection were included retrospectively in this analysis. Clinical data were retrieved from electronic patient files. The volumes of tumor and edema calculated by manual delineation. The ratio of edema to tumor volume was calculated, leading to dichotomization of the patients. The median tumor volume was 20.1 cc (range=0.8-90.8 cc) and the median volume of edema 49.5 cc (range=0-179.9 cc). The volume of metastases did not significantly correlate with overall survival. The ratio of edema to tumor volume was also not a prognostic factor in terms of overall survival. Only surgical resection, preoperative recursive partitioning analysis class, and postoperative addition of WBRT, as well as female sex, demonstrated beneficial effects. The extent of edema surrounding cerebral metastases does not appear to influence overall survival in patients suffering from brain metastases, although it seems to be responsible for most of the patients' symptoms. The hypothesis that the extent of edema was disadvantageous concerning survival was supported by our data. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios

  18. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki; Abe, Takanori; Kubota, Yoshiki; Sakai, Makoto; Noda, Shin-ei; Ohno, Tatsuya; Nakano, Takashi

    2016-12-01

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated. Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded

  19. SU-E-J-136: Multimodality-Image-Based Target Delineation for Dose Painting of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dalah, E; Paulson, E; Erickson, B; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-01

    Purpose: Dose escalated RT may provide improved disease local-control for selected unresectable pancreatic cancer. Accurate delineation of the gross tumor volume (GTV) inside pancreatic head or body would allow safe dose escalation considering the tolerances of adjacent organs at risk (OAR). Here we explore the potential of multi-modality imaging (DCE-MRI, ADC-MRI, and FDG-PET) to define the GTV for dose painting of pancreatic cancer. Volumetric variations of DCE-MRI, ADC-MRI and FDG-PET defined GTVs were assessed in comparison to the findings on CT, and to pathology specimens for resectable and borderline reseactable cases of pancreatic cancer. Methods: A total of 19 representative patients with DCE-MRI, ADC-MRI and FDG-PET data were analyzed. Of these, 8 patients had pathological specimens. GTV, inside pancreatic head/neck, or body, were delineated on MRI (denoted GTVDCE, and GTVADC), on FDG-PET using SUV of 2.5, 40% SUVmax, and 50% SUVmax (denoted GTV2.5, GTV40%, and GTV50%). A Kruskal-Wallis test was used to determine whether significant differences existed between GTV volumes. Results: Significant statistical differences were found between the GTVs defined by DCE-MRI, ADC-MRI, and FDG-PET, with a mean and range of 4.73 (1.00–9.79), 14.52 (3.21–25.49), 22.04 (1.00–45.69), 19.10 (4.84–45.59), and 9.80 (0.32–35.21) cm3 (p<0.0001) for GTVDCE, GTVADC, GTV2.5, GTV40%, and GTV50%, respectively. The mean difference and range in the measurements of maximum dimension of GTVs based on DCE-MRI, ADC-MRI, SUV2.5, 40% SUVmax, and 50% SUVmax compared with pathologic specimens were −0.84 (−2.24 to 0.9), 0.41 (−0.15 to 2.3), 0.58 (−1.41 to 3.69), 0.66 (−0.67 to 1.32), and 0.15 (−1.53 to 2.38) cm, respectively. Conclusion: Differences exists between DCE, ADC, and PET defined target volumes for RT of pancreatic cancer. Further studies combined with pathological specimens are required to identify the optimal imaging modality and/or acquisition method to

  20. Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation

    International Nuclear Information System (INIS)

    Castadot, Pierre; Geets, Xavier; Lee, John Aldo; Christian, Nicolas; Gregoire, Vincent

    2010-01-01

    Purpose: Anatomic changes occur during radiation therapy (RT) for head and neck (H and N) tumors. This study aims at quantifying the volumetric and positional changes of gross tumor volumes (GTV), clinical target volumes (CTV), and organs at risk (OAR). Anatomic (CT) and functional (FDG-PET) imaging were used for the delineation of the GTVs. Materials and methods: Ten patients with H and N tumors treated by chemo-RT were used. Contrast-enhanced CT and FDG-PET were acquired prior and during RT following delivery of mean doses of 14.2, 24.5, 35.0, and 44.9 Gy. CT-based GTVs were manually delineated, and PET-based GTVs were segmented using a gradient-based segmentation method. Pre-treatment prophylactic dose CTVs were manually delineated on the pre-treatment CT using consistent and reproducible guidelines. Per-treatment prophylactic CTVs were obtained with an automatic re-contouring method based on deformable registration. For the therapeutic dose CTVs, a 5 mm margin was applied around the corresponding GTVs. OARs such as the parotid glands and the submandibular glands were manually delineated on the pre-treatment CT. OARs on the per-treatment CT were automatically delineated using the method used for prophylactic CTVs. The mean slopes of the relative change in volume over time and the mean displacements of the center of mass after 44.9 Gy were calculated for each volume. Results: Regarding volumetric changes, CT-based and PET-based primary tumor GTVs decreased at a mean rate of 3.2% and 3.9%/treatment day (td), respectively; nodal GTVs decreased at a mean rate of 2.2%/td. This led to a corresponding decrease of the CT-based and PET-based therapeutic CTVs by 2.4% and 2.5%/td, respectively. CT- and PET-based prophylactic tumor CTVs decreased by an average of 0.7% and 0.5%/td, respectively. No difference in volume shrinkage was observed between CT- and PET-based volumes. The ipsilateral and contralateral parotid glands showed a mean decrease of 0.9% and 1.0%/td

  1. The usefulness of integrated PET/CT simulator for non-small cell lung cancer using the F-18 fluoro-2-deoxyglucose (FDG)

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jong Eok; Suh, Jeong Nam; Kim, Jin Soo; Kim, Dae Seob; Hong, Dong Ki; Baek, Geum Mun [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2013-03-15

    To evaluate the usefulness of Integrated PET/CT and compare the gloss tumor volume (GTV) identified on CT, PET, PET/CT to that obtained from fluorodeoxyglucose (FDG). This experimental study was obtained using GE Discovery 690 (General Electric Healthcare, Milwaukee, MI, USA) PET/CT simulator with Gammex Laser System for five non-small cell lung cancer (NSCLC) patients. In order to increase the reproducibility of the patient setup, We have to fixed to patients using the Extended Wing Board. GTV delineation was painted using the EclipseTM ver.10 contouring program for CT, PET, PET/CT images. And then, We were to compare the changes in the GTV. These results are drawn from 5 patients who have atelectasis or pneumonitis. Compared to CT defined GTV, PET was decreased by 10.5%, 11.8% and increased by 67.9%, 220%, 19.4%. PET/CT was decreased by 7.7%, 6.7%, 28% and increased by 232%, 24%. We were able to determine the usefulness of PET/CT simulator for NSCLC. PET/CT simulator in radiation therapy is useful to define the target volume and It is possible to delineate Objective and accurate target volume. It seems to be applicable to other areas in the near future.

  2. Multi-slice CT three dimensional volume measurement of tumors and livers in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Yu Yuanlong; Li Liangcai; Tang Binghang; Hu Zemin

    2004-01-01

    Objective: To examine the accuracy of multi-slice CT (MSCT) three dimensional (3D) volume measurement of tumors and livers in hepatocellular carcinoma cases by using immersion method as the standard. Methods: (1) The volume of 25 porkling livers was measured using immersion method in experiment group in vitro. Then the models were built according to Matsumoto's method and CT scanning and special software were used to measure the volume of the livers. (2) The volume of the tumors in 25 cases of hepatocellular carcinoma was measured using diameter measurement method and special volume measurement software (tissue measurements). Two tumors of them were measured respectively using MSCT 3D measurement, diameter measurement before the operation and immersion method after the operation. The data of the two groups were examined using pairing t test. Results: (1) The volume range of 25 porkling livers was 68.50-1150.10 ml using immersion method and 69.78-1069.97 ml using MSCT 3D measurement. There was no significant difference of the data in these two groups using t-test (t=1.427, P>0.05). (2) The volume range of 25 hepatocellular tumors was 395.16-2747.7 ml using diameter measurement and 203.10-1463.19 ml using MSCT 3D measurement before the operation. There was significant difference of the data in these two groups using t-test (t=7.689, P<0.001). In 2 ablated tumors, 1 case's volume was (21.75±0.60) ml using MSCT 3D measurement and 33.73 ml using diameter measurement before the operation and 21.50 ml using immersion measurement after the operation. The other case's volume was (696.13±5.30) ml using MSCT 3D measurement and 1323.51 ml using diameter measurement before the operation and 685.50 ml using immersion measurement after the operation. Conclusion: MSCT 3D volume measurement can accurately measure the volume of tumor and liver and has important clinical application value. There is no significant difference between MSCT 3D volume measurement and immersion method

  3. SU-E-T-762: Toward Volume-Based Independent Dose Verification as Secondary Check

    International Nuclear Information System (INIS)

    Tachibana, H; Tachibana, R

    2015-01-01

    Purpose: Lung SBRT plan has been shifted to volume prescription technique. However, point dose agreement is still verified using independent dose verification at the secondary check. The volume dose verification is more affected by inhomogeneous correction rather than point dose verification currently used as the check. A feasibility study for volume dose verification was conducted in lung SBRT plan. Methods: Six SBRT plans were collected in our institute. Two dose distributions with / without inhomogeneous correction were generated using Adaptive Convolve (AC) in Pinnacle3. Simple MU Analysis (SMU, Triangle Product, Ishikawa, JP) was used as the independent dose verification software program, in which a modified Clarkson-based algorithm was implemented and radiological path length was computed using CT images independently to the treatment planning system. The agreement in point dose and mean dose between the AC with / without the correction and the SMU were assessed. Results: In the point dose evaluation for the center of the GTV, the difference shows the systematic shift (4.5% ± 1.9 %) in comparison of the AC with the inhomogeneous correction, on the other hands, there was good agreement of 0.2 ± 0.9% between the SMU and the AC without the correction. In the volume evaluation, there were significant differences in mean dose for not only PTV (14.2 ± 5.1 %) but also GTV (8.0 ± 5.1 %) compared to the AC with the correction. Without the correction, the SMU showed good agreement for GTV (1.5 ± 0.9%) as well as PTV (0.9% ± 1.0%). Conclusion: The volume evaluation for secondary check may be possible in homogenous region. However, the volume including the inhomogeneous media would make larger discrepancy. Dose calculation algorithm for independent verification needs to be modified to take into account the inhomogeneous correction

  4. Spatial and volumetric changes of retroperitoneal sarcomas during pre-operative radiotherapy

    International Nuclear Information System (INIS)

    Wong, Philip; Dickie, Colleen; Lee, David; Chung, Peter; O’Sullivan, Brian; Letourneau, Daniel; Xu, Wei; Swallow, Carol; Gladdy, Rebecca; Catton, Charles

    2014-01-01

    Purpose: To determine the positional and volumetric changes of retroperitoneal sarcomas (RPS) during pre-operative external beam radiotherapy (PreRT). Material and methods: After excluding 2 patients who received chemotherapy prior to PreRT and 15 RPS that were larger than the field-of-view of cone-beam CT (CBCT), the positional and volumetric changes of RPS throughout PreRT were characterized in 19 patients treated with IMRT using CBCT image guidance. Analysis was performed on 118 CBCT images representing one image per week of those acquired daily during treatment. Intra-fraction breathing motions of the gross tumor volume (GTV) and kidneys were measured in 22 RPS patients simulated using 4D-CT. Fifteen other patients were excluded whose tumors were incompletely imaged on CBCT or who received pre-RT chemotherapy. Results: A GTV volumetric increase (mean: 6.6%, p = 0.035) during the first 2 weeks (CBCT1 vs. CBCT2) of treatment was followed by GTV volumetric decrease (mean: 4%, p = 0.009) by completion of radiotherapy (CBCT1 vs. CBCT6). Internal margins of 8.6, 15 and 15 mm in the lateral, anterior/posterior and superior/inferior directions would be required to account for inter-fraction displacements. The extent of GTV respiratory motion was significantly (p < 0.0001) correlated with more superiorly positioned tumors. Conclusion: Inter-fraction CBCT provides important volumetric and positional information of RPS which may improve PreRT quality and prompt re-planning. Planning target volume may be reduced using online soft-tissue matching to account for interfractional displacements of GTVs. Important breathing motion occurred in superiorly placed RPS supporting the utility of 4D-CT planning

  5. SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves

    International Nuclear Information System (INIS)

    Chvetsov, A

    2014-01-01

    Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method where the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S 2 =0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S 2 =0.7 and then approached zero as S 2 is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S 2 is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S 2 are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation

  6. The Analysis of Predictive Factors for the Identification of Patients Who Could Benefit from Respiratory-Gated Radiotherapy in Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Jang, Seong Soon; Park, Ji Chan

    2009-01-01

    4DCT scans performed for radiotherapy were retrospectively analyzed to assess the possible benefits of respiratory gating in non-small cell lung cancer (NSCLC) and established the predictive factors for identifying patients who could benefit from this approach. Three treatment planning was performed for 15 patients with stage I∼III NSCLC using different planning target volumes (PTVs) as follows: 1) PTVroutine, derived from the addition of conventional uniform margins to gross tumor volume (GTV) of a single bin, 2) PTVall phases (patient-specific PTV), derived from the composite GTV of all 6 bins of the 4DCT, and 3) PTVgating, derived from the composite GTV of 3 consecutive bins at end-exhalation. The reductions in PTV were 43.2% and 9.5%, respectively, for the PTVall phases vs. PTVroutine and PTVgating vs. PTVall phases. Compared to PTVroutine, the use of PTVall phases and PTVgating reduced the mean lung dose (MLD) by 18.1% and 21.6%, and V20 by 18.2% and 22.0%, respectively. Significant correlations were seen between certain predictive factors selected from the tumor mobility and volume analysis, such as the 3D mobility vector, the reduction in 3D mobility and PTV with gating, and the ratio of GTV overlap between 2 extreme bins and additional reductions in both MLD and V20 with gating. The additional benefits with gating compared to the use of patient-specific PTV were modest; however, there were distinct correlations and differences according to the predictive factors. Therefore, these predictive factors might be useful for identifying patients who could benefit from respiratory-gated radiotherapy

  7. Limits of dose escalation in lung cancer: a dose-volume histogram analysis comparing coplanar and non-coplanar techniques

    Energy Technology Data Exchange (ETDEWEB)

    Derycke, S; Van Duyse, B; Schelfhout, J; De Neve, W

    1995-12-01

    To evaluate the feasibility of dose escalation in radiotherapy of inoperable lung cancer, a dose-volume histogram analysis was performed comparing standard coplanar (2D) with non-coplanar (3D) beam arrangements on a non-selected group of 20 patients planned by Sherouse`s GRATISTM 3D-planning system. Serial CT-scanning was performed and 2 Target Volumes (Tvs) were defined. Gross Tumor Volume (GTV) defined a high-dose Target Volume (TV-1). GTV plus location of node stations with > 10% probability of invasion (Minet et al.) defined an intermediate-dose Target Volume (TV-2). However, nodal regions which are incompatible with cure were excluded from TV-2. These are ATS-regions 1, 8, 9 and 14 all left and right as well as heterolateral regions. For 3D-planning, Beam`s Eye View selected (by an experienced planner) beam arrangements were optimised using Superdot, a method of target dose-gradient annihilation developed by Sherouse. A second 3D-planning was performed using 4 beam incidences with maximal angular separation. The linac`s isocenter for the optimal arrangement was located at the geometrical center of gravity of a tetraheder, the tetraheder`s comers being the consecutive positions of the virtual source. This ideal beam arrangement was approximated as close as possible, taking into account technical limitations (patient-couch-gantry collisions). Criteria for tolerance were met if no points inside the spinal cord exceeded 50 Gy and if at least 50% of the lung volume received less than 20Gy. If dose regions below 50 Gy were judged acceptable at TV-2, 2D- as well as 3D-plans allow safe escalation to 80 Gy at TV-1. When TV-2 needed to be encompassed by isodose surfaces exceeding 50Gy, 3D-plans were necessary to limit dose at the spinal cord below tolerance. For large TVs dose is limited by lung tolerance for 3D-plans. An analysis (including NTCP-TCP as cost functions) of rival 3D-plans is being performed.

  8. Autoblocking dose-limiting normal structures within a radiation treatment field: 3-D computer optimization of 'unconventional' field arrangements

    International Nuclear Information System (INIS)

    Bates, Brian A.; Cullip, Timothy J.; Rosenman, Julian G.

    1995-01-01

    Purpose/Objective: To demonstrate that one can obtain a homogeneous dose distribution within a specified gross tumor volume (GTV) while severely limiting the dose to a structure surrounded by that tumor volume. We present three clinical examples below. Materials and Methods: Using planning CT scans from previously treated patients, we designed variety of radiation treatment plans in which the dose-critical normal structure was blocked, even if it meant blocking some of the tumor. To deal with the resulting dose inhomogeneities within the tumor, we introduced 3D compensation. Examples presented here include (1) blocking the spinal cord segment while treating an entire vertebral body, (2) blocking both kidneys while treating the entire peritoneal cavity, and (3) blocking one parotid gland while treating the oropharynx in its entirety along with regional nodes. A series of multiple planar and non-coplanar beam templates with automatic anatomic blocking and field shaping were designed for each scenario. Three-dimensional compensators were designed that gave the most homogeneous dose-distribution for the GTV. For each beam, rays were cast from the beam source through a 2D compensator grid and out through the tumor. The average tumor dose along each ray was then used to adjust the compensator thickness over successive iterations to achieve a uniform average dose. DVH calculations for the GTV, normal structures, and the 'auto-blocked' structure were made and used for inter-plan comparisons. Results: These optimized treatment plans successfully decreased dose to the dose-limiting structure while at the same time preserving or even improving the dose distribution to the tumor volume as compared to traditional treatment plans. Conclusion: The use of 3D compensation allows one to obtain dose distributions that are, theoretically, at least, far superior to those in common clinical use. Sensible beam templates, auto-blocking, auto-field shaping, and 3D compensators form a

  9. Temporary organ displacement coupled with image-guided, intensity-modulated radiotherapy for paraspinal tumors

    International Nuclear Information System (INIS)

    Katsoulakis, Evangelia; Thornton, Raymond H; Yamada, Yoshiya; Solomon, Stephen B; Maybody, Majid; Housman, Douglas; Niyazov, Greg; Riaz, Nadeem; Lovelock, Michael; Spratt, Daniel E; Erinjeri, Joseph P

    2013-01-01

    To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV D min and PTV D min pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel D max (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and D max by 25% (0.022). TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors abutting critical structures while

  10. Comparison of T2 and FLAIR imaging for target delineation in high grade gliomas

    International Nuclear Information System (INIS)

    Stall, Bronwyn; Zach, Leor; Ning, Holly; Ondos, John; Arora, Barbara; Shankavaram, Uma; Miller, Robert W; Citrin, Deborah; Camphausen, Kevin

    2010-01-01

    FLAIR and T2 weighted MRIs are used based on institutional preference to delineate high grade gliomas and surrounding edema for radiation treatment planning. Although these sequences have inherent physical differences there is limited data on the clinical and dosimetric impact of using either or both sequences. 40 patients with high grade gliomas consecutively treated between 2002 and 2008 of which 32 had pretreatment MRIs with T1, T2 and FLAIR available for review were selected for this study. These MRIs were fused with the treatment planning CT. Normal structures, clinical tumor volume (CTV) and planning tumor volume (PTV) were then defined on the T2 and FLAIR sequences. A Venn diagram analysis was performed for each pair of tumor volumes as well as a fractional component analysis to assess the contribution of each sequence to the union volume. For each patient the tumor volumes were compared in terms of total volume in cubic centimeters as well as anatomic location using a discordance index. The overlap of the tumor volumes with critical structures was calculated as a measure of predicted toxicity. For patients with MRI documented failures, the tumor volumes obtained using the different sequences were compared with the recurrent gross tumor volume (rGTV). The FLAIR CTVs and PTVs were significantly larger than the T2 CTVs and PTVs (p < 0.0001 and p = 0.0001 respectively). Based on the discordance index, the abnormality identified using the different sequences also differed in location. Fractional component analysis showed that the intersection of the tumor volumes as defined on both T2 and FLAIR defined the majority of the union volume contributing 63.6% to the CTV union and 82.1% to the PTV union. T2 alone uniquely identified 12.9% and 5.2% of the CTV and PTV unions respectively while FLAIR alone uniquely identified 25.7% and 12% of the CTV and PTV unions respectively. There was no difference in predicted toxicity to normal structures using T2 or FLAIR. At the

  11. Determination of Respiratory Motion for Distal Esophagus Cancer Using Four-Dimensional Computed Tomography

    International Nuclear Information System (INIS)

    Yaremko, Brian P.; Guerrero, Thomas M.; McAleer, Mary F.; Bucci, M. Kara; Noyola-Martinez, Josue M.S.; Nguyen, Linda T. C.; Balter, Peter A.; Guerra, Rudy; Komaki, Ritsuko; Liao Zhongxing

    2008-01-01

    Purpose: To investigate the motion characteristics of distal esophagus cancer primary tumors using four-dimensional computed tomography (4D CT). Methods and Materials: Thirty-one consecutive patients treated for esophagus cancer who received respiratory-gated 4D CT imaging for treatment planning were selected. Deformable image registration was used to map the full expiratory motion gross tumor volume (GTV) to the full-inspiratory CT image, allowing quantitative assessment of each voxel's displacement. These displacements were correlated with patient tumor and respiratory characteristics. Results: The mean (SE) tidal volume was 608 (73) mL. The mean GTV volume was 64.3 (10.7) mL on expiration and 64.1 (10.7) mL on inspiration (no significant difference). The mean tumor motion in the x-direction was 0.13 (0.006) cm (average of absolute values), in the y-direction 0.23 (0.01) cm (anteriorly), and in the z-direction 0.71 (0.02) cm (inferiorly). Tumor motion correlated with tidal volume. Comparison of tumor motion above vs. below the diaphragm was significant for the average net displacement (p = 0.014), motion below the diaphragm was greater than above. From the cumulative distribution 95% of the tumors moved less than 0.80 cm radially and 1.75 cm inferiorly. Conclusions: Primary esophagus tumor motion was evaluated with 4D CT. According to the results of this study, when 4D CT is not available, a radial margin of 0.8 cm and axial margin of ±1.8 cm would provide tumor motion coverage for 95% of the cases in our study population

  12. Influence of bladder and rectal volume on spatial variability of a bladder tumor during radical radiotherapy

    International Nuclear Information System (INIS)

    Pos, Floris J.; Koedooder, Kees; Hulshof, Maarten C.C.M.; Tienhoven, Geertjan van; Gonzalez Gonzalez, Dionisio

    2003-01-01

    Purpose: To assess the spatial variability of a bladder tumor relative to the planning target volume boundaries during radical radiotherapy, and furthermore to develop strategies to reduce spatial variability. Methods and Materials: Seventeen patients with solitary T2-T4N0M0 bladder cancer were treated with a technique delivering 40 Gy/2 Gy in 20 fractions to the whole bladder with a concomitant boost to the bladder tumor of 20 Gy in 1 Gy fractions in an overall time of 4 weeks. CT scans were made weekly, immediately after treatment, and matched with the planning CT scan. Spatial variability of the tumor, as well as bladder volume and rectal diameter, were scored for each patient each week. Results: In 65% of patients, a part of the tumor appeared outside the planning target volume boundaries at least one time during the course of radiotherapy. No consistent relation of this variability with time was found. Bladder volumes and rectal diameters showed marked variability during the course of treatment. A large initial bladder volume and rectal diameter predicted a large volume variation and a large tumor spatial variability. Conclusion: In this study, a margin of 1.5 to 2 cm seemed to be inadequate in 65% of the patients with respect to spatial variability. Bladder volume and rectal diameter were found to be predictive for spatial variability of a bladder tumor during concomitant boost radiotherapy

  13. Influence of bladder and rectal volume on spatial variability of a bladder tumor during radical radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Pos, Floris J; Koedooder, Kees; Hulshof, Maarten C.C.M.; Tienhoven, Geertjan van; Gonzalez Gonzalez, Dionisio

    2003-03-01

    Purpose: To assess the spatial variability of a bladder tumor relative to the planning target volume boundaries during radical radiotherapy, and furthermore to develop strategies to reduce spatial variability. Methods and Materials: Seventeen patients with solitary T2-T4N0M0 bladder cancer were treated with a technique delivering 40 Gy/2 Gy in 20 fractions to the whole bladder with a concomitant boost to the bladder tumor of 20 Gy in 1 Gy fractions in an overall time of 4 weeks. CT scans were made weekly, immediately after treatment, and matched with the planning CT scan. Spatial variability of the tumor, as well as bladder volume and rectal diameter, were scored for each patient each week. Results: In 65% of patients, a part of the tumor appeared outside the planning target volume boundaries at least one time during the course of radiotherapy. No consistent relation of this variability with time was found. Bladder volumes and rectal diameters showed marked variability during the course of treatment. A large initial bladder volume and rectal diameter predicted a large volume variation and a large tumor spatial variability. Conclusion: In this study, a margin of 1.5 to 2 cm seemed to be inadequate in 65% of the patients with respect to spatial variability. Bladder volume and rectal diameter were found to be predictive for spatial variability of a bladder tumor during concomitant boost radiotherapy.

  14. SU-F-T-497: Spatiotemporally Optimal, Personalized Prescription Scheme for Glioblastoma Patients Using the Proliferation and Invasion Glioma Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Rockhill, J; Phillips, M [University Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: To investigate a spatiotemporally optimal radiotherapy prescription scheme and its potential benefit for glioblastoma (GBM) patients using the proliferation and invasion (PI) glioma model. Methods: Standard prescription for GBM was assumed to deliver 46Gy in 23 fractions to GTV1+2cm margin and additional 14Gy in 7 fractions to GTV2+2cm margin. We simulated the tumor proliferation and invasion in 2D according to the PI glioma model with a moving velocity of 0.029(slow-move), 0.079(average-move), and 0.13(fast-move) mm/day for GTV2 with a radius of 1 and 2cm. For each tumor, the margin around GTV1 and GTV2 was varied to 0–6 cm and 1–3 cm respectively. Total dose to GTV1 was constrained such that the equivalent uniform dose (EUD) to normal brain equals EUD with the standard prescription. A non-stationary dose policy, where the fractional dose varies, was investigated to estimate the temporal effect of the radiation dose. The efficacy of an optimal prescription scheme was evaluated by tumor cell-surviving fraction (SF), EUD, and the expected survival time. Results: Optimal prescription for the slow-move tumors was to use 3.0(small)-3.5(large) cm margins to GTV1, and 1.5cm margin to GTV2. For the average- and fast-move tumors, it was optimal to use 6.0cm margin for GTV1 suggesting that whole brain therapy is optimal, and then 1.5cm (average-move) and 1.5–3.0cm (fast-move, small-large) margins for GTV2. It was optimal to deliver the boost sequentially using a linearly decreasing fractional dose for all tumors. Optimal prescription led to 0.001–0.465% of the tumor SF resulted from using the standard prescription, and increased tumor EUD by 25.3–49.3% and the estimated survival time by 7.6–22.2 months. Conclusion: It is feasible to optimize a prescription scheme depending on the individual tumor characteristics. A personalized prescription scheme could potentially increase tumor EUD and the expected survival time significantly without increasing EUD to

  15. 11C-Choline PET/pathology image coregistration in primary localized prostate cancer

    International Nuclear Information System (INIS)

    Grosu, Anca-Ligia; Prokic, Vesna; Weirich, Gregor; Wendl, Christina; Geinitz, Hans; Molls, Michael; Kirste, Simon; Souvatzoglou, Michael; Schwaiger, Markus; Gschwend, Juergen E.; Treiber, Uwe; Weber, Wolfgang A.; Krause, Bernd Joachim

    2014-01-01

    The aim of this study was to develop a methodology for the comparison of pathology specimens after prostatectomy (post-S) with PET images obtained before surgery (pre-S). This method was used to evaluate the merit of 11 C-choline PET/CT for delineation of gross tumour volume (GTV) in prostate cancer (PC). In 28 PC patients, 11 C-choline PET/CT was performed before surgery. PET/CT data were coregistered with the pathology specimens. GTV on PET images (GTV-PET) was outlined automatically and corrected manually. Tumour volume in the prostate (TVP) was delineated manually on the pathology specimens. Based on the coregistered PET/pathology images, the following parameters were assessed: SUVmax and SUVmean in the tumoral and nontumoral prostate (NP), GTV-PET (millilitres) and TVP (millilitres). PET/pathology image coregistration was satisfactory. Mean SUVmax in the TVP was lower than in the NP: 5.0 and 5.5, respectively (p = 0.093). Considering the entire prostate, SUVmax was located in the TVP in two patients, in the TVP and NP in 12 patients and exclusively in NP in 14 patients. Partial overlap the TVP and GTV-PET was seen in 71 % of patients, and complete overlap in 4 %. PET/pathology image coregistration can be used for evaluation of different imaging modalities. 11 C-Choline PET failed to distinguish tumour from nontumour tissue. (orig.)

  16. Tumor-Volume Simulation During Radiotherapy for Head-and-Neck Cancer Using a Four-Level Cell Population Model

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V.; Dong Lei; Palta, Jantinder R.; Amdur, Robert J.

    2009-01-01

    Purpose: To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. Methods: The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. Results: We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Conclusions: Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.

  17. An Interindividual Comparison of O-(2- [18F]Fluoroethyl)-L-Tyrosine (FET)– and L-[Methyl-11C]Methionine (MET)–PET in Patients With Brain Gliomas and Metastases

    International Nuclear Information System (INIS)

    Grosu, Anca-Ligia; Astner, Sabrina T.; Riedel, Eva; Nieder, Carsten; Wiedenmann, Nicole; Heinemann, Felix; Schwaiger, Markus

    2011-01-01

    Purpose: L-[methyl- 11 C]methionine (MET)–positron emission tomography (PET) has a high sensitivity and specificity for imaging of gliomas and metastatic brain tumors. The short half-life of 11 C (20 minutes) limits the use of MET-PET to institutions with onsite cyclotron. O-(2- [ 18 F]fluoroethyl)-L-tyrosine (FET) is labeled with 18 F (half-life, 120 minutes) and could be used much more broadly. This study compares the uptake of FET and MET in gliomas and metastases, as well as treatment-induced changes. Furthermore, it evaluates the gross tumor volume (GTV) of gliomas defined on PET and magnetic resonance imaging (MRI). Methods and Materials: We examined 42 patients with pretreated gliomas (29 patients) or brain metastases (13 patients) prospectively by FET- and MET-PET on the same day. Uptake of FET and MET was quantified by standardized uptake values. Imaging contrast was assessed by calculating lesion–to–gray matter ratios. Tumor extension was quantified by contouring GTV in 17 patients with brain gliomas. Gross tumor volume on PET was compared with GTV on MRI. Sensitivity and specificity of MET- and FET-PET for differentiation of viable tumor from benign changes were evaluated by comparing the PET result with histology or clinical follow-up. Results: There was a strong linear correlation between standardized uptake values calculated for both tracers in cortex and lesions: r = 0.78 (p = 0.001) and r = 0.84 (p 18 F]fluoroethyl)-L-tyrosine–PET and MET-PET provide comparable diagnostic information on gliomas and brain metastases. Like MET-PET, FET-PET can be used for differentiation of residual or recurrent tumor from treatment-related changes/pseudoprogression, as well as for delineation of gliomas.

  18. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.

    Science.gov (United States)

    Rundo, Leonardo; Stefano, Alessandro; Militello, Carmelo; Russo, Giorgio; Sabini, Maria Gabriella; D'Arrigo, Corrado; Marletta, Francesco; Ippolito, Massimo; Mauri, Giancarlo; Vitabile, Salvatore; Gilardi, Maria Carla

    2017-06-01

    Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [ 11 C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation. A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife ® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTV MRI . A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment

  19. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models.

    Science.gov (United States)

    Yock, Adam D; Rao, Arvind; Dong, Lei; Beadle, Beth M; Garden, Adam S; Kudchadker, Rajat J; Court, Laurence E

    2014-05-01

    The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: -11.6%-23.8%) and 14.6% (range: -7.3%-27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: -6.8%-40.3%) and 13.1% (range: -1.5%-52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: -11.1%-20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.

  20. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models

    International Nuclear Information System (INIS)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.

    2014-01-01

    Purpose: The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Methods: Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. Results: In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: −11.6%–23.8%) and 14.6% (range: −7.3%–27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: −6.8%–40.3%) and 13.1% (range: −1.5%–52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: −11.1%–20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. Conclusions: A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography

  1. Local Control and Toxicity in a Large Cohort of Central Lung Tumors Treated With Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Modh, Ankit; Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Williams, Eric [Department of Medical Physics Memorial Sloan Kettering Cancer Center, New York, New York (United States); Foster, Amanda; Shah, Mihir [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Shi, Weiji; Zhang, Zhigang [Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Gelblum, Daphna Y. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Rosenzweig, Kenneth E. [Department of Radiation Oncology, Mount Sinai Medical Center, New York, New York (United States); Yorke, Ellen D.; Jackson, Andrew [Department of Medical Physics Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wu, Abraham J., E-mail: wua@mskcc.org [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2014-12-01

    Purpose: Stereotactic body radiation therapy (SBRT) in central lung tumors has been associated with higher rates of severe toxicity. We sought to evaluate toxicity and local control in a large cohort and to identify predictive dosimetric parameters. Methods and Materials: We identified patients who received SBRT for central tumors according to either of 2 definitions. Local failure (LF) was estimated using a competing risks model, and multivariate analysis (MVA) was used to assess factors associated with LF. We reviewed patient toxicity and applied Cox proportional hazard analysis and log-rank tests to assess whether dose-volume metrics of normal structures correlated with pulmonary toxicity. Results: One hundred twenty-five patients received SBRT for non-small cell lung cancer (n=103) or metastatic lesions (n=22), using intensity modulated radiation therapy. The most common dose was 45 Gy in 5 fractions. Median follow-up was 17.4 months. Incidence of toxicity ≥ grade 3 was 8.0%, including 5.6% pulmonary toxicity. Sixteen patients (12.8%) experienced esophageal toxicity ≥ grade 2, including 50% of patients in whom PTV overlapped the esophagus. There were 2 treatment-related deaths. Among patients receiving biologically effective dose (BED) ≥80 Gy (n=108), 2-year LF was 21%. On MVA, gross tumor volume (GTV) was significantly associated with LF. None of the studied dose-volume metrics of the lungs, heart, proximal bronchial tree (PBT), or 2 cm expansion of the PBT (“no-fly-zone” [NFZ]) correlated with pulmonary toxicity ≥grade 2. There were no differences in pulmonary toxicity between central tumors located inside the NFZ and those outside the NFZ but with planning target volume (PTV) intersecting the mediastinum. Conclusions: Using moderate doses, SBRT for central lung tumors achieves acceptable local control with low rates of severe toxicity. Dosimetric analysis showed no significant correlation between dose to the lungs, heart, or NFZ and

  2. Esophagus and spinal cord motion relative to GTV motion in four-dimensional CTs of lung cancer patients

    International Nuclear Information System (INIS)

    Weiss, Elisabeth; Wijesooriya, Krishni; Keall, Paul

    2008-01-01

    Respiration-related variations in the distance between the center of mass of gross tumor volume and both esophagus and spinal cord in the transversal plane were on average 3 mm (range 1-10 mm) and 2 mm (range 1-5 mm), respectively. Depending on the tumor location and treatment technique, variations might become important for treatment planning

  3. Influence of [18F] fluorodeoxyglucose positron emission tomography on salvage treatment decision making for locally persistent nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Zheng Xiaojang; Chen Longhua; Wang Quanshi; Wu Fubing

    2006-01-01

    Purpose: The purpose of this study was to evaluate the role of [ 18 F] fluorodeoxyglucose positron emission tomography (FDG-PET) in influencing salvage treatment decision making for locally persistent nasopharyngeal carcinoma (NPC). Methods and Materials: A total of 33 NPC patients with histologic persistence at nasopharynx 1 to 6 weeks after a full course of radiotherapy underwent both computed tomography (CT) and FDG-PET/CT simulation at the same treatment position. The salvage treatment decisions, with regard to the decision to offer salvage treatment and the definition of gross tumor volume (GTV), were made before knowledge of the FDG-PET findings. Subsequently the salvage treatment decisions were made again based on the FDG-PET findings and compared with the pre-FDG-PET decisions. Results: All 33 patients were referred for salvage treatment in the pre-FDG-PET decision. After knowledge of the FDG-PET results, the decision to offer salvage treatment was withdrawn in 4 of 33 patients (12.1%), as no abnormal uptake of FDG was found at nasopharynx. Spontaneous remission was observed in repeat biopsies and no local recurrence was found in these 4 cases. For the remaining 29 patients, GTV based on FDG-PET was smaller than GTV based on CT in 24 (82.8%) cases and was greater in 5 (17.2%) cases, respectively. The target volume had to be significantly modified in 9 of 29 patients (31%), as GTV based on FDG-PET images failed to be enclosed by the treated volume in the salvage treatment plan performed based on GTV based on CT simulation images. Conclusion: Use of FDG-PET was found to influence the salvage treatment decision making for locally persistent NPC by identifying patients who were not likely to benefit from additional treatment and by improving accuracy of GTV definition in salvage treatment planning

  4. SU-F-J-89: Assessment of Delivered Dose in Understanding HCC Tumor Progression Following SBRT

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, M; Cazoulat, G; Polan, D; Schipper, M; Lawrence, T; Feng, M; Brock, K [University of Michigan, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: It is well documented that the delivered dose to patients undergoing radiotherapy (RT) is often different from the planned dose due to geometric variability and uncertainties in patient positioning. Recent work suggests that accumulated dose to the GTV is a better predictor of progression compared to the minimum planned dose to the PTV. The purpose of this study is to evaluate if deviations from the planned dose can contributed to tumor progression. Methods: From 2010 to 2014 an in-house Phase II clinical trial of adaptive stereotactic body RT was completed. Of the 90 patients enrolled, 7 patients had a local recurrence defined on contrast enhanced CT or MR imaging 3–21 months after completion of RT. Retrospective dose accumulation was performed using a biomechanical model-based deformable image registration algorithm (DIR) to accumulate the dose based on the kV CBCT acquired prior to each fraction for soft tissue alignment of the patient. The DIR algorithm was previously validated for geometric accuracy in the liver (target registration error = 2.0 mm) and dose accumulation in a homogeneous image, similar to a liver CBCT (gamma index = 91%). Following dose accumulation, the minimum dose to 0.5 cc of the GTV was compared between the planned and accumulated dose. Work is ongoing to evaluate the tumor control probability based on the planned and accumulated dose. Results: DIR and dose accumulation was performed on all fractions for 6 patients with local recurrence. The difference in minimum dose to 0.5 cc of the GTV ranged from −0.3–2.3 Gy over 3–5 fractions. One patient had a potentially significant difference in minimum dose of 2.3 Gy. Conclusion: Dose accumulation can reveal tumor underdosage, improving our ability to understand recurrence and tumor progression patterns, and could aid in adaptive re-planning during therapy to correct for this. This work was supported in part by NIH P01CA059827.

  5. Plasma uric acid and tumor volume are highly predictive of outcome in nasopharyngeal carcinoma patients receiving intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Lin, Hui; Lin, Huan-Xin; Ge, Nan; Wang, Hong-Zhi; Sun, Rui; Hu, Wei-Han

    2013-01-01

    The combined predictive value of plasma uric acid and primary tumor volume in nasopharyngeal carcinoma (NPC) patients receiving intensity modulated radiation therapy (IMRT) has not yet been determined. In this retrospective study, plasma uric acid level was measured after treatment in 130 histologically-proven NPC patients treated with IMRT. Tumor volume was calculated from treatment planning CT scans. Overall (OS), progression-free (PFS) and distant metastasis-free (DMFS) survival were compared using Kaplan-Meier analysis and the log rank test, and Cox multivariate and univariate regression models were created. Patients with a small tumor volume (<27 mL) had a significantly better DMFS, PFS and OS than patients with a large tumor volume. Patients with a high post-treatment plasma uric acid level (>301 μmol/L) had a better DMFS, PFS and OS than patients with a low post-treatment plasma uric acid level. Patients with a small tumor volume and high post-treatment plasma uric acid level had a favorable prognosis compared to patients with a large tumor volume and low post-treatment plasma uric acid level (7-year overall OS, 100% vs. 48.7%, P <0.001 and PFS, 100% vs. 69.5%, P <0.001). Post-treatment plasma uric acid level and pre-treatment tumor volume have predictive value for outcome in NPC patients receiving IMRT. NPC patients with a large tumor volume and low post-treatment plasma uric acid level may benefit from additional aggressive treatment after IMRT

  6. Agreement Among RTOG Sarcoma Radiation Oncologists in Contouring Suspicious Peritumoral Edema for Preoperative Radiation Therapy of Soft Tissue Sarcoma of the Extremity

    Energy Technology Data Exchange (ETDEWEB)

    Bahig, Houda [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, QC (Canada); Roberge, David, E-mail: david.roberge.chum@ssss.gouv.qc.ca [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, QC (Canada); Bosch, Walter [Department of Radiation Oncology, Washington University, St Louis, Missouri (United States); Levin, William [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Petersen, Ivy; Haddock, Michael [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Freeman, Carolyn [Division of Radiation Oncology, McGill University Health Centre, Montreal, QC (Canada); DeLaney, Thomas F. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Abrams, Ross A. [Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois (United States); Indelicato, Danny J. [Department of Radiation Oncology, University of Florida Medical Center, Jacksonville, Florida (United States); Baldini, Elizabeth H. [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Hitchcock, Ying [Department of Radiation Oncology, University of Utah Medical Center, Salt Lake City, Utah (United States); Kirsch, David G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Kozak, Kevin R. [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (United States); Wolfson, Aaron [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); and others

    2013-06-01

    Purpose: Peritumoral edema may harbor sarcoma cells. The extent of suspicious edema (SE) included in the treatment volume is subject to clinical judgment, balancing the risk of missing tumor cells with excess toxicity. Our goal was to determine variability in SE delineation by sarcoma radiation oncologists (RO). Methods and Materials: Twelve expert ROs were provided with T1 gadolinium and T2-weighted MR images of 10 patients with high-grade extremity soft-tissue sarcoma. Gross tumor volume, clinical target volume (CTV)3cm (3 cm longitudinal and 1.5 cm radial margin), and CTV2cm (2 cm longitudinal and 1 cm radial margin) were contoured by a single observer. Suspicious peritumoral edema, defined as abnormal signal on T2 images, was independently delineated by all 12 ROs. Contouring agreement was analyzed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: The mean volumes of GTV, CTV2cm, and CTV3cm were, respectively, 130 cm{sup 3} (7-413 cm{sup 3}), 280 cm{sup 3} and 360 cm{sup 3}. The mean consensus volume computed using the STAPLE algorithm at 95% confidence interval was 188 cm{sup 3} (24-565 cm{sup 3}) with a substantial overall agreement corrected for chance (mean kappa = 0.71; range: 0.32-0.87). The minimum, maximum, and mean volume of SE (excluding the GTV) were 4, 182, and 58 cm{sup 3} (representing a median of 29% of the GTV volume). The median volume of SE not included in the CTV2cm and in the CTV3cm was 5 and 0.3 cm{sup 3}, respectively. There were 3 large tumors with >30 cm{sup 3} of SE not included in the CTV3cm volume. Conclusion: Despite the fact that SE would empirically seem to be a more subjective volume, a substantial or near-perfect interobserver agreement was observed in SE delineation in most cases with high-grade soft-tissue sarcomas of the extremity. A median of 97% of the consensus SE is within the CTV2cm (99.8% within the CTV3cm). In a minority of cases, however, significant

  7. Agreement among RTOG sarcoma radiation oncologists in contouring suspicious peritumoral edema for preoperative radiation therapy of soft tissue sarcoma of the extremity.

    Science.gov (United States)

    Bahig, Houda; Roberge, David; Bosch, Walter; Levin, William; Petersen, Ivy; Haddock, Michael; Freeman, Carolyn; Delaney, Thomas F; Abrams, Ross A; Indelicato, Danny J; Baldini, Elizabeth H; Hitchcock, Ying; Kirsch, David G; Kozak, Kevin R; Wolfson, Aaron; Wang, Dian

    2013-06-01

    Peritumoral edema may harbor sarcoma cells. The extent of suspicious edema (SE) included in the treatment volume is subject to clinical judgment, balancing the risk of missing tumor cells with excess toxicity. Our goal was to determine variability in SE delineation by sarcoma radiation oncologists (RO). Twelve expert ROs were provided with T1 gadolinium and T2-weighted MR images of 10 patients with high-grade extremity soft-tissue sarcoma. Gross tumor volume, clinical target volume (CTV)3cm (3 cm longitudinal and 1.5 cm radial margin), and CTV2cm (2 cm longitudinal and 1 cm radial margin) were contoured by a single observer. Suspicious peritumoral edema, defined as abnormal signal on T2 images, was independently delineated by all 12 ROs. Contouring agreement was analyzed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. The mean volumes of GTV, CTV2cm, and CTV3cm were, respectively, 130 cm(3) (7-413 cm(3)), 280 cm(3) and 360 cm(3). The mean consensus volume computed using the STAPLE algorithm at 95% confidence interval was 188 cm(3) (24-565 cm(3)) with a substantial overall agreement corrected for chance (mean kappa = 0.71; range: 0.32-0.87). The minimum, maximum, and mean volume of SE (excluding the GTV) were 4, 182, and 58 cm(3) (representing a median of 29% of the GTV volume). The median volume of SE not included in the CTV2cm and in the CTV3cm was 5 and 0.3 cm(3), respectively. There were 3 large tumors with >30 cm(3) of SE not included in the CTV3cm volume. Despite the fact that SE would empirically seem to be a more subjective volume, a substantial or near-perfect interobserver agreement was observed in SE delineation in most cases with high-grade soft-tissue sarcomas of the extremity. A median of 97% of the consensus SE is within the CTV2cm (99.8% within the CTV3cm). In a minority of cases, however, significant expansion of the CTVs is required to cover SE. Copyright © 2013 Elsevier Inc. All rights

  8. Agreement Among RTOG Sarcoma Radiation Oncologists in Contouring Suspicious Peritumoral Edema for Preoperative Radiation Therapy of Soft Tissue Sarcoma of the Extremity

    International Nuclear Information System (INIS)

    Bahig, Houda; Roberge, David; Bosch, Walter; Levin, William; Petersen, Ivy; Haddock, Michael; Freeman, Carolyn; DeLaney, Thomas F.; Abrams, Ross A.; Indelicato, Danny J.; Baldini, Elizabeth H.; Hitchcock, Ying; Kirsch, David G.; Kozak, Kevin R.; Wolfson, Aaron

    2013-01-01

    Purpose: Peritumoral edema may harbor sarcoma cells. The extent of suspicious edema (SE) included in the treatment volume is subject to clinical judgment, balancing the risk of missing tumor cells with excess toxicity. Our goal was to determine variability in SE delineation by sarcoma radiation oncologists (RO). Methods and Materials: Twelve expert ROs were provided with T1 gadolinium and T2-weighted MR images of 10 patients with high-grade extremity soft-tissue sarcoma. Gross tumor volume, clinical target volume (CTV)3cm (3 cm longitudinal and 1.5 cm radial margin), and CTV2cm (2 cm longitudinal and 1 cm radial margin) were contoured by a single observer. Suspicious peritumoral edema, defined as abnormal signal on T2 images, was independently delineated by all 12 ROs. Contouring agreement was analyzed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: The mean volumes of GTV, CTV2cm, and CTV3cm were, respectively, 130 cm 3 (7-413 cm 3 ), 280 cm 3 and 360 cm 3 . The mean consensus volume computed using the STAPLE algorithm at 95% confidence interval was 188 cm 3 (24-565 cm 3 ) with a substantial overall agreement corrected for chance (mean kappa = 0.71; range: 0.32-0.87). The minimum, maximum, and mean volume of SE (excluding the GTV) were 4, 182, and 58 cm 3 (representing a median of 29% of the GTV volume). The median volume of SE not included in the CTV2cm and in the CTV3cm was 5 and 0.3 cm 3 , respectively. There were 3 large tumors with >30 cm 3 of SE not included in the CTV3cm volume. Conclusion: Despite the fact that SE would empirically seem to be a more subjective volume, a substantial or near-perfect interobserver agreement was observed in SE delineation in most cases with high-grade soft-tissue sarcomas of the extremity. A median of 97% of the consensus SE is within the CTV2cm (99.8% within the CTV3cm). In a minority of cases, however, significant expansion of the CTVs is required to cover SE

  9. Role of radiotherapy in the treatment of meningiomas; Role de la radiotherapie dans le traitement des meningiomes cerebraux

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G. [Centre de protontherapie, 91 - Orsay (France); Renard, A.; Mazeron, J.J. [Groupe Hospitalier la Pitie-Salpetriere, Service de Radiotherapie, AP-HP, 75 - Paris (France); Valery, C. [Groupe Hospitalier la Pitie-Salpetriere, Service de Neurochirurgie, AP-HP, 75 - Paris (France); Mokhtari, K. [Groupe Hospitalier la Pitie-Salpetriere, Lab. de Neuropathologie Raymond-Escourolle, AP-HP, 75 - Paris (France)

    2001-06-01

    Role of radiotherapy in the treatment of meningiomas. Cerebral meningiomas account for 15-20% of all cerebral tumours. Although seldom malignant, they frequently recur in spite of complete surgery, which remains the cornerstone of the treatment. In order to decrease the probability of local recurrence, radiotherapy has often been recommended in atypical or malignant meningioma as well as in benign meningioma which was incompletely resected. However, this treatment never was the subject of prospective studies, randomized or not. The purpose of this review of the literature was to give a progress report on the results of different published series in the field of methodology as well as in the techniques of radiotherapy. Proposals for a therapeutic choice are made according to this analysis. For grade I or grade II-III meningiomas, limits of gross tumor volume (GTV) include the tumour in place or the residual tumour after surgery; clinical target volume (CTV) limits include gross tumour volume before surgery with a GTV-CTV distance of 1 and 2 cm respectively. Delivered doses are 55 Gy into CTV and 55-60 Gy and 70 Gy into GTV for grade I and grade II-III meningiomas respectively. (authors)

  10. Role of radiotherapy in the treatment of meningiomas

    International Nuclear Information System (INIS)

    Noel, G.; Renard, A.; Mazeron, J.J.; Valery, C.; Mokhtari, K.

    2001-01-01

    Role of radiotherapy in the treatment of meningiomas. Cerebral meningiomas account for 15-20% of all cerebral tumours. Although seldom malignant, they frequently recur in spite of complete surgery, which remains the cornerstone of the treatment. In order to decrease the probability of local recurrence, radiotherapy has often been recommended in atypical or malignant meningioma as well as in benign meningioma which was incompletely resected. However, this treatment never was the subject of prospective studies, randomized or not. The purpose of this review of the literature was to give a progress report on the results of different published series in the field of methodology as well as in the techniques of radiotherapy. Proposals for a therapeutic choice are made according to this analysis. For grade I or grade II-III meningiomas, limits of gross tumor volume (GTV) include the tumour in place or the residual tumour after surgery; clinical target volume (CTV) limits include gross tumour volume before surgery with a GTV-CTV distance of 1 and 2 cm respectively. Delivered doses are 55 Gy into CTV and 55-60 Gy and 70 Gy into GTV for grade I and grade II-III meningiomas respectively. (authors)

  11. The application of positron emission tomography/computed tomography in radiation treatment planning: effect on gross target volume definition and treatment management.

    Science.gov (United States)

    Iğdem, S; Alço, G; Ercan, T; Unalan, B; Kara, B; Geceer, G; Akman, C; Zengin, F O; Atilla, S; Okkan, S

    2010-04-01

    To analyse the effect of the use of molecular imaging on gross target volume (GTV) definition and treatment management. Fifty patients with various solid tumours who underwent positron emission tomography (PET)/computed tomography (CT) simulation for radiotherapy planning from 2006 to 2008 were enrolled in this study. First, F-18 fluorodeoxyglucose (FDG)-PET and CT scans of the treatment site in the treatment position and then a whole body scan were carried out with a dedicated PET/CT scanner and fused thereafter. FDG-avid primary tumour and lymph nodes were included into the GTV. A multidisciplinary team defined the target volume, and contouring was carried out by a radiation oncologist using visual methods. To compare the PET/CT-based volumes with CT-based volumes, contours were drawn on CT-only data with the help of site-specific radiologists who were blind to the PET/CT results after a median time of 7 months. In general, our PET/CT volumes were larger than our CT-based volumes. This difference was significant in patients with head and neck cancers. Major changes (> or =25%) in GTV delineation were observed in 44% of patients. In 16% of cases, PET/CT detected incidental second primaries and metastatic disease, changing the treatment strategy from curative to palliative. Integrating functional imaging with FDG-PET/CT into the radiotherapy planning process resulted in major changes in a significant proportion of our patients. An interdisciplinary approach between imaging and radiation oncology departments is essential in defining the target volumes. Copyright 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  12. Tumor Volume Changes Assessed by Three-Dimensional Magnetic Resonance Volumetry in Rectal Cancer Patients After Preoperative Chemoradiation: The Impact of the Volume Reduction Ratio on the Prediction of Pathologic Complete Response

    International Nuclear Information System (INIS)

    Kang, Jeong Hyun; Kim, Young Chul; Kim, Hyunki; Kim, Young Wan; Hur, Hyuk; Kim, Jin Soo; Min, Byung Soh; Kim, Hogeun; Lim, Joon Seok; Seong, Jinsil; Keum, Ki Chang; Kim, Nam Kyu

    2010-01-01

    Purpose: The aim of this study was to determine the correlation between tumor volume changes assessed by three-dimensional (3D) magnetic resonance (MR) volumetry and the histopathologic tumor response in rectal cancer patients undergoing preoperative chemoradiation therapy (CRT). Methods and Materials: A total of 84 patients who underwent preoperative CRT followed by radical surgery were prospectively enrolled in the study. The post-treatment tumor volume and tumor volume reduction ratio (% decrease ratio), as shown by 3D MR volumetry, were compared with the histopathologic response, as shown by T and N downstaging and the tumor regression grade (TRG). Results: There were no significant differences in the post-treatment tumor volume and the volume reduction ratio shown by 3D MR volumetry with respect to T and N downstaging and the tumor regression grade. In a multivariate analysis, the tumor volume reduction ratio was not significantly associated with T and N downstaging. The volume reduction ratio (>75%, p = 0.01) and the pretreatment carcinoembryonic antigen level (≤3 ng/ml, p = 0.01), but not the post-treatment volume shown by 3D MR (≤ 5ml), were, however, significantly associated with an increased pathologic complete response rate. Conclusion: More than 75% of the tumor volume reduction ratios were significantly associated with a high pathologic complete response rate. Therefore, limited treatment options such as local excision or simple observation might be considered after preoperative CRT in this patient population.

  13. Comparison of six methods of segmentation of tumor volume on the 18F-F.D.G. PET scan with reference histological volume in non small cell bronchopulmonary cancers

    International Nuclear Information System (INIS)

    Venel, Y.; Garhi, H.; Baulieu, J.L.; Prunier-Aesch, C.; Muret, A. de; Barillot, I.

    2008-01-01

    The 18 F-F.D.G. PET has demonstrated its importance in oncology, for initial extension and efficacy of anti tumoral therapeutics. Several studies have attempted to prove its utility to define tumoral volumes for conformational radiotherapy in non small cell lung cancers. Some authors have suggested the use of threshold of tumor intensity uptake with 40 or 50% of maximal intensity. Black et al. have determined contouring with linear regression formula of mean semi-quantitative index of tumor uptake (standard uptake value): SUV threshold = 0.307 Sub average + 0.588. Nestle et al. have taken into account the background noise intensity and mean intensity of the tumor: I threshold = β I average +I noise with β 0.15. Our study was done in collaboration with Inserm U618 team and has compared volumes defined on PET scan defined according to different methods based on intensity or S.U.V. to the tumour volume determined on CT scan by radio physicist. We have compared those volumes with histological volume that we considered for reference. Four patients have been included. They had 18 F-F.D.G. PET scan followed by complete tumoral removal surgery. Specific histological procedure allowed to define complete size of the tumor in re expanded lung. Comparatively to pathology, the volumes obtained using I max 40 and I max 50 are all underestimated. The volumes defined by Black's et al. method are under evaluated for the two largest tumours (15.8% to 22%) and overestimated for the two smallest ones (17.9 to 82.9%). Nestle's et al. method, using β = 0.15, correctly estimates two tumor volumes over 2 cm, but overestimates the two small tumors (79.6 to 124%). Finally, the corrected Nestle's et al. formula (using β = 0.264) overestimates three tumours. Volumes defined on CT scan by radio physicist are correct for one lesion, underestimated for one and overestimated for two other ones (44 and 179.5%). Nestle's et al. method seems to be the most accurate for tumours over 2 cm of

  14. Correlation between tumor regression grade and rectal volume in neoadjuvant concurrent chemoradiotherapy for rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong Seok; Choi, Doo Ho; Park, Hee Chul; Park, Won; Yu, Jeong Il; Chung, Kwang Zoo [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-09-15

    To determine whether large rectal volume on planning computed tomography (CT) results in lower tumor regression grade (TRG) after neoadjuvant concurrent chemoradiotherapy (CCRT) in rectal cancer patients. We reviewed medical records of 113 patients treated with surgery following neoadjuvant CCRT for rectal cancer between January and December 2012. Rectal volume was contoured on axial images in which gross tumor volume was included. Average axial rectal area (ARA) was defined as rectal volume divided by longitudinal tumor length. The impact of rectal volume and ARA on TRG was assessed. Average rectal volume and ARA were 11.3 mL and 2.9 cm². After completion of neoadjuvant CCRT in 113 patients, pathologic results revealed total regression (TRG 4) in 28 patients (25%), good regression (TRG 3) in 25 patients (22%), moderate regression (TRG 2) in 34 patients (30%), minor regression (TRG 1) in 24 patients (21%), and no regression (TRG0) in 2 patients (2%). No difference of rectal volume and ARA was found between each TRG groups. Linear correlation existed between rectal volume and TRG (p = 0.036) but not between ARA and TRG (p = 0.058). Rectal volume on planning CT has no significance on TRG in patients receiving neoadjuvant CCRT for rectal cancer. These results indicate that maintaining minimal rectal volume before each treatment may not be necessary.

  15. Correlation between tumor regression grade and rectal volume in neoadjuvant concurrent chemoradiotherapy for rectal cancer

    International Nuclear Information System (INIS)

    Lee, Hong Seok; Choi, Doo Ho; Park, Hee Chul; Park, Won; Yu, Jeong Il; Chung, Kwang Zoo

    2016-01-01

    To determine whether large rectal volume on planning computed tomography (CT) results in lower tumor regression grade (TRG) after neoadjuvant concurrent chemoradiotherapy (CCRT) in rectal cancer patients. We reviewed medical records of 113 patients treated with surgery following neoadjuvant CCRT for rectal cancer between January and December 2012. Rectal volume was contoured on axial images in which gross tumor volume was included. Average axial rectal area (ARA) was defined as rectal volume divided by longitudinal tumor length. The impact of rectal volume and ARA on TRG was assessed. Average rectal volume and ARA were 11.3 mL and 2.9 cm². After completion of neoadjuvant CCRT in 113 patients, pathologic results revealed total regression (TRG 4) in 28 patients (25%), good regression (TRG 3) in 25 patients (22%), moderate regression (TRG 2) in 34 patients (30%), minor regression (TRG 1) in 24 patients (21%), and no regression (TRG0) in 2 patients (2%). No difference of rectal volume and ARA was found between each TRG groups. Linear correlation existed between rectal volume and TRG (p = 0.036) but not between ARA and TRG (p = 0.058). Rectal volume on planning CT has no significance on TRG in patients receiving neoadjuvant CCRT for rectal cancer. These results indicate that maintaining minimal rectal volume before each treatment may not be necessary

  16. Characterizing Tumor Heterogeneity With Functional Imaging and Quantifying High-Risk Tumor Volume for Early Prediction of Treatment Outcome: Cervical Cancer as a Model

    International Nuclear Information System (INIS)

    Mayr, Nina A.; Huang Zhibin; Wang, Jian Z.; Lo, Simon S.; Fan, Joline M.; Grecula, John C.; Sammet, Steffen; Sammet, Christina L.; Jia Guang; Zhang Jun; Knopp, Michael V.; Yuh, William T.C.

    2012-01-01

    Purpose: Treatment response in cancer has been monitored by measuring anatomic tumor volume (ATV) at various times without considering the inherent functional tumor heterogeneity known to critically influence ultimate treatment outcome: primary tumor control and survival. This study applied dynamic contrast-enhanced (DCE) functional MRI to characterize tumors' heterogeneous subregions with low DCE values, at risk for treatment failure, and to quantify the functional risk volume (FRV) for personalized early prediction of treatment outcome. Methods and Materials: DCE-MRI was performed in 102 stage IB 2 –IVA cervical cancer patients to assess tumor perfusion heterogeneity before and during radiation/chemotherapy. FRV represents the total volume of tumor voxels with critically low DCE signal intensity ( 20, >13, and >5 cm 3 , respectively, significantly predicted unfavorable 6-year primary tumor control (p = 0.003, 7.3 × 10 −8 , 2.0 × 10 −8 ) and disease-specific survival (p = 1.9 × 10 −4 , 2.1 × 10 −6 , 2.5 × 10 −7 , respectively). The FRVs were superior to the ATVs as early predictors of outcome, and the differentiating power of FRVs increased during treatment. Discussion: Our preliminary results suggest that functional tumor heterogeneity can be characterized by DCE-MRI to quantify FRV for predicting ultimate long-term treatment outcome. FRV is a novel functional imaging heterogeneity parameter, superior to ATV, and can be clinically translated for personalized early outcome prediction before or as early as 2–5 weeks into treatment.

  17. Comparison of six methods of segmentation of tumor volume on the {sup 18}F-F.D.G. PET scan with reference histological volume in non small cell bronchopulmonary cancers; Comparaison de six methodes de segmentation du volume tumoral sur la {sup 18}F-FDG TEP-TDM avec le volume de reference anatomopathologique dans les cancers bronchopulmonaires non a petites cellules

    Energy Technology Data Exchange (ETDEWEB)

    Venel, Y.; Garhi, H.; Baulieu, J.L.; Prunier-Aesch, C. [CHRU de Tours-Bretonneau, Service de Medecine Nucleaire, 37 - Tours (France); Muret, A. de [CHRU de Tours-Bretonneau, Service de Radiotherapie, 37 - Tours (France); Barillot, I. [CHRU de Tours-Bretonneau, Service d' Anatomopathologie, 37 - Tours (France)

    2008-06-15

    The {sup 18}F-F.D.G. PET has demonstrated its importance in oncology, for initial extension and efficacy of anti tumoral therapeutics. Several studies have attempted to prove its utility to define tumoral volumes for conformational radiotherapy in non small cell lung cancers. Some authors have suggested the use of threshold of tumor intensity uptake with 40 or 50% of maximal intensity. Black et al. have determined contouring with linear regression formula of mean semi-quantitative index of tumor uptake (standard uptake value): SUV{sub threshold} = 0.307 Sub{sub average} + 0.588. Nestle et al. have taken into account the background noise intensity and mean intensity of the tumor: I{sub threshold} = {beta} I{sub average} +I{sub noise} with {beta} 0.15. Our study was done in collaboration with Inserm U618 team and has compared volumes defined on PET scan defined according to different methods based on intensity or S.U.V. to the tumour volume determined on CT scan by radio physicist. We have compared those volumes with histological volume that we considered for reference. Four patients have been included. They had {sup 18}F-F.D.G. PET scan followed by complete tumoral removal surgery. Specific histological procedure allowed to define complete size of the tumor in re expanded lung. Comparatively to pathology, the volumes obtained using I{sub max} 40 and I{sub max} 50 are all underestimated. The volumes defined by Black's et al. method are under evaluated for the two largest tumours (15.8% to 22%) and overestimated for the two smallest ones (17.9 to 82.9%). Nestle's et al. method, using {beta} = 0.15, correctly estimates two tumor volumes over 2 cm, but overestimates the two small tumors (79.6 to 124%). Finally, the corrected Nestle's et al. formula (using {beta} = 0.264) overestimates three tumours. Volumes defined on CT scan by radio physicist are correct for one lesion, underestimated for one and overestimated for two other ones (44 and 179.5%). Nestle

  18. Evaluation of a new software tool for the automatic volume calculation of hepatic tumors. First results

    International Nuclear Information System (INIS)

    Meier, S.; Mildenberger, P.; Pitton, M.; Thelen, M.; Schenk, A.; Bourquain, H.

    2004-01-01

    Purpose: computed tomography has become the preferred method in detecting liver carcinomas. The introduction of spiral CT added volumetric assessment of intrahepatic tumors, which was unattainable in the clinical routine with incremental CT due to complex planimetric revisions and excessive computing time. In an ongoing clinical study, a new software tool was tested for the automatic detection of tumor volume and the time needed for this procedure. Materials and methods: we analyzed patients suffering from hepatocellular carcinoma (HCC). All patients underwent treatment with repeated transcatheter chemoembolization of the hepatic arteria. The volumes of the HCC lesions detected in CT were measured with the new software tool in HepaVison (MeVis, Germany). The results were compared with manual planimetric calculation of the volume performed by three independent radiologists. Results: our first results in 16 patients show a correlation between the automatically and the manually calculated volumes (up to a difference of 2 ml) of 96.8%. While the manual method of analyzing the volume of a lesion requires 2.5 minutes on average, the automatic method merely requires about 30 seconds of user interaction time. Conclusion: These preliminary results show a good correlation between automatic and manual calculations of the tumor volume. The new software tool requires less time for accurate determination of the tumor volume and can be applied in the daily clinical routine. (orig.) [de

  19. RapidArc, intensity modulated photon and proton techniques for recurrent prostate cancer in previously irradiated patients: a treatment planning comparison study

    International Nuclear Information System (INIS)

    Weber, Damien C; Miralbell, Raymond; Wang, Hui; Cozzi, Luca; Dipasquale, Giovanna; Khan, Haleem G; Ratib, Osman; Rouzaud, Michel; Vees, Hansjoerg; Zaidi, Habib

    2009-01-01

    A study was performed comparing volumetric modulated arcs (RA) and intensity modulation (with photons, IMRT, or protons, IMPT) radiation therapy (RT) for patients with recurrent prostate cancer after RT. Plans for RA, IMRT and IMPT were optimized for 7 patients. Prescribed dose was 56 Gy in 14 fractions. The recurrent gross tumor volume (GTV) was defined on 18 F-fluorocholine PET/CT scans. Plans aimed to cover at least 95% of the planning target volume with a dose > 50.4 Gy. A maximum dose (D Max ) of 61.6 Gy was allowed to 5% of the GTV. For the urethra, D Max was constrained to 37 Gy. Rectal D Median was < 17 Gy. Results were analyzed using Dose-Volume Histogram and conformity index (CI 90 ) parameters. Tumor coverage (GTV and PTV) was improved with RA (V 95% 92.6 ± 7.9 and 83.7 ± 3.3%), when compared to IMRT (V 95% 88.6 ± 10.8 and 77.2 ± 2.2%). The corresponding values for IMPT were intermediate for the GTV (V 95% 88.9 ± 10.5%) and better for the PTV (V 95% 85.6 ± 5.0%). The percentages of rectal and urethral volumes receiving intermediate doses (35 Gy) were significantly decreased with RA (5.1 ± 3.0 and 38.0 ± 25.3%) and IMPT (3.9 ± 2.7 and 25.1 ± 21.1%), when compared to IMRT (9.8 ± 5.3 and 60.7 ± 41.7%). CI 90 was 1.3 ± 0.1 for photons and 1.6 ± 0.2 for protons. Integral Dose was 1.1 ± 0.5 Gy*cm 3 *10 5 for IMPT and about a factor three higher for all photon's techniques. RA and IMPT showed improvements in conformal avoidance relative to fixed beam IMRT for 7 patients with recurrent prostate cancer. IMPT showed further sparing of organs at risk

  20. The importance of tumor volume in the prognosis of patients with glioblastoma. Comparison of computerized volumetry and geometric models

    International Nuclear Information System (INIS)

    Iliadis, Georgios; Misailidou, Despina; Selviaridis, Panagiotis; Chatzisotiriou, Athanasios; Kalogera-Fountzila, Anna; Fragkoulidi, Anna; Fountzilas, George; Baltas, Dimos; Tselis, Nikolaos; Zamboglou, Nikolaos

    2009-01-01

    Background and purpose: the importance of tumor volume as a prognostic factor in high-grade gliomas is highly controversial and there are numerous methods estimating this parameter. In this study, a computer-based application was used in order to assess tumor volume from hard copies and a survival analysis was conducted in order to evaluate the prognostic significance of preoperative volumetric data in patients harboring glioblastomas. Patients and methods: 50 patients suffering from glioblastoma were analyzed retrospectively. Tumor volume was determined by the various geometric models as well as by an own specialized software (Volumio). Age, performance status, type of excision, and tumor location were also included in the multivariate analysis. Results: the spheroid and rectangular models overestimated tumor volume, while the ellipsoid model offered the best approximation. Volume failed to attain any statistical significance in prognosis, while age and performance status confirmed their importance in progression-free and overall survival of patients. Conclusion: geometric models provide a rough approximation of tumor volume and should not be used, as accurate determination of size is of paramount importance in order to draw safe conclusions in oncology. Although the significance of volumetry was not disclosed, further studies are definitely required. (orig.)

  1. Characterisation of radiotherapy planning volumes using textural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nailon, William H.; Redpath, Anthony T.; McLaren, Duncan B. (Dept. of Oncology Physics, Edinburgh Cancer Centre, Western General Hospital, Edinburgh (United Kingdom))

    2008-08-15

    Computer-based artificial intelligence methods for classification and delineation of the gross tumour volume (GTV) on computerised tomography (CT) and magnetic resonance (MR) images do not, at present, provide the accuracy required for radiotherapy applications. This paper describes an image analysis method for classification of distinct regions within the GTV, and other clinically relevant regions, on CT images acquired on eight bladder cancer patients at the radiotherapy planning stage and thereafter at regular intervals during treatment. Statistical and fractal textural features (N=27) were calculated on the bladder, rectum and a control region identified on axial, coronal and sagittal CT images. Unsupervised classification results demonstrate that with a reduced feature set (N=3) the approach offers significant classification accuracy on axial, coronal and sagittal CT image planes and has the potential to be developed further for radiotherapy applications, particularly towards an automatic outlining approach

  2. Characterisation of radiotherapy planning volumes using textural analysis

    International Nuclear Information System (INIS)

    Nailon, William H.; Redpath, Anthony T.; McLaren, Duncan B.

    2008-01-01

    Computer-based artificial intelligence methods for classification and delineation of the gross tumour volume (GTV) on computerised tomography (CT) and magnetic resonance (MR) images do not, at present, provide the accuracy required for radiotherapy applications. This paper describes an image analysis method for classification of distinct regions within the GTV, and other clinically relevant regions, on CT images acquired on eight bladder cancer patients at the radiotherapy planning stage and thereafter at regular intervals during treatment. Statistical and fractal textural features (N=27) were calculated on the bladder, rectum and a control region identified on axial, coronal and sagittal CT images. Unsupervised classification results demonstrate that with a reduced feature set (N=3) the approach offers significant classification accuracy on axial, coronal and sagittal CT image planes and has the potential to be developed further for radiotherapy applications, particularly towards an automatic outlining approach

  3. Tumor and normal structures volume localization and quantitation in 3D radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Anselmi, R.; Andreucci, L.

    1995-01-01

    Improvements in imaging technology have significantly enhanced the ability of the radiation oncologist to stage and to evaluate the response of tumor during and after treatment. Over the last few year, in fact, computed tomography (CT), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT) imaging radiolabelled monoclonal tumor antibodies have allowed tumor definition and evaluation. Concerning the above mentioned techniques accurate methods for the integration of morphological (CT, MRI) and functional (PET, SPECT, MRS) information can be very useful for volumes definition. In fact three-dimensional treatment planning depends heavily on volume displays and calculation based on volumes to convey information to the radiation oncologist, physicist and dosimetrist. The accuracy and reproducibility of the methods for creating these volumes are fundamental limitations of current treatment planning systems. Slice by slice manual contouring, which is extremely labor-intensive, and automatic edge detection, which has a high failure rate and requires human intervention are representative of the current standard of practice. The aim of our work is both to develop methods of image data integration and automatic segmentation, and to make the treatment planning system able to combine these multiple information in unified data set in order to get a better tumor volume definition and dose distribution calculation. Then the possibility of using morphological and functional images and other information coming from MR spectroscopy and electronic or confocal microscopy can allow the development into the treatment planning system of biological calculation models for evaluating tumor and normal tissue control probabilities (TCP, NTCP). The definitive use of these models into the 3-D treatment plannings will offer a considerable improvement in the biological efficacy of radiotherapy and it will constitute the object

  4. Quantification of gross tumour volume changes between simulation and first day of radiotherapy for patients with locally advanced malignancies of the lung and head/neck.

    Science.gov (United States)

    Kishan, Amar U; Cui, Jing; Wang, Pin-Chieh; Daly, Megan E; Purdy, James A; Chen, Allen M

    2014-10-01

    To quantify changes in gross tumour volume (GTV) between simulation and initiation of radiotherapy in patients with locally advanced malignancies of the lung and head/neck. Initial cone beam computed tomography (CT) scans from 12 patients with lung cancer and 12 with head/neck cancer (head and neck squamous cell carcinoma (HNSCC)) treated with intensity-modulated radiotherapy with image guidance were rigidly registered to the simulation CT scans. The GTV was demarcated on both scans. The relationship between percent GTV change and variables including time interval between simulation and start, tumour (T) stage, and absolute weight change was assessed. For lung cancer patients, the GTV increased a median of 35.06% (range, -16.63% to 229.97%) over a median interval of 13 days (range, 7-43), while for HNSCC patients, the median GTV increase was 16.04% (range, -8.03% to 47.41%) over 13 days (range, 7-40). These observed changes are statistically significant. The magnitude of this change was inversely associated with the size of the tumour on the simulation scan for lung cancer patients (P lung cancer cases) did not correlate with degree of GTV change (P > 0.1). While the observed changes in GTV were moderate from the time of simulation to start of radiotherapy, these findings underscore the importance of image guidance for target localisation and verification, particularly for smaller tumours. Minimising the delay between simulation and treatment initiation may also be beneficial. © 2014 The Royal Australian and New Zealand College of Radiologists.

  5. Impact of anatomical changes on dose distribution of intensity-modulated radiotherapy for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Huang Shaomin; Deng Xiaowu; Zhao Chong; Han Fei; Gao Xingwang; Lu Taixiang; Wang Shi

    2010-01-01

    Objective: To observe the physique and anatomy changes in patients with nasopharyngeal carcinoma (NPC) during intensity-modulated radiotherapy (IMRT), using repeated CT images and deformable registration technique, and analyze their impact on delivery dose distribution. Methods: Ten NPC patients were randomly selected from those who had received IMRT treatment.Gross tumor volume of nasopharynx (GTV nx ), GTV of metastastatic lymph node (GTV nd ), clinical target volume (CTV) and normal tissue or organ (OAR) were re-contoured on the in-course repeated CT images using a kind of deformable registration and auto-segmentation software according to the original planning contouring. Changes in volume of treatment targets and organs at risk were evaluated and the trends were then analyzed. Dose distributions were recalculated with repeated CT images and compared to the original plans. Results: The volume of GTV nx were decreased by 6.44%, 10.23% and 9.72%(F=1.34, P=0.278) in the 2-, 4- and 6-week after IMRT comparing with before IMRT, with 6.59%, 30.98 % and 35.13 % (F = 9.22, P =0.000) in GTV nd , 0.73%, 1.86% and 1.41% (F=0.33, P=0.722) in CTV 1 , -1.78%, -6.47% and -9.34% (F =16.89, P =0.000) in CTV 2 , 13.96%, 32.97% and 37.77%(F=17.17, P=0.000) in the left parotid, and 3.56% , 29.57% and 35.63% (F = 13.49, P = 0.000) in the right parotid. The mean dose change rate of GTV nx were -0.39%, 0.08% and 0.32% (F =0.15, P =0.860) in the 2-, 4- and 6-week after IMRT comparing with planning faction dose, with 0.53%, 1.19% and 0.69% (F=0.81, P=0.455) in GTV nd , 1.95%, 2.70% and 3.78% (F=0.61, P=0.552) in the spinal cord, 0.32%, 0.81% and 0.62% (F=0.03, P=0.975) in the brain stem, 4.50%, 4.66% and 7.20% (F=0.33, P=0.725) in the left parotid, 2.20%, 7.17% and 7.12% (F= 1.24, P=0.306) in the right parotid. Conclusions: The GTV nd , CTV 2 and parotids shrinks obviously along with the treatment times for NPC patients during IMRT. Although changes in fraction dose of GTV, CTV, spinal

  6. Individualized margins in 3D conformal radiotherapy planning for lung cancer: analysis of physiological movements and their dosimetric impacts.

    Science.gov (United States)

    Germain, François; Beaulieu, Luc; Fortin, André

    2008-01-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generate individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.

  7. Individualized Margins in 3D Conformal Radiotherapy Planning for Lung Cancer: Analysis of Physiological Movements and Their Dosimetric Impacts

    International Nuclear Information System (INIS)

    Germain, Francois; Beaulieu, Luc; Fortin, Andre

    2008-01-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generate individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage

  8. Clinical application of tumor volume in advanced nasopharyngeal carcinoma to predict outcome

    International Nuclear Information System (INIS)

    Lee, Ching-Chih; Huang, Tze-Ta; Lee, Moon-Sing; Hsiao, Shih-Hsuan; Lin, Hon-Yi; Su, Yu-Chieh; Hsu, Feng-Chun; Hung, Shih-Kai

    2010-01-01

    Current staging systems have limited ability to adjust optimal therapy in advanced nasopharyngeal carcinoma (NPC). This study aimed to delineate the correlation between tumor volume, treatment outcome and chemotherapy cycles in advanced NPC. A retrospective review of 110 patients with stage III-IV NPC was performed. All patients were treated first with neoadjuvant chemotherapy, then concurrent chemoradiation, and followed by adjuvant chemotherapy as being the definitive therapy. Gross tumor volume of primary tumor plus retropharyngeal nodes (GTVprn) was calculated to be an index of treatment outcome. GTVprn had a close relationship with survival and recurrence in advanced NPC. Large GTVprn (≧13 ml) was associated with a significantly poorer local control, lower distant metastasis-free rate, and poorer survival. In patients with GTVprn ≧ 13 ml, overall survival was better after ≧4 cycles of chemotherapy than after less than 4 cycles. The incorporation of GTVprn can provide more information to adjust treatment strategy

  9. Density overwrites of internal tumor volumes in intensity modulated proton therapy plans for mobile lung tumors

    Science.gov (United States)

    Botas, Pablo; Grassberger, Clemens; Sharp, Gregory; Paganetti, Harald

    2018-02-01

    The purpose of this study was to investigate internal tumor volume density overwrite strategies to minimize intensity modulated proton therapy (IMPT) plan degradation of mobile lung tumors. Four planning paradigms were compared for nine lung cancer patients. Internal gross tumor volume (IGTV) and internal clinical target volume (ICTV) structures were defined encompassing their respective volumes in every 4DCT phase. The paradigms use different planning CT (pCT) created from the average intensity projection (AIP) of the 4DCT, overwriting the density within the IGTV to account for movement. The density overwrites were: (a) constant filling with 100 HU (C100) or (b) 50 HU (C50), (c) maximum intensity projection (MIP) across phases, and (d) water equivalent path length (WEPL) consideration from beam’s-eye-view. Plans were created optimizing dose-influence matrices calculated with fast GPU Monte Carlo (MC) simulations in each pCT. Plans were evaluated with MC on the 4DCTs using a model of the beam delivery time structure. Dose accumulation was performed using deformable image registration. Interplay effect was addressed applying 10 times rescanning. Significantly less DVH metrics degradation occurred when using MIP and WEPL approaches. Target coverage (D99≥slant 70 Gy(RBE)) was fulfilled in most cases with MIP and WEPL (D{{99}WEPL}=69.2+/- 4.0 Gy (RBE)), keeping dose heterogeneity low (D5-D{{95}WEPL}=3.9+/- 2.0 Gy(RBE)). The mean lung dose was kept lowest by the WEPL strategy, as well as the maximum dose to organs at risk (OARs). The impact on dose levels in the heart, spinal cord and esophagus were patient specific. Overall, the WEPL strategy gives the best performance and should be preferred when using a 3D static geometry for lung cancer IMPT treatment planning. Newly available fast MC methods make it possible to handle long simulations based on 4D data sets to perform studies with high accuracy and efficiency, even prior to individual treatment planning.

  10. Prognostic implications of tumor volume response and COX-2 expression change during radiotherapy in cervical cancer patients

    International Nuclear Information System (INIS)

    Noh, Jae Myoung; Park, Won; Huh, Seung Jae; Cho, Eun Yoon; Choi, Yoon La; Bae, Duk Soo; Kim, Byoung Gie

    2012-01-01

    The relationship between treatment outcomes, alteration of the expression of biological markers, and tumor volume response during radiotherapy (RT) in patients with uterine cervical cancer was analyzed. Twenty patients with cervical squamous cell carcinoma received definitive RT with (n = 17) or without (n = 3) concurrent chemotherapy. Tumor volumes were measured by three serial magnetic resonance imaging scans at pre-, mid-, and post-RT. Two serial punch biopsies were performed at pre- and mid-RT, and immunohistochemical staining for cyclooxygenase (COX)-2 and epidermal growth factor receptor was performed. The median follow-up duration was 60 months. The median tumor volume response at mid-RT (V2R) was 0.396 (range, 0.136 to 0.983). At mid-RT, an interval increase in the distribution of immunoreactivity for COX-2 was observed in 8 patients, and 6 of them showed poor mid-RT tumor volume response (V2R ≥ 0.4). Four (20%) patients experienced disease progression after 10 to 12 months (median, 11 months). All 4 patients had poor mid-RT tumor volume response (p = 0.0867) and 3 of them had an interval increase in COX-2 expression. Overall survival (OS) and progression-free survival (PFS) decreased in patients with V2R ≥ 0.4 (p 0.0291 for both). An interval increase in COX-2 expression at mid-RT was also associated with a decreased survival (p = 0.1878 and 0.1845 for OS and PFS, respectively). Poor tumor volume response and an interval increase in COX-2 expression at mid-RT decreased survival outcomes in patients with uterine cervical cancer.

  11. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mayr, Nina A.; Taoka, Toshiaki; Yuh, William T.C.; Denning, Leah M.; Zhen, Weining K.; Paulino, Arnold C.; Gaston, Robert C.; Sorosky, Joel I.; Meeks, Sanford L.; Walker, Joan L.; Mannel, Robert S.; Buatti, John M.

    2002-01-01

    Purpose: Recently, imaging-based tumor volume before, during, and after radiation therapy (RT) has been shown to predict tumor response in cervical cancer. However, the effectiveness of different methods and timing of imaging-based tumor size assessment have not been investigated. The purpose of this study was to compare the predictive value for treatment outcome derived from simple diameter-based ellipsoid tumor volume measurement using orthogonal diameters (with ellipsoid computation) with that derived from more complex contour tracing/region-of-interest (ROI) analysis 3D tumor volumetry. Methods and Materials: Serial magnetic resonance imaging (MRI) examinations were prospectively performed in 60 patients with advanced cervical cancer (Stages IB 2 -IVB/recurrent) at the start of RT, during early RT (20-25 Gy), mid-RT (45-50 Gy), and at follow-up (1-2 months after RT completion). ROI-based volumetry was derived by tracing the entire tumor region in each MR slice on the computer work station. For the diameter-based surrogate ''ellipsoid volume,'' the three orthogonal diameters (d 1 , d 2 , d 3 ) were measured on film hard copies to calculate volume as an ellipsoid (d 1 x d 2 x d 3 x π/6). Serial tumor volumes and regression rates determined by each method were correlated with local control, disease-free and overall survival, and the results were compared between the two measuring methods. Median post-therapy follow-up was 4.9 years (range, 2.0-8.2 years). Results: The best method and time point of tumor size measurement for the prediction of outcome was the tumor regression rate in the mid-therapy MRI examination (at 45-50 Gy) using 3D ROI volumetry. For the pre-RT measurement both the diameter-based method and ROI volumetry provided similar predictive accuracy, particularly for patients with small ( 3 ) and large (≥100 cm 3 ) pre-RT tumor size. However, the pre-RT tumor size measured by either method had much less predictive value for the intermediate-size (40

  12. Characterizing Tumor Heterogeneity With Functional Imaging and Quantifying High-Risk Tumor Volume for Early Prediction of Treatment Outcome: Cervical Cancer as a Model

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Nina A., E-mail: Nina.Mayr@osumc.edu [Department of Radiation Oncology, Ohio State University, Columbus, OH (United States); Huang Zhibin [Department of Radiation Oncology and Department of Physics, East Carolina University, Greenville, NC (United States); Wang, Jian Z. [Department of Radiation Oncology, Ohio State University, Columbus, OH (United States); Lo, Simon S. [Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH (United States); Fan, Joline M. [Department of Molecular Biology, Stanford University, Stanford, CA (United States); Grecula, John C. [Department of Radiation Oncology, Ohio State University, Columbus, OH (United States); Sammet, Steffen [Department of Radiology, University of Chicago, Chicago, IL (United States); Department of Radiology, Ohio State University, Columbus, OH (United States); Sammet, Christina L. [Department of Radiology, University of Chicago, Chicago, IL (United States); Jia Guang; Zhang Jun; Knopp, Michael V.; Yuh, William T.C. [Department of Radiology, Ohio State University, Columbus, OH (United States)

    2012-07-01

    Purpose: Treatment response in cancer has been monitored by measuring anatomic tumor volume (ATV) at various times without considering the inherent functional tumor heterogeneity known to critically influence ultimate treatment outcome: primary tumor control and survival. This study applied dynamic contrast-enhanced (DCE) functional MRI to characterize tumors' heterogeneous subregions with low DCE values, at risk for treatment failure, and to quantify the functional risk volume (FRV) for personalized early prediction of treatment outcome. Methods and Materials: DCE-MRI was performed in 102 stage IB{sub 2}-IVA cervical cancer patients to assess tumor perfusion heterogeneity before and during radiation/chemotherapy. FRV represents the total volume of tumor voxels with critically low DCE signal intensity (<2.1 compared with precontrast image, determined by previous receiver operator characteristic analysis). FRVs were correlated with treatment outcome (follow-up: 0.2-9.4, mean 6.8 years) and compared with ATVs (Mann-Whitney, Kaplan-Meier, and multivariate analyses). Results: Before and during therapy at 2-2.5 and 4-5 weeks of RT, FRVs >20, >13, and >5 cm{sup 3}, respectively, significantly predicted unfavorable 6-year primary tumor control (p = 0.003, 7.3 Multiplication-Sign 10{sup -8}, 2.0 Multiplication-Sign 10{sup -8}) and disease-specific survival (p = 1.9 Multiplication-Sign 10{sup -4}, 2.1 Multiplication-Sign 10{sup -6}, 2.5 Multiplication-Sign 10{sup -7}, respectively). The FRVs were superior to the ATVs as early predictors of outcome, and the differentiating power of FRVs increased during treatment. Discussion: Our preliminary results suggest that functional tumor heterogeneity can be characterized by DCE-MRI to quantify FRV for predicting ultimate long-term treatment outcome. FRV is a novel functional imaging heterogeneity parameter, superior to ATV, and can be clinically translated for personalized early outcome prediction before or as early as 2

  13. Gold markers for tumor localization and target volume delineation in radiotherapy for rectal cancer

    International Nuclear Information System (INIS)

    Vorwerk, Hilke; Christiansen, Hans; Hess, Clemens Friedrich; Hermann, Robert Michael; Liersch, Thorsten; Ghadimi, Michael; Rothe, Hilka

    2009-01-01

    In locally advanced rectal cancer, neoadjuvant radiochemotherapy is indicated. To improve target volume definition for radiotherapy planning, the potential of implanted gold markers in the tumor region was evaluated. In nine consecutive patients, two to three gold markers were implanted in the tumor region during rigid rectoscopy. Computed tomography scans were performed during treatment planning. All electronic portal imaging devices (EPIDs) recorded during treatment series were analyzed. All patients underwent complete tumor resection with meticulous histopathologic examination. The gold markers could easily be implanted into the mesorectal tissue at the caudal tumor border without any complications. They were helpful in identifying the inferior border of the planning target volume in order to spare normal tissue (in particular anal structures). No significant shift of the markers was found during the course of therapy. Marker matching of the EPIDs did not improve patient positioning in comparison to bone structure matching. The former position of at least one marker could be identified in all patients during histopathologic examination. The use of gold marker enables a more precise definition of the target volume for radiotherapy in patients with rectal cancer. This could eventually allow a better protection of anal structures of patients with a tumor localization = 5 cm cranial of the anal sphincter. The implantation of the gold markers improved communication between the surgeon, the radiooncologist and the pathologist resulting in intensified exchange of relevant informations. (orig.)

  14. Method of tumor volume evaluation using magnetic resonance imaging for outcome prediction in cervical cancer treated with concurrent chemotherapy and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hun Jung; Kim, Woo Chul [Inha University Hospital, Inha University School of Medicine, Seoul (Korea, Republic of)

    2012-06-15

    To evaluate the patterns of tumor shape and to compare tumor volume derived from simple diameter-based ellipsoid measurement with that derived from tracing the entire tumor contour using region of interest (ROI)-based 3D volumetry with respect to the prediction outcome in cervical cancer patients treated with concurrent chemotherapy and radiotherapy. Magnetic resonance imaging was performed in 98 patients with cervical cancer (stage IB-IIIB). The tumor shape was classified into two categories: ellipsoid and non-ellipsoid shape. ROI-based volumetry was derived from each magnetic resonance slice on the work station. For the diameter-based surrogate 'ellipsoid volume,' the three orthogonal diameters were measured to calculate volume as an ellipsoid. The more than half of tumor (55.1%) had a non-ellipsoid configuration. The predictions for outcome were consistent between two volume groups, with overall survival of 93.6% and 87.7% for small tumor (<20 mL), 62.9% and 69.1% for intermediate-size tumor (20-39 mL), and 14.5% and 16.7% for large tumors ({>=}40 mL) using ROI and diameter based measurement, respectively. Disease-free survival was 93.8% and 90.6% for small tumor, 54.3% and 62.7% for intermediate-size tumor, and 13.7% and 10.3% for large tumor using ROI and diameter based method, respectively. Differences in outcome between size groups were statistically significant, and the differences in outcome predicted by the tumor volume by two different methods. Our data suggested that large numbers of cervical cancers are not ellipsoid. However, simple diameter-based tumor volume measurement appears to be useful in comparison with ROI-based volumetry for predicting outcome in cervical cancer patients.

  15. Method of tumor volume evaluation using magnetic resonance imaging for outcome prediction in cervical cancer treated with concurrent chemotherapy and radiotherapy

    International Nuclear Information System (INIS)

    Kim, Hun Jung; Kim, Woo Chul

    2012-01-01

    To evaluate the patterns of tumor shape and to compare tumor volume derived from simple diameter-based ellipsoid measurement with that derived from tracing the entire tumor contour using region of interest (ROI)-based 3D volumetry with respect to the prediction outcome in cervical cancer patients treated with concurrent chemotherapy and radiotherapy. Magnetic resonance imaging was performed in 98 patients with cervical cancer (stage IB-IIIB). The tumor shape was classified into two categories: ellipsoid and non-ellipsoid shape. ROI-based volumetry was derived from each magnetic resonance slice on the work station. For the diameter-based surrogate 'ellipsoid volume,' the three orthogonal diameters were measured to calculate volume as an ellipsoid. The more than half of tumor (55.1%) had a non-ellipsoid configuration. The predictions for outcome were consistent between two volume groups, with overall survival of 93.6% and 87.7% for small tumor (<20 mL), 62.9% and 69.1% for intermediate-size tumor (20-39 mL), and 14.5% and 16.7% for large tumors (≥40 mL) using ROI and diameter based measurement, respectively. Disease-free survival was 93.8% and 90.6% for small tumor, 54.3% and 62.7% for intermediate-size tumor, and 13.7% and 10.3% for large tumor using ROI and diameter based method, respectively. Differences in outcome between size groups were statistically significant, and the differences in outcome predicted by the tumor volume by two different methods. Our data suggested that large numbers of cervical cancers are not ellipsoid. However, simple diameter-based tumor volume measurement appears to be useful in comparison with ROI-based volumetry for predicting outcome in cervical cancer patients.

  16. Clinical application of AcMAR (accelerated multiple-arc radiotherapy) for head and neck tumors. Results of a randomized, two-dose study in Kitami Red-Cross General Hospital

    International Nuclear Information System (INIS)

    Arimoto, Takuro; Yamazaki, Akira; Yonesaka, Akio; Matsuzawa, Tooru; Kanai, Naoki

    2003-01-01

    Enhanced acute mucositis is the limiting factor for accelerated, hyperfractionated radiotherapy in head and neck (H and N) squamous cell carcinomas (SCCs). We have developed a simple, new form of conformal radiotherapy, accelerated multiple arc radiotherapy (AcMAR), which covers the target volume by combined, segmental, and rotational arc fields. Two to three rotational fields were placed with CT guidance, each covering the primary tumor and lymph nodes separately. The optimal inter-isocenter distance was determined by 3D dose calculation. The surface area of oro-pharyngeal mucosa irradiated by more than a 50% dose by this method was reduced by 37-73% compared to that with a conventional parallel opposing technic. Dose searching, randomized two-dose study was initiated in Kitami Red-cross General Hospital (KRCGH) in January 1995, and 101 patients were registered and completed AcMAR in Oct 2000. All the patients were followed for up to 96 months (24-96 mo, median 48 mo) at the time of analysis. Fifty-one out of 101 patients were Stage III (17) and IV (34). Primary site of tumors were; 38 larynx, 25 oropharynx, 15 hypopharynx, 13 oral cavity, and 10 other miscellaneous sites. Patients were randomly allocated either to 60 Gy/24 fr/bid/3 wks to gross tumor volume (GTV) (Group A), or 66 Gy/33 fr/bid/4 wks to GTV (Group B). Forty Gy/16 fr/bid/2 wks was given to the volume of prophylactic'' irradiation in both groups of patients. Results were as follows: All the patients, except for one, completed AcMAR without treatment interruption. Acute mucositis at the site of high-dose irradiation was intense; 72% of Group A and 62.5% of Group B experienced World Health Organization (WHO) Grade 3 (confluent) mucositis focally. Fifty-one out of 53 in Group A and 48/48 in Group B, however, could maintain oral food intake (WHO Grade 1 or 2) even at the peak of their mucositis, because of the limited area of severe mucositis. With regard to late morbidity, however, 6/46 (followed >24 mo

  17. Adenocarcinomas of the esophagus: Response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT

    International Nuclear Information System (INIS)

    Roedl, Johannes B.; Colen, Rivka R.; Holalkere, Nagaraj S.; Fischman, Alan J.; Choi, Noah C.; Blake, Michael A.

    2008-01-01

    Purpose: We determined whether evaluation of treatment response is feasible by measuring metabolic tumor volume parameters on 18F-FDG (Fluorodeoxyglucose) PET-CT (Positron emission tomography-Computed tomography). We compared the response evaluation based on metabolic tumor volume parameters to a histopathologic and clinical response evaluation (clinical response criteria: RECIST criteria = Response evaluation criteria in solid tumors, and WHO criteria = World health organization). Patients and methods: A total of 51 study subjects with adenocarcinomas (Type I due to Siewert classification) of the esophagus underwent PET-CT scans before and after neoadjuvant chemoradiotherapy. Tumor volume, maximum and mean standardized uptake values (SUV) were assessed before and after chemoradiotherapy. Furthermore, the total lesion glycolysis (TLG) was calculated by multiplying the tumor volume by the mean SUV of the volume. Clinical response evaluation was performed with endoscopic ultrasound and CT using RECIST and WHO criteria. The reference standard for treatment response was the postsurgical histopathology. Results: The decrease of tumor volume between the pre- and post-treatment PET-CT scans was a better predictor of histopathologic response and survival than the decrease of the SUV and of the clinical response evaluation based on RECIST and WHO criteria. The highest accuracy, however, was achieved when using the TLG for the identification of treatment responders. A decrease of the TLG by >78% between pre- and post-therapy scans predicted histopathologic response with a sensitivity and specificity of 91% and 93%, respectively. Conclusions: Tumor volume and TLG can be used to assess treatment response and survival in patients with esophageal adenocarcinoma

  18. [Volume changes to the neck lymph node metastases in head-neck tumors. The evaluation of radiotherapeutic treatment success].

    Science.gov (United States)

    Liszka, G; Thalacker, U; Somogyi, A; Németh, G

    1997-08-01

    This work is engaged with the volume change of neck lymph node metastasis of malignant tumors in the head-neck region during radiotherapy. In 54 patients with head and neck tumors, the volume of neck lymph nodes before and after radiation was measured. The volumetry was done with CT planimetry. The total dose was 66 Gy (2 Gy/d) telecobalt from 2 lateral opponated fields. The time of volume change could be defined with measuring of the half-time and the doubling-time by the help of Schwartz formula. After 10 Gy the volume diminution was about 20% and half-time 24 to 26 days. Afterwards the time of volume diminution picked up speed and finally achieved 60 to 72%. Meanwhile the half-time decreased to the half value. The result was independent of the site of primary tumor, the patient's sex and age. In our opinion the effectivity of radiotherapy can best be judged with defining of the volume change of lymph nodes of the neck.

  19. Understanding PSA and its derivatives in prediction of tumor volume: Addressing health disparities in prostate cancer risk stratification.

    Science.gov (United States)

    Chinea, Felix M; Lyapichev, Kirill; Epstein, Jonathan I; Kwon, Deukwoo; Smith, Paul Taylor; Pollack, Alan; Cote, Richard J; Kryvenko, Oleksandr N

    2017-03-28

    To address health disparities in risk stratification of U.S. Hispanic/Latino men by characterizing influences of prostate weight, body mass index, and race/ethnicity on the correlation of PSA derivatives with Gleason score 6 (Grade Group 1) tumor volume in a diverse cohort. Using published PSA density and PSA mass density cutoff values, men with higher body mass indices and prostate weights were less likely to have a tumor volume PSA derivatives when predicting for tumor volume. In receiver operator characteristic analysis, area under the curve values for all PSA derivatives varied across race/ethnicity with lower optimal cutoff values for Hispanic/Latino (PSA=2.79, PSA density=0.06, PSA mass=0.37, PSA mass density=0.011) and Non-Hispanic Black (PSA=3.75, PSA density=0.07, PSA mass=0.46, PSA mass density=0.008) compared to Non-Hispanic White men (PSA=4.20, PSA density=0.11 PSA mass=0.53, PSA mass density=0.014). We retrospectively analyzed 589 patients with low-risk prostate cancer at radical prostatectomy. Pre-operative PSA, patient height, body weight, and prostate weight were used to calculate all PSA derivatives. Receiver operating characteristic curves were constructed for each PSA derivative per racial/ethnic group to establish optimal cutoff values predicting for tumor volume ≥0.5 cm3. Increasing prostate weight and body mass index negatively influence PSA derivatives for predicting tumor volume. PSA derivatives' ability to predict tumor volume varies significantly across race/ethnicity. Hispanic/Latino and Non-Hispanic Black men have lower optimal cutoff values for all PSA derivatives, which may impact risk assessment for prostate cancer.

  20. SU-F-R-31: Identification of Robust Normal Lung CT Texture Features for the Prediction of Radiation-Induced Lung Disease

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W; Riyahi, S; Lu, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: Normal lung CT texture features have been used for the prediction of radiation-induced lung disease (radiation pneumonitis and radiation fibrosis). For these features to be clinically useful, they need to be relatively invariant (robust) to tumor size and not correlated with normal lung volume. Methods: The free-breathing CTs of 14 lung SBRT patients were studied. Different sizes of GTVs were simulated with spheres placed at the upper lobe and lower lobe respectively in the normal lung (contralateral to tumor). 27 texture features (9 from intensity histogram, 8 from grey-level co-occurrence matrix [GLCM] and 10 from grey-level run-length matrix [GLRM]) were extracted from [normal lung-GTV]. To measure the variability of a feature F, the relative difference D=|Fref -Fsim|/Fref*100% was calculated, where Fref was for the entire normal lung and Fsim was for [normal lung-GTV]. A feature was considered as robust if the largest non-outlier (Q3+1.5*IQR) D was less than 5%, and considered as not correlated with normal lung volume when their Pearson correlation was lower than 0.50. Results: Only 11 features were robust. All first-order intensity-histogram features (mean, max, etc.) were robust, while most higher-order features (skewness, kurtosis, etc.) were unrobust. Only two of the GLCM and four of the GLRM features were robust. Larger GTV resulted greater feature variation, this was particularly true for unrobust features. All robust features were not correlated with normal lung volume while three unrobust features showed high correlation. Excessive variations were observed in two low grey-level run features and were later identified to be from one patient with local lung diseases (atelectasis) in the normal lung. There was no dependence on GTV location. Conclusion: We identified 11 robust normal lung CT texture features that can be further examined for the prediction of radiation-induced lung disease. Interestingly, low grey-level run features identified normal

  1. Analysis of nodal coverage utilizing image guided radiation therapy for primary gynecologic tumor volumes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Faisal [University of Utah School of Medicine, Salt Lake City, UT (United States); Loma Linda University Medical Center, Department of Radiation Oncology, Loma Linda, CA (United States); Sarkar, Vikren; Gaffney, David K.; Salter, Bill [Department of Radiation Oncology, University of Utah, Salt Lake City, UT (United States); Poppe, Matthew M., E-mail: matthew.poppe@hci.utah.edu [Department of Radiation Oncology, University of Utah, Salt Lake City, UT (United States)

    2016-10-01

    Purpose: To evaluate radiation dose delivered to pelvic lymph nodes, if daily Image Guided Radiation Therapy (IGRT) was implemented with treatment shifts based on the primary site (primary clinical target volume [CTV]). Our secondary goal was to compare dosimetric coverage with patient outcomes. Materials and methods: A total of 10 female patients with gynecologic malignancies were evaluated retrospectively after completion of definitive intensity-modulated radiation therapy (IMRT) to their pelvic lymph nodes and primary tumor site. IGRT consisted of daily kilovoltage computed tomography (CT)-on-rails imaging fused with initial planning scans for position verification. The initial plan was created using Varian's Eclipse treatment planning software. Patients were treated with a median radiation dose of 45 Gy (range: 37.5 to 50 Gy) to the primary volume and 45 Gy (range: 45 to 64.8 Gy) to nodal structures. One IGRT scan per week was randomly selected from each patient's treatment course and re-planned on the Eclipse treatment planning station. CTVs were recreated by fusion on the IGRT image series, and the patient's treatment plan was applied to the new image set to calculate delivered dose. We evaluated the minimum, maximum, and 95% dose coverage for primary and nodal structures. Reconstructed primary tumor volumes were recreated within 4.7% of initial planning volume (0.9% to 8.6%), and reconstructed nodal volumes were recreated to within 2.9% of initial planning volume (0.01% to 5.5%). Results: Dosimetric parameters averaged less than 10% (range: 1% to 9%) of the original planned dose (45 Gy) for primary and nodal volumes on all patients (n = 10). For all patients, ≥99.3% of the primary tumor volume received ≥ 95% the prescribed dose (V95%) and the average minimum dose was 96.1% of the prescribed dose. In evaluating nodal CTV coverage, ≥ 99.8% of the volume received ≥ 95% the prescribed dose and the average minimum dose was 93%. In

  2. A Study of Pseudoprogression After Spine Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bahig, Houda; Simard, Dany [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada); Létourneau, Laurent [Department of Radiology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada); Wong, Philip; Roberge, David; Filion, Edith; Donath, David [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada); Sahgal, Arjun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Masucci, Laura, E-mail: g.laura.masucci.chum@ssss.gouv.qc.ca [Department of Radiation Oncology, Centre Hospitalier de l' Université de Montréal, Montreal, Quebec (Canada)

    2016-11-15

    Purpose: To determine the incidence of pseudoprogression (PP) after spine stereotactic body radiation therapy based on a detailed and quantitative assessment of magnetic resonance imaging (MRI) morphologic tumor alterations, and to identify predictive factors distinguishing PP from local recurrence (LR). Methods and Materials: A retrospective analysis of 35 patients with 49 spinal segments treated with spine stereotactic body radiation therapy, from 2009 to 2014, was conducted. The median number of follow-up MRI studies was 4 (range, 2-7). The gross tumor volumes (GTVs) within each of the 49 spinal segments were contoured on the pretreatment and each subsequent follow-up T1- and T2-weighted MRI sagittal sequence. T2 signal intensity was reported as the mean intensity of voxels constituting each volume. LR was defined as persistent GTV enlargement on ≥2 serial MRI studies for ≥6 months or on pathologic confirmation. PP was defined as a GTV enlargement followed by stability or regression on subsequent imaging within 6 months. Kaplan-Meier analysis was used for estimation of actuarial local control, disease-free survival, and overall survival. Results: The median follow-up was 23 months (range, 1-39 months). PP was identified in 18% of treated segments (9 of 49) and LR in 29% (14 of 49). Earlier volume enlargement (5 months for PP vs 15 months for LR, P=.005), greater GTV to reference nonirradiated vertebral body T2 intensity ratio (+30% for PP vs −10% for LR, P=.005), and growth confined to 80% of the prescription isodose line (80% IDL) (8 of 9 PP cases vs 1 of 14 LR cases, P=.002) were associated with PP on univariate analysis. Multivariate analysis confirmed an earlier time to volume enlargement and growth within the 80% IDL as significant predictors of PP. LR involved the epidural space in all but 1 lesion, whereas PP was confined to the vertebral body in 7 of 9 cases. Conclusions: PP was observed in 18% of treated spinal segments. Tumor growth

  3. Lung Volume Reduction After Stereotactic Ablative Radiation Therapy of Lung Tumors: Potential Application to Emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Binkley, Michael S. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Shrager, Joseph B. [Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Leung, Ann N. [Department of Radiology, Stanford University School of Medicine, Stanford, California (United States); Popat, Rita [Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California (United States); Trakul, Nicholas [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Department of Radiation Oncology, University of Southern California Keck School of Medicine, Los Angeles, California (United States); Atwood, Todd F.; Chaudhuri, Aadel [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Maxim, Peter G. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Diehn, Maximilian, E-mail: Diehn@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States)

    2014-09-01

    Purpose: Lung volume reduction surgery (LVRS) improves dyspnea and other outcomes in selected patients with severe emphysema, but many have excessive surgical risk for LVRS. We analyzed the dose-volume relationship for lobar volume reduction after stereotactic ablative radiation therapy (SABR) of lung tumors, hypothesizing that SABR could achieve therapeutic volume reduction if applied in emphysema. Methods and Materials: We retrospectively identified patients treated from 2007 to 2011 who had SABR for 1 lung tumor, pre-SABR pulmonary function testing, and ≥6 months computed tomographic (CT) imaging follow-up. We contoured the treated lobe and untreated adjacent lobe(s) on CT before and after SABR and calculated their volume changes relative to the contoured total (bilateral) lung volume (TLV). We correlated lobar volume reduction with the volume receiving high biologically effective doses (BED, α/β = 3). Results: 27 patients met the inclusion criteria, with a median CT follow-up time of 14 months. There was no grade ≥3 toxicity. The median volume reduction of the treated lobe was 4.4% of TLV (range, −0.4%-10.8%); the median expansion of the untreated adjacent lobe was 2.6% of TLV (range, −3.9%-11.6%). The volume reduction of the treated lobe was positively correlated with the volume receiving BED ≥60 Gy (r{sup 2}=0.45, P=.0001). This persisted in subgroups determined by high versus low pre-SABR forced expiratory volume in 1 second, treated lobe CT emphysema score, number of fractions, follow-up CT time, central versus peripheral location, and upper versus lower lobe location, with no significant differences in effect size between subgroups. Volume expansion of the untreated adjacent lobe(s) was positively correlated with volume reduction of the treated lobe (r{sup 2}=0.47, P<.0001). Conclusions: We identified a dose-volume response for treated lobe volume reduction and adjacent lobe compensatory expansion after lung tumor SABR, consistent across

  4. A Prospective Randomized Study of the Radiotherapy Volume for Limited-stage Small Cell Lung Cancer: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Xiao HU

    2010-07-01

    Full Text Available Background and objective Controversies exists with regard to target volumes as far as thoracic radiotherapy (TRT is concerned in the multimodality treatment for limited-stage small cell lung cancer (LSCLC. The aim of this study is to prospectively compare the local control rate, toxicity profiles, and overall survival (OS between patients received different target volumes irradiation after induction chemotherapy. Methods LSCLC patients received 2 cycles of etoposide and cisplatin (EP induction chemotherapy and were randomly assigned to receive TRT to either the post- or pre-chemotherapy tumor extent (GTV-T as study arm and control arm, CTV-N included the positive nodal drainage area for both arms. One to 2 weeks after induction chemotherapy, 45 Gy/30 Fx/19 d TRT was administered concurrently with the third cycle of EP regimen. After that, additional 3 cycles of EP consolidation were administered. Prophylactic cranial irradiation (PCI was administered to patients with a complete response. Results Thirty-seven and 40 patients were randomly assigned to study arm and control arm. The local recurrence rates were 32.4% and 28.2% respectively (P=0.80; the isolated nodal failure (INF rate were 3.0% and 2.6% respectively (P=0.91; all INF sites were in the ipsilateral supraclavicular fossa. Medastinal N3 disease was the risk factor for INF (P=0.02, OR=14.13, 95%CI: 1.47-136.13. During radiotherapy, grade I, II weight loss was observed in 29.4%, 5.9% and 56.4%, 7.7% patients respectively (P=0.04. Grade 0-I and II-III late pulmonary injury was developed in 97.1%, 2.9% and 86.4%, 15.4% patients respectively (P=0.07. Median survival time was 22.1 months and 26.9 months respectively. The 1 to 3-year OS were 77.9%, 44.4%, 37.3% and 75.8%, 56.3%, 41.7% respectively (P=0.79. Conclusion The preliminary results of this study indicate that irradiant the post-chemotherapy tumor extent (GTV-T and positive nodal drainage area did not decrease local control and overall

  5. Radical prostatectomy and positive surgical margins: tumor volume and Gleason score predicts cancer outcome

    International Nuclear Information System (INIS)

    La Roca, Ricardo L.R. Felts de; Fonseca, Francisco Paula da; Cunha, Isabela Werneck da; Bezerra, Stephania Martins

    2013-01-01

    Introduction: positive surgical margins (PSMs) are common adverse factors to predict the outcome of a patient submitted to radical prostatectomy (PR). However, not all of these men will follow with biochemical (BCR) or clinical (CR) recurrence. Relationship between PSMs with these recurrent events has to be correlated with other clinicopathological findings in order to recognize more aggressive tumors in order to recommend complementary treatment to these selected patients. Materials and methods: we retrospectively reviewed the outcome of 228 patients submitted to open retropubic RP between March 1991 and June 2008, where 161 had and 67 did not have PSMs. Minimum follow-up time was considered 2 years after surgery. BCR was considered when PSA ≥ 0.2 ng/ml. CR was determined when clinical evidence of tumor appeared. Chi-square test was used to correlate clinical and pathologic variables with PSMs. The estimated 5-year risk of BCR and CR in presence of PSMs was determined using the Kaplan-Meier method and compared to log-rank tests. Results: from the total of 228 patients, 161 (71%) had PSMs, while 67 (29%) had negative surgical margins (NSMs). Prostatic circumferential margin was the most common (43.4%) site. Univariate analysis showed statistically significant (p < 0.001) associations between the presence of PSMs and BCR, but not with CR (p = 0.06). Among 161 patients with PSMs, 61 (37.8%) presented BCR, while 100 (62.8%) did not. Predicting progression-free survival for 5 years, BCR was correlated with pathological stage; Gleason score; pre-treatment PSA; tumor volume in specimen; capsular and perineural invasion; presence and number of PSMs. RC correlated only with angiolymphatic invasion and Gleason score. Considering univariate analyses the clinicopathological factors predicting BCR for 5 years, results statistically significant links with prostate weight; pre-treatment PSA; Gleason score; pathological stage; tumor volume; PSMs; capsular and perineural

  6. Radical prostatectomy and positive surgical margins: tumor volume and Gleason score predicts cancer outcome

    Energy Technology Data Exchange (ETDEWEB)

    La Roca, Ricardo L.R. Felts de, E-mail: Ricardo@delarocaurologia.com.br [Hospital do Cancer A.C. Camargo, Sao Paulo, SP (Brazil); Fonseca, Francisco Paula da, E-mail: fpf@uol.com.br [Hospital do Cancer A.C. Camargo, Sao Paulo, SP (Brazil). Divisao de Urologia. Dept. de Cirurgia Pelvica; Cunha, Isabela Werneck da; Bezerra, Stephania Martins, E-mail: iwerneck@gmail.com, E-mail: stephaniab@gmail.com [Hospital do Cancer A.C. Camargo, Sao Paulo, SP (Brazil). Dept. de Patologia

    2013-07-01

    Introduction: positive surgical margins (PSMs) are common adverse factors to predict the outcome of a patient submitted to radical prostatectomy (PR). However, not all of these men will follow with biochemical (BCR) or clinical (CR) recurrence. Relationship between PSMs with these recurrent events has to be correlated with other clinicopathological findings in order to recognize more aggressive tumors in order to recommend complementary treatment to these selected patients. Materials and methods: we retrospectively reviewed the outcome of 228 patients submitted to open retropubic RP between March 1991 and June 2008, where 161 had and 67 did not have PSMs. Minimum follow-up time was considered 2 years after surgery. BCR was considered when PSA {>=} 0.2 ng/ml. CR was determined when clinical evidence of tumor appeared. Chi-square test was used to correlate clinical and pathologic variables with PSMs. The estimated 5-year risk of BCR and CR in presence of PSMs was determined using the Kaplan-Meier method and compared to log-rank tests. Results: from the total of 228 patients, 161 (71%) had PSMs, while 67 (29%) had negative surgical margins (NSMs). Prostatic circumferential margin was the most common (43.4%) site. Univariate analysis showed statistically significant (p < 0.001) associations between the presence of PSMs and BCR, but not with CR (p = 0.06). Among 161 patients with PSMs, 61 (37.8%) presented BCR, while 100 (62.8%) did not. Predicting progression-free survival for 5 years, BCR was correlated with pathological stage; Gleason score; pre-treatment PSA; tumor volume in specimen; capsular and perineural invasion; presence and number of PSMs. RC correlated only with angiolymphatic invasion and Gleason score. Considering univariate analyses the clinicopathological factors predicting BCR for 5 years, results statistically significant links with prostate weight; pre-treatment PSA; Gleason score; pathological stage; tumor volume; PSMs; capsular and perineural

  7. SU-E-J-35: Using CBCT as the Alternative Method of Assessing ITV Volume

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y; Turian, J; Templeton, A; Redler, G; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2015-06-15

    Purpose To study the accuracy of Internal Target Volumes (ITVs) created on cone beam CT (CBCT) by comparing the visible target volume on CBCT to volumes (GTV, ITV, and PTV) outlined on free breathing (FB) CT and 4DCT. Methods A Quasar Cylindrical Motion Phantom with a 3cm diameter ball (14.14 cc) embedded within a cork insert was set up to simulate respiratory motion with a period of 4 seconds and amplitude of 2cm superioinferiorly and 1cm anterioposteriorly. FBCT and 4DCT images were acquired. A PTV-4D was created on the 4DCT by applying a uniform margin of 5mm to the ITV-CT. PTV-FB was created by applying a margin of the motion range plus 5mm, i.e. total of 1.5cm laterally and 2.5cm superioinferiorly to the GTV outlined on the FBCT. A dynamic conformal arc was planned to treat the PTV-FB with 1mm margin. A CBCT was acquired before the treatment, on which the target was delineated. During the treatment, the position of the target was monitored using the EPID in cine mode. Results ITV-CBCT and ITV-CT were measured to be 56.6 and 62.7cc, respectively, with a Dice Coefficient (DC) of 0.94 and disagreement in center of mass (COM) of 0.59 mm. On the other hand, GTV-FB was 11.47cc, 19% less than the known volume of the ball. PTV-FB and PTV-4D were 149 and 116 cc, with a DC of 0.71. Part of the ITV-CT was not enclosed by the PTV-FB despite the large margin. The cine EPID images have confirmed geometrical misses of the target. Similar under-coverage was observed in one clinical case and captured by the CBCT, where the implanted fiducials moved outside PTV-FB. Conclusion ITV-CBCT is in good agreement with ITV-CT. When 4DCT was not available, CBCT can be an effective alternative in determining and verifying the PTV margin.

  8. Daily cone-beam computed tomography used to determine tumour shrinkage and localisation in lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Marquard Knap, Marianne; Nordsmark, Marianne (Aarhus Univ. Hospital, Dept. of Oncology, Aarhus (Denmark)), E-mail: mariknap@rm.dk; Hoffmann, Lone; Vestergaard, Anne (Aarhus Univ. Hospital, Dept. of Medical Physics, Aarhus (Denmark))

    2010-10-15

    Purpose/Objective. Daily Cone-beam computed tomography (CBCT) in room imaging is used to determine tumour shrinkage during a full radiotherapy (RT) course. In addition, relative interfractional tumour and lymph node motion is determined for each RT fraction. Material and methods. From November 2009 to March 2010, 20 consecutive lung cancer patients (14 NSCLC, 6 SCLC) were followed with daily CBCT during RT. The gross tumour volume for lung tumour (GTV-t) was visible in all daily CBCT scans and was delineated at the beginning, at the tenth and the 20th fraction, and at the end of treatment. Whenever visible, the gross tumour volume for lymph nodes (GTV-n) was also delineated. The GTV-t and GTV-n volumes were determined. All patients were setup according to an online bony anatomy match. Retrospectively, matching based on the internal target volume (ITV), the GTV-t or the GTV-n was performed. Results. In eight patients, we observed a significant GTV-t shrinkage (15-40%) from the planning CT until the last CBCT. Only five patients presented a significant shrinkage (21-37%) in the GTV-n. Using the daily CBCT imaging, it was found that the mean value of the difference between a setup using the skin tattoo and an online matching using the ITV was 7.3+-2.9 mm (3D vector in the direction of ITV). The mean difference between the ITV and bony anatomy matching was 3.0+-1.3 mm. Finally, the mean distance between the GTV-t and the GTV-N was 2.9+-1.6 mm. Conclusion. One third of all patients with lung cancer undergoing chemo-RT achieved significant tumour shrinkage from planning CT until the end of the radiotherapy. Differences in GTV-t and GTV-n motion was observed and matching using the ITV including both GTV-t and GTV-n is therefore preferable.

  9. Daily cone-beam computed tomography used to determine tumour shrinkage and localisation in lung cancer patients

    International Nuclear Information System (INIS)

    Marquard Knap, Marianne; Nordsmark, Marianne; Hoffmann, Lone; Vestergaard, Anne

    2010-01-01

    Purpose/Objective. Daily Cone-beam computed tomography (CBCT) in room imaging is used to determine tumour shrinkage during a full radiotherapy (RT) course. In addition, relative interfractional tumour and lymph node motion is determined for each RT fraction. Material and methods. From November 2009 to March 2010, 20 consecutive lung cancer patients (14 NSCLC, 6 SCLC) were followed with daily CBCT during RT. The gross tumour volume for lung tumour (GTV-t) was visible in all daily CBCT scans and was delineated at the beginning, at the tenth and the 20th fraction, and at the end of treatment. Whenever visible, the gross tumour volume for lymph nodes (GTV-n) was also delineated. The GTV-t and GTV-n volumes were determined. All patients were setup according to an online bony anatomy match. Retrospectively, matching based on the internal target volume (ITV), the GTV-t or the GTV-n was performed. Results. In eight patients, we observed a significant GTV-t shrinkage (15-40%) from the planning CT until the last CBCT. Only five patients presented a significant shrinkage (21-37%) in the GTV-n. Using the daily CBCT imaging, it was found that the mean value of the difference between a setup using the skin tattoo and an online matching using the ITV was 7.3±2.9 mm (3D vector in the direction of ITV). The mean difference between the ITV and bony anatomy matching was 3.0±1.3 mm. Finally, the mean distance between the GTV-t and the GTV-N was 2.9±1.6 mm. Conclusion. One third of all patients with lung cancer undergoing chemo-RT achieved significant tumour shrinkage from planning CT until the end of the radiotherapy. Differences in GTV-t and GTV-n motion was observed and matching using the ITV including both GTV-t and GTV-n is therefore preferable.

  10. Comparison of adrenal tumor treatment results by different volume of surgical interventions.

    Directory of Open Access Journals (Sweden)

    Dmitriy J. Semenov

    2016-10-01

    Full Text Available In recent years detection of various adrenal tumors has increased greatly. Total adrenalectomy remains the standart of surgical managment for adrenal tumors, although, the vast majority of these tumors turn out to be benign on the routine histological examination. Performing organ-sparing surgery would allow to avoid hormone insufficiency after total adrenalectomy. Aim: to compare results of adrenal tumors treatment by different volume of surgical interventions. Materials and methods. We evaluated the short-term results of 237 patients treatment with various adrenal tumors. Total adrenalectomy were performed on 206 cases, 31 patients undergone adrenal resection. There were analyzed intraoperative and postoperative complications, assessed the hormonal status of the patients, depending on the extent of surgical treatment. Besides, the long-term results were evaluated in 141 patients underwent total adrenalectomy and 30 patients after organ-sparing surgery. Moreover, we analyzed the percentage of recurrenses, assessed the hormonal status of the patients and the effectiveness of treatment. Results. Performing the organ-sparing operations doesn't increase the risk of intraoperative complications. In all patients with hormone-active tumors we found decline of pathologically increased hormone levels and trend to regress of clinical manifestations of the disease in early postoperative period. We found no difference in local recurrences in both groups, and its occurrence did not exceed 3.33%. Refractory postoperative adrenal insufficiency was observed only in corticosteroma patients in spite of surgery volume. In case of both side adrenal tumors there was no need in replacement therapy after total adrenalectomy from there one side and resection from the other. Conclusions. In cases of adrenal tumor performing organ-sparing operations is advisable, if there are no preoperative sings of malignancy.

  11. Dosimetric effect of target expansion and setup uncertainty during radiation therapy in pediatric craniopharyngioma

    International Nuclear Information System (INIS)

    Beltran, Chris; Naik, Mihir; Merchant, Thomas E.

    2010-01-01

    Purpose: Investigate the effect of tumor change and setup uncertainties on target coverage for pediatric craniopharyngioma during RT. Methods and materials: Fifteen pediatric patients with craniopharyngioma (mean 5.1 years) were included in this study. MRI was performed before and a median of six times during RT to monitor changes in the tumor volume. IMRT plans were created and compared to the CRT plan used for treatment. The role of adaptive therapy based on GTV changes was investigated. Dosimetric effects of interfraction and intrafraction motion were examined. Results: The mean of the maximal change in the GTV was 28.5% [-20.7% to 82.0%]. For the standard margin IMRT plans, the mean D 95 of the base plan on the base target was 53.6 Gy [53.1-54.1]. The mean D 95 of the base plans on the adaptive targets was 52.1 Gy [47.9-54.1]. The D 95 for the adaptive plan on the adaptive target was 53.8 Gy [53.4-54.3]. A linear regression equation of y=-0.12x , r 2 = 0.70, was found for the percent change in D 95 of the PTV (y) vs. the percent change in the GTV (x). Inter and intrafraction motion did not affect the target coverage for standard and reduced margin plans. Conclusions: The GTV of pediatric craniopharyngioma patients change size during therapy and adaptive planning is critical for conformal plans; therefore early and regular surveillance imaging is required.

  12. The Comparison Study of Quadratic Infinite Beam Program on Optimization Instensity Modulated Radiation Therapy Treatment Planning (IMRTP) between Threshold and Exponential Scatter Method with CERR® In The Case of Lung Cancer

    International Nuclear Information System (INIS)

    Hardiyanti, Y; Haekal, M; Waris, A; Haryanto, F

    2016-01-01

    This research compares the quadratic optimization program on Intensity Modulated Radiation Therapy Treatment Planning (IMRTP) with the Computational Environment for Radiotherapy Research (CERR) software. We assumed that the number of beams used for the treatment planner was about 9 and 13 beams. The case used the energy of 6 MV with Source Skin Distance (SSD) of 100 cm from target volume. Dose calculation used Quadratic Infinite beam (QIB) from CERR. CERR was used in the comparison study between Gauss Primary threshold method and Gauss Primary exponential method. In the case of lung cancer, the threshold variation of 0.01, and 0.004 was used. The output of the dose was distributed using an analysis in the form of DVH from CERR. The maximum dose distributions obtained were on the target volume (PTV) Planning Target Volume, (CTV) Clinical Target Volume, (GTV) Gross Tumor Volume, liver, and skin. It was obtained that if the dose calculation method used exponential and the number of beam 9. When the dose calculation method used the threshold and the number of beam 13, the maximum dose distributions obtained were on the target volume PTV, GTV, heart, and skin. (paper)

  13. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    Science.gov (United States)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  14. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Dittmann, Florian; Le, Matthieu; Shih, Helen A; Menze, Bjoern H; Ayache, Nicholas; Konukoglu, Ender

    2014-01-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher–Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  15. O padrão 4 de Gleason e o volume tumoral no prognóstico do carcinoma da próstata Well differentiated localized prostate carcinoma: prognostic relevance of tertiary Gleason pattern 4 and tumor volume

    Directory of Open Access Journals (Sweden)

    Katia R. M. Leite

    2005-12-01

    Full Text Available OBJETIVOS: A introdução de terapia adjuvante pós-prostatectomia radical foi recentemente proposta na literatura na tentativa de se obter melhores taxas de sobrevida em pacientes com câncer de próstata com maior risco de recidiva da doença. Alguns parâmetros anatomopatológicos têm sido considerados bons determinantes dos riscos de recorrência local ou à distância desses tumores. Recentemente o volume tumoral e a presença de padrão terciário de Gleason menos diferenciado foram apresentados como os melhores indicadores do comportamento do carcinoma da próstata. A proposta deste estudo é avaliar a importância da presença e porcentagem do padrão 4 de Gleason e do volume tumoral na evolução de pacientes portadores da adenocarcinoma bem diferenciado de próstata, tratados com prostatectomia radical. MÉTODOS: Setenta e sete pacientes portadores de adenocarcinoma bem diferenciado da próstata, Gleason 6 ou menos, submetidos a prostatectomia radical entre 1995 e 1997 foram estudados. Trinta e sete pacientes sofreram recidiva bioquímica (PSA > 0,4 ng/ml, e 40 pacientes permaneceram livres de doença após seguimento mínimo de cinco anos. A presença e porcentagem do padrão 4 de Gleason, a porcentagem de tumor comprometendo a glândula (considerado como "volume tumoral", a infiltração capsular e a invasão do tecido extraprostático foram submetidos a análise uni e multivariada para determinação da associação destes parâmetros com a recidiva bioquímica. RESULTADOS: O volume tumoral foi o parâmetro mais importante para determinação da recorrência bioquímica em análises uni e multivariadas. A mediana do volume foi de 25% nos pacientes que sofreram recidiva e 11,5% naqueles que permaneceram livres de doença (p=0,003. A porcentagem de padrão 4 de Gleason foi importante apenas em análise univariada. A mediana da porcentagem de Gleason 4 foi de 7,5% para os pacientes que não sofreram recidiva e de 19% naqueles que

  16. Dynamic contrast-enhanced MRI for automatic detection of foci @]@of residual or recurrent disease after prostatectomy

    Energy Technology Data Exchange (ETDEWEB)

    Parra, N.A.; Orman, Amber; Abramowitz, Matthew; Pollack, Alan; Stoyanova, Radka [University of Miami Miller School of Medicine, Department of Radiation Oncology, Miami, FL (United States); Padgett, Kyle [University of Miami Miller School of Medicine, Department of Radiation Oncology, Miami, FL (United States); University of Miami Miller School of Medicine, Department of Radiology, Miami, FL (United States); Casillas, Victor [University of Miami Miller School of Medicine, Department of Radiology, Miami, FL (United States); Punnen, Sanoj [University of Miami Miller School of Medicine, Department of Urology, Miami, FL (United States)

    2017-01-15

    This study aimed to develop an automated procedure for identifying suspicious foci of residual/recurrent disease in the prostate bed using dynamic contrast-enhanced-MRI (DCE-MRI) in prostate cancer patients after prostatectomy. Data of 22 patients presenting for salvage radiotherapy (RT) with an identified gross tumor volume (GTV) in the prostate bed were analyzed retrospectively. An unsupervised pattern recognition method was used to analyze DCE-MRI curves from the prostate bed. Data were represented as a product of a number of signal-vs.-time patterns and their weights. The temporal pattern, characterized by fast wash-in and gradual wash-out, was considered the ''tumor'' pattern. The corresponding weights were thresholded based on the number (1, 1.5, 2, 2.5) of standard deviations away from the mean, denoted as DCE1.0,.., DCE2.5, and displayed on the T2-weighted MRI. The resultant four volumes were compared with the GTV and maximum pre-RT prostate-specific antigen (PSA) level. Pharmacokinetic modeling was also carried out. Principal component analysis determined 2-4 significant patterns in patients' DCE-MRI. Analysis and display of the identified suspicious foci was performed in commercial software (MIM Corporation, Cleveland, OH, USA). In general, DCE1.0/DCE1.5 highlighted larger areas than GTV. DCE2.0 and GTV were significantly correlated (r = 0.60, p < 0.05). DCE2.0/DCA2.5 were also significantly correlated with PSA (r = 0.52, 0.67, p < 0.05). K{sup trans} for DCE2.5 was statistically higher than the GTV's K{sup trans} (p < 0.05), indicating that the automatic volume better captures areas of malignancy. A software tool was developed for identification and visualization of the suspicious foci in DCE-MRI from post-prostatectomy patients and was integrated into the treatment planning system. (orig.) [German] Entwicklung eines automatischen Analyseverfahrens, um nach Prostatektomie mittels dynamischer kontrastmittelverstaerkter

  17. Breathing-motion-compensated robotic guided stereotactic body radiation therapy. Patterns of failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stera, Susanne; Imhoff, Detlef; Roedel, Claus [University Hospital Frankfurt, Department of Radiation Oncology, Frankfurt am Main (Germany); Balermpas, Panagiotis; Keller, Christian [University Hospital Frankfurt, Department of Radiation Oncology, Frankfurt am Main (Germany); Saphir Radiosurgery Center, Frankfurt (Germany); Chan, Mark K.H. [University Medical Center Schleswig-Holstein, Department of Radiation Oncology, Kiel (Germany); Huttenlocher, Stefan [Saphir Radiosurgery Center, Guestrow (Germany); Wurster, Stefan [Saphir Radiosurgery Center, Guestrow (Germany); University Medicine Greifswald, Department of Radiation Oncology, Greifswald (Germany); Rades, Dirk [University Medical Center Schleswig-Holstein, Department of Radiation Oncology, Luebeck (Germany); Dunst, Juergen [University Medical Center Schleswig-Holstein, Department of Radiation Oncology, Kiel (Germany); University Hospital Copenhagen, Department of Radiation Oncology, Copenhagen (Denmark); Hildebrandt, Guido [University Medicine Rostock, Department of Radiation Oncology, Rostock (Germany); Blanck, Oliver [Saphir Radiosurgery Center, Frankfurt (Germany); University Medical Center Schleswig-Holstein, Department of Radiation Oncology, Kiel (Germany); Saphir Radiosurgery Center, Guestrow (Germany)

    2018-02-15

    We retrospectively evaluated the patterns of failure for robotic guided real-time breathing-motion-compensated (BMC) stereotactic body radiation therapy (SBRT) in the treatment of tumors in moving organs. Between 2011 and 2016, a total of 198 patients with 280 lung, liver, and abdominal tumors were treated with BMC-SBRT. The median gross tumor volume (GTV) was 12.3 cc (0.1-372.0 cc). Medians of mean GTV BED{sub α/β=10} {sub Gy} (BED = biological effective dose) was 148.5 Gy{sub 10} (31.5-233.3 Gy{sub 10}) and prescribed planning target volume (PTV) BED{sub α/β=10} {sub Gy} was 89.7 Gy{sub 10} (28.8-151.2 Gy{sub 10}), respectively. We analyzed overall survival (OS) and local control (LC) based on various factors, including BEDs with α/ β ratios of 15 Gy (lung metastases), 21 Gy (primary lung tumors), and 27 Gy (liver metastases). Median follow-up was 10.4 months (2.0-59.0 months). The 2-year actuarial LC was 100 and 86.4% for primary early and advanced stage lung tumors, respectively, 100% for lung metastases, 82.2% for liver metastases, and 90% for extrapulmonary extrahepatic metastases. The 2-year OS rate was 47.9% for all patients. In uni- and multivariate analysis, comparatively lower PTV prescription dose (equivalence of 3 x 12-13 Gy) and higher average GTV dose (equivalence of 3 x 18 Gy) to current practice were significantly associated with LC. For OS, Karnofsky performance score (100%), gender (female), and SBRT without simultaneous chemotherapy were significant prognostic factors. Grade 3 side effects were rare (0.5%). Robotic guided BMC-SBRT can be considered a safe and effective treatment for solid tumors in moving organs. To reach sufficient local control rates, high average GTV doses are necessary. Further prospective studies are warranted to evaluate these points. (orig.) [German] Wir fuehrten eine retrospektive Untersuchung der Rezidivmuster bei der Behandlung von Tumoren in bewegten Organen mittels robotergefuehrter in Echtzeit

  18. Outcome after intensity modulated radiotherapy for anaplastic thyroid carcinoma

    International Nuclear Information System (INIS)

    He, Xiayun; Li, Duanshu; Hu, Chaosu; Wang, Zhuoying; Ying, Hongmei; Wu, Yi

    2014-01-01

    Anaplastic thyroid carcinoma (ATC) is a malignancy with one of the highest fatality rates. We reviewed our recent clinical experience with intensity modulated radiotherapy (IMRT) combined with surgery and chemotherapy for the management of ATC. 13 patients with ATC who were treated by IMRT in our institution between October 2008 and February 2011, have been analyzed. The target volume for IMRT was planned to include Gross tumor volume (GTV): primary tumor plus any N + disease (66 Gy/33 F/6.6 W), with elective irradiation of thyroid bed, bilateral level II through VI and mediastinal lymph nodes to the level of the carina (54-60 Gy). Seven patients received surgical intervention and eleven patients had chemotherapy. The median radiotherapy dose to GTV was 60 Gy/30 fractions/6 weeks. The median survival time of the 13 patients was 9 months. The direct causes of death were distant metastases (75%) and progression of the locoregional disease (25%). Ten patients were spared dyspnea and tracheostomy because their primary neck lesion did not progress. The results showed that IMRT combined by surgery and chemotherapy for ATC might be beneficial to improve locoregional control. Further new therapies are needed to control metastases

  19. Effectiveness of the Respiratory Gating System for Stereotectic Radiosurgery of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Heung Kwon; Kwon, Kyung Tae; Park, Cheol Su; Yang, Oh Nam; Kim, Min Su; Kim, Jeong Man [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2005-09-15

    For stereotactic radiosurgery (SRS) of a tumor in the region whose movement due to respiration is significant, like Lung lower lobe, the gated therapy, which delivers radiation dose to the selected respiratory phases when tumor motion is small, was performed using the Respiratory gating system and its clinical effectiveness was evaluated. For two SRS patients with a tumor in Lung lower lobe, a marker block (infrared reflector) was attached on the abdomen. While patient' respiratory cycle was monitored with Real-time Position Management (RPM, Varian, USA), 4D CT was performed (10 phases per a cycle). Phases in which tumor motion did not change rapidly were decided as treatment phases. The treatment volume was contoured on the CT images for selected treatment phases using maximum intensity projection (MIP) method. In order to verify setup reproducibility and positional variation, 4D CT was repeated. Gross tumor volume (GTV) showed maximum movement in superior-inferior direction. For patient no 1, motion of GTV was reduced to 2.6 mm in treatment phases (30-60%), while that was 9.4 mm in full phases (0-90%) and for patient no 2, it was reduced to 2.3 mm in treatment phases (30-70%), while it was 11.7 mm in full phases (0-90%). When comparing two sets of CT images, setup errors in all the directions were within 3 mm. Since tumor motion was reduced less than 5 mm, the Respiratory gating system for SRS of Lung lower lobe is useful.

  20. Dosimetric Evaluation of Automatic Segmentation for Adaptive IMRT for Head-and-Neck Cancer

    International Nuclear Information System (INIS)

    Tsuji, Stuart Y.; Hwang, Andrew; Weinberg, Vivian; Yom, Sue S.; Quivey, Jeanne M.; Xia Ping

    2010-01-01

    Purpose: Adaptive planning to accommodate anatomic changes during treatment requires repeat segmentation. This study uses dosimetric endpoints to assess automatically deformed contours. Methods and Materials: Sixteen patients with head-and-neck cancer had adaptive plans because of anatomic change during radiotherapy. Contours from the initial planning computed tomography (CT) were deformed to the mid-treatment CT using an intensity-based free-form registration algorithm then compared with the manually drawn contours for the same CT using the Dice similarity coefficient and an overlap index. The automatic contours were used to create new adaptive plans. The original and automatic adaptive plans were compared based on dosimetric outcomes of the manual contours and on plan conformality. Results: Volumes from the manual and automatic segmentation were similar; only the gross tumor volume (GTV) was significantly different. Automatic plans achieved lower mean coverage for the GTV: V95: 98.6 ± 1.9% vs. 89.9 ± 10.1% (p = 0.004) and clinical target volume: V95: 98.4 ± 0.8% vs. 89.8 ± 6.2% (p 3 of the spinal cord 39.9 ± 3.7 Gy vs. 42.8 ± 5.4 Gy (p = 0.034), but no difference for the remaining structures. Conclusions: Automatic segmentation is not robust enough to substitute for physician-drawn volumes, particularly for the GTV. However, it generates normal structure contours of sufficient accuracy when assessed by dosimetric end points.

  1. Evaluation of the lower limit of accuracy in a virtual simulation system; Evaluacion del limite inferior de precision en un sistema de simulacion virtual

    Energy Technology Data Exchange (ETDEWEB)

    Bea Gilbert, J.; Banos Capilla, M. C.; Garcia Martinez, M. A.; Ros Garcia, L.; Gil Deltoro, P.; Larrea Rabassa, L. M.; Lopez Munoz, E.

    2011-07-01

    The assessment of tumor margins in Radiotherapy is linked to the quality and accuracy of treatment. The determination of a reliable PTV is determined by multiple components, such as determining the GTV (or CTV), their physiological movements and reproducibility of placement in the diagnosis and treatment units, among others. Likewise, separate the various variables is a complex process dependent largely on the diagnostic units, locking systems and tumor location. Our intention is to obtain a threshold for determining treatment volumes based on these parameters.

  2. Automatic segmentation of tumor-laden lung volumes from the LIDC database

    Science.gov (United States)

    O'Dell, Walter G.

    2012-03-01

    The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.

  3. Primary Tumor Volume Is an Important Predictor of Clinical Outcomes Among Patients With Locally Advanced Squamous Cell Cancer of the Head and Neck Treated With Definitive Chemoradiotherapy

    International Nuclear Information System (INIS)

    Strongin, Anna; Yovino, Susannah; Taylor, Rodney; Wolf, Jeffrey; Cullen, Kevin; Zimrin, Ann; Strome, Scott; Regine, William; Suntharalingam, Mohan

    2012-01-01

    Purpose: The tumor volume has been established as a significant predictor of outcomes among patients with head-and-neck cancer undergoing radiotherapy alone. The present study attempted to add to the existing data on tumor volume as a prognostic factor among patients undergoing chemoradiotherapy. Methods and Materials: A total of 78 patients who had undergone definitive chemoradiotherapy for Stage III-IV squamous cell cancer of the hypopharynx, oropharynx, and larynx were identified. The primary tumor volumes were calculated from the treatment planning computed tomography scans, and these were correlated to the survival and tumor control data obtained from the retrospective analysis. Results: The interval to progression correlated with the primary tumor volume (p = .007). The critical cutoff point for the tumor volume was identified as 35 cm 3 , and patients with a tumor volume 3 had a significantly better prognosis than those with a tumor volume >35 cm 3 at 5 years (43% vs. 71%, p = .010). Longer survival was also correlated with smaller primary tumor volumes (p = .022). Similarly, patients with a primary tumor volume 3 had a better prognosis in terms of both progression-free survival (61% vs. 33%, p = .004) and overall survival (84% vs. 41%, p = 3 larger than tumors without locoregional failure (p = .028) and 27.1-cm 3 larger than tumors that recurred as distant metastases (p = .020). Conclusion: The results of our study have shown that the primary tumor volume is a significant prognostic factor in patients with advanced cancer of the head and neck undergoing definitive chemoradiotherapy and correlated with the treatment outcomes better than the T or N stage.

  4. Serial megavoltage CT imaging during external beam radiotherapy for non-small-cell lung cancer: Observations on tumor regression during treatment

    International Nuclear Information System (INIS)

    Kupelian, Patrick A.; Ramsey, Chester; Meeks, Sanford L.; Willoughby, Twyla R.; Forbes, Alan; Wagner, Thomas H.; Langen, Katja M.

    2005-01-01

    Purpose: The ability to obtain soft-tissue imaging in the treatment room, such as with megavoltage CT imaging, enables the observation of tumor regression during a course of external beam radiation therapy. In this current study, we report on the most extensive study looking at the rate of regression of non-small-cell lung cancers during a course of external beam radiotherapy by analyzing serial megavoltage CT images obtained on 10 patients. Methods and Materials: The analysis is performed on 10 patients treated with the Helical Tomotherapy Hi*Art device. All 10 patients had non-small-cell lung cancer. A total of 274 megavoltage CT sets were obtained on the 10 patients (average, 27 scans per patient; range, 9-35). All patients had at least a scan at beginning and at the end of treatment. The frequency of scanning was determined by the treating physician. The treatment was subsequently delivered with the Tomotherapy Hi*Art system. The gross tumor volumes (GTVs) were later contoured on each megavoltage CT scan, and tumor volumes were calculated. Although some patients were treated to draining nodal areas in addition to the primary tumor, only the primary GTVs were tracked. Response to treatment was quantified by the relative decrease in tumor volume over time, i.e., elapsed days from the first day of therapy. The individual GTVs ranged from 5.9 to 737.2 cc in volume at the start of treatment. In 6 of the 10 patients, dose recalculations were also performed to document potential variations in delivered doses within the tumors. The megavoltage CT scans were used, and the planned treatment was recalculated on the daily images. The hypothesis was that dose deposited in the target would increase throughout the course of radiotherapy because of tumor shrinkage and subsequent decreasing attenuation. Specifically, the dose received by 95% of the GTV (D 95 ) was monitored over time for each of the 6 patients treated at M.D. Anderson Cancer Center Orlando. Results: Regression

  5. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y [University of Kansas Hospital, Kansas City, KS (United States); Fullerton, G; Goins, B [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  6. Tumor Volume Reduction Rate Measured by Magnetic Resonance Volumetry Correlated With Pathologic Tumor Response of Preoperative Chemoradiotherapy for Rectal Cancer

    International Nuclear Information System (INIS)

    Yeo, Seung-Gu; Kim, Dae Yong; Kim, Tae Hyun; Jung, Kyung Hae; Hong, Yong Sang; Chang, Hee Jin; Park, Ji Won; Lim, Seok-Byung; Choi, Hyo Seong; Jeong, Seung-Yong

    2010-01-01

    Purpose: To determine whether the tumor volume reduction rate (TVRR) measured using three-dimensional region-of-interest magnetic resonance volumetry correlates with the pathologic tumor response after preoperative chemoradiotherapy (CRT) for locally advanced rectal cancer. Methods and Materials: The study included 405 patients with locally advanced rectal cancer (cT3-T4) who had undergone preoperative CRT and radical proctectomy. The tumor volume was measured using three-dimensional region-of-interest magnetic resonance volumetry before and after CRT but before surgery. We analyzed the correlation between the TVRR and the pathologic tumor response in terms of downstaging and tumor regression grade (TRG). Downstaging was defined as ypStage 0-I (ypT0-T2N0M0), and the TRG proposed by Dworak et al. was used. Results: The mean TVRR was 65.0% ± 22.3%. Downstaging and complete regression occurred in 167 (41.2%) and 58 (14.3%) patients, respectively. The TVRRs according to ypT classification (ypT0-T2 vs. ypT3-T4), ypN classification (ypN0 vs. ypN1-N2), downstaging (ypStage 0-I vs. ypStage II-III), good regression (TRG 3-4 vs. TRG 1-2), and complete regression (TRG 4 vs. TRG 1-3) were all significantly different (p 80%), the rates of ypT0-T2, ypN0, downstaging, and good regression were all significantly greater for patients with a TVRR of ≥60%, as was the complete regression rate for patients with a TVRR >80% (p <.05). Conclusion: The TVRR measured using three-dimensional region-of-interest magnetic resonance volumetry correlated significantly with the pathologic tumor response in terms of downstaging and TRG after preoperative CRT for locally advanced rectal cancer.

  7. WE-FG-202-08: Assessment of Treatment Response Via Longitudinal Diffusion MRI On A MRI-Guided System: Initial Experience of Quantitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Qi, X; Yang, Y; Yang, L; Low, D; Sheng, K [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To report our initial experience of systematic monitoring treatment response using longitudinal diffusion MR images on a Co-60 MRI-guided radiotherapy system. Methods: Four patients, including 2 head-and-necks, 1 sarcoma and 1 GBM treated on a 0.35 Tesla MRI-guided treatment system, were analyzed. For each patient, 3D TrueFISP MRIs were acquired during CT simulation and before each treatment for treatment planning and patient setup purposes respectively. Additionally, 2D diffusion-weighted MR images (DWI) were acquired weekly throughout the treatment course. The gross target volume (GTV) and brainstem (as a reference structure) were delineated on weekly 3D TrueFISP MRIs to monitor anatomy changes, the contours were then transferred onto the corresponding DWI images after fusing with the weekly TrueFISP images. The patient-specific temporal and spatial variations during the entire treatment course, such as anatomic changes, target apparent diffusion coefficient (ADC) distribution were evaluated in a longitudinal pattern. Results: Routine MRI revealed progressive soft-tissue GTV volume changes (up to 53%) for the H&N cases during the treatment course of 5–7 weeks. Within the GTV, the mean ADC values varied from −44% (ADC decrease) to +26% (ADC increase) in a week. The gradual increase of ADC value was inversely associated with target volume variation for one H&N case. The maximal changes of mean ADC values within the brainstem were 5.3% for the H&N cases. For the large size sarcoma and GBM tumors, spatial heterogeneity and temporal variations were observed through longitudinal ADC analysis. Conclusion: In addition to the superior soft-tissue visualization, the 0.35T MR system on ViewRay showed the potential to quantitatively measure the ADC values for both tumor and normal tissues. For normal tissue that is minimally affected by radiation, its ADC values are reproducible. Tumor ADC values show temporal and spatial fluctuation that can be exploited for

  8. Hypofractionated Image-Guided IMRT in Advanced Pancreatic Cancer With Simultaneous Integrated Boost to Infiltrated Vessels Concomitant With Capecitabine: A Phase I Study

    Energy Technology Data Exchange (ETDEWEB)

    Passoni, Paolo, E-mail: passoni.paolo@hsr.it [Department of Radiation Oncology, San Raffaele Scientific Institute, Milan (Italy); Reni, Michele [Department of Medical Oncology, San Raffaele Scientific Institute, Milan (Italy); Cattaneo, Giovanni M. [Department of Medical Physics, San Raffaele Scientific Institute, Milan (Italy); Slim, Najla [Department of Radiation Oncology, San Raffaele Scientific Institute, Milan (Italy); Cereda, Stefano [Department of Medical Oncology, San Raffaele Scientific Institute, Milan (Italy); Balzano, Gianpaolo; Castoldi, Renato [Department of Surgery, San Raffaele Scientific Institute, Milan (Italy); Longobardi, Barbara [Department of Medical Physics, San Raffaele Scientific Institute, Milan (Italy); Bettinardi, Valentino; Gianolli, Luigi [Department of Nuclear Medicine, San Raffaele Scientific Institute, Milan (Italy); Gusmini, Simone [Department of Radiology, San Raffaele Scientific Institute, Milan (Italy); Staudacher, Carlo [Department of Surgery, San Raffaele Scientific Institute, Milan (Italy); Calandrino, Riccardo [Department of Medical Physics, San Raffaele Scientific Institute, Milan (Italy); Di Muzio, Nadia [Department of Radiation Oncology, San Raffaele Scientific Institute, Milan (Italy)

    2013-12-01

    Purpose: To determine the maximum tolerated radiation dose (MTD) of an integrated boost to the tumor subvolume infiltrating vessels, delivered simultaneously with radical dose to the whole tumor and concomitant capecitabine in patients with pretreated advanced pancreatic adenocarcinoma. Methods and Materials: Patients with stage III or IV pancreatic adenocarcinoma without progressive disease after induction chemotherapy were eligible. Patients underwent simulated contrast-enhanced four-dimensional computed tomography and fluorodeoxyglucose-labeled positron emission tomography. Gross tumor volume 1 (GTV1), the tumor, and GTV2, the tumor subvolume 1 cm around the infiltrated vessels, were contoured. GTVs were fused to generate Internal Target Volume (ITV)1 and ITV2. Biological tumor volume (BTV) was fused with ITV1 to create the BTV+Internal Target Volume (ITV) 1. A margin of 5/5/7 mm (7 mm in cranium-caudal) was added to BTV+ITV1 and to ITV2 to create Planning Target Volume (PTV) 1 and PTV2, respectively. Radiation therapy was delivered with tomotherapy. PTV1 received a fixed dose of 44.25 Gy in 15 fractions, and PTV2 received a dose escalation from 48 to 58 Gy as simultaneous integrated boost (SIB) in consecutive groups of at least 3 patients. Concomitant chemotherapy was capecitabine, 1250 mg/m{sup 2} daily. Dose-limiting toxicity (DLT) was defined as any treatment-related G3 nonhematological or G4 hematological toxicity occurring during the treatment or within 90 days from its completion. Results: From June 2005 to February 2010, 25 patients were enrolled. The dose escalation on the SIB was stopped at 58 Gy without reaching the MTD. One patient in the 2{sup nd} dose level (50 Gy) had a DLT: G3 acute gastric ulcer. Three patients had G3 late adverse effects associated with gastric and/or duodenal mucosal damage. All patients received the planned dose of radiation. Conclusions: A dose of 44.25 Gy in 15 fractions to the whole tumor with an SIB of 58 Gy to small

  9. Interfractional Dose Variations in Intensity-Modulated Radiotherapy With Breath-Hold for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Mitsuhiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Nakamura, Akira [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Shiinoki, Takehiro [Department of Nuclear Engineering, Kyoto University Graduate School of Engineering, Kyoto (Japan); Matsuo, Yukinori [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan); Nakata, Manabu [Clinical Radiology Service Division, Kyoto University Hospital, Kyoto (Japan); Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro [Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto (Japan)

    2012-04-01

    Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports, was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the

  10. Viable tumor volume: Volume of interest within segmented metastatic lesions, a pilot study of proposed computed tomography response criteria for urothelial cancer

    International Nuclear Information System (INIS)

    Folio, Les Roger; Turkbey, Evrim B.; Steinberg, Seth M.; Apolo, Andrea B.

    2015-01-01

    Highlights: • It is clear that 2D axial measurements are incomplete assessments in metastatic disease; especially in light of evolving antiangiogenic therapies that can result in tumor necrosis. • Our pilot study demonstrates that taking volumetric density into account can better predict overall survival when compared to RECIST, volumetric size, MASS and Choi. • Although volumetric segmentation and further density analysis may not yet be feasible within routine workflows, the authors believe that technology advances may soon make this possible. - Abstract: Objectives: To evaluate the ability of new computed tomography (CT) response criteria for solid tumors such as urothelial cancer (VTV; viable tumor volume) to predict overall survival (OS) in patients with metastatic bladder cancer treated with cabozantinib. Materials and methods: We compared the relative capabilities of VTV, RECIST, MASS (morphology, attenuation, size, and structure), and Choi criteria, as well as volume measurements, to predict OS using serial follow-up contrast-enhanced CT exams in patients with metastatic urothelial carcinoma. Kaplan–Meier curves and 2-tailed log-rank tests compared OS based on early RECIST 1.1 response against each of the other criteria. A Cox proportional hazards model assessed response at follow-up exams as a time-varying covariate for OS. Results: We assessed 141 lesions in 55CT scans from 17 patients with urothelial metastasis, comparing VTV, RECIST, MASS, and Choi criteria, and volumetric measurements, for response assessment. Median follow-up was 4.5 months, range was 2–14 months. Only the VTV criteria demonstrated a statistical association with OS (p = 0.019; median OS 9.7 vs. 3.5 months). Conclusion: This pilot study suggests that VTV is a promising tool for assessing tumor response and predicting OS, using criteria that incorporate tumor volume and density in patients receiving antiangiogenic therapy for urothelial cancer. Larger studies are warranted to

  11. The impact of positron emission tomography on primary tumour delineation and dosimetric outcome in intensity modulated radiotherapy of early T-stage nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, Vincent W. C.; Leung, Wan-shun; Wong, Kwun-lam; Chan, Ying-kit; Law, Wing-lam; Leung, Wing-kwan; Yu, Yat-long

    2016-01-01

    In intensity modulated radiotherapy (IMRT) of nasopharyngeal carcinoma (NPC), accurate delineation of the gross tumour volume (GTV) is important. Image registration of CT and MRI has been routinely used in treatment planning. With recent development of positron emission tomography (PET), the aims of this study were to evaluate the impact of PET on GTV delineation and dosimetric outcome in IMRT of early stage NPC patients. Twenty NPC patients with T1 or T2 disease treated by IMRT were recruited. For each patient, 2 sets of NP GTVs were delineated separately, in which one set was performed using CT and MRI registration only (GTV CM ), while the other set was carried out using PET, CT and MRI information (GTV CMP ). A 9-field IMRT plan was computed based on the target volumes generated from CT and MRI (PTV CM ). To assess the geometric difference between the GTV CM and GTV CMP , GTV volumes and DICE similarity coefficient (DSC), which measured the geometrical similarity between the two GTVs, were recorded. To evaluate the dosimetric impact, the D max , D min , D mean and D 95 of PTVs were obtained from their dose volume histograms generated by the treatment planning system. The overall mean volume of GTV CMP was greater than GTV CM by 4.4 %, in which GTV CMP was slightly greater in the T1 group but lower in the T2 group. The mean DSC of the whole group was 0.79 ± 0.05. Similar mean DSC values were also obtained from the T1 and T2 groups separately. The dosimetric parameters of PTV CM fulfilled the planning requirements. When applying this plan to the PTV CMP , the average D min (56.9 Gy) and D 95 (68.6 Gy) of PTV CMP failed to meet the dose requirements and demonstrated significant differences from the PTV CM (p = 0.001 and 0.016 respectively), whereas the doses to GTV CMP did not show significant difference with the GTV CM . In IMRT of early stage NPC, PET was an important imaging modality in radiotherapy planning so as to avoid underdosing the PTV, although its

  12. The impact of MRI sequence on tumour staging and gross tumour volume delineation in squamous cell carcinoma of the anal canal

    International Nuclear Information System (INIS)

    Prezzi, Davide; Mandegaran, Ramin; Gourtsoyianni, Sofia; Owczarczyk, Katarzyna; Gaya, Andrew; Glynne-Jones, Robert; Goh, Vicky

    2018-01-01

    To compare maximum tumour diameter (MTD) and gross tumour volume (GTV) measurements between T 2 -weighted (T 2 -w) and diffusion-weighted (DWI) MRI in squamous cell carcinoma of the anal canal (SCCA) and assess sequence impact on tumour (T) staging. Second, to evaluate interobserver agreement and reader delineation confidence. The staging MRI scans of 45 SCCA patients (25 females) were assessed retrospectively by two independent radiologists (0 and 5 years' experience of anal cancer MRI). MTD and GTV were delineated on both T 2 -w and high-b-value DWI images and compared between sequences; T staging was derived from MTD. Interobserver agreement was assessed and delineation confidence scored (1 to 5) by each observer. GTV and MTD were significantly and systematically lower on DWI versus T 2 -w sequences by 14.80%/9.98% (MTD) and 29.70%/12.25% (GTV) for each reader, respectively, causing T staging discordances in approximately a quarter of cases. Bland-Altman limits of agreement were narrower and intraclass correlation coefficients higher for DWI. Delineation confidence was greater on DWI: 40/42 cases were scored confidently (4 or 5) by each reader, respectively, versus 31/36 cases based on T 2 -w images. Sequence selection affects SCCA measurements and T stage. DWI yields higher interobserver agreement and greater tumour delineation confidence. (orig.)

  13. Robustness of the Voluntary Breath-Hold Approach for the Treatment of Peripheral Lung Tumors Using Hypofractionated Pencil Beam Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Jenny, E-mail: jenny.dueck@psi.ch [Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI (Switzerland); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Knopf, Antje-Christin [Joint Department of Physics at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London (United Kingdom); Lomax, Antony [Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI (Switzerland); Department of Physics, ETH Zürich, Zürich (Switzerland); Albertini, Francesca [Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI (Switzerland); Persson, Gitte F. [Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Josipovic, Mirjana [Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Aznar, Marianne [Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen (Denmark); Weber, Damien C. [Center for Proton Therapy, Paul Scherrer Institut, Villigen PSI (Switzerland); University of Zürich, Zürich (Switzerland); Munck af Rosenschöld, Per [Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen (Denmark); Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark)

    2016-05-01

    Purpose: The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delivery uncertainties resulting from interfractional motion. Methods and Materials: Data from 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy were included in this study. The patients had 1 computed tomographic (CT) scan in voluntary breath-hold acquired before treatment and 3 scans during the treatment course. PBS proton treatment plans with 2 fields (2F) and 3 fields (3F), respectively, were calculated based on the planning CT scan and subsequently recalculated on the 3 repeated CT scans. Recalculated plans were considered robust if the V{sub 95%} (volume receiving ≥95% of the prescribed dose) of the gross target volume (GTV) was within 5% of what was expected from the planning CT data throughout the simulated treatment. Results: A total of 14/15 simulated treatments for both 2F and 3F met the robustness criteria. Reduced V{sub 95%} was associated with baseline shifts (2F, P=.056; 3F, P=.008) and tumor size (2F, P=.025; 3F, P=.025). Smaller tumors with large baseline shifts were also at risk for reduced V{sub 95%} (interaction term baseline/size: 2F, P=.005; 3F, P=.002). Conclusions: The breath-hold approach is a realistic clinical option for treating lung tumors with PBS proton therapy. Potential risk factors for reduced V{sub 95%} are small targets in combination with large baseline shifts. On the basis of these results, the baseline shift of the tumor should be monitored (eg, through image guided therapy), and appropriate measures should be taken accordingly. The intrafractional motion needs to be investigated to confirm that the breath-hold approach is robust.

  14. Robustness of the Voluntary Breath-Hold Approach for the Treatment of Peripheral Lung Tumors Using Hypofractionated Pencil Beam Scanning Proton Therapy

    International Nuclear Information System (INIS)

    Dueck, Jenny; Knopf, Antje-Christin; Lomax, Antony; Albertini, Francesca; Persson, Gitte F.; Josipovic, Mirjana; Aznar, Marianne; Weber, Damien C.; Munck af Rosenschöld, Per

    2016-01-01

    Purpose: The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delivery uncertainties resulting from interfractional motion. Methods and Materials: Data from 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy were included in this study. The patients had 1 computed tomographic (CT) scan in voluntary breath-hold acquired before treatment and 3 scans during the treatment course. PBS proton treatment plans with 2 fields (2F) and 3 fields (3F), respectively, were calculated based on the planning CT scan and subsequently recalculated on the 3 repeated CT scans. Recalculated plans were considered robust if the V 95% (volume receiving ≥95% of the prescribed dose) of the gross target volume (GTV) was within 5% of what was expected from the planning CT data throughout the simulated treatment. Results: A total of 14/15 simulated treatments for both 2F and 3F met the robustness criteria. Reduced V 95% was associated with baseline shifts (2F, P=.056; 3F, P=.008) and tumor size (2F, P=.025; 3F, P=.025). Smaller tumors with large baseline shifts were also at risk for reduced V 95% (interaction term baseline/size: 2F, P=.005; 3F, P=.002). Conclusions: The breath-hold approach is a realistic clinical option for treating lung tumors with PBS proton therapy. Potential risk factors for reduced V 95% are small targets in combination with large baseline shifts. On the basis of these results, the baseline shift of the tumor should be monitored (eg, through image guided therapy), and appropriate measures should be taken accordingly. The intrafractional motion needs to be investigated to confirm that the breath-hold approach is robust.

  15. Noninvasive Evaluation of Metabolic Tumor Volume in Lewis Lung Carcinoma Tumor-Bearing C57BL/6 Mice with Micro-PET and the Radiotracers 18F-Alfatide and 18F-FDG: A Comparative Analysis.

    Directory of Open Access Journals (Sweden)

    Yu-Chun Wei

    Full Text Available To explore the value of a new simple lyophilized kit for labeling PRGD2 peptide (18F-ALF-NOTA-PRGD2, denoted as 18F-alfatide in the determination of metabolic tumor volume (MTV with micro-PET in lewis lung carcinoma (LLC tumor-bearing C57BL/6 mice verified by pathologic examination and compared with those using 18F-fluorodeoxyglucose (FDG PET.All LLC tumor-bearing C57BL/6 mice underwent two attenuation-corrected whole-body micro-PET scans with the radiotracers 18F-alfatide and 18F-FDG within two days. 18F-alfatide metabolic tumor volume (VRGD and 18F-FDG metabolic tumor volume (VFDG were manually delineated slice by slice on PET images. Pathologic tumor volume (VPath was measured in vitro after the xenografts were removed.A total of 37 mice with NSCLC xenografts were enrolled and 33 of them underwent 18F-alfatide PET, and 35 of them underwent 18F-FDG PET and all underwent pathological examination. The mean ± standard deviation of VPath, VRGD, and VFDG were 0.59±0.32 cm3 (range,0.13~1.64 cm3, 0.61±0.37 cm3 (range,0.15~1.86 cm3, and 1.24±0.53 cm3 (range,0.17~2.20 cm3, respectively. VPath vs. VRGD, VPath vs. VFDG, and VRGD vs. VFDG comparisons were t = -0.145, P = 0.885, t = -6.239, P<0.001, and t = -5.661, P<0.001, respectively. No significant difference was found between VPath and VRGD. VFDG was much larger than VRGD and VPath. VRGD seemed more approximate to the pathologic gross tumor volume. Furthermore, VPath was more strongly correlated with VRGD (R = 0.964,P<0.001 than with VFDG (R = 0.584,P<0.001.18F-alfatide PET provided a better estimation of gross tumor volume than 18F-FDG PET in LLC tumor-bearing C57BL/6 mice.

  16. Interobserver variability in target volume delineation of hepatocellular carcinoma : An analysis of the working group "Stereotactic Radiotherapy" of the German Society for Radiation Oncology (DEGRO).

    Science.gov (United States)

    Gkika, E; Tanadini-Lang, S; Kirste, S; Holzner, P A; Neeff, H P; Rischke, H C; Reese, T; Lohaus, F; Duma, M N; Dieckmann, K; Semrau, R; Stockinger, M; Imhoff, D; Kremers, N; Häfner, M F; Andratschke, N; Nestle, U; Grosu, A L; Guckenberger, M; Brunner, T B

    2017-10-01

    Definition of gross tumor volume (GTV) in hepatocellular carcinoma (HCC) requires dedicated imaging in multiple contrast medium phases. The aim of this study was to evaluate the interobserver agreement (IOA) in gross tumor delineation of HCC in a multicenter panel. The analysis was performed within the "Stereotactic Radiotherapy" working group of the German Society for Radiation Oncology (DEGRO). The GTVs of three anonymized HCC cases were delineated by 16 physicians from nine centers using multiphasic CT scans. In the first case the tumor was well defined. The second patient had multifocal HCC (one conglomerate and one peripheral tumor) and was previously treated with transarterial chemoembolization (TACE). The peripheral lesion was adjacent to the previous TACE site. The last patient had an extensive HCC with a portal vein thrombosis (PVT) and an inhomogeneous liver parenchyma due to cirrhosis. The IOA was evaluated according to Landis and Koch. The IOA for the first case was excellent (kappa: 0.85); for the second case moderate (kappa: 0.48) for the peripheral tumor and substantial (kappa: 0.73) for the conglomerate. In the case of the peripheral tumor the inconsistency is most likely explained by the necrotic tumor cavity after TACE caudal to the viable tumor. In the last case the IOA was fair, with a kappa of 0.34, with significant heterogeneity concerning the borders of the tumor and the PVT. The IOA was very good among the cases were the tumor was well defined. In complex cases, where the tumor did not show the typical characteristics, or in cases with Lipiodol (Guerbet, Paris, France) deposits, IOA agreement was compromised.

  17. Optimization of the fractionated irradiation scheme considering physical doses to tumor and organ at risk based on dose–volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Yasutaka [Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Mizuta, Masahiro [Laboratory of Advanced Data Science, Information Initiative Center, Hokkaido University, Kita-11, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0811 (Japan); Takao, Seishin; Shirato, Hiroki; Sutherland, Kenneth L. [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan)

    2015-11-15

    Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of the tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.

  18. Diagnostic performance of whole brain volume perfusion CT in intra-axial brain tumors: Preoperative classification accuracy and histopathologic correlation

    International Nuclear Information System (INIS)

    Xyda, Argyro; Haberland, Ulrike; Klotz, Ernst; Jung, Klaus; Bock, Hans Christoph; Schramm, Ramona; Knauth, Michael; Schramm, Peter

    2012-01-01

    Background: To evaluate the preoperative diagnostic power and classification accuracy of perfusion parameters derived from whole brain volume perfusion CT (VPCT) in patients with cerebral tumors. Methods: Sixty-three patients (31 male, 32 female; mean age 55.6 ± 13.9 years), with MRI findings suspected of cerebral lesions, underwent VPCT. Two readers independently evaluated VPCT data. Volumes of interest (VOIs) were marked circumscript around the tumor according to maximum intensity projection volumes, and then mapped automatically onto the cerebral blood volume (CBV), flow (CBF) and permeability Ktrans perfusion datasets. A second VOI was placed in the contra lateral cortex, as control. Correlations among perfusion values, tumor grade, cerebral hemisphere and VOIs were evaluated. Moreover, the diagnostic power of VPCT parameters, by means of positive and negative predictive value, was analyzed. Results: Our cohort included 32 high-grade gliomas WHO III/IV, 18 low-grade I/II, 6 primary cerebral lymphomas, 4 metastases and 3 tumor-like lesions. Ktrans demonstrated the highest sensitivity, specificity and positive predictive value, with a cut-off point of 2.21 mL/100 mL/min, for both the comparisons between high-grade versus low-grade and low-grade versus primary cerebral lymphomas. However, for the differentiation between high-grade and primary cerebral lymphomas, CBF and CBV proved to have 100% specificity and 100% positive predictive value, identifying preoperatively all the histopathologically proven high-grade gliomas. Conclusion: Volumetric perfusion data enable the hemodynamic assessment of the entire tumor extent and provide a method of preoperative differentiation among intra-axial cerebral tumors with promising diagnostic accuracy.

  19. Definition of internal target volume and domestric study for hepatocellular carcinoma using four-dimensional CT

    International Nuclear Information System (INIS)

    Xi Mian; Liu Mengzhong; Deng Xiaowu; Zhang Li; Huang Xiaoyan; Cai Ling

    2009-01-01

    Objective: To define individualized internal target volume (ITV) for hepatocellular carcinoma using four-dimensional (4D) CT, and to compare the differences in target volume definition and dose distribution among 3D, 4D and respiratory-gated plans. Methods: 4DCT scanning was obtained for 12 patients with hepatocellular. Gross tumor volume (GTV), clinical target volume (CTV) and normal tissues were contoured on all 10 respiratory phases of 4DCT images. The 3D, 4D and gated treatment plans were prepared for each patient using three different planning target volumes (PTVs): 1) PTV 3D was derived from a single CTV plus conventional margins; 2) PTV 4D was derived from ITV 4D , which encompassed all 10 CTVs plus setup margins (SMs); 3) PT Gating was derived from ITV Gating , which encompassed 3 CTVs within gating-window at end-expiration plus SMs. The PTV volume and dose distribution were compared among different plans. Results: The PTV3D was the largest in all 12 patients, but still missed partial target volume in 5 patients when comparing with PTV4D. Both the 4D plans and the gated plans spared more normal tissues than the 3D plans, especially the liver. Without increasing normal tissue dose, the 4D plans allowed for increasing the calculated dose from (50.8 ± 2.0) Gy (3D plans) to (54.7 ± 3.3) Gy, and the gated plans could further increase the dose to (58.0 ± 3.9) Gy. Conclusions: The 4DCT-based plans can ensure optimal target coverage with less irradiation of normal tissues and allow dose escalation when compared with 3D plans. Respiratory gated radiotherapy can further reduce the target volumes to spare more surrounding tissues, especially for patients with large extent of respiratory mobility. (authors)

  20. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard

    2003-07-01

    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  1. Radiobiological Determination of Dose Escalation and Normal Tissue Toxicity in Definitive Chemoradiation Therapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Partridge, Mike [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Carrington, Rhys [Velindre Cancer Centre, Velindre Hospital, Cardiff (United Kingdom); Hurt, Chris [Wales Cancer Trials Unit, School of Medicine, Heath Park, Cardiff (United Kingdom); Crosby, Thomas [Velindre Cancer Centre, Velindre Hospital, Cardiff (United Kingdom); Hawkins, Maria A. [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom)

    2014-10-01

    Purpose: This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials: Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm{sup 3}. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5 Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA{sub 62.5}) was compared to a standard dose plan of 50 Gy/25 fractions (RA{sub 50}). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results: Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA{sub 50}) to 56.3% (RA{sub 62.5}), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA{sub 50}) versus 5.6% (RA{sub 62.5}) P<.001 and median lung NTCP 6.5% (RA{sub 50}) versus 7.5% (RA{sub 62.5}) P<.001. Conclusions: Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials.

  2. Hypofractionated High-Dose Irradiation with Positron Emission Tomography Data for the Treatment of Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Kazuhiro Miwa

    2014-01-01

    Full Text Available This research paper presents clinical outcomes of hypofractionated high-dose irradiation by intensity-modulated radiation therapy (Hypo-IMRT with 11C-methionine positron emission tomography (MET-PET data for the treatment of glioblastoma multiforme (GBM. A total of 45 patients with GBM were treated with Hypo-IMRT after surgery. Gross tumor volume (GTV was defined as the area of enhanced lesion on MRI, including MET-PET avid region; clinical target volume (CTV was the area with 5 mm margin surrounding the GTV; planning target volume (PTV was the area with 15 mm margin surrounding the CTV, including MET-PET moderate region. Hypo-IMRT was performed in 8 fractions; planning the dose for GTV was escalated to 68 Gy and that for CTV was escalated to 56 Gy, while keeping the dose delivered to the PTV at 40 Gy. Concomitant and adjuvant TMZ chemotherapy was administered. At a median follow-up of 18.7 months, median overall survival (OS was 20.0 months, and median progression-free survival was 13.0 months. The 1- and 2-year OS rates were 71.2% and 26.3%, respectively. Adjuvant TMZ chemotherapy was significantly predictive of OS on multivariate analysis. Late toxicity included 7 cases of Grade 3-4 radiation necrosis. Hypo-IMRT with MET-PET data appeared to result in favorable survival outcomes for patients with GBM.

  3. Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer.

    Science.gov (United States)

    Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie

    2017-11-09

    Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.

  4. Aberrant paramagnetic signals outside the tumor volume on routine surveillance MRI of brain tumor patients.

    Science.gov (United States)

    Yust-Katz, Shlomit; Inbar, Edna; Michaeli, Natalia; Limon, Dror; Siegal, Tali

    2017-09-01

    Late complications of cerebral radiation therapy (RT) involve vascular injury with acquired cavernous malformation, telangiectasias and damage to vascular walls which are well recognized in children. Its incidence in adults is unknown. Blood products and iron deposition that accompany vascular injury create paramagnetic effects on MRI. This study retrospectively investigated the frequency of paramagnetic lesions on routine surveillance MRI of adult brain tumor patients. MRI studies of 115 brain tumor patients were reviewed. Only studies containing sequences of either susceptibility weighted images or gradient echo or blood oxygenation level dependent imaging were included. Lesions inside the tumor volume were not considered. 68 studies fulfilled the above criteria and included 48 patients with previous RT (35 followed for >2 years and 13 for 1 year) and 20 patients who were not treated with RT. The median age at time of irradiation was 47 years. Aberrant paramagnetic lesions were found in 23/35 (65%) patients followed for >2 years after RT and in only 1/13 (8%) patients followed for 1-year after radiation (p = 0.03). The 1-year follow-up group did not differ from the control group [2/20 (9%)]. Most lesions were within the radiation field and none of the patients had related symptomatology. The number and incidence of these lesions increased with time and amounted to 75% over 3 years post RT. MRI paramagnetic signal aberrations are common findings in adult brain tumor patients that evolve over time after RT. The clinical significance of these lesions needs further investigation.

  5. TU-AB-202-07: A Novel Method for Registration of Mid-Treatment PET/CT Images Under Conditions of Tumor Regression for Patients with Locally Advanced Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Hoda [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Department of Physics, Oakland University, Rochester, MI (United States); Zhang, Hong; Jin, Jian-Yyue; Kong, Feng-Ming [Department of Radiation Oncology, GRU Cancer Center, Augusta GA (United States); Chetty, Indrin J [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Zhong, Hualiang

    2016-06-15

    Purpose: In PET-guided adaptive radiotherapy (RT), changes in the metabolic activity at individual voxels cannot be derived until the duringtreatment CT images are appropriately registered to pre-treatment CT images. However, deformable image registration (DIR) usually does not preserve tumor volume. This may induce errors when comparing to the target. The aim of this study was to develop a DIR-integrated mechanical modeling technique to track radiation-induced metabolic changes on PET images. Methods: Three patients with non-small cell lung cancer (NSCLC) were treated with adaptive radiotherapy under RTOG 1106. Two PET/CT image sets were acquired 2 weeks before RT and 18 fractions after the start of treatment. DIR was performed to register the during-RT CT to the pre-RT CT using a B-spline algorithm and the resultant displacements in the region of tumor were remodeled using a hybrid finite element method (FEM). Gross tumor volume (GTV) was delineated on the during-RT PET/CT image sets and deformed using the 3D deformation vector fields generated by the CT-based registrations. Metabolic tumor volume (MTV) was calculated using the pre- and during–RT image set. The quality of the PET mapping was evaluated based on the constancy of the mapped MTV and landmark comparison. Results: The B-spline-based registrations changed MTVs by 7.3%, 4.6% and −5.9% for the 3 patients and the correspondent changes for the hybrid FEM method −2.9%, 1% and 6.3%, respectively. Landmark comparisons were used to evaluate the Rigid, B-Spline, and hybrid FEM registrations with the mean errors of 10.1 ± 1.6 mm, 4.4 ± 0.4 mm, and 3.6 ± 0.4 mm for three patients. The hybrid FEM method outperforms the B-Spline-only registration for patients with tumor regression Conclusion: The hybrid FEM modeling technique improves the B-Spline registrations in tumor regions. This technique may help compare metabolic activities between two PET/CT images with regressing tumors. The author gratefully

  6. Contrast-Enhanced Proton Radiography for Patient Set-up by Using X-Ray CT Prior Knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Spadea, Maria Francesca, E-mail: mfspadea@unicz.it [Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro (Italy); Fassi, Aurora [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Zaffino, Paolo [Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro (Italy); Riboldi, Marco; Baroni, Guido [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit—CNAO Foundation, Pavia (Italy); Depauw, Nicolas [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts (United States); Centre for Medical Radiation Physics, University of Wollongong, Wollongong (Australia); Seco, Joao [Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-11-01

    Purpose: To obtain a contrasted image of the tumor region during the setup for proton therapy in lung patients, by using proton radiography and x-ray computed tomography (CT) prior knowledge. Methods and Materials: Six lung cancer patients' CT scans were preprocessed by masking out the gross tumor volume (GTV), and digitally reconstructed radiographs along the planned beam's eye view (BEV) were generated, for a total of 27 projections. Proton radiographies (PR) were also computed for the same BEV through Monte Carlo simulations. The digitally reconstructed radiograph was subtracted from the corresponding proton image, resulting in a contrast-enhanced proton radiography (CEPR). Michelson contrast analysis was performed both on PR and CEPR. The tumor region was then automatically segmented on CEPR and compared to the ground truth (GT) provided by physicians in terms of Dice coefficient, accuracy, precision, sensitivity, and specificity. Results: Contrast on CEPR was, on average, 4 times better than on PR. For 10 lateral projections (±45° off of 90° or 270°), although it was not possible to distinguish the tumor region in the PR, CEPR offers excellent GTV visibility. The median ± quartile values of Dice, precision, and accuracy indexes were 0.86 ± 0.03, 0.86 ± 0.06, and 0.88 ± 0.02, respectively, thus confirming the reliability of the method in highlighting tumor boundaries. Sensitivity and specificity analysis demonstrated that there is no systematic over- or underestimation of the tumor region. Identification of the tumor boundaries using CEPR resulted in a more accurate and precise definition of GTV compared to that obtained from pretreatment CT. Conclusions: In most proton centers, the current clinical protocol is to align the patient using kV imaging with bony anatomy as a reference. We demonstrated that CEPR can significantly improve tumor visualization, allowing better patient set-up and permitting image guided proton therapy (IGPT)

  7. An evaluation of an automated 4D-CT contour propagation tool to define an internal gross tumour volume for lung cancer radiotherapy

    International Nuclear Information System (INIS)

    Gaede, Stewart; Olsthoorn, Jason; Louie, Alexander V.; Palma, David; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Chen, Jeff; Bzdusek, Karl; Rodrigues, George

    2011-01-01

    Background and purpose: To evaluate an automated 4D-CT contouring propagation tool by its impact on the inter- and intra-physician variability in lung tumour delineation. Materials and methods: In a previous study, six radiation oncologists contoured the gross tumour volume (GTV) and nodes on 10 phases of the 4D-CT dataset of 10 lung cancer patients to examine the intra- and inter-physician variability. In this study, a model-based deformable image registration algorithm was used to propagate the GTV and nodes on each phase of the same 4D-CT datasets. A blind review of the contours was performed by each physician and edited. Inter- and intra-physician variability for both the manual and automated methods was assessed by calculating the centroid motion of the GTV using the Pearson correlation coefficient and the variability in the internal gross tumour volume (IGTV) overlap using the Dice similarity coefficient (DSC). Results: The time for manual delineation was (42.7 ± 18.6) min versus (17.7 ± 5.4) min when the propagation tool was used. A significant improvement in the mean Pearson correlation coefficient was also observed. There was a significant decrease in mean DSC in only 1 out of 10 primary IGTVs and 2 out of 10 nodal IGTVs. Intra-physician variability was not significantly impacted (DSC > 0.742). Conclusions: Automated 4D-CT propagation tools can significantly decrease the IGTV delineation time without significantly decreasing the inter- and intra-physician variability.

  8. SU-F-J-99: Dose Accumulation and Evaluation in Lung SBRT Among All Phases of Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Azcona, JD; Barbes, B; Aristu, J; Moreno, M; Zubiria, A [Clinica Universidad de Navarra, Pamplona (Spain); Burguete, J [Universidad de Navarra, Pamplona, Navarra (Spain); Arce, P; Lagares, JI [Centro de Investigaciones Energeticas, Medioambientales, y Tecnologicas, Madrid (Spain)

    2016-06-15

    Purpose: To calculate the total planning dose on lung tumors (GTV) by accumulating the dose received in all respiration phases. Methods: A patient 4D planning CT (phase-binned, from a Siemens Somatom CT) was used to locate the GTV of a lung tumor in all respiratory phases with Pinnacle (v9.10). GTV contours defined in all phases were projected to the reference phase, where the ITV was defined. Centroids were calculated for all the GTV projections. No deformation or rotation was taken into account. The only GTV contour as defined in the reference phase was voxelized to track each voxel individually. We accumulated the absorbed dose in different phases on each voxel. A 3DCRT and a VMAT plan were designed on the reference phase fulfilling the ITV dosimetric requirements, using the 10MV FFF photon model from an Elekta Versa linac. ITV-to-PTV margins were set to 5mm. In-house developed MATLAB code was used for tumor voxeling and dose accumulation, assuming that the dose distribution planned in the reference phase behaved as a “dose-cloud” during patient breathing. Results: We tested the method on a patient 4DCT set of images exhibiting limited tumor motion (<5mm). For the 3DCRT plan, D95 was calculated for the GTV with motion and for the ITV, showing an agreement of 0.04%. For the VMAT plan, we calculated the D95 for every phase as if the GTV in that phase had received the whole treatment. Differences in D95 for all phases are within 1%, and estimate the potential interplay effect during delivery. Conclusion: A method for dose accumulation and assessment was developed that can compare GTV motion with ITV dosage, and estimate the potential interplay effect for VMAT plans. Work in progress includes the incorporation of deformable image registration and 4D CBCT dose calculation for dose reconstruction and assessment during treatment.

  9. A study on a comparative analysis of 2D and 3D planning using CT simulator for transbronchial brachytherapy

    International Nuclear Information System (INIS)

    Seo, Dong Rin; Kim, Dae Sup; Back, Geum Mun

    2013-01-01

    Transbronchial brachytherapy used in the two-dimensional treatment planning difficult to identify the location of the tumor in the affected area to determine the process analysis. In this study, we have done a comparative analysis for the patient's treatment planning using a CT simulator. The analysis was performed by the patients who visited the hospital to June 2012. The patient carried out CT-image by CT simulator, and we were plan to compare with a two-dimensional and three dimensional treatment planning using a Oncentra Brachy planning system (Nucletron, Netherlands). The location of the catheter was confirmed the each time on a treatment planning for fractionated transbronchial brachytherapy. GTV volumes were 3.5 cm 3 and 3.3 cm 3 . Also easy to determine the dose distribution of the tumor, the errors of a dose delivery were confirmed dose distribution of the prescribed dose for GTV. In the first treatment was 92% and the second was 88%. In order to compensate for the problem through a two-dimensional treatment planning, it is necessary to be tested process for the accurate identification and analysis of the treatment volume and dose distribution. Quantitatively determine the dose delivery error process that is reflected to the treatment planning is required

  10. A study on a comparative analysis of 2D and 3D planning using CT simulator for transbronchial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong Rin; Kim, Dae Sup; Back, Geum Mun [Dept. of Radiation Oncology, Asan Medical Center, Seoul (Korea, Republic of)

    2013-03-15

    Transbronchial brachytherapy used in the two-dimensional treatment planning difficult to identify the location of the tumor in the affected area to determine the process analysis. In this study, we have done a comparative analysis for the patient's treatment planning using a CT simulator. The analysis was performed by the patients who visited the hospital to June 2012. The patient carried out CT-image by CT simulator, and we were plan to compare with a two-dimensional and three dimensional treatment planning using a Oncentra Brachy planning system (Nucletron, Netherlands). The location of the catheter was confirmed the each time on a treatment planning for fractionated transbronchial brachytherapy. GTV volumes were 3.5 cm{sup 3} and 3.3 cm{sup 3}. Also easy to determine the dose distribution of the tumor, the errors of a dose delivery were confirmed dose distribution of the prescribed dose for GTV. In the first treatment was 92% and the second was 88%. In order to compensate for the problem through a two-dimensional treatment planning, it is necessary to be tested process for the accurate identification and analysis of the treatment volume and dose distribution. Quantitatively determine the dose delivery error process that is reflected to the treatment planning is required.

  11. Carbogen Breathing Differentially Enhances Blood Plasma Volume and 5-Fluorouracil Uptake in Two Murine Colon Tumor Models with a Distinct Vascular Structure

    Directory of Open Access Journals (Sweden)

    Hanneke W.M. van Laarhoven

    2006-06-01

    Full Text Available For the systemic treatment of colorectal cancer, 5-fluorouracil (FU-based chemotherapy is the standard. However, only a subset of patients responds to chemotherapy. Breathing of carbogen (95% O2 and 5% CO2 may increase the uptake of FU through changes in tumor physiology. This study aims to monitor in animal models in vivo the effects of carbogen breathing on tumor blood plasma volume, pH, and energy status, and on FU uptake and metabolism in two colon tumor models C38 and C26a, which differ in their vascular structure and hypoxic status. Phosphorus-31 magnetic resonance spectroscopy (MRS was used to assess tumor pH and energy status, and fluorine-19 MRS was used to follow FU uptake and metabolism. Advanced magnetic resonance imaging methods using ultrasmall particles of iron oxide were performed to assess blood plasma volume. The results showed that carbogen breathing significantly decreased extracellular pH and increased tumor blood plasma volume and FU uptake in tumors. These effects were most significant in the C38 tumor line, which has the largest relative vascular area. In the C26a tumor line, carbogen breathing increased tumor growth delay by FU. In this study, carbogen breathing also enhanced systemic toxicity by FU.

  12. Dose painting based on tumor uptake of Cu-ATSM and FDG: a comparative study

    International Nuclear Information System (INIS)

    Clausen, Malene Martini; Hansen, Anders Elias; Lundemann, Michael; Hollensen, Christian; Pommer, Tobias; Munck af Rosenschöld, Per; Kristensen, Annemarie Thuri; Kjær, Andreas; McEvoy, Fintan J; Engelholm, Svend Aage

    2014-01-01

    Hypoxia and increased glycolytic activity of tumors are associated with poor prognosis. The purpose of this study was to investigate differences in radiotherapy (RT) dose painting based on the uptake of 2-deoxy-2-[ 18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer, copper(II)diacetyl-bis(N 4 )-methylsemithiocarbazone (Cu-ATSM) using spontaneous clinical canine tumor models. Positron emission tomography/computed tomography scans of five spontaneous canine sarcomas and carcinomas were obtained; FDG on day 1 and 64 Cu-ATSM on day 2 and 3 (approx. 3 and 24 hours pi.). Sub-volumes for dose escalation were defined by a threshold-based method for both tracers and five dose escalation levels were formed in each sub-volume. Volumetric modulated arc therapy plans were optimized based on the dose escalation regions for each scan for a total of three dose plans for each dog. The prescription dose for the GTV was 45 Gy (100%) and it was linearly escalated to a maximum of 150%. The correlations between dose painting plans were analyzed with construction of dose distribution density maps and quality volume histograms (QVH). Correlation between high-dose regions was investigated with Dice correlation coefficients. Comparison of dose plans revealed varying degree of correlation between cases. Some cases displayed a separation of high-dose regions in the comparison of FDG vs. 64 Cu-ATSM dose plans at both time points. Among the Dice correlation coefficients, the high dose regions showed the lowest degree of agreement, indicating potential benefit of using multiple tracers for dose painting. QVH analysis revealed that FDG-based dose painting plans adequately covered approximately 50% of the hypoxic regions. Radiotherapy plans optimized with the current approach for cut-off values and dose region definitions based on FDG, 64 Cu-ATSM 3 h and 24 h uptake in canine tumors had different localization of the regional dose escalation levels. This indicates that 64 Cu-ATSM at two

  13. Dose reduction to normal tissues as compared to the gross tumor by using intensity modulated radiotherapy in thoracic malignancies

    Directory of Open Access Journals (Sweden)

    Bhalla NK

    2006-08-01

    Full Text Available Abstract Background and purpose Intensity modulated radiotherapy (IMRT is a powerful tool, which might go a long way in reducing radiation doses to critical structures and thereby reduce long term morbidities. The purpose of this paper is to evaluate the impact of IMRT in reducing the dose to the critical normal tissues while maintaining the desired dose to the volume of interest for thoracic malignancies. Materials and methods During the period January 2002 to March 2004, 12 patients of various sites of malignancies in the thoracic region were treated using physical intensity modulator based IMRT. Plans of these patients treated with IMRT were analyzed using dose volume histograms. Results An average dose reduction of the mean values by 73% to the heart, 69% to the right lung and 74% to the left lung, with respect to the GTV could be achieved with IMRT. The 2 year disease free survival was 59% and 2 year overall survival was 59%. The average number of IMRT fields used was 6. Conclusion IMRT with inverse planning enabled us to achieve desired dose distribution, due to its ability to provide sharp dose gradients at the junction of tumor and the adjacent critical organs.

  14. Evaluation of potential internal target volume of liver tumors using cine-MRI.

    Science.gov (United States)

    Akino, Yuichi; Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko

    2014-11-01

    Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas-Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV Potential). The concordance between ITV Potential and ITV estimated with 4DCT (ITV 4DCT) was evaluated using the Dice's similarity coefficient (DSC). The distance between blood vessel positions

  15. A method for partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function

    International Nuclear Information System (INIS)

    Barbee, David L; Holden, James E; Nickles, Robert J; Jeraj, Robert; Flynn, Ryan T

    2010-01-01

    Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised by partial volume effects which may affect treatment prognosis, assessment or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discovery LS at positions of increasing radii from the scanner's center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method's correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three-dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated

  16. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    Energy Technology Data Exchange (ETDEWEB)

    Chvetsov, A; Schwartz, J; Mayr, N [University of Washington, Seattle, WA (United States); Yartsev, S [London Health Sciences Centre, London, Ontario (Canada)

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume

  17. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    International Nuclear Information System (INIS)

    Chvetsov, A; Schwartz, J; Mayr, N; Yartsev, S

    2014-01-01

    Purpose: To show that a distribution of cell surviving fractions S 2 in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S 2 and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in each patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S 2 for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S 2 reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S 2 can be reconstructed from the tumor volume variation curves measured

  18. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology

    International Nuclear Information System (INIS)

    Poetter, Richard; Haie-Meder, Christine; Limbergen, Erik van; Barillot, Isabelle; Brabandere, Marisol De; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm 3 ; optional 5 and 10 cm 3 . Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm 3 . Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD 2 )-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Poetter R, Van Limbergen E et al

  19. Influence of increment of gantry angle and number of arcs on esophageal volumetric modulated arc therapy planning in Monaco planning system: A planning study

    Directory of Open Access Journals (Sweden)

    L Nithya

    2014-01-01

    Full Text Available The objective of this study was to analyze the influence of the increment of gantry angle and the number of arcs on esophageal volumetric modulated arc therapy plan. All plans were done in Monaco planning system for Elekta Synergy linear accelerator with 80 multileaf collimator (MLC. Volumetric modulated arc therapy (VMAT plans were done with different increment of gantry angle like 15 o , 20 o , 30 o and 40 o . The remaining parameters were similar for all the plans. The results were compared. To compare the plan quality with number of arcs, VMAT plans were done with single and dual arc with increment of gantry angle of 20 o . The dose to gross tumor volume (GTV for 60 Gy and planning target volume (PTV for 48 Gy was compared. The dosimetric parameters D 98% , D 95% , D 50% and D max of GTV were analyzed. The homogeneity index (HI and conformity index (CI of GTV were studied and the dose to 98% and 95% of PTV was analyzed. Maximum dose to spinal cord and planning risk volume of cord (PRV cord was compared. The Volume of lung receiving 10 Gy, 20 Gy and mean dose was analyzed. The volume of heart receiving 30 Gy and 45 Gy was compared. The volume of normal tissue receiving greater than 2 Gy and 5 Gy was compared. The number of monitor units (MU required to deliver the plans were compared. The plan with larger increment of gantry angle proved to be superior to smaller increment of gantry angle plans in terms of dose coverage, HI, CI and normal tissue sparing. The number of arcs did not make any difference in the quality of the plan.

  20. Stereological estimates of nuclear volume and other quantitative variables in supratentorial brain tumors. Practical technique and use in prognostic evaluation

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Braendgaard, H; Chistiansen, A O

    1991-01-01

    The use of morphometry and modern stereology in malignancy grading of brain tumors is only poorly investigated. The aim of this study was to present these quantitative methods. A retrospective feasibility study of 46 patients with supratentorial brain tumors was carried out to demonstrate...... the practical technique. The continuous variables were correlated with the subjective, qualitative WHO classification of brain tumors, and the prognostic value of the parameters was assessed. Well differentiated astrocytomas (n = 14) had smaller estimates of the volume-weighted mean nuclear volume and mean...... nuclear profile area, than those of anaplastic astrocytomas (n = 13) (2p = 3.1.10(-3) and 2p = 4.8.10(-3), respectively). No differences were seen between the latter type of tumor and glioblastomas (n = 19). The nuclear index was of the same magnitude in all three tumor types, whereas the mitotic index...

  1. Outcomes for Spine Stereotactic Body Radiation Therapy and an Analysis of Predictors of Local Recurrence

    International Nuclear Information System (INIS)

    Bishop, Andrew J.; Tao, Randa; Rebueno, Neal C.; Christensen, Eva N.; Allen, Pamela K.; Wang, Xin A.; Amini, Behrang; Tannir, Nizar M.; Tatsui, Claudio E.; Rhines, Laurence D.; Li, Jing; Chang, Eric L.; Brown, Paul D.; Ghia, Amol J.

    2015-01-01

    Purpose: To investigate local control, survival outcomes, and predictors of local relapse for patients treated with spine stereotactic body radiation therapy. Methods and Materials: We reviewed the records of 332 spinal metastases consecutively treated with stereotactic body radiation therapy between 2002 and 2012. The median follow-up for all living patients was 33 months (range, 0-111 months). Endpoints were overall survival and local control (LC); recurrences were classified as either in-field or marginal. Results: The 1-year actuarial LC and overall survival rates were 88% and 64%, respectively. Patients with local relapses had poorer dosimetric coverage of the gross tumor volume (GTV) compared with patients without recurrence (minimum dose [Dmin] biologically equivalent dose [BED] 23.9 vs 35.1 Gy, P<.001; D98 BED 41.8 vs 48.1 Gy, P=.001; D95 BED 47.2 vs 50.5 Gy, P=.004). Furthermore, patients with marginal recurrences had poorer prescription coverage of the GTV (86% vs 93%, P=.01) compared with those with in-field recurrences, potentially because of more upfront spinal canal disease (78% vs 24%, P=.001). Using a Cox regression univariate analysis, patients with a GTV BED Dmin ≥33.4 Gy (median dose) (equivalent to 14 Gy in 1 fraction) had a significantly higher 1-year LC rate (94% vs 80%, P=.001) compared with patients with a lower GTV BED Dmin; this factor was the only significant variable on multivariate Cox analysis associated with LC (P=.001, hazard ratio 0.29, 95% confidence interval 0.14-0.60) and also was the only variable significant in a separate competing risk multivariate model (P=.001, hazard ratio 0.30, 95% confidence interval 0.15-0.62). Conclusions: Stereotactic body radiation therapy offers durable control for spinal metastases, but there is a subset of patients that recur locally. Patients with local relapse had significantly poorer tumor coverage, which was likely attributable to treatment planning directives that prioritized the

  2. Outcomes for Spine Stereotactic Body Radiation Therapy and an Analysis of Predictors of Local Recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Andrew J.; Tao, Randa [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rebueno, Neal C. [Department of Radiation Dosimetry, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Christensen, Eva N.; Allen, Pamela K. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang, Xin A. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Amini, Behrang [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tannir, Nizar M. [Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tatsui, Claudio E.; Rhines, Laurence D. [Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Jing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chang, Eric L. [Department of Radiation Oncology, USC Norris Cancer Hospital, Keck School of Medicine of USC, Los Angeles, California (United States); Brown, Paul D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ghia, Amol J., E-mail: ajghia@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-08-01

    Purpose: To investigate local control, survival outcomes, and predictors of local relapse for patients treated with spine stereotactic body radiation therapy. Methods and Materials: We reviewed the records of 332 spinal metastases consecutively treated with stereotactic body radiation therapy between 2002 and 2012. The median follow-up for all living patients was 33 months (range, 0-111 months). Endpoints were overall survival and local control (LC); recurrences were classified as either in-field or marginal. Results: The 1-year actuarial LC and overall survival rates were 88% and 64%, respectively. Patients with local relapses had poorer dosimetric coverage of the gross tumor volume (GTV) compared with patients without recurrence (minimum dose [Dmin] biologically equivalent dose [BED] 23.9 vs 35.1 Gy, P<.001; D98 BED 41.8 vs 48.1 Gy, P=.001; D95 BED 47.2 vs 50.5 Gy, P=.004). Furthermore, patients with marginal recurrences had poorer prescription coverage of the GTV (86% vs 93%, P=.01) compared with those with in-field recurrences, potentially because of more upfront spinal canal disease (78% vs 24%, P=.001). Using a Cox regression univariate analysis, patients with a GTV BED Dmin ≥33.4 Gy (median dose) (equivalent to 14 Gy in 1 fraction) had a significantly higher 1-year LC rate (94% vs 80%, P=.001) compared with patients with a lower GTV BED Dmin; this factor was the only significant variable on multivariate Cox analysis associated with LC (P=.001, hazard ratio 0.29, 95% confidence interval 0.14-0.60) and also was the only variable significant in a separate competing risk multivariate model (P=.001, hazard ratio 0.30, 95% confidence interval 0.15-0.62). Conclusions: Stereotactic body radiation therapy offers durable control for spinal metastases, but there is a subset of patients that recur locally. Patients with local relapse had significantly poorer tumor coverage, which was likely attributable to treatment planning directives that prioritized the

  3. SU-E-T-177: Clinical Experience with Spirometer Guided Breath Hold Lung SBRT

    International Nuclear Information System (INIS)

    Liu, H; Manning, M; Sintay, B; Maurer, J; Hayes, L; Wiant, D

    2015-01-01

    Purpose: Tumor motion in lung SBRT is typically managed by creating an internal target volume (ITV) based on 4D-CT information. Another option, which may reduce lung dose and imaging artifact, is to use a breath hold (BH) during simulation and delivery. Here we evaluate the reproducibility of tumor position at repeated BH using a newly released spirometry system. Methods: Three patients underwent multiple BH CT’s at simulation. All patients underwent a BH cone beam CT (CBCT) prior to each treatment. All image sets were registered to a patient’s first simulation CT based on local bony anatomy. The gross tumor volume (GTV), and the diaphragm or the apex of the lung were contoured on the first image set and expanded in 1 mm increments until the GTVs and diaphragms on all image sets were included inside an expanded structure. The GTV and diaphragm margins necessary to encompass the structures were recorded. Results: The first patient underwent 2 BH CT’s and fluoroscopy at simulation, the remaining patients underwent 3 BH CT’s at simulation. In all cases the GTV’s remained within 1 mm expansions and the diaphragms remained within 2 mm expansions on repeat scans. Each patient underwent 3 daily BH CBCT’s. In all cases the GTV’s remained within a 2 mm expansions, and the diaphragms (or lung apex in one case) remained within 2 mm expansions at daily BH imaging. Conclusions: These case studies demonstrate spirometry as an effective tool for limiting tumor motion (and imaging artifact) and facilitating reproducible tumor positioning over multiple set-ups and BH’s. This work was partially supported by Qfix

  4. SU-E-T-177: Clinical Experience with Spirometer Guided Breath Hold Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H; Manning, M; Sintay, B; Maurer, J; Hayes, L; Wiant, D [Cone Health Cancer Center, Greensboro, NC (United States)

    2015-06-15

    Purpose: Tumor motion in lung SBRT is typically managed by creating an internal target volume (ITV) based on 4D-CT information. Another option, which may reduce lung dose and imaging artifact, is to use a breath hold (BH) during simulation and delivery. Here we evaluate the reproducibility of tumor position at repeated BH using a newly released spirometry system. Methods: Three patients underwent multiple BH CT’s at simulation. All patients underwent a BH cone beam CT (CBCT) prior to each treatment. All image sets were registered to a patient’s first simulation CT based on local bony anatomy. The gross tumor volume (GTV), and the diaphragm or the apex of the lung were contoured on the first image set and expanded in 1 mm increments until the GTVs and diaphragms on all image sets were included inside an expanded structure. The GTV and diaphragm margins necessary to encompass the structures were recorded. Results: The first patient underwent 2 BH CT’s and fluoroscopy at simulation, the remaining patients underwent 3 BH CT’s at simulation. In all cases the GTV’s remained within 1 mm expansions and the diaphragms remained within 2 mm expansions on repeat scans. Each patient underwent 3 daily BH CBCT’s. In all cases the GTV’s remained within a 2 mm expansions, and the diaphragms (or lung apex in one case) remained within 2 mm expansions at daily BH imaging. Conclusions: These case studies demonstrate spirometry as an effective tool for limiting tumor motion (and imaging artifact) and facilitating reproducible tumor positioning over multiple set-ups and BH’s. This work was partially supported by Qfix.

  5. Audiovisual biofeedback guided breath-hold improves lung tumor position reproducibility and volume consistency

    Directory of Open Access Journals (Sweden)

    Danny Lee, PhD

    2017-07-01

    Conclusions: This study demonstrated that audiovisual biofeedback can be used to improve the reproducibility and consistency of breath-hold lung tumor position and volume, respectively. These results may provide a pathway to achieve more accurate lung cancer radiation treatment in addition to improving various medical imaging and treatments by using breath-hold procedures.

  6. SU-E-T-179: Exploring Appropriate Offset Values for Pencil Beam and Monte Carlo Dose Optimization in Lung Stereotactic Body Radiotherapy Encompassing the Effects of Respiration and Tumor Location

    Energy Technology Data Exchange (ETDEWEB)

    Evans, G [Boca Raton, FL (United States); Shang, C [Florida Atlantic University, Boca Raton, FL (United States); Leventouri, T [Lynn Cancer Institute, Boca Raton, FL (United States)

    2014-06-01

    Purpose: Exploring appropriate offset values in dose optimization with pencil beam (PB) algorithm to minimize dosimetric differences with plans calculated with Monte Carlo (MC) for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). Methods: 20 cases of Non-Small Cell Lung Cancer, treated with gated full motion range SBRT were selected. According to the proximity of the Gross Tumor Volume (GTV) to the chest wall, two groups are defined: peripherally located when GTV merges with the chest wall for at least 50% of the lesion diameter, and centrally located when the GTV is surrounded by lung tissue. Treatment plans were created on 4D average intensity projection (AIP) CT set with Brainlab iPlanDose 4.1.2 planning system. The D97 of PTV was normalized to 50Gy using the fast PB and compared with MC. The optimized plan was then recomputed over each 4D respiratory phase, and compared with MC using the same plan MU's. Results: The mean difference in the PB and MC D97 of the ITV was 10.5% (±0.8%) of the prescription dose (50Gy). PB algorithm showed 2.3–2.4% less overestimation to the D97 of the ITV, when comparing to MC, in the maximum exhalation phase than in the maximal inhalation phase. Significantly smaller dose difference between PB and MC is also shown in plans for peripheral lesions (7.7 ± 0.7%) versus for central lesions (12.7±0.8%) (p< 0.01). Conclusion: The dosimetric differences between PB and MC can be reasonably predicted depending on the location of lesion in the lung, and may be used as offset value in dose optimization with PB. Since the maximal exhalation phase demonstrates less dose discrepancy between the two algorithms than that in maximal inhalation phase, caution is suggested when the latter is included as a major phase portion in the respiration gated lung SBRT.

  7. Impact of Millimeter-Level Margins on Peripheral Normal Brain Sparing for Gamma Knife Radiosurgery

    International Nuclear Information System (INIS)

    Ma, Lijun; Sahgal, Arjun; Larson, David A.; Pinnaduwage, Dilini; Fogh, Shannon; Barani, Igor; Nakamura, Jean; McDermott, Michael; Sneed, Penny

    2014-01-01

    Purpose: To investigate how millimeter-level margins beyond the gross tumor volume (GTV) impact peripheral normal brain tissue sparing for Gamma Knife radiosurgery. Methods and Materials: A mathematical formula was derived to predict the peripheral isodose volume, such as the 12-Gy isodose volume, with increasing margins by millimeters. The empirical parameters of the formula were derived from a cohort of brain tumor and surgical tumor resection cavity cases (n=15) treated with the Gamma Knife Perfexion. This was done by first adding margins from 0.5 to 3.0 mm to each individual target and then creating for each expanded target a series of treatment plans of nearly identical quality as the original plan. Finally, the formula was integrated with a published logistic regression model to estimate the treatment-induced complication rate for stereotactic radiosurgery when millimeter-level margins are added. Results: Confirmatory correlation between the nominal target radius (ie, R T ) and commonly used maximum target size was found for the studied cases, except for a few outliers. The peripheral isodose volume such as the 12-Gy volume was found to increase exponentially with increasing Δ/R T , where Δ is the margin size. Such a curve fitted the data (logarithmic regression, R 2 >0.99), and the 12-Gy isodose volume was shown to increase steeply with a 0.5- to 3.0-mm margin applied to a target. For example, a 2-mm margin on average resulted in an increase of 55% ± 16% in the 12-Gy volume; this corresponded to an increase in the symptomatic necrosis rate of 6% to 25%, depending on the Δ/R T values for the target. Conclusions: Millimeter-level margins beyond the GTV significantly impact peripheral normal brain sparing and should be applied with caution. Our model provides a rapid estimate of such an effect, particularly for large and/or irregularly shaped targets

  8. SU-F-R-56: Early Assessment of Treatment Response During Radiation Therapy Delivery for Esophageal Cancer Using Quantitative CT

    Energy Technology Data Exchange (ETDEWEB)

    Li, D [Henan Province Tumor Hospital, Zhengzhou, Henan (China); Chen, X; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States); Wu, H [Medical college of Wisconsin, Milwaukee, WI (United States); Wang, J [Henan province Tumor hospital, Zhengzhou, Henan (China)

    2016-06-15

    Purpose: To investigate the feasibility of assessing treatment response using CTs during delivery of radiation therapy (RT) for esophageal cancer. Methods: Daily CTs acquired using a CT-on-Rails during the routine CT-guided RT for 20 patients with stage II to IV esophageal cancers were analyzed. All patients were treated with combined chemotherapy and IMRT of 45–50 Gy in 25 fractions, and were followed up for two years. Contours of GTV, spinal cord, and non-specified tissue (NST) irradiated with low dose were generated on each daily CT. A series of CT-texture metrics including Hounsfield Unit (HU) histogram, mean HU, standard derivation (STD), entropy, and energy were obtained in these contours on each daily CT. The changes of these metrics and GTV volume during RT delivery were calculated and correlated with treatment outcome. Results: Changes in CT texture (e.g., HU histogram) in GTV and spinal cord (but not in NST) were observed during RT delivery and were consistently increased with radiation dose. For the 20 cases studied, the mean HU in GTV was reduced on average by 4.0HU from the first to the last fractions, while 8 patients (responders) had larger reductions in GTV mean HU (average 7.8 HU) with an average GTV reduction of 51% and had increased consistently in GTV STD and entropy with radiation dose. The rest of 12 patients (non-responders) had lower reductions in GTV mean HU (average 1.5HU) and almost no change in STD and entropy. For the 8 responders, 2 experienced complete response, 7 (88%) survived and 1 died. In contrast, for the 12 non-responders, 4 (33%) survived and 8 died. Conclusion: Radiation can induce changes in CT texture in tumor (e.g., mean HU) during the delivery of RT for esophageal cancer. If validated with more data, such changes may be used for early prediction of RT response for esophageal cancer.

  9. Comparison of investigator-delineated gross tumour volumes and quality assurance in pancreatic cancer: Analysis of the on-trial cases for the SCALOP trial.

    Science.gov (United States)

    Fokas, Emmanouil; Spezi, Emiliano; Patel, Neel; Hurt, Chris; Nixon, Lisette; Chu, Kwun-Ye; Staffurth, John; Abrams, Ross; Mukherjee, Somnath

    2016-08-01

    We performed a retrospective central review of tumour outlines in patients undergoing radiotherapy in the SCALOP trial. The planning CT scans were reviewed retrospectively by a central review team, and the accuracy of investigators' GTV (iGTV) and PTV (iPTV) was compared to the trials team-defined gold standard (gsGTV and gsPTV) using the Jaccard Conformity Index (JCI) and Geographical Miss Index (GMI). The prognostic value of JCI and GMI was also assessed. The RT plans were also reviewed against protocol-defined constraints. 60 patients with diagnostic-quality planning scans were included. The median whole volume JCI for GTV was 0.64 (IQR: 0.43-0.82), and the median GMI was 0.11 (IQR: 0.05-0.22). For PTVs, the median JCI and GMI were 0.80 (IQR: 0.71-0.88) and 0.04 (IQR: 0.02-0.12) respectively. Tumour was completely missed in 1 patient, and⩾50% of the tumour was missed in 3. Patients with JCI for GTV⩾0.7 had 7.12 (95% CIs: 1.83-27.67, p=0.005) higher odds of progressing by 9months in multivariate analysis. Major deviations in RT planning were noted in 4.5% of cases. Radiotherapy workshops and real-time central review of contours are required in RT trials of pancreatic cancer. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Three-dimensional conformal radiation may deliver considerable dose of incidental nodal irradiation in patients with early stage node-negative non-small cell lung cancer when the tumor is large and centrally located

    International Nuclear Information System (INIS)

    Zhao Lujun; Chen Ming; Haken, Randall ten; Chetty, Indrin; Chapet, Olivier; Hayman, James A.; Kong Fengming

    2007-01-01

    Background and purpose: To determine the dose to regional nodal stations in patients with T 1-3 N 0 M 0 non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3DCRT) without intentional elective nodal irradiation (ENI). Materials and methods: Twenty-three patients with medically inoperable T 1-3 N 0 M 0 NSCLC were treated with 3DCRT without ENI. Hilar and mediastinal nodal regions were contoured on planning CT. The prescription dose was normalized to 70 Gy. Equivalent uniform dose (EUD) and other dosimetric parameters (e.g., V 40 ) were calculated for each nodal station. Results: The median EUD for the whole group ranged from 0.4 to 4.4 Gy for all elective nodal regions. Gross tumor volume (GTV) and the relationship between GTV and hilum were significantly correlated with irradiation dose to ipsilateral hilar nodal regions (P 3 (diameter ∼ 4 cm) and or having any overlap with hilum, the median EUDs were 9.6, 22.6, and 62.9 Gy for ipsilateral lower paratracheal, subcarinal, and ipsilateral hilar regions, respectively. The corresponding median V 40 were 32.5%, 39.3%, and 97.6%, respectively. Conclusions: Although incidental nodal irradiation dose is low in the whole group, the dose to high-risk nodal regions is considerable in patients with T 1-3 N 0 NSCLC when the primary is large and/or centrally located

  11. Antibody directed against human YKL-40 increases tumor volume in a human melanoma xenograft model in scid mice

    DEFF Research Database (Denmark)

    Salamon, Johannes; Hoffmann, Tatjana; Elies, Eva

    2014-01-01

    were treated with intraperitoneal injections of anti-YKL-40, isoptype control or PBS. Non-YKL-40 expressing human pancreatic carcinoma cell line PaCa 5061 served as additional control. MR imaging was used for evaluation of tumor growth. Two days after the first injections of anti-YKL-40, tumor volume...... had increased significantly compared with controls, whereas no effects were observed for control tumors from PaCa 5061 cells lacking YKL-40 expression. After 18 days, mean tumor size of the mice receiving repeated anti-YKL-40 injections was 1.82 g, >4 times higher than mean tumor size of the controls...

  12. Treatment plan quality of tri-Co-60 MR-IGRT system in comparison with that of VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min; Park, So Yeon; Kim, Jung In [Dept. of Nuclear Engineering, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Hak Jae; Wu, Hong Gyun [Dept. of Nuclear Engineering, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-04-15

    The ViewRay{sup TM} system combines a 0.35-T MR imaging system and a radiation therapy system using a total of three Co-60 sources. It can perform static intensity-modulated radiation therapy (IMRT) with multi-leaf collimators (MLCs) with leaf widths of 1.05 cm at the plane of isocenter, at source to axis distance (SAD) of 105 cm. Since the tri-Co-60 MR-IGRT system can acquire near-real-time cine sagittal MR images during treatment, automated respiratory gating can be performed based on these cine images, thus, the target margins for lung stereotactic ablative radiotherapy (SABR) could be reduced considerably by comparison with the internal tarvet volume (ITV) approach. we compared lung SABR treatment plans of the tri-Co-60 MR-IGRT system with gross tumor volume (GTV) to those of volumetric modulated arc therapy (VMAT) using TrueBeam STx™ (Varian Medical Systems, Palo Alto, CA) with ITV in this study. The plan quality of the target volume of the VMAT with ITV was better than that of the GTV-based tri-Co-60 MR-IGRT for lung SABR. No significant differences for OARs were observed between the tri-Co-60 MR-IGRT and VMAT. However, the plan quality of the tri-Co-60 MR-IGRT system was clinically acceptable. Despite the relatively poor plan quality of the tri-Co-60 MR-IGRT system, it still has the advantage of real-time monitoring of tumor motion during treatment.

  13. Evaluation of potential internal target volume of liver tumors using cine-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan and Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan); Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko [Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan)

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC). Results

  14. Role of FDG-PET in the Implementation of Involved-Node Radiation Therapy for Hodgkin Lymphoma Patients

    International Nuclear Information System (INIS)

    Girinsky, Théodore; Aupérin, Anne; Ribrag, Vincent; Elleuch, Manel; Fermé, Christophe; Bonniaud, Guillaume; Ruelle, Claude; Alberini, Jean-Louis; Celebic, Aljosa; Edeline, Véronique

    2014-01-01

    Purpose: This study examines the role of 18 F-labeled fluorodeoxyglucose positron emission tomography (FDG-PET) in the implementation of involved-node radiation therapy (INRT) in patients treated for clinical stages (CS) I/II supradiaphragmatic Hodgkin lymphoma (HL). Methods and Material: Patients with untreated CS I/II HL enrolled in the randomized EORTC/LYSA/FIL Intergroup H10 trial and participating in a real-time prospective quality assurance program were prospectively included in this study. Data were electronically obtained from 18 French cancer centers. All patients underwent APET-computed tomography (PET-CT) and a post-chemotherapy planning CT scanning. The pre-chemotherapy gross tumor volume (GTV) and the postchemotherapy clinical target volume (CTV) were first delineated on CT only by the radiation oncologist. The planning PET was then co-registered, and the delineated volumes were jointly analyzed by the radiation oncologist and the nuclear medicine physician. Lymph nodes undetected on CT but FDG-avid were recorded, and the previously determined GTV and CTV were modified according to FDG-PET results. Results: From March 2007 to February 2010, 135 patients were included in the study. PET-CT identified at least 1 additional FDG-avid lymph node in 95 of 135 patients (70.4%; 95% confidence interval [CI]: 61.9%-77.9%) and 1 additional lymph node area in 55 of 135 patients (40.7%; 95% CI: 32.4%-49.5%). The mean increases in the GTV and CTV were 8.8% and 7.1%, respectively. The systematic addition of PET to CT led to a CTV increase in 60% of the patients. Conclusions: Pre-chemotherapy FDG-PET leads to significantly better INRT delineation without necessarily increasing radiation volumes

  15. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper

    DEFF Research Database (Denmark)

    Jensen, Mette Munk; Jørgensen, Jesper Tranekjaer; Binderup, Tina

    2008-01-01

    BACKGROUND: In animal studies tumor size is used to assess responses to anticancer therapy. Current standard for volumetric measurement of xenografted tumors is by external caliper, a method often affected by error. The aim of the present study was to evaluate if microCT gives more accurate...... (n = 20) was determined in vivo by external caliper, microCT and 18F-FDG-PET and subsequently reference volume was determined ex vivo. Intra-observer reproducibility of the microCT and caliper methods were determined by acquiring 10 repeated volume measurements. Volumes of a group of tumors (n = 10......) were determined independently by two observers to assess inter-observer variation. RESULTS: Tumor volume measured by microCT, PET and caliper all correlated with reference volume. No significant bias of microCT measurements compared with the reference was found, whereas both PET and caliper had...

  16. Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor

    Energy Technology Data Exchange (ETDEWEB)

    Toyonaga, Takuya; Hirata, Kenji; Kobayashi, Kentaro; Manabe, Osamu; Watanabe, Shiro; Hattori, Naoya; Shiga, Tohru; Tamaki, Nagara [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Sapporo, Hokkaido (Japan); Yamaguchi, Shigeru [Hokkaido University Graduate School of Medicine, Department of Nuclear Medicine, Sapporo, Hokkaido (Japan); Hokkaido University Graduate School of Medicine, Department of Neurosurgery, Sapporo (Japan); Terasaka, Shunsuke; Kobayashi, Hiroyuki [Hokkaido University Graduate School of Medicine, Department of Neurosurgery, Sapporo (Japan); Kuge, Yuji [Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Tanaka, Shinya [Hokkaido University Graduate School of Medicine, Department of Cancer Pathology, Sapporo (Japan); Ito, Yoichi M. [Hokkaido University Graduate School of Medicine, Department of Biostatistics, Sapporo (Japan)

    2017-04-15

    Metabolic activity and hypoxia are both important factors characterizing tumor aggressiveness. Here, we used F-18 fluoromisonidazole (FMISO) and F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) to define metabolically active hypoxic volume, and investigate its clinical significance in relation to progression free survival (PFS) and overall survival (OS) in glioblastoma patients. Glioblastoma patients (n = 32) underwent FMISO PET, FDG PET, and magnetic resonance imaging (MRI) before surgical intervention. FDG and FMISO PET images were coregistered with gadolinium-enhanced T1-weighted MR images. Volume of interest (VOI) of gross tumor volume (GTV) was manually created to enclose the entire gadolinium-positive areas. The FMISO tumor-to-normal region ratio (TNR) and FDG TNR were calculated in a voxel-by-voxel manner. For calculating TNR, standardized uptake value (SUV) was divided by averaged SUV of normal references. Contralateral frontal and parietal cortices were used as the reference region for FDG, whereas the cerebellar cortex was used as the reference region for FMISO. FDG-positive was defined as the FDG TNR ≥1.0, and FMISO-positive was defined as FMISO TNR ≥1.3. Hypoxia volume (HV) was defined as the volume of FMISO-positive and metabolic tumor volume in hypoxia (hMTV) was the volume of FMISO/FDG double-positive. The total lesion glycolysis in hypoxia (hTLG) was hMTV x FDG SUVmean. The extent of resection (EOR) involving cytoreduction surgery was volumetric change based on planimetry methods using MRI. These factors were tested for correlation with patient prognosis. All tumor lesions were FMISO-positive and FDG-positive. Univariate analysis indicated that hMTV, hTLG, and EOR were significantly correlated with PFS (p = 0.007, p = 0.04, and p = 0.01, respectively) and that hMTV, hTLG, and EOR were also significantly correlated with OS (p = 0.0028, p = 0.037, and p = 0.014, respectively). In contrast, none of FDG TNR, FMISO TNR, GTV, HV

  17. Effect of tumor volume on the enhancement pattern of parathyroid adenoma on parathyroid four-dimensional CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Kyoung [Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Dongguk University Ilsan Hospital, Department of Radiology, Goyang-si (Korea, Republic of); Yun, Tae Jin; Kim, Ji-hoon; Kang, Koung Mi; Choi, Seung Hong; Sohn, Chul-Ho [Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Lee, Kyu Eun; Kim, Su-jin [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of); Won, Jae-Kyung [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of)

    2016-05-15

    The purpose of this study is to assess the effect of tumor volume on the enhancement pattern of parathyroid adenoma (PTA) on four-dimensional computed tomography (4D-CT). We analyzed the enhancement patterns of PTA on four-phase 4D-CT in 44 patients. Dependency of the changes of Hounsfield unit values (ΔHU) on the tumor volumes and clinical characteristics was evaluated using linear regression analyses. In addition, an unpaired t test was used to compare ΔHU of PTAs between PTA volume ≥1 cm{sup 3} and <1 cm{sup 3}, thyroid gland, and lymph node. PTA volume based on CT was the strongest factor on the ΔHU{sub Pre} {sub to} {sub Arterial} and ΔHU{sub Arterial} {sub to} {sub Venous} and ΔHU{sub Arterial} {sub to} {sub Delayed} (R {sup 2} = 0.34, 0.25, and 0.32, respectively, P < 0.001 for both). PTA ≥1 cm {sup 3} had statistically significant greater enhancement between the unenhanced phase and the arterial phase than PTA <1 cm {sup 3} (mean values ± standard deviations (SDs) of ΔHU{sub Pre} {sub to} {sub Arterial}, 102.7 ± 33.7 and 57.5 ± 28.8, respectively, P < 0.001). PTA ≥1 cm {sup 3} showed an early washout pattern on the venous phase, whereas PTA <1 cm {sup 3} showed a progressive enhancement pattern on the venous phase (mean values ± SDs of ΔHU{sub Arterial} {sub to} {sub Venous}, -13.2 ± 31.6 and 14.4 ± 32.7, respectively; P = 0.009). The enhancement pattern of PTA on 4D-CT is variable with respect to PTA volume based on CT. Therefore, the enhancement pattern of PTA on 4D-CT requires careful interpretation concerning the tumor volume, especially in cases of PTA <1 cm {sup 3}. (orig.)

  18. Enrichment of circulating tumor cells from a large blood volume using leukapheresis and elutriation: proof of concept.

    Science.gov (United States)

    Eifler, Robert L; Lind, Judith; Falkenhagen, Dieter; Weber, Viktoria; Fischer, Michael B; Zeillinger, Robert

    2011-03-01

    The aim of this study was to determine the applicability of a sequential process using leukapheresis, elutriation, and fluorescence-activated cell sorting (FACS) to enrich and isolate circulating tumor cells from a large blood volume to allow further molecular analysis. Mononuclear cells were collected from 10 L of blood by leukapheresis, to which carboxyfluorescein succinimidyl ester prelabeled CaOV-3 tumor cells were spiked at a ratio of 26 to 10⁶ leukocytes. Elutriation separated the spiked leukapheresates primarily by cell size into distinct fractions, and leukocytes and tumor cells, characterized as carboxyfluorescein succinimidyl ester positive, EpCAM positive and CD45 negative events, were quantified by flow cytometry. Tumor cells were isolated from the last fraction using FACS or anti-EpCAM coupled immunomagnetic beads, and their recovery and purity determined by fluorescent microscopy and real-time PCR. Leukapheresis collected 13.5 x 10⁹ mononuclear cells with 87% efficiency. In total, 53 to 78% of spiked tumor cells were pre-enriched in the last elutriation fraction among 1.6 x 10⁹ monocytes. Flow cytometry predicted a circulating tumor cell purity of ~90% giving an enrichment of 100,000-fold following leukapheresis, elutriation, and FACS, where CaOV-3 cells were identified as EpCAM positive and CD45 negative events. FACS confirmed this purity. Alternatively, immunomagnetic bead adsorption recovered 10% of tumor cells with a median purity of 3.5%. This proof of concept study demonstrated that elutriation and FACS following leukapheresis are able to enrich and isolate tumor cells from a large blood volume for molecular characterization. Copyright © 2010 International Clinical Cytometry Society.

  19. Dosimetric evaluation of simultaneous integrated boost during stereotactic body radiation therapy for pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wensha, E-mail: wensha.yang@cshs.org [Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (United States); Reznik, Robert; Fraass, Benedick A. [Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (United States); Nissen, Nicholas [Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA (United States); Hendifar, Andrew [Department of Gastrointestinal Oncology, Cedars Sinai Medical Center, Los Angeles, CA (United States); Wachsman, Ashley [Department of Cross-Sectional Imaging Interventional Oncology, Cedars Sinai Medical Center, Los Angeles, CA (United States); Sandler, Howard; Tuli, Richard [Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (United States)

    2015-04-01

    Stereotactic body radiation therapy (SBRT) provides a promising way to treat locally advanced pancreatic cancer and borderline resectable pancreatic cancer. A simultaneous integrated boost (SIB) to the region of vessel abutment or encasement during SBRT has the potential to downstage otherwise likely positive surgical margins. Despite the potential benefit of using SIB-SBRT, the ability to boost is limited by the local geometry of the organs at risk (OARs), such as stomach, duodenum, and bowel (SDB), relative to tumor. In this study, we have retrospectively replanned 20 patients with 25 Gy prescribed to the planning target volume (PTV) and 33~80 Gy to the boost target volume (BTV) using an SIB technique for all patients. The number of plans and patients able to satisfy a set of clinically established constraints is analyzed. The ability to boost vessels (within the gross target volume [GTV]) is shown to correlate with the overlap volume (OLV), defined to be the overlap between the GTV + a 1(OLV1)- or 2(OLV2)-cm margin with the union of SDB. Integral dose, boost dose contrast (BDC), biologically effective BDC, tumor control probability for BTV, and normal tissue complication probabilities are used to analyze the dosimetric results. More than 65% of the cases can deliver a boost to 40 Gy while satisfying all OAR constraints. An OLV2 of 100 cm{sup 3} is identified as the cutoff volume: for cases with OLV2 larger than 100 cm{sup 3}, it is very unlikely the case could achieve 25 Gy to the PTV while successfully meeting all the OAR constraints.

  20. Prognostic role of tumor volume for radiotherapy outcome in patient with T2 laryngeal cancer

    International Nuclear Information System (INIS)

    Rutkowski, T.; Wygoda, A.; Skladowski, K.; Rutkowski, R.; Maciejewski, B.; Hejduk, B.; Kolosza, Z.

    2013-01-01

    Background and purpose: Tumor volume (TV) is recognized as a prognostic factor of treatment outcome for head and neck tumors but is not routinely included in the treatment decision-making process. The purpose of the study was to define its prognostic role for patients with T2 laryngeal cancer. Material and methods: TV of 160 patients who underwent RT between 2002 and 2006 for T2 laryngeal squamous cell carcinoma were reviewed. The tumor was located in the glottis and epiglottis in 82 (51 %) and 78 (49 %) patients, respectively. TV was manually contoured on pretreatment, planning, contrast-enhanced CT scans and the volumetric measurement (cm 3 ) was calculated by the volume algorithm. Results: The median TV value was 2.01 cm 3 (range 0.15-21.68 cm 3 ). The median TV was significantly lower in patients with glottic tumors (p < 0.0001), N0 (p < 0.001), or well histopatologically differentiated tumors (p = 0.01). A significant correlation between TV, hemoglobin concentration (p < 0.01), and total dose (TD; p < 0.001) was observed. On univariate analyses, TV influenced local control (LC; p = 0.02) and overall survival (OS, p < 0.001). On multivariate analysis, both age (HR 1.038, p = 0.03) and TV (HR = 1.075, p = 0.01) remained significantly related to LC and OS (age: HR 1.038, p = 0.005; TV: HR 1.097, p = 0.0001). Conclusion: Large TV worsen prognosis of patients with T2 laryngeal cancer. A large TV is more common for supraglottic, poorly differentiated tumors and may suggest higher risk of nodal spread. The routine estimation of TV prior to therapy may be essential in order to select the best treatment option for patients with T2 laryngeal cancer. (orig.)

  1. Long-survivors of glioblatoma treated with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to compare the radiation dose between long-survivors and non-long-survivors in patients with glioblatoma (GBM) treated with boron neutron capture therapy (BNCT). Among 23 GBM patients treated with BNCT, there were five patients who survived more than three years after diagnosis. The physical and weighted dose of the minimum gross tumor volume (GTV) of long-survivors was much higher than that of non-long survivors with significant statistical differences.

  2. Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes

    International Nuclear Information System (INIS)

    Callahan, Jason; Kron, Tomas; Siva, Shankar; Simoens, Nathalie; Edgar, Amanda; Everitt, Sarah; Schneider, Michal E; Hicks, Rodney J

    2014-01-01

    PET/CT scans acquired in the radiotherapy treatment position are typically performed without compensating for respiratory motion. The purpose of this study was to investigate geographic miss of lung tumours due to respiratory motion for target volumes defined on a standard 3D-PET/CT. 29 patients staged for pulmonary malignancy who completed both a 3D-PET/CT and 4D-PET/CT were included. A 3D-Gross Tumour Volume (GTV) was defined on the standard whole body PET/CT scan. Subsequently a 4D-GTV was defined on a 4D-PET/CT MIP. A 5 mm, 10 mm, 15 mm symmetrical and 15×10 mm asymmetrical Planning Target Volume (PTV) was created by expanding the 3D-GTV and 4D-GTV’s. A 3D conformal plan was generated and calculated to cover the 3D-PTV. The 3D plan was transferred to the 4D-PTV and analysed for geographic miss. Three types of miss were measured. Type 1: any part of the 4D-GTV outside the 3D-PTV. Type 2: any part of the 4D-PTV outside the 3D-PTV. Type 3: any part of the 4D-PTV receiving less than 95% of the prescribed dose. The lesion motion was measured to look at the association between lesion motion and geographic miss. When a standard 15 mm or asymmetrical PTV margin was used there were 1/29 (3%) Type 1 misses. This increased 7/29 (24%) for the 10 mm margin and 23/29 (79%) for a 5 mm margin. All patients for all margins had a Type 2 geographic miss. There was a Type 3 miss in 25 out of 29 cases in the 5, 10, and 15 mm PTV margin groups. The asymmetrical margin had one additional Type 3 miss. Pearson analysis showed a correlation (p < 0.01) between lesion motion and the severity of the different types of geographic miss. Without any form of motion suppression, the current standard of a 3D- PET/CT and 15 mm PTV margin employed for lung lesions has an increasing risk of significant geographic miss when tumour motion increases. Use of smaller asymmetric margins in the cranio-caudal direction does not comprise tumour coverage. Reducing PTV margins for volumes defined on 3D

  3. Immunohistochemical and molecular imaging biomarker signature for the prediction of failure site after chemoradiation for head and neck squamous cell carcinoma

    DEFF Research Database (Denmark)

    Rasmussen, Gregers Brünnich; Håkansson, Katrin E; Vogelius, Ivan R

    2017-01-01

    .23; p: .025), Bcl-2 (HR: 2.6; p: .08), SUVmax (HR: 3.5; p: .095) and GTV (HR: 1.7; p: .063). CONCLUSIONS: The models successfully distinguished between risk of locoregional failure and risk of distant metastasis, which is important information for clinical decision-making. High p53 expression has......OBJECTIVE: To identify a failure site-specific prognostic model by combining immunohistochemistry (IHC) and molecular imaging information to predict long-term failure type in squamous cell carcinoma of the head and neck. PATIENT AND METHODS: Tissue microarray blocks of 196 head and neck squamous...... cell carcinoma cases were stained for a panel of biomarkers using IHC. Gross tumor volume (GTV) from the PET/CT radiation treatment planning CT scan, maximal Standard Uptake Value (SUVmax) of fludeoxyglucose (FDG) and clinical information were included in the model building using Cox proportional...

  4. Prognostic value of defining the systemic tumor volume with FDG-PET in diffuse large b cell lymphoma

    International Nuclear Information System (INIS)

    Byun, Byung Hyun; Lim, Sang Moo; Cheon, Gi Jeong; Choi, Chang Woon; Kang, Hye Jin; Na, Im Il; Ryoo, Baek Yeol; Yang, Sung Hyun

    2007-01-01

    We measured the systemic tumor volume using FDG-PET in patients with diffuse large B cell lymphoma (DLBL). We also investigated its prognostic role, and compared it with that of other prognostic factors. FDG PET was performed in 38 newly diagnosed DLBL patients (20 men, 18 women, age 55.715.1 years) at pre-treatment of chemotherapy. Clinical staging of lymphoma was evaluated by Ann Arbor system. On each FDG PET scan, we acquired volume of interest (VOl) at the cut-off value of SUV=2.5 in every measurable tumor by the automatic edge detection software. According to the VOI, we measured the metabolic volume and mean SUV, and estimated volume-activity indexes (SUV Vol) as mean SUV times metabolic volume. And then, we calculated the summed metabolic volume (VOLsum) and summed SUV Vol (SUV Volsum) in every FDG PET scan. Maximum SUV of involved lesion (SUVmax) was also acquired on each FDG PET scan. Time to treatment failure (TTF) was compared among VOLsum (median), SUV Volsum (median), SUVmax (median), clinical stage, gender, age, LDH, and performance status-assigned response designations by Kaplan-Meier survival analysis. Initial stages of DLBL patients were stage I in 4, II in 14, III in 15, and IV in 4 by Ann Arbor system. Median follow up period was 15.5months, and estimated mean TTF was 22.3 months. Univariate analysis demonstrated that TTF is statistically significantly reduced in those with high VOLsum (>215.1cm2, p=0.004), high SUV Volsum (>1577.5, p=0.003), and increased LDH (p=0.036). TTF did not correlate with SUVmax (p=0.571), clinical stage (p=0.194), gender (p=0.549), and age (p=0.128), and performance status =2 (p=0.074). Multivariate analysis using VOLsum, SUV Volsum, LDH, and performance status demonstrated no statistically significant predictor of TTF (p>0.05). Systemic tumor volume measurement using FDG-PET is suggestive to be the significant prognostic factor in patients with DLBL

  5. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    International Nuclear Information System (INIS)

    Knybel, Lukas; Cvek, Jakub; Molenda, Lukas; Stieberova, Natalie; Feltl, David

    2016-01-01

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P 15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P 3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact

  6. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    International Nuclear Information System (INIS)

    Martin, Spencer; Rodrigues, George; Gaede, Stewart; Brophy, Mark; Barron, John L; Beauchemin, Steven S; Palma, David; Louie, Alexander V; Yu, Edward; Yaremko, Brian; Ahmad, Belal

    2015-01-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development. (paper)

  7. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    Science.gov (United States)

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart

    2015-02-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  8. SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Bichay, T; Mayville, A [Mercy Health, Saint Mary’s, Grand Rapids, MI (United States)

    2016-06-15

    Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fraction and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.

  9. Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing

    Science.gov (United States)

    Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2010-03-01

    We propose an automated lung tumor segmentation method for whole body PET images based on a novel downhill region growing (DRG) technique, which regards homogeneous tumor hotspots as 3D monotonically decreasing functions. The method has three major steps: thoracic slice extraction with K-means clustering of the slice features; hotspot segmentation with DRG; and decision tree analysis based hotspot classification. To overcome the common problem of leakage into adjacent hotspots in automated lung tumor segmentation, DRG employs the tumors' SUV monotonicity features. DRG also uses gradient magnitude of tumors' SUV to improve tumor boundary definition. We used 14 PET volumes from patients with primary NSCLC for validation. The thoracic region extraction step achieved good and consistent results for all patients despite marked differences in size and shape of the lungs and the presence of large tumors. The DRG technique was able to avoid the problem of leakage into adjacent hotspots and produced a volumetric overlap fraction of 0.61 +/- 0.13 which outperformed four other methods where the overlap fraction varied from 0.40 +/- 0.24 to 0.59 +/- 0.14. Of the 18 tumors in 14 NSCLC studies, 15 lesions were classified correctly, 2 were false negative and 15 were false positive.

  10. Improvement of internal tumor volumes of non-small cell lung cancer patients for radiation treatment planning using interpolated average CT in PET/CT.

    Directory of Open Access Journals (Sweden)

    Yao-Ching Wang

    Full Text Available Respiratory motion causes uncertainties in tumor edges on either computed tomography (CT or positron emission tomography (PET images and causes misalignment when registering PET and CT images. This phenomenon may cause radiation oncologists to delineate tumor volume inaccurately in radiotherapy treatment planning. The purpose of this study was to analyze radiology applications using interpolated average CT (IACT as attenuation correction (AC to diminish the occurrence of this scenario. Thirteen non-small cell lung cancer patients were recruited for the present comparison study. Each patient had full-inspiration, full-expiration CT images and free breathing PET images by an integrated PET/CT scan. IACT for AC in PET(IACT was used to reduce the PET/CT misalignment. The standardized uptake value (SUV correction with a low radiation dose was applied, and its tumor volume delineation was compared to those from HCT/PET(HCT. The misalignment between the PET(IACT and IACT was reduced when compared to the difference between PET(HCT and HCT. The range of tumor motion was from 4 to 17 mm in the patient cohort. For HCT and PET(HCT, correction was from 72% to 91%, while for IACT and PET(IACT, correction was from 73% to 93% (*p<0.0001. The maximum and minimum differences in SUVmax were 0.18% and 27.27% for PET(HCT and PET(IACT, respectively. The largest percentage differences in the tumor volumes between HCT/PET and IACT/PET were observed in tumors located in the lowest lobe of the lung. Internal tumor volume defined by functional information using IACT/PET(IACT fusion images for lung cancer would reduce the inaccuracy of tumor delineation in radiation therapy planning.

  11. Importance of protocol target definition on the ability to spare normal tissue: An IMRT and 3D-CRT planning comparison for intraorbital tumors

    International Nuclear Information System (INIS)

    Hein, Patrick A.; Gladstone, David J.; Bellerive, Marc R.; Hug, Eugen B.

    2005-01-01

    Purpose: We selected five intraorbital tumor sites that are frequently found in clinical practice in children diagnosed with orbital rhabdomyosarcoma and performed three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated photon radiotherapy (IMRT) planning. Results of target coverage and doses to critical structures were compared. The goal of this study was to evaluate and to document realistic expectations as to organ-sparing capabilities of modern radiation therapy planning technologies with a focus on lens-sparing irradiation. Furthermore, we investigated potential added benefits of IMRT compared with 3D-CRT and the influence of protocol volume criteria definitions on the ability to obtain normal tissue dose sparing using the orbit as an example of a complex anatomic site. Methods and Materials: The five intraorbital tumor sites were placed retrobulbar, temporal, nasal, in the upper inner and upper outer quadrant, the latter two more complex in shape. Gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV) were defined in image-fused computed tomography and magnetic resonance data sets. 3D-CRT and IMRT photon plans, using equal beam angles and collimation for direct comparison, were designed to 45 Gy prescription dose according to Intergroup Rhabdomyosarcoma Study Group-D9602 (IRSG-D9602) protocol (Intergroup Rhabdomyosarcoma Study V [IRS-V] protocol) for Stage I, Clinical Group 3 orbital rhabdomyosarcoma. To compare the impact of changed target definitions in IMRT planning, additional IMRT plans were generated using modified volume and dose coverage criteria. The minimum dose constraint (95%) of the PTV was substituted by a required minimum volume coverage (95%) with the prescribed dose. Dose-volume histograms (DVHs) were obtained, including target volumes, lens, optic nerves, optic chiasm, lacrimal gland, bony orbit, pituitary gland, frontal and temporal lobes. Results: Protocol target volume coverage criteria

  12. A Dosimetric Comparison of Dose Escalation with Simultaneous Integrated Boost for Locally Advanced Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Wenjuan Yang

    2017-01-01

    Full Text Available Background. Many studies have demonstrated that a higher radiotherapy dose is associated with improved outcomes in non-small-cell lung cancer (NSCLC. We performed a dosimetric planning study to assess the dosimetric feasibility of intensity-modulated radiation therapy (IMRT with a simultaneous integrated boost (SIB in locally advanced NSCLC. Methods. We enrolled twenty patients. Five different dose plans were generated for each patient. All plans were prescribed a dose of 60 Gy to the planning tumor volume (PTV. In the three SIB groups, the prescribed dose was 69 Gy, 75 Gy, and 81 Gy in 30 fractions to the internal gross tumor volume (iGTV. Results. The SIB-IMRT plans were associated with a significant increase in the iGTV dose (P < 0.05, without increased normal tissue exposure or prolonged overall treatment time. Significant differences were not observed in the dose to the normal lung in terms of the V5 and V20 among the four IMRT plans. The maximum dose (Dmax in the esophagus moderately increased along with the prescribed dose (P < 0.05. Conclusions. Our results indicated that escalating the dose by SIB-IMRT is dosimetrically feasible; however, systematic evaluations via clinical trials are still warranted. We have designed a further clinical study (which is registered with ClinicalTrials.gov, number NCT02841228.

  13. SU-F-T-150: Comparing Normal Tissue Irradiated Volumes for Proton Vs. Photon Treatment Plans On Lung Patients

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A; Mohan, R; Liao, Z [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The aim of this work is to compare the “irradiated volume” (IRV) of normal tissues receiving 5, 20, 50, 80 and 90% or higher of the prescription dose with passively scattered proton therapy (PSPT) vs. IMRT of lung cancer patients. The overall goal of this research is to understand the factors affecting outcomes of a randomized PSPT vs. IMRT lung trial. Methods: Thirteen lung cancer patients, selected randomly, were analyzed. Each patient had PSPT and IMRT 74 Gy (RBE) plans meeting the same normal tissue constraints generated. IRVs were created for pairs of IMRT and PSPT plans on each patient. The volume of iGTV, (respiratory motion-incorporated GTV) was subtracted from each IRV to create normal tissue irradiated volume IRVNT. The average of IRVNT DVHs over all patients was also calculated for both modalities and inter-compared as were the selected dose-volume indices. Probability (p value) curves were calculated based on the Wilcoxon matched-paired signed-rank test to determine the dose regions where the statistically significant differences existed. Results: As expected, the average 5, 20 and 50% IRVNT’s for PSPT was found to be significantly smaller than for IMRT (p < 0.001, 0.01, and 0.001 respectively). However, the average 90% IRVNT for PSPT was greater than for IMRT (p = 0.003) presumably due to larger penumbra of protons and the long range of protons in lower density media. The 80% IRVNT for PSPT was also larger but not statistically distinguishable (p = .224). Conclusion: PSPT modality has smaller irradiated volume at lower doses, but larger volume at high doses. A larger cohort of lung patients will be analyzed in the future and IRVNT of patients treated with PSPT and IMRT will be compared to determine if the irradiated volumes (the magnitude of “dose bath”) correlate with outcomes.

  14. SU-E-J-75: Importance of 4DCT for Target Volume Definition in Stereotactic Lung Radiotherapy

    International Nuclear Information System (INIS)

    Goksel, E; Cone, D; Kucucuk, H; Senkesen, O; Yilmaz, M; Aslay, I; Tezcanli, E; Garipagaoglu, M; Sengoz, M

    2014-01-01

    Purpose: We aimed to investigate the importance of 4DCT for lung tumors treated with SBRT and whether maximum intensity projection (MIP) and free breathing (FB) images can compansate for tumor movement. Methods: Six patients with primary lung cancer and 2 patients with lung metastasis with a median age of 69.5 (42–86) were included. Patients were positioned supine on a vacuum bag. In addition to FB planning CT images, 4DCT images were obtained at 3 mm intervals using Varian RPM system with (Siemens Somatom Sensetion 64). MIP series were reconstructed using 4DCT images. PTV-FB and PTV-MIP (GTV+5mm) volumes were contoured using FB and MIP series, respectively. GTVs were defined on each of eight different breathing phase images and were merged to create the ITV. PTV-4D was generated with a 5 mm margin to ITV. PTV-MIP and PTV-4D contours were copied to FB CT series and treatment plans for PTV-MIP and PTV-FB were generated using RapidArc (2 partial arc) technique in Eclipse (version 11, AAA algorithm). The prescription dose was 5600cGy in 7 fractions. ITV volumes receiving prescription dose (%) and V95 for ITV were calculated for each treatment plan. Results: The mean PTV-4B, PTV-MIP and PTV-FB volumes were 23.2 cc, 15.4cc ve 11cc respectively. Median volume of ITV receiving the prescription dose was 34.6% (16.4–70 %) and median V95 dose for ITV was 1699cGy (232cGy-5117cGy) in the plan optimized for PTV-FB as the reference. When the plan was optimized for PTV-MIP, median ITV volume receiving the prescription dose was 67.15% (26–86%) and median V95 dose for ITV was 4231cGy (1735cGy-5290cGy). Conclusion: Images used in lung SBRT are critical for treatment quality; FB and MIP images did not compensate target movement, therefore 4DCT images should be obtained for all patients undergoing lung SBRT or the safety margins should be adjusted

  15. Tumor Volume Decrease via Feeder Occlusion for Treating a Large, Firm Trigone Meningioma.

    Science.gov (United States)

    Nakashima, Takuma; Hatano, Norikazu; Kanamori, Fumiaki; Muraoka, Shinsuke; Kawabata, Teppei; Takasu, Syuntaro; Watanabe, Tadashi; Kojima, Takao; Nagatani, Tetsuya; Seki, Yukio

    2018-01-01

    Trigone meningiomas are considered a surgical challenge, as they tend to be considerably large and hypervascularized at the time of presentation. We experienced a case of a large and very hard trigone meningioma that was effectively treated using initial microsurgical feeder occlusion followed by surgery in stages. A 19-year-old woman who presented with loss of consciousness was referred to our hospital for surgical treatment of a brain tumor. Radiological findings were compatible with a left ventricular trigone meningioma extending laterally in proximity to the Sylvian fissure. At initial surgery using the transsylvian approach, main feeders originating from the anterior and lateral posterior choroidal arteries were occluded at the inferior horn; however, only a small section of the tumor could initially be removed because of its firmness. Over time, feeder occlusion resulted in tumor necrosis and a 20% decrease in its diameter; the mass effect was alleviated within 1 year. The residual meningioma was then totally excised in staged surgical procedures after resection became more feasible owing to ischemia-induced partial softening of the tumor. When a trigone meningioma is large and very hard, initial microsurgical feeder occlusion in the inferior horn can be a safe and effective option, and can lead to necrosis, volume decrease, and partial softening of the residual tumor to allow for its staged surgical excision.

  16. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Knybel, Lukas [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); VŠB-Technical University of Ostrava, Ostrava (Czech Republic); Cvek, Jakub, E-mail: Jakub.cvek@fno.cz [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); Molenda, Lukas; Stieberova, Natalie; Feltl, David [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic)

    2016-11-15

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe

  17. Method to account for dose fractionation in analysis of IMRT plans: Modified equivalent uniform dose

    International Nuclear Information System (INIS)

    Park, Clinton S.; Kim, Yongbok; Lee, Nancy; Bucci, Kara M.; Quivey, Jeanne M.; Verhey, Lynn J.; Xia Ping

    2005-01-01

    Purpose: To propose a modified equivalent uniform dose (mEUD) to account for dose fractionation using the biologically effective dose without losing the advantages of the generalized equivalent uniform dose (gEUD) and to report the calculated mEUD and gEUD in clinically used intensity-modulated radiotherapy (IMRT) plans. Methods and Materials: The proposed mEUD replaces the dose to each voxel in the gEUD formulation by a biologically effective dose with a normalization factor. We propose to use the term mEUD D o /n o that includes the total dose (D o ) and number of fractions (n o ) and to use the term mEUD o that includes the same total dose but a standard fraction size of 2 Gy. A total of 41 IMRT plans for patients with nasopharyngeal cancer treated at our institution between October 1997 and March 2002 were selected for the study. The gEUD and mEUD were calculated for the planning gross tumor volume (pGTV), planning clinical tumor volume (pCTV), parotid glands, and spinal cord. The prescription dose for these patients was 70 Gy to >95% of the pGTV and 59.4 Gy to >95% of the pCTV in 33 fractions. Results: The calculated average gEUD was 72.2 ± 2.4 Gy for the pGTV, 54.2 ± 7.1 Gy for the pCTV, 26.7 ± 4.2 Gy for the parotid glands, and 34.1 ± 6.8 Gy for the spinal cord. The calculated average mEUD D o /n o using 33 fractions was 71.7 ± 3.5 Gy for mEUD 70/33 of the pGTV, 49.9 ± 7.9 Gy for mEUD 59.5/33 of the pCTV, 27.6 ± 4.8 Gy for mEUD 26/33 of the parotid glands, and 32.7 ± 7.8 Gy for mEUD 45/33 of the spinal cord. Conclusion: The proposed mEUD, combining the gEUD with the biologically effective dose, preserves all advantages of the gEUD while reflecting the fractionation effects and linear and quadratic survival characteristics

  18. TH-E-BRF-10: Interim Esophageal Cancer Response Assessment Via 18FDG-PET Scanning During Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, K [Duke University Medical Physics Graduate Program, Durham, NC (United States); Wu, Q; Perez, B; Czito, B; Palta, M; Willett, C; Das, S [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: Local failure occurs in a large proportion of esophageal cancer patients treated with chemoradiation. The treatment strategy for non-responders could potentially be modified if they are identified during therapy. This work investigates the utility of an interim 18FDG-PET scan acquired during the course of therapy as a predictor of pathological response post-therapy. Methods: Fifteen patients underwent 18FDG-PET scanning prior to radiation therapy (RT) and once during RT, after delivery of ∼32 Gy. The physician-contoured GTV on the planning CT scan was used to automatically segment a PET-based GTV on the pre-RT PET (GTV-pre-PET) as the volume with >40% of the maximum GTV PET SUV value. The pre- and intra-RT CTs were deformably registered to each other to transfer the GTV-pre-PET to the intra-RT PET (GTV-intra-PET). The fractional decrease in the maximum SUV, mean SUV and the SUV to the highest intensity 10% – 90% volumes from GTV-pre-PET to GTV-intra-PET were compared to pathological response assessed at the time of post-RT surgery. Results: Based on post-treatment pathology of 15 patients, 7 were classified as achieving favorable response (treatment effect grade ≤ 1) and 8 as unfavorable response (treatment effect grade > 1). Neither fractional decrease in maximum SUV nor mean SUV were significant between the favorable and unfavorable groups. However, the fractional decrease in SUV20% (SUV to the highest 20% volume) was significant (p = 0.02), with an area under the Receiver Operating Characteristics (ROC) curve of 0.84. An optimal cutoff value of 0.46 for this metric was able to distinguish between the two groups with 71% sensitivity (favorable) and 88% specificity (unfavorable). Conclusion: The fractional decrease in SUV to the volume with highest 20% intensity from pre- to intra-RT 18FDG-PET imaging may be used to distinguish between favorable and unfavorable responders with high sensitivity and specificity.

  19. TH-E-BRF-10: Interim Esophageal Cancer Response Assessment Via 18FDG-PET Scanning During Radiation Therapy

    International Nuclear Information System (INIS)

    Higgins, K; Wu, Q; Perez, B; Czito, B; Palta, M; Willett, C; Das, S

    2014-01-01

    Purpose: Local failure occurs in a large proportion of esophageal cancer patients treated with chemoradiation. The treatment strategy for non-responders could potentially be modified if they are identified during therapy. This work investigates the utility of an interim 18FDG-PET scan acquired during the course of therapy as a predictor of pathological response post-therapy. Methods: Fifteen patients underwent 18FDG-PET scanning prior to radiation therapy (RT) and once during RT, after delivery of ∼32 Gy. The physician-contoured GTV on the planning CT scan was used to automatically segment a PET-based GTV on the pre-RT PET (GTV-pre-PET) as the volume with >40% of the maximum GTV PET SUV value. The pre- and intra-RT CTs were deformably registered to each other to transfer the GTV-pre-PET to the intra-RT PET (GTV-intra-PET). The fractional decrease in the maximum SUV, mean SUV and the SUV to the highest intensity 10% – 90% volumes from GTV-pre-PET to GTV-intra-PET were compared to pathological response assessed at the time of post-RT surgery. Results: Based on post-treatment pathology of 15 patients, 7 were classified as achieving favorable response (treatment effect grade ≤ 1) and 8 as unfavorable response (treatment effect grade > 1). Neither fractional decrease in maximum SUV nor mean SUV were significant between the favorable and unfavorable groups. However, the fractional decrease in SUV20% (SUV to the highest 20% volume) was significant (p = 0.02), with an area under the Receiver Operating Characteristics (ROC) curve of 0.84. An optimal cutoff value of 0.46 for this metric was able to distinguish between the two groups with 71% sensitivity (favorable) and 88% specificity (unfavorable). Conclusion: The fractional decrease in SUV to the volume with highest 20% intensity from pre- to intra-RT 18FDG-PET imaging may be used to distinguish between favorable and unfavorable responders with high sensitivity and specificity

  20. Reliability of tumor volume estimation from MR images in patients with malignant glioma. Results from the American College of Radiology Imaging Network (ACRIN) 6662 Trial

    International Nuclear Information System (INIS)

    Ertl-Wagner, Birgit B.; Blume, Jeffrey D.; Herman, Benjamin; Peck, Donald; Udupa, Jayaram K.; Levering, Anthony; Schmalfuss, Ilona M.

    2009-01-01

    Reliable assessment of tumor growth in malignant glioma poses a common problem both clinically and when studying novel therapeutic agents. We aimed to evaluate two software-systems in their ability to estimate volume change of tumor and/or edema on magnetic resonance (MR) images of malignant gliomas. Twenty patients with malignant glioma were included from different sites. Serial post-operative MR images were assessed with two software systems representative of the two fundamental segmentation methods, single-image fuzzy analysis (3DVIEWNIX-TV) and multi-spectral-image analysis (Eigentool), and with a manual method by 16 independent readers (eight MR-certified technologists, four neuroradiology fellows, four neuroradiologists). Enhancing tumor volume and tumor volume plus edema were assessed independently by each reader. Intraclass correlation coefficients (ICCs), variance components, and prediction intervals were estimated. There were no significant differences in the average tumor volume change over time between the software systems (p > 0.05). Both software systems were much more reliable and yielded smaller prediction intervals than manual measurements. No significant differences were observed between the volume changes determined by fellows/neuroradiologists or technologists.Semi-automated software systems are reliable tools to serve as outcome parameters in clinical studies and the basis for therapeutic decision-making for malignant gliomas, whereas manual measurements are less reliable and should not be the basis for clinical or research outcome studies. (orig.)

  1. Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry?

    International Nuclear Information System (INIS)

    Heeswijk, Miriam M. van; Lambregts, Doenja M.J.; Griethuysen, Joost J.M. van; Oei, Stanley; Rao, Sheng-Xiang; Graaff, Carla A.M. de; Vliegen, Roy F.A.; Beets, Geerard L.; Papanikolaou, Nikos; Beets-Tan, Regina G.H.

    2016-01-01

    Purpose: Diffusion-weighted imaging (DWI) tumor volumetry is promising for rectal cancer response assessment, but an important drawback is that manual per-slice tumor delineation can be highly time consuming. This study investigated whether manual DWI-volumetry can be reproduced using a (semi)automated segmentation approach. Methods and Materials: Seventy-nine patients underwent magnetic resonance imaging (MRI) that included DWI (highest b value [b1000 or b1100]) before and after chemoradiation therapy (CRT). Tumor volumes were assessed on b1000 (or b1100) DWI before and after CRT by means of (1) automated segmentation (by 2 inexperienced readers), (2) semiautomated segmentation (manual adjustment of the volumes obtained by method 1 by 2 radiologists), and (3) manual segmentation (by 2 radiologists); this last assessment served as the reference standard. Intraclass correlation coefficients (ICC) and Dice similarity indices (DSI) were calculated to evaluate agreement between different methods and observers. Measurement times (from a radiologist's perspective) were recorded for each method. Results: Tumor volumes were not significantly different among the 3 methods, either before or after CRT (P=.08 to .92). ICCs compared to manual segmentation were 0.80 to 0.91 and 0.53 to 0.66 before and after CRT, respectively, for the automated segmentation and 0.91 to 0.97 and 0.61 to 0.75, respectively, for the semiautomated method. Interobserver agreement (ICC) pre and post CRT was 0.82 and 0.59 for automated segmentation, 0.91 and 0.73 for semiautomated segmentation, and 0.91 and 0.75 for manual segmentation, respectively. Mean DSI between the automated and semiautomated method were 0.83 and 0.58 pre-CRT and post-CRT, respectively; DSI between the automated and manual segmentation were 0.68 and 0.42 and 0.70 and 0.41 between the semiautomated and manual segmentation, respectively. Median measurement time for the radiologists was 0 seconds (pre- and post-CRT) for the

  2. Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry?

    Energy Technology Data Exchange (ETDEWEB)

    Heeswijk, Miriam M. van [Department of Radiology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Surgery, Maastricht University Medical Centre, Maastricht (Netherlands); Lambregts, Doenja M.J., E-mail: d.lambregts@nki.nl [Department of Radiology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Radiology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Griethuysen, Joost J.M. van [GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Radiology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Oei, Stanley [Department of Radiology, Maastricht University Medical Centre, Maastricht (Netherlands); Rao, Sheng-Xiang [Department of Radiology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai (China); Graaff, Carla A.M. de [Department of Radiology, Maastricht University Medical Centre, Maastricht (Netherlands); Vliegen, Roy F.A. [Atrium Medical Centre Parkstad/Zuyderland Medical Centre, Heerlen (Netherlands); Beets, Geerard L. [GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Surgery, The Netherlands Cancer Institute, Amsterdam (Netherlands); Papanikolaou, Nikos [Laboratory of Computational Medicine, Institute of Computer Science, FORTH, Heraklion, Crete (Greece); Beets-Tan, Regina G.H. [GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Department of Radiology, The Netherlands Cancer Institute, Amsterdam (Netherlands)

    2016-03-15

    Purpose: Diffusion-weighted imaging (DWI) tumor volumetry is promising for rectal cancer response assessment, but an important drawback is that manual per-slice tumor delineation can be highly time consuming. This study investigated whether manual DWI-volumetry can be reproduced using a (semi)automated segmentation approach. Methods and Materials: Seventy-nine patients underwent magnetic resonance imaging (MRI) that included DWI (highest b value [b1000 or b1100]) before and after chemoradiation therapy (CRT). Tumor volumes were assessed on b1000 (or b1100) DWI before and after CRT by means of (1) automated segmentation (by 2 inexperienced readers), (2) semiautomated segmentation (manual adjustment of the volumes obtained by method 1 by 2 radiologists), and (3) manual segmentation (by 2 radiologists); this last assessment served as the reference standard. Intraclass correlation coefficients (ICC) and Dice similarity indices (DSI) were calculated to evaluate agreement between different methods and observers. Measurement times (from a radiologist's perspective) were recorded for each method. Results: Tumor volumes were not significantly different among the 3 methods, either before or after CRT (P=.08 to .92). ICCs compared to manual segmentation were 0.80 to 0.91 and 0.53 to 0.66 before and after CRT, respectively, for the automated segmentation and 0.91 to 0.97 and 0.61 to 0.75, respectively, for the semiautomated method. Interobserver agreement (ICC) pre and post CRT was 0.82 and 0.59 for automated segmentation, 0.91 and 0.73 for semiautomated segmentation, and 0.91 and 0.75 for manual segmentation, respectively. Mean DSI between the automated and semiautomated method were 0.83 and 0.58 pre-CRT and post-CRT, respectively; DSI between the automated and manual segmentation were 0.68 and 0.42 and 0.70 and 0.41 between the semiautomated and manual segmentation, respectively. Median measurement time for the radiologists was 0 seconds (pre- and post-CRT) for the

  3. Automated and Semiautomated Segmentation of Rectal Tumor Volumes on Diffusion-Weighted MRI: Can It Replace Manual Volumetry?

    Science.gov (United States)

    van Heeswijk, Miriam M; Lambregts, Doenja M J; van Griethuysen, Joost J M; Oei, Stanley; Rao, Sheng-Xiang; de Graaff, Carla A M; Vliegen, Roy F A; Beets, Geerard L; Papanikolaou, Nikos; Beets-Tan, Regina G H

    2016-03-15

    Diffusion-weighted imaging (DWI) tumor volumetry is promising for rectal cancer response assessment, but an important drawback is that manual per-slice tumor delineation can be highly time consuming. This study investigated whether manual DWI-volumetry can be reproduced using a (semi)automated segmentation approach. Seventy-nine patients underwent magnetic resonance imaging (MRI) that included DWI (highest b value [b1000 or b1100]) before and after chemoradiation therapy (CRT). Tumor volumes were assessed on b1000 (or b1100) DWI before and after CRT by means of (1) automated segmentation (by 2 inexperienced readers), (2) semiautomated segmentation (manual adjustment of the volumes obtained by method 1 by 2 radiologists), and (3) manual segmentation (by 2 radiologists); this last assessment served as the reference standard. Intraclass correlation coefficients (ICC) and Dice similarity indices (DSI) were calculated to evaluate agreement between different methods and observers. Measurement times (from a radiologist's perspective) were recorded for each method. Tumor volumes were not significantly different among the 3 methods, either before or after CRT (P=.08 to .92). ICCs compared to manual segmentation were 0.80 to 0.91 and 0.53 to 0.66 before and after CRT, respectively, for the automated segmentation and 0.91 to 0.97 and 0.61 to 0.75, respectively, for the semiautomated method. Interobserver agreement (ICC) pre and post CRT was 0.82 and 0.59 for automated segmentation, 0.91 and 0.73 for semiautomated segmentation, and 0.91 and 0.75 for manual segmentation, respectively. Mean DSI between the automated and semiautomated method were 0.83 and 0.58 pre-CRT and post-CRT, respectively; DSI between the automated and manual segmentation were 0.68 and 0.42 and 0.70 and 0.41 between the semiautomated and manual segmentation, respectively. Median measurement time for the radiologists was 0 seconds (pre- and post-CRT) for the automated method, 41 to 69 seconds (pre-CRT) and

  4. Interobserver variability in target volume delineation of hepatocellular carcinoma. An analysis of the working group ''Stereotactic Radiotherapy'' of the German Society for Radiation Oncology (DEGRO)

    Energy Technology Data Exchange (ETDEWEB)

    Gkika, E.; Kirste, S. [Medical Center - University of Freiburg, Department of Radiation Oncology, Freiburg im Breisgau (Germany); Tanadini-Lang, S.; Andratschke, N.; Guckenberger, M. [University Hospital Zuerich, Department of Radiation Oncology, Zurich (Switzerland); Holzner, P.A.; Neeff, H.P. [Medical Center - University of Freiburg, Department of Visceral Surgery, Freiburg (Germany); Rischke, H.C. [Medical Center - University of Freiburg, Department of Radiation Oncology, Freiburg im Breisgau (Germany); Medical Center - University of Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Reese, T. [University Hospital Halle-Wittenberg, Department of Radiation Oncology, Halle-Wittenberg (Germany); Lohaus, F. [Technische Universitaet Dresden, Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); Technische Universitaet Dresden, OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Dresden (Germany); National Center for Tumor Diseases (NCT), Dresden (Germany); German Cancer Consortium (DKTK), Dresden (Germany); Duma, M.N. [Helmholtz Zentrum Munich, Institute of Innovative Radiotherapy, Department of Radiation Sciences, Munich (Germany); TU Munich, Department of Radiation Oncology, Klinikum Rechts der Isar, Munich (Germany); Dieckmann, K. [Medical University Vienna, Department of Radiation Oncology, General Hospital Vienna, Vienna (Austria); Semrau, R. [University Hospital of Cologne, Department of Radiation Oncology, Cologne (Germany); Stockinger, M. [University Hospital Mainz, Department of Radiation Oncology, Mainz (Germany); Imhoff, D. [University Hospital Frankfurt, Department of Radiation Oncology, Frankfurt (Germany); Saphir Radiosurgery Center, Frankfurt (Germany); Kremers, N. [Medical Center - University of Freiburg, Department of Radiology, Freiburg (Germany); Haefner, M.F. [University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Nestle, U.; Grosu, A.L.; Brunner, T.B. [Medical Center - University of Freiburg, Department of Radiation Oncology, Freiburg im Breisgau (Germany); University of Freiburg, Faculty of Medicine, Freiburg (Germany); German Cancer Consortium (DKTK), Freiburg (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2017-10-15

    Definition of gross tumor volume (GTV) in hepatocellular carcinoma (HCC) requires dedicated imaging in multiple contrast medium phases. The aim of this study was to evaluate the interobserver agreement (IOA) in gross tumor delineation of HCC in a multicenter panel. The analysis was performed within the ''Stereotactic Radiotherapy'' working group of the German Society for Radiation Oncology (DEGRO). The GTVs of three anonymized HCC cases were delineated by 16 physicians from nine centers using multiphasic CT scans. In the first case the tumor was well defined. The second patient had multifocal HCC (one conglomerate and one peripheral tumor) and was previously treated with transarterial chemoembolization (TACE). The peripheral lesion was adjacent to the previous TACE site. The last patient had an extensive HCC with a portal vein thrombosis (PVT) and an inhomogeneous liver parenchyma due to cirrhosis. The IOA was evaluated according to Landis and Koch. The IOA for the first case was excellent (kappa: 0.85); for the second case moderate (kappa: 0.48) for the peripheral tumor and substantial (kappa: 0.73) for the conglomerate. In the case of the peripheral tumor the inconsistency is most likely explained by the necrotic tumor cavity after TACE caudal to the viable tumor. In the last case the IOA was fair, with a kappa of 0.34, with significant heterogeneity concerning the borders of the tumor and the PVT. The IOA was very good among the cases were the tumor was well defined. In complex cases, where the tumor did not show the typical characteristics, or in cases with Lipiodol (Guerbet, Paris, France) deposits, IOA agreement was compromised. (orig.) [German] Die Definition des makroskopischen Tumorvolumens (GTV) bei hepatozellulaeren Karzinomen (HCC) erfordert eine dezidierte Bildgebung in mehreren Kontrastmittelphasen. Ziel dieser Studie war es, die Interobservervariabilitaet (IOA) bei der Konturierung von HCC-Laesionen durch ein multizentrisches

  5. Heterogeneity in head and neck IMRT target design and clinical practice

    International Nuclear Information System (INIS)

    Hong, Theodore S.; Tomé, Wolfgang A.; Harari, Paul M.

    2012-01-01

    Purpose: To assess patterns of H and N IMRT practice with particular emphasis on elective target delineation. Materials and methods: Twenty institutions with established H and N IMRT expertise were solicited to design clinical target volumes for the identical H and N cancer case. To limit contouring variability, a primary tonsil GTV and ipsilateral level II node were pre-contoured. Participants were asked to accept this GTV, and contour their recommended CTV and PTV. Dose prescriptions, contouring time, and recommendations regarding chemotherapy were solicited. Results: All 20 institutions responded. Remarkable heterogeneity in H and N IMRT design and practice was identified. Seventeen of 20 centers recommended treatment of bilateral necks whereas 3/20 recommended treatment of the ipsilateral neck only. The average CTV volume was 250 cm 3 (range 37–676 cm 3 ). Although there was high concordance in coverage of ipsilateral neck levels II and III, substantial variation was identified for levels I, V, and the contralateral neck. Average CTV expansion was 4.1 mm (range 0–15 mm). Eight of 20 centers recommended chemotherapy (cisplatin), whereas 12/20 recommended radiation alone. Responders prescribed on average 69 and 68 Gy to the tumor and metastatic node GTV, respectively. Average H and N target volume contouring time was 102.5 min (range 60–210 min). Conclusion: This study identifies substantial heterogeneity in H and N IMRT target definition, prescription, neck treatment, and use of chemotherapy among practitioners with established H and N IMRT expertise. These data suggest that continued efforts to standardize and simplify the H and N IMRT process are desirable for the safe and effective global advancement of H and N IMRT practice.

  6. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma

    International Nuclear Information System (INIS)

    Konski, Andre; Doss, Mohan; Milestone, Barton; Haluszka, Oleh; Hanlon, Alexandra; Freedman, Gary; Adler, Lee

    2005-01-01

    Purpose: Accurate delineation of the gross tumor volume (GTV) is important in radiation therapy treatment planning. We evaluated the impact of PET and endoscopic ultrasound (EUS) compared with CT simulation in the planning of radiation fields for patients with esophageal carcinoma. Material and methods: Twenty-five patients presenting with esophageal carcinoma for radiation therapy underwent PET scans in the treatment position after conventional CT simulation. Patients underwent PET/CT scanning after being injected with 10 to 20 mCi of [F-18]-2-deoxy-2-fluro-D-glucose. The length of the abnormality seen on the CT portion of the PET/CT scan vs. the PET scan alone was determined independently by 2 separate investigators. The length of the GTV and detection of regional adenopathy by PET was also correlated with EUS in 18 patients. Of the 18 patients who had EUS, 2 had T2 tumors and 16 had T3 tumors. Eighteen patients had adenocarcinoma and 7 had squamous cell carcinoma. Nine tumors were located at the gastroesophageal junction, 8 at the lower esophagus, 7 in the middle esophagus, and 1 in the cervical esophagus. The PET scans were reviewed to determine the length of the abnormality by use of a standard uptake value (SUV) of 2.5 to delineate the tumor extent. Results: The mean length of the cancer was 5.4 cm (95% CI 4.4-6.4 cm) as determined by PET scan, 6.77 cm (95% CI, 5.6-7.9 cm) as determined by CT scan, and 5.1 cm (95% CI, 4.0-6.1 cm) for the 22 patients who had endoscopy. The length of the tumors was significantly longer as measured by CT scans compared with PET scans (p = 0.0063). EUS detected significantly more patients with periesophageal and celiac lymphadenopathy compared to PET and CT. The SUV of the esophageal tumors was higher in patients with peri-esophageal lymphadenopathy identified on PET scans. Conclusion: Endoscopic ultrasound and PET scans can add additional information to aid the radiation oncologist's ability to precisely identify the GTV in

  7. Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy

    Science.gov (United States)

    Lee, Songhyun; Jeong, Hyeryun; Seong, Myeongsu; Kim, Jae Gwan

    2017-12-01

    Breast cancer is one of the most common cancers in females. To monitor chemotherapeutic efficacy for breast cancer, medical imaging systems such as x-ray mammography, computed tomography, magnetic resonance imaging, and ultrasound imaging have been used. Currently, it can take up to 3 to 6 weeks to see the tumor response from chemotherapy by monitoring tumor volume changes. We used near-infrared spectroscopy (NIRS) to predict breast cancer treatment efficacy earlier than tumor volume changes by monitoring tumor vascular reactivity during inhalational gas interventions. The results show that the amplitude of oxy-hemoglobin changes (vascular reactivity) during hyperoxic gas inhalation is well correlated with tumor growth and responded one day earlier than tumor volume changes after chemotherapy. These results may imply that NIRS with respiratory challenges can be useful in early detection of tumor and in the prediction of tumor response to chemotherapy.

  8. SU-E-J-107: The Impact of the Tumor Location to Deformable Image Registration

    International Nuclear Information System (INIS)

    Sugawara, Y; Tachibana, H; Kadoya, N; Jingu, K; Kitamura, N

    2015-01-01

    Purpose: For four-dimensional planning and adaptive radiotherapy, the accuracy of deformable image registration (DIR) is essential. We evaluated the accuracy of an in-house program with the free-downloadable DIR software library package (NiftyReg) and two commercially available DIR software programs (MIM Maestro and Velocity AI) in lung SBRT cancer patients. In addition to it, the relationship between the tumor location and the accuracy of the DIRs was investigated. Methods: The free-form deformation was implemented in the in-house program and the MIM. The Velocity was based on the B-spline algorithm. The accuracy of the three programs was evaluated in comparison for the structures on 4DCT image datasets between at the peak-inhale and at the peak-exhale. The dice similarity coefficient (DSC) and normalized DSC (NDSC) were measured for the gross tumor volumes from 19 lung SBRT patients. Results: The DSC measurement showed the median values of the DSC were 0.885, 0.872 and 0.798 for the In-house program, the MIM and the Velocity, respectively. The Velocity showed significant difference compared to the others. The median NDSC values were 1.027, 1.005 and 0.946 for the In-house, the MIM and the Velocity, respectively. This indicated that the spatial overlap agreement between the reference and the deformed structure for the in-house and MIM was comparable with the accuracy within 1mm uncertainty. There was larger discrepancy within 1–2mm uncertainty for the Velocity. The In-house and the MIM showed the higher NDSC values than the median values when the GTV was not attached to the chest wall and diaphragm(p < 0.05). However, there is no relationship between the accuracy and the tumor location in the Velocity. Conclusion: The difference of the DIR program would affect different accuracy and the accuracy may be reduced when the tumor is located or attached to chest wall or diaphragm

  9. Evaluation of the effect of prostate volume change on tumor control probability in LDR brachytherapy.

    Science.gov (United States)

    Knaup, Courtney; Mavroidis, Panayiotis; Stathakis, Sotirios; Smith, Mark; Swanson, Gregory; Papanikolaou, Niko

    2011-09-01

    This study evaluates low dose-rate brachytherapy (LDR) prostate plans to determine the biological effect of dose degradation due to prostate volume changes. In this study, 39 patients were evaluated. Pre-implant prostate volume was determined using ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1(®)) to create treatment plans using (103)Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. From the pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP) were determined using the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. The prostate volume changed between pre and post implant image sets ranged from -8% to 110%. TCP and the mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreases to the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose. A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined that patients with a small prostates were more likely to suffer TCP decrease. The biological effect of post operative prostate growth due to operative trauma in LDR was evaluated using the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volume post-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.

  10. Estimation of Tumor Volumes by 11C-MeAIB and 18F-FDG PET in an Orthotopic Glioblastoma Rat Model

    DEFF Research Database (Denmark)

    Halle, Bo; Thisgaard, Helge; Hvidsten, Svend

    2015-01-01

    starting immediately after the injection of 11C-methylaminoisobutyric acid (11C-MeAIB). One hour later, 18F-FDG was injected, followed by a 3-h dynamic PET scan. Images were reconstructed using 2-dimensional ordered-subsets expectation maximization and 3-dimensional maximum a posteriori probability (MAP3D......UNLABELLED: Brain tumor volume assessment is a major challenge. Molecular imaging using PET may be a promising option because it reflects the biologically active cells. We compared the agreement between PET- and histology-derived tumor volumes in an orthotopic glioblastoma rat model...... with a noninfiltrating (U87MG) and an infiltrating (T87) tumor phenotype using 2 different radiotracers, 2 different image reconstruction algorithms, parametric imaging, and 2 different image segmentation techniques. METHODS: Rats with U87MG- and T87-derived glioblastomas were continuously scanned with PET for 1 h...

  11. MO-FG-CAMPUS-TeP3-01: A Model of Baseline Shift to Improve Robustness of Proton Therapy Treatments of Moving Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Souris, K; Barragan Montero, A; Di Perri, D; Geets, X; Lee, J [Universite catholique de Louvain, Brussels (Belgium); Sterpin, E [Universite catholique de Louvain, Brussels (Belgium); KU Leuven, Leuven (Belgium)

    2016-06-15

    Purpose: The shift in mean position of a moving tumor also known as “baseline shift”, has been modeled, in order to automatically generate uncertainty scenarios for the assessment and robust optimization of proton therapy treatments in lung cancer. Methods: An average CT scan and a Mid-Position CT scan (MidPCT) of the patient at the planning time are first generated from a 4D-CT data. The mean position of the tumor along the breathing cycle is represented by the GTV contour in the MidPCT. Several studies reported both systematic and random variations of the mean tumor position from fraction to fraction. Our model can simulate this baseline shift by generating a local deformation field that moves the tumor on all phases of the 4D-CT, without creating any non-physical artifact. The deformation field is comprised of normal and tangential components with respect to the lung wall in order to allow the tumor to slip within the lung instead of deforming the lung surface. The deformation field is eventually smoothed in order to enforce its continuity. Two 4D-CT series acquired at 1 week of interval were used to validate the model. Results: Based on the first 4D-CT set, the model was able to generate a third 4D-CT that reproduced the 5.8 mm baseline-shift measured in the second 4D-CT. Water equivalent thickness (WET) of the voxels have been computed for the 3 average CTs. The root mean square deviation of the WET in the GTV is 0.34 mm between week 1 and week 2, and 0.08 mm between the simulated data and week 2. Conclusion: Our model can be used to automatically generate uncertainty scenarios for robustness analysis of a proton therapy plan. The generated scenarios can also feed a TPS equipped with a robust optimizer. Kevin Souris, Ana Barragan, and Dario Di Perri are financially supported by Televie Grants from F.R.S.-FNRS.

  12. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    Science.gov (United States)

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. © 2016 American College of Veterinary Radiology.

  13. Comparison of T2 and FLAIR imaging for target delineation in high grade gliomas

    Directory of Open Access Journals (Sweden)

    Miller Robert W

    2010-01-01

    Full Text Available Abstract Background FLAIR and T2 weighted MRIs are used based on institutional preference to delineate high grade gliomas and surrounding edema for radiation treatment planning. Although these sequences have inherent physical differences there is limited data on the clinical and dosimetric impact of using either or both sequences. Methods 40 patients with high grade gliomas consecutively treated between 2002 and 2008 of which 32 had pretreatment MRIs with T1, T2 and FLAIR available for review were selected for this study. These MRIs were fused with the treatment planning CT. Normal structures, clinical tumor volume (CTV and planning tumor volume (PTV were then defined on the T2 and FLAIR sequences. A Venn diagram analysis was performed for each pair of tumor volumes as well as a fractional component analysis to assess the contribution of each sequence to the union volume. For each patient the tumor volumes were compared in terms of total volume in cubic centimeters as well as anatomic location using a discordance index. The overlap of the tumor volumes with critical structures was calculated as a measure of predicted toxicity. For patients with MRI documented failures, the tumor volumes obtained using the different sequences were compared with the recurrent gross tumor volume (rGTV. Results The FLAIR CTVs and PTVs were significantly larger than the T2 CTVs and PTVs (p Conclusions Although both T2 and FLAIR MRI sequences are used to define high grade glial neoplasm and surrounding edema, our results show that the volumes generated using these techniques are different and not interchangeable. These differences have bearing on the use of intensity modulated radiation therapy (IMRT and highly conformal treatment as well as on future clinical trials where the bias of using one technique over the other may influence the study outcome.

  14. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer

    International Nuclear Information System (INIS)

    Lim, Karen; Small, William; Portelance, Lorraine; Creutzberg, Carien; Juergenliemk-Schulz, Ina M.; Mundt, Arno; Mell, Loren K.; Mayr, Nina; Viswanathan, Akila; Jhingran, Anuja; Erickson, Beth; De Los Santos, Jennifer; Gaffney, David; Yashar, Catheryn; Beriwal, Sushil; Wolfson, Aaron

    2011-01-01

    Purpose: Accurate target definition is vitally important for definitive treatment of cervix cancer with intensity-modulated radiotherapy (IMRT), yet a definition of clinical target volume (CTV) remains variable within the literature. The aim of this study was to develop a consensus CTV definition in preparation for a Phase 2 clinical trial being planned by the Radiation Therapy Oncology Group. Methods and Materials: A guidelines consensus working group meeting was convened in June 2008 for the purposes of developing target definition guidelines for IMRT for the intact cervix. A draft document of recommendations for CTV definition was created and used to aid in contouring a clinical case. The clinical case was then analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with kappa statistics as a measure of agreement between participants. Results: Nineteen experts in gynecological radiation oncology generated contours on axial magnetic resonance images of the pelvis. Substantial STAPLE agreement sensitivity and specificity values were seen for gross tumor volume (GTV) delineation (0.84 and 0.96, respectively) with a kappa statistic of 0.68 (p < 0.0001). Agreement for delineation of cervix, uterus, vagina, and parametria was moderate. Conclusions: This report provides guidelines for CTV definition in the definitive cervix cancer setting for the purposes of IMRT, building on previously published guidelines for IMRT in the postoperative setting.

  15. Spot Scanning-Based Proton Therapy for Intracranial Meningioma: Long-Term Results From the Paul Scherrer Institute

    International Nuclear Information System (INIS)

    Weber, Damien C.; Schneider, Ralf; Goitein, Gudrun; Koch, Tamara; Ares, Carmen; Geismar, Jan H.; Schertler, Andreas; Bolsi, Alessandra; Hug, Eugen B.

    2012-01-01

    Background: To assess the long-term clinical results of spot scanning proton therapy (PT) in the treatment of intracranial meningiomas. Patients and Methods: Thirty-nine patients with meningioma (histologically proven 34/39) were treated with PT between July 1997 and January 2010. Thirty-two (82.1%) patients were treated as primary treatment (exclusive PT, n = 8; postoperative PT, n = 24). Mean age was 48.3 ± 17.9 years and 32 (82.1%) patients had skull base lesions. For patients undergoing surgery, 24 patients had a diagnosis of World Health Organization (WHO) Grade I and 10 of a WHO Grade II/III meningioma, respectively. The female-to-male ratio was 3.3. The median administered dose was 56.0 Gy (relative biologic effectiveness [RBE]) (range, 52.2–66.6) at 1.8–2.0 Gy (RBE) per fraction. Gross tumor volume (GTV) ranged from 0.76 to 546.5 cm 3 (median, 21.5). Late toxicity was assessed according to Common Terminology Criteria for Adverse Events version 3.0. Mean follow-up time was 62.0 months and all patients were followed for >6 months. Results: Six patients presented with tumor recurrence and 6 patients died during follow-up, of which 4 of tumor progression. Five-year actuarial local control and overall survival rates were 84.8% and 81.8%, respectively, for the entire cohort and 100% for benign histology. Cumulative 5-year Grade ≥3 late toxicity-free survival was 84.5%. On univariate analysis, LC was negatively influenced by WHO grade (p = 0.001), GTV (p = 0.013), and male gender (p = 0.058). Conclusions: PT is a safe and effective treatment for patients with untreated, recurrent, or incompletely resected intracranial meningiomas. WHO grade and tumor volume was an adverse prognostic factor for local control.

  16. Spot Scanning-Based Proton Therapy for Intracranial Meningioma: Long-Term Results From the Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Damien C., E-mail: damien.weber@unige.ch [Radiation Oncology, Geneva University Hospital, Geneva (Switzerland); Schneider, Ralf; Goitein, Gudrun; Koch, Tamara; Ares, Carmen; Geismar, Jan H.; Schertler, Andreas; Bolsi, Alessandra; Hug, Eugen B. [Center for Proton Therapy, Paul Scherrer Institute, Viligen (Switzerland)

    2012-07-01

    Background: To assess the long-term clinical results of spot scanning proton therapy (PT) in the treatment of intracranial meningiomas. Patients and Methods: Thirty-nine patients with meningioma (histologically proven 34/39) were treated with PT between July 1997 and January 2010. Thirty-two (82.1%) patients were treated as primary treatment (exclusive PT, n = 8; postoperative PT, n = 24). Mean age was 48.3 {+-} 17.9 years and 32 (82.1%) patients had skull base lesions. For patients undergoing surgery, 24 patients had a diagnosis of World Health Organization (WHO) Grade I and 10 of a WHO Grade II/III meningioma, respectively. The female-to-male ratio was 3.3. The median administered dose was 56.0 Gy (relative biologic effectiveness [RBE]) (range, 52.2-66.6) at 1.8-2.0 Gy (RBE) per fraction. Gross tumor volume (GTV) ranged from 0.76 to 546.5 cm{sup 3} (median, 21.5). Late toxicity was assessed according to Common Terminology Criteria for Adverse Events version 3.0. Mean follow-up time was 62.0 months and all patients were followed for >6 months. Results: Six patients presented with tumor recurrence and 6 patients died during follow-up, of which 4 of tumor progression. Five-year actuarial local control and overall survival rates were 84.8% and 81.8%, respectively, for the entire cohort and 100% for benign histology. Cumulative 5-year Grade {>=}3 late toxicity-free survival was 84.5%. On univariate analysis, LC was negatively influenced by WHO grade (p = 0.001), GTV (p = 0.013), and male gender (p = 0.058). Conclusions: PT is a safe and effective treatment for patients with untreated, recurrent, or incompletely resected intracranial meningiomas. WHO grade and tumor volume was an adverse prognostic factor for local control.

  17. Quantitative study on lung volume and lung perfusion using SPECT and CT in thoracal tumors

    International Nuclear Information System (INIS)

    Beyer-Enke, S.A.; Goerich, J.; Strauss, L.G.

    1988-01-01

    22 patients with space occupying lesions in the thoracal region were investigated by computer tomography and by perfusion scintigraphy using SPECT. In order to evaluate the CT images quantitatively, the lung volume was determined using approximation method and compared with the perfusion in the SPECT study. For this, anatomically equivalent transaxial SPECT slices had been coordinated to the CT slices. Between the determined lung volumes and the activity in the ocrresponding layers, a statistically significant correlation was found. It could be shown that the stronger perfusion, frequently observed at the right side of the healthy lung, may be explained by an higher volume of the right pulmonary lobe. Whereas in benign displacing processes the relation activity to volume was similar to the one of the healthy lung, a strongly reduced perfusion together with inconspicuous lung volumes became apparent with malignant tumors. In addition to the great morphological evidence of CT and SPECT studies, additional informations regarding the dignity of displacing processes may be derived from the quantitative evaluation of both methods. (orig.) [de

  18. Predictive value of PET response combined with baseline metabolic tumor volume in peripheral T-cell lymphoma patients

    DEFF Research Database (Denmark)

    Cottereau, Anne-Segolene; El-Galaly, Tarec C; Becker, Stéphanie

    2018-01-01

    Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of aggressive non-Hodgkin lymphomas with poor outcomes with current therapy. We investigated if response assessed with Positron Emission Tomography/computed tomography (PET/CT) combined with baseline total metabolic tumor volume (TMTV) co...

  19. Cryospectrophotometric determination of tumor intravascular oxyhemoglobin saturations: dependence on vascular geometry and tumor growth.

    Science.gov (United States)

    Fenton, B M; Rofstad, E K; Degner, F L; Sutherland, R M

    1988-12-21

    To delineate the complex relationships between overall tumor oxygenation and vascular configuration, intravascular oxyhemoglobin (HbO2) saturation distributions were measured with cryospectrophotometric techniques. Four factors related to vascular morphometry and tumor growth were evaluated: a) vessel diameter, b) distance of vessel from the tumor surface, c) tumor volume, and d) vascular density. To measure intertumor heterogeneity, two murine sarcomas (RIF-1 and KHT) and two human ovarian carcinoma xenografts (OWI and MLS) were utilized. In contrast to skeletal muscle, a preponderance of very low HbO2 saturations was observed for both large and small tumors of all lines. Saturations up to about 90% were also generally present, however, even in very large tumors. Variations in vascular configuration were predominantly tumor-line dependent rather than due to inherent characteristics of the host vasculature, and widely disparate HbO2 distributions were found for alternate lines implanted in identical host mice. Although peripheral saturations remained fairly constant with tumor growth, HbO2 values were markedly lower for vessels nearer the tumor center and further decreased with increasing tumor volume. HbO2 saturations did not change substantially with increasing vascular density (except for KHT tumors), although density did decrease with increasing distance from tumor surface. Combined effects of vessel diameter, tumor volume, and vessel location on HbO2 saturations were complex and varied markedly with both tumor line and vessel class. For specific classes, HbO2 distributions correlated closely with radiobiological hypoxic fractions, i.e., for tumor lines in which hypoxic fraction increased substantially with tumor volume, corresponding HbO2 values decreased, while for lines in which hypoxic fraction remained constant, HbO2 values also were unchanged. Although these trends may also be a function of differing oxygen consumption rates between tumor lines

  20. TH-C-12A-02: Comparison of Two RapidArc Delivery Strategies in Stereotactic Body Radiotherapy of Stage I and II Peripheral Lung Tumors with Unflattened Beams

    International Nuclear Information System (INIS)

    Huang, B; Lu, J; Chen, J; Chen, C; Lin, P; Kuang, Y

    2014-01-01

    Purpose: The full arcs strategy used in SBRT with RapidArc and unflattened (FFF) beams in large and heterogeneous peripheral non-smallcell lung cancer (NSCLC) appears to be suboptimal as it increases the disadvantageous dose to the contralateral lung, which potentially increases the toxicity to surrounding tissues. In this study, we investigated, for the first time, the dose delivery strategies using partial arcs (PA) and the fully rotational arcs with avoidance sectors (FAAS) for SBRT with FFF beams in peripheral NSCLC patients. Methods: Eighteen patients with NSCLC (stage I and II) were selected for this study. Nine patients with a GTV <= 10cc were designated as the small tumor group. The remaining nine patients with a GTV between 10 cc and 44 cc were assigned to the large tumor group. The treatment plans were generated in eighteen patients using PA and FAAS, respectively, and delivered with a Varian TrueBeam Linac. Dosimetry of the target and organs at risk (OAR), total MU, out-of-field dose, and delivery time were analyzed. Delta4 and Portal dosimetry were employed to evaluate the delivery accuracy. Results: or the small tumor group, the FAAS plans significantly achieved a better conformity index, the lower total MU and out-of-field dose, a shorter treatment time, and the reduced doses to cord, heart, and lung (p < 0.05). But the target doses were slightly higher than that delivered by PA plans. For the large tumor group, the PA plans significantly attained a better conformity index and a shorter treatment time (p < 0.05). Furthermore, all plans achieved a high pass rate, with all the gamma indices greater than 97% at the Γ 3mm, 3% threshold. Conclusion: This study suggests that FAAS strategy is more beneficial for small tumor patients undergoing lung SBRT with FFF beams. However, for large tumor patients, PA strategy is recommended. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship

  1. Impact of initial tumor volume on radiotherapy outcome in patients with T2 glottic cancer

    International Nuclear Information System (INIS)

    Rutkowski, T.

    2014-01-01

    The aim of this study was to quantify the impact of initial tumor volume (TV) on radiotherapy (RT) outcome in patients with T2 glottic cancer. Initial TV was calculated for 115 consecutive patients with T2 glottic cancer who had been treated with definitive RT alone at a single institution. The results showed strong correlations of TV with 3-year local tumor control (LTC) and disease-free survival (DFS). For TV ≤ 0.7 cm 3 , 3-year LTC was 83 %; for TV 0.7-3.6 cm 3 this was 70 % and for TV 3.6-17 cm 3 44 %. Analysis of total dose vs. initial TV showed that larger T2 glottic tumors with a TV of around 5 cm 3 (2-2.5 cm in diameter with 10 10 cancer cells) need an extra 6.5 Gy to achieve similar 3-year LTC rates as for small tumors with a TV of 0.5 cm 3 (∝1 cm in diameter with 10 9 cancer cells). Although classification of tumors according to TV cannot replace TNM staging in daily practice, it could represent a valuable numerical supplement for planning the optimal dose fractionation scheme for individual patients. (orig.)

  2. P08.52 Proton therapy re-Irradiation in large-volume recurrent glioblastoma.

    Science.gov (United States)

    Amelio, D.; Widesott, L.; Vennarini, S.; Fellin, F.; Maines, F.; Righetto, R.; Lorentini, S.; Farace, P.; Schwarz, M.; Amichetti, M.

    2016-01-01

    Abstract Purpose: To report preliminary results of re-irradiation with proton therapy (PT) in large-volume recurrent glioblastoma (rGBM). Matherial/Methods: Between January and December 2015 ten patients (pts) with rGBM were re-irradiated with PT. All pts were previously treated with photon radiotherapy (60 Gy) with concomitant and adjuvant TMZ for 1–20 cycles (median, 7). Seven pts were re-irradiated at first relapse/progression. Four patients were re-irradiated after partial tumor resection. Median age and Karnofsky performance status at re-irradiation were 57 years (range, 41–68) and 80%, (range, 70–100), respectively. Median time between prior radiotherapy and PT was 9 months (range, 5–24). Target definition was based on CT, MR, and 18F-DOPA PET imaging. GTV included any area of contrast enhancement after contrast medium administration plus any pathological PET uptake regions. CTV was generated by adding to GTV a 3-mm uniform margin manually corrected in proximity of anatomical barriers. CTV was expanded by 4 mm to create PTV. Median PTV volume was 90 cc (range, 46–231). All pts received 36 GyRBE in 18 fractions. Four pts also received concomitant temozolomide (75 mg/m2/die, 7 days/week). All pts were treated with active beam scanning PT using 2–3 fields with single field optimization technique. Results: All pts completed the treatment without breaks. Registered acute side effects (according to Common Terminology Criteria for Adverse Events version 4.0 - CTCAE) include grade 1–2 skin erythema, alopecia, fatigue, conjunctivitis, concentration impairment, dysphasia, and headache. There were no grade 3 or higher toxicities. One patient developed grade 1 neutropenia. Five pts started PT under steroids (2–7 mg/daily); two of them reduced the dose during PT, while three kept the same steroids dose. None of remaining pts needed steroids therapy. Registered late side effects (according to CTCAE version 4.0) include grade 1–2 alopecia, fatigue

  3. Three-dimensional quantitation of pediatric tumor bulk

    International Nuclear Information System (INIS)

    Eggli, K.D.; Close, P.; Dillon, P.W.; Umlauf, M.; Hopper, K.D.

    1995-01-01

    Will 3-dimensional (3-D) volumetric determination improve our ability to assess tumor response to therapy? Forty-five CT scans of pediatric patients with unresectable thoracic or abdominal neoplasia were assessed for tumor bulk by the standard ''2-dimensional (2-D)'' volume formula (cross-sectional areaxlength) and by 3-D volumetric analysis. Thirty-two examinations were performed in follow-up, and percent change in tumor size was calculated. The 2-D volume calculation overestimated tumor volume by more than 50% on all but two examinations when the 2-D volume was compared with the 3-D volume. In 28% of follow-up examinations, the 2-D calculation of percent change differed by more than 10% from the 3-D volume. Fifteen percent differed by over 25%. This changed the response category of one patient from ''no response'' to ''partial response''. 3-D volumetric analysis, give more accurate assessment of the actual tumor bulk and its subsequent changes in size in response to therapy. (orig.)

  4. Regional deep hyperthermia: impact of observer variability in CT-based manual tissue segmentation on simulated temperature distribution

    Science.gov (United States)

    Aklan, Bassim; Hartmann, Josefin; Zink, Diana; Siavooshhaghighi, Hadi; Merten, Ricarda; Putz, Florian; Ott, Oliver; Fietkau, Rainer; Bert, Christoph

    2017-06-01

    The aim of this study was to systematically investigate the influence of the inter- and intra-observer segmentation variation of tumors and organs at risk on the simulated temperature coverage of the target. CT scans of six patients with tumors in the pelvic region acquired for radiotherapy treatment planning were used for hyperthermia treatment planning. To study the effect of inter-observer variation, three observers manually segmented in the CT images of each patient the following structures: fat, muscle, bone and the bladder. The gross tumor volumes (GTV) were contoured by three radiation oncology residents and used as the hyperthermia target volumes. For intra-observer variation, one of the observers of each group contoured the structures of each patient three times with a time span of one week between the segmentations. Moreover, the impact of segmentation variations in organs at risk (OARs) between the three inter-observers was investigated on simulated temperature distributions using only one GTV. The spatial overlap between individual segmentations was assessed by the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Additionally, the temperatures T90/T10 delivered to 90%/10% of the GTV, respectively, were assessed for each observer combination. The results of the segmentation similarity evaluation showed that the DSC of the inter-observer variation of fat, muscle, the bladder, bone and the target was 0.68  ±  0.12, 0.88  ±  0.05, 0.73  ±  0.14, 0.91  ±  0.04 and 0.64  ±  0.11, respectively. Similar results were found for the intra-observer variation. The MSD results were similar to the DSCs for both observer variations. A statistically significant difference (p  <  0.05) was found for T90 and T10 in the predicted target temperature due to the observer variability. The conclusion is that intra- and inter-observer variations have a significant impact on the temperature coverage of the

  5. Epigenetic silencing of MLH1 in endometrial cancers is associated with larger tumor volume, increased rate of lymph node positivity and reduced recurrence-free survival.

    Science.gov (United States)

    Cosgrove, Casey M; Cohn, David E; Hampel, Heather; Frankel, Wendy L; Jones, Dan; McElroy, Joseph P; Suarez, Adrian A; Zhao, Weiqiang; Chen, Wei; Salani, Ritu; Copeland, Larry J; O'Malley, David M; Fowler, Jeffrey M; Yilmaz, Ahmet; Chassen, Alexis S; Pearlman, Rachel; Goodfellow, Paul J; Backes, Floor J

    2017-09-01

    To determine the relationship between mismatch repair (MMR) classification and clinicopathologic features including tumor volume, and explore outcomes by MMR class in a contemporary cohort. Single institution cohort evaluating MMR classification for endometrial cancers (EC). MMR immunohistochemistry (IHC)±microsatellite instability (MSI) testing and reflex MLH1 methylation testing was performed. Tumors with MMR abnormalities by IHC or MSI and MLH1 methylation were classified as epigenetic MMR deficiency while those without MLH1 methylation were classified as probable MMR mutations. Clinicopathologic characteristics were analyzed. 466 endometrial cancers were classified; 75% as MMR proficient, 20% epigenetic MMR defects, and 5% as probable MMR mutations. Epigenetic MMR defects were associated with advanced stage, higher grade, presence of lymphovascular space invasion, and older age. MMR class was significantly associated with tumor volume, an association not previously reported. The epigenetic MMR defect tumors median volume was 10,220mm 3 compared to 3321mm 3 and 2,846mm 3 , for MMR proficient and probable MMR mutations respectively (PMLH1 methylation analysis defines a subset of tumors that have worse prognostic features and reduced RFS. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Obtention of tumor volumes in PET images stacks using techniques of colored image segmentation

    International Nuclear Information System (INIS)

    Vieira, Jose W.; Lopes Filho, Ferdinand J.; Vieira, Igor F.

    2014-01-01

    This work demonstrated step by step how to segment color images of the chest of an adult in order to separate the tumor volume without significantly changing the values of the components R (Red), G (Green) and B (blue) of the colors of the pixels. For having information which allow to build color map you need to segment and classify the colors present at appropriate intervals in images. The used segmentation technique is to select a small rectangle with color samples in a given region and then erase with a specific color called 'rubber' the other regions of image. The tumor region was segmented into one of the images available and the procedure is displayed in tutorial format. All necessary computational tools have been implemented in DIP (Digital Image Processing), software developed by the authors. The results obtained, in addition to permitting the construction the colorful map of the distribution of the concentration of activity in PET images will also be useful in future work to enter tumors in voxel phantoms in order to perform dosimetric assessments

  7. Automatic Segmentation and Online virtualCT in Head-and-Neck Adaptive Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Peroni, Marta, E-mail: marta.peroni@mail.polimi.it [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Ciardo, Delia [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Spadea, Maria Francesca [Department of Experimental and Clinical Medicine, Universita degli Studi Magna Graecia, Catanzaro (Italy); Riboldi, Marco [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy); Comi, Stefania; Alterio, Daniela [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Baroni, Guido [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy); Orecchia, Roberto [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Universita degli Studi di Milano, Milano (Italy); Medical Department, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy)

    2012-11-01

    Purpose: The purpose of this work was to develop and validate an efficient and automatic strategy to generate online virtual computed tomography (CT) scans for adaptive radiation therapy (ART) in head-and-neck (HN) cancer treatment. Method: We retrospectively analyzed 20 patients, treated with intensity modulated radiation therapy (IMRT), for an HN malignancy. Different anatomical structures were considered: mandible, parotid glands, and nodal gross tumor volume (nGTV). We generated 28 virtualCT scans by means of nonrigid registration of simulation computed tomography (CTsim) and cone beam CT images (CBCTs), acquired for patient setup. We validated our approach by considering the real replanning CT (CTrepl) as ground truth. We computed the Dice coefficient (DSC), center of mass (COM) distance, and root mean square error (RMSE) between correspondent points located on the automatically segmented structures on CBCT and virtualCT. Results: Residual deformation between CTrepl and CBCT was below one voxel. Median DSC was around 0.8 for mandible and parotid glands, but only 0.55 for nGTV, because of the fairly homogeneous surrounding soft tissues and of its small volume. Median COM distance and RMSE were comparable with image resolution. No significant correlation between RMSE and initial or final deformation was found. Conclusion: The analysis provides evidence that deformable image registration may contribute significantly in reducing the need of full CT-based replanning in HN radiation therapy by supporting swift and objective decision-making in clinical practice. Further work is needed to strengthen algorithm potential in nGTV localization.

  8. Automatic segmentation and online virtualCT in head-and-neck adaptive radiation therapy.

    Science.gov (United States)

    Peroni, Marta; Ciardo, Delia; Spadea, Maria Francesca; Riboldi, Marco; Comi, Stefania; Alterio, Daniela; Baroni, Guido; Orecchia, Roberto

    2012-11-01

    The purpose of this work was to develop and validate an efficient and automatic strategy to generate online virtual computed tomography (CT) scans for adaptive radiation therapy (ART) in head-and-neck (HN) cancer treatment. We retrospectively analyzed 20 patients, treated with intensity modulated radiation therapy (IMRT), for an HN malignancy. Different anatomical structures were considered: mandible, parotid glands, and nodal gross tumor volume (nGTV). We generated 28 virtualCT scans by means of nonrigid registration of simulation computed tomography (CTsim) and cone beam CT images (CBCTs), acquired for patient setup. We validated our approach by considering the real replanning CT (CTrepl) as ground truth. We computed the Dice coefficient (DSC), center of mass (COM) distance, and root mean square error (RMSE) between correspondent points located on the automatically segmented structures on CBCT and virtualCT. Residual deformation between CTrepl and CBCT was below one voxel. Median DSC was around 0.8 for mandible and parotid glands, but only 0.55 for nGTV, because of the fairly homogeneous surrounding soft tissues and of its small volume. Median COM distance and RMSE were comparable with image resolution. No significant correlation between RMSE and initial or final deformation was found. The analysis provides evidence that deformable image registration may contribute significantly in reducing the need of full CT-based replanning in HN radiation therapy by supporting swift and objective decision-making in clinical practice. Further work is needed to strengthen algorithm potential in nGTV localization. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Early changes in volume and non-enhanced volume of acoustic neurinoma after stereotactic gamma-radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Hirofumi; Kobayashi, Tatsuya; Kida, Yoshihisa; Tanaka, Takayuki; Mori, Yoshimasa; Iwakoshi, Takayasu; Niwa, Masahiro; Kai, Osamu; Hirose, Mitsuhiko [Komaki City Hospital, Aichi (Japan)

    1994-09-01

    The effectiveness of stereotactic gamma-radiosurgery for treating acoustic neurinoma was evaluated by measuring the volumes of the tumor, non-enhanced tumor, and cerebellar edema in 13 patients with acoustic neurinoma who were followed up for 9 to 15 months (median 12.7 mos) after treatment. The tumor volume and non-enhanced volume tended to reach a maximum after 6 months, and cerebellar edema volume after 9 months, then decreased gradually thereafter. Hearing loss tended to increase gradually, but involvement of the facial nerve was transient. (author).

  10. Impact of intra-arterial administration of boron compounds on dose-volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors

    International Nuclear Information System (INIS)

    Suzuki, Minoru; Sakurai, Yoshinori; Nagata, Kenji; Kinashi, Yuko; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira; Kato, Ituro; Fuwa, Nobukazu; Hiratsuka, Junichi; Imahori, Yoshio

    2006-01-01

    Purpose: To analyze the dose-volume histogram (DVH) of head-and-neck tumors treated with boron neutron capture therapy (BNCT) and to determine the advantage of the intra-arterial (IA) route over the intravenous (IV) route as a drug delivery system for BNCT. Methods and Materials: Fifteen BNCTs for 12 patients with recurrent head-and-neck tumors were included in the present study. Eight irradiations were done after IV administration of boronophenylalanine and seven after IA administration. The maximal, mean, and minimal doses given to the gross tumor volume were assessed using a BNCT planning system. Results: The results are reported as median values with the interquartile range. In the IA group, the maximal, mean, and minimal dose given to the gross tumor volume was 68.7 Gy-Eq (range, 38.8-79.9), 45.0 Gy-Eq (range, 25.1-51.0), and 13.8 Gy-Eq (range, 4.8-25.3), respectively. In the IV group, the maximal, mean, and minimal dose given to the gross tumor volume was 24.2 Gy-Eq (range, 21.5-29.9), 16.4 Gy-Eq (range, 14.5-20.2), and 7.8 Gy-Eq (range, 6.8-9.5), respectively. Within 1-3 months after BNCT, the responses were assessed. Of the 6 patients in the IV group, 2 had a partial response, 3 no change, and 1 had progressive disease. Of 4 patients in the IA group, 1 achieved a complete response and 3 a partial response. Conclusion: Intra-arterial administration of boronophenylalanine is a promising drug delivery system for head-and-neck BNCT

  11. Analysis of incidental radiation dose to uninvolved mediastinal/supraclavicular lymph nodes in patients with limited-stage small cell lung cancer treated without elective nodal irradiation.

    Science.gov (United States)

    Ahmed, Irfan; DeMarco, Marylou; Stevens, Craig W; Fulp, William J; Dilling, Thomas J

    2011-01-01

    Classic teaching states that treatment of limited-stage small cell lung cancer (L-SCLC) requires large treatment fields covering the entire mediastinum. However, a trend in modern thoracic radiotherapy is toward more conformal fields, employing positron emission tomography/computed tomography (PET/CT) scans to determine the gross tumor volume (GTV). This analysis evaluates the dosimetric results when using selective nodal irradiation (SNI) to treat a patient with L-SCLC, quantitatively comparing the results to standard Intergroup treatment fields. Sixteen consecutive patients with L-SCLC and central mediastinal disease who also underwent pretherapy PET/CT scans were studied in this analysis. For each patient, we created SNI treatment volumes, based on the PET/CT-based criteria for malignancy. We also created 2 ENI plans, the first without heterogeneity corrections, as per the Intergroup 0096 study (ENI(off)) and the second with heterogeneity corrections while maintaining constant the number of MUs delivered between these latter 2 plans (ENI(on)). Nodal stations were contoured using published guidelines, then placed into 4 "bins" (treated nodes, 1 echelon away, >1 echelon away within the mediastinum, contralateral hilar/supraclavicular). These were aggregated across the patients in the study. Dose to these nodal bins and to tumor/normal structures were compared among these plans using pairwise t-tests. The ENI(on) plans demonstrated a statistically significant degradation in dose coverage compared with the ENI(off) plans. ENI and SNI both created a dose gradient to the lymph nodes across the mediastinum. Overall, the gradient was larger for the SNI plans, although the maximum dose to the "1 echelon away" nodes was not statistically different. Coverage of the GTV and planning target volume (PTV) were improved with SNI, while simultaneously reducing esophageal and spinal cord dose though at the expense of modestly reduced dose to anatomically distant lymph nodes

  12. Analysis of Incidental Radiation Dose to Uninvolved Mediastinal/Supraclavicular Lymph Nodes in Patients with Limited-Stage Small Cell Lung Cancer Treated Without Elective Nodal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Irfan; DeMarco, Marylou; Stevens, Craig W. [Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL (United States); Fulp, William J. [Biostatistics Core, H. Lee Moffitt Cancer Center, Tampa, FL (United States); Dilling, Thomas J., E-mail: Thomas.Dilling@moffitt.org [Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL (United States)

    2011-01-01

    Classic teaching states that treatment of limited-stage small cell lung cancer (L-SCLC) requires large treatment fields covering the entire mediastinum. However, a trend in modern thoracic radiotherapy is toward more conformal fields, employing positron emission tomography/computed tomography (PET/CT) scans to determine the gross tumor volume (GTV). This analysis evaluates the dosimetric results when using selective nodal irradiation (SNI) to treat a patient with L-SCLC, quantitatively comparing the results to standard Intergroup treatment fields. Sixteen consecutive patients with L-SCLC and central mediastinal disease who also underwent pretherapy PET/CT scans were studied in this analysis. For each patient, we created SNI treatment volumes, based on the PET/CT-based criteria for malignancy. We also created 2 ENI plans, the first without heterogeneity corrections, as per the Intergroup 0096 study (ENI{sub off}) and the second with heterogeneity corrections while maintaining constant the number of MUs delivered between these latter 2 plans (ENI{sub on}). Nodal stations were contoured using published guidelines, then placed into 4 'bins' (treated nodes, 1 echelon away, >1 echelon away within the mediastinum, contralateral hilar/supraclavicular). These were aggregated across the patients in the study. Dose to these nodal bins and to tumor/normal structures were compared among these plans using pairwise t-tests. The ENI{sub on} plans demonstrated a statistically significant degradation in dose coverage compared with the ENI{sub off} plans. ENI and SNI both created a dose gradient to the lymph nodes across the mediastinum. Overall, the gradient was larger for the SNI plans, although the maximum dose to the '1 echelon away' nodes was not statistically different. Coverage of the GTV and planning target volume (PTV) were improved with SNI, while simultaneously reducing esophageal and spinal cord dose though at the expense of modestly reduced dose to

  13. Re-irradiation after gross total resection of recurrent glioblastoma. Spatial pattern of recurrence and a review of the literature as a basis for target volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Straube, Christoph; Elpula, Greeshma [Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Gempt, Jens; Gerhardt, Julia; Meyer, Bernhard [Technische Universitaet Muenchen (TUM), Department of Neurosurgery, Klinikum rechts der Isar, Muenchen (Germany); Bette, Stefanie; Zimmer, Claus [Technische Universitaet Muenchen (TUM), Department of Neuroradiology, Klinikum rechts der Isar, Muenchen (Germany); Schmidt-Graf, Friederike [Technische Universitaet Muenchen (TUM), Department of Neurology, Klinikum rechts der Isar, Muenchen (Germany); Combs, Stephanie E. [Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Helmholtz Zentrum Muenchen, Institute for Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Oberschleissheim (Germany)

    2017-11-15

    Currently, patients with gross total resection (GTR) of recurrent glioblastoma (rGBM) undergo adjuvant chemotherapy or are followed up until progression. Re-irradiation, as one of the most effective treatments in macroscopic rGBM, is withheld in this situation, as uncertainties about the pattern of re-recurrence, the target volume, and also the efficacy of early re-irradiation after GTR exist. Imaging and clinical data from 26 consecutive patients with GTR of rGBM were analyzed. The spatial pattern of recurrences was analyzed according to the RANO-HGG criteria (''response assessment in neuro-oncology criteria for high-grade gliomas''). Progression-free (PFS) and overall survival (OS) were analyzed by the Kaplan-Meier method. Furthermore, a systematic review was performed in PubMed. All but 4 patients underwent adjuvant chemotherapy after GTR. Progression was diagnosed in 20 of 26 patients and 70% of recurrent tumors occurred adjacent to the resection cavity. The median extension beyond the edge of the resection cavity was 20 mm. Median PFS was 6 months; OS was 12.8 months. We propose a target volume containing the resection cavity and every contrast enhancing lesion as the gross tumor volume (GTV), a spherical margin of 5-10 mm to generate the clinical target volume (CTV), and a margin of 1-3 mm to generate the planning target volume (PTV). Re-irradiation of this volume is deemed to be safe and likely to prolong PFS. Re-irradiation is worth considering also after GTR, as the volumes that need to be treated are limited and re-irradiation has already proven to be a safe treatment option in general. The strategy of early re-irradiation is currently being tested within the GlioCave/NOA 17/Aro 2016/03 trial. (orig.) [German] Patienten mit einem rezidivierten Glioblastom (rGBM) werden, wenn eine komplette Resektion (GTR) des makroskopischen Rezidivs durchgefuehrt wurde, aktuell meist systemisch adjuvant behandelt oder einer engmaschigen Nachsorge

  14. Three-dimensional dose accumulation in pseudo-split-field IMRT and brachytherapy for locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Sun, Baozhou; Yang, Deshan; Esthappan, Jackie

    2015-01-01

    -field intensity-modulated radiation therapy (IMRT) and image-guided BT in locally advanced cervical cancer. METHODS AND MATERIALS: Thirty-three patients treated with split-field-IMRT to 45.0-51.2 Gy in 1.6-1.8 Gy per fraction to the elective pelvic lymph nodes and to 20 Gy to the central pelvis region were...... included in this study. Patients received six weekly fractions of high-dose rate BT to 6.5-7.3 Gy per fraction. A dose tracker software was developed to compute the equivalent dose in 2-Gy fractions (EQD2) to gross tumor volume (GTV), organs-at-risk and point A. Total dose-volume histogram parameters were...

  15. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    Science.gov (United States)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  16. Tumor segmentation of whole-body magnetic resonance imaging in neurofibromatosis type 1 patients: tumor burden correlates

    Energy Technology Data Exchange (ETDEWEB)

    Heffler, Michael A.; Xi, Yin; Chhabra, Avneesh [University of Texas Southwestern Medical Center, Department of Radiology, Dallas, TX (United States); Le, Lu Q. [University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, TX (United States)

    2017-01-15

    Segmentation of whole-body MRI (WBMRI) to assess the feasibility, quantitate the total tumor volume (tumor burden) in patients with neurofibromatosis type 1 (NF1) and examine associations with demographic, disease-related and anthropomorphic features. A consecutive series of patients with NF1 underwent WBMRI and were reviewed for tumors. Tumors were segmented using a semiautomated software-based tool. Tumors were classified as superficial or deep and discrete or plexiform. Segmentation times were recorded. Segmentation yielded the quantity and tumor burden of superficial, internal and plexiform tumors. Correlations between segmentation data and demographic, disease-related and anthropomorphic features were examined. Fifteen patients were evaluated (42.3 ± 13.6 years, 10 female, 5 male). Segmentation times were a median of 30 min and yielded 2,328 tumors (1,582 superficial, 746 internal and 23 plexiform). One tumor was malignant. Tumor counts ranged from 14 to 397. Tumor burden ranged from 6.95 cm3 to 571 cm3. Individual tumor volume ranged from 0.0120 cm3 to 298 cm3. Significant correlation was found between the total volume of superficial tumors and height (ρ = 0.5966, p < 0.02). Male patients had higher overall tumor burdens (p < 0.05) and higher superficial tumor burden (p < 0.03). Patients with negative family history had more tumors (p < 0.05). Segmentation of WBMRI in patients with NF1 is feasible and elucidates meaningful relationships among disease phenotype, anthropomorphic and demographic features. (orig.)

  17. Tumor segmentation of whole-body magnetic resonance imaging in neurofibromatosis type 1 patients: tumor burden correlates

    International Nuclear Information System (INIS)

    Heffler, Michael A.; Xi, Yin; Chhabra, Avneesh; Le, Lu Q.

    2017-01-01

    Segmentation of whole-body MRI (WBMRI) to assess the feasibility, quantitate the total tumor volume (tumor burden) in patients with neurofibromatosis type 1 (NF1) and examine associations with demographic, disease-related and anthropomorphic features. A consecutive series of patients with NF1 underwent WBMRI and were reviewed for tumors. Tumors were segmented using a semiautomated software-based tool. Tumors were classified as superficial or deep and discrete or plexiform. Segmentation times were recorded. Segmentation yielded the quantity and tumor burden of superficial, internal and plexiform tumors. Correlations between segmentation data and demographic, disease-related and anthropomorphic features were examined. Fifteen patients were evaluated (42.3 ± 13.6 years, 10 female, 5 male). Segmentation times were a median of 30 min and yielded 2,328 tumors (1,582 superficial, 746 internal and 23 plexiform). One tumor was malignant. Tumor counts ranged from 14 to 397. Tumor burden ranged from 6.95 cm3 to 571 cm3. Individual tumor volume ranged from 0.0120 cm3 to 298 cm3. Significant correlation was found between the total volume of superficial tumors and height (ρ = 0.5966, p < 0.02). Male patients had higher overall tumor burdens (p < 0.05) and higher superficial tumor burden (p < 0.03). Patients with negative family history had more tumors (p < 0.05). Segmentation of WBMRI in patients with NF1 is feasible and elucidates meaningful relationships among disease phenotype, anthropomorphic and demographic features. (orig.)

  18. Evaluation of the effect of prostate volume change on tumor control probability in LDR brachytherapy

    Directory of Open Access Journals (Sweden)

    Courtney Knaup

    2011-09-01

    Full Text Available Purpose: This study evaluates low dose-rate brachytherapy (LDR prostate plans to determine the biological effectof dose degradation due to prostate volume changes. Material and methods: In this study, 39 patients were evaluated. Pre-implant prostate volume was determinedusing ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1® to create treatmentplans using 103Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. Fromthe pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP were determinedusing the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. Results: The prostate volume changed between pre and post implant image sets ranged from –8% to 110%. TCP andthe mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreasesto the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose.A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined thatpatients with a small prostates were more likely to suffer TCP decrease. Conclusions: The biological effect of post operative prostate growth due to operative trauma in LDR was evaluatedusing the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volumepost-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.

  19. Peritumoral edema associated with metastatic brain tumor

    International Nuclear Information System (INIS)

    Shirotani, Toshiki; Takiguchi, Hiroshi; Shima, Katsuji; Chigasaki, Hiroo; Tajima, Atsushi; Watanabe, Satoru.

    1992-01-01

    Computed tomographic (CT) examinations were performed in 94 lesions of 50 patients with metastatic brain tumors. Peritumoral edema (A E ) and tumor area (A T ) were measured using the planimetric method on the CT scan films that demonstrated maximum size of the tumor. Then, the volume of the peritumoral edema (V E ) and the surface area of the tumor (S T ) were claculated from these data. Eighty-three brain lesions from lung cancers were subdivided into 49 adenocarcinomas, 11 squamous cell carcinomas, 16 small cell carcinomas and 7 large cell carcinomas. Eleven metastatic tumors from breast cancers were all adenocarcinomas. There was statistical correlation between the surface area of tumor and the volume of the peritumoral edema for the adenocarcinoma (r=0.4043, p E /S T ratios in small cell carcinomas were smaller then those in non-small cell carcinomas, when the volume of the tumor was larger than 10 mm 3 . Accordingly, we suggest that the volume of the peritumoral edema in the small cell carcinoma is generally smaller than that in others. (author)

  20. Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images.

    Science.gov (United States)

    Wang, Jiazhou; Lu, Jiayu; Qin, Gan; Shen, Lijun; Sun, Yiqun; Ying, Hongmei; Zhang, Zhen; Hu, Weigang

    2018-04-16

    Manual contouring of gross tumor volumes (GTV) is a crucial and time-consuming process in rectum cancer radiotherapy. This study aims to develop a simple deep learning-based autosegmentation algorithm to segment rectal tumors on T2-weighted MR images. MRI scans (3T, T2-weighted) of 93 patients with locally advanced (cT3-4 and/or cN1-2) rectal cancer treated with neoadjuvant chemoradiotherapy followed by surgery were enrolled in this study. A 2D U-net similar network was established as a training model. The model was trained in two phases to increase efficiency. These phases were tumor recognition and tumor segmentation. An opening (erosion and dilation) process was implemented to smooth contours after segmentation. Data were randomly separated into training (90%) and validation (10%) datasets for a 10-folder cross-validation. Additionally, 20 patients were double contoured for performance evaluation. Four indices were calculated to evaluate the similarity of automated and manual segmentation, including Hausdorff distance (HD), average surface distance (ASD), Dice index (DSC), and Jaccard index (JSC). The DSC, JSC, HD, and ASD (mean ± SD) were 0.74 ± 0.14, 0.60 ± 0.16, 20.44 ± 13.35, and 3.25 ± 1.69 mm for validation dataset; and these indices were 0.71 ± 0.13, 0.57 ± 0.15, 14.91 ± 7.62, and 2.67 ± 1.46 mm between two human radiation oncologists, respectively. No significant difference has been observed between automated segmentation and manual segmentation considering DSC (P = 0.42), JSC (P = 0.35), HD (P = 0.079), and ASD (P = 0.16). However, significant difference was found for HD (P = 0.0027) without opening process. This study showed that a simple deep learning neural network can perform segmentation for rectum cancer based on MRI T2 images with results comparable to a human. © 2018 American Association of Physicists in Medicine.

  1. Lung tumor tracking during stereotactic radiotherapy treatment with the CyberKnife: Marker placement and early results

    International Nuclear Information System (INIS)

    Nuyttens, J.J.; Prevost, J.B.; Praag, J.; Hoogeman, M.; Levendag, P.C.; Klaveren, R.J. van; Pattynama, P.M.T.

    2006-01-01

    Lung tumor tracking during stereotactic radiotherapy with the CyberKnife requires the insertion of markers in or close to the tumor. To reduce the risk of pneumothorax, three methods of marker placement were used: 1) intravascular coil placement, 2) percutaneous intrathoracal, and 3) percutaneous extrathoracal placement. We investigated the toxicity of marker placement and the tumor response of the lung tumor tracking treatment. Markers were placed in 20 patients with 22 tumors: 13 patients received a curative treatment, seven a palliative. The median Charlson Comorbidity Score was 4 (range: 1-8). Platinum fiducials and intravascular embolisation coils were used as markers. In total, 78 markers were placed: 34 intrathoracal, 23 intravascular and 21 extrathoracal. The PTV equaled the GTV + 5 mm. A median dose of 45 Gy (range: 30-60 Gy, in 3 fractions) was prescribed to the 70-85% isodose. The response was evaluated with a CTscan performed 6-8 weeks after the last treatment and routinely thereafter. The median follow-up was 4 months (range: 2-11). No severe toxicity due to the marker placement was seen. Pneumothorax was not seen. The local control was 100%. Four tumors in four patients showed a complete response, 15 tumors in 14 patients a partial response, and three tumors in two patients with metastatic disease had stable disease. No severe toxicity of marker placement was seen due to the appropriate choice of one of the three methods. CyberKnife tumor tracking with markers is feasible and resulted in excellent tumor response. Longer follow-up is needed to validate the local control

  2. The impact of induction chemotherapy on the dosimetric parameters of subsequent radiotherapy: an investigation of 30 consecutive patients with locally-advanced non-small cell lung cancer and modern radiation planning techniques

    International Nuclear Information System (INIS)

    Grant, Jonathan D; Sobremonte, Angela; Hillebrandt, Evangeline; Allen, Pamela K; Gomez, Daniel R

    2015-01-01

    To investigate the influence of induction chemotherapy (ICT) on dosimetric outcomes in patients with inoperable non-small cell lung cancer (NSCLC) treated with definitive chemoradiation (CRT). 30 patients with inoperable stage II-III NSCLC treated with 2–4 cycles of ICT followed by definitive CRT to ≥ 60 Gy were selected. Tumor response to chemotherapy was scored by RECIST criteria. Treatment plans based on tumor extent prior to chemotherapy were generated based on equivalent planning constraints and techniques as the original post-chemotherapy plans. Dosimetric parameters predictive of toxicity for lung, esophagus, heart, and spinal cord were compared amongst the pre- and post-ICT plans. The majority of patients (70%) experienced an overall reduction in GTV size between the pre-ICT imaging and the time of simulation. Comparing pre-and post-ICT diagnostic imaging, 5 patients met the RECIST criteria for response, 23 were classified as stable, and 2 experienced disease progression on diagnostic imaging. Despite a significantly reduced GTV size in the post-ICT group, no systematic improvements in normal tissue doses were seen amongst the entire cohort. This result persisted amongst the subgroup of patients with larger pre-ICT GTV tumor volumes (>100 cc 3 ). Among patients with RECIST-defined response, a significant reduction in lung mean dose (1.9 Gy absolute, median 18.2 Gy to 16.4 Gy, p = 0.04) and V 20, the percentage of lung receiving 20 Gy (3.1% absolute, median 29.3% to 26.3%, p = 0.04) was observed. In the non-responding group of patients, an increased esophageal V 50 was found post-chemotherapy (median 28.9% vs 30.1%, p = 0.02). For patients classified as having a response by RECIST to ICT, modest improvements in V 20 and mean lung dose were found. However, these benefits were not realized for the cohort as a whole or for patients with larger tumors upfront. Given the variability of tumor response to ICT, the a priori impact of induction chemotherapy to

  3. SU-E-T-437: Four-Dimensional Treatment Planning for Lung VMAT-SBRT

    International Nuclear Information System (INIS)

    Hashimoto, M; Takashina, M; Koizumi, M; Oohira, S; Ueda, Y; Miyazaki, M; Isono, M; Masaoka, A; Teshima, T

    2015-01-01

    Purpose: To assess optimal treatment planning approach of Volumetric Modulated Arc Therapy for lung Stereotactic Body Radiation Therapy (VMAT-SBRT). Methods: Subjects were 10 patients with lung cancer who had undergone 4DCT. The internal target volume (ITV) volume ranged from 2.6 to 16.5cm 3 and the tumor motion ranged from 0 to 2cm. From 4DCT, which was binned into 10 respiratory phases, 4 image data sets were created; maximum intensity projection (MIP), average intensity projection (AIP), AIP with the ITV replaced by 0HU (RITV-AIP) and RITV-AIP with the planning target volume (PTV) minus the internal target volume was set to −200 HU (HR-AIP). VMAT-SBRT plans were generated on each image set for a patient. 48Gy was prescribed to 95% of PTV. The plans were recalculated on all phase images of 4DCT and the dose distributions were accumulated using a deformable image registration software MIM Maestro™ as the 4D calculated dose to the gross tumor volume (GTV). The planned dose to the ITV and 4D calculated dose to the GTV were compared. Results: In AIP plan, 10 patients average of all dose parameters (D1%, D-mean, and D99%) discrepancy were 1Gy or smaller. MIP and RITV-AIP plans resulted in having common tendency and larger discrepancy than AIP plan. The 4D dose was lower than the planned dose, and 10 patients average of all dose parameters discrepancy were in range 1.3 to 2.6Gy. HR-AIP plan had the largest discrepancy in our trials. 4D calculated D1%, D-mean, and D99% were resulted in 3.0, 4.1, and 6.1Gy lower than the expected in plan, respectively. Conclusion: For all patients, the dose parameters expected in AIP plan approximated to 4D calculated. Using AIP image set seems optimal treatment planning approach of VMAT-SBRT for a mobile tumor. Funding Support: This work was supported by the Japan Society for the Promotion of Science Core-to-Core program (No. 23003)

  4. Evaluation of the Usefulness of Restricted Respiratory Period at the Time of Radiotherapy for Non-Small Cell Lung Cancer Patient

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Yeon; Ahn, Jong Ho; Kim, Yung Il; Kim, Jin Man; Choi, Byung Ki; Pyo, Hong Ryul; Song, Ki Won [Dept. of Radiation Oncology, Samsung Medical Center, Seoul (Korea, Republic of); Suh, Jung Min [Dept. of Radiological Science, Daewon University Colloge, Jecheon (Korea, Republic of)

    2012-09-15

    It is essential to minimize the movement of tumor due to respiratory movement at the time of respiration controlled radiotherapy of non-small cell lung cancer patient. Accordingly, this Study aims to evaluate the usefulness of restricted respiratory period by comparing and analyzing the treatment plans that apply free and restricted respiration period respectively. After having conducted training on 9 non-small cell lung cancer patients (tumor n=10) from April to December 2011 by using 'signal monitored-breathing (guided- breathing)' method for the 'free respiratory period' measured on the basis of the regular respiratory period of the patents and 'restricted respiratory period' that was intentionally reduced, total of 10 CT images for each of the respiration phases were acquired by carrying out 4D CT for treatment planning purpose by using RPM and 4-dimensional computed tomography simulator. Visual gross tumor volume (GTV) and internal target volume (ITV) that each of the observer 1 and observer 2 has set were measured and compared on the CT image of each respiratory interval. Moreover, the amplitude of movement of tumor was measured by measuring the center of mass (COM) at the phase of 0% which is the end-inspiration (EI) and at the phase of 50% which is the end-exhalation (EE). In addition, both observers established treatment plan that applied the 2 respiratory periods, and mean dose to normal lung (MDTNL) was compared and analyzed through dose-volume histogram (DVH). Moreover, normal tissue complication probability (NTCP) of the normal lung volume was compared by using dose-volume histogram analysis program (DVH analyzer v.1) and statistical analysis was performed in order to carry out quantitative evaluation of the measured data. As the result of the analysis of the treatment plan that applied the 'restricted respiratory period' of the observer 1 and observer 2, there was reduction rate of 38.75% in the 3-dimensional

  5. Evaluation of the Usefulness of Restricted Respiratory Period at the Time of Radiotherapy for Non-Small Cell Lung Cancer Patient

    International Nuclear Information System (INIS)

    Park, So Yeon; Ahn, Jong Ho; Kim, Yung Il; Kim, Jin Man; Choi, Byung Ki; Pyo, Hong Ryul; Song, Ki Won; Suh, Jung Min

    2012-01-01

    It is essential to minimize the movement of tumor due to respiratory movement at the time of respiration controlled radiotherapy of non-small cell lung cancer patient. Accordingly, this Study aims to evaluate the usefulness of restricted respiratory period by comparing and analyzing the treatment plans that apply free and restricted respiration period respectively. After having conducted training on 9 non-small cell lung cancer patients (tumor n=10) from April to December 2011 by using 'signal monitored-breathing (guided- breathing)' method for the 'free respiratory period' measured on the basis of the regular respiratory period of the patents and 'restricted respiratory period' that was intentionally reduced, total of 10 CT images for each of the respiration phases were acquired by carrying out 4D CT for treatment planning purpose by using RPM and 4-dimensional computed tomography simulator. Visual gross tumor volume (GTV) and internal target volume (ITV) that each of the observer 1 and observer 2 has set were measured and compared on the CT image of each respiratory interval. Moreover, the amplitude of movement of tumor was measured by measuring the center of mass (COM) at the phase of 0% which is the end-inspiration (EI) and at the phase of 50% which is the end-exhalation (EE). In addition, both observers established treatment plan that applied the 2 respiratory periods, and mean dose to normal lung (MDTNL) was compared and analyzed through dose-volume histogram (DVH). Moreover, normal tissue complication probability (NTCP) of the normal lung volume was compared by using dose-volume histogram analysis program (DVH analyzer v.1) and statistical analysis was performed in order to carry out quantitative evaluation of the measured data. As the result of the analysis of the treatment plan that applied the 'restricted respiratory period' of the observer 1 and observer 2, there was reduction rate of 38.75% in the 3-dimensional direction movement of the tumor in

  6. Effects of three-dimensional conformal radiotherapy, indensity modulated radiotherapy, and conventional radiotherapy ON treatment of esophageal cancer

    Directory of Open Access Journals (Sweden)

    Jian-Jun Han

    2016-07-01

    Full Text Available Objective: To compare the irradiation volume, short-term and long-term efficacy of conventional radiotherapy (CR, three-dimensional conformal radiotherapy (3D-CRT, and indensity modulated radiotherapy (IMRT in the treatment of esophageal cancer. Methods: A retrospective analysis method was adopted. The patients were divided into CR group (n=42, 3D-CRT group (n=45, and IMRT group (n=40. A follow-up visit was paid to collect the short-term and long-term efficacy, and the occurrence of adverse reactions. The gross tumor voluem (GTV, clinical target volume (CTV, planning target volume (PTV, and irradiation volume of organs (bilateral lungs, spinal cord, and heart at risk (OAR in the three groups were compared. Results: It was found by target volume comparison that the mean values of GTV, CTV, and PTV in the three groups were significantly increased (P0.05. The occurrence rate of adverse reactions in 3D-CRT group and IMRT group was significantly lower than that in CR group (P0.05. The difference of 1-year survival rate among the three groups was not statistically significant (P=0.144, but 3-year and 5-year survival rates in 3D-CRT group and IMRT group were significantly higher than those in CR group (P<0.05. Conclusions: 3D-CRT and IMRT can significantly enhance the short-term and long-term efficacy for esophageal cancer patients, and alleviate the radioactive damage; therefore, they are deserved to be widely recommended in the clinic.

  7. A Novel Technique for Endovascular Removal of Large Volume Right Atrial Tumor Thrombus

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, Barbara, E-mail: nickel.ba@gmail.com [US Teleradiology and Quantum Medical Radiology Group (United States); McClure, Timothy, E-mail: tmcclure@gmail.com; Moriarty, John, E-mail: jmoriarty@mednet.ucla.edu [UCLA Medical Center, Department of Interventional Radiology (United States)

    2015-08-15

    Venous thromboembolic disease is a significant cause of morbidity and mortality, particularly in the setting of large volume pulmonary embolism. Thrombolytic therapy has been shown to be a successful treatment modality; however, its use somewhat limited due to the risk of hemorrhage and potential for distal embolization in the setting of large mobile thrombi. In patients where either thrombolysis is contraindicated or unsuccessful, and conventional therapies prove inadequate, surgical thrombectomy may be considered. We present a case of percutaneous endovascular extraction of a large mobile mass extending from the inferior vena cava into the right atrium using the Angiovac device, a venovenous bypass system designed for high-volume aspiration of undesired endovascular material. Standard endovascular methods for removal of cancer-associated thrombus, such as catheter-directed lysis, maceration, and exclusion, may prove inadequate in the setting of underlying tumor thrombus. Where conventional endovascular methods either fail or are unsuitable, endovascular thrombectomy with the Angiovac device may be a useful and safe minimally invasive alternative to open resection.

  8. A Novel Technique for Endovascular Removal of Large Volume Right Atrial Tumor Thrombus

    International Nuclear Information System (INIS)

    Nickel, Barbara; McClure, Timothy; Moriarty, John

    2015-01-01

    Venous thromboembolic disease is a significant cause of morbidity and mortality, particularly in the setting of large volume pulmonary embolism. Thrombolytic therapy has been shown to be a successful treatment modality; however, its use somewhat limited due to the risk of hemorrhage and potential for distal embolization in the setting of large mobile thrombi. In patients where either thrombolysis is contraindicated or unsuccessful, and conventional therapies prove inadequate, surgical thrombectomy may be considered. We present a case of percutaneous endovascular extraction of a large mobile mass extending from the inferior vena cava into the right atrium using the Angiovac device, a venovenous bypass system designed for high-volume aspiration of undesired endovascular material. Standard endovascular methods for removal of cancer-associated thrombus, such as catheter-directed lysis, maceration, and exclusion, may prove inadequate in the setting of underlying tumor thrombus. Where conventional endovascular methods either fail or are unsuitable, endovascular thrombectomy with the Angiovac device may be a useful and safe minimally invasive alternative to open resection

  9. A project proposal for the implementation of Intensity Modulated Radiation Therapy (IMRT) for treatment of tumors of the central nervous system (CNS)

    International Nuclear Information System (INIS)

    Alert Silva, Jose; Chon Rivas, Ivon; Ascension Ibarra, Yudy; Yanez Lopez, Yaima; Rodriguez Zayas, Michel; Diaz Moreno, Rogelio

    2009-01-01

    Radiotherapy, together with the surgery, one of the essential therapeutic tools in the treatment of CNS tumors. The use of radiation, can be severe sequelae affecting quality of life of the patient, organs at risk receiving high dose and advanced technique of IMRT treatment planning and allows treatments shaped fields, especially when the target of radiation is irregular, with fewer side effects by limiting the dose in the tumor tissues and organs at risk and to allow us to increase the doses in the tumor .. So we decided to develop a protocol for the implementation of IMRT, taking into account that we have the appropriate equipment, trained staff to develop this technique. The main objective of this proposal is to allow us to establish the parameters necessary to perform IMRT, and then escalate the dose of radiation to the tumor, with reduced toxicity to healthy tissues. Inclusion criteria. It included 6 patients with histological diagnosis of CNS tumors, specifically astrocytomas grade II, III and IV, glioblastoma multiforme, where radiation is the main treatment, or associated with surgery. It excludes patients who have previously received radiation therapy or are unable to receive treatment without having movements that do not suffer another debilitating disease and to sign informed consent. Be held position and will be used as masks thermo deformed stun, then planning CT performed in all cases. Be designed later volumes (GTV, CTV and PTV, and OR, as established by the ICRU reports 52 and 60, the IAEA), will define the dose, and restrictions on healthy tissue technique is defined treatment according proposed objectives in the planning system. Once approved, is made conventional simulation, verification of the treatment plan on your computer with web plates and implementation of treatment in 1220 of INOR LINAC. Be made patient-specific quality controls and verification of DRR plan once a week for each patient treated. Monitoring will be conducted weekly during

  10. Prognostic value of metabolic tumor volume as measured by fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yoon, Young-Ho; Lee, Seok-Hwan; Hong, Sung-Lyong; Kim, Seong-Jang; Roh, Hwan-Jung; Cho, Kyu-Sup

    2014-10-01

    The prognostic value of the tumor burden characterized by the metabolic tumor volume (MTV) remains under investigation in nasopharyngeal carcinoma (NPC). The purpose of this study was to evaluate the prognostic value of the maximum standardized uptake value (SUVmax ) and MTV according to metabolic volume threshold as measured by positron emission tomography (PET)/computed tomography (CT), and other clinical factors, in patients with NPC. This study was a retrospective chart review. We evaluated the association of SUVmax , MTV2.5 , MTV3.0 , and other clinical factors with overall survival (OS) using Kaplan-Meier and Cox regression models. (MTV2.5 and MTV3.0 are the volume of hypermetabolic tissue within the regions of gross tumor volumes with a SUV value greater than the threshold values of 2.5 and 3.0, respectively.) Higher MTV2.5 of 31.45 cm(3) and MTV3.0 of 23.01 cm(3) were associated with an increased risk of death (hazard ratio [HR] = 5.028; p = 0.029), although no significant relationship was found between SUVmax and OS. Interestingly, MTV3.0 was associated with OS in both the differentiated and undifferentiated groups, although MTV2.5 was only associated with OS in the undifferentiated group. Among the clinical parameters, only radiotherapy was associated with longer OS (HR = 12.124; p < 0.001). The MTV and radiotherapy could be prognostic values associated with OS. Particularly, MTV2.5 and MTV3.0 might be valuable metabolic parameters for predicting long-term survival in patients with NPC. Furthermore, MTV3.0 may be more useful because it can be applied irrespective of pathologic subtype. © 2014 ARS-AAOA, LLC.

  11. SU-F-R-42: Association of Radiomic and Metabolic Tumor Volumes in Radiation Treatment of Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Lopez, C; Nagornaya, N; Parra, N; Kwon, D; Ishkanian, F; Markoe, A; Maudsley, A; Stoyanova, R

    2016-01-01

    Purpose: High-throughput extraction of imaging and metabolomic quantitative features from MRI and MR Spectroscopy Imaging (MRSI) of Glioblastoma Multiforme (GBM) results in tens of variables per patient. In radiotherapy (RT) of GBM, the relevant metabolic tumor volumes (MTVs) are related to aberrant levels of N-acetyl Aspartate (NAA) and Choline (Cho). Corresponding Clinical Target Volumes (CTVs) for RT planning are based on Contrast Enhancing T1-weighted MRI (CE-T1w) and T2-weighted/Fluid Attenuated Inversion Recovery (FLAIR) MRI. The objective is to build a framework for investigation of associations between imaging, CTV, and MTV features better understanding of the underlying information in the CTVs and dependencies between these volumes. Methods: Necrotic portions, enhancing lesion and edema were manually contoured on T1w/T2w images for 17 GBM patients. CTVs and MTVs for NAA (MTV NAA ) and Cho (MTV Cho ) were constructed. Tumors were scored categorically for ten semantic imaging traits by neuroradiologist. All features were investigated for redundancy. Two-way correlations between imaging and RT/MTV features were visualized as heat maps. Associations between MTV NAA , MTV Cho and imaging features were studied using Spearman correlation. Results: 39 imaging features were computed per patient. Half of the imaging traits were replaced with automatically extracted continuous variables. 21 features were extracted from MTVs/CTVs. There were a high number (43) of significant correlations of imaging with CTVs/MTV NAA while very few (10) significant correlations were with CTVs/MTV Cho . MTV NAA was found to be closely associated with MRI volumes, MTV Cho remains elusive for characterization with imaging. Conclusion: A framework for investigation of co-dependency between MRI and RT/metabolic features is established. A series of semantic imaging traits were replaced with automatically extracted continuous variables. The approach will allow for exploration of relationships

  12. SU-F-R-42: Association of Radiomic and Metabolic Tumor Volumes in Radiation Treatment of Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, C; Nagornaya, N; Parra, N; Kwon, D; Ishkanian, F; Markoe, A; Maudsley, A; Stoyanova, R [University of Miami, Miami, Florida (United States)

    2016-06-15

    Purpose: High-throughput extraction of imaging and metabolomic quantitative features from MRI and MR Spectroscopy Imaging (MRSI) of Glioblastoma Multiforme (GBM) results in tens of variables per patient. In radiotherapy (RT) of GBM, the relevant metabolic tumor volumes (MTVs) are related to aberrant levels of N-acetyl Aspartate (NAA) and Choline (Cho). Corresponding Clinical Target Volumes (CTVs) for RT planning are based on Contrast Enhancing T1-weighted MRI (CE-T1w) and T2-weighted/Fluid Attenuated Inversion Recovery (FLAIR) MRI. The objective is to build a framework for investigation of associations between imaging, CTV, and MTV features better understanding of the underlying information in the CTVs and dependencies between these volumes. Methods: Necrotic portions, enhancing lesion and edema were manually contoured on T1w/T2w images for 17 GBM patients. CTVs and MTVs for NAA (MTV{sub NAA}) and Cho (MTV{sub Cho}) were constructed. Tumors were scored categorically for ten semantic imaging traits by neuroradiologist. All features were investigated for redundancy. Two-way correlations between imaging and RT/MTV features were visualized as heat maps. Associations between MTV{sub NAA}, MTV{sub Cho} and imaging features were studied using Spearman correlation. Results: 39 imaging features were computed per patient. Half of the imaging traits were replaced with automatically extracted continuous variables. 21 features were extracted from MTVs/CTVs. There were a high number (43) of significant correlations of imaging with CTVs/MTV{sub NAA} while very few (10) significant correlations were with CTVs/MTV{sub Cho}. MTV{sub NAA} was found to be closely associated with MRI volumes, MTV{sub Cho} remains elusive for characterization with imaging. Conclusion: A framework for investigation of co-dependency between MRI and RT/metabolic features is established. A series of semantic imaging traits were replaced with automatically extracted continuous variables. The approach will

  13. The complex relationship between lung tumor volume and survival in patients with non-small cell lung cancer treated by definitive radiotherapy: A prospective, observational prognostic factor study of the Trans-Tasman Radiation Oncology Group (TROG 99.05)

    International Nuclear Information System (INIS)

    Ball, David L.; Fisher, Richard J.; Burmeister, Bryan H.; Poulsen, Michael G.; Graham, Peter H.; Penniment, Michael G.; Vinod, Shalini K.; Krawitz, Hedley E.; Joseph, David J.; Wheeler, Greg C.; McClure, Bev E.

    2013-01-01

    Background and purpose: To investigate the hypothesis that primary tumor volume is prognostic independent of T and N stages in patients with non-small cell lung cancer (NSCLC) treated by definitive radiotherapy. Materials and methods: Multicenter prospective observational study. Patient eligibility: pathologically proven stage I–III non-small cell lung cancer planned for definitive radiotherapy (minimum 50 Gy in 20 fractions) using CT-based contouring. Volumes of the primary tumor and enlarged nodes were measured according to a standardized protocol. Survival was adjusted for the effect of T and N stage. Results: There were 509 eligible patients. Five-year survival rates for tumor volume grouped by quartiles were, for increasing tumor volume, 22%, 14%, 15% and 21%. Larger primary tumor volume was associated with shorter survival (HR = 1.060 (per doubling); 95% CI 1.01–1.12; P = 0.029). However, after adjusting for the effects of T and N stage, there was no evidence for an association (HR = 1.029, 95% CI, 0.96–1.10, P = 0.39). There was evidence, however, that larger primary tumor volume was associated with an increased risk of dying, independently of T and N stage, in the first 18 months but not beyond. Conclusions: In patients treated by non-surgical means we were unable to show that lung tumor volume, overall, provides additional prognostic information beyond the T and N stage (TNM, 6th edition). There is evidence, however, that larger primary tumor volume adversely affects outcome only within the first 18 months. Larger tumor size alone should not by itself exclude patients from curative (chemo)radiotherapy

  14. A modified VMAT adaptive radiotherapy for nasopharyngeal cancer patients based on CT-CT image fusion

    International Nuclear Information System (INIS)

    Jin, Xiance; Han, Ce; Zhou, Yongqiang; Yi, Jinling; Yan, Huawei; Xie, Congying

    2013-01-01

    To investigate the feasibility and benefits of a modified adaptive radiotherapy (ART) by replanning in the initial CT (iCT) with new contours from a repeat CT (rCT) based on CT-CT image fusion for nasopharyngeal cancer (NPC) patients underwent volumetric modulated arc radiotherapy (VMAT). Nine NPC patients underwent VMAT treatment with a rCT at 23rd fraction were enrolled in this study. Dosimetric differences for replanning VMAT plans in the iCT and in the rCT were compared. Volumetric and dosimetric changes of gross tumor volume (GTV) and organs at risk (OARs) of this modified ART were also investigated. No dosimetric differences between replanning in the iCT and in the rCT were observed. The average volume of GTV decreased from 78.83 ± 38.42 cm 3 in the iCT to 71.44 ± 37.46 cm 3 in the rCT, but with no significant difference (p = 0.42).The average volume of the left and right parotid decreased from 19.91 ± 4.89 cm 3 and 21.58 ± 6.16 cm 3 in the iCT to 11.80 ± 2.79 cm 3 and 13.29 ± 4.17 cm 3 in the rCT (both p < 0.01), respectively. The volume of other OARs did not shrink very much. No significant differences on PTV GTV and PTV CTV coverage were observed for replanning with this modified ART. Compared to the initial plans, the average mean dose of the left and right parotid after re-optimization were decreased by 62.5 cGy (p = 0.05) and 67.3 cGy (p = 0.02), respectively, and the V5 (the volume receiving 5 Gy) of the left and right parotids were decreased by 7.8% (p = 0.01) and 11.2% (p = 0.001), respectively. There was no significant difference on the dose delivered to other OARs. Patients with NPC undergoing VMAT have significant anatomic and dosimetric changes to parotids. Repeat CT as an anatomic changes reference and re-optimization in the iCT based on CT-CT image fusion was accurate enough to identify the volume changes and to ensure safe dose to parotids

  15. Influence of experience and qualification on PET-based target volume delineation. When there is no expert - ask your colleague

    Energy Technology Data Exchange (ETDEWEB)

    Doll, C.; Grosu, A.L.; Nestle, U. [University Medical Center Freiburg, Radiation Oncology Department, Freiburg/Breisgau (Germany); Duncker-Rohr, V. [University Medical Center Freiburg, Radiation Oncology Department, Freiburg/Breisgau (Germany); Ortenau Clinical Center Offenburg, Radiation Oncology Department, Offenburg (Germany); Ruecker, G. [University of Freiburg, Institute of Medical Biometry und Medical Informatics, Freiburg (Germany); Mix, M. [University Medical Center Freiburg, Nuclear Medicine Department, Freiburg (Germany); MacManus, M. [University of Melbourne, The Sir Peter MacCallum Department of Oncology, Melbourne (Australia); Ruysscher, D. de [University Hospital Leuven/KU Leuven, Department of Radiation Oncology, Leuven (Belgium); Vogel, W. [Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam (Netherlands); Eriksen, J.G. [Odense University Hospital, Department of Oncology, Odense (Denmark); Oyen, W. [Radboud University Nijmegen Medical Center, Department of Nuclear Medicine, Nijmegen (Netherlands); Weber, W. [University Medical Center Freiburg, Nuclear Medicine Department, Freiburg (Germany); Memorial Sloan-Kettering Cancer Center, Department of Radiology/Molecular Imaging and Therapy Service, New York (United States)

    2014-06-15

    The integration of positron emission tomography (PET) information for target volume delineation in radiation treatment planning is routine in many centers. In contrast to automatic contouring, research on visual-manual delineation is scarce. The present study investigates the dependency of manual delineation on experience and qualification. A total of 44 international interdisciplinary observers each defined a [{sup 18}F]fluorodeoxyglucose (FDG)-PET based gross tumor volume (GTV) using the same PET/CT scan from a patient with lung cancer. The observers were ''experts'' (E; n = 3), ''experienced interdisciplinary pairs'' (EP; 9 teams of radiation oncologist (RO) + nuclear medicine physician (NP)), ''single field specialists'' (SFS; n = 13), and ''students'' (S; n = 10). Five automatic delineation methods (AM) were also included. Volume sizes and concordance indices within the groups (pCI) and relative to the experts (eCI) were calculated. E (pCI = 0.67) and EP (pCI = 0.53) showed a significantly higher agreement within the groups as compared to SFS (pCI = 0.43, p = 0.03, and p = 0.006). In relation to the experts, EP (eCI = 0.55) showed better concordance compared to SFS (eCI = 0.49) or S (eCI = 0.47). The intermethod variability of the AM (pCI = 0.44) was similar to that of SFS and S, showing poorer agreement with the experts (eCI = 0.35). The results suggest that interdisciplinary cooperation could be beneficial for consistent contouring. Joint delineation by a radiation oncologist and a nuclear medicine physician showed remarkable agreement and better concordance with the experts compared to other specialists. The relevant intermethod variability of the automatic algorithms underlines the need for further standardization and optimization in this field. (orig.) [German] Die Daten aus der Positronenemissionstomographie (PET) werden in vielen Kliniken routinemaessig zur

  16. A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer

    International Nuclear Information System (INIS)

    Leong, Trevor; Everitt, Craig; Yuen, Kally; Condron, Sara; Hui, Andrew; Ngan, Samuel Y.K.; Pitman, Alexander; Lau, Eddie W.F.; MacManus, Michael; Binns, David; Ackerly, Trevor; Hicks, Rodney J.

    2006-01-01

    Background and purpose: This prospective study sought to determine how the use of combined PET/CT for radiotherapy treatment planning of oesophageal cancer would alter the delineation of tumour volumes compared to CT alone if PET/CT is assumed to more accurately represent true disease extent. Patients and methods: All patients underwent FDG-PET/CT scanning in the radiotherapy treatment position. For each patient, two separate gross tumour volumes (GTV) were defined, one based on CT images alone (GTV-CT) and another based on combined PET/CT data (GTV-PET). Corresponding planning target volumes (PTV) were generated, and separate treatment plans were then produced. For each patient, volumetric analysis of GTV-CT, PTV-CT and GTV-PET was performed to quantify the proportion of PET-avid disease that was not included in the GTV and PTV (geographic miss) if CT data alone were used for radiotherapy planning. Assessment of the cranial and caudal extent of the primary oesophageal tumour as defined by CT alone vs PET/CT was also compared. Results: The addition of PET information altered the clinical stage in 8 of 21 eligible patients enrolled on the study (38%); 4 patients had distant metastatic disease and 4 had unsuspected regional nodal disease. Sixteen patients proceeded to the radiotherapy planning phase of the study and received definitive chemoradiation planned with the PET/CT data set. The GTV based on CT information alone excluded PET-avid disease in 11 patients (69%), and in five patients (31%) this would have resulted in a geographic miss of gross tumour. The discordance between CT and PET/CT was due mainly to differences in defining the longitudinal extent of disease in the oesophagus. The cranial extent of the primary tumour as defined by CT vs PET/CT differed in 75% of cases, while the caudal extent differed in 81%. Conclusions: This study demonstrates that if combined PET/CT is used for radiotherapy treatment planning, there may be alterations to the delineation

  17. SU-G-BRA-16: Target Dose Comparison for Dynamic MLC Tracking and Mid- Ventilation Planning in Lung Radiotherapy Subject to Intrafractional Baseline Drifts

    Energy Technology Data Exchange (ETDEWEB)

    Menten, MJ; Fast, MF; Nill, S; Oelfke, U [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom)

    2016-06-15

    Purpose: Lung tumor motion during radiotherapy can be accounted for by expanded treatment margins, for example using a mid-ventilation planning approach, or by localizing the tumor in real-time and adapting the treatment beam with multileaf collimator (MLC) tracking. This study evaluates the effect of intrafractional changes in the average tumor position (baseline drifts) on these two treatment techniques. Methods: Lung stereotactic treatment plans (9-beam IMRT, 54Gy/3 fractions, mean treatment time: 9.63min) were generated for three patients: either for delivery with MLC tracking (isotropic GTV-to-PTV margin: 2.6mm) or planned with a mid-ventilation approach and delivered without online motion compensation (GTV-to-PTV margin: 4.4-6.3mm). Delivery to a breathing patient was simulated using DynaTrack, our in-house tracking and delivery software. Baseline drifts in cranial and posterior direction were simulated at a rate of 0.5, 1.0 or 1.5mm/min. For dose reconstruction, the corresponding 4DCT phase was selected for each time point of the delivery. Baseline drifts were accounted for by rigidly shifting the CT to ensure correct relative beam-to-target positioning. Afterwards, the doses delivered to each 4DCT phase were accumulated deformably on the mid-ventilation phase using research RayStation v4.6 and dose coverage of the GTV was evaluated. Results: When using the mid-ventilation planning approach, dose coverage of the tumor deteriorated substantially in the presence of baseline drifts. The reduction in D98% coverage of the GTV in a single fraction ranged from 0.4-1.2, 0.6-3.3 and 4.5-6.2Gy, respectively, for the different drift rates. With MLC tracking the GTV D98% coverage remained unchanged (+/− 0.1Gy) regardless of drift. Conclusion: Intrafractional baseline drifts reduce the tumor dose in treatments based on mid-ventilation planning. In rare, large target baseline drifts tumor dose coverage may drop below the prescription, potentially affecting clinical

  18. SU-E-J-249: Characterization of Gynecological Tumor Heterogeneity Using Texture Analysis in the Context of An 18F-FDG PET Adaptive Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nawrocki, J [Duke University Medical Physics Graduate Program, Durham, NC (United States); Chino, J; Craciunescu, O [Duke University Medical Center Department of Radiation Oncology, Durham, NC (United States); Das, S [University of North Carolina School of Medicine, Chapel Hill, NC (United States)

    2015-06-15

    Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% threshold and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis and should

  19. SU-E-J-249: Characterization of Gynecological Tumor Heterogeneity Using Texture Analysis in the Context of An 18F-FDG PET Adaptive Protocol

    International Nuclear Information System (INIS)

    Nawrocki, J; Chino, J; Craciunescu, O; Das, S

    2015-01-01

    Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% threshold and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis and should

  20. Proton radiation therapy (prt) for pediatric optic pathway gliomas: comparison with 3d planned conventional photons and a standard photon technique

    International Nuclear Information System (INIS)

    Fuss, Martin; Hug, Eugen B.; Schaefer, Rosemary A.; Nevinny-Stickel, Meinhard; Miller, Daniel W.; Slater, James M.; Slater, Jerry D.

    1999-01-01

    Purpose: Following adequate therapy, excellent long-term survival rates can be achieved for patients with optic pathway gliomas. Therefore, avoidance of treatment-related functional long-term sequelae is of utmost importance. Optimized sparing of normal tissue is of primary concern in the development of new treatment modalities. The present study compares proton radiation therapy (PRT) with a three-dimensional (3D)-planned multiport photon and a lateral beam photon technique for localized and extensive optic pathway tumors. Methods and Materials: Between February 1992 and November 1997, seven children with optic pathway gliomas underwent PRT. For this study, we computed proton, 3D photon, and lateral photon plans based on the same CT data sets, and using the same treatment planning software for all plans. Radiation exposure for normal tissue and discrete organs at risk was quantified based on dose-volume histograms. Results: Gross tumor volume (GTV) ranged from 3.9 cm 3 to 127.2 cm 3 . Conformity index (relation of encompassing isodose to GTV volume) was 2.3 for protons, 2.9 for 3D photons, and 7.3 for lateral photons. The relative increase of normal tissue (NT) encompassed at several isodose levels in relation to NT encompassed by the 95% proton isodose volume was computed. Relative NT volume of proton plan isodoses at the 95%, 90%, 80%, 50%, and 25% isodose level increased from 1 to 1.6, 2.8, 6.4, to a maximum of 13.3. Relative volumes for 3D photons were 1.6, 2.4, 3.8, 11.5, and 34.8. Lateral plan relative values were 6, 8.3, 11.5, 19.2, and 26.8. Analysis for small ( 3 ) and larger (> 80 cm 3 ) tumors showed that protons encompassed the smallest volumes of NT at all isodose levels. Comparable conformity and high-dose gradient were achieved for proton and 3D photon plans in small tumors. However, with increasing tumor volume and complexity, differences became larger. At the 50% isodose level, 3D photons were superior to lateral photons for small tumors; this

  1. Tumor immunology

    International Nuclear Information System (INIS)

    Otter, W. den

    1987-01-01

    Tumor immunology, the use of immunological techniques for tumor diagnosis and approaches to immunotherapy of cancer are topics covered in this multi-author volume. Part A, 'Tumor Immunology', deals with present views on tumor-associated antigens, the initiation of immune reactions of tumor cells, effector cell killing, tumor cells and suppression of antitumor immunity, and one chapter dealing with the application of mathematical models in tumor immunology. Part B, 'Tumor Diagnosis and Imaging', concerns the use of markers to locate the tumor in vivo, for the histological diagnosis, and for the monitoring of tumor growth. In Part C, 'Immunotherapy', various experimental approaches to immunotherapy are described, such as the use of monoclonal antibodies to target drugs, the use of interleukin-2 and the use of drugs inhibiting suppression. In the final section, the evaluation, a pathologist and a clinician evaluate the possibilities and limitations of tumor immunology and the extent to which it is useful for diagnosis and therapy. refs.; figs.; tabs

  2. Repeatability of FDG PET/CT metrics assessed in free breathing and deep inspiration breath hold in lung cancer patients.

    Science.gov (United States)

    Nygård, Lotte; Aznar, Marianne C; Fischer, Barbara M; Persson, Gitte F; Christensen, Charlotte B; Andersen, Flemming L; Josipovic, Mirjana; Langer, Seppo W; Kjær, Andreas; Vogelius, Ivan R; Bentzen, Søren M

    2018-01-01

    We measured the repeatability of FDG PET/CT uptake metrics when acquiring scans in free breathing (FB) conditions compared with deep inspiration breath hold (DIBH) for locally advanced lung cancer. Twenty patients were enrolled in this prospective study. Two FDG PET/CT scans per patient were conducted few days apart and in two breathing conditions (FB and DIBH). This resulted in four scans per patient. Up to four FDG PET avid lesions per patient were contoured. The following FDG metrics were measured in all lesions and in all four scans: Standardized uptake value (SUV) peak , SUV max , SUV mean , metabolic tumor volume (MTV) and total lesion glycolysis (TLG), based on an isocontur of 50% of SUV max . FDG PET avid volumes were delineated by a nuclear medicine physician. The gross tumor volumes (GTV) were contoured on the corresponding CT scans. Nineteen patients were available for analysis. Test-retest standard deviations of FDG uptake metrics in FB and DIBH were: SUV peak FB/DIBH: 16.2%/16.5%; SUV max : 18.2%/22.1%; SUV mean : 18.3%/22.1%; TLG: 32.4%/40.5%. DIBH compared to FB resulted in higher values with mean differences in SUV max of 12.6%, SUV peak 4.4% and SUV mean 11.9%. MTV, TLG and GTV were all significantly smaller on day 1 in DIBH compared to FB. However, the differences between metrics under FB and DIBH were in all cases smaller than 1 SD of the day to day repeatability. FDG acquisition in DIBH does not have a clinically relevant impact on the uptake metrics and does not improve the test-retest repeatability of FDG uptake metrics in lung cancer patients.

  3. The Effect of Tumor-Prostate Ratio on Biochemical Recurrence after Radical Prostatectomy

    Directory of Open Access Journals (Sweden)

    Sung Yong Cho

    2016-08-01

    Full Text Available Purpose: Prostate tumor volume calculated after surgery using pathologic tissue has been shown to be an independent risk factor for biochemical recurrence. Nonetheless, prostate size varies among individuals, regardless of the presence or absence of cancer. We assumed to be lower margin positive rate in the surgical operation, when the prostate volume is larger and the tumor lesion is same. Thus, we defined the tumor-prostate ratio in the ratio of tumor volume to prostate volume. In order to compensate the prostate tumor volume, the effect of tumor-prostate ratio on biochemical recurrence was examined. Materials and Methods: This study included 251 patients who underwent open retropubic radical prostatectomy for prostate cancer in a single hospital. We analyzed the effects of tumor volume and tumor-prostate ratio, as well as the effects of known risk factors for biochemical recurrence, on the duration of disease-free survival. Results: In the univariate analysis, the risk factors that significantly impacted disease-free survival time were found to be a prostate-specific antigen level ≥10 ng/mL, a tumor volume ≥5 mL, tumor-prostate ratio ≥10%, tumor capsular invasion, lymph node invasion, positive surgical margins, and seminal vesicle invasion. In the multivariate analysis performed to evaluate the risk factors found to be significant in the univariate analysis, positive surgical margins (hazard ratio=3.066 and a tumor density ≥10% (hazard ratio=1.991 were shown to be significant risk factors for biochemical recurrence. Conclusions: Tumor-prostate ratio, rather than tumor volume, should be regarded as a significant risk factor for biochemical recurrence.

  4. Image-guided radiotherapy for fifty-eight patients with lung cancer

    International Nuclear Information System (INIS)

    Liang Jun; Zhang Tao; Wang Wenqin

    2009-01-01

    Objective: To study the value of image-guided radiotherapy (IGRT) in lung cancer. Methods: From Mar. 2007 to Dec. 2007,58 patients with lung cancer were treated with IGRT. Set-up errors in each axial direction was calculated based on IGRT images of each patient. The change of GTV was evaluated on both cone-beam CT and CT simulator images. Results: Twenty-two patients with left lung cancer,30 with right lung cancer, 5 with mediastinal lymphanode metastasis and one with vertebra metastasis were included. The set-up error in x, y and z axes was (0.02±0.26) cm, (0.14±0.49) cm and ( -0.13± 0.27) cm, respectively,while the rotary set-up error in each axis was -0.15 degree ± 1.59 degree, -0.01 degree ± 1.50 degree and 0.12 degree ±1.08 degree, respectively. The set-up errors were significantly decreased by using of IGRT. GTV movement was observed in 15 patients (25.9%) ,including 5 with left upper lung cancer. GTV moving to the anterior direction was observed in 9 patients,including 4 with]eft upper lung cancer. GTV reduced in 23 (44.2%) patients during treatment. Asymmetric GTV reduction of 22 lesions was observed,with a mean reductive volume of 4.9 cm 3 . When GTV began to shrink,the irradiation dose was 4 -46 Gy, with 20 -30 Gy in 9 patients. Conclusions: The use of IGRT can significantly reduce set-up errors. GTV movement and reduction are observed in some cases. The time to modify the target volume needs to be further studied. (authors)

  5. Daily Tracking of Glioblastoma Resection Cavity, Cerebral Edema, and Tumor Volume with MRI-Guided Radiation Therapy.

    Science.gov (United States)

    Mehta, Shahil; Gajjar, Shefali R; Padgett, Kyle R; Asher, David; Stoyanova, Radka; Ford, John C; Mellon, Eric A

    2018-03-19

    Radiation therapy (RT) plays a critical role in the treatment of glioblastoma. Studies of brain imaging during RT for glioblastoma have demonstrated changes in the brain during RT. However, frequent or daily utilization of standalone magnetic resonance imaging (MRI) scans during RT have limited feasibility. The recent release of the tri-cobalt-60 MRI-guided RT (MR-IGRT) device (ViewRay MRIdian, Cleveland, OH) allows for daily brain MRI for the RT setup. Daily MRI of three postoperative patients undergoing RT and temozolomide for glioblastoma over a six-week course allowed for the identification of changes to the cavity, edema, and visible tumor on a daily basis. The volumes and dimensions of the resection cavities, edema, and T2-hyperintense tumor were measured. A general trend of daily decreases in cavity measurements was observed in all patients. For the one patient with edema, a trend of daily increases followed by a trend of daily decreases were observed. These results suggest that daily MRI could be used for onboard resimulation and adaptive RT for future fluctuations in the sizes of brain tumors, cavities, or cystic components. This could improve tumor targeting and reduce RT of healthy brain tissue.

  6. Evaluation of an automated deformable image matching method for quantifying lung motion in respiration-correlated CT images

    International Nuclear Information System (INIS)

    Pevsner, A.; Davis, B.; Joshi, S.; Hertanto, A.; Mechalakos, J.; Yorke, E.; Rosenzweig, K.; Nehmeh, S.; Erdi, Y.E.; Humm, J.L.; Larson, S.; Ling, C.C.; Mageras, G.S.

    2006-01-01

    We have evaluated an automated registration procedure for predicting tumor and lung deformation based on CT images of the thorax obtained at different respiration phases. The method uses a viscous fluid model of tissue deformation to map voxels from one CT dataset to another. To validate the deformable matching algorithm we used a respiration-correlated CT protocol to acquire images at different phases of the respiratory cycle for six patients with nonsmall cell lung carcinoma. The position and shape of the deformable gross tumor volumes (GTV) at the end-inhale (EI) phase predicted by the algorithm was compared to those drawn by four observers. To minimize interobserver differences, all observers used the contours drawn by a single observer at end-exhale (EE) phase as a guideline to outline GTV contours at EI. The differences between model-predicted and observer-drawn GTV surfaces at EI, as well as differences between structures delineated by observers at EI (interobserver variations) were evaluated using a contour comparison algorithm written for this purpose, which determined the distance between the two surfaces along different directions. The mean and 90% confidence interval for model-predicted versus observer-drawn GTV surface differences over all patients and all directions were 2.6 and 5.1 mm, respectively, whereas the mean and 90% confidence interval for interobserver differences were 2.1 and 3.7 mm. We have also evaluated the algorithm's ability to predict normal tissue deformations by examining the three-dimensional (3-D) vector displacement of 41 landmarks placed by each observer at bronchial and vascular branch points in the lung between the EE and EI image sets (mean and 90% confidence interval displacements of 11.7 and 25.1 mm, respectively). The mean and 90% confidence interval discrepancy between model-predicted and observer-determined landmark displacements over all patients were 2.9 and 7.3 mm, whereas interobserver discrepancies were 2.8 and 6

  7. Risk Factors for Neovascular Glaucoma After Proton Beam Therapy of Uveal Melanoma: A Detailed Analysis of Tumor and Dose–Volume Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Kavita K., E-mail: kmishra@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Daftari, Inder K.; Weinberg, Vivian [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Cole, Tia [The Tumori Foundation, San Francisco, California (United States); Quivey, Jeanne M.; Castro, Joseph R.; Phillips, Theodore L. [Department of Radiation Oncology, University of California, San Francisco, San Francisco, California (United States); Char, Devron H. [The Tumori Foundation, San Francisco, California (United States)

    2013-10-01

    Purpose: To determine neovascular glaucoma (NVG) incidence and identify contributing tumor and dosing factors in uveal melanoma patients treated with proton beam radiation therapy (PBRT). Methods and Materials: A total of 704 PBRT patients treated by a single surgeon (DHC) for uveal melanoma (1996-2010) were reviewed for NVG in our prospectively maintained database. All patients received 56 GyE in 4 fractions. Median follow-up was 58.3 months. Analyses included the Kaplan-Meier method to estimate NVG distributions, univariate log–rank tests, and Cox's proportional hazards multivariate analysis using likelihood ratio tests to identify independent risk factors of NVG among patient, tumor, and dose–volume histogram parameters. Results: The 5-year PBRT NVG rate was 12.7% (95% confidence interval [CI] 10.2%-15.9%). The 5-year rate of enucleation due to NVG was 4.9% (95% CI 3.4%-7.2%). Univariately, the NVG rate increased significantly with larger tumor diameter (P<.0001), greater height (P<.0001), higher T stage (P<.0001), and closer proximity to the disc (P=.002). Dose–volume histogram analysis revealed that if >30% of the lens or ciliary body received ≥50% dose (≥28 GyE), there was a higher probability of NVG (P<.0001 for both). Furthermore, if 100% of the disc or macula received ≥28 GyE, the NVG rate was higher (P<.0001 and P=.03, respectively). If both anterior and posterior doses were above specified cut points, NVG risk was highest (P<.0001). Multivariate analysis confirmed significant independent risk factors to include tumor height (P<.0001), age (P<.0001), %disc treated to ≥50% Dose (<100% vs 100%) (P=.0007), larger tumor diameter (P=.01), %lens treated to ≥90% Dose (0 vs >0%-30% vs >30%) (P=.01), and optic nerve length treated to ≥90% Dose (≤1 mm vs >1 mm) (P=.02). Conclusions: Our current PBRT patients experience a low rate of NVG and resultant enucleation compared with historical data. The present analysis shows that tumor height

  8. Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors.

    Science.gov (United States)

    Narayanasamy, Ganesh; Zhang, Xin; Meigooni, Ali; Paudel, Nava; Morrill, Steven; Maraboyina, Sanjay; Peacock, Loverd; Penagaricano, Jose

    2017-08-01

    Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear-quadratic cell survival model. HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT-GRID irradiation to an open debulking field of an equivalent dose that result in the same tumor cell SF. TR was estimated from DVH data on ten HT-GRID patient plans with deep seated, bulky tumor. Dependence of the TR values on radiosensitivity of the tumor cells and prescription dose was analyzed. The mean ± standard deviation (SD) of TR was 4.0 ± 0.7 (range: 3.1-5.5) for the 10 patients with single fraction maximum dose of 20 Gy to GTV assuming a tumor cell SF at 2 Gy (SF2 t ) value of 0·5. In addition, the mean ± SD of TR values for SF2 t values of 0.3 and 0.7 were found to be 1 ± 0.1 and 18.0 ± 5.1, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the respective TR values to 2.0 ± 0.2 and 1.2 ± 0.04 for a SF2 t value of 0.5. HT-GRID therapy demonstrates a significant therapeutic advantage over uniform dose from an open field irradiation for the same tumor cell kill. TR increases with the radioresistance of the tumor cells and with prescription dose.

  9. Dose-volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors

    International Nuclear Information System (INIS)

    Martel, Mary Kaye; Sandler, Howard M.; Cornblath, Wayne T.; Marsh, Lon H.; Hazuka, Mark B.; Roa, Wilson H.; Fraass, Benedict A.; Lichter, Allen S.

    1997-01-01

    Purpose: The purpose of the present work was to relate dose and volume information to complication data for visual pathway structures in patients with advanced paranasal sinus tumors. Methods and Materials: Three-dimensional (3D) dose distributions for chiasm, optic nerve, and retina were calculated and analyzed for 20 patients with advanced paranasal sinus malignant tumors. 3D treatment planning with beam's eye view capability was used to design beam and block arrangements, striving to spare the contralateral orbit (to lessen the chance of unilateral blindness) and frequently the ipsilateral orbit (to help prevent bilateral blindness). Point doses, dose-volume histogram analysis, and normal tissue complication probability (NTCP) calculations were performed. Published tolerance doses that indicate significant risk of complications were used as guidelines for analysis of the 3D dose distributions. Results: Point doses, percent volume exceeding a specified published tolerance dose, and NTCP calculations are given in detail for patients with complications versus patients without complications. Two optic nerves receiving maximum doses below the published tolerance dose sustained damage (mild vision loss). Three patients (of 13) without optic nerve sparing and/or chiasm sparing had moderate or severe vision loss. Complication data, including individual patient analysis to estimate overall risk for loss of vision, are given. Conclusion: 3D treatment planning techniques were used successfully to provide bilateral sparing of the globe for most patients. It was more difficult to spare the optic nerves, especially on the ipsilateral side, when prescription dose exceeded the normal tissue tolerance doses. NTCP calculations may be useful in assessing complication risk better than point dose tolerance criteria for the chiasm, optic nerve, and retina. It is important to assess the overall risk of blindness for the patient in addition to the risk for individual visual pathway

  10. SU-G-IeP4-11: Monitoring Tumor Growth in Subcutaneous Murine Tumor Model in Vivo: A Comparison Between MRI and Small Animal CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B; He, W; Cvetkovic, D; Chen, L; Fan, J; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: The purpose of the study is to compare the volume measurement of subcutaneous tumors in mice with different imaging platforms, namely a GE MRI and a Sofie-Biosciences small animal CT scanner. Methods: A549 human lung carcinoma cells and FaDu human head and neck squamous cell carcinoma cells were implanted subcutaneously into flanks of nude mice. Three FaDu tumors and three A549 tumors were included in this study. The MRI scans were done with a GE Signa 1.5 Tesla MR scanner using a fast T2-weighted sequence (70mm FOV and 1.2mm slice thickness), while the CT scans were done with the CT scanner on a Sofie-Biosciences G8 PET/CT platform dedicated for small animal studies (48mm FOV and 0.2mm slice thickness). Imaging contrast agent was not used in this study. Based on the DICOM images from MRI and CT scans, the tumors were contoured with Philips DICOM Viewer and the tumor volumes were obtained by summing up the contoured area and multiplied by the slice thickness. Results: The volume measurements based on the CT scans agree reasonably with that obtained with MR images for the subcutaneous tumors. The mean difference in the absolute tumor volumes between MRI- and CT-based measurements was found to be −6.2% ± 1.0%, with the difference defined as (VMR – VCT)*100%/VMR. Furthermore, we evaluated the normalized tumor volumes, which were defined for each tumor as V/V{sub 0} where V{sub 0} stands for the volume from the first MR or CT scan. The mean difference in the normalized tumor volumes was found to be 0.10% ± 0.96%. Conclusion: Despite the fact that the difference between normal and abnormal tissues is often less clear on small animal CT images than on MR images, one can still obtain reasonable tumor volume information with the small animal CT scans for subcutaneous murine xenograft models.

  11. Spatial and dose–response analysis of fibrotic lung changes after stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Vinogradskiy, Yevegeniy; Diot, Quentin; Kavanagh, Brian; Schefter, Tracey; Gaspar, Laurie; Miften, Moyed

    2013-01-01

    Purpose: Stereotactic body radiation therapy (SBRT) is becoming the standard of care for early stage nonoperable lung cancers. Accurate dose–response modeling is challenging for SBRT because of the decreased number of clinical toxicity events. As a surrogate for a clinical toxicity endpoint, studies have proposed to use radiographic changes in follow up computed tomography (CT) scans to evaluate lung SBRT normal tissue effects. The purpose of the current study was to use local fibrotic lung regions to spatially and dosimetrically evaluate lung changes in patients that underwent SBRT.Methods: Forty seven SBRT patients treated at our institution from 2003 to 2009 were used for the current study. Our patient cohort had a total of 148 follow up CT scans ranging from 3 to 48 months post-therapy. Post-treatment scans were binned into intervals of 3, 6, 12, 18, 24, 30, and 36 months after the completion of treatment. Deformable image registration was used to align the follow up CT scans with the pretreatment CT and dose distribution. Areas of visible fibrotic changes were contoured. The centroid of each gross tumor volume (GTV) and contoured fibrosis volume was calculated and the fibrosis volume location and movement (magnitude and direction) relative to the GTV and 30 Gy isodose centroid were analyzed. To perform a dose–response analysis, each voxel in the fibrosis volume was sorted into 10 Gy dose bins and the average CT number value for each dose bin was calculated. Dose–response curves were generated by plotting the CT number as a function of dose bin and time posttherapy.Results: Both fibrosis and GTV centroids were concentrated in the upper third of the lung. The average radial movement of fibrosis centroids relative to the GTV centroids was 2.6 cm with movement greater than 5 cm occurring in 11% of patients. Evaluating dose–response curves revealed an overall trend of increasing CT number as a function of dose. The authors observed a CT number plateau at

  12. Large volume unresectable locally advanced non-small cell lung cancer: acute toxicity and initial outcome results with rapid arc

    Directory of Open Access Journals (Sweden)

    Fogliata Antonella

    2010-10-01

    Full Text Available Abstract Background To report acute toxicity, initial outcome results and planning therapeutic parameters in radiation treatment of advanced lung cancer (stage III with volumetric modulated arcs using RapidArc (RA. Methods Twenty-four consecutive patients were treated with RA. All showed locally advanced non-small cell lung cancer with stage IIIA-IIIB and with large volumes (GTV:299 ± 175 cm3, PTV:818 ± 206 cm3. Dose prescription was 66Gy in 33 fractions to mean PTV. Delivery was performed with two partial arcs with a 6 MV photon beam. Results From a dosimetric point of view, RA allowed us to respect most planning objectives on target volumes and organs at risk. In particular: for GTV D1% = 105.6 ± 1.7%, D99% = 96.7 ± 1.8%, D5%-D95% = 6.3 ± 1.4%; contra-lateral lung mean dose resulted in 13.7 ± 3.9Gy, for spinal cord D1% = 39.5 ± 4.0Gy, for heart V45Gy = 9.0 ± 7.0Gy, for esophagus D1% = 67.4 ± 2.2Gy. Delivery time was 133 ± 7s. At three months partial remission > 50% was observed in 56% of patients. Acute toxicities at 3 months showed 91% with grade 1 and 9% with grade 2 esophageal toxicity; 18% presented grade 1 and 9% with grade 2 pneumonia; no grade 3 acute toxicity was observed. The short follow-up does not allow assessment of local control and progression free survival. Conclusions RA proved to be a safe and advantageous treatment modality for NSCLC with large volumes. Long term observation of patients is needed to assess outcome and late toxicity.

  13. Factors Associated With Early Mortality in Patients Treated With Concurrent Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Andrew [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); Dahele, Max [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Hu, Bo; Palma, David A. [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); Senan, Suresh [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Oberije, Cary [Department of Radiation Oncology, MAASTRO Clinic, Maastricht (Netherlands); Tsujino, Kayoko [Department of Radiation Oncology, Hyogo Cancer Center, Akashi (Japan); Moreno-Jimenez, Marta [Department of Oncology, Clínica Universidad, Universidad de Navarra, Pamplona (Spain); Kim, Tae Hyun [Department of Radiation Oncology, National Cancer Center, Goyang-si, Gyeonggi (Korea, Republic of); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina (United States); Rengan, Ramesh [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); De Petris, Luigi [Department of Oncology and Pathology, Karolinska University Hospital, Stockholm (Sweden); Ramella, Sara [Department of Radiation Oncology, Campus Bio-Medico University, Rome (Italy); De Ruyck, Kim [Department of Basic Medical Sciences, Ghent University, Ghent (Belgium); De Dios, Núria Rodriguez [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut Mar, Barcelona (Spain); Bradley, Jeffrey D. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Rodrigues, George, E-mail: George.Rodrigues@lhsc.on.ca [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada)

    2016-03-01

    Purpose: Concurrent chemoradiation therapy (con-CRT) is recommended for fit patients with locally advanced non-small cell lung cancer (LA-NSCLC) but is associated with toxicity, and observed survival continues to be limited. Identifying factors associated with early mortality could improve patient selection and identify strategies to improve prognosis. Methods and Materials: Analysis of a multi-institutional LA-NSCLC database consisting of 1245 patients treated with con-CRT in 13 institutions was performed to identify factors predictive of 180-day survival. Recursive partitioning analysis (RPA) was performed to identify prognostic groups for 180-day survival. Multivariate logistic regression analysis was used to create a clinical nomogram predicting 180-day survival based on important predictors from RPA. Results: Median follow-up was 43.5 months (95% confidence interval [CI]: 40.3-48.8) and 127 patients (10%) died within 180 days of treatment. Median, 180-day, and 1- to 5-year (by yearly increments) actuarial survival rates were 20.9 months, 90%, 71%, 45%, 32%, 27%, and 22% respectively. Multivariate analysis adjusted by region identified gross tumor volume (GTV) (odds ratio [OR] ≥100 cm{sup 3}: 2.61; 95% CI: 1.10-6.20; P=.029) and pulmonary function (forced expiratory volume in 1 second [FEV{sub 1}], defined as the ratio of FEV{sub 1} to forced vital capacity [FVC]) (OR <80%: 2.53; 95% CI: 1.09-5.88; P=.030) as significant predictors of 180-day survival. RPA resulted in a 2-class risk stratification system: low-risk (GTV <100 cm{sup 3} or GTV ≥100 cm{sup 3} and FEV{sub 1} ≥80%) and high-risk (GTV ≥100 cm{sup 3} and FEV{sub 1} <80%). The 180-day survival rates were 93% for low risk and 79% for high risk, with an OR of 4.43 (95% CI: 2.07-9.51; P<.001), adjusted by region. A clinical nomogram predictive of 180-day survival, incorporating FEV{sub 1}, GTV, N stage, and maximum esophagus dose yielded favorable calibration (R{sup 2} = 0

  14. Cranial Tumor Surgical Outcomes at a High-Volume Academic Referral Center.

    Science.gov (United States)

    Brown, Desmond A; Himes, Benjamin T; Major, Brittny T; Mundell, Benjamin F; Kumar, Ravi; Kall, Bruce; Meyer, Fredric B; Link, Michael J; Pollock, Bruce E; Atkinson, John D; Van Gompel, Jamie J; Marsh, W Richard; Lanzino, Giuseppe; Bydon, Mohamad; Parney, Ian F

    2018-01-01

    To determine adverse event rates for adult cranial neuro-oncologic surgeries performed at a high-volume quaternary academic center and assess the impact of resident participation on perioperative complication rates. All adult patients undergoing neurosurgical intervention for an intracranial neoplastic lesion between January 1, 2009, and December 31, 2013, were included. Cases were categorized as biopsy, extra-axial/skull base, intra-axial, or transsphenoidal. Complications were categorized as neurologic, medical, wound, mortality, or none and compared for patients managed by a chief resident vs a consultant neurosurgeon. A total of 6277 neurosurgical procedures for intracranial neoplasms were performed. After excluding radiosurgical procedures and pediatric patients, 4151 adult patients who underwent 4423 procedures were available for analysis. Complications were infrequent, with overall rates of 9.8% (435 of 4423 procedures), 1.7% (73 of 4423), and 1.4% (63 of 4423) for neurologic, medical, and wound complications, respectively. The rate of perioperative mortality was 0.3% (14 of 4423 procedures). Case performance and management by a chief resident did not negatively impact outcome. In our large-volume brain tumor practice, rates of complications were low, and management of cases by chief residents in a semiautonomous manner did not negatively impact surgical outcomes. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  15. Three-dimensional conformal radiotherapy by delineations on CT-based simulation in different respiratory phases for the treatment of senile patients with non-small cell lung cancer.

    Science.gov (United States)

    Wang, Weifeng; Yuan, Feng; Wang, Guoping; Lin, Zhiren; Pan, Yanling; Chen, Longhua

    2015-01-01

    This study aimed to evaluate the application of three-dimensional conformal radiotherapy (3D-CRT) for elderly patients with non-small cell lung cancer (NSCLC) based on computed tomography (CT) simulations in different respiratory phases. A total of 64 patients aged >70 years old with NSCLC were treated by 3D-CRT using CT images in different respiratory phases. The gross tumor volumes (GTVs) at the end of inspiration and end of expiration were combined to obtain the total GTV, which was close to the motional range of tumors during respiration, and no additional expansion of the clinical target volume (CTAV) to planning target volume (PTV) (CTAV:PTV) was included during the recording of respiratory movements. Patients were also planned according to the classic 3D-CRT approach. Efficacy, prognostic factors, and side effects were evaluated. Compared with the classic approach, the average PTV was 18.9% lower (median: 17.3%), and the average lung volume receiving a prescribed dose for a tumor was 22.4% lower (median: 20.9%). The 1-, 2-, and 3-year survival rates were 70.6%, 54.9%, and 29.4%, respectively, with an overall tumor response rate of 79.7%. The Karnofsky performance status and N stage were independent prognostic factors, whereas age was not. Without affecting therapeutic effects, CT simulations in different respiratory phases were well-tolerated in elderly patients with NSCLC, could effectively reduce PTV, and could improve the quality of life.

  16. Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor Grading

    Science.gov (United States)

    Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye

    2013-01-01

    Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910

  17. Influence of experience and qualification on PET-based target volume delineation. When there is no expert - ask your colleague

    International Nuclear Information System (INIS)

    Doll, C.; Grosu, A.L.; Nestle, U.; Duncker-Rohr, V.; Ruecker, G.; Mix, M.; MacManus, M.; Ruysscher, D. de; Vogel, W.; Eriksen, J.G.; Oyen, W.; Weber, W.

    2014-01-01

    The integration of positron emission tomography (PET) information for target volume delineation in radiation treatment planning is routine in many centers. In contrast to automatic contouring, research on visual-manual delineation is scarce. The present study investigates the dependency of manual delineation on experience and qualification. A total of 44 international interdisciplinary observers each defined a [ 18 F]fluorodeoxyglucose (FDG)-PET based gross tumor volume (GTV) using the same PET/CT scan from a patient with lung cancer. The observers were ''experts'' (E; n = 3), ''experienced interdisciplinary pairs'' (EP; 9 teams of radiation oncologist (RO) + nuclear medicine physician (NP)), ''single field specialists'' (SFS; n = 13), and ''students'' (S; n = 10). Five automatic delineation methods (AM) were also included. Volume sizes and concordance indices within the groups (pCI) and relative to the experts (eCI) were calculated. E (pCI = 0.67) and EP (pCI = 0.53) showed a significantly higher agreement within the groups as compared to SFS (pCI = 0.43, p = 0.03, and p = 0.006). In relation to the experts, EP (eCI = 0.55) showed better concordance compared to SFS (eCI = 0.49) or S (eCI = 0.47). The intermethod variability of the AM (pCI = 0.44) was similar to that of SFS and S, showing poorer agreement with the experts (eCI = 0.35). The results suggest that interdisciplinary cooperation could be beneficial for consistent contouring. Joint delineation by a radiation oncologist and a nuclear medicine physician showed remarkable agreement and better concordance with the experts compared to other specialists. The relevant intermethod variability of the automatic algorithms underlines the need for further standardization and optimization in this field. (orig.) [de

  18. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer: In vivo whole tumor assessment using volumetric perfusion computed tomography

    International Nuclear Information System (INIS)

    Ng, Q.-S.; Goh, Vicky; Milner, Jessica; Padhani, Anwar R.; Saunders, Michele I.; Hoskin, Peter J.

    2007-01-01

    Purpose: To quantitatively assess the in vivo acute vascular effects of fractionated radiotherapy for human non-small-cell lung cancer using volumetric perfusion computed tomography (CT). Methods and Materials: Sixteen patients with advanced non-small-cell lung cancer, undergoing palliative radiotherapy delivering 27 Gy in 6 fractions over 3 weeks, were scanned before treatment, and after the second (9 Gy), fourth (18 Gy), and sixth (27 Gy) radiation fraction. Using 16-detector CT, multiple sequential volumetric acquisitions were acquired after intravenous contrast agent injection. Measurements of vascular blood volume and permeability for the whole tumor volume were obtained. Vascular changes at the tumor periphery and center were also measured. Results: At baseline, lung tumor vascularity was spatially heterogeneous with the tumor rim showing a higher vascular blood volume and permeability than the center. After the second, fourth, and sixth fractions of radiotherapy, vascular blood volume increased by 31.6% (paired t test, p = 0.10), 49.3% (p = 0.034), and 44.6% (p = 0.0012) respectively at the tumor rim, and 16.4% (p = 0.29), 19.9% (p = 0.029), and 4.0% (p = 0.0050) respectively at the center of the tumor. After the second, fourth, and sixth fractions of radiotherapy, vessel permeability increased by 18.4% (p = 0.022), 44.8% (p = 0.0048), and 20.5% (p = 0.25) at the tumor rim. The increase in permeability at the tumor center was not significant after radiotherapy. Conclusion: Fractionated radiotherapy increases tumor vascular blood volume and permeability in human non-small-cell lung cancer. We have established the spatial distribution of vascular changes after radiotherapy; greater vascular changes were demonstrated at the tumor rim compared with the center

  19. Treatment of Murine Tumor Models of Breast Adenocarcinoma by Continuous Dual-Frequency Ultrasound

    Directory of Open Access Journals (Sweden)

    Amir Hoshang Barati

    2009-03-01

    Full Text Available Introduction: Acoustic transient cavitation is the primary mechanism of sonochemical reaction and has potential use for tumor treatment. In this study, the in vivo anti-tumor effect of simultaneous dual-frequency ultrasound at low-level intensity (ISATA < 6 W/cm2 was investigated in a spontaneous murine model of breast adenocarcinoma in Balb/c mice. Materials and Methods: Forty tumor bearing mice were divided into four groups (10 in each group. The treated groups received 15 or 30 minutes of combined dual-frequency ultrasound in continuous mode (1 MHzcon + 150 kHzcon respectively. The control and the sham groups contained the untreated mice. The tumor growth delay parameters including tumor volume, relative tumor volume, T5 and T2 (the needed time for each tumor to reach 5 and 2 times the initial tumor volume, respectively, survival period and percent of tumor growth inhibition ratio were measured on different days after treatment. Results: The results showed that the 30 min treatment was effective in tumor growth delay and percent of tumor growth inhibitory ratio compared to the sham and the control groups. The tumor volume growth and relative volume of tumors in the same treated group showed an anti-tumor effect relative to the sham and the control groups. There was a significant difference in tumor volume growth between this 30 min treatment group and the sham group 12 days after treatment (p-value

  20. Rapid Automated Target Segmentation and Tracking on 4D Data without Initial Contours

    International Nuclear Information System (INIS)

    Chebrolu, V.V.; Chebrolu, V.V.; Saenz, D.; Tewatia, D.; Paliwal, B.R.; Chebrolu, V.V.; Saenz, D.; Paliwal, B.R.; Sethares, W.A.; Cannon, G.

    2014-01-01

    To achieve rapid automated delineation of gross target volume (GTV) and to quantify changes in volume/position of the target for radiotherapy planning using four-dimensional (4D) CT. Methods and Materials. Novel morphological processing and successive localization (MPSL) algorithms were designed and implemented for achieving auto segmentation. Contours automatically generated using MPSL method were compared with contours generated using state-of-the-art deformable registration methods (using Elastix © and MIMV ista software). Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive value (PPV) were analyzed. The target motion tracked using the centroid of the GTV estimated using MPSL method was compared with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in 27.0 ±11.1 seconds per phase ( 512 ×512 resolution) as compared to 142.3±11.3 seconds per phase for deformable registration based methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth) were 0.865 ± 0.037. In comparison, the Dice coefficients between ground-truth and contours generated using deformable registration based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV segmentation.